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Abstract—Accurate model-based methods in Photo-Acoustic
Tomography (PAT) can reconstruct the image from insufficient
and inaccurate measurements. Most of the models either make
the simplified assumption of spherical averaging or use accurate
models that have computationally burdensome implementations.
We present a simple and accurate measurement matrix that is
derived from the pseudo-spectral PAT model. The accuracy of the
measurement matrix is first validated against the experimental
PAT signal. We also compare the model against the standard k-
wave measurement model and the spherical averaging model.
We then highlight several reconstruction strategies based on
the nature of the region of interest to further demonstrate the
accuracy of the proposed measurement matrix.

I. INTRODUCTION

Photo-Acoustic Tomography (PAT) works on the principle
of photoacoustic effect, in which optical absorbers convert
energy from a pulsed laser to acoustic energy [1]. Using
a light source preserves the contrast while the negligible
scattering effect of ultrasound waves helps preserve resolu-
tion. The ability to probe endogenous contrast agents like
oxyhemoglobin, deoxyhemoglobin, water, melanin and ex-
ogenous contrast agents like organic dye, nano-particles, has
attracted many medical imaging applications in the last decade.
Brain functional imaging, angiogenesis, drug response , gene
activity, cancer detection are a few from the large number
of applications reported [2]. Image reconstruction from the
acoustic wave is performed mainly using analytical methods
like back projection and time reversal. Even though com-
putationally efficient, they are limited to specific geometries
and require accurate and fairly large measurements. How-
ever, a majority of the PAT systems suffer from insufficient
and noisy measurement. Though computationally expensive,
model-based reconstruction methods can address this problem.
These methods model the wave propagation in tissue as a
linear system and inverting the model to reconstruct the image.
Model-based methods can also incorporate arbitrary geometry,
heterogeneity in medium and transducer properties. Measure-
ment matrices in both the time [3] and frequency domains [4]
have been proposed based on the Green’s function solution to
the standard PAT imaging model. These measurement matrices
have been successfully used for l1 or sparse signal recovery.

Prakash et al. [5] considered a transducer impulse response
based measurement matrix and studied signal reconstruction
based on a least squares approach. All these matrices are based
on the spherical averaging of the PAT wavefront. A matrix
including inhomogeneous property of medium, absorption
and dispersion with frequency is presented in [6] which is
accurate but computationally intensive. We present a simple
and accurate matrix that models wave propagation, starting
from the pseudo-spectral solution for the PAT wave equation.
A straightforward implementation of the time domain matrix
is presented. We also compare its accuracy with well-known
photoacoustic models and present reconstruction results on
popular phantom images.

II. WAVE EQUATION AND SOLUTION

The equation governing photoacoustic wave propagation in
a homogeneous medium is given by [7]

∂2p(r, t)
∂t2

− c2∇2p(r, t) = Γ
∂

∂t
H(r, t), (1)

where r is the spatial location, c is the speed of sound in the
medium, Γ is the Grüneisen coefficient that represents light to
sound conversion efficiency. Under the assumption of stress
confinement, the source term can be written in a separable
form as H(r, t) = h(r)δ(t). The Green’s function solution for
the wave equation provides pressure at a detector location rs
propagated from r over time t is given by,

p(rs, t) =
1

4πc

∂

∂t

∫
|rs−r|=ct

p0(r)

|rs − r|
δ(t), (2)

where p0(r) = Γh(r) is the initial pressure distribution. In
most models, the time derivative is ignored, and the velocity
potential given by spherical averaging is used [8]. Imple-
menting this matrix is highly inaccurate since the accuracy
of spherical averaging mainly depends on the interpolation
kernel used. In this work, we show that a simple and accurate
matrix can be constructed from the solution to the initial value
problem in (1) [7],(

∂2

∂t2
− c2∇2

)
p(r, t) = 0, (3)
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Fig. 1. Image grid (Inner), transducer location (Circular configuration) and
k-space grid (Outer).

with initial conditions p0(r) = p(r, 0) = Γh(r) and
∂p/∂t|t=0 = 0. The pseudo-spectral solution to the initial
value problem in Fourier space k at the location r’ and time
t is given by [9],

p(r’, t) =
1

(2π)3

∫
{
∫
p0(r)eik.(r’−r)dr}cos(ckt)dk, (4)

where k = |k|.

III. PSEUDO-SPECTRAL MATRIX

The equation in (4) forms the basis for computing wave
propagation at all points in a plane for a particular time
instant. However, by limiting the pressure computation only
to transducer locations and evaluating it over multiple time
steps, we use the same equation to build the system matrix.
Pseudo-spectral methods are typically implemented on a 3D
grid. For simplicity and without loss of generality, a 2D grid
is used in this work. The computation is performed over two
grids as show in Fig. 1. The inner grid is used to define the
initial pressure distribution and the outer grid is used for the
k-space computation. While transducers can take any arbitrary
location in the plane inside the bigger grid, we consider the
commonly used circular configuration. It is important to note
that pressure waves escaping from one side of the grid will
re-enter on the other side due to the periodicity property of
the Fourier transform. To prevent transducers from measuring
the re-entered waveform, a zero padding layer is used. Let the
maximum distance between any two initial pressure location
occur at diagonal of imaging grid, we extend the k space,
greater than half of this distance so that re-entering waves do
not reach the transducers. We also ensure that the maximum
time step is limited to the time taken for the farthest point
in the imaging grid to reach any transducer. This limits the
re-entering waves from reaching the transducer. Consider an
imaging grid (inner grid) having Nin grid points along each
axis, resulting in N2

in grid points in 2D, with co-ordinates
r = (x, y) = (m ∗ d, n ∗ d). Where x and y are grid points of
the 2D grid with center as origin and an equal grid spacing of d
units, (m,n) ∈ [−Nin/2, Nin/2−1] are integers representing
index. The Fourier transform is computed on the bigger grid
with frequency bins,

k = (kx, ky) =
2π

Nout ∗ d
∗ (u, v),

with N2
out grid points in a 2D grid, (u, v) ∈

[−Nout/2, Nout/2 − 1] are integers representing index
of k-space (with Nout > Nin). By vectorizing r to r̄ and k
to k̄ we can compute the discrete Fourier transform using
simple matrix multiplication as shown below.

X0 = Wfwdx0, (5)

where x0 is vectorized initial pressure distribution p0(r),
and X0 is its Fourier transform. Following standard notation,
Wfwd can be written as

Wfwd(i, j) =
1

Nout
e−
√
−1k̄(i).̄r(j),

where Wfwd ∈ CN2
out×N

2
in . The inverse Fourier transform is

computed only at the transducer location r̄s = (xs, ys),

xst = WinvXt. (6)

Assuming Ns transducer locations, Winv is given by

Winv(s, i) =
1

Nout
e
√
−1k̄(i).̄rs(s),

where s = 1, 2, . . . , Ns are the transducer indices, Winv ∈
CNs×N2

out . The wave propagation from X0 to Xt for any time
instant t can be written as

Xt = κt ◦ X0, (7)

where κt = [cos{ck̄(1)t}, cos{ck̄(2)t}, . . . , cos{ck̄(N2
out)t}]T

and ◦ represents element-wise multiplication. We can now
combine the matrices in (7) and (6) to measure X0 directly
at transducer location at a time instant t.

Kt = Winv ◦
(
1κT

t

)
, (8)

where 1 is a column vector of ones with a length of Ns.
Kt ∈ CNs×N2

out combines the propagation and Fourier inver-
sion for a particular time instant. Stacking Kt for different
time instants, one can construct matrix K which captures the
response of transducers over the entire time steps. The system
matrix can now be obtained by simple matrix multiplication

H = K Wfwd. (9)

Now measurements at transducer location for all time instant
can be written as,

y = Hx0. (10)

It should be noted that the size of the system matrix reduces
to NsNt × N2

in, and the effect of the bigger grid in the
k-space has been eliminated. Although matrix formation is
memory intense, it is a one-time process and a much smaller
matrix is used for inversion. We first demonstrate the accuracy
of the proposed matrix by comparing it with the k-wave
toolbox, an open source software for photo-acoustic simulation
[10]. Transducers measuring pressure time series from a point
source on a 2D plane using k-wave and the proposed pseudo-
spectral matrix under similar conditions, is shown in Fig. 2.
It can be easily seen that the proposed approach is identical
to the k-wave model. In addition to that, it can be observed
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Fig. 2. Measured pressure by a single transducer propagated from a point
source using pseudo-spectral matrix, k-wave toolbox and spherical averaging
compared against experimental signal.

in Fig. 2 that the widely used spherical averaging model in
equation (2) deviation from the expected signal. This further
emphasis the accuracy and scope of the proposed matrix.

IV. REGION OF INTEREST BASED RECONSTRUCTION

Once the measurements are made, the image can be re-
covered using matrix inversion methods. Depending on the
application, the best-suited inversion process can be adopted.
A straightforward approach to invert (10) is to take the l2 norm
of the residue as the cost function and minimize it for image
reconstruction. In other words,

x̂0 = argmin
x
‖Hx− y‖22. (11)

If we have prior knowledge that the tomographic slice is
smooth in nature we can add an additional regularization
conditions such as Tikhonov regularization and formulate the
optimization as

x̂0 = argmin
x

‖Hx− y‖22 + λ1‖x‖22, (12)

where λ1 is the Tikhonov regularization constant. The addi-
tional term provides a lowpass effect, and the reconstruction
is applicable for smooth objects of interest such as imaging
Sentinel Lymph Nodes and dye tracking [2]. In most of the
photo-acoustic studies vascular structures of human and small
animals are performed [2]. These images are usually sparse
in nature and can be reconstructed using a sparsity based
regularization term instead of the smoothing term in (12).
Sparsity can be promoted using l1 norm and the cost function
can be modified to [4], [3], [11],

x̂0 = argmin
x

‖Hx− y‖22 + λ2‖x‖1, (13)

where the parameter λ2 can be either used to give priority to
sparsity or to reduce the residual error. This recovery approach
became very popular in photo-acoustic tomography because it
can recover the image with far fewer measurements and it is
known as compressed sensing. It is also applicable for non-
sparse images since sparsity in a transform domain is natural.
Depending on the nature of the image, a sparsifying basis like

the wavelet transform or the Fourier transform can be used
in the recovery. If Ψ is a sparsifying matrix, then x can be
sparsely represented as

θ = Ψx.

Then, by modifying the objective function in (13), we can
recover θ. Let θ̂0 be the optimum solution

θ̂0 = argmin
θ

‖HΨ−1θ − y‖22 + λ3‖θ‖1. (14)

From optimal solution θ̂0, x̂0 can be reconstructed by applying
the inverse of the sparsifying basis Ψ. In head and abdominal
imaging another variant of this cost function can be used
namely Total Variance (TV) minimization. This reconstruction
is preferred when there are smooth regions separated by
sharp edges as in the tomographic slice of a head [2]. TV
minimization is known to preserve edges and can be obtained
by solving the optimization

x̂0 = argmin
x

‖Hx− y‖22 + λ4‖x‖TV . (15)

V. RESULTS AND DISCUSSION

To validate our model, the PA signal from the model is
compared with experimental signal. VISULAS YAG III from
Zeiss is used as the pulse laser source, which has a pulse
width of 3ns at 1064nm wavelength. A black nylon thread of
60µm is used as an absorber. An Olympus V384 transducer is
used as a detector, with the center frequency (fc) of 3.5MHz
and a bandwidth of 60% of fc at −6dB. Both absorber
and transducer are immersed in a water tank and a laser is
manually triggered from outside the tank. A similar setting is
used in the simulation. Fig. 3 shows that the PA signal from
proposed model agrees well with the experimental signal. The
second peak in the experimental PA signal is due to the PA
signal generated from the wall of water tank. This can be
eliminated using a careful design of the experimental setup.
It can also be noted that signal from the proposed model is
perfectly agreeing with signal obtained from k-wave toolbox
[10] Fig. 3. The k-wave is an open source toolbox for PAT
simulation. We have also compared these signals with the
widely used spherical averaging model. It can be observed
from the Fig. 3 that spherical averaging model deviates from
the experimental PA signal. This is due to the error associated
with the discretization of the model.
The main computational advantage of the proposed method
over k-wave toolbox is two fold. Firstly, for the model compu-
tation the proposed model uses one forward Fourier operation
and the number of inverse Fourier operations is equal to the
number of time steps. While k-wave uses three coupled first
order equations, resulting in a minimum of 6 and maximum
of 14 fft operations at each time step [10]. In addition to
that mostly in tomography, system parameters like source and
detector configurations are fixed. This result in a single time
computation of system matrix. Once the matrix is generated,
measurements are obtained simply using matrix multiplication,
which is many times faster than k-wave iterative computation
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(a) (b) (c)

Fig. 3. (a) Original image, from measurements at Nyquist rate (b) recon-
structed using k-wave (SSIM = 0.5009) (c) reconstructed using pseudo inverse
of proposed matrix (SSIM = 0.9997)

using first order equations. The only problem associated with
the proposed method is its memory requirement, that we
overcome by utilizing the sparsity of the matrix.
Numerical simulations are performed on a 64 × 64 imaging
grid, with a 256× 256 k-space grid. Grid spacing is taken as
d = 0.1mm and point detectors are placed 5mm out side the
imaging grid as shown in Fig. 1. Assuming the sound constant
to be c = 1500m/s, the maximum frequency generated by the
grid can be calculated as c/(2∗d) = 7.5MHz. This calculation
is based on the Nyquist sampling theorem. In our simulations,
acoustic waves are measured over a time period of 5µs and
the number of samples required according to the Nyquist rate
is 75. In all our experiments, a circular configuration of 64
transducers was used. In the first experiment, signals are taken
at Nyquist rate and reconstruction using pseudo-inverse of
the matrix and using the k-wave toolbox is shown in Fig.
3. In this case, the matrix is over-determined and the pseudo-
inverse gives a perfect reconstruction while time reversal using
k-wave is highly inaccurate. In all the experiment quality
of reconstruction is measured using the Structural SIMilarity
(SSIM) index [12]. In the second experiment, imaging a
Sentinel Lymph Node is considered. A sub-Nyquist sampling
is performed and the number of samples are taken to be
64. Since tomographic image is expected to have a smooth
nature, Tikhonov regularization is used as in (12). Fig. 4 shows
the reconstruction using regularization parameters obtained
from the L-curve with both proposed matrix and impulse
response matrix [5]. With Tikhonov regularization impulse
response matrix works slightly better than proposed matrix
since it is specifically designed to work with this approach.
Imaging head and abdomen of small animal requires a trade-
off between preserving edges and smooth structures. We
use TV minimization as in (15) to solve this problem. The
reconstruction is demonstrated with the Shepp-Logan (head)
phantom. This approach can reconstruct image from highly
under-sampled signals with prior knowledge of the region of
interest. Reconstruction from 32 and 20 samples are shown in
Fig. 5. It is shown that perfect reconstruction is possible at far
lower rates than the Nyquist rate. This reconstruction is widely
used in compressed sensing based image reconstruction. l1
minimization is a generic compressed sensing method which
can reconstruct a large class sparse signals. If the signal is

(a) (b) (c)

Fig. 4. (a) Original image, reconstruction using Tikhonov regularization (L-
curve regularization) with (b) proposed matrix (SSIM = 0.9029) (c) with
impulse response matrix (SSIM = 0.9991) [5].

(a) (b) (c)

Fig. 5. (a) Original image, reconstruction using total variance minimization
(b) from 32 samples (SSIM = 1) (c) from 20 samples (SSIM = 0.7421).

sparse in a basis, and if the basis is incoherent with the
measurement matrix then l1 minimization provides the best
sparse reconstruction. In our experiments, a sparse vascular
structure phantom is used and reconstructions from 32 and
22 randomly selected measurements are shown in Fig. 6 (a,
b, c). Under similar measurement conditions we also com-
pare reconstruction using l1 minimization, using an impulse
response matrix from [5], a spherical averaging matrix from
[3] and a frequency domain matrix from [4] in Fig. 6 (d, e, f).
From the comparison it is clear that reconstruction using the
proposed matrix works better than all time domain matrices.
The result is also comparable with frequency domain matrix
which requires the entire measurements to be transformed to
the frequency domain for inversion. Our proposed matrix on
the other hand absorbs both the forward and inverse Fourier
operations and operates directly on the time domain samples,
and thereby offers higher computational efficiency.

VI. CONCLUSION

We presented a simple and accurate measurement matrix
that models wave propagation in Photo-Acoustic Tomography.
The accuracy of measurements using the matrix is validated
and reconstruction based on region of interest is also demon-
strated. Reconstruction using the proposed matrix is better than
spherical averaging and impulse response based matrices and
on par with the frequency domain matrices. These advantages
make the proposed matrix attractive for model based photoa-
coustic imaging.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) Original image, reconstruction using l1 minimization with
proposed matrix, (b) from 32 samples (SSIM = 1), (c) from 22 samples
(SSIM = 0.9412), (d) from 22 samples using impulse response matrix [5]
(SSIM = 0.7885) (e) from 22 samples using spherical averaging matrix [3]
(SSIM = 0.7802) (f) from 22 samples using frequency domain matrix [4]
(SSIM = 1).
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