Evidence for mantle heterogeneities in the westernmost Mediterranean from a statistical approach to volcanic petrology

Massimiliano Melchiorre 1,*, Jaume Vergés 1, Manel Fernàndez 1, Massimo Coltorti 2,Montserrat Torne 1, and Emilio Casciello 1.

1 Group of Dynamics of the Lithosphere, Institute of Earth Sciences Jaume Almera ICTJA – CSIC, Lluís Solé i Sabarís s/n, 08028 Barcelona, Spain
2 Department of Physics and Earth Sciences, Ferrara University, via Saragat 1, 44123 Ferrara, Italy.
* Corresponding author.

E-mail address: mmelchiorre@ictja.csic.es (M. Melchiorre)
Abstract

The geological evolution of the Westernmost Mediterranean is characterised by widespread volcanic activity, with subductive (orogenic) or intraplate (anorogenic) geochemical imprints. The geochemical features of major and trace elements, and the isotopic ratios of 283 orogenic and 310 anorogenic samples of the Western and Central Mediterranean were merged in a unique database that was processed by using a statistical approach. The factor analysis, performed by using the Principal Component Analysis (PCA) method, reduced the original 36 geochemical parameters that were expressed as oxides, elements or isotopic ratios to seven factors, accounting for ~84% of variance. Combining these factors in binary diagrams allows separating the anorogenic and orogenic fields. Anorogenic samples usually fall into a narrow compositional range, while orogenic rocks are characterised by a greater variability and by alignment along different trends. These different trends account for large heterogeneities of the lithospheric mantle in the Mediterranean area due to extensive recycling of geochemically different lithologies, at least since Palaeozoic times, thus supporting the existence of different mantle reservoirs as being responsible for the Mediterranean volcanism. We find that the double subduction polarity model, that was recently proposed for the Westernmost Mediterranean, is compatible with the volcanic petrology of the last 30 My.

Keywords

Factor analysis, Geochemical database, Major elements, Trace elements, Isotopic ratios, Geodynamic evolution, Orogenic volcanism, Anorogenic volcanism.
1. Introduction

The Central and Western Mediterranean encompasses the region between the Calabrian and the Gibraltar arcs, including a series of Neogene marine sedimentary basins (e.g., Alboran, Valencia Trough, Algerian, Liguro-Provençal, and Tyrrhenian), the surrounding Alpine belts (e.g., Betics, Catalan Coastal Ranges, Alps, Apennines, Rif-Tell-Atlas), the Balearic Promontory, and the Corsica-Sardinia block. The whole region forms part of the western Africa-Eurasia plate boundary, where a far-field compressive stress regime was coeval with regional extension, with active and recent subduction processes, and it is characterised by Neogene to recent volcanic activity.

The Central and Western Mediterranean has been widely investigated with the following aims: 1) reconstruct the plate kinematics (e.g., Rabinowitz and LaBrecque, 1979; Dewey et al., 1989; Van der Voo, 1993; Rosenbaum et al., 2002b; Vergés and Fernàndez, 2012; Carminati et al., 2012; Turco et al., 2012; Casciello et al., 2015); 2) emphasise the seismic images in order to propose snapshots of the actual lithospheric domains beneath Europe and the Mediterranean (e.g., Gutscher et al., 2002; Piromallo and Morelli, 2003; Spakman and Wortel, 2004; Wortel et al., 2009; Giacomuzzi et al., 2012; Bezada et al., 2013; Palomeras et al., 2014; Thurner et al., 2014; Chiarabba et al., 2014); and 3) describe the volcanic activity that affected several areas from Spain to northern Italy and from northern Africa to Central Europe since the Oligocene (El Azzouzi et al., 1999; Coulon et al., 2002; Beccaluva et al., 2004, 2013; Harangi et al., 2006; Lustrino and Wilson, 2007; Lustrino et al., 2011; Carminati et al., 2012; El Azzouzi et al., 2014). The volcanic activity in Central and Western Mediterranean can be broadly divided into two main types (Fig. 1) on the basis of their tectonic and geochemical features (see Lustrino and Wilson, 2007 and Lustrino et al., 2011 for...
reviews). Orogenic or subduction-related volcanism usually refers to those volcanic rocks that are generated in a continent-continent collision or associated with the subduction of oceanic lithosphere (e.g., Carminati and Doglioni, 2004) and comprises arc tholeiitic, calc-alkaline, High Potassium (HK) calc-alkaline, shoshonitic and ultrapotassic products. In these areas, anorogenic or intraplate volcanism is associated with a post-collisional environment and includes alkaline rocks with sodic affinity. Combining this information, several and sometimes competing geodynamic models were put forward to explain the Tertiary evolution of the Western Mediterranean (Doblas et al., 2007).

Tomography models resulted in a consensus on the extent, shape and dip of the present-day subducting slabs in the region. However, discrepancies arise on the subduction initiation relative to the extent of the subduction front, its orientation and dip. Some authors propose an initial N-NW dipping subduction front that extends from the Alps to the present-day Gibraltar Arc (e.g., Faccenna et al., 2004; Schettino and Turco, 2006; Carminati et al., 2012). Some other authors propose restrictions on the initial N-NW dipping subduction zone from the Alps to the southwest termination of the present-day Balearic Promontory (e.g., Rosenbaum and Lister, 2004; Spakman and Wortel, 2004; van Hinsbergen et al., 2014). A third model proposes a lateral change in the initial subduction polarity from S-SE along the north Moroccan margin to N-NW along the Balearic Promontory until the Alps (Vergés and Fernàndez, 2012; Casciello et al., 2015).

The incorporation of volcanism in these models is uneven. Duggen et al. (2004, 2005) explain the geochemical features of the westernmost Mediterranean volcanism as due to delamination in a context of a westward roll-back phase. Booth-Rea et al. (2007) use the volcanism to support a model in which an E-dipping subduction beneath the Alboran
and Algro-Balearic basins was active until the late Miocene, when it stopped, probably due to the complete consumption of the oceanic crust. The Si-K rich volcanism is interpreted as due to anatexis resulting from the direct contact of the asthenosphere with the base of the crust, driven by the delamination of the lithospheric mantle (Bird, 1979). Wilson and Bianchini (1999) provide clues for the origin of the most primitive mafic igneous rocks that can be considered as the best indicator for the initial geodynamic setting. Harangi et al. (2006) deal with the subduction-related volcanic rocks and their relation with competing geodynamic models that are proposed for the evolution of the Central and Western Mediterranean. Finally, Lustrino and different co-workers (Lustrino and Wilson, 2007; Lustrino et al., 2011; Lustrino, 2011) present an overview of the two main geochemically different rocks, erupted in the Mediterranean (anorogenic and orogenic), with an aim of providing a general model for the petrogenesis of the intraplate affinity suite and a possible relationship between the tectonic evolution and the geochemistry of the subduction-related rocks.

The huge amount of available information on the geochemistry of the volcanic products in the Western and Central Mediterranean makes its incorporation into the proposed geodynamic models difficult, mainly due to their extreme chemical heterogeneity. A way to manage large numbers of variables with no obvious relationships among them is the use of the factor analysis technique. Although this technique is being used widely in the social and life sciences and is becoming a common method in earth science, it is not yet used in volcanic geochemistry. In this paper, we present the results obtained by applying, for the first time, a factor analysis (using the principal component method) to a large database composed of Mediterranean orogenic (Lustrino et al., 2011) and anorogenic (Lustrino and Wilson, 2007) volcanic rocks. Factor analysis is here used to remove redundant variables and to replace the entire geochemical data file by a smaller
number of variables in order to support previous geochemical interpretations and to ascertain the utility of the method.

Our main aims are: 1) to verify whether a factor analyses technique can be applied to geochemical issues; 2) to highlight the differences in terms of geochemical composition of the intraplate affinity and subduction-related volcanic rocks of the Western and Central Mediterranean and their temporal evolution; and 3) to constrain the origin of the mantle heterogeneities representing the source of the volcanism. Furthermore, we analyse the compatibility between the geochemical signature of the volcanism in the Westernmost Mediterranean and a recently proposed geodynamic model based on a lateral change of the subduction polarity (Vergés and Fernàndez, 2012; Casciello et al., 2015).

2. Cenozoic tectonic evolution of the Central and Western Mediterranean

The Central and Western Mediterranean has undergone a complex geodynamic evolution since the early Cretaceous, and with processes that are still active. This complex history is recorded in the Alpine orogeny (Dal Piaz et al., 2003), in the numerous areas where magmatism and orogenesis occurred (Araña et al., 1983; Cebriá and López-Ruiz, 1995; Harangi et al., 2006; Lustrino and Wilson, 2007; Lustrino et al., 2011; Beccaluva et al., 2011, 2013), and in the formation of several back-arc basins that opened due to the roll-back of lithospheric slabs with various retreat directions (e.g., Carminati et al., 2012). These basins (Fig. 1) are the Liguro-Provençal and the Tyrrhenian basins (Van der Voo, 1993; Faccenna et al., 1997; Doglioni et al., 2004), the Valencia Trough and the Algerian Basin (Martí et al., 1992; Torne, 1996; Vergés and
Sàbat, 1999; Ayala et al., 2003; Roca et al., 2004; Carballo et al., 2015), and the
Alboran Basin (Comas et al., 1992, 1999; García-Dueñas et al., 1992; Torne et al.,
2000; Frizon de Lamotte et al., 2004; Soto et al., 2008). The overall tectonic framework
in which this evolution occurred is characterised by the convergence between the
African and Eurasian plates that was caused by the opening of the southern Atlantic
Ocean since the Early Cretaceous. From these times on, Africa moved slowly toward
Eurasia with a NE-directed counter-clockwise rotation (Dewey et al., 1989; Mazzoli and
Helman, 1994; Rosenbaum et al., 2002a), shifting to a NNW direction at about 40 Ma
(Rosenbaum et al., 2002a; 2002b), and finally to a N-S direction (Devoti et al., 2008).
It is widely accepted that the evolution of the Central Mediterranean is linked to the
roll-back of the Tethyan oceanic lithosphere, that had remained landlocked since the
Oligocene. However, despite the consensus among mantle tomography models that
image a subducted and partly torn slab beneath the Betic-Rif orogen (e.g., Spakman and
Wortel, 2004; Díaz et al., 2012; Miller et al., 2013; Bonnin et al., 2014; Thurner et al.,
2014; Fichtner and Villaseñor, 2015), the debate focuses on how to trace backwards the
evolution of these subductions to their initial configuration.
The earliest tectonic reconstructions considered the Central and Western Mediterranean
basins and surrounding chains as resulting from extensional stresses that dismantled the
western Alpine belt. This orogenic dismembering produced the radial dispersion of its
high pressure–low temperature (HP-LT) ‘collisional’ metamorphic rocks to form the
Calabria-Peloritani, Kabilies and Alboran terranes (Alvarez et al., 1974; Boccaletti and
Guazzone, 1974; Alvarez and Shimabukuro, 2009). As argued in Casciello et al. (2015),
this initial interpretation had a strong influence on later reconstructions that, in the case
of the Westernmost Mediterranean, can be grouped into three different hypotheses:
1) The original Alpine belt formed a continuous chain from the present-day Alps to the Gibraltar area and was related to a NW-directed subduction, at least since the middle Eocene, incorporating the HP-LT metamorphic domains of the future Betic-Rif Internal Zone (Alboran Domain), the Kabylies blocks, and the Calabria-Peloritani units. The further retreat and slab roll-back towards the SE caused the dispersal of the metamorphic units to follow a radial pattern. The Calabria-Peloritani units moved ESE together with the Sardinia-Corsica block during the opening of the Liguro-Provençal Basin, whereas the Kabylies shifted southwards during the opening of the Algerian Basin (e.g., Jolivet and Faccenna, 2000; Faccenna et al., 2004; Faccena et al., 2014). These authors introduced the concept of slab tears in the subducting lithosphere to allow for an independent WSW roll-back in the Gibraltar area, with respect to the overall S-directed roll-back of the Algerian slab. The main criticism of this model is that the formation of the Miocene NW-verging Betic orogen and the S- to E-dipping present-day subduction polarity is hardly explained.

2) A second model proposes that the initial N-NW dipping subduction zone extends from the Alps to the south of the present position of the Balearic Promontory (e.g., Lonergan and White, 1997; Rosenbaum and Lister, 2004; Spakman and Wortel, 2004; van Hinsbergen et al., 2014). According to these authors, and in a manner that is similar to the previous model, this orogenic belt was composed of HP-LT metamorphic units that dismembered radially, due to the slab roll-back. The main difference with the previous model is that the segment of the subduction front, associated with the present Balearic block, underwent a clockwise rotation of ~180º which was accommodated by lithospheric tearing along the North African margin. This allowed for over 500 km of westward movement of the Alboran domain and the E-W opening of the Algerian basin (van Hinsbergen et al., 2014).
3) The latest interpretation has been proposed by Vergés and Fernàndez (2012). Based on the position of high-grade metamorphic rocks with respect to the subduction polarity and several other geological and geophysical constraints, these authors suggest that the Betic-Rif Arc originated from the Oligocene-Miocene north-westward and westward roll-back of the southeast-dipping Ligurian Tethys lithosphere subduction below Africa. In this view, the Late Oligocene-Miocene evolution of the Central and Western Mediterranean is linked to two opposite dipping subductions: a northwest-dipping, southeast-retreating subduction related to the migration of the Kabylies units, and a southeast-dipping, northwest-retreating subduction related to the formation of the Betic-Rif orogen.

3. Geochemical data and factor analysis

Two large databases that are available in the body of literature have collected much of the volcanic activity that has been registered in the Mediterranean from the Oligocene to the present-day (Fig. 1). The compilation of the orogenic-related rocks has been published by Harangi et al. (2006) and more recently by Lustrino et al. (2011), while the geochemical data of the anorogenic rocks are gathered by Lustrino and Wilson (2007), and further updated by Lustrino (2011). For comparison, we also considered the Canary Islands dataset that, as expected, shows a monotonous and unambiguous intraplate signature from Oligocene to Recent.

The main limitation of such large datasets is to visualise the wealth of information they contain. In geochemistry, binary or ternary diagrams are used to identify any significant variation in the chemistry of the samples, combining major and trace elements, and isotopic ratios. However, even if elemental ratios are considered, it is highly unlikely to
observe, at the same time, variations of more than six elements. Hence, typically, several diagrams are used to display the chemical data, which often distract the attention of the researcher from his final goal of unravelling the geochemical evolution of a suite of rocks, and to insert them in a coherent geodynamic framework. In this respect, a statistical approach through factor analysis can help, acting as a powerful tool to combine more elements and allowing us to summarise most of the geochemical variations in few binary diagrams.

The orogenic volcanic dataset of Lustrino et al. (2011) is a compilation of more than 7,000 analysed samples, while its anorogenic counterpart accounts for ~7,800 analyses (Lustrino, 2011). These two large databases have been merged and filtered by choosing those samples that are characterised by the most complete geochemical dataset in terms of:

a) Major elements, expressed as oxides of Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P.

b) Trace elements, including Large Ion Lithophile Elements (LILE) - Cs, Rb, Ba, Sr and Pb; High Field Strength Elements (HFSE) - Th, U, Nb, Ta, Zr and Hf; and Rare Earth Elements (REE) - La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y and Lu.

c) Isotopic composition, mainly expressed by 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb 207Pb/204Pb, 208Pb/204Pb, 208Pb/206Pb and 207Pb/206Pb.

After filtering, a total of 283 orogenic and 310 anorogenic volcanic samples were selected (Fig. 2). This procedure has led us to completely exclude from the dataset the samples from the Algerian and Tunisian districts, and to select only three samples from Sardinia and one sample from Corsica (Sisco). We built a 593 x 43 matrix in which each row represents a sample and each column represents a variable (i.e., a geochemical
element characterising the sample). This matrix was processed in order to obtain
standardised values that are expressed as $Z_i = (x_i - x_m)/\sigma$, where x_i is the non-
standardised value of variable x, x_m is the mean value of variable x, and σ is the standard
deviation of variable x. The standardisation procedure inflates variables whose variance
is small, reduces the influence of variables whose variance is large, and removes the
influence of different measurement units in the data by making them dimensionless.

Factor analysis is a multivariate statistical method used to represent a large number of
variables in the original data by a substantially smaller number of factors. The term
factor in geochemistry refers to controlling processes and factor analysis is ideally
suited for an easy presentation of the essential information that is preserved in a
geochemical dataset with many elements (Reimann et al., 2002). The aim of this
statistical analysis is to reduce the dimensionality of the original space, thus allowing
for a most comprehensible interpretation by a reduced number of dimensions which are
supposed to underlie the old dimensions (Rietveld and Van Hout, 1993).

For this purpose, the matrix has been processed using the Statistical Package for Social
Sciences (SPSS) version 17, that allowed a first reduction of the number of variables to
describe the 593 samples by reading the value of the communality (comprised between
0 and 1). The communality of a variable is an automatically calculated parameter, based
on the sum of the loadings of this variable on all of the extracted factors, which reflects
the percentage of variance in a given variable that is jointly encompassing all of the
factors (interpreted as the reliability of the indicator). Those variables with communality
lower than 0.6 were considered meaningless and were disregarded. The matrix was
reprocessed until all variables had communality greater than 0.6, thus excluding MnO,
Cs, Ta, Hf, Gd, Er and $^{207}\text{Pb}^{204}\text{Pb}$ isotopic ratio in the final factor analysis.
The starting point of a factor analysis is a correlation matrix that is obtained by calculating the correlations between each pair of variables. The extraction of the factors is undertaken by calculating the eigenvalues of the correlation matrix. The number of positive eigenvalues determines the number of dimensions needed to describe the set of scores without losing information, and the number of the extracted factors (Rietveld and Van Hout, 1993). The construction of the factor is based on a transformation matrix that is given by the eigenvectors of the eigenvalues (Rietveld and Van Hout, 1993). Once the factors have been extracted, the factor loadings are calculated by correlating the original variables and the newly obtained factors. The first factor accounts for the maximum part of the variance, the second factor accounts for the maximum part of the remaining variance, and so on. In our case, seven factors (F) were extracted that account for ~84% of the cumulative variance (F1 22.7%; F2 18.6%; F3 12.2%; F4 11.8%; F5 6.4%; F6 6.4%; F7 6.1%) (Table 1).

The interpretation of the obtained factors can be problematic because the original variables have high loadings on the first factors as they account for the maximum part of the variance. To get around this problem, an orthogonal (Varimax) factor rotation is applied. Finally, each standardised variable score is multiplied by the corresponding standardised scoring coefficient, and the sum of these products results in the factor scores (Supplementary Material). It is noteworthy that in our case, the number of orogenic and anorogenic samples must be similar in order to avoid the dominance of one over another in extracting the main factors.

The factor scores are plotted in binary diagrams (Supplementary Material) in order to observe the variations affecting the samples in terms of controlling processes. Considering that the factors are the combination of all the variables used for the geochemical description and that each factor is standardised to a mean value of 0 and a
variance of 1, the intersection of the axes represents the mean of all the variables. For example, in the F2 vs. F1 diagram the intersection of the axes represents the point where the values of the variables, that are weighted by these two factors, coincide with their mean. Moving away from the axes intersection, the values of the variables will increase (positive side of the axes) or decrease (negative side of the axes) with respect to the mean.

4. Outcomes of the factor analysis

F1 is characterised by a positive correlation with K2O, 87Sr/86Sr, Rb, Sm and a group of highly mobile elements such as U, Th and Pb, and by a negative correlation with Fe2O3, CaO and 143Nd/144Nd (Table 2). F2 depends positively on Sr and Ba, as well as on some Light REE (LREE; La, Ce and Nd), Medium REE (MREE; Eu, Dy), and Y. F3 shows a positive correlation with TiO2, MgO and P2O5 and a negative correlation with SiO2 and Al2O3. F4 depends positively on Heavy REE (HREE) and Pr (LREE), as well as F5 on Na2O, Zr and Nb. Note that, statistically, Pr is correlated with F4, although most of the LREE are associated with F2. Finally F6 and F7 depend positively on Pb isotopic ratios. F6 is correlated with 208Pb/206Pb and 207Pb/206Pb, F7 to 206Pb/204Pb and 208Pb/204Pb. By combining the seven factors in binary diagrams (Supplementary Material), we observed that the use of F1, F2, F3 and F5 explains the majority of the chemical variations of the samples. Fig. 3 shows the plots of the rotated component matrix expressed as binary diagrams of F2 vs. F1, F3 vs. F1 and F5 vs. F3. These plots help in understanding what variables influence the different factors more. On the other hand, in Fig. 4 and Fig. 5 we use the factor scores obtained for each sample in order to understand how the volcanic
rocks used in this study are related to the different factors (i.e., to the different original variable or chemical components).

On the whole, both orogenic and anorogenic samples show wide variations of all the factors (Fig. 4 and Supplementary Material). All the localities show a wide compositional range, in terms of both F1 and F2 (Fig. 5A and Fig. 5B), except Sardinia and Corsica (Sisco) (check legend of Figs. 1 and 5), for which only very few samples have been included in the factor analysis (3 and 1, respectively). The Central Mediterranean orogenic samples from Campania and the Aeolian Islands mostly straddle the zero axis intersection (Fig. 5A), indicating that the composition of these samples are close to the mean values of all variables included in F1 and F2. No correlation is found between composition and age, except some recent Campanian volcanic products shifting towards higher F1 values that are characterised by an increase in K₂O, Rb, Sm, U, Th and Pb contents, as well as radiogenic ⁸⁷Sr/⁸⁶Sr. On the other hand, samples of the Roman Province, Western Alps and Tuscany, mostly plotting on the positive side of the x-axis, show alignments along different trends (Fig. 5A). Note that Tuscany samples include some rocks from Capraia but not from Elba Island. Three features can be highlighted: 1) Roman Province volcanic products show a very wide compositional range in terms of both F1 and F2, thus being characterised by an increase of K₂O, Rb, Sm, U, Th, Pb, and more radiogenic ⁸⁷Sr/⁸⁶Sr, coupled with a decrease of Fe₂O₃ and CaO, and less radiogenic ¹⁴³Nd/¹⁴⁴Nd, as well as by the enrichment in Sr, Ba, LREE, MREE, and Y contents; 2) All samples from Tuscany plot onto the negative side of the F2-axis, highlighting a lower content of Sr, Ba, LREE, MREE, and Y with respect to the Roman Province volcanics. One of the Tuscany lamproites shows a lower LREE content than the Roman province samples. At the same time, Tuscany samples show, similarly to the Roman Province, an increase of those elements related to F1, with
the highest contents observed in the lamproites. Western Alps samples plot between the Roman and Tuscan provinces trends; 3) There is a temporal correlation of the volcanic products of Tuscany, with the lamproites (4.1 Ma), associated with calc-alkaline, HK calc-alkaline and shoshonitic rocks (0.88-1.35 Ma), being the first in the eruption sequence (Ferrara and Tonarini, 1985; Conticelli et al., 2004; and references therein).

In the Westernmost Mediterranean (Fig. 5B), the orogenic samples of southern Spain, Morocco and Alboran Basin (Fig. 1) are mostly aligned along a unique trend that starts from slightly negative F1 and F2 values and evolves towards higher F1 and slightly lower F2 values. Lamproites of southern Spain clearly plot outside this trend, between -1 and +1 F2 values, and are characterised by the highest F1 values, indicating highest K2O, Rb, Sm, U, Th and Pb contents and the highest 87Sr/86Sr, coupled with the lowest Fe2O3 and CaO contents and the lowest 143Nd/144Nd. Contrary to the case of the Tuscany rocks, the association of Spanish volcanic rocks (lamproites, calc-alkaline, HK calc-alkaline and shoshonitic rocks) is characterised by an opposite time sequence (Conticelli et al., 2009a). In fact, lamproitic volcanism started later (8.08 - 6.37 Ma) than the other subduction-related volcanic activity (14.4 - 6.2 Ma; Turner et al., 1999; Duggen et al., 2004, 2005; and references therein).

Both Central and Western Mediterranean anorogenic rocks show the same F1 and F2 variations (light blue fields in Fig. 5A and Fig. 5B). The widest compositional range is observed in the Upper Cretaceous rocks erupted in Portugal; all the others fall on the negative side of F1. The major variation for these rocks is observed for Sr, Ba, LREE, MREE, and Y contents (i.e., F2) and no age correlation is highlighted.

Fig. 3B, and consequently the values of the factor scores of Fig. 5C and Fig. 5D, give a unique opportunity to observe the variation of all major elements at the same time
(except MnO, which is excluded from the factor analysis, and Na$_2$O, which is included in F5). Subduction-related volcanics mostly plot onto the negative side of the y-axis, i.e., they are usually characterised by low TiO$_2$, MgO, P$_2$O$_5$, and high SiO$_2$ and Al$_2$O$_3$, contents. Lamproites of both Central and Western Mediterranean show high values of F1 and F3, unlike all the other volcanic rocks. The samples of from the Central Western Mediterranean with intraplate affinity are characterised by a wide F3 variation, with a group of rocks showing the highest SiO$_2$ and Al$_2$O$_3$, and lowest TiO$_2$, MgO, P$_2$O$_5$ contents, mostly belonging to Palaeocene German and upper Cretaceous Portuguese suites.

A general tendency observed in Fig. 5E and Fig. 5F is that, as expected, the orogenic samples are mostly characterised by negative values of F5, i.e., lower Na$_2$O, Zr and Nb contents than the anorogenic rocks, which generally plot above the zero axes with Na$_2$O/K$_2$O ~1. Furthermore, subduction-related rocks of both Central and Western Mediterranean are aligned along a trend with factors F5 and F3 being inversely correlated. Lamproitic rocks are very well discriminated compared to other samples (light red field in Fig. 5E and Fig. 5F) and are characterised by a positive correlation of the factors F3 and F5, such that an increase of Na$_2$O, Zr and Nb is associated with an increase in TiO$_2$, MgO and P$_2$O$_5$, and a decrease of SiO$_2$ and Al$_2$O$_3$.

5. Mantle heterogeneities beneath the Mediterranean

Volcanic rocks are characterised by geochemical signatures that are typical of the environment in which they are produced. However, processes other than simple partial melting have to be accounted for in order to explain their geochemistry. These processes can be related to metasomatic and refertilisation events, due to fluid flow in the mantle.
Recycling of material due to subduction processes can also modify the mantle composition, resulting in variations of the erupted volcanic products. In the Central and Western Mediterranean, several recycling events of various continental/oceanic subducted domains could have contaminated the lithospheric mantle for millions of years (Fig. 6). These episodes can even go back to the Triassic and Permian periods, and be related to the Variscan Orogeny and the subsequent Pangea Triassic rifting processes that pre-date the Central Atlantic opening. Most of the geodynamic models that have been proposed for the Central and western most Mediterranean (Tyrrhenian area, the Alps, southern Spain, and northern Morocco) invoke the upwelling of sublithospheric mantle. This upwelling would be responsible for the erupted anorogenic suites, together with subduction-related rocks (Turner et al., 1999; Lustrino et al., 2004; Duggen et al., 2005; Harangi et al., 2006) (Fig. 1).

The applied statistical approach permits identification of the major geochemical components through the observation of a considerably smaller number of binary diagrams, which are obtained by combining major and trace elements, and isotopic ratios. In Fig. 4 and Fig. 5, orogenic and anorogenic rocks are rather well separated with some overlapping regions, the orogenic samples being characterised by a great compositional variability that highlights the heterogeneity of the mantle that is affected by partial melting. When combining F1 and F2, or F1 and F3, various evolutionary trends can be observed that affect the Roman Province, Tuscany or the Western Alps. These trends reflect the recycling of material of different origins that were introduced via subduction and metasomatised the pristine mantle that eventually melted. The two end members represented by the Tuscan and Roman provinces are clearly related to the different types of material that were brought down by the subducting slab, which resulted in different petrographic and geochemical features of the erupted rocks. In the
case of the Roman Province, slab-derived melts have metasomatised a fertile mantle, while in the case of Tuscany a harzburgitic mantle could have been metasomatised through the subduction of continental crust or sediments (Avanzinelli et al., 2009). Both provinces are characterised by an evolution of their volcanics towards potassic and ultrapotassic end members. In the case of the Roman Province, the volcanic products evolve from calc-alkaline to HK calc-alkaline and shoshonitic SiO$_2$-saturated (leucite-free), to strongly SiO$_2$-undersaturated (with abundant leucite) tephrites, and to phonolites (Peccerillo, 2005; Avanzinelli et al., 2009; Conticelli et al., 2009b). The volcanic products from Tuscany evolve to ultrapotassic lamproites without leucite, characterised by relatively high MgO and SiO$_2$ with crustal isotopic signature (Conticelli et al., 2009a, and references therein).

The benefits of the statistical approach in geochemical investigation is provided by the discrimination of the orogenic and anorogenic fields, as well as that of the lamproitic rocks. Other evidence in favour of the proposed approach is provided by the combination of the elements within each factor. The positive correlation between K$_2$O and Rb or U-Th-Pb, as well as the negative correlation between the 87Sr/86Sr and 143Nd/144Nd isotopic ratios on F1, are clear examples. The negative correlation between MgO and SiO$_2$-Al$_2$O$_3$ recorded also by F3, or the dependence of F4 almost entirely on HREE further confirm the appropriateness of the approach. Supporting evidence is, finally, also given by F6 and F7 depending on 208Pb/206Pb - 207Pb/206Pb, and 206Pb/204Pb - 208Pb/204Pb, respectively.

6. Volcanic activity and the double polarity subduction model
Geodynamic models that have been proposed for the evolution of the westernmost Mediterranean are mainly based on geologic and seismologic evidences, as well as on petrography and exhumation ages of metamorphic units that compose the inner parts of the Betic-Rif arc. Many of these models are poorly constrained from a volcanological point of view, and volcanic activity is not only used as a key constraint but also as a corollary. The complexity in interpreting the volcanic geochemistry in this region is basically related to the long-term recycling of material, coupled to depletion events caused by partial melting due to subduction or rifting phases (Fig. 6). The modifications of the Mediterranean mantle are, therefore, reflected in the volcanic products, whose geochemical features do not always correspond to the present-day geodynamic environment in which they are sampled (see also Lustrino and Wilson, 2007; Lustrino et al., 2011; Carminati et al., 2012).

Here, we analyse the geochemical characteristics of the volcanic rocks in the framework of the recent geodynamic model proposed by Vergés and Fernàndez (2012) for the westernmost Mediterranean. These authors propose the existence of two opposite dipping slabs (Fig. 6), which retreated in opposite directions (Fig. 7), based on four key premises related to: 1) the large-scale plate reconstructions addressing the Africa–Iberia plate boundary during the Mesozoic and the Cenozoic; 2) the geographic distribution of HP/LT metamorphic rocks of the inner orogeny located along the Alboran and the Algerian margins; 3) the role of mechanical stratigraphy of the Iberia paleo-margin, where the External Units are separated from the Internal Betic–Rif units through Triassic detachment levels; and 4) the timing of onset of compressional deformation along the Betic–Rif system.

This model includes seven time-steps or stages. The first stage is related to the onset of the Africa–Iberia convergence at about 85 Ma, and volcanic activity is restricted to
southwest Iberia far from the Ligurian-Tethys domain. The second stage (middle Eocene, 47-42 Ma) takes into account a HP/LT metamorphic peak (recorded in the Nevada-Filabride complex) related to SE subduction beneath northern Africa. During this stage, no volcanic activity is reported in the westernmost Mediterranean, but some anorogenic volcanic rocks occurred in the High Atlas that are probably unrelated with subduction (at Tamazert and Rekkam; Bouabdli et al., 1988; Bernard-Griffiths et al., 1991; Bouabdli and Liotard, 1992; Rachdi et al., 1997; Duggen et al., 2005).

In the third stage (Oligocene, 30-25 Ma), the roll-back phase and the exhumation of the HP/LT Ligurian-Tethys metamorphic rocks began. The earliest magmatic manifestation is represented by the intrusion of tholeiitic Malaga dykes, dated 33.6±0.6 Ma (Duggen et al., 2004) and 30.2±0.9 Ma (Turner et al., 1999). Younger ages ranging from 23 to 17 Ma have been reported by several authors (e.g., Torres-Roldán et al., 1986; Turner et al., 1999; Duggen et al., 2004), coinciding with metamorphic events dated 22-17 Ma (Priem et al., 1979; Monié et al., 1994; Kelley and Platt, 1999). These young volcanic ages (23-17 Ma) are related to a thermal event that reset the system, rather than being related to the magma ascent and dykes emplacement (Duggen et al., 2004; Platt et al., 2013). The tholeiitic Malaga dykes are characterised by moderate Fe enrichment (Turner et al., 1999). These rocks show crustal contamination, indicated by small negative Ta-Nb, Ti and Zr-Hf anomalies, positive Rb, U, K and Pb anomalies, higher $^{87}\text{Sr}/^{86}\text{Sr}$, and lower $^{143}\text{Nd}/^{144}\text{Nd}$ relative to the depleted mantle, and elevated $^{208}\text{Pb}/^{204}\text{Pb}$ and $^{207}\text{Pb}/^{204}\text{Pb}$. However, the least contaminated samples show relative low Fe and high Si contents, flat REE patterns, and high HREE concentrations, indicating that partial melting did not take place in the presence of garnet. Turner et al. (1999) calculated that 10-15% of mantle partial was melting in the spinel stability field (less than 60-70 km). This feature allows us to place the genesis of these melts as due to
partial melting of a mantle wedge (Duggen et al., 2004), most probably enriched in incompatible elements through the percolation of fluids coming from the subducting slab and involving a sedimentary component, in agreement with the third stage, described by Vergés and Fernàndez (2012). Note that the Malaguide Complex corresponds to the upper plate and it has been tectonically transported to its present position as a consequence of the slab roll-back.

The fourth stage, dated as late Oligocene-early Miocene (27-20 Ma), is characterised by a progressive northwest and westward displacement of the trench resulting in an arcuate subducting slab with a SE to E-dipping polarity and the opening of the Alboran back-arc basin. The absence of volcanic activity is a key feature of this stage, although volcanism will sporadically reappear a few million years later. Cordierite-bearing dacite samples in the Mar Menor area have been dated at around 18.5±1.6 Ma (Duggen et al., 2004). These anatectic melts have been also reported by Zeck et al. (1999) and are explained as melting of pelitic to quartz-feldspatic clastic rocks originated in a slab detachment setting. This hypothesis is well correlated with the fifth stage, which is characterised by the end of major extension in the Alboran Basin (18-16 Ma) and the onset of slab tear and E-W extension in the Eastern Betics. The occurrence of some calc-alkaline products in the Alboran Sea (ODP 977 at ~17.6 Ma; Duggen et al., 2004) is related to the active slab retreating in the West Alboran Basin, as proposed by the model.

Most of the volcanic activity of the western Mediterranean occurred since ~15-14 Ma (hereinafter, all age datings refer to the data of Duggen et al., 2004, and references therein). During the Middle to Early Miocene, subduction-related volcanic rocks with tholeiitic to HK calc-alkaline affinity had erupted in different localities: in Ras Tarf (northern Morocco) and Cabo de Gata (southern Spain) at ~15 Ma, in the Alboran Sea
(ODP 978) around 13 Ma, in Oranie (Northern Algeria) and the Yusuf Ridge (Alboran Sea) at ~11 Ma, and in the Alboran Ridge at ~10 Ma. This volcanism continued between ~9 and ~7 Ma, producing volcanic rocks with a typical subduction signature in the Alboran Sea (the tholeiitic/calc-alkaline volcanism of Mansour Smt. at ~9 Ma) and Northern Algeria (at Gourougou and Trois Furches with calc-alkaline affinity, ~9 Ma). In southern Spain, rocks with calc-alkaline affinity erupted at ~8 Ma in Murcia and Mazarron (with the occurrence of alkaline rocks with sodic affinity in the area of Picassent; Ancochea and Huertas, 2002). Following the stage 6 in Vergés and Fernàndez (2012), this orogenic volcanism is interpreted as the partial melting of the mantle wedge that is related to the W-directed slab roll-back affecting mainly the western part of the Betic-Rif-Alboran system.

The last volcanic phase occurred in the late Miocene-Quaternary periods and comprises a wide range of volcanic products. The peculiarity of this period is the eruption of sodic alkaline (anorogenic) rocks soon after the emplacement of volcanics with typical subduction-related signature. In the area of Guilliz (north Morocco), calc-alkaline products erupted at ~7 Ma are followed after only ~1 My by sodic alkaline rocks. At Gourougou and Trois Furches (north Morocco), the same evolution between orogenic and anorogenic igneous rocks is observed (Maury et al., 2000). Anorogenic rocks erupted from ~3 Ma in the area of Oujda and Oranie (northern Algeria; Coulon et al., 2002). Along the Iberian margin, calc-alkaline and HK calc-alkaline rocks were erupted during the late Miocene-Quaternary, especially along the Murcia-Almeria coast. Lamproite-like ultrapotassic rocks (8.08-6.37 Ma) were erupted in the area of Vera, Cancarix, Fortuna and Jumilla, some of which emplaced along transform faults (e.g., the Socovos fault, Pérez-Valera et al., 2013). These rocks are usually interpreted as originated by the partial melting of a strongly metasomatised mantle. Sediments play an
important role in the generation of the lamproitic products. If the subducting slab is
carrying a large quantity of sediments to the mantle, they will deeply metasomatise the
mantle wedge by adding incompatible elements (Ba, Rb, Sr, Th) and K\textsubscript{2}O, precipitating
clinopyroxene, phlogopite and amphibole either as small veins (Foley, 1992) or
disseminated in the peridotitic matrix (Coltorti et al., 2004). On the other hand,
Bianchini et al. (2015) link the source of the Spanish lamproites to a widespread
igneous veining (norite veins) observable in composite mantle xenoliths from Tallante,
coupled with very refractory peridotite compositions, known from xenolith occurrences
in the Iberian margin (Bianchini et al., 2007). According to those authors, the
metasomatism has to account for processes related to Cenozoic and Paleozoic times.
The final magmatic input in southern Spain is represented by the alkaline products of
Tallante, erupted between 2.93 Ma and 2.29 Ma (Cebriá et al., 2009).

The Late Miocene-Quaternary volcanic phase in the western Mediterranean is poorly
integrated in the double polarity subduction model. The eruption of the calc-alkaline
and HK calc-alkaline rocks is in agreement with a subduction process that is in its
mature stage (no retreating or active subduction), as proposed by Vergés and Fernàndez
(2012) in stage 7. In northern Africa (Morocco and west Algeria), the sodic alkaline
volcanic episodes following the typical subduction-related products can be mainly
ascribed to three mechanisms: i) sublithospheric flow, as evidenced from mantle
anisotropy analysis (Diaz et al., 2010, 2015); ii) slab break-off, as also proposed for the
alkaline products of the intra-Apennines volcanism by Bianchini et al. (2008); or iii)
splash-plume effect (Davies and Bunge, 2006) due to convective instabilities, as has
been also proposed by Beccaluva et al. (2011) for Sardinia and Calatrava (southern
Spain) volcanism. Furthermore, the occurrence of anorogenic rocks in Tallante is an
additional evidence of the lateral tear responsible of the uplift of the eastern part of the
Betics (e.g., Spakman and Wortel, 2004; García-Castellanos and Villaseñor, 2011; Mancilla et al., 2015) as has been included in the model by Vergés and Fernàndez (2012).

7. Conclusions

We applied a multi-factor statistical approach to a large and well-studied geochemical dataset of volcanic rocks in the central and western Mediterranean with the aim to reproduce the main petrological characteristics that were previously observed with bivariate diagrams. The main advantage of this method is that it allows the investigation of the processes that are responsible for the geochemical signature of the studied volcanic rock suites in a fast and simple way. This is possible through the statistical determination of the main controlling factors that are constructed by using the original geochemical elements. The method has the drawback of losing part of the information when extracting the factors, thus limiting a detailed interpretation. However, any methodology has its own advantages and drawbacks, hence factor analysis must be considered as a complementary method to classical bivariate diagrams in order to extract all the information contained in the geochemical datasets.

Keeping these considerations in mind, the main concluding remarks from the presented study are:

1. After filtering for common geochemical data, the original datasets that encompassed a total of ~7,000 orogenic and ~7,800 anorogenic analyses, were reduced to 283 orogenic and 310 anorogenic volcanic samples.
2. The factor analysis performed using the PCA method reduced the original 36 geochemical parameters, expressed as oxides, elements or isotopic ratios, to seven factors, accounting for ~84% of variance.

3. Despite the existing overlap between anorogenic and orogenic geochemical fields, factor analysis discriminates between these two rock types rather well.

4. Lamproites always plot in a separate field, emphasising the great compositional difference among the western and central Mediterranean volcanic rocks, and the huge sediment recycling in the mantle that is responsible for the origin of these exotic rocks.

5. Factor analysis evidences mantle metasomatic processes that are responsible for compositional heterogeneities. The controlling factors are related to mantle wedge percolation of fluids from the subducting slab, and high sediment recycling.

6. The double polarity subduction model that is proposed to explain the evolution of the westernmost Mediterranean is compatible with the timing and type of volcanic rocks and supported by the controlling processes that are highlighted with the factor analysis.

7. The close relationships between the tectonic processes responsible for the generation of the erupted volcanic rocks in the westernmost Mediterranean region and their different geochemical signatures are yet to become well established, thus demanding further multidisciplinary efforts.

Acknowledgements

The present work has been supported by the research projects WEME (CSIC-201330E111) and MITE (CGL2014-59516-P). We gratefully acknowledge two
anonymous reviewers for their constructive comments that greatly improved the first version of the manuscript.
References

and igneous xenoliths from Tallante (Betic Cordillera, Spain): inferences on crust-
mantle interactions and clues for post-collisional volcanism magma sources. Lithos 220-
223, 191-199.

Geophysical Research 84, 7561-7571.

Boccaletti, M., Guazzone, G., 1974. Remnant arcs and marginal basins in the Cainozoic

tomography of the upper mantle beneath the African/Iberian collision zone.
Geophysical Journal International 198, 1458-1473.

types and Tertiary tectonic evolution of the Alborán sea, western Mediterranean.
Geochemistry, Geophysics, Geosystems 8, Q10005.

lamprophyres and related rocks from the Tamazert massif, High Atlas (Morocco).
Lithos 22, 43-58.

of the Tamazert carbonatite massif, Moroccan High Atlas. Comptes Rendus - Académie
des Sciences, Série II 314, 351-357.

Thermal and petrophysical characterization of the lithospheric mantle along the

Elsevier, pp. 135-146.

and western Mediterranean: Tectonics vs. igneous petrology constraints.
Tectonophysics 579, 173-192.

domain in the western Mediterranean evolution: The birth of a concept. Bulletin de la

intracontinental plate setting: the late Cenozoic Calatrava Volcanic Province (central

constraints on the Pliocene alkali basaltic volcanism of the SE Spain Volcanic Province.

completing the anisotropic characterization of the upper mantle beneath the westernmost Mediterranean region. Tectonophysics 663, 192-202.

Figure captions

Fig. 1. Sketch map of the Cenozoic orogenic (subduction related) and anorogenic (intraplate) volcanism in Europe, superimposed on the tectonic map of the region modified after Vergés and Sàbat (1999). From west to east: BB, Beni Bousera; R, Ronda; AS, Alboran Sea; MA, Murcia–Almeria; WA, Western Alps; S, Sisco; V, Veneto; SC, Sicily Channel; RP, Roman Province; C, Campania; AA, Aeolian Arc; E, Etna; IL, Insubric Line.

Fig. 2. Timing of anorogenic and orogenic volcanism from the Atlantic Ocean Islands, the Canaries and Madeira, and the Western and Central Mediterranean regions used in this paper for statistical purposes. For references refer to Fig. 4.

Fig. 3. Representative binary plots of the rotated component matrix in terms of F2 vs. F1 (A, B) and F5 vs. F3 (C) diagrams. See text for a comprehensive explanation.

Fig. 4. Orogenic and anorogenic volcanic rocks of Central (A, C and E) and Western (B, D and F) Mediterranean after the statistical analysis. See text for a comprehensive explanation.

Fig. 5: Representative binary diagrams of the factor scores of Central (A, C and E) and Western (B, D and F) Mediterranean volcanic rocks after the statistical analysis. Samples have been distinguished only on the basis of their age [using different colors following the Commission for the Geological Map of the World (http://www. ccmg.org)] and on the type of geodynamic environment they are linked to. F2 vs. F1 (A, B), F3 vs. F1 (C, D) and F5 vs. F3 (E, F) diagrams. Light blue and light red represent the anorogenic and lamproitic fields, respectively. “Slab dehydration”
indicates that the origin of the volcanic rocks is related to those processes responsible of
the dehydration of the subducting slab. When the features of the volcanic rocks need the
involvement of sediments in the metasomatic processes of the mantle wedge we used
the wording “increasing of sediment recycling”. The dashed arrows indicate the
temporal evolution of the Tuscany trend (A) and of the samples from Spain (B).

Anorogenic volcanic data are from: Canary Islands, Madeira, Portugal, Spain,
Maghrebian Africa (Morocco), France, Italy (Sardinia, Ustica, Sicily Channel, Etna-
Hyblean and Veneto Province) and Germany (Lustrino and Wilson, 2007 and references
therein). Orogenic volcanic data are from: Western Alps, France (Corsica – Sisco),
Tuscany, Roman Province, Campania, Aeolian Islands, Betics, Alboran Sea, Morocco
(Gourougou and Guilliz), Sardinia (Lustrino et al., 2011 and references therein).

Fig. 6. Schematic tectonic maps showing the evolution of the Western Mediterranean
since 230 Ma (modified after Jiménez-Munt et al., 2010) Rheic oceanic suture, front of
the Variscan belt and major tectonic discontinuities are from Simancas et al. (2005).
Modifications of the mantle beneath the Western Mediterranean are probably linked to
episodes related to the collision which produced the Variscan Orogeny in the Middle
Triassic coupled to the depletion events due to partial melting triggered by subduction
of riftng phases (see text for details).

Fig. 7. Topographic map of the Central and Western Mediterranean with the distribution
of HP metamorphic complexes along the Betic–Rif system (Internal Betics and Internal
Rif), and along the Tellian fold belt in northern Africa (Great and Lesser Kabylies)
(modified after Vergés and Fernàndez, 2012). Light orange and orange arrows separated
by black dashed line indicate the NW and SE dipping subduction respectively (the
double polarity subduction model proposed by Vergés and Fernàndez, 2012). Dashed
white lines indicate other active or inactive faults separating the Alps from the Apennines and the Kabylies. GB stands for Guadalquivir Bank.
Table captions

Table 1: Initial Eigenvalues, extraction and rotation of the sums of the squared loadings from factor analysis.

Table 2: Rotated component matrix of the calculated seven factors. Bold represents the best correlation between geochemical elements and factors.

Supplementary Material

Supplementary Table: Factor scores of the samples used for the statistical analysis.

Supplementary Figure. Binary diagrams resulting from the combination of all the calculated factors.
Fig. 1. Sketch map of the Cenozoic orogenic (subduction related) and anorogenic (intraplate) volcanism in Europe, superimposed on the tectonic map of the region modified after Vergés and Sàbat (1999). From west to east: BB, Beni Bousera; R, Ronda; AS, Alboran Sea; MA, Murcia–Almeria; WA, Western Alps; S, Sisco; V, Veneto; SC, Sicily Channel; RP, Roman Province; C, Campania; AA, Aeolian Arc; E, Etna; IL, Insubric Line.
Fig. 2. Timing of anorogenic and orogenic volcanism from the Atlantic Ocean Islands, the Canaries and Madeira, and the Western and Central Mediterranean regions used in this paper for statistical purposes. For references refer to Fig. 4.
Fig. 3. Representative binary plots of the rotated component matrix in terms of F2 vs. F1 (A), F3 vs. F1 (B) and F5 vs. F3 (C) diagrams. See text for a comprehensive explanation.
Fig. 4. Orogenic and anorogenic volcanic rocks of Central (A, C and E) and Western (B, D and F) Mediterranean after the statistical analysis. See text for a comprehensive explanation.
Fig. 5: Representative binary diagrams of the factor scores of Central (A, C and E) and Western (B, D and F) Mediterranean volcanic rocks after the statistical analysis. Samples have been distinguished only on the basis of their age [using different colors following the Commission for the Geological Map of the World (http://www.ccgm.org)] and on the type of geodynamic environment they are linked to. F2 vs. F1 (A, B), F3 vs. F1 (C, D) and F5 vs. F3 (E, F) diagrams. Light blue and light red represent the anorogenic and lamproitic fields, respectively. “Slab dehydration” indicates that the origin of the volcanic rocks is related to those processes responsible of the dehydration of the subducting slab. When the features of the volcanic rocks need the involvement of sediments in the metasomatic processes of the mantle wedge we used the wording “increasing of sediment recycling”. The dashed arrows indicate the temporal evolution of the Tuscany trend (A) and of the samples from Spain (B). Anorogenic volcanic data are from: Canary Islands, Madeira, Portugal, Spain, Maghrebian Africa (Morocco), France, Italy (Sardinia, Ustica, Sicily Channel, Etna-Hybline and Veneto Province) and Germany (Lustrino and Wilson, 2007 and references therein). Orogenic volcanic data are from: Western Alps, France (Corsica – Sisco), Tuscany, Roman Province, Campania, Aeolian Islands, Betics, Alboran Sea, Morocco (Gourougou and Guilliz), Sardinia (Lustrino et al., 2011 and references therein).
Fig. 6. Schematic tectonic maps showing the evolution of the Western Mediterranean since 230 Ma (modified after Jiménez-Munt et al., 2010) Rheic oceanic suture, front of the Variscan belt and major tectonic discontinuities are from Simancas et al. (2005). Modifications of the mantle beneath the Western Mediterranean are probably linked to episodes related to the collision which produced the Variscan Orogeny in the Middle Triassic coupled to the depletion events due to partial melting triggered by subduction of rifting phases (see text for details).
Fig. 7. Topographic map of the Central and Western Mediterranean with the distribution of HP metamorphic complexes along the Betic–Rif system (Internal Betics and Internal Rif), and along the Tellian fold belt in northern Africa (Great and Lesser Kabylies) (modified after Vergés and Fernàndez, 2012). Light orange and orange arrows separated by black dashed line indicate the NW and SE dipping subduction respectively (the double polarity subduction model proposed by Vergés and Fernàndez, 2012). Dashed white lines indicate other active or inactive faults separating the Alps from the Apennines and the Kabylies. GB stands for Guadalquivir Bank.
Table 1: Initial Eigenvalues, extraction and rotation of the sums of the squared loadings from factor analysis

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
<th>Rotation Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Variance</td>
<td>Cumulative %</td>
</tr>
<tr>
<td>2</td>
<td>7.595</td>
<td>21.098</td>
<td>52.536</td>
</tr>
<tr>
<td>3</td>
<td>3.990</td>
<td>11.084</td>
<td>63.620</td>
</tr>
<tr>
<td>4</td>
<td>2.447</td>
<td>6.796</td>
<td>70.416</td>
</tr>
<tr>
<td>5</td>
<td>2.125</td>
<td>5.902</td>
<td>76.318</td>
</tr>
<tr>
<td>7</td>
<td>1.265</td>
<td>3.513</td>
<td>84.178</td>
</tr>
</tbody>
</table>
Table 2: Rotated component matrix of the calculated seven factors. Bold represents the best correlation between geochemical elements and factors.

<table>
<thead>
<tr>
<th>Factors</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>.540</td>
<td>-.456</td>
<td>-.563</td>
<td>.023</td>
<td>.054</td>
<td>-.209</td>
<td>-.169</td>
</tr>
<tr>
<td>TiO₂</td>
<td>-.547</td>
<td>.037</td>
<td>.614</td>
<td>.068</td>
<td>.330</td>
<td>.132</td>
<td>.190</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>-.030</td>
<td>-.172</td>
<td>-.831</td>
<td>.018</td>
<td>.004</td>
<td>.182</td>
<td>-.004</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>-.715</td>
<td>.053</td>
<td>.552</td>
<td>.056</td>
<td>-.033</td>
<td>.166</td>
<td>.142</td>
</tr>
<tr>
<td>MgO</td>
<td>-.246</td>
<td>.022</td>
<td>.837</td>
<td>-.115</td>
<td>-.115</td>
<td>.068</td>
<td>.050</td>
</tr>
<tr>
<td>CaO</td>
<td>-.531</td>
<td>.527</td>
<td>.410</td>
<td>-.013</td>
<td>-.406</td>
<td>.119</td>
<td>.077</td>
</tr>
<tr>
<td>Na₂O</td>
<td>-.346</td>
<td>-.019</td>
<td>-.494</td>
<td>-.031</td>
<td>.683</td>
<td>-.086</td>
<td>-.005</td>
</tr>
<tr>
<td>K₂O</td>
<td>.829</td>
<td>.111</td>
<td>-.287</td>
<td>.084</td>
<td>.134</td>
<td>.026</td>
<td>.096</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>-.036</td>
<td>.510</td>
<td>.659</td>
<td>.113</td>
<td>.251</td>
<td>.083</td>
<td>.108</td>
</tr>
<tr>
<td>⁸⁷Sr/⁸⁶Sr</td>
<td>.919</td>
<td>-.053</td>
<td>-.014</td>
<td>.038</td>
<td>-.149</td>
<td>.095</td>
<td>-.123</td>
</tr>
<tr>
<td>¹⁴³Nd/¹⁴⁴Nd</td>
<td>-.825</td>
<td>-.039</td>
<td>.215</td>
<td>-.017</td>
<td>.285</td>
<td>-.074</td>
<td>.204</td>
</tr>
<tr>
<td>²⁰⁶Pb/²⁰⁴Pb</td>
<td>-.361</td>
<td>.082</td>
<td>.180</td>
<td>-.031</td>
<td>.138</td>
<td>-.162</td>
<td>.828</td>
</tr>
<tr>
<td>²⁰⁸Pb/²⁰⁶Pb</td>
<td>.020</td>
<td>.121</td>
<td>.037</td>
<td>-.004</td>
<td>.014</td>
<td>-.122</td>
<td>.915</td>
</tr>
<tr>
<td>²⁰⁸Pb/²⁰⁶Pb</td>
<td>.003</td>
<td>.042</td>
<td>.041</td>
<td>-.073</td>
<td>.000</td>
<td>.974</td>
<td>-.100</td>
</tr>
<tr>
<td>²⁰⁷Pb/²⁰⁶Pb</td>
<td>.016</td>
<td>.034</td>
<td>.030</td>
<td>-.070</td>
<td>-.006</td>
<td>.969</td>
<td>-.156</td>
</tr>
<tr>
<td>Rb</td>
<td>.888</td>
<td>.071</td>
<td>-.107</td>
<td>.128</td>
<td>.055</td>
<td>.028</td>
<td>.072</td>
</tr>
<tr>
<td>Sr</td>
<td>-.036</td>
<td>.925</td>
<td>.059</td>
<td>.065</td>
<td>-.136</td>
<td>.021</td>
<td>-.018</td>
</tr>
<tr>
<td>Ba</td>
<td>.515</td>
<td>.658</td>
<td>.170</td>
<td>.029</td>
<td>-.002</td>
<td>.055</td>
<td>-.136</td>
</tr>
<tr>
<td>Y</td>
<td>.051</td>
<td>.623</td>
<td>-.236</td>
<td>.406</td>
<td>.099</td>
<td>-.085</td>
<td>.296</td>
</tr>
<tr>
<td>Zr</td>
<td>.449</td>
<td>.231</td>
<td>.116</td>
<td>.041</td>
<td>.757</td>
<td>.081</td>
<td>.140</td>
</tr>
<tr>
<td>Nb</td>
<td>-.317</td>
<td>.526</td>
<td>.161</td>
<td>.053</td>
<td>.644</td>
<td>-.027</td>
<td>.135</td>
</tr>
<tr>
<td>La</td>
<td>.184</td>
<td>.772</td>
<td>.038</td>
<td>.408</td>
<td>.173</td>
<td>-.012</td>
<td>-.015</td>
</tr>
<tr>
<td>Ce</td>
<td>.387</td>
<td>.843</td>
<td>.083</td>
<td>.173</td>
<td>.158</td>
<td>-.002</td>
<td>.096</td>
</tr>
<tr>
<td>Pr</td>
<td>.394</td>
<td>.529</td>
<td>.204</td>
<td>.625</td>
<td>.016</td>
<td>.017</td>
<td>-.043</td>
</tr>
<tr>
<td>Nd</td>
<td>.543</td>
<td>.643</td>
<td>.233</td>
<td>.175</td>
<td>.151</td>
<td>.051</td>
<td>.103</td>
</tr>
<tr>
<td>Sm</td>
<td>.519</td>
<td>.491</td>
<td>.294</td>
<td>.345</td>
<td>.163</td>
<td>.069</td>
<td>.052</td>
</tr>
<tr>
<td>Eu</td>
<td>.180</td>
<td>.647</td>
<td>.443</td>
<td>.371</td>
<td>.232</td>
<td>.195</td>
<td>.105</td>
</tr>
<tr>
<td>Tb</td>
<td>.221</td>
<td>.205</td>
<td>.095</td>
<td>.843</td>
<td>-.026</td>
<td>.050</td>
<td>-.042</td>
</tr>
<tr>
<td>Dy</td>
<td>.098</td>
<td>.705</td>
<td>.026</td>
<td>.366</td>
<td>.185</td>
<td>.003</td>
<td>.353</td>
</tr>
<tr>
<td>Ho</td>
<td>-.059</td>
<td>.218</td>
<td>.028</td>
<td>.885</td>
<td>-.036</td>
<td>-.048</td>
<td>.053</td>
</tr>
<tr>
<td>Tm</td>
<td>.098</td>
<td>.091</td>
<td>-.097</td>
<td>.933</td>
<td>-.033</td>
<td>-.115</td>
<td>-.074</td>
</tr>
<tr>
<td>Yb</td>
<td>.112</td>
<td>.450</td>
<td>-.498</td>
<td>.334</td>
<td>.209</td>
<td>-.204</td>
<td>.358</td>
</tr>
<tr>
<td>Lu</td>
<td>.061</td>
<td>.236</td>
<td>-.402</td>
<td>.666</td>
<td>.246</td>
<td>-.106</td>
<td>.120</td>
</tr>
<tr>
<td>Th</td>
<td>.855</td>
<td>.290</td>
<td>.133</td>
<td>.148</td>
<td>.137</td>
<td>-.065</td>
<td>-.045</td>
</tr>
<tr>
<td>Pb</td>
<td>.793</td>
<td>.294</td>
<td>-.124</td>
<td>.122</td>
<td>-.029</td>
<td>.047</td>
<td>.018</td>
</tr>
<tr>
<td>U</td>
<td>.729</td>
<td>.426</td>
<td>.135</td>
<td>.156</td>
<td>.026</td>
<td>-.168</td>
<td>-.124</td>
</tr>
</tbody>
</table>