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Cellular adhesiveness and cellulolytic 
capacity in Anaerolineae revealed 
by omics-based genome interpretation
Yu Xia2, Yubo Wang2, Yi Wang3, Francis Y. L. Chin3,4 and Tong Zhang1,2,5*

Abstract 

Background: The Anaerolineae lineage of Chloroflexi had been identified as one of the core microbial populations in 
anaerobic digesters; however, the ecological role of the Anaerolineae remains uncertain due to the scarcity of isolates 
and annotated genome sequences. Our previous metatranscriptional analysis revealed this prevalent population that 
showed minimum involvement in the main pathways of cellulose hydrolysis and subsequent methanogenesis in the 
thermophilic cellulose fermentative consortium (TCF).

Results: In further pursuit, five high-quality curated draft genomes (>98 % completeness) of this population, includ-
ing two affiliated with the inaccessible lineage of SBR1031, were retrieved by sequence-based multi-dimensional 
coverage binning. Comparative genomic analyses revealed versatile genetic capabilities for carbohydrate-based 
fermentative lifestyle including key genes catalyzing cellulose hydrolysis in Anaerolinea phylotypes. However, the low 
transcriptional activities of carbohydrate-active genes (CAGs) excluded cellulolytic capability as the selective advan-
tage for their prevalence in the community. Instead, a substantially active type VI pili (Tfp) assembly was observed. 
Expression of the tight adherence protein on the Tfp indicated its function for cellular attachment which was fur-
ther testified to be more likely related to cell aggregation other than cellulose surface adhesion. Meanwhile, this Tfp 
structure was found not contributing to syntrophic methanogenesis. Members of the SBR1031 encoded key genes for 
acetogenic dehydrogenation that may allow ethanol to be used as a carbon source.

Conclusion: The common prevalence of Anaerolineae in anaerobic digesters should be originated from advanta-
geous cellular adhesiveness enabled by Tfp assembly other than its potential as cellulose degrader or anaerobic 
syntrophs.
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Background
Anaerobic digestion, as a key environmental technology 
for resource recovery, is empowered by microbial reac-
tions involving a complex community. Anaerolineae (also 
known as subphylum I of Chloroflexi phylum) had been 
identified as one of the core populations, and for most 
of the cases, the dominating proportion of anaerobic 
digestive systems [1, 2]; however, its roles in anaerobic 

digestion process remain uncertain due to a general lack 
of sequenced genomes.

A series of metabolic reactions such as hydrolysis, aci-
dogenesis (fermentation), acetogenesis, and methano-
genesis are involved in the process of anaerobic digestion. 
Normally, the Anaerolineae linage has been regarded as 
a typical fermentative population within the community. 
As hydrogen could be produced during fermentation of 
soluble sugar, researchers also speculated that Anaero-
lineae acted as anaerobic syntrophs which conduct 
reverse electron transfer via tightly coupled mutualistic 
interaction with methanogens [1]; however the valid-
ity of Anaerolineae in syntrophic methanogenesis is not 
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yet confirmed. Additionally, the common ability to grow 
on starch (alpha-glucan polysaccharides) [3, 4] and the 
recent discovery of cellulolytic representative Ornati-
linea apprima [5] is attracting increasing research inter-
est on the importance of this lineage in the bottlenecking 
polysaccharide hydrolysis step of anaerobic digestion. 
Moreover, the flow velocity within the digester, especially 
in upflow anaerobic sludge blanket reactor (UASB), may 
select organisms which can adhere to each other to form 
well-settling granular sludge. This widely distributed 
Anaerolineae population had been reported as both the 
backbone of sludge granules [6] and the causative agent 
of filamentous bulking in UASB [2, 7].

Currently ten strains had been isolated in Anaerolineae 
class [3–5, 8–11]. These representative strains isolated 
from anaerobic sludge treating various pollutants help 
to resolve the phylogenetic composition of this lineage 
into eight genera representing one family of Anaerolin-
eaceae in one single order of Anaerolineales. Phenotypic 
comparison of the cultivated strains identifies a number 
of common traits including filamentous morphology as 
well as non-motile, non-sporulation, and gram-negative 
characteristics [3–5, 8–11]. In contrast, genomic infor-
mation is quite limited for this class; indeed there is only 
one finished complete genome, Anaerolinea thermophila 
UNI-1 (short as UNI-1 in subsequent discussion), avail-
able in IMG 4.0 (up to 12 Jan 2016). Further recovery of 
interpretative genomes is requisite to disclose the ecolog-
ical importance of Anaerolineae as a core population in 
anaerobic digestion process.

Rapid accumulation of next generation sequenc-
ing (NGS) data from various metagenomes had made 
genome reconstruction independent from isolation pos-
sible [12–15]. Such cultivation-independent binning 
method based on multi-dimensional abundance profile 
had provided initial genomic insight of the metabolic 
styles of the previously inaccessible phyla-like TM6 and 
OP8 etc. [15–17]. This creative approach had helped to 
expand the evolutionary boundaries of Dehalococcoidia 
lineage of the Chloroflexi from obligate organohalide res-
piration to fermentation, CO2 fixation, and acetogenesis 
[18, 19]; however, these frontier work did not emphasize 
on the lineage of Anaerolineae which is important in the 
operation of anaerobic reactors.

In the present study, with a purpose to resolve the spe-
cial physiochemical features that support accumulation 
of Anaerolineae in the thermophilic cellulose-fermenting 
reactor, we utilized a sequence-based metagenomic bin-
ning to recover high-quality genomes from Anaerolineae 
lineage. Comparative genomics were conducted to reveal 
specific genetic traits related with key functions in anaer-
obic digestion. Beneficial ecological functions of Anaero-
lineae within the community were inferred based on the 

expressed genes and pathways identified by metatran-
scriptomic sequencing and then testified in experiments. 
Information obtained here would add a great amount 
of contextual information to the ecological importance 
of Anaerolineae in anaerobic digestive systems and help 
to resolve the intra-physiological differences among the 
uncultivated majority of this lineage.

Results and discussion
Two‑dimensional coverage binning and quality evaluation
Metagenomic DNA extracted from sludge samples col-
lected from the same thermophilic anaerobic cellulose-
degrading reactor but at two different time points [the 
short-term enrichment at 120  days of enrichment (SE) 
and the long-term enrichment at 549  days (LE)] were 
deeply sequenced to construct the two differential cov-
erage for genome reconstruction. The 129,535,600 
high-quality reads obtained from illumina paired-end 
sequencing (see Additional file  1: Table S1 for a sum-
mary) were de novo assembled, resulting in a total of 
119 Mb operational scaffolds (scaffolds longer than 1 kb) 
with N50 of 19,859  bp. Most of the reads (87  %) were 
included in the assembly with the longest scaffolds being 
640 kb (Additional file 1: Table S2).

As shown in Fig.  1, the coverage binning produced 
six primary genome bins (named as TCF-2, 5, 8, 12, 13, 
and 14) showing closely clustered coverage in the SE and 
LE metagenomes. The accumulation of Chloroflexi dur-
ing enrichment facilitated the retrieving of the related 
genome bins (Additional file  1: Figure S1). Then, tetra-
nucleotide frequency (TNF) was used to filter out possi-
ble contamination at hierarchy distance of 0.1 [20]. The 
quality of these six primary Chloroflexi genome bins was 
then evaluated in terms of genome completeness and 
contamination, respectively based on the occupation 
and duplication of the 107 essential single-copy genes 
(ESCGs) shared  >95  % of all bacteria (Additional file  1: 
Tables S3, S4). Except for TCF-14, the other five genome 
bins showed comparable completeness and ESCG redun-
dancy to that of the other finished genomes of Chloroflexi 
(completeness larger than 96  % with redundancy less 
than 5 %, Additional file 1: Table S5). This quality estima-
tion was double checked by an alternative method based 
on 35 conserved single-copy COGs [21]. Consistent com-
pleteness and purity estimation results were observed 
for these five genome bins (Additional file  1: Table S6). 
The subsequent genome annotation was only based on 
these five high-quality genome bins. The other retrieved 
genomes can be found in Additional file 1: Table S7.

Phylogenic position of curated genomes
To solve the phylogenetic position of these five genome 
bins, firstly neighbor-joining phylogenetic tree was 
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constructed with recovered 16S rRNA genes of the TCF-
2, 5, 12, and 13 and high-quality 16S clone sequences 
downloaded from Silva SSU 15.0 database. As shown 
in Fig. 2, all of the curated genomes were placed within 
Anaerolineae class. TCF-2, TCF-5, and TCF-12 were 
clustered to the order of Anaerolinales and respectively 
affiliated with A. thermolimosa, Bellilinea caldifistulae, 
and Thermanaerothrix daxensis. In contrast, TCF-13 
showed no confirmed affiliation to any known genus. 
The closest known relative of TCF-13 is Thermomarini-
linea lacunofontalis at maximum-likelihood evolutionary 
distance larger than 0.1, suggesting that this species may 
belong to a novel lineage within Anaerolineae class. This 
lineage was named as the SHA-31 family of SBR1031 
order in the updated greengenes taxonomy (published in 
May 2013) [22]. Since the 16S rRNA gene of TCF-8 is too 
short (only 65  bp) to make confident alignment, maxi-
mum-likehood tree based on the concatenated alignment 
of 35 single-copy ESCGs shared among the five genome 

bins and twenty-two finished genomes of Chloroflexi 
was used in addition to phylogenetic tree based on 16S 
rRNA genes. The concatenated clustering indicated close 
phylogenetic affiliation of TCF-8 to the SBR1031 lineage 
containing TCF-13 (Fig. 3). Further comparison based on 
the average nucleotide identity (ANI) also supported this 
affiliation that TCF-8 shared far more genes with TCF-
13 (811 shared genes) than with any other genomes of 
the Anaerolineales lineage (Additional file 1: Figure S2b). 
TCF-8 and TCF-13 shall represent different species of 
this previously inaccessible lineage since ANI between 
these two genomes (79.3 %) was less than 94 % [23] and 
in silico DNA–DNA hybridization value (DDH of 17.7 %) 
much lower than 70 % [24] (Additional file 1: Figure S2a).

General physiology and prevalence of Anaerolineae in the 
TCF community
Among the five curated genomes obtained, TCF-2, 5, 
and 12 showed average genome size of 3.5  Mb and GC 
content 54  % which is more consistent with that of A. 
thermophila UNI-1 (the only available complete genome 
of Anaerolineae), while TCF-8 and TCF-13 showed 
slightly bigger genome (>4.0  Mb) with higher GC con-
tent (around 65 %) (Table 1). Resembling their phyloge-
netic affiliation (Figs.  2, 3), complete-linkage clustering 
on COG orthologs also indicated that TCF-8 and TCF-
13 were functionally divergent from the cluster contain-
ing TCF-2, 5, 12, and UNI-1 (Additional file  1: Figure 
S3). In both the SE and LE metagenome, the order of 
Anaerolinales containing TCF-2, 5, 12, and UNI-1 were 
generally more prevalent than SBR1031 order contain-
ing TCF-8 and TCF-13 (Fig. 1). TCF-2 taking 14.1 % of 
SE and 11.7 % of LE metagenome was one of the domi-
nant populations within the TCF community. Despite 
of the large population size, TCF-2 expressed only com-
paratively small fraction (27.8  % of possible transcripts 
detected, Table 1) of its genetic complement in situ and 
this at a moderate level of expression suggesting the 
tight regulation of gene expression to facilitate prefer-
ential metabolism in TCF-2. The metabolic advantage of 
this population will be discussed from the major steps of 
anaerobic digestion process: fermentative metabolism, 
cellulose hydrolysis, and syntrophic methanogenesis.

Fermentative lifestyle of Anaerolineae
Anaerolineae showed versatile metabolic abilities on car-
bohydrate fermentation. Glycolysis pathway towards ace-
tate and lactate production was conserved among TCF-2, 
5, 12, and UNI-1 (Additional file 1: Figure S4) suggesting 
that acetate and lactate shall be produced during fer-
mentation. TCF-8 and TCF-13 also processed the com-
plete acetate pathway but not that for lactate generation. 
Additionally, common encoding-gene cluster of NiFe 
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Fig. 1 Two-dimensional coverage plot of the scaffolds assembled 
from the short-term enrichment (SE) and long-term enrichment 
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the length of scaffold. And scaffolds are colored according to their 
consensus taxonomic annotation at Phylum level. Only scaffolds 
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coverage between two metagenomes. Scaffolds clustered at close 
coverage represent potential genome bins and were labeled accord-
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table. The relative abundance of each genome bin is estimated as the 
number of reads mapped to the draft genome in percentage of the 
total number of reads in the metagenome
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hydrogenase (COG3260, 3261, 3262) and related proteins 
in five curated genome bins and UNI-1 indicated the 
metabolic ability to produce hydrogen during fermenta-
tion, consistent with previous experimental results based 
on isolated strains [3–5, 8–11].

Cellulolytic activities
Except for TCF-8, active transcription of cellulase M and 
cellulases of GH05 and GH09 in the other four Anaero-
lineae genomes indicated their ecological roles as cellu-
lose hydrolyzers in the cellulolytic community (Fig. 4). We 
speculated that the Anaerolineae populations might rely 
on extra-cellular cellulase systems for hydrolysis because 

no cohension, dockerin (key component of cellulosome 
complex), or any cellulase-related carbohydrate-binding 
modules (CBMs) could be identified in the five curated 
genomes and UNI-1. Nevertheless our previous study on 
the transcriptional characterization of this TCF consor-
tium showed minimum contribution of the Chloroflexi, 
compared to Clostridiales and Bacteroidetes in overall 
cellulose hydrolysis [25]. Such transcriptional inefficiency 
may be regulatory that the cellulase M clusters of Anaero-
lineae were not protected by the preceding heat shock 
protein like that found in Clostridiales [25]. Consequently, 
cellulolytic capacity is unlikely the driven force for the 
prevalence of Anaerolineae within the community.
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Anaerobic thermophilc granular sludge clone STG-1 (AB109431)

Anerolinea thermophila UNI-1 NR 074383
Anaerobic chlorobenzene-degrading consortium clone SJA-170 (AJ009500)
Ornatilinea apprima P3M-1 isolated from deep-well (NR 109544)

Anaerobic mesophilic granular sludge clone AMG-6 (AB109410)
Anaerobic DCP dechlorinating consortium clone SHA-28 (AJ249094)
Levilinea saccharolytica filamentous isolate from mesophilic granular sludge(AB109406)
Anaerobic mesophilic granular sludge clone CMG-6 (AB109422)

Anaerobic mesophilic granual sludge clone:BMG-1 (AB109412)
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Thermomarinilinea lacunofontalis SW7 isolated from submarine hot spring (AB669272)
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Fig. 2 Phylogenetic analysis of the five draft genomes within Chloroflexi phylum. Neighbor-joining phylogenetic tree based on 16S rRNA gene. The 
tree is produced with neighbor-joining analysis based on ClustalW alignment. 16S rRNA gene sequences of Thermotogae are used to root the tree. 
Bootstrap value is obtained with the maximum-composite-likelihood methods based on 1000 replicates. Bootstrap values greater than 50 % are 
indicated at branch points. Branch labels are colored according to their categories (1) our five draft genomes in red; (2) complete genomes in purple; 
(3) isolated strains are in green
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Major transcription of type IV pili (Tfp)
Based on metatranscriptomic data, strikingly high tran-
scription of pilA gene (type IV pili assembly protein as 
designated K02651 and K02650 in KEGG database), the 
leading gene for the assembly of a conservative type IV pili 
(Tfp), was noticed in TCF-2, TCF-5, and TCF-12 (Fig. 5). 
Based on the assumption, genes encoding the beneficial 
physiochemical features shall be actively transcribed, 
deciphering the function of the vigorous transcribed Tfp 
assembly in Anaerolinales shall bring useful insight into 
the gradual dominance of this population within TCF 
community. The Tfp is the most widespread organs of 
bacterial attachment [26]. As has been already noted, pili 
are often involved in facilitating adhesion and coloniza-
tion in a wide variety of scenarios including: host cells 
attachment in numerous human pathogens such as Act-
inobacillus actinomycetemcomitans [27]; cellulose bind-
ing in Ruminococcus albus [28] and biofilm formation on 

stainless steel in Pseudomonas aeruginosa [29]. Moreover, 
the Tfp in Geobacter sulfurreducens are electrical-conduc-
tive nanowires involving in direct interspecies electron 
transfer (DIET) between syntrophic patterns [30].

Cellular adhesion
As shown in Fig. 5, the conservative Tfp cluster observed 
in Anaerolinales contains a series of genes encoding 
pilus assembly proteins (pilA, CpaB, CpaE, CpaF) and 
two consecutive Tad proteins (TadB, TadC). The adhe-
sive nature of the Tfp of Anaerolinales could be inferred 
from the occupation and expression of the Tad (tight 
adhesion) locus which is the essential machinery for the 
assembly of adhesive pili [31]. The precursor of the major 
structure component of Tfp is encoded by pilA gene. 
This precursor seems regulatory crucial for effectiveness 
of Tfp in Anaerolinales because the Tfp cluster without 
proceeding pilA genes in TCF-8 and TCF-13 showed 
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Fig. 3 Phylogenetic analysis of the five draft genomes within Chloroflexi phylum. Maximum-likelihood tree based on concatenated alignment of 35 
essential single-copy genes (ESCGs) conserved in a single-copy manner among five curated genomes retrieved and twenty-two finished genomes 
within Chloroflexi phylum. Default protein model of Phyml 3.1 is used to construct the tree with 100 bootstraps based on MUSCLE alignment. Boot-
strap values greater than 50 % are indicated at branch points. Branch labels are colored according to their categories (1) our five draft genomes in red; 
(2) complete genomes in purple; (3) isolated strains are in green
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no transcriptional activities (Fig.  5). Given TCF-8 and 
13′s comparable metabolic capacities to the dominat-
ing Anaerolineales, such ineffectiveness of Tfp cluster 
may play a role for their rareness in the community. 
Additionally, in contrast to the low expression level in 
carbohydrate metabolism, all the homolog copies of the 

pilA genes in TCF-2, TCF-5, and TCF-12 (respectively 
encoded 3, 2, and 2 genes annotated as homologs of this 
enzyme class) got expressed, suggesting the ecological 
benefits endorsed by pilA expression in Anaerolinales.

To further investigate the condition of Anaerolina-
les adherence, experiment was conducted to reveal the 

Table 1 Genomic information of the five Anaerolinea genomes retrieved from thermophilic cellulose-degrading metage-
nomes

N/A data not available
a  Completeness estimation based on 107 conserved single-copy genes, named as essential single-copy genes (ESCGs) of >95 % complete bacterial genomes [13]
b  Putative duplication among amino acid (AA) sequences within each chromosome (based on BLASTP bitscore ≥70, similarity ≥30 over at least 70 % of the query 
length [66])

General information TCF‑2 TCF‑5 TCF‑12 TCF‑8 TCF‑13 A. thermophila UNI‑1

IMG Genome ID 2561511051 2561511052 2561511055 2561511056 2561511053 N/A

Total length (Mb) 3.8 3.0 3.7 4.1 4.0 3.5

Scaffolds (n) 55 27 69 51 153 1

Average sequence length (bp) 71,706 11,837 56,472 84,553 27,370 N/A

GC (%) 54 55 53 64 65 54

Estimated completeness based on ESCGa (%) 99.1 98.1 100.0 99.1 100.0 99.1

Estimated redundancy of ESCGs (%) 3.8 1.9 3.7 2.8 3.7 2.8

Genes 3602 3005 3580 3681 3659 3224

Protein-coding genes 3550 2949 3523 3634 3609 3166

rRNA genes (5S/16S/23S) 2/2/0 1/1/1 1/1/1 3/1/0 1/1/0 2/2/2

tRNA gene (n) 43 45 48 41 43 50

Genes with functional prediction (%) 81.4 83.2 80.4 80.8 80.5 53.7

Genes with transcription (%) 27.8 35.4 18.1 1.8 2.8 N/A

Duplicated AAb (n/ %) 814 (22.9 %) 734 (24.9 %) 921 (26.1 %) 932 (10.8 %) 893 (24.7 %) 757 (23.9 %)
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community change on the surface of filter paper (made 
of 98  % of microcrystalline cellulose) during hydrolysis. 
As community profiling based on HTS of 16S rRNA gene 
amplicons revealed, comparing to the evident accumula-
tion of Clostridium and Fervidobacterium, populations 
of Anaerolinales (Anaerolineae and Bellilineae), though 
were among the most prevalent populations attached, 
stayed unchanged in size during the first 12 h of hydrol-
ysis, suggesting its relative incompetence to grow on 
cellulose surface (Fig.  6). This observation was consist-
ent with the reluctant expression of cellulase genes in 
the retrieved genomes bins of this lineage. Additionally, 
increasing bacterial diversity (Additional file  1: Figure 
S5) in the attached community was induced by the more 
degradable alpha- and beta-monosaccharides gener-
ated at the steady phase of hydrolysis (after 24 h, Figure 
S5). Remarkable increase of Sphingomonas and Pseu-
domonas was observed at this stage, but the paucity of 

Anaerolineae stayed unaffected. Although being com-
monly regarded as aerobic, strains of Sphingomonas and 
Pseudomonas had been reported to be tolerant to anaero-
bic environment [32–35]. The overgrowth of these two 
genera in the attached community after 24 h of incuba-
tion may be originated from a combination of their abil-
ity to utilize beta-linked monosaccharides released from 
the hydrolysis process [36] as well as their extraordinary 
ability to grow in biofilm [37, 38]. These results indicated 
the accumulation of Anaerolinales took place other than 
directly on the surface of cellulose, therefore, we specu-
late, instead of initiating the attachment on substrate 
surface, the adhesive feature of Anaerolineae enabled by 
active pilA expression might serve as the adhesive matrix 
for the aggregation of fermentative population in the 
liquid phase. Since, most anaerobic cellulolytic microor-
ganisms grow optimally on cellulose when attached to 
the substrate and in at least a few species this adhesion 
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Gene TCF-13
pilA N/A
pilA N/A
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N/A
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1
0
1
1
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6
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1532
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6
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0
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0
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Fig. 5 Arrangement of the pili cluster on the genome of the five curated genomes and A. thermophila UNI-1. The name and length of scaffold car-
rying the pili gene cluster is listed to the left of the gene arrangement. Genes within the pili cluster are colored according to their homologies that 
genes show bidirectional best blast match to each other are in the same color. PilA pilus assembly protein Flp/PilA, CpaB/E/F pilus assembly protein 
CpaB/E/F, TadB/C tight adherence protein B/C
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appears to be obligate [36], this surface-free life style of 
Anaerolinales reflected its incompetence in cellulose 
hydrolysis as disclosed by metatranscriptome. The con-
tinuous stirring provided in the enrichment SBR may 
play the selective role for Anaerolinales that microor-
ganisms capable of attaching to each other would benefit 
from a more efficient exchange of fermentation inter-
mediates and thus proliferate more effectively in com-
petition with other free-ranging anaerobic fermentative 
counterparts [39]. The advantageous bonding capacity in 
Anaerolinales observed in this study may provide a novel 
insight into its ubiquity and accumulation in anaerobic 
digestive systems.

Syntrophic metabolism
Another interesting function of Tfp is its conductive role 
for syntrophic DIET. Since the Anaerolineae lineage of 
Chloroflexi was considered as semi-syntrophic in anaero-
bic systems [1] and its interspecies electron transfer (IET) 
mechanism in mutualistic cooperation with methanogens 
was yet to be studied, study on the syntrophic machinery 
and DIET involvement of Anaerolineae is indispensable.

Despite the lack of detected transcriptional activi-
ties, the shared 926 genes between TCF-8 and TCF-
13 (Additional file  1: Figure S2b) revealed a genetic 
potential of these populations to metabolize ethanol 
to acetate (Additional file  1: Figure S4), implying their 
putative role as anaerobic syntrophs. However, these 
pathways were absent from Anaerolinales containing 
TCF-2, 5, 12, and UNI-1. Additionally, by comparing 
the transcriptional activities of genes involved in the 
fundamental steps of syntrophic metabolism as pro-
posed by Sieber et  al. [40], relatively weak activities of 
hydrogenase and formate dehydrogenase suggested the 

unsteady involvement of H2 or formate as the electron 
carrier for IET in Anaerolineae populations (Table  2). 
Researchers believed genomic co-occurrence of pilA 
and outer membrane cytochromes was prerequisite for 
DIET to take place in a microbe [41]. Despite the active 
pilA, none of the five curated genome bins and UNI-1 
possesses c-type cytochromes (Table 2). As a result, we 
cannot confirm nor exclude the DIET potential based 
on the paradox between highly active pilA gene and 
absence of membrane cytochromes in TCF-2, 5, and 
12. As a result, consecutive iron supplementation batch 
tests were designed to verify the DIET potential of the 
TCF community based on the hypothesis that electric-
based syntrophic methanogenesis could be expedited by 
the dosage of conductive iron-oxide minerals [42]. Fe2O3 
powder was dosed at 20 mM of iron atom [42] to stimu-
late the electron exchange within the TCF community in 
three consecutive batches. But batches with iron-oxide 
supplementation showed no evident advancement on 
the overall methanogenesis in the short- (1st batch) and 
long-term (3rd batch) run (Additional file 1: Figure S6a). 
These batch results indicated that the possibility of DIET 
phenomenon among microbial populations within the 
TCF community was rare and thus rejected the initial 
speculation on DIET involvement of the highly active 
Tfp in TCF-2, 5, and 12.

Conclusion
Coverage-based genome recovery coupled with 
metatranscriptomic interpretation was used to disclose 
the advantageous features of Anaerolineae populations 
in anaerobic digestive system based on the five near-
complete genomes retrieved from the TCF community. 
Despite the slight transcription of cellulolytic genes, the 
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prevalence of this population should more likely inter-
relate with the evident cellular adhesiveness enabled by 
active transcription of Tfp. Further experiment showed 
this Tfp structure was functioned as adhesive matrix for 
cell–cell aggregation other than cell-surface attachment 
for biofilm initiation nor electron transfer for syntrophic 
methanogenesis.

Methods
Enrichment reactor setup
Anaerobic digestion sludge (ADS) collected from Shek 
Wu Hui Wastewater Treatment Plant (Hong Kong, SRA, 
China) were used for the enrichment of thermophilic 
cellulolytic consortium in a sequential batch reactor 
(SBR) as described previously [25]. Enriched thermo-
philic cellulose-fermenting (TCF) sludge was sampled at 
two different time points (SE: short-term enrichment at 
120 days and LE: long-term enrichment at 545 days) dur-
ing the enrichment.

Metagenomic binning
Metagenomic libraries and Illumina sequencing
Two metagenomic libraries were constructed with 
genomic DNA respectively extracted from the SE and 
LE sludge samples. Genomic DNA was extracted from 
500 mg dry weight sludge sample with FastDNA® SPIN Kit 
for Soil (MP Biomedicals, LLC, Illkirch, France). Sequenc-
ing of the metagenomic DNA was carried out on the Illu-
mina Hiseq  2000 platform at BGI (Shenzhen, China) by 
applying the 101  bp paired-end strategy with combined 
insert lengths of 180 and 800  bp for SE metagenome 
and sole 180  bp insert for LE metagenome (Additional 

file 1: Table S2). The resulted PE reads were trimmed for 
sequencing adaptors before filtering out reads with average 
phred quality score lower than 20 and ambiguous nucleo-
tide using PRINSEQ [43]. The shotgun metagenomic reads 
have been deposited into the MG-RAST server for data 
sharing (see Table S1 for the accession number). SE and LE 
metagenomes and LE metatranscriptome have been used 
in our previous studies with focus other than Anaerolineae 
populations [25, 44].

De novo assembly and two‑dimensional coverage binning
De novo assembly by three popular de novo assemblers, 
namely MetaVelvet (1.2.01) [45], IDBA_UD (1.1.1) [46], 
and CLCbio Genomic Workbench 6.0.2 (CLCbio, Den-
mark), were compared in terms of reads utilization effi-
ciency and length of scaffolds (Additional file  1: Table 
S9). The most comprehensive IDBA_UD were picked to 
assemble the SE and LE metagenomes together using a 
series of kmer 20,40,60,80, and 100. Two metagenomes 
were assembled together to facilitate generation of long 
scaffolds. Only scaffolds longer than 1  kb were kept for 
subsequent genomic binning analysis.

Based on the assumption that scaffolds belonging to 
the same genome (strain) should share similar cover-
age across different metagenomes, scaffolds of targeted 
Anaerolineae genome bins were recruited from the two-
dimensional coverage plot using R scripts [13]. Divergent 
coverage of Chloroflexi populations were provided by 
metagenomic libraries of thermophilic cellulolytic sludge 
sampled from the same reactor but at two different times 
(SE at 120 days and LE at 545 days). The coverage sets of 
scaffolds were obtained by independently mapping PE 
reads in the SE and LE metagenomes against scaffolds 
assembled, using Bowtie 1.0.1 [47] allowing two mis-
matches over the entire read length (bowtie option: −v 
2 −m 200) [20]. Coverage of a scaffold was calculated as 
the total base pairs of mapped read divided by its length. 
After that, the scaffolds were binned based on the clus-
tering of coverage and phylum assignment. To minimize 
the potential contamination, another genomic signature, 
tetra-nucleotide frequency (TNF), was used to refine the 
bins at euclidean distance cutoff of 0.1 [20]. Finally, PE-
tracking tools from the mm genome package [13] was 
used to reinforce the scaffolding by retrieving genes ini-
tially excluded, for example, genes showing deviate cov-
erage caused by multiple copies.

At the same time, community composition was 
assessed by identifying 16S rRNA sequences in metage-
nomes. The unassembled illumina reads were searched 
against Silva SSU 115 database [48] with BLASTN [49] 
using evalue cutoff of 1E−20. The tabular BLAST results 
were parsed at phylum level with MEGAN4 [50] using 
the lowest common ancestor algorithm.

Table 2 Transcriptional activities of  genes potentially 
involved in  interspecies electron transfer for  syntrophic 
metabolism of the five curated Anaerolineae genomes

MRPKM values were used to evaluate the transcriptional activities of different 
genes. For pilA gene, only the transcription of pilA assembly conserved in all the 
retrieved genomes as shown in Fig. 5 was included

N/A the target gene is absent from the curated genomes, pilA pilus assembly 
protein Flp/PilA, CytC c-type cytochrome, MtrC/OmcA family, Hyd hydrogenase, 
FDH formate dehydrogenase
a Gene identification is based on the integration of COGs, TIGRFAMs, and KEGG 
KO orthology as listed in Additional file 1: Table S9

Interspecies electron transfer

DIET H2/Formate

PilAa CytCa Hyda FDHa

TCF-2 984.5 N/A 0.0 0.3

TCF-5 261.5 N/A 1.6 0.2

TCF-12 1651.6 N/A 0 0

TCF-8 0 N/A 0 0

TCF-13 0 N/A 0 0
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Genome completeness, contamination, and abundance 
in metagenomes
The HMM of 107 essential single-copy genes (ESCGs) 
(Additional file  1: Table S4), defined as the single-copy 
genes conserved in 95 % of all bacteria [51], were used as 
pan-genome to indicate the completeness and potential 
contamination of the genome bins. The completeness of a 
draft genome was measured by the percentage of identi-
fied ESCGs out of the total 107 ESCGs, while the contam-
ination was determined as dividing duplicated ESCGs by 
the number of ESCGs identified in the draft genome. To 
double check our estimation on completeness and purity 
of a draft genome, a set of 35 orthologous groups (COGs) 
[21] (Additional file 1: Table S6) were used as alternative 
markers. The relative abundance of each curated genome 
bin in a metagenome was calculated as the number of 
reads mapped in percentage of the total number of reads 
in a metagenome. ANI is calculated with similarity cut-
off of 60  % [23], while DDH was in silico estimated by 
GGDC [52].

Reconstruction of 16S rRNA genes
Complete 16S rRNA gene of the genome bins TCF-2, 5, 
and 12 were determined by IMG 4.0 genome annota-
tion pipeline [53] and double confirmed by EMIRGE 
[54]. EMIRGE was used as a complementary approach 
to reconstruct 16S rRNA genes from the shotgun librar-
ies with 80 iterations. Uchime [55] was used to filter the 
possible chimera formed in EMIRGE before comparing 
the reconstructed 16S rRNA gene to that of the curated 
genome bins. The incomplete prediction of 16S rRNA 
gene in TCF-13 (258  bp) was manually extended based 
on its nearly identical BLAST match (similarity higher 
than 99 % over 258 bp) to a 16S rRNA sequence in Silva 
SSU database (version 11.5).

Phylogenetic analysis of draft genomes
In order to determine the phylogenetic position of 
draft genomes obtained here, neighbor-joining tree of 
Anaerolineae was built using MEGA5 [56] with maxi-
mum-likelihood method and bootstrap value of 1000. A 
phylogenetic tree was constructed using (1) 16S rRNA 
sequences of the draft genomes, (2) 16S rRNA gene of A. 
thermophila UNI-1, (3) 16S rRNA gene of ten isolated 
strains and high-quality 16S clones collected from Silva 
SSU database.

To determine the phylogenetic affiliation of TCF-8 
whose 16S rRNA gene is too short for reliable alignment, 
genome tree was constructed from a concatenated align-
ment of 35 protein-coding ESCGs shared in single-copy 
manner among the five curated genomes and twenty-
two finished genomes of Chloroflexi in IMG 4.0. A max-
imum-likelihood tree was created using phyml 3.1 [57] 

using default setting for amino acids with 100 bootstraps 
based on MUSLE [58] alignments.

Functional and transcription analysis
Functional annotation of the Anaerolineae genomes
The five near-complete genomic bins retrieved from 
the TCF community were submitted to IMG annota-
tion pipeline for ORF calling as well as functional anno-
tation (The IMG genome ID of each bin was listed in 
Table  1). IMG annotation on Pfam, KEGG, and COG 
databases were compared against that of twenty-two 
finished genomes of Chloroflexi to reveal metabolism 
styles. Given the unavailability of syntrophic pathways 
in a single database, identification of key genes involved 
in the syntrophic process in the present study was based 
on the integration of COG, PfamA, TIGRFAMs, as well 
as KEGG KO annotation (The identifier of syntrophic 
metabolism related genes used in this study are listed in 
Additional file 1: Table S10).

Metatranscriptomic sequencing and expression 
quantification
Total RNA of the LE sludge sample was extracted and 
then sequenced following the protocol described pre-
viously [25]. Transcriptional activities of genes in each 
draft genome were investigated in the same manner 
as previously established [25]. Briefly, the concept of 
MRPKM, defined as the ratio of RPKM-RNA to RPKM-
DNA, was used to evaluate the transcriptional activity of 
genes in metatranscriptome. RPKM-DNA and RPKM-
RNA was respectively calculated from metagenome and 
metatranscriptome of LE sample using RSEM [59] based 
on Bowtie 1.0.1 alignment allowing two mismatches over 
the entire read length.

Iron‑oxide supplementation batch tests
Reactor setup
50 ml sludge collecting from the enrichment batch at the 
peak of a SBR cycle was added as seed sludge to batch 
test with working volume of 100  ml. Medium solution 
was prepared following previous protocol [60]. Micro-
crystalline cellulose (50 µm in diameter, Sigma, USA) was 
dosed at concentration of 2.5  g/l, while Fe2O3 powder 
(≥99.995 % trace metals basis, Aldrich, USA) was supple-
mented to stock solution to give the final concentration 
of 20  mM as Fe atom [42]. Nitrogen was used to purge 
out the air inside the serum bottle to ensure anaerobic 
environment. Batch tests were carried out in 55 °C water 
bath with continuous stirring at 120 rpm. For each batch 
test, the cellulose substrate was 2.5 g/l and the initial pH 
was controlled at around 7.5. Three consecutive batches 
were conducted to investigate the effect of iron supple-
mentation in the short- and long-term run. Each batch 
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was suspended when biogas generation ceased for all the 
reactors. The results represented were average value of 
duplicated tests.

Gas and volatile fatty acids analysis
Gas volume was monitored by a glass syringe. Gas con-
tent, including hydrogen, methane, and carbon dioxide, 
were determined using gas chromatograph (GC-TCD) 
following configuration described previously [60]. The 
composition in the liquid phase including volatile fatty 
acids and alcohols, were measured using a second GC-
FID [60].

Attachment experiment and community profiling 
by high‑throughput sequencing
Slices of filter paper (Whatman, 98  % microcyrstalline 
cellulose) were dipped into the thermophilic SBR (run for 
716 days) for a certain time (1 min and 2, 6, 12, 24, 30, and 
32  h) to accumulate microbes that attached to cellulose 
surface. Biological replicates were sampled at 12 h (Addi-
tional file 1: Figure S7). Filter paper dipped for 1 min was 
used to represent the community binded to filter paper 
by physical adsorption. The initial community before 
experiment was also sampled. Filter paper after dipping 
was washed with DI waster to kept microbial populations 
steadily attached to the surface [20]. The sampled filter 
paper was cut in half, with each half respectively used for 
DNA extraction (with the same protocol for metagen-
omic DNA extraction) and weight measuring. Dry weight 
lost was used to evaluate the hydrolysis efficiency (Addi-
tional file  1: Figure S8). Universal primers for V4 FLX 
forward primer (“AYTGGGYDTAAAGNG”) and reverse 
primers (“TACNVGGGTATCTAATCC”, “TACCRGGG 
THTCTAATCC”, “TACCAGAGTATCTAATTC”, “CTAC 
DSRGGTMTCTAATC”) targeting the V4 region of 16S 
rRNA gene were used to amplify genetic amplicons for 
community profiling using Roche FLX 454 high-through-
put sequencing (HTS) at BGI (Shenzhen, China). Slice 
of unused filter paper was also subject to the same DNA 
extraction and 16S rRNA gene amplification to testify 
primer specificity towards microbial populations (Addi-
tional file 1: Figure S9).

Quality filtering and community analysis of the 
454 reads was conducted following protocol previ-
ous reported [61]. Briefly, the raw reads were demulti-
plexed, quality trimmed, aligned, and finally checked 
with ChimeraSlayer to remove chimeric sequences by 
standard procedure in Mothur [62]. The post quality fil-
tering reads (Additional file 1: Table S11) were clustered 
into operational taxonomic units (OTUs) equivalent 
to genus level (0.97 similarity) by open OTU algorithm 
adopted in QIIME platform [63]. Taxonomy of each OTU 
was assigned by RDP Classifier [64] using confidence 

threshold of 50  % which provides a trade-off between 
adequate classification accuracy and maximizing the 
percentage of classifiable sequences [65]. Discussion on 
the community composition only focus on the prevalent 
populations taking >1 % of the bacterial community.

Additional file

Additional file 1:  Table S1. Metagenomic and metatranscriptomic 
libraries of the thermophilic cellulose-degrading consortium. Table S2. 
Statistics on the scaffolds obtained from de novo assembly by IDBA-UD 
using EE and LE metagenomes together. Table S3. Relative abundance of 
each genome bin and genome completeness and contamination poten-
tial estimated based on 107 ESCGs. Table S4. List of 107 HMM of ESCGs 
conserved in 95 of bacteria and their representation in the five Anaero-
linea draft genomes for completeness estimation. Table S5. Estimation 
of the validate range of genome completeness and ESCG redundancy by 
twenty finished genomes of Chloroflexi. Table S6. List of 35 COG marker 
and their representation in the five Anaerolineae draft genomes for 
completeness confirmation. Table S7. Summary of other draft genome 
bins retrieved from the metagenome. Table S8. Metabolic characteristics 
of isolated strains of Anaerolineae. Table S9. Comparison of assembly 
by three different de novo assemblers. Only the EE metagenome were 
assembled for comparison. Table S10. Functional orthologues of genes 
putatively involve in electron transfer for syntrophic metabolism. Table 
S11. Statistic of the post-QC HTS reads of 16S rRNA gene amplicons of the 
attachment samples. Figure S1. Community structure of the TCF consor-
tium showing the accumulation of Chloroflexi during long-term run of 
the enrichment SBR. Figure S2. (a): Table showing the in-silico DNA-DNA 
hybridization values (DDH) (upper diagonal) and Average Nucleotide 
Identity (ANI) (lower diagonal) among five curated genomes retrieved 
and A. thermophila UNI-1 and C. aerophila DSM14535. Genomes in the 
table are ordered according to the phylogenetic relationship represented 
by the concatenated tree based on 35 shared ESCGs (to the left of the 
table). The number of aligned fragments used for ANI calculation is shown 
in bracket under the ANI value. (b) Venn diagram showing the number 
of shared and unique genes between TCF-8 and TCF-13 based on KEGG 
orthology annotation. (c) Venn diagram showing the number of shared 
and unique genes among TCF-2, 5, 12 and A. thermophila UNI-1 based on 
KEGG orthology annotation. Figure S3. Hierarchy clustering of members 
of Chloroflexi based on Euclidean distance of COGs annotation of 32 avail-
able genomes of Chloroflexi phylum and five curated genomes retrieved. 
Finished genomes [F], permanent draft genomes [P] and draft genomes 
[D] were all considered to insure comprehensive functional comparison. 
Figure S4. Transcriptional activities of genes involve in the Glycolysis 
pathway (partially shown) in the five curated bins and A. thermophila 
UNI-1. Filled blocks in the bottom and top role respectively represent 
genes encoded and expressed in the corresponding genomes Blocks are 
filled with the same position and color as the corresponding genomes in 
the legend. Figure S5. Rarefaction analysis of the community attached 
to cellulose surface. Top and bottom sub-tables respectively represent 
the rarefaction curve of Archaea (top) and Bacterial (bottom) community. 
Figure S6. Comparison of methane (CH4) and major VFAs (acetic acid 
and propanoic acid) generation between Iron-supplemented (in form of 
Fe2O3) and control in consecutive batch tests. B1: the first batch; B3: the 
last consecutive batch. Figure S7. Bacterial (left) and Archaea (right) com-
munity correlation between biological replicates sampled at twelve hours. 
Only prevalent populations taking >1 % of the community are considered 
in correlation test. Figure S8. Hydrolysis during attachment. The error bar 
represents the deviations between biological replicates sampled at twelve 
hours. Figure S9. Electrophoretogram of the 16S rRNA genes amplicons 
used for high-throughput sequencing. Blank represents the band of filter 
paper. PCR products of 30 and 48 hours was not used in the sequencing.  
Takara DL2000 was used as marker. Figure S10. Composition of Archaea 
community during attachment. Only prevalent population taking > 1 % in 
the community are shown in the figure.
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