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Abstract

The University of Manchester

PhD

Quantitative Planetary Image Analysis via Machine Learning

28th March 2014

Over recent decades enormous quantities of image data have been acquired from plane-

tary missions. High resolution imagery is available for many of the inner planets, gas giant

systems, and some asteroids and comets. Yet, the scientific value of these images will only

be fully realised if sufficient analytic power can be applied to their large scale and detailed

interpretation. Unfortunately, the quantity of data has now surpassed researchers’ abili-

ties to manually analyse each image, whilst available automated approaches are limited in

their scope and reliability. To mitigate against this citizen science projects are becoming

increasingly common allowing large numbers of volunteers, using web-based resources, to

assist in image interpretation. Yet human involvement, expert or otherwise, introduces ad-

ditional problems of subjectivity and consistency. This thesis argues that what is required

is an objective, quantitative, automated alternative.

This thesis advocates a quantitative approach to making automated measurements

from a range of surface features, including varied terrains and the counting of impact

craters. Existing pattern recognition systems, and established practices, found within the

imaging science and machine learning communities will be critically assessed with refer-

ence to strict quantitative criteria. This criteria is designed to accommodate the needs

of scientists wishing to undertake quantitative research into the evolution of planetary

surfaces, permitting measurements to be used with confidence. A new and unique method

of pattern recognition, facilitating the meaningful interpretation of extracted information,

will be presented. What makes the new system unique is the inclusion of a comprehensive

predictive theory of measurement errors and additional safeguards to ensure the trustwor-

thiness and integrity of results.

The resulting supervised machine learning/pattern recognition system is applied to

Monte-Carlo distributions, martian image data and citizen science lunar crater data. Con-

clusions are drawn that applying such quantitative techniques in practice is difficult, but

possible, given appropriately encoded data and application specific extensions to theories

and methods. It is also concluded that existing imaging science practices and methods

would benefit from a change in ethos towards a quantitative agenda, and that planetary

scientists wishing to use such methods will need to develop an understanding of their

properties and limitations.
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1 Introduction

This thesis is a summary of work undertaken towards the creation of an automated system

for the analysis of planetary images. This document combines an understanding of plan-

etary science requirements, statistical methods and imaging science techniques, resulting

in a flexible framework for making a range of quantitative measurements from surface

imagery. Theoretical considerations and empirical results from simulated and genuine

planetary data will be presented. It is intended that the methods, software, results and

conclusions developed here will contribute to solving the immediate problem of how to

best utilise the vast quantities of image data being returned to Earth from space missions

across the solar system.

This chapter will provide an introduction to imaging from space and state the moti-

vations for creating an automated analysis system. It will also explain the requirements

of quantitative measurements and articulate key concepts which will be applied through-

out this work. These key concepts include: the application of scientific methodologies in

the context of imaging science and planetary research; the importance of understanding

measurements; and the use of statistics.

1.1 The rise of imaging from space

Humanity saw Earth from a new perspective on 24th October, 1946, when a captured

German V-2 rocket lifted the first ever space-bound camera above New Mexico on a short

sub-orbital flight [1]. From an altitude of over 65 miles, a 35-millimeter motion picture

camera took grainy monochromatic views of cloud tops and desert covering 40,000 square

miles of Earth’s surface. This was the beginning of imaging from space. The following

decades saw the establishment of American, Russian and European space agencies and the

development of sophisticated technologies leading to thousands of images being acquired

from targets beyond Earth and across the solar system. More recently a new Asian space-

race has seen China, India and Japan embark upon ambitious lunar, martian and asteroid

exploration programs, whilst established space agencies continue to accumulate data from

active missions and plan others.

The science case for collecting image data during space missions will be presented

shortly, but first the scale of the resulting image interpretation problem will be emphasised

through a brief history of space-based imaging. The following subsections convey a simple

message: there is a lot of data and much more will follow1.

1The figures used within the following subsections were mostly taken from official NASA and ESA
mission websites containing dynamic content and are therefore not directly referenced. Links and further
information can be found at www.nasa.gov, www.esa.eu and hirise.lpl.arizona.edu
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1.1.1 Historical images

Starting close to home, throughout the 1950s and 60s robotic probes visited the Moon

repeatedly. These included the American Pioneer, Ranger [2], Surveyor [3] and Lunar

Orbiter [4] programs and various Russian Luna and Zond missions [5]. Many of these

probes had limited or no imaging capabilities. Those that did provided relatively few

low to mid-resolution surface images, including Ranger 7 which took around 4,000 frames

and Ranger 8 which gave researchers over 7,000, covering Oceanus Procellarum and Mare

Nubium regions. The Lunar Orbiter missions provided unprecedented global coverage of

the Moon with resolvable details close to 1 meter in some places. These orbiters gathered

almost 3,000 images.

Moving out to neighbouring planets, the 1960s and 70s saw many failed Mars missions,

but the NASA Mariner [6] fly-bys and Viking orbiter and lander program [7] eventually

succeeded. The first close-up views of Mars were captured by Mariner 4 in 1965 giving

only 21 low-resolution frames. By the mid-70s and up until 1980 the 2 Viking orbiters

gathered over 50,000 images. These covered the entire martian surface at resolutions of

150 to 300 meters, with selected regions mapped with resolutions as fine as 8 meters.

Until the 1990s data gained via these missions were the dominant source of researchers’

knowledge of Mars.

Expanding outwards, the prolific Voyager program [8] launched twin probes in 1977

to explore the gas giants and their moons. Between them during a series of fly-bys they

studied Jupiter and Saturn, with Voyager 2 continuing on to Uranus and Neptune. These

fly-by missions provided short windows of opportunity to gather image data. Between

the two probes over 33,000 images of Jupiter and its five largest satellites were taken.

These remained the most detailed images of the jovian system available until the orbiting

Galileo [9] probe reached Jupiter in late 1995. Galileo returned approximately 30 gigabytes

of data, including 14,000 images with much improved resolution.

Until the late 1990s these and other missions produced images in their tens of thousands

over a period of decades, mainly with resolutions no better than orders of hundreds of

meters. However, advances in technology soon provided magnitude changes in the quantity

and resolution of data.

1.1.2 Contemporary images

From the early 2000s there have been many high profile missions launched within the

inner solar system which at the time of writing are still actively gathering data. These

include Mars orbital missions: Mars Odyssey(NASA, launched 2001); Mars Express [10]

(ESA, launched 2003); and Mars Reconnaissance Orbiter [11] (NASA, launched 2005),

Mercury orbiter mission MESSENGER [12] (NASA, launched 2004), dual asteroid mission

DAWN [13] to Ceres and Vesta (NASA, launched 2007), and the Moon mission Lunar

Reconnaissance Orbiter [14] (NASA, launched 2009). Between them they have provided
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planetary scientists with almost complete coverage of Mars, Ceres, Mercury and the Moon,

including significant subsets with resolutions down to 0.25 meters. This thesis will make

use of Lunar Reconnaissance Orbiter and Mars Reconnaissance Orbiter images in later

chapters.

Data and imagery is being continually accumulated from such missions. A NASA mis-

sion web page (http://mars.jpl.nasa.gov/mro/) reports that over 25.5 terabytes of data has

so far been received from Mars Reconnaissance Orbiter, as of February 2014. Some of this

data is made public via the HiRISE project, which currently provides a catalogue of over

30,000 high-resolution images typically 160 megapixels in size. The size of these images

corresponds to thousands of times as much data as their historic Viking counterparts.

Meanwhile, the Lunar Reconnaissance Orbiter has accumulated over 192 terabytes of

data within its first few years of operation. This includes high-resolution imagery revealing

the lunar surface in unprecedented detail. Images are of such high quality that tracks of

astronauts’ footprints can be seen surrounding Apollo landing sites. In these images the

remains of Apollo lunar landing hardware can clearly be seen spanning several pixels.

Comparable quantities of data at similar resolutions continues to be gathered from

contemporary missions. Pixel-for-pixel, the total quantity of modern image data equates

to millions of historic low-resolution images. Images and other data from NASA missions

are archived in the Planetary Data System (PDS) [15] where they are made available to

researchers.

1.1.3 Future images

Over the coming years many other robotic probes will begin to contribute to the in-

creasing quantity of available imagery. Probes en-route include: the Rosetta probe [16]

(ESA) which will arrive at comet Churyumov-Gerasimenko in late 2014; New Horizons [17]

(NASA) will fly-by Pluto mid-2015; DAWN [13] (NASA) will orbit Ceres early 2015; and

Juno [18] (NASA) will enter the jovian system mid-2016. Scheduled near-term missions

yet to launch include: BepiColombo [19] (ESA/Japan) to orbit Mercury; Chandrayaan-2

[20] (India) lunar orbiter; Luna-Glob 1 [21] (Russia) lunar orbiter; and Chang’e lunar mis-

sions (China). Amongst their many instruments, these missions carry a range of imaging

equipment.

This brief tour of imaging from space has focused on a limited set of fly-by and orbital

mission examples, yet there are many other fly-by and orbital missions, landers and rovers

which have imaging science elements. There are also ground and space-based telescopes

generating further streams of images, all increasing the total quantity of astronomical data,

and all requiring analysis in order to extract scientifically useful information. Examples of

potential science applications for this information are described in the following section.
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1.2 Science case

Scientific applications for planetary data are numerous and varied. This section will high-

light a small number of examples specific to lunar and martian applications providing

background science for the use of lunar crater data and martian terrain images in later

chapters.

1.2.1 Lunar science

Impact craters can provide a wealth of information regarding the geological evolution of

the Moon’s crust [22]. Individual craters can be used to study local variations in crustal

stratigraphy, including estimates of regolith depth, subsurface composition and subsequent

erosion [23]. This information can be inferred from patterns of bright ejecta from young

craters [24][25], the presence of boulders excavated during impacts [26][27], morphological

features in bench craters which indicate the layering of underlying material [28] and levels

of degradation.

Beyond individual impacts the total density of craters, as summarised using Size-

Frequency Distributions (SFD), can be used to infer relative surface ages where geological

units containing larger numbers of craters are considered older [29]. An SFD summarises

the number of impact craters within a region, typically normalised to craters per unit

area, binned into geometrically increasing size bands. SFDs have been calibrated against

returned lunar samples using radiometric dating methods to provide a tentative absolute

model age scale [30]. The study of SFDs can also provide estimates of the changes in

cratering rates over time. This can be used to infer the population of small bodies in the

inner solar system.

Crater counting is a valuable tool often used in conjunction with other information to

study lunar volcanism. This includes estimating the thickness of mare basalt flow units

[31], the chronological ordering of exposed basalts [32] and studies of stratigraphy and

composition of lava flows [33].

The study of cratering is not limited to lunar science [34], nor is lunar science limited

to crater counting. However, given that craters are a common feature to most bodies

within the solar system their automated counting is a prime application and the Moon is

an ideal testbed for such work.

1.2.2 Martian science

Mars, in comparison to the Moon, is a highly dynamic body [35]. For example, images

of Mars contains evidence of: recent and ancient drainage networks; seasonal deposits of

carbon-dioxide ice; many fields of large dunes and smaller dune-like features known as

Transverse Aeolian Ridges (TARs); past volcanism; and many impact craters. Evidence

of these is seen in indicative patterns and textures throughout martian terrains, some only
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recently discovered through contemporary high-resolution images. Studying these features

can aid researchers in their understanding of the evolution of Mars, including changes in

geological and atmospheric processes.

There is much interest in drainage systems, with recent seasonal flows being observed

within the walls of some craters [36]. Contemporary flows are believed to be concentrated

brine, capable of existing in liquid form for short periods in Mars’ cold tenuous atmosphere,

although there is some debate on this interpretation [37]. Their study may help answer

questions regarding the current quantity of water on Mars and the depths at which it might

be found within subsurface aquifers. Also, the distribution and orientation of ancient

drainage systems can be used to infer Mars’ climate history [38] and the timing of some

geodynamic events [39].

The record of inactive drainage channels visible in martian images might be exploited

to illuminate the global tectonic evolution of Mars. The concept of palaeotopography to

reconstruct vertical motions of the lithosphere has been widely used on Earth [40], but

much less so in planetary applications [41]. Palaeotopographic reconstructions are based

on the assumption that fluids in drainage networks follow the path of steepest descent.

The orientation of channels might, therefore, be used to infer the down-slope direction

of surfaces during the times channels were active. This can be compared to modern

topographic data (i.e. Mars Orbiter Laser Altimeter: MOLA) to reveal any changes.

There is an active carbon-dioxide cycle on Mars which is especially evident around the

polar regions [42]. Seasonal eruptions of sublimating CO2 causes: dark patches to appear

around dunes; radiating fissures to develop known as ‘spiders’; and geysers to eject fans of

dark material. The study of these events can help researchers better understand this CO2

cycle. Information about wind speed and direction can also be inferred from the direction

and length of fans.

The density, morphology and orientation of dunes can be used to estimate the avail-

ability and size of grains [43], wind speeds and wind directions [44]. This information can

inform grain transportation models and atmospheric models which in turn can be used to

better understand weather and erosive processes. Currently active dunes have been ob-

served with orientations consistent with wind azimuths obtained from atmospheric Global

Circulation Models [45] (GCM). Others appear to evolve slowly over hundreds of thousands

of years, thereby providing records of past climatic changes [46].

Finally, the study of martian craters can be used to place bounds on the timing of

surface modifying events and to place surface changes into chronological order. This has

been used to date caldera in volcanic regions.

1.3 Image interpretation

Image data is complex and requires considerable interpretation. The science applications

given above entail the identification and quantification of features such as craters, dunes
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and drainage networks. Historically this has been achieved manually by experts, but

alternative approaches are now being explored.

1.3.1 Manual analysis

Manual interpretation dominates the analysis of planetary surface imagery. As an example,

a large amount of work has been undertaken by experts to build catalogues of craters.

Lunar Orbiter Laser Altimeter (LOLA) data has been used to compile crater statistics on

the Moon [47]. Data from Mariner and MESSENGER missions have also been used to

compile global crater population information for Mercury [48]. In both cases only craters

with diameters equal to or greater than 20 km were included. These were compiled using

manual mark-up tools provided by Geographic Information Systems (GIS).

Expertly compiled databases of martian dunes have been created [49] using Thermal

Emission Imaging System (THEMIS) and infrared (IR) images. These have been limited

to moderate and large sized dune fields with areas above 1 km2, with results designed for

manipulation in GIS packages. Global maps of Saturn’s largest moon Titan have also be

compiled using data from the Cassini-Huygens mission [50] revealing widespread fields of

dunes.

Also, martian drainage networks have been manually mapped using Viking data [51]

and more recently using Mars Odyssey THEMIS and IR images [52] for use in climate and

hydrological studies.

The above examples constitute a very small sample of manual work undertaken by

experts. They are necessarily limited in scope, often utilising relatively low resolution

data giving large contextual results. In contrast, fine details in high-resolution images are

being mapped with the aid of large numbers of volunteers, or ‘citizen scientists’, via web-

based interfaces. These include the mapping of small lunar craters as part of the Moon

Zoo [53] and Moon Mappers projects [54], and the mapping of seasonal carbon-dioxide

‘fans’ on Mars via Planet Four [55]. These projects have been successful in gathering

large quantities of data, with work currently being undertaken to interpret their outputs

including this thesis, which utilises Moon Zoo data in chapters 8 and 9.

1.3.2 Automated analysis

An in-depth analysis of automated methods will be provided in chapter 2. Here, only a

brief summary of automated approaches to planetary image analysis will be presented.

General terrain classification has been attempted using texture information and multi-

spectral data. Early work on terrain classification methods made use of pixel co-occurrence

statistics [56]. In this work, the distribution of local pixel patterns was learned, with

derived quantities (such as entropy) being used to differentiate between surface types.

This texture-based approach utilised the repeating patterns present in different terrains

for classification. In contrast, most contemporary work on terrain classification (often
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from remotely sensed Earth observation data) makes use of multi-spectral data rather

than texture. This pixel-based approach utilises the spectral profile of different terrains

for classification, perhaps using as few as 3 colour channels [57][58][59][60].

Many crater detection algorithms have been proposed for use on lunar and martian

data, most following a common design pattern [61][62][63][64][65][66][67][68][69][70][71].

Typically, raw image data (optical or topographic) is first encoded using a higher-level

descriptive format (edge strings, Haar transform, texture descriptors, templates etc.),

before being fed into a classifier. Performance is then evaluated in terms of numbers of

correct verses incorrect classifications. The reported efficiencies of these algorithms usually

range between 60% to 80% for correct detections, with many false positives reported. The

extraction of dunes has also been approached using martian data and HOG descriptors

[72], yielding similar results to crater detection performance.

The automated extraction of martian valley networks has been attempted using topo-

graphic data (MOLA) [73][74][75]. This work is based upon finding paths of steepest de-

scent through digital terrain modes, thereby mapping likely tributaries and main channels

of drainage networks. The relatively low resolution of MOLA data results in less detailed

maps than can be generated manually, which are often based upon high-resolution visual

imagery. Other features have also been extracted from MOLA data, including fault scarps

[76].

1.4 Measurements

Planetary scientists analyse image data qualitatively and quantitatively. A qualitative

analysis involves giving high level descriptive accounts of data, capturing some essence

of the processes being observed. A qualitative approach need not include objective nu-

merical descriptions, nor well-defined measurements, and therefore introduces subjectivity

into research. Such an approach can be appropriate for providing context to questions,

developing intuitions and communicating concepts. A quantitative analysis, in contrast,

requires clearly defined and meaningful measurements to be made. This can facilitate the

rigorous testing of hypotheses and can help develop more detailed understandings and

mathematical models of processes of interest.

Measurements are fundamental to the quantitative application of The Scientific Method

and are a cornerstone of experimental and physical studies. Measurements which may be

taken from planetary images include densities of craters, orientations of dunes, lengths

of drainage networks and surface areas of selected terrains. Section 3.1.1 will explore

the types of measurements applicable to different surface features during an analysis of

an automated system’s requirements. As this thesis is primarily concerned with making

measurements, time will be taken to elaborate upon their use and importance.

A reader familiar with quantitative methods within the sciences may wish to skip ahead

to section 1.5. These subsections are included as background reference material for the
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literature review in chapter 2. There it will be argued that basic scientific principles are

often overlooked in imaging science and pattern recognition.

1.4.1 Quantitative measurements and The Scientific Method

The Scientific Method involves the development of theories which capture the behaviour

of phenomena under investigation. Such theories must be capable of making predictions

about the behaviour of phenomena given specified initial states. A good theory will

yield very specific predictions which can be tested through experiments and observations.

Results should either support the theory via successful predictions, or cast doubt on the

theory through incorrect predictions. It has been suggested by philosophers of science [77]

that the more testable a theory is, the better that theory is, and that the advancement

of theories occurs most productively through falsification. Historians of science [78] have

also highlighted the difficulties of applying theories in practice and noted that established

paradigms (consisting of related theories, experimental practices and research traditions)

are difficult to overthrow even when there is significant criticism against them. To increase

specificity, testability and productivity this thesis advocates a quantitative approach to

science.

The quantitative application of The Scientific Method involves developing formalised

mathematical theories. This makes theories more specific and testable, but also more

difficult to apply and reconcile with experimental results. When making quantitative pre-

dictions the initial state of a phenomenon is embodied by the values entered as parameters

to theoretical equations. These may represent physical quantities measured from the sys-

tem under investigation. The numerical outputs of these equations often predict the values

expected from experimental measurements. These might be taken from the system under

investigation after some action has occurred which the theory was designed to explain.

The numerical nature of the quantitative approach makes comparisons between predicted

and observed measurements an objective and highly specific process, hopefully leading to

easier falsification of inferior theories. The increased specificity gained through a quanti-

tatively measured approach forces researchers to be more precise with their descriptions

of phenomena. These advantages are difficult to realise in more qualitative and subjective

traditions.

The increased scientific testability and potential falsifiability achieved through the use

of quantitative measurements brings about additional complications. Comparing predicted

measurements to observed measurements is an objective and specific process, but it is not

necessarily simple. Measurements are inexact. Measurements contain uncertainty which

can stem from statistical noise and systematic effects inherent to the measuring apparatus.

The initial state values acting as inputs into theoretical equations are often themselves the

result of measurements and therefore also subject to uncertainty. Given the inexactitude

of measurements, it is almost certain that a predicted measurement will not equal its
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observed counterpart. Quantitative researchers must therefore rely upon some criteria to

decide whether or not a theory should be considered corroborated or falsified based upon

the evidence.

There are key questions that must be asked when an observed measurement disagrees

with what was predicted by theory:

• Was the difference caused by flaws in the experimental design?

• Was the difference caused by noise?

• How significant is the difference?

• Is there sufficient evidence against the theory to consider it falsified?

Part of the difficulty in applying quantitative theories in practice is the need to design

an appropriate experiment which does not introduce effects which may invalidate results,

such as outliers in datasets or bugs in computer code. Safeguards must be in place to help

identify such cases. Assuming that an appropriate experiment has been performed it is

then necessary to estimate the amount of noise likely to be affecting the results. Based

upon some perturbation model of how noise propagates through the theory, the size of the

discrepancy between prediction and observation must be quantified. Finally, if it is highly

improbable that the difference between prediction and observation is due to noise alone

then the theory must be reconsidered. There are standard statistical tests and techniques

[79] which can be applied to assist in this process. Those which may be of value to a

quantitative analysis of planetary images are presented next using a hypothetical remote

sensing example.

1.4.2 The role of statistics

A statistical model can be considered as a type of theory. For example, a Gaussian Mixture

Model (GMM) might constitute a theory for how different surface compositions influence

pixel values in hyper-spectral remotely sensed data [57]. Such models are also common

in medical applications [80]. The theory (simplified) may say that there are two terrains

spread throughout an image with pixel values following two Gaussian distributions which

are linearly combined:

Mi = G(i;µa, σa)Qa + G(i;µb, σb)Qb (1)

where M is a model of continuous pixel values; G is a gaussian distribution with mean

µ and standard deviation σ; Q is a weighting quantity; and a and b denote different terrain

compositions.

This is a quantitative theory which can be used to predict approximate frequencies of

different pixel intensities, given initial state values of µ, σ andQ. This predictive capability
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provides a means to guard against outliers and other problems which can be tested for

using a goodness-of-fit score. Given a set of hypothesised parameters, the theory, M, can

be compared to measurements, H. By including an appropriate perturbation model a

difference score can be computed:

χ2
D =

1

D

N
∑

i

(Miδ −Hi)
2

σ2
i

(2)

This is a standard chi-square per degree of freedom function where: D is the number

of degrees of freedom in the model, which is typically equal to the number of data points

minus the number of estimated parameters; H is a histogram of observed frequencies; δ

is a small interval approximating the integral of the model over histogram bins; and σ2
i is

the expected variance on the comparison at point i. If a Poisson perturbation model is

assumed for the histogram data then σ2
i ≈ Hi. If the theory, initial state values and per-

turbation models are correct then the goodness-of-fit should equal unity. Fit values larger

than unity means that the deviation between predicted and observed frequencies is worse

than expected indicating possible problems. The statistical significance (i.e. probability

of discrepancy based upon noise alone) might then be estimated using a chi-square distri-

bution if desired. The ability to spot poor fits between theory and practice is a valuable

tool for the trustworthy use of quantitative methods.

Assuming a satisfactory fit of the model to the data has been achieved the theory

might be applied in some additional analysis. For example, differences between quantities,

Q, of terrain types might be compared to some reference data. To make comparisons

meaningful, the noise on the quantity measurements must be estimated. If the quantity

measurements themselves were estimated using Likelihood (as is often achieved using

Expectation Maximisation in GMMs) then the Cramer-Rao Bound (or lower variance

bound) can be applied:

1

σ2
Q

≤ ∂ lnL
∂Q

(3)

where L is the Likelihood function maximised to estimate Q and σ2
Q is the estimated

variance on the measured quantity. This provides a lower-bound which is close to the

correct variance, assuming sufficient numbers of data points were used during the fit. This

can easily be extended to provide full error covariance matrices. This link between Likeli-

hood estimated parameters and error estimates is another valuable tool for the application

of quantitative methods.

As a final example of the standard tools available for quantitative analysis the use of

derived quantities computed using several estimated measurements can be considered. If

the ratio of the two terrain compositions was of interest, r = Qa/Qb, the expected noise

on the ratio could be estimated using error propagation:

26



[σ2
r ] = ∇CQ∇⊺ (4)

where ∇ is a matrix containing the partial derivatives of r with respect to the two

quantities and CQ is the covariance matrix describing the errors on the two quantities.

Error propagation can be used to provide a first-order approximation to output errors

based upon small perturbations in input for any differentiable function.

Goodness-of-fit checks, Likelihood estimators, variance bounds and the propagation

of errors are all common practices within the physical sciences. Indeed, undergraduate

physics students are trained in these methods as a standard introduction to data-driven

experimental science, i.e. [79]. However, as will be seen in chapter 2 they are rarely applied

in imaging science and pattern recognition research. This is despite encouragement from

highly popular texts [81] including Numerical Recipes In C.

1.4.3 Assumptions and approximations

Quantitative theories and statistical tools are often only approximative and subject to

assumptions [82]. For example, the typical noise model assumed on continuous valued

measurements is Gaussian. As such, it is expected that around 1/3 of data points would

lie outside of +/- 1 standard deviation error bars. Whilst the central limit theorem can be

invoked to justify Gaussian assumptions, limited quantities of data and other real-world

factors will often prevent distributions behaving as Gaussians beyond 3 or more standard

deviations. Equally, common approximates to Gaussian distributions, such as Poisson dis-

tributions with means above 30, must be used with caution. Other common assumptions,

such as independence between data points combined using a multiplicative Likelihood func-

tion, cannot be taken for granted. However, strict adherence to The Scientific Method,

particularly with respect to testable predictions, can guard against difficulties. Only when

predictions are being corroborated consistently through empirical evidence can a theory

be trusted, and strictly then it can only be trusted within the domain of values upon

which it was tested.

A large part of this thesis will make use of Likelihood and predictive error theories,

combining Poisson distributions in various quantities. This will involve many assumptions

and approximations. As such the corroboration or falsification of error predictions is an

important part of this work. Just as the chi-square per degree of freedom goodness-of-fit

function can be used to check predicted histogram frequencies, a similar arrangement can

be used, over repeated measurements, to check approximate error estimates. With the

aid of ground-truth, the residuals between predicted measurements and true values can

be normalised to their errors to give a Pull distribution:

∆t =
Qt −Tt

σt

(5)
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where ∆t is the normalised residual for trial t; Q is an estimated measurement; T is

a ground-truth value; and σt is the predicted error on the measurement. The standard

deviation of ∆t should be unity if error predictions are correct. If a Pull distribution is

populated using 1,000 samples the width should be unity, plus or minus approximately

0.022, as given by the standard formula for errors on estimated σ:

σσ =
σ√
2N

(6)

where σσ is the expected error on the sample standard deviation and N is the number

of trials. This thesis will aim to achieve this level of agreement when predicting errors,

but will allow a degree of tolorance.

The difficulties in modelling uncertainties in practice leads to the acceptance of ap-

proximate error theories. As long as error estimates are correct to within a factor of 2

then the majority of uncertainty in measurements is being modelled. This level of agree-

ment is sufficient for avoiding the over-interpretation of data. For example, it is noted in

[79] (page 55) that if more points than expected are observed outside of 2σ then ‘there

is probably some effect at work that you do no understand’ but also that ‘points should

only be condemned after giving them a fair hearing.’ It is also noted in [81] (page 660)

that ‘...reasonable experimenters are often rather tolerant of low probabilities...’ when

accepting a point from an approximate error distribution, and states that ‘This is not as

sloppy as it sounds.’

1.5 Argument for quantitative automation

There are two key arguments for the automation of planetary image analysis: there is too

much data for humans to inspect manually; and automation potentially avoids problems

of human subjectivity.

The quantity of data available has been emphasised already in section 1.1. The prac-

tical issues involved in interpreting this vast amount of data will only increase with time

as additional data is received. The growth in citizen science projects can only constitute a

partial solution to this problem. This will be seen in chapters 8 and 9 where the challenges

involved in the interpretation of Moon Zoo data will be explored.

An automated system which can identify and measure a range of surface features

could free researchers from tedious low-level tasks, such as the counting of individual

craters, allowing them to focus on higher-level interpretations. It is often the summary

statistics which are of interest to researchers, not the individual data points. Returning

to craters for an example, the density of craters, as expressed in SFDs, is of more interest

for chronological studies than individual impacts. Automating low-level tasks using a

supervised system which can learn though examples then find and measure similar objects,

such as craters, in new data would be of great benefit.
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Beyond issues of limited human resources, the manual interpretation of images can be

highly subjective. This problem has been illustrated in crater counting [83] where large

discrepancies have been observed between different experts and even larger discrepancies

observed between minimally trained volunteers. In this work, errors in estimated surface

ages could be as large as a billion years. This casts doubt upon the reliability of both expert

and citizen science performance. An automated alternative could remove this subjectivity.

Such a system should be capable of objectively applying a definition of a feature to make

consistent and repeatable measurements.

It will be argued in chapter 2 that most proposed automated techniques, such as those

noted in section 1.3.2, are not necessarily appropriate for scientific use. This is largely due

to their lack of a predictive error theory, leading to problems when measurements need

to be compared to predictions, as described in section 1.4.1. It is therefore necessary to

construct not just an automated solution, but a quantitative solution. The criteria for a

quantitative solution will be discussed next.

1.6 Criteria for a quantitative system

This thesis seeks to provide quantitative tools for interpreting image data. It is therefore

important to clearly define what is meant by the word quantitative when used in this

document. It is also important to define what is meant by non-quantitative, especially

because many existing methods produce numerical results which can not be described as

being qualitative, but do not meet the criteria defined below to be adequately described

as being truly quantitative either. The quantitative criteria given below directly addresses

scientific needs.

A quantitative measurement:

1. must be a numerical estimate driven by evidence found within the data;

2. must be accompanied by an error estimate indicating the expected accuracy of the

measurement;

3. must be shown in practice to not deviate from the true measurement by more than

is predicted by the estimated error;

4. and where possible be supported by additional checks to ensure the trustworthiness

of results.

These criteria do not require measurements to be the most accurate in any absolute

sense, but they do require measurements to be honest [84]2. Whilst it is desirable to

2here the word ‘honest’ is being used in a technical sense meaning that the number of correct mea-
surements, within errors, should occur as frequently in practice as the error bars predict.
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achieve high levels of accuracy, it is the understandability of measurements that is of most

concern. From a quantitative perspective, the ability to give confidence intervals (error

bars), or p-values, is far more important for interpretation than merely insisting upon the

best possible accuracy. Because of this, measurement techniques which do not provide

error estimates will be considered non-quantitative, as they lack the vital information

necessary for confidently interpreting results. Measurement techniques which purport

to provide error estimates but do not corroborate the use of those error estimates in

general cases will also be considered non-quantitative, as error estimates can only lead

to confident interpretations if they are reliable. This quantitative criteria will be applied

whilst reviewing existing methods. It will also be applied when assessing the success or

failure of the quantitative system which will be developed during this thesis.

The above criteria will be interpreted in line with the discussion in section 1.4.3, allow-

ing error estimates which are correct to within a factor of 2 to be considered acceptable.

If errors are correct to within a factor of two then confidence can be had that the major-

ity of uncertainty in measurements is being accounted for. An error bar which is half as

large as it should be still provides protection against the over-interpretation of results, so

long as measurements are only trusted to within 2 to 3 standard deviations. However, if

measured quantities are to be used as input to further analyses a stricter interpretation of

the criteria may be necessary to prevent the possible growth of unaccounted errors.

1.7 Thesis outline

This thesis is divided into 2 parts: Theory and Application. The theory part will develop

the necessary methods for making quantitative measurements. The application part will

demonstrate the use of the quantitative methods on synthetic and real planetary science

data.

Part 1: Theory

Chapter 2 will critically review relevant literature including existing automated plan-

etary analysis methods, pattern recognition systems and performance characterisation

techniques. The selected work will be examined with respect to the quantitative criteria

of section 1.6 and its usefulness in a scientific context. Chapter 3 will develop a statistical

model for approximating the distributions of spatially repeating patterns found in surface

images. This model will suggest how texture histograms constructed from planetary im-

ages can be described using linear combinations of probability distributions which can be

fitted using Likelihood parameter estimation. It will be argued that the model parame-

ters can be linked to a wide range of measurements which may be sought from planetary

surfaces. Chapter 4 will explore how statistical perturbations in incoming data are likely

to affect the stability of estimated measurements. Theoretical considerations will be used
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to predict errors that can be tested using Monte-Carlo simulations. Chapter 5 will extend

the analysis of errors by considering how combinations of statistical and systematic effects

change as a function of the quantity of analysed data, resulting in a fully quantitative

pattern recognition system.

Part 2: Application

Chapter 6 will investigate an image encoding scheme based upon BRIEF for constructing

texture histograms. Synthetic martian terrains derived from real martian HiRISE data

will be used to test the encoded histogram’s abilities and limitations when applied to

making terrain surface area measurements. Chapter 7 will make improvements to the

BRIEF inspired encoding to better match the assumptions made by the pattern recogni-

tion system. The improvements will be shown to allow the pattern recognition system to

fulfill quantitative criteria on some terrain types, whilst coming close on others. Chapter

8 will begin investigations into the analysis of real planetary science data from the Moon

Zoo project. This chapter will prepare raw Moon Zoo data into a form suitable for pop-

ulating histograms. This will be achieved using a combination of clustering and template

matching. Chapter 9 will make use of the Moon Zoo histograms to make estimates of the

quantities of false positive and true positive craters amongst the citizen science data. It

will be shown that this estimation task can be achieved, fulfilling quantitative criteria.

Finally, chapter 10 will summarise both theory and application, highlighting strengths

and limitations of the developed theories and encoding schemes. Opportunities for future

work will also be identified.
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PART 1: THEORY

The chapters found within this part of the thesis will: review technical literature; develop

a statistical model for planetary terrains; and derive an error theory for statistical and

systematic uncertainties in quantity measurements.

Supporting material, including preliminary work and publications generated from this

part, include:

• P.D. Tar, N.A. Thacker, Linear Poisson Models: A Pattern Recognition Solution to

the Histogram Composition Problem, Annals of the BMVA 2014, Vol. 1, 2014

• N.A. Thacker, Can we use Pattern Recognition for Science?, Internal Memo, 2010-

008, www.tina-vision.net

• P.D. Tar, Quantitative Counting with Bayes Theorem, Internal Memo, 2011-003,

www.tina-vision.net

• P.D. Tar, Extended Maximum Likelihood vs Maximum Likelihood, Internal Memo,

2011-004, www.tina-vision.net

• P.D. Tar, N.A. Thacker, Quantitative Prior Estimation and Independent Component

Analysis for Linear Poisson Models, Internal Memo, 2012-003, www.tina-vision.net

• N.A. Thacker, Quantitative Pattern Recognition: Warts and All, Internal Memo,

2013-007, www.tina-vision.net

• P.D. Tar, Tutorial: Using Tina Vision’s Quantitative Pattern Recognition Tool,

Internal Memo, 2014-004, www.tina-vision.net

32



2 Literature Review

The related fields of imaging science, pattern recognition and machine learning have be-

come dominated by modular building blocks [85]. Many of these modules are available to

download as part of code libraries, ready to be incorporated into new algorithms. Other

building blocks are collections of standard techniques and resources, such as bench-mark

datasets. This paradigm permits the rapid development and evaluation of new appli-

cations. An automated planetary analysis system could be approached in this modular

fashion by first selecting an input representation (e.g. SIFT, HOG, Wavelets etc.), then

a classification module (SVM, RF etc.), and finally feeding in prepared data and ground-

truth to conduct a standard evaluation (ROC curve etc.). Indeed, some of the approaches

noted in section 1.3.2 resemble this pattern. This chapter will review standard techniques,

including those used in the previously noted literature on automated planetary analysis.

This chapter will consider:

• popular representations used to encode image information;

• statistical modelling methods, used to summarise data distributions;

• standard supervised classifiers for categorising data;

• and performance evaluation methods.

Each group of methods will first be described and their links to planetary image analysis

will be highlighted. The usefulness of the selected techniques will then be critically assessed

with reference to the quantitative criteria of section 1.6. This critical assessment will reject

building blocks which are unsuitable for a quantitative analysis system, whilst providing

a short-list of potentially useful components for further consideration.

2.1 Representations

Raw image data, i.e. pixels, is not always the most convenient form of input to an analysis.

The absolute values of pixels often contain little meaning. Rather, it is the structure of

the pixels which contains information. There is a general link between the variability in

pixel values and their information content, e.g. uniform regions of an image showing little

variation contains less information than regions showing many discontinuities. To account

for this, representations often extract structures, such as edges and corners, where there

are steep local changes in pixel intensities.

Encoded image data can be used in several ways. In simple cases, where the repre-

sentation provides an output value related to the strength of a signal, the output can be

searched for maxima or compared to a threshold. Peaks in outputs, or values above a

given threshold, can then be interpreted as locations of features of interest. Alternatively,
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outputs can be processed using statistical modelling or classification methods, designed to

permit more intelligent decisions to be made regarding image content.

The various automated methods noted in sections 1.3.2 make use of several different

encoding schemes, which, along with other popular representations, will be described over

the next few subsections. But first, some key properties of representations will be discussed

as a point of reference.

2.1.1 Properties

The main aim of an image representation is to encode meaningful information about

underlying structures, and to do so in a compact way. However, images contain noise,

varying illumination conditions, and occlusion issues at boundaries, all of which complicate

the extraction of useful information. Alternative schemes can be considered with regards

to some key properties related to these issues:

• spatial scope, e.g. the extent of the area being described: local, regional or global;

• invariance to transformations, e.g. scale, rotation etc.;

• robustness and tolerance to noise;

• tolerance to boundaries;

• and completeness, i.e. how much information is retained or discarded.

Most of these are self-explanatory, but scope and completeness may require clarifica-

tion.

Scope: Representations which describe groups of immediately neighbouring pixels will

be considered to be local. Those which describe extended structures or whole objects will

be considered to be regional representations. And those which encode entire images will

be described as global representations.

Completeness: An image encoding capable of fully describing all salient structures

within data is known as a complete representation. If a representation is complete then

there should exist an inverse transformation, which can convert an image descriptor back

into pixel data, whilst maintaining recognisable structures. A complete representation is

less ambiguous than one which discards information.

2.1.2 Image encodings

Grey Level Co-Occurrence Matrices (GLCM): GLCMs were first used for describing

the texture of terrains [56] in aerial images. They have also been used in crater detection

[65] during a ‘focusing’ stage, where potential crater locations are narrowed down using

information about the texture around crater rims. A GLCM is a probability mass function
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describing the distribution of pixel values which co-occur at a fixed offset from one another.

Quantities such as contrast, homogeneity and entropy, are usually derived from GLCMs

to give a condensed description of the data.

GLCMs have a local scope, with co-occurring pixels being selected within just a few

pixels’ distance from each other. They can be made tolerant to small illumination changes

and noise by coarsely quantising pixel values, but otherwise have limited invariance, being

designed for fixed scales, rotations and absolute pixel intensities. Also, the probability

mass functions only describe pure textures, which do not model boundary or occlusion

effects. GLCMs are partially complete, providing enough information to reconstruct the

relative frequencies of local pixel value occurrences, but not necessarily in the correct

spatial order, or over extended regions.

Law’s texture filters: Law’s texture filters [86] are a series of small convolution kernels

designed to give a high response around basic features. Filters exist for describing struc-

tures including, for example, ridges, {−1, 0,+1}, dots, {0, 1, 0}, and ripples, {0,−1, 0,+1}.
These basic feature detectors can be combined in 2 dimensions to give a range of textural

patterns. A feature vector can be defined over these patterns, with each element giving

the response to a different filter.

Law’s filters have local scope and invariance to regional illumination levels, as pixels

are considered relative to their neighbours. However, they are not invariant to scale or

rotation. A sufficient number of filters can be combined to give a complete representation

of small image patches, but like GLCMs, they can only describe fine image detail rather

than extended patterns.

Scale Invariant Feature Transform (SIFT): SIFT has been used for describing rocks

in martian images [87] and for experimental navigation of planetary rovers [88]. The SIFT

representation [89] identifies structures within local image patches which are stable over

many scales. A Difference of Gaussian (DoG) convolution kernel is used at a range of

widths to extract edge information at multiple resolutions. The locations and resolutions

at which edges are most detectable are extracted as SIFT key points. The use of only stable

edge points also makes SIFT robust to small changes in rotation and affine transformations.

Once identified, the immediate pixel neighborhood surrounding each SIFT key point

is analysed. Each key point is assigned an orientation, based upon the locally dominant

edge direction. A vector of relative edge orientations is then constructed, with entries

weighted by edge strengths. These vectors are placed into a database, forming a key point

description of the data. To match features to new images key points are extracted then

compared, using Euclidean distances, to find nearest neighbors in a reference database.

By limiting itself to strong edge features only, SIFT discards much image information,

thereby limiting its completeness. SIFT data can reconstruct structures only up to the

level of discrete points, which might be dense, but lacks information about actual pixel

values.
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Speeded Up Robust Features (SURF): SURF has been used in experimental plan-

etary rover vision systems for mapping paths [90]. The SURF representation [91] was

inspired by SIFT, but uses Haar transforms to find stable image points, rather than DoG

filters. SURF is reported to be more stable than SIFT, providing greater invariance to

small changes. SURF is a local representation, which like SIFT, lacks completeness.

Binary Robust Independent Elementary Features (BRIEF): BRIEF has been used

for experimental planetary rover navigation systems [88]. The BRIEF representation [92]

encodes images using a long binary string. Each bit of the string is associated with a

different pair of pixels. Images are first smoothed, then a brightness comparison is made

between end points of each pixel pair. For each pair, if pixel ai is brighter than pixel bi,

then bit i is set, otherwise bit i is zeroed. The Hamming distance can then be computed

between two strings to form a similarity measure. BRIEF is reported to outperform SIFT

and SURF on feature matching tasks.

The scope of BRIEF can vary, but might be best described as regional. Whilst it is

not invariant to scale or rotation, it is robust to changes in local illumination. And the

quantity of pixel pairs provides redundancy which might be exploited to avoid boundaries

and occlusion, but this has not been investigated. A sufficiently dense collection of BRIEF

pairs can form a complete representation, as it has been shown that sets of pairwise

comparisons can be used to reconstruct functions [93], at least up to the rank-order of

point (i.e. pixel) values.

Histogram of Oriented Gradients (HOG): The HOG descriptor [94] is a histogram-

like structure that records the orientation of edges within a small grid of pixels. HOG has

been applied to the detection of dune fields on Mars [72]. Edge orientations are computed

from raw pixel data using simple horizontal and vertical derivative masks, i.e. {−1, 0,+1},
before being combined to give an angle. This was first proposed as a method of describing

pedestrians in video sequences.

HOG is a local representation which is invariant to varied illumination conditions and

some affine transformations, as long as they roughly preserve edge orientations. And like

most other representations, HOG does not take explicit account of boundaries. HOG

is only partially complete, as the histogram of gradients discards precise pixel locations,

recording only relative frequencies of orientations.

Hough transform, ellipse fittings: Geometric representations can be fitted to edges,

derived from Canny or other edge detection methods, to describe basic shapes. These

involve geometric equations being solved for particular perimeter points believed to have

been generated by a given form. Circular and elliptical Hough transforms [95][96], and

other fitting methods, have been applied to finding craters using the top-down knowledge

that craters are roughly circular [68][69][71]. Variants on the basic Hough transform can

take into consideration uncertainties in extracted edges to improve results [97].
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These methods are regional, working on whole objects. Hough transforms and other

shape fitting methods can be highly robust to missing data, including potential occlusion

and boundary conditions. They are also invariant to many illumination changes, and can

naturally scale and transform along their defined parameters, e.g. for setting different

radii. However, they assume that points being fitted were generated by the shape being

sought, making them less appropriate if other shapes are present, e.g. a ridge could easily

be mistaken for a row of circles.

Templates: Scalable crater templates have been used in crater detection algorithms [71].

Templates resembling sought features can be used to find similar structures in images using

a match score. Common matching methods include minimising the sum of squared resid-

uals between template and image pixels, maximising the dot product between template

and image vectors, and other variants.

Templates are regional representations, which can be made somewhat invariant to il-

lumination changes via normalisation of pixel values, perhaps removing the mean regional

intensities. Also, templates constructed from derivative images, rather than direct pixel

intensities, can provide additional invariance to local illumination changes by discarding

absolute intensity information [98][99]. Templates can be made invariant to transforma-

tions through brute-force methods, i.e. applying transformations to the template until

a good match can be found. However, templates are especially prone to problems at

boundaries, as missing data cannot be matched.

Appearance Models: An appearance model [100] is a flexible template computed from

many example features, which can include pixel value and shape information. The modes

of feature variability are learned, e.g. scale, elongation, illumination etc. by finding the

eigenvectors around a feature’s mean appearance using Principal Component Analysis

(PCA). Similar templates have been used for crater detection [64][65].

Appearance models are regional representations that can be given enough free parame-

ters to deal with many transformations, including transformations of pixel intensities and

object shapes. However, the transformations have to be linearly interpolatable due to

their PCA origins. Also, like their more ridged template counterparts, they suffer in cases

of occlusion, as missing data cannot be matched.

Fourier Domain: The repeating structures found within textures have been described

in the Fourier Domain, where whole images are encoded as sums of sine and cosine waves,

rather than individual pixel values. A sum of such waves, combined at different frequencies,

can completely describe image data. This is a global representation, where isolated changes

in pixels affect the frequency components of all others. Fourier analysis has been proposed

as an alternative to directly counting craters in digital terrain models [101], but has not

been widely applied in planetary feature detection methods.

Wavelets, Gabor Filters, Haar transforms: Wavelets have been proposed as an
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alternative to Fourier analysis. Sums of single wave periods from an arbitrary wave form,

rather than entire sines or cosines, can be used to describe textures [102]. The single

period, or ‘mother’ wavelet, is rotated and shifted to describe different parts of an image.

These can be applied as convolution kernels, similar to Law’s texture filters. Gabor filters

are sine and cosine wavelets which have been used for texture analysis [103]. The Haar

transform is a square profile wavelet which has been used in crater detection [62][63].

Wavelets have also been applied to fault scarps on martian terrain maps [76].

Wavelets can act as local or regional representations, depending upon the applica-

tion. They can also constitute a complete representation, as just like a Fourier domain

description, a sum of wavelets can approximate any function.

2.1.3 Summary

The image representations described above have been included because of their applica-

tions to planetary data, their popularity, or their historic significance, but other repre-

sentations are available. Any representation constitutes only part of a potential analysis

system, as encoded data still requires analysis. Modelling and analysis techniques which

might be applicable to such encoded data are described next.

2.2 Statistical modelling

It is often desirable to model the distribution of data using multi-variate decomposition

techniques. These techniques attempt to describe data using mixtures of some base com-

ponents, or vectors. Base components are sought that allow weighted combinations to

approximate a range of data variability, thus providing a low parameter description of

otherwise complex distributions. Linear and non-linear methods exist, the most popular

of which are described below.

2.2.1 Data modelling methods

Principal Component Analysis (PCA): PCA [104] computes orthogonal vectors within

data space which best accounts for linear variances. PCA is equivalent to forming least

squared hyperplane fits to data, and as such errors on data points are assumed to be

uniform and isotropic. PCA amounts to finding a projection of the original data onto an

alternative coordinate system which yields a diagonal covariance matrix described by:

S =
1

N

N
∑

i=1

(yi − ȳ)(yi − ȳ)T (7)

D = W TSW (8)
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where S is the original covariance matrix, yi the data points and N the number of

data points. Eigenvectors of the data’s covariance matrix are computed, the eigenvalues

of which reflect the amount of variance in those directions. These vectors, wi, are known

as principal components and are used to diagonalise S forming D. The least significant

principal components can be discarded thereby leaving a lower dimensional representation

of the original data. PCA can be an effective method of reducing dimensionality as long as

only linear relationships exist between dimensions and there is sufficient variance remaining

in the retained principal components.

Kernel PCA [105] is an extension to PCA which attempts to model non-linear manifolds

by mapping data points into a new space via a non-linear function, φ:

S =
1

N

N
∑

i=1

φ(yi − ȳ)φ(yi − ȳ)T (9)

The kernel φ attempts to flatten out data so regular PCA can subsequently be applied.

The kernel function itself contains an arbitrary number of degrees of freedom, the number

of which will determine how accurately a manifold can be approximated. Too few degrees

of freedom will lead to a rough approximation, whereas too many may cause over-fitting

beyond the noise level and therefore poor generalisation to other datasets. The selection

of kernel is therefore based on trial and error.

Whereas PCA only attempts to extract the axes occupied by data, Probabilistic PCA

is an extension which attempts to describe, in a probabilistic manner, a lower dimensional

representation, conditional upon its higher dimensional counterpart and a transformation

matrix [106]. This assumes the data is Gaussian distributed on a linear manifold. The

parameters of the appropriate transformation can be determined using maximum Likeli-

hood on an iterative basis. This method assumes a high dimensional data vector, xn, can

be transformed into a lower dimensional approximation, yn via a linear transformation,

W :

yn = Wxn + µ+ ǫ (10)

where µ is the mean to which data points must be translated and ǫ is an isotropic

normally distributed error with an expectation of zero. The transformation W is an l by

mmatrix wherem is the dimensionality of the reduced data vector and l the dimensionality

of the original data vector. The operating assumptions of PPCA are stronger than those

for the similar Factor Analysis [107], as PPCA will only behave well when data has uniform

isotropic noise, whereas Factor Analysis allows anisotropy.

Assuming data is first centred to give zero mean and data is normally distributed upon

its manifold, PPCA gives the probability of observing a data point as

p(yn|xn,W, σ) ∝ N(yn|Wxn, σ
2I) (11)
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Integrating over x gives the marginal distribution

yn ∝ N(yn|0, C) (12)

where C = WW T + σ2I. Assuming all data points are independent, the likelihood of

observing a lower dimensional dataset Y conditioned on the transformation parameters

can be calculate and maximised to determine the parameters W and σ:

p(Y |W,σ) =
N
∏

n=1

p(yn|W,σ) (13)

ML = argmax
W,σ

p(Y |W,σ) (14)

Gaussian Process Latent Variable Models (GPLVMs: GPLVMs [108][109] gener-

alise PPCA by replacing the linear transformation matrix W with an arbitrary function

φ thereby combining the idea with that of Kernel PCA.

yn = φ(xn) + µ+ ǫ (15)

Agreement between data and model is obtained by minimising the Kullback-Leibler

divergence in the latent (lower dimensional) space.

Independent Component Analysis: ICA methods [110][111] attempt to provide a set

of maximally independent components which can be combined, with a weighting matrix,

to reconstruct multivariate data. Unlike PCA, ICA methods do not require extracted

components to be orthogonal (e.g. as are eigenvectors), but only require that they are

independent when measured by some objective function. Various ICA algorithms exist,

differing in their objective functions and optimisation methods. A common application

for ICA is Blind Source Separation [112], where multiple unknown independent sources

are generating the data, such as multiple voices in an audio recording. Generally, ICA

methods assume uniform Gaussian noise and continuous data.

ICA algorithms have been proposed based upon Likelihood [113], which determine

the most probable set of base components, given training data. Other methods exist

which employ the minimisation of Mutual Information measures [114], Negentropy, or

maximising the kurtosis of extracted components[115]. Non-linear variants of ICA [116]

can use the kernel methods of Kernel PCA to accommodate non-linear relationships.

2.2.2 Summary

The techniques described above are primarily designed to summarise or compactly describe

data. They are not necessarily designed for making decisions or scientific measurements.

A method of classification will be required for identifying features of interest as part of
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any measurement process. Common classification approaches are described in the next

section.

2.3 Classifiers

This section will limit itself to a discussion of supervised classification methods, with the

requirement that an automated planetary analysis system should be capable of learning

arbitrary features through example. Popular classifiers will be described in terms of general

properties and assumptions made about target data, rather than their finer implementation

details.

Two broad categories of supervised classifiers will be investigated: fixed decision bound-

ary methods; and data density methods. But first the theoretically optimal way to perform

classification will be provided as a reference point.

2.3.1 A Bayes Optimal classifier

The job of a classifier is to assign a label, k, to a data point, X, indicating to which

category it most likely belongs. The data point is often a vector of quantities, or ‘feature

vector’, X = {x1, x2, . . . , xm}, defining a multi-dimensional pattern space. If there are

n possible categories to which observation X may belong, the label, k, with the highest

probability, P (k|X), must be the optimal choice:

k = argk∈[1,2,...,n] maxP (k|X) (16)

P (k|X) =
P (X|k)P (k)

P (X)
(17)

where P (k|X) is the probability that class k was the source of observation X; P (X|k)
is the probability of observing X within class k; P (k) is the probability of observing a data

point from class k, be it an X or any other value; and P (X) is the probability of observing

the value X, be it from class k or any other class, i.e. P (X) =
∑n

k P (X|k)P (k). P (k) is

conventionally referred to as the prior probability of k, yet this is not necessarily always

known a-priori. Equation (17) is known as Bayes Theorem, and the label given by equation

(16) is known as being Bayes Optimal. Equation (16) implicitly defines boundaries with

the pattern space of X. In a two class case this boundary lies along the point where

P (1|X) = P (2|X), as seen in figure 1.

A Bayes Optimal classifier can be constructed in two ways. Firstly, the mapping

between X and classes k can be learned directly, i.e. via the use of annotated data

to sample from the distribution P (k|X). Alternatively, the individual class conditional

probability distributions, P (X|k), can be learned then combined later, with the P (k)

terms estimated from elsewhere. In the first instance, learning P (k|X) directly, there is
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Figure 1: 2D two class data density with Bayes Optimal decision boundary.

a very strong assumption that future data will be statistically equivalent to the training

data in every respect, i.e. P (X|k), P (X) and P (k) will always be fixed. This assumption

of stationary data distributions has important consequences and will be returned to in

section 2.5.1. In the latter instance, learning P (X|k), provides additional flexibility, only
requiring that P (X|k) be fixed.

The aim of fixed decision boundary methods is to learn the divide between classes along

the line of Bayes optimality, i.e. the boundary following the points at which P (k|X) is split

equally between all possible categories. This falls into the category of learning P (k|X)

directly (or at least just near the boundaries). The aim of a data density method is to learn

the entire probability distribution of the data then apply Bayes Theorem directly. This

falls into the category of learning individual class distributions, P (X|k), then estimating

priors from elsewhere.

2.3.2 Fixed decision boundary methods

Many popular classifiers make use of training data to approximate a Bayes optimal bound-

ary between categories. Boundary methods have a significant advantage over density

methods in terms of reduced training data requirements. Approximate boundaries can be

learned using fewer data points than is needed to learn entire probability densities.

Fisher’s Discriminant: Fisher’s Discriminant provides a method to linearly separate

classes of data using hyperplanes. The technique assumes that data from each class follows

a Gaussian distribution, typically in multiple dimensions, with means and covariances

which can be sampled from training data. These Gaussian distributions are equivalent

to the P (X|k) terms in Bayes Theorem. The method provides a closed-form solution

to finding an approximately optimal linear boundary between two classes, assuming the
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prior terms, P (k), remain fixed. Similar classifiers have been utilised in automated terrain

classification [56].

Linear Discriminant Analysis: Linear Discriminant Analysis (LDA) is a simplification

of Fisher’s Discriminant. It too provides a closed-form solution to an approximately opti-

mal boundary. However, the simplification comes at the price of additional assumptions.

LDA assumes that the Gaussian distributed classes are also parameterised using the same

covariance matrix.

Support Vector Machine: Support Vector Machines (SVM) [117], like Fisher’s Dis-

criminant and LDA, attempt to find hyperplanes which can linearly separate data classes.

However, unlike Fisher’s Discriminant and LDA, they do not assume Gaussian distributed

data. Plus, in cases where data is not easily separable, SVMs can transform the pattern

space, using non-linear functions, with the aim of maximising separability in an alternative

domain. The added complexity means that an iterative, rather than closed-form solution

is required. SVMs have been applied to terrain analysis [58][59], crater detection [61] and

dune field identification [72].

Decision Trees: A Decision Tree decomposes data points, X, into constituent elements,

xi, then makes a series of hierarchical classification decisions based upon each element.

At each decision, depending upon the value of xi, a Decision Tree will follow a particular

branch within the hierarchy until a leaf node is found. Training data is used to construct

trees with the most probable class labels being assigned to each leaf. This is equivalent

to constructing a large number of local classifiers, which together approximate a more

complex decision boundary. These trees make few assumptions regarding the distribution

of data, except that the distribution is smooth.

A Random Forest (RF) [118] is a large collection of alternative Decision Trees. These

are constructed from random subsets of the data, using different subsets of feature vector

elements. The classification assigned to a data point fed into an RF is then taken to be

the one which most trees agree with, i.e. a vote. Decision Tree methods have been applied

to terrain classification [59] and crater detection [67].

Boosting: Boosting [119] is a method designed to fuse large numbers of ‘weak’ classifiers

together, thereby providing higher accuracy classifications via linearly weighting results.

Several alternative boosting algorithms have been proposed which take classifiers with

very low success rates, with possibly only very weak correlations between outputs and

correct classifications. As each new weak classifier is added, the algorithms re-evaluate

the current weightings to focus on the more difficult cases, increasing their weights whilst

reducing the weights of cases which have been largely solved. This results in a piece-wise

linear decision boundary. The performance of Boosted classifiers has been investigated to

give bounds on error rates via numerical and theoretical approaches [120].

Boosting is often used to combine the outputs from many classifiers to build a weighted
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voting system. Boosting has been applied to crater detection [62][63].

Neural Networks: Neural networks can be trained to learn a mapping between data

points, X, and labels, k, using a layered architecture of artificial neurons [121]. Elements

of a data point are used as input to the first layer, and outputs of the last layer can be a set

of binary outputs, one per class. A neuron at layer i takes a weighted sum of outputs from

neurons at layer i − 1. The result is then fed through a non-linear ‘activation function’

(usually sigmoid) before feeding into the next layer. A back-propagation algorithm, based

upon a downward derivative search, can be used to set the weighting coefficients between

neurons to approximate any smooth function. Neural networks have been applied to

terrain analysis [59][60] and crater detection [65][66].

2.3.3 Density methods

Density methods attempt to model the total probability density of a pattern space, with

the aim of estimating probabilities of classification labels. For a given data point, the

label with the highest probability of being correct can be assigned. Alternatively, the

probabilities can be manipulated directly, e.g. for weighted summing of quantities. In

general, density methods directly implement Bayes Theorem, with terms approximated

using parametric models.

Näıve Bayes: A Näıve Bayes classifier simplifies the estimation of class conditional prob-

abilities, P (X|k), by assuming each element of the feature vector, X, is an independent

variable. Making this assumption allows individual elements to be modelled separately,

without need to consider potential correlations between them:

P (k|X) =

∏

i P (xi|k)P (k)

P (X)
(18)

The individual terms, P (xi|k), might then be sampled directly from training data, or

approximated using an appropriate parametric form, e.g. Gaussian distributions. The

prior terms are then often selected subjectively.

Näıve Bayes classifiers are often used as a base-line for comparisons, having been

superseded by empirically more successful fixed boundary methods. Examples of this can

be seen in [122] and [123], where Random Forests and SVMs are shown to outperform

Näıve Bayes for astronomical applications involving the classification of galaxies.

Subjective Bayes: The origins of prior probabilities, P (k), are a matter of debate,

with the Subjectivist school of thought asserting that probabilities cannot be objectively

defined, and thus can only represent ‘degrees of belief’ [124]. In contrast, this thesis

adopts a Frequentist definition of probabilities, and therefore takes the view that a prior

probability should be proportional to the frequency with which an event of a particular

class occurs.
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The Subjectivist view on priors leads to arbitrary prior selections that need not be

linked to physically meaningful quantities. A Bayesian classifier may be constructed us-

ing such subjective priors, which can lead to mathematically consistent solutions by not

violating Kolmogorov’s axiomatic definition of probabilities [125], but does not relate to

physical measurements.

Gaussian Mixture Models (GMM) : Gaussian Mixture Models are used to describe

data distributions which either contain linearly combined Gaussian classes, or can be

closely approximated by them. They are commonly used in remote sensing [57] and

medical imaging [80] applications.

GMMs are usually fitted to data via the iterative Expectation Maximisation (EM) [126]

algorithm, which utilises Bayes Theorem as an update function [127]. This is a two step

process starting with approximate initial estimates of Gaussian parameters, µk, and σk.

Likelihood estimates of these parameters are computed by iterating the steps of calculating

the expectation of the data, given the parameters, then maximising the expectation by

updating the parameters.

In the first step, the normalisation (i.e. integral) of the Gaussians is estimated by

summing posteriori probabilities, Qk =
∑

X P (k|i), for Gaussian classes k, given the

data. The relative normalisations from each class provide new estimates for the prior

probabilities, P (k) = Qk∑
Q
. These feed in to the GMM to give the expected model, i.e.

equation (1).

In the second step, the posteriori probabilities are used to update the Gaussian param-

eters by computing weighted means and sigmas, e.g. µ′
k = 1

Qk

∑

i P (k|i)Hi. Where the

standard formula for the sample mean of observations H is weighted with P (k|i). And

similarity, for σ′
k, the standard deviation is computed, with weighted observations.

Upon convergence, Bayes Theorem can be used to construct a classifier to label data

points according to their posteriori probabilities of belonging to the relevant Gaussian

class.

2.3.4 Summary

The outputs of classifiers, either boundary-based or density-based, might be used for mak-

ing simple measurements, such as counting features. To use any resulting measurements

with confidence it is necessary to understand the performance of the chosen classifier.

Non-trivial analyses will be affected by sources of uncertainty leading to perturbations

in outputs. These perturbations can be investigated theoretically and empirically, as de-

scribed next.
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2.4 Performance evaluation

Following the conventional modular development paradigm, once a candidate representa-

tion (or representations) have been connected to a candidate classifier (or classifiers), the

performance of the overall system must be quantified. Unless a system is perfect then there

will be classification errors, which will lead to errors in measurements. The importance

of these errors was noted in section 1.4.1. A range of empirical tools exist for evaluating

these effects, allowing competing systems to be directly compared to each other. For these

tools to be applied, a sufficient quantity of ground truth data is required, e.g. images

which have been annotated to indicate ‘correct’ classifications. Only with knowledge of

the expected true answers can mistakes in classifications be identified.

Empirical approaches usually begin with simple statistics, such as error rates. Once

gathered, these error rates can be combined over different system parameter settings,

thereby giving a more comprehensive performance assessment. Finally, such tests can be

performed multiple time for different cuts of the ground-truth data to test the repeatability

of a system’s performance. These steps will be discussed in more detail in the following

section.

Theoretical approaches to performance can also be applied to some systems, assuming

they are formulated in an appropriate way. These have already been noted in section 1.4.2,

where Likelihood estimators can be examined using the CRB (lower variance bound), and

differentiable functions can be examined using error propagation. The application of these

theoretical approaches to performance evaluations will also be discussed after the empirical

methods.

The choice between empirical verses theoretical approaches can be reduced to knowl-

edge (or lack of knowledge) of algorithms and data properties, or ‘black-box’ verse ‘white-

box’. The most appropriate style of evaluation is a matter of debate [150].

2.4.1 Empirical performance evaluations

Empirical performance evaluations are often necessary, as modular building blocks are used

as ‘black boxes’, with few or no assumptions made about their inner workings [129]. The

intentional lack of knowledge presumed about components makes predicting performance

difficult, or impossible. However, given one key assumption, that training and testing

data is strongly representative of real world data, allows (in theory) the performance of a

system to be understood.

Simple performance statistics: Most classification systems are evaluated by counting

the number of times they assign correct verses incorrect class labels to data points. This

is most easily achieved if classifiers are reduced to binary choices, which for multi-class

systems can be translated to ‘this class or another’. For a two class case, there are four

possible classification outcomes:
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• true positive (tp) classifications describe cases where a ‘positive’ data point is cor-

rectly identified as belonging to the ‘positive’ class;

• true negative (tn) classifications describe cases where a ‘negative’ data point is cor-

rectly identified as belonging to the ‘negative’ class;

• false positive (fp) classifications describe cases where a ‘negative’ data point is in-

correctly identified as belonging to the ‘positive’ class;

• and false negative (fn) classifications describe cases where a ‘positive’ data point is

incorrectly identified as belonging to the ‘negative’ class.

The positive and negative classes have been placed in quotation marks, as these can

arbitrarily be switched, depending upon which class is to be defined as which. Viewed this

way, there are only two cases, giving a True Acceptance Rate (TAR) and False Acceptance

Rate (FAR) [130].

Given a ground-truth dataset, half the data might be used for training and the other

half used for evaluation. The raw values of tp, tn, fp and fn can then be counted, giving

an account of the system’s performance over a set of experiments. Often this is as far

as evaluations go, including those conducted for the noted automated methods of section

1.3.2.

Confusion matrix: A confusion matrix [131] can be used to tabulate the simple statistics

given above using a 2 by 2 grid. The rows can indicate predicted class labels, whereas

the columns can indicate actual true class labels. Each cell is then populated with the

corresponding statistic:

Actual class

Predicted
+ -

+ tp fp
- fn tn

In multi-class cases, a confusion matrix can be extended to record the relationships

between all class labelling error combinations:

Actual class

Predicted

k=1 k=2 k=3
k=1 t1 f1 f1
k=2 f2 t2 f2
k=3 f3 f3 t3

Other useful values can be derived from these matrices, including ‘sensitivity’, which

is the fraction of true positives found within the positive column, and ‘specificity’, which

is the fraction of true negatives in the negative column:
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Figure 2: Example ROC curves: Algorithm A performs best, giving largest area under
curve, where as algorithm C performs no better than chance.

sensitivity =
tp

tp+ fn
(19)

specificity =
tn

tn+ fp
(20)

The above values can be used to profile the performance of a system as various param-

eters are adjusted, as will be described next.

Receiver Operating Characteristic (ROC) curves: Most classifiers and image repre-

sentations have tuning parameters which will affect the performance of the overall system.

The effects of such parameters can be plotted using a Receiver Operating Characteristic

(ROC) curve [132][133]. Such curves plot sensitivity against specificity (or 1 minus speci-

ficity), as the value of a tuning parameter is scanned. An example ROC curve can be

seen in figure 2. If an ROC curve forms a perfect diagonal, then the system it describes

performs no better than chance. The area beneath an ROC curve will be larger for better

performing systems. Beyond characterising the overall performance of a system, an ROC

curve can be used to determine optimal tuning parameter settings [134]. ROC curves

constructed for different algorithms can be compared directly, with the aid of standard

datasets.

Cross validation: The performance evaluations described above assume a finite quantity

of ground-truth data which has been divided into a single training and a single testing

set. However, variability within the data will make any such evaluations just one outcome

from a distribution of possible performances. Cross validation can be used to investigate

this distribution by performing repeated evaluations upon different cuts, or folds, of the

finite ground-truth [135][136]. For example, the total data can be divided into 6 equal

parts, with 6 different performance evaluations being conducted for each combination of
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5-parts training to 1-part testing. In the extreme, this can be conducted as a leave-one-

out evaluation where all data, except a single data point, is used for training, then the

remaining data point is used for testing. The benefits of cross validation is the ability to

give a range of performance indicators, hopefully placing realistic bounds on performance

in the presence real-world data variability.

Bootstrap re-sampling: Bootstrap re-sampling involves randomly selecting data points,

with replacement, to simulate larger quantities of testing data [137][138]. This assumes

each data point is independent and identically distributed (i.i.d.). If used in combination

with ground-truth, bootstrap re-sampling resembles a rigorous form of cross validation,

allowing performance to be evaluated using far more data than is actually available. If used

without ground-truth, re-sampling can still be used to assess the statistical repeatability

of results, but not necessarily potential systematic effects.

If a pattern recognition system is considered as a statistical estimator, the values

estimated will have properties such as variance and possible biases. These properties

come from the fact that a given dataset is only a sample of a wider population, and

if an independent, yet equivalent, sample of data was analysed the results would vary.

The properties of estimators describe the relationship between sample and population,

where the population itself is generally unknown. In bootstrap re-sampling, the re-

sample becomes the target data, and the original sample becomes the population, which

is known. In bootstrap re-sampling, properties of the original sample, via inspection of

re-sampled results, are extrapolated to infer properties of the population.

Monte-Carlo: Monte-Carlo methods [139] can be used to provide arbitrary quantities

of training and testing data, with objective ground-truth. This is achieved by artificially

generating data, using an assumed statistical model, believed to be representative of real-

world data. For a Monte-Carlo dataset to be useful, the distributions, correlations and

perturbations simulated must closely resemble those found in reality. This requires a very

good understanding of the data, beyond what is required in cross validation or bootstrap

re-sampling.

2.4.2 Theoretical performance evaluations

Theoretical methods require a good understanding of the inner-workings of an algorithm,

i.e. they are white-box methods. Unlike empirical alternatives, theoretical approaches can

make predictions, which can then be tested empirically in line with The Scientific Method.

Advocates of a theoretical approach have analysed numerous low-level algorithms using

statistical perturbation models [140][141]. It has been suggested that this approach can

both characterise performance and also be used for parameter tuning [142]. Statistical

methods for analysing performance have been described already in section 1.4.2. Here,

only examples of their use in selected applications will be given.
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Cramer Rao Bound (CRB) / Lower variance bound: The CRB has been applied

to estimate the accuracy of edge and corner detectors in 2D data [143], and also 3D

points extracted from stereo data [144]. It has also been used to estimate the variance on

weighting matrices for ICA [145][146][147].

Error propagation: The use of error propagation in computer vision [148][149][150] has

been demonstrated on tasks such as the extraction of 2D points, measuring distances

between them, and determining the accuracy of parameters of fitted shapes [151]. It has

also been applied to assess the performance of multi-stage 3D shape extraction from 2D

projections and motion [152], and in the use of linear shape models [153]. A comprehensive

example of theoretical error analysis can also be found in [154] where propagated location

uncertainty assists in target recognition.

With reference to some of the techniques listed earlier, error propagation has been used

to investigate the effects of noise in Hough transforms [155] and also iterative algorithms

[156], such as EM.

2.4.3 Summary

Performance characterisation techniques can be, and have been, applied to various combi-

nations of image encoding, modelling and classification modules. The success or failure of

module combinations and any performance measures extracted from them must be framed

in the context of making scientific measurements. The following sections will critically ad-

dress this key issue.

2.5 Applicability to quantitative measurements

A system appropriate for quantitative use must be capable of producing measurements

fulfilling the criteria of section 1.6. As an example measurement, this section will consider

the common process of counting the number of data points associated with a specific class.

The next chapter will argue that this process can be linked to many measurements sought

from planetary images.

Counting might be achieved by summing data points which have been assigned a

specific class label, with the hope that false positive and false negative results will roughly

cancel out. This label counting method is a common approach in counting applications,

e.g. [159][160][161][162]. Alternatively, counting could be achieved by summing over all

data points, weighting each by the probability of a specific class, with the hope that the

weighting will account for labeling uncertainty. This approach can be found within GMMs

[80] and other data density approaches to counting [167].

The building blocks and evaluation methods presented above will be critically exam-

ined below. The quantitative criteria of section 1.6 will each be applied in turn, with

inappropriate components being rejected.
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2.5.1 Criterion: a measurement must be a numerical estimate driven by evi-

dence found within the data

Representations: Image evidence needs to be represented, yet there are no clear right

or wrong methods for encoding such information. Different representations encode more

or less evidence, provide more or less invariance to transformations, and are more or less

robust to the effects of noise and clutter. All of the representations listed in section 2.1, or

closely related variants, have been used to encode planetary image data and are therefore

potential candidates. What is required, from a quantitative counting perspective, is an

encoding which provides easy translation between image descriptors and physical counts

or surface areas. Also, the statistical properties of the encoding must be understandable,

so they can be matched to the assumptions made by any modelling and classification

methods applied to them. Ideally, a complete representation which is robust to noise and

illumination changes is desirable. For now, no decision will be made regarding represen-

tations. Modelling considerations in chapters 3, 4 and 5 will better inform representation

selection for use in part 2 of this thesis.

Modelling: Statistical modelling methods, such as those noted in section 2.2, tend to be

designed to summarise data, or to transform data into a lower dimensional form with par-

ticular properties, e.g. decorrelated. Model parameters might be correlate with physical

measurements, such as the principal components of a PCA model of crater being linked

to size, elongation etc. However, their use is subject to assumptions, as already explained.

If data contains linear relationships and uniform isotropic noise, then basic PCA and ICA

methods might be appropriate. The use of more complex data and non-linear modelling

methods should only be approached if their is evidence that the modelling method matches

the properties of the target data.

Label counting using decision boundaries: All fixed decision boundary methods

listed in section 2.3 can be eliminated from consideration immediately via the first quan-

titative criterion. This is due to the strict representativeness assumptions required for the

optimal positioning of decision boundaries. A boundary may be optimal for the evidence

found within training data, i.e. for the relative quantities of classes within the training set,

yet be suboptimal when applied to new datasets containing different quantities of classes

[168]. This can be seen in figure 3, illustrating that a change in relative quantities, i.e.

prior probabilities, must logically lead to biases which are a function of incoming data.

Such biases will change the ratio of false positive and false negative results, and this bias

will be a function of the (unknown) quantities of classes which are being counted. For

the criterion to be met, decision boundaries must be capable of shifting to new optimal

locations on a dataset by dataset basis, driven by evidence in the data being measured.

Fixed boundary methods might be defended with arguments that they should only

be applied with representative data, e.g. the assumption of fixed P (X|k) and fixed P (k)
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Figure 3: Top: original decision boundary using training data of figure 1. Bottom: appli-
cation of trained boundary when class 2 has increased in quantity, i.e. P (X|2) is fixed,
but P (2) has increased. Here, the boundary is no longer optimal, i.e. at the point where
P (1|X) = P (2|X).

must not be violated. However, these methods are commonly (and thus mistakenly) used

for counting applications, e.g. [159][160][161][162]. In such applications, the problem do-

main assumes that quantities of classes are unknown and varying from dataset to dataset,

otherwise they would not need counting. Yet, this assumption is directly opposed to

assumptions of representativeness made by fixed decision boundaries, and therefore esti-

mated quantities cannot be considered reliable.

Probabilistically weighted counting: Posteriori probabilities, P (k|X), have been es-

timated for SVMs [163][164] using auxiliary data structures. These include histograms

(binning), kernels and sigmoid functions, which attempt to map the distances between

data points and the decision boundary to probability estimates. Similar work has been

performed for decision trees [165] and boosting [166], where generating honest probabil-

ities requires calibration against empirical training data. Whilst these probabilities may

be of value when representative data is analysed, they still suffer the problems noted

above. Calibrated probabilities are based upon evidence in training data, not evidence

found in data under analysis, which, as argued above, is unrepresentative for counting

applications. Using probabilities from fixed boundary methods must also be considered

non-quantitative.

Some density methods can be eliminated via this first quantitative criterion also. Näıve

Bayes classifiers, which do not take into account correlations in incoming data, cannot

be driven by evidence unless elements within a feature vector are genuinely independent.

Subjectivist Bayesian classifiers cannot be driven by evidence either, as they do not require

that prior probabilities are linked (in a Frequentist sense) to the underlying data. The

use of subjective probabilities in science has been rejected by philosophers of science [77].

These methods must also be considered non-quantitative and therefore eliminated from

consideration.

GMMs may be of value for quantitative measurements, assuming data classes are
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Gaussian distributed. They dynamically adjust to provide the best fit to incoming data,

objectively setting prior probabilities to match the proportions of classes under analysis.

GMMs have been shown to outperform some alternative classifiers in the segmentation

of infrared imagery[133]. These methods might allow quantitative counting using multi-

spectral remote sensed data, but their Gaussian assumptions will limit applicability to

visual spectrum images containing texture and extended features.

2.5.2 Criterion: a measurement must be accompanied by an error estimate

indicating the expected accuracy of the measurement; and Criterion: a

measurement must be shown in practice to not deviate from the true

measurement by more than is predicted by the estimated error

Representations: Measurement errors begin with noise in data. Whilst the selection

of a representation is being deferred for now, there are general notes which should be

considered. A useful representation must have predictable error characteristics, otherwise

no meaningful error estimates could be produced. Ideally, to simplify the analysis of

errors, data points presented using a given encoding would have independent errors which

are either uniform, or at least a simple function of the data. Preprocessing techniques, such

as smoothing, introduce local correlations in pixel noise. Contrast enhancing techniques,

such as histogram equalisation, can introduce non-uniform errors. Such issues must factor

into any error analysis if quantitative criteria are to be fulfilled.

Modelling: Modelling methods which can be linked to Likelihood, e.g. PCA and Likelihood-

based ICA, are amenable to theoretical error assessments, assuming the model is appro-

priate for the data. However, more complex modelling methods, involving kernels and

non-linear transformations, are less appropriate in the presence of noise. For example,

kernel methods, which apply non-linear transformations to data also apply the same non-

linear transformations to noise. The resulting noise is no longer uniform or isotropic, and

therefore violates the assumptions made by linear modelling methods. Error propagation

could be used to track the sources of uncertainty in non-linear cases, however, it would be

preferable to have a simple error model initially, only increasing the complexity if it was

demanded by the application.

Classifiers: None of the classifiers listed in section 2.3 contain explicit support for the

production of measurement error bars and are therefore not immediately quantitative.

Nor has work been undertaken to add this functionality in any of the automated methods

listed in section 1.3.2. However, GMMs, which are Likelihood fits to data, are amenable

to statistical analysis, as was described in section 1.4.2. A Likelihood system based upon

more flexible mixture models would also have this property. Other methods may be forced

to rely upon empirical evaluations.

Empirical performance evaluations: The error rates and ROC curves described in
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section 2.4 are not the same as error bars on measured quantities. Nor are empirical error

rates guaranteed predictors of future errors, for the same representativeness arguments

apply here as they did to fixed boundary classifiers: the error rates observed during testing

are specific to the distribution of the testing set, which is not necessarily equivalent to

future data.

In defence of the conventional approach, a mapping might be learned between error

rates and error bars, and these error bars could, in principle, be calibrated using (very)

large quantities of Monte-Carlo or verified testing data. However, this work does not

appear to be undertaken in counting applications, e.g. [159][160][161][162], and has not

been undertaken in methods listed in section 1.3.2.

Bootstrap methods might be employed using re-sampling of data under analysis to

estimate the statistical spread of measurements for incoming data, but without ground-

truth such an approach would not reveal any potential systematic effects. Also, the i.i.d.

assumptions of re-sampling may be invalid if there are unknown correlations between data

points. Again, if training and future data (simulated, bootstrapped, or otherwise) are not

representative then unknown systematic biases may be introduced making this approach

unworkable.

Monte-Carlo methods too suffer from issues of representativeness, as simulated data

must mimic real-world data in sufficient detail to be of value. However, if data is well

enough understood then Monte-Carlo can be a valuable assessment tool, especially for

testing theoretical results. For example, the theoretical performance of Canny edge detec-

tion [157] isn’t realised in Monte-Carlo [158].

Theoretical performance evaluations: Statistical tools, such as CRB and error prop-

agation (section 1.4.2) can provide confidence intervals on estimated values, assuming the

model of the data and its perturbations are correct. This is one reason why an ideal image

encoding would have the desired properties given above in section 2.5.1.

Theoretical approaches to determining errors have the advantage of revealing the func-

tional forms of measurement uncertainties. An empirical evaluation of a system may reveal

how a system behaves, but a theoretical evaluation can reveal why it behaves as it does.

Unfortunately, systems lacking Likelihood origins or differentiable forms, such as most of

the classifiers listed above, are not immediately amenable to this approach.

2.5.3 Criterion: a measurement, where possible, should be supported by ad-

ditional checks to ensure trustworthiness

Representativeness: It has been noted several times that many methods will fail, or be

suboptimal, if there are discrepancies between training data, testing data and real-world

data. This can affect trained classifiers, statistical modelling methods, and empirical and

theoretical evaluation methods. These problems can be summarised as the problem of

representativeness. A hugely useful tool would be one which corroborated representative-
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ness, allowing unrepresentative data to be flagged to users as untrustworthy. This must

also be achievable when no ground-truth is available, as this is the case with real-world

data.

Representativeness will be defined here as a statistical equivalence. If two datasets

are statistically equivalent then the parameters of their distributions should be the same,

to within the limits of the expected errors. Any correlations within the data should also

be the same, within the limits of expected covariances. Tests for representativeness must

therefore have access to such knowledge, instantly excluding methods which do no record

such information, as described next.

Classifiers: There is insufficient information at a decision boundary to test if data points

are, on average, too close or far away from a boundary to be considered representative.

There is more information in density-based methods, but in practice representativeness is

not confirmed as a standard part of any method presented in this review. Published work

tends to, assume, rather than corroborate distributions and errors, and therefore cannot

be considered quantitative by the criteria put forth by this thesis.

Ad-hoc methods have been applied to test the conformity of some models, but with

no predictions as to what the conformity scores should equal when data is representative.

This is in contrast to chi-squared per degree of freedom methods, which are expected to

give a value of unity, or other conventional approaches such as Fisher-Exact, which have

precise predictions of how data should appear.

2.6 Summary

Upon critically examining common building blocks, a modular plug’n’play approach to

the development of a quantitative system appears unlikely to succeed, i.e. it is not suffi-

cient to arbitrarily select and apply a standard input representation, a standard classifier,

and then evaluate using a standard ROC curve. This is due to many available modules

and methods failing quantitative criteria in one or more ways. A black-box approach is

therefore rejected.

However, there are potential avenues for investigation which may lead to quantitative

results. In particular, GMMs estimated using EM provide Likelihood solutions, amenable

to goodness-of-fits and error analyses, as has already been explained in section 1.4.2.

Unfortunately, they are limited by their distribution assumptions. Yet an appropriate ICA

model might allow non-Gaussian distributions to be extracted from more complex data,

which might be used as substitutes for Gaussians in a GMM-style approach. Furthermore,

the construction of appropriate Monte-Carlo simulations and bootstrapped samples might

be used for corroborating quantitative methods, including predicted probabilities and error

estimates, if the representativeness of data can be assured. Incorporating these ideas into

a quantitative system will require a white-box mentality, where the statistical properties
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of data and inner-workings of algorithms must be understood for a cohesive system to be

engineered[169].

The next chapter will consider the requirements of an automated planetary analysis

system in greater detail. It will expand upon the potential avenues noted above, leading

to a flexible system which will be comprehensively tested in part 2.
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3 A Statistical Model for Planetary Image Data

The texture of terrains or the structure of surface features found within planetary images

may be described as sets of repeating elementary patterns. Representations for describing

such patterns were discussed in chapter 2, such as Law’s texture filters and Haralick’s grey

level co-occurrence matrices. The quantitative measurement of terrain surface areas, or

the counting of individual features, requires an understanding of the statistical distribu-

tions of these patterns. It will be argued that taking measurements mainly involves the

counting of patterns associated with classes of interest, whilst accounting for correlations,

variations and perturbation processes which introduce uncertainty. This chapter will de-

scribe a statistical model for capturing the distribution of these patterns parameterised

in terms of the relative abundance of correlated groups. A Likelihood parameter estima-

tion method will be provided for fitting the model to training and testing data, and a

goodness-of-fit function will be presented for checking the appropriateness of the model

when applied to possibly contaminated data. Monte-Carlo simulations will be used to

test the resulting model fitting algorithm and the goodness-of-fit function over a range of

different distributions and quantities of data.

3.1 Properties of planetary images

Any modelling decisions made must facilitate the quantitative analysis of the data con-

sistent with criteria prescribed in section 1.6. This must include an understanding of

what needs to be measured within an image and what uncertainties may exist. An under-

standing of the properties of planetary images is required before a statistical model can be

selected. Consideration must be given to the types of surface features that may occur, how

stable those features are, how distinctive they might be and what types of measurements

might be taken from them. Interactions between different features must be considered,

including how the composition of a terrain may change from place to place, how features

may overlap and what types of boundaries may form between them.

To better understand the requirements of a statistical model for planetary terrains a

list of example surface features will be examined. Although not a complete list, those

features included will span a wide cross-section of properties which a statistical model

must cater for. This list can be found in table 1 and images of the features listed can be

seen in figure 4.

3.1.1 Features and their measurements

Most of the measurements listed in the final column of table 1 can be linked to the counting

of pixels. For example, the size (radius) of a crater is linked, via πr2, to the number of

pixels which make up a crater’s area, which can be counted. The lengths of fissures,

drainage channels and dune crests are proportional to the number of pixels along their
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Feature Description Variability Interactions Measurements
Craters Distinctive circular

structures associated
with impact events.

Very large range of sizes, with
different morphologies between
smallest and largest craters.
Change with age as erosive pro-
cesses smooth appearance. Some
rare craters are highly elliptical.

Can be nested or
overlapping, with
new craters sharply
destroying parts of
old craters. Destroy
older local features.

Size Frequency Distri-
butions (SFD): counts
of craters falling into
different size bands.

Dunes Mounds of loosely
bound grains usually
formed by wind.

Highly variable shapes, including
stars, domes and crescents. Have
different orientations, linked with
wind direction. Appear in a range
of sizes.

Can smoothly merge
into one another
forming larger dunes,
chains and linear
features. Can engulf
other features.

Wavelength, fre-
quency and density of
dunes. Orientation.
Surface area.

Fissures Generic term for
faults, cracks or
fractures caused by
the deformation of a
surface. Often linear.

Range of lengths, widths and ori-
entations.

Can merge to form
larger fissures. Can be
branching.

Length and density.
Orientation. Surface
area affected.

Drainage
networks

Coalescing channels
formed typically by
flowing water in a
down hill direction.

Range of lengths and widths. Can
contain complex dendritic pat-
terns or simple linear channels.
Channels range in curvature.

Can merge together
hierarchically into
large extended struc-
tures. Can cut
through older fea-
tures.

Length and density.
Orientation. Surface
area of drainage basin.

Martian
‘spiders’

Radial fissures grow-
ing from gas erup-
tions.

Variable size and shape, with
greater or fewer numbers of radi-
ating branches.

Can merge together
into complex networks
of fissures.

Counts of eruptions.
Sizes and surface areas
affected.

Martian
chaos
terrain

Irregular groupings
of large flat topped
blocks divided by de-
pressions and valleys.

Highly variable extended regions
containing different sized mesas,
buttes and collapsed areas.

Complex matrix of in-
tersecting boundaries.

Surface area.

Table 1: Example features found within planetary images
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Figure 4: Features found within planetary terrain images. Top row, from left to right: Craters; Dunes; Fissures. Bottom row, from left
to right: Drainage network; Martian ‘spiders’; Martian chaos terrain. Images courtesy of NASA, Lunar Reconnaissance Orbiter and Mars
Reconnaissance Orbiter.
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edges, which again can be counted. Also, measurements of densities and frequencies are

just counts divided by areas or lengths. As long as there is a mechanism allowing pixels

to be attributed to particular features then most measurement problems can be solved by

estimating quantities of related pixels.

There is little information contained within individual pixels so contextual information

must be used to determine which pixels belong to which type of feature. Ridged or

deformable templates, or edge strings may be used to describe whole features. However,

the wide ranging sizes and shapes of features noted in table 1 suggest that an essentially

infinite number of variants may exist, possibly making a wholesale approach to feature

identification impractical. Alternatively, features can be viewed as collections of smaller

fixed sized patterns appearing in correlated groups. For example, an extended feature

like a drainage network may be viewed as a chain of small, often repeating, patterns

forming the various channels and tributaries. The structure of an entire terrain might

be describable in terms of such correlated groups, where each elementary part can occur

multiple times and each part can have a finite set of variants. Features might then be

described as distributions of patterns with indicative probability functions that could be

learned. This view may also provide a solution to the measurement of orientation by

assigning different orientations to different pattern distributions.

Quantitative measurements require estimates of errors. These errors must be affected

by perturbations in distributions and potential ambiguities between similar patterns in

different groups. The occurrence of features can be seen as random events. Using examples

from table 1, in the case of craters these are random impact events, or in the case of

fissures these are random breakdowns of weaknesses in surfaces under tension. It may be

reasonable to assume that these occur with frequencies following a Poisson distribution.

The appearance of individual patterns within features might also be attributed to Poisson

processes, such as small random collapses at the edges of mesas or crater rims. The

modelling of such perturbations must feed into the statistical description of the data and

their effects upon measurements must be quantifiable.

Another source of uncertainty might be found in patterns that occur in more than one

group. A distribution describing a drainage channel feature will likely overlap patterns

describing fissures, as on some scale a cut in a surface looks like a cut in a surface.

As a further example, similar confusions may occur between meandering channels and

patterns found on a crater rim. These sources of confusion must also feed into statistical

descriptions and resulting measurements. The probability distributions described in the

previous paragraph could be used to quantify levels of confusions.

3.1.2 High levels of variation within features

Moving on to issues of variability, it may have been implied above that each feature should

be associated with a single distribution of patterns, but this may not be the case. For
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example, the variability in the length of fissures might be described using two correlated

pattern groups: the terminating end points patterns, which might appear in fixed quanti-

ties regardless of length; and the central segment patterns, which will be more abundant

in longer fissures. Similarly, drainage network patterns may be divided into several sub-

groups based on bifurcation pattern (distributary versus tributary) or channel sinuosity,

all of which may appear in different networks in different proportions. A statistical model

must be capable of identifying and combining such sub-groups in the most appropriate

way to describe a terrain being analysed.

Additional variabilities caused by the interaction of features at occluding boundaries

might be partially accounted for in terms of the pattern groups described in the previous

paragraph. Table 1 noted ways in which features could interact, such a dunes engulfing

other features or craters overlapping one another. If features were described using single

distributions then these occlusion events would cause holes to appear within those distri-

butions. However, if the crests and faces of dunes were grouped separately, and segments

of crater rims were grouped separately, a dune overlapping a crater may be described with

low quantities of a corrupted face and rim segment, whilst other distributions can be left

uninterrupted.

3.1.3 Overview

In summary, an entire terrain image might be described as being a collection of correlated

pattern groups and sub-groups, associated with features and parts of features, all appearing

in different quantities in different regions. The pixels within patterns may be counted to

make most types of measurements, with the errors on those measurements being affected

by assumed Poisson perturbations and pattern ambiguities.

At a low level, the above description is consistent with the idea that the ‘indepen-

dent components’ of an image are pixel patterns describable with edge filters [170]. The

spatial distribution of these components have previously been modelled statistically using

Markov Random Fields [171][172]. The resulting generative models can produce visually

convincing reproductions of textures, but are less concerned with making quantitative

measurements of textured regions. Here, what is required is a method for identifying and

counting pixels belonging to particular classes of texture.

In the next section, these observations will be used to place the most general possible

requirements and constraints on the design of a statistical model.

3.2 Model requirements

It will be assumed that any surface image can be encoded as a finite set of discrete patterns.

A pattern, X, can be viewed as a feature vector describing local image structure. Rather

than specifying a particular encoding, the representation will be kept abstract for now,
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allowing multiple possible encodings to use the same statistical model. However, a set

of properties will be assumed about the patterns based upon the observations made in

the previous section. It is a requirement of the model that the following properties are

appropriately incorporated:

• a pattern appears as an independent Poisson event;

• the expected frequency of patterns are surface feature dependent;

• surface features may contain arbitrary distributions of patterns;

• a pattern can appear in more than one class of feature;

• and patterns sum linearly giving finite surface areas which can be related to physical

measurements.

Any representation which satisfies the above properties can be substituted for X. A

requirement of the model is to describe distributions of such patterns in a way that fa-

cilitates quantitative measurement. Taking into consideration the properties of images

observed in the previous section the model must be able to:

• identify correlated groups of patterns and flexibly describe their arbitrary probability

functions;

• associate groups of patterns to user defined surface features for which measurements

are sought;

• and combine distributions in proportions appropriate for describing complicated

highly variable terrains.

A training algorithm must determine how many components (pattern groups / prob-

ability functions) are required to describe the data and how each should be distributed.

Once trained, resulting model components must be able to describe new incoming data,

which can be assumed to contain the same distributions, but in unknown proportions.

The measurements sought (areas, feature counts etc.) need to be easily extracted from

the model by combining quantities of related components. The errors on measurements

must also be computable from the model, accounting for the Poisson randomness of pat-

terns and possible pattern ambiguities.

Whilst these requirements have been specified for planetary images, they are rather

general and could describe other data sources where groups of Poisson events are generated.

The following sections provide a potential solution to the modelling of this type of data.
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3.3 Linear histograms

Discrete patterns occurring as independent Poisson events can be sampled into a his-

togram which can be represented as a vector, H = {HX=1, HX=2, . . . , HX=m}, with an

element for each pattern bin. The non-parametric nature of histograms is appropriate,

as the model requirements specify that arbitrary distributions must be describable. The

flexibility provided by a histogram means any distribution can be represented, regardless

of its complexity, assuming a sufficient quantity of data can be supplied to populate the

bins.

It was explained earlier that within any given image there will be a variety of surface

features, and within any surface feature there may be a variety of related subgroups of

patterns. It was also noted that any particular pattern found within one group may be

found in others too. The recorded frequency in a histogram bin must then be explained by

the accumulation of patterns from various sources, with each source being a function of the

physical processes modifying a planet’s surface. It is assumed that each pattern represents

a fixed surface area, and that counting these areas is the basis for most measurements.

This requires a linear additive model, as each pattern must contribute a fixed quantity

to a planet’s surface irrespective of their order or origin. The frequency recorded in a

histogram bin can then be linked to n different processes by:

HX =
n

∑

k=1

R(X|k) (21)

where R(X|k) is a function generating distributions of related patterns; X is a spe-

cific pattern; and k is a label indicating a particular pattern group. Assuming that the

frequency of a pattern grows linearly with the quantity of surface features, the function R

can be approximated by a weighted probability mass function (PMF):

R(X|k) ≈ P (X|k)Qk (22)

where P (X|k) is the PMF for pattern group k and Qk is the quantity of k in the data.

An entire histogram can then be modelled as a linear system with components for each

related pattern group:

H = PQ+ eH (23)

where P is anm by nmatrix describing the PMFs of n components with elements Pij =

P (X = i|k = j), i.e. the probability of an entry in binX given component k; Q is a column

vector of n quantities corresponding to the amount of each component present within

the histogram; and eH is a column vector of noise assumed to be independent Poisson

perturbations consistent with the histogram’s formation. The inverted formulation, which

is appropriate for making quantity measurements, is then given by:
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Q = P−1H+ eQ (24)

where P−1 is an n by m matrix with elements consistent with Bayes Theorem3, P−1
ij =

P (k = i|X = j), i.e. the probability that component k was the source of an entry in

bin X; and eQ is noise on the quantities. How PMFs and weighting quantities can be

estimated will be addressed shortly, but first their meaning and significance in making

measurements will be elaborated upon.

3.4 Components, quantities and measurements

It was stated in the properties of planetary images that measurements, such as surface

areas, relate to the quantities of patterns found within each class of interest. The quantities

of patterns within each class, in turn, relate to linear model components, P, and the

quantities by which they are weighted, Q. In the simplest case each class of feature

may contain a single highly stable distribution of patterns describable using one fixed

PMF per class. Assuming each pattern, X, covers a fixed surface area, the total image

area accounted for by each class of feature will be directly proportional to the weighting

quantities, Q.

Most features, however, will exhibit a complex range of allowable variations, as de-

scribed earlier in the properties of planetary images. In these cases it is insufficient to

describe a class of terrain using only one fixed PMF. Instead, a set of related PMFs can be

used per feature making each class a nested subset of the linear model. Each sub-model can

contain as many components as are necessary to describe the modes of variation present

in that class of terrain. All components are placed into the matrix, P, side-by-side, with

their interpretation requiring knowledge of which components are associated with which

class of feature. From the point of view of measurements, this means summing related

quantities together to give total class quantities:

Q = KQ+ eQ (25)

where Q is a column vector containing o quantities of the o feature classes for which

measurements are sought; K is an o by n mapping matrix with mutually exclusive binary

elements indicating which model components belong to which class of feature; and eQ is

the noise on the total class quantities. The elements of K are then:

Kij = δ(kj ∈ Ki) (26)

where kj is the jth model component and Ki is the ith class for which quantity mea-

surements are sought; and the function δ is 1 when component k is within the subset K

3It will be seen later and in subsequent chapters that P−1 is a function of the noise terms eH and eQ.
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and 0 otherwise.

An expert user must define the individual classes of feature for which measurements are

sought by providing exemplars. A training algorithm must use the exemplars to extract

linear sub-models for each class to construct the components ofP and set the mapping from

components to classes, K. The extraction of linear components may be recognised as a form

of Independent Component Analysis which is commonly found in pattern recognition. i.e.

a set of maximally independent, non-orthogonal, model components are extracted sufficient

for describing variations in the data. Here, a linear decomposition is required suitable for

histogram models. Once trained, an algorithm must fit the model to new images in order

to measure the component quantities, Q, and the class quantities sought, Q. The next few

sections describe how a Likelihood approach can be applied to compute the best fitting

parameters yielding the most probable statistical model during both training and making

measurements.

3.5 Likelihood parameter estimation

Populating a histogram through the counting of independent Poisson events is a common

model. The statistical Likelihood used to describe this scenario is usually attributed to

Fermi in the form of Extended Maximum Likelihood [79], which in terms of the linear

model given by equation (23) becomes:

lnL =
∑

X

ln

[

∑

k

P (X|k)Qk

]

HX −
∑

k

Qk (27)

where P (X|k) (i.e. P) and Q are parameters to be estimated. This Likelihood can

be optimised during training and also during the taking of measurements. During train-

ing, when the components are unknown and need to be learned, the Likelihood function

can be maximised to jointly estimate P and Q for multiple example histograms. During

measurements, assuming P is representative of the incoming data, H, the Likelihood can

be maximised to only estimate the quantities. In both cases an Expectation Maximisa-

tion(EM) algorithm can be applied to perform the optimisation.

Whilst other estimation methods are available it is appropriate to use Likelihood for

quantitative measurements, as the link between Likelihood and error estimates is well

understood. Chapter 4 will show how the stability of Likelihood estimated parameters can

be determined. This is essential for the quantitative criteria prescribed in the introductory

chapter (section 1.6), and the model requirements stated in this chapter (section 3.2), to

be met.

The estimation ofQ will be considered first, as this is the simpler of the two parameters

to estimate and is also required for the subsequent estimation of P. The estimation of P

will be considered afterwards, where multiple exemplars of each class are used to constructs

the nested linear models using an EM version of an Independent Component Analysis
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(ICA).

3.5.1 Quantity estimation: Q

In cases where P is known the EM algorithm can be used to optimise (27) with respect

to free parameters, Q. EM iteratively updates the elements of Q by weighting them with

the current estimate of the posteriori probability P (k|X), (i.e. P−1), starting from some

initial (perhaps randomised) estimate at iteration t = 0:

Q(t) = P−1
(t−1)H (28)

where Q(t) is the quantity vector estimate at time t; and P−1
(t−1) is the last estimate

of the posteriori probabilities. For a single quantity, k, this update is implemented using

Bayes Theorem [121][127]:

Qk(t) =
∑

X

P (X|k)Qk(t−1)
∑

l P (X|l)Ql(t−1)

HX (29)

where P (X|k) = Pi=X,j=k; and the Bayesian ‘prior’ is substituted for the quantity

being estimated4. Upon convergence the quantities, Q̂ = Q(t=∞), provide the maximum

Likelihood solutions assuming the PMFs of the model components were correct for the

incoming histogram data.

This process can be summarised in pseudo-code:

1. Randomly initialise the weighting quantity vector Q

2. For incoming histogram H:

(a) Compute equ. (28) via repeated use of equ. (29) for each component, k

(b) Observe the change in P−1 and Q

(c) Repeat until P−1 and Q converge

3. Compute total class quantities, Q, using equ. (25)

3.5.2 Component PMF estimation: P

Each surface terrain requires a set of PMFs to be estimated which, when linearly combined,

can approximate the distribution and modes of variation of the patterns indicative of

each class. This requires multiple example histograms of terrains to be provided by an

expert user, {H(r=1),H(r=2), . . .} . These examples must contain mixtures of components

in different proportions so that the modes of variation can be observed. For notational

4The estimation of quantities as a sum of probabilities seen in equation (29) is consistent with the
method of counting described in section 2.5, where honest probabilities are summed as an alternative to
counting decisive labels.
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convenience the description that follows will be presented as if there is only a single class

of feature. During real training the algorithm should be applied separately to sub-matrices

associated with each class of feature being learned.

The number of components required to fully describe the data will generally be un-

known. A model selection process based upon a goodness-of-fit function will be presented

in the next section, but for now it will be assumed that there are n unknown components

in a class. Given a class composed of n unknown PMFs, and given a set of N (n ≪ N)

independent exemplar pattern histograms of that class, the EM algorithm can be applied

to perform an ICA appropriate for histogram data.

Initial estimates of component PMFs (perhaps randomised) are generated at iteration

0 giving P(t=0). Weighting quantities are estimated (via estimation process of section

3.5.1) for each of the N examples giving modelled approximations:

H(r) ≈ M(r)(t) = P(t)Q(r)(t) (30)

where all histogram models (i.e. each r) share a common definition of components

P(t); and each histogram has its own estimate of weighting quantities, Q(r)(t). In line with

the EM algorithm the estimated posteriori probabilities, P−1, are used to provide a new

estimate of the contribution to each histogram, r, from each component, k:

Rr(t)(X|k) = Pr(t−1)(k|X)HX(r) (31)

This results in a set of approximate data distributions, one for each exemplar, which

must be combined to give a new joint approximation of each PMF. It can be shown that

each exemplar’s estimated distribution has approximate Poisson properties allowing them

to be treated as sampled histograms, and therefore allowing them to be combined through

addition. These approximate Poisson properties can be seen through a two step argument:

1) The variance on Rr(X|k) includes a Binomial contribution, as each bin entry has a

probability of P (k|X) of being included in the sample and a probability of 1− P (k|X) of

being excluded. This variance is given by:

HX(r)P (k|X)[1− P (k|X)] = HX(r)P (k|X)−HX(r)P (k|X)2 (32)

2) There is also an independent Poisson contribution from the originating histogram:

(

∂Rr(X|k)
∂HX(r)

)2

HX(r) = P (k|X)2HX(r) (33)

which cancels with the second term of the Binomial contribution giving:

σ2
Rr(X|k) = P (k|X)HX(r) = Rr(X|k) (34)

resulting in Poisson variance allowing the individual example histograms to be safely
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combined conserving their Poisson characteristics:

R(X|k) =
∑

r

Rr(X|k) (35)

σ2
R(X|k) = R(X|k) (36)

An understanding σ2
R(X|k) is essential for meeting the quantitative criteria of computing

error bars on final measurements and allowing measurement errors to be corroborated em-

pirically. These estimates will be used in a following section to corroborate the goodness-

of-fit of the model to data, and again in chapter 5 where errors on measurements caused

by inaccuracies in the model will be addressed.

The estimates of R(X|k) are normalised to create a new common estimate of P(t):

Pi=X,j=k,(t) = Pt(X|k) = R(t)(X|k)
∑

r Qk(r)(t)

(37)

This new common estimate of P is used to reestimate quantities and posteriori prob-

abilities for exemplar histograms and the process continues until convergence giving P̂ =

Pt=∞, maximising (27) consistent with the convergence theorem of EM [121][127]. To

avoid the risk of converging into a local minimum the algorithm can be restarted multiple

times from different random PMF initialisations. Once a set of PMFs have been estimated

for a given class the mapping matrix, K, must be updated to indicate which components

are associated with that type.

The algorithm can be summarised in pseudo-code:

1. For each class {K = 0, K = 1, . . . , K = o}, gather N exemplar histograms of class

K {H(r=1),H(r=2), . . . ,H(r=N)}

2. Randomly initialise common definition of P

3. Using n components, while P has not converged:

(a) For each histogram H(r):

i. Iterate equ. (28) and equ. (29) until P−1
(r) and Q(r) converge

ii. Use P−1
(r) to estimate individual component contributions, R̂r, using equ.

(31)

(b) Sum and normalise each component to give new common estimate of P using

equ (37)

4. Update component-class mapping matrix, K, to indicate which components belong

to class K

68



3.6 Goodness of fit

The importance of testing theories by corroborating predictions was emphasised during

the introductory chapter. The linear Poisson histogram model described in this chapter

constitutes a theory for how patterns within planetary images should be distributed, and

therefore should be capable of making testable predictions. In particular, a set of fitted

model parameters (P and Q) forms the basis of hypotheses for how many entries should be

observed in each histogram bin within incoming data. This naturally leads from equations

(21) and (22) to give predicted bin frequencies:

HX ≈ MX =
n

∑

k=1

P (X|k)Qk (38)

where MX is the bin frequency predicted by the model for pattern X, which should be

approximately equal to the observed frequency, HX , within the limits of Poisson sampling

statistics. This approximation can be tested by comparing the distribution of model-data

residuals to the expected Poisson errors. For a given dataset, a ratio of unity between

observed and predicted residuals is corroboration that the model is successfully describing

the incoming histogram, whilst a ratio above unity indicates that the model is inappro-

priate for that particular data. This test can be performed using a modified chi-squared

statistic designed for histograms.

A standard chi-squared per degree of freedom function is given by:

1

D

∑

X

(MX −HX)
2

σ2
X

(39)

where σ2
X is the expected variance on the residual between the model and observed

data at pattern X; and D is the number of degrees of freedom in the model. A standard

chi-squared per degree of freedom assumes Gaussian residuals, not Poisson residuals as

found in histograms. Whilst a Poisson can be approximated with a Gaussian at large

sample sizes, the discrepancies between the distributions at low sample sizes may cause

problems, especially for poorly populated histograms. A square-root transform [174] can

be performed on histogram bins to transform the residuals into something better approx-

imating a Gaussian with uniform width of σ2 = 1
4
. This property of the square-root

transform can be seen via error propagation:

σ2√
HX

=

(

∂
√
HX

∂HX

)2

σ2
HX

=

(

1

2
H

− 1
2

X

)2

HX

=
1

4
H−1

X HX =
1

4
(40)
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where the Poisson error σ2
HX

≈ HX . A chi-squared per degree of freedom test on the

transformed data:

1

D

∑

X

(√
MX −√

HX

)2

σ2
X

(41)

can form the basis of a model selection scheme during training and a success indicator

when making measurements. The variance to which each residual is normalised will be

different in the two cases. These uses and how they are normalised are described below.

3.6.1 Model selection

The Likelihood parameter estimation algorithm described in section 3.5 assumed that the

number of components required to model a class of feature was known a-priori. It was also

noted that in general this would not be the case. The problem of determining the most

appropriate number of components can be solved using the Chi-squared per D degrees of

freedom function, χ2
D:

χ2
(m−n) =

1

m− n

∑

X

(√
MX −√

HX

)2

1
4

(42)

where m is the number of bins in the histograms; n is the number of components in

the model; and the model-data residuals are assumed to have a variance driven only by

the incoming data training histograms, which via the square-root transform becomes a

constant value of 1
4
. The model selection problem can be solved by executed the training

algorithm multiple times, incrementing n until χ2
D reaches unity. However, some care must

be taken, as if n is too large giving a goodness-of-fit less than unity, the model will become

over-trained, i.e. additional components will be modelling noise specific to the training

examples which may not generalise to future datasets.

3.6.2 Measurement success indicator

During training, whilst the model components are being defined, only noise from incoming

histograms are considered in the χ2
D function. However, once trained, the sampling noise

from those histograms become systematic errors in the extracted P components. When

making measurements by fitting the model to new incoming data these errors will change

the expected model-data residuals. The goodness-of-fit can be normalised to these resid-

uals by approximating the errors on the PMFs and incorporating them into the function.

The errors on PMFs are easy to calculate, as they are just Poisson histogram errors from

equation (35) which have been scaled to give histograms of unit integral, i.e. probabilities.

Error propagation then gives:
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σ2
P (X|k) ≈

(

∂P (X|k)
∂R(X|k)

)2

σ2
R(X|k) (43)

=
R(X|k)

(
∑

r Qk(r))2
(44)

The errors on the square-root transformed predicted model frequencies, again via error

propagation, become:

σ2√
MX

=
∑

k

(

∂
√
MX

∂P (X|k)

)2

σ2
P (X|k)

=
∑

k

Q2
k

4MX

σ2
P (X|k)

The goodness-of-fit is then given by:

χ2
(m−n) =

1

m− n

∑

X

(√
MX −√

HX

)2

1
4
+ σ2√

MX

(45)

Which should be unity when the model is applied to new data composed from sources

representative of those seen during training. Any unforeseen contamination in new data,

including highly irregular instances of known features, should cause larger residuals than

are predicted by the model and therefore produce fits above unity. A data set that fails the

chi-squared per degree of freedom test cannot be trusted and any measurements derived

from it should be disregarded.

3.7 Monte-Carlo testing

The testing of actual measurements is avoided until chapter 4. The focus here is on the

model’s ability to produce honest probability distributions, i.e. do PMFs reflect the true

frequencies with which pattern events occur? The goodness-of-fit function can be used to

check this, as it is a direct test of predicted frequencies. A Monte-Carlo simulation was cre-

ated to generate histogram data following the pattern properties given in section 3.2. This

simulation was used to test the statistical model’s ability to describe incoming data using

a range of different distributions, numbers of components and quantities of classes. These

tests used the goodness-of-fit functions to confirm that the training algorithm could suc-

cessfully extract representative PMFs and that those PMFs could be combined to describe

new incoming distributions whilst spotting problems caused by simulated contamination.

These tests included:

• demonstrating that the goodness-of-fit function could be used for model selection,

i.e. it reaches unity when the correct number of components have been extracted

during training;
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• confirming that extracted PMFs could model new incoming data, i.e. the goodness-

of-fit reaches unity when model weights have been estimated using EM;

• and showing that contamination can be spotted, i.e. the goodness-of-fit does not

reach unity when unrepresentative data is presented.

Training and testing histograms were generated by scaling reference distributions (in

the form of PMFs) by randomly selected known quantities. The scaling quantities were

all real valued uniform random numbers between 1,000 and 1,000,000. For each histogram

bin, a random Poisson number generator was used to draw independent samples from each

component before summing them to give total histogram frequencies.

Model selection was tested for histograms containing 64, 4096 and 16384 bins. Data was

synthesised for each sized histogram containing known linear combinations of predefined

reference distributions. The aim of testing was to confirm that the EM ICA algorithm

could successfully extract sufficient approximations to all of the predefined distributions

so as to achieve a goodness-of-fit of unity. This was performed for increasingly complex

models containing between 1 to 10 linear components. Figure 5 plots the goodness-of-fit

for different numbers of extracted components for the 4096 bin histograms. These results

are indicative of the other histogram sizes.

The 64 bin reference distributions were coded by hand and can be seen in figure

8. These distributions were used as templates for creating 10 different components by

shifting the distributions along the x-axis. For example, figure 9 shows the approximate

distributions extracted during 64 bin tests at the point where 3 components per model

were generated. In contrast, the 4096 and 16384 bin histogram component reference

distributions were randomly generated5, giving a complex range of synthetic data.

During each iteration the number of training histograms was increased ensuring there

were always 10 times as many example histograms as components in the model, i.e. in

figure 5 there were 10 training examples at the left end of the plot, rising to 100 at the

right end.

The analysis of new data was tested by fitting components extracted using the EM

ICA training algorithm to previously unseen histograms via the EM model fitting algo-

rithm. This was done for all sizes of histogram and numbers of components. Each fit was

performed multiple times using a different ratio of training to testing data. Results can

be seen in figure 6 where the relative quantity of training data ranged from 0.01 to 100

times that of the testing data.

5The random reference distributions were created using a texture sampling scheme which will not
be presented until chapter 6. To summarise, the distributions were sampled from martian image data
using 12 bit and 14 bit BRIEF-like descriptors, involving an initial random selection of pixels making the
organisation of the histogram bins essentially random. These experiments should not be confused with
those presented later. Here, the sampled reference distributions became the source of other histograms,
whereas in chapter 6 all histograms were sampled from images.
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Figure 5: This plot shows that by using the χ2
D goodness-of-fit function the EM ICA

algorithm can extract an appropriate number of linear components to describe a set of
example training histograms. Each curve represents a Monte-Carlo data source generated
with between 1 and 10 components. Each curve crosses unity at the most appropriate
point, i.e. when the number of extracted components equals the number of generating
components.

Finally, the goodness-of-fit was used as a success indicator to confirm that unrepresen-

tative testing data containing random outliers could be detected. This was achieved by

replacing a set percentage of incoming histogram bins with uniformly distributed random

numbers within an order of magnitude of the original data. This was performed for all

sized histograms containing 10 components. Results can be seen in figure 7.

3.8 Discussion

The training algorithm, quantity estimation algorithm and goodness-of-fit functions all

performed as predicted. The use of the χ2
D goodness-of-fit function proved to be effective

at selecting the necessary number of components to describe a set of example histograms.

In all cases the fit approximately equaled unity when the number of extracted components

equaled the true number of generating components, as seen in figure 5. The learned PMFs

were all successfully fitted to new representative data, again reaching a fit of approximately

unity upon convergence of the EM algorithm, as seen in figure 6. Finally, when random

entries were made in a proportion of the bins to simulate contamination of data, the

goodness-of-fit function grew above unity, as seen in figure 7. The process of extracting

PMFs using EM from an initial random seed can be seen in figure 10, which plots the

evolution of a single component over time as the EM algorithm converges.

An inspection of extracted components reveals some discrepancies between true gener-
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Figure 6: This plot shows that the EM quantity parameter estimation algorithm can
successfully fit previously learned components to new unknown mixtures of the same
components in the case when they are representative. Each data point corresponds to a
model of different complexity of between 1 and 10 components. It can be seen that the
goodness-of-fit function remains stable around unity for varying quantities of training and
testing data.

Figure 7: This plot shows that the χ2
D goodness-of-fit function can successfully detect

contamination in data as outliers are purposefully introduced in varying quantities to
otherwise representative data.

74



Figure 8: These are example distributions used as generators within the Monte-Carlo
simulation. Shifted and scaled versions of these distributions were used to generate the 64
bin models.

Figure 9: These are examples of components extracted from 64 bin training histograms
created during the Monte-Carlo simulations.
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Figure 10: This plot shows the evolution of a randomly initialised 64 bin PMF during
the execution of the EM ICA algorithm. Time runs positively along the x-axis. The
algorithm can be seen to converge quickly to reach a stable estimate of the underlying
data generating component.

ating PMFs and those determined using the EM ICA training algorithm. Figure 8 shows

examples of generating distributions, scaled and shifted linear combinations of which were

used to generate a series of training example mixtures. Figure 9 shows the PMFs extracted

from those mixtures, which resemble the originating distributions, but with some unex-

pected peaks and troughs. The mismatch between generators and extracted components

can be explained in terms of the span of linear subspaces if PMFs are viewed as vectors

defining a manifold in an m dimensional histogram space. Each example histogram forms

a point in the histogram space. Together, all examples define a hyperplane (assuming a

linear model is the correct model) upon which all possible mixtures of components lie. As

long as the extracted components lie upon the same hyperplane and can span the same

subspace as the original generators then a linear model constructed from them will be ca-

pable of describing similar mixtures. From a quantitative perspective, what is important

is the ability to predict bin frequencies within known errors. The χ2
D function has cor-

roborated predicted frequencies modelled by extracted components, assuming Poisson bin

errors. The extracted components can, therefore, be considered to generate valid statistical

descriptions of the data, despite the apparent discrepancies upon visual inspection.

The above argument defending the use of alternative, but similar, component defi-

nitions than the original generators becomes more complex when other constraints are

considered. In general, the span of a vector subspace includes points reachable using neg-

ative coefficients. However, the weighting quantities found within histogram components

must be non-negative. The consequence of this is that suitable training data must pro-

vide example mixtures with coefficients spanning a full range of allowable variations. In
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particular, examples containing the lowest expected quantity of each component must be

present in training data, providing representative samples of the most extreme mixtures

likely to be found in future. If a future dataset is encountered containing an unprecedent-

edly low quantity of a component there is no guarantee that the trained components can

interpolate far enough to reach the mixture’s location on the histogram manifold.

Assuming appropriate training examples are given the statistical models produced

appear to be valid. Monte-Carlo data is, however, artificially representative and the

mixture models generated during the above tests were forced to exhibit the properties that

planetary surface patterns are assumed to have. In practice, real data may not behave

this well. The goodness-of-fit functions do provide a safeguard against unrepresentative

data, but the modified chi-squared per degree of freedom will not be capable of spotting

all problems with data. Whilst it can highlight larger than expected residuals, it cannot

spot correlations between residuals. If a linear model has not successfully separated all

correlated patterns into separate components, or if there are highly localised correlations

between bins, it is still possible for the goodness-of-fit to reach unity despite the violation

of the assumption of independent Poisson noise within each histogram bin. Only testing

on real data can confirm the appropriateness of the statistical model for practical use.

3.9 Summary

This chapter presented a linear Poisson model capable of describing the distribution of

patterns that may be found within planetary images. Rather than selecting a specific

representation for image patterns, this chapter assumed a set of reasonable properties

which might be expected of image patterns and a statistical model was then created to

address them. A Likelihood parameter estimation process, based upon the EM algorithm,

has been presented for extracting correlated groups of patterns using a histogram ICA.

The same Likelihood was optimised for fitting those groups to new incoming data. The

link between the quantities of pattern groups and measurements was also made. Monte-

Carlo testing was conducted, with an emphasis on achieving approximations of histogram

distributions within expected Poisson perturbations. Satisfactory approximations to data

distributions were achieved, with corroboration from a modified chi-squared per degree of

freedom goodness-of-fit function, showing that predicted bin frequencies generated by the

model matched, within errors, actual observed bin frequencies in simulated data.

The limitations of the method were highlighted, including the inability of the model

to interpolate to negative model coefficients, making it important for training data to

exhibit a full range of variations for appropriate model components to be extracted. The

limitations of the goodness-of-fit function were also noted, concluding that by itself it was

incapable of confirming all the assumed properties of the data.

The artificially representative testing, via Monte-Carlo, has confirmed that the mod-

elling method is appropriate, as long as the patterns found within real data abide by the
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properties assumed in this chapter. The end goal of producing real measurements from

real data will require much more testing. This testing must include an understanding of

measurement errors, not just individual model bin errors. The understanding of measure-

ment errors will begin in the next chapter where the stability of model weighting quantities

will be addressed.
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4 Statistical Error Estimation

The previous chapter provided a method for describing distributions of patterns found

within planetary terrain images using a linear Poisson model based upon sampled his-

tograms. The weighted components of that model were linked to groups of patterns found

within surface features for which measurements were sought. It was argued that most

measurements could be viewed in terms of counts of pixels and that such counts were

proportional to the quantity parameters, Q, which could be estimated using Likelihood.

Those quantity estimates were associated with errors, eQ, in equation (24), which must

be understood for the quantitative criteria prescribed in section 1.6 to be fulfilled. This

chapter will begin to explore these errors using the Cramer Rao Bound to place a lower

bound on the errors expected to be present on these parameters, which in turn will place

a lower bound on associated measurement errors.

Within this chapter it will be shown that a covariance matrix can be computed for

predicting the statistical spread of estimated quantities. A theoretical analysis will reveal

the relationships between statistical errors, underlying Poisson processes and ambiguities

found between model components. These covariances will be combined using error prop-

agation, consistent with equation (25), to give covariances on class quantities, Q + eQ.

Predicted errors will be corroborated using Monte-Carlo simulated data, showing the ap-

plicability of the lower bound over a range of distributions and quantities of data.

4.1 Cramer Rao Bound

The Cramer Rao Bound (CRB) provides a lower bound on the variance of Likelihood

estimated parameters. This bound can be applied to the Likelihood function of equation

(27) giving an estimate of the stability of the Q parameters:

∂2 lnL
∂Qi∂Qj

≥ C−1
ij (46)

where C−1
ij is the inverse covariance between quantities Qi and Qj. Computing the

first and second order derivatives gives:

∂ lnL
∂Qj

=
∑

X

P (X|j)HX
∑

k P (X|k)Qk

− 1 (47)

∂2 lnL
∂Qi∂Qj

=
∑

X

P (X|i)P (X|j)HX

[
∑

k P (X|l)Qk]2
(48)

then the similarity with Bayes Theorem can be used to give:

C−1
ij ≈

∑

X P (i|X)P (j|X)HX

QiQj

(49)
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From this the covariance matrix, C, can be computed using a standard matrix inversion

algorithm.

4.1.1 Anticipated properties

It was stated in section 3.2 that errors on measurements must account for Poisson perturba-

tions and possible ambiguities between similar patterns. Before inspecting the covariance,

C, to find if these issues are addressed, logical arguments will be used to identify two key

properties which should be seen.

Firstly, if there is no ambiguity between components the only source of variance should

be from the independent Poisson perturbations assumed to exist in the generation of

patterns. The underlying generator of patterns, R(X|k), was introduced in equation (21)

and estimated in equation (35). For a single quantity, Qk, the associated generator should

give:

Qk =
∑

X

R(X|k) (50)

where the quantity of component k is an accumulation of all patterns associated with k.

As the contribution from each pattern is assumed to be an independent Poisson quantity,

the variance on the total quantity should be the sum of the variances of the individual

parts:

σ2
unam =

∑

X

σ2
R(X|k) =

∑

X

< R(X|k) > (51)

which predicts an unambiguous variance, σ2
unam, equal to the expectation of the quan-

tity:

σ2
unam =< Qk > (52)

giving the lowest possible variance attainable due to fundamental properties of the

data.

Secondly, if there is ambiguity between patterns, i.e. there is a finite probability that

a pattern could have originated from more than one source, then logically the variances

on the related quantities should increase. This should be expected, as the possibility of

classification mistakes must grow with the possibility of confusion between patterns giving:

σ2
unam ≤ σ2

Qk
(53)

where σ2
Qk

is the variance on estimated quantity Qk.
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4.1.2 Lower bound properties

An inspection of the model component covariance, C, reveals that the CRB does have

the expected properties. These are best seen by studying just the variance terms in the

covariance matrix. The diagonal terms of the inverse covariance reduce to:

C−1
kk ≈

∑

X P (k|X)2HX

Q2
k

(54)

giving a variance estimate for a single component of:

σ2
Qk

≈ Q2
k

∑

X P (k|X)2HX

(55)

The Poisson uncertainty in the estimation of a single model quantity can be seen

by assuming that the associated component is completely unambiguous, i.e. that each

pattern, X, within the component has a posteriori probability of exactly zero or one. The

sum over patterns in the denominator then becomes equivalent to simply summing all

patterns guaranteed to be part of the component, i.e.
∑

X R(X|k) from equation (50).

This gives an unambiguous variance estimate of:

σ2
unam ≈ Q2

k

Qk

= Qk (56)

consistent with the expected property that the lowest possible variance is driven by

the Poisson processes at work on the level of individual patterns. This can only increase

as ambiguities between patterns grow, i.e. that each pattern, X, has a posteriori probabil-

ity somewhere between zero and one, consistent with the second expected property that

variances should go up with ambiguity:

Qk ≤
Q2

k
∑

X P (k|X)2HX

(57)

In summary, the CRB theoretically accounts for the sources of uncertainty assumed to

be within the data and exhibits the properties that would be expected of an estimator of

errors for model component quantities.

4.2 Class quantity covariance

The covariance, C, is an estimate of the statistical spread of individual model component

weights. What is of real interest is the statistical spread of the quantities of classes, Q,

computed via equation (25). This can be estimated using error propagation, which for the

simple case of summed independent quantities becomes:

CQ = KCK⊺ (58)
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where K is the component to class mapping matrix of equation 26.

4.3 Monte-Carlo testing

The process of applying the CRB then combining related errors together via error propa-

gation was tested as a predictor of errors on class quantities using Monte-Carlo simulated

data. Two types of error were investigated: the statistical spread of estimated quanti-

ties around mean estimates; and the total spread of quantities around true values. The

first, purely statistical test, assessed the stability of repeated estimated quantities. The

second test assessed the ability to estimate true quantities allowing for the possibility

of systematic effects caused by mismatches between modelled components and incoming

data.

The Monte-Carlo simulation developed in the previous chapter was reused to test error

predictions. Histogram components previously extracted from the 64 bin, 4096 bin and

16384 bin experiments were grouped into 3 classes each containing 3 components. Known

random quantities of each component were repeatedly combined to generate a series of new

histograms. The EM model fitting algorithm was used to fit the extracted components

to this new incoming data and estimated quantity parameters, Q, were inspected. These

quantities were summed into class quantities, Q, with the differences between true class

values and estimated values being measured over multiple independent trials.

The training histograms were constructed using uniform random real valued quantities

between 1,000 and 1,000,000. The incoming testing histograms were generated using

a range of relative quantities from 0.01 to 100 times the training amounts, consistent

with the experiments of the previous chapter. Each ratio of training to testing data was

repeatedly tested using different random quantities over 1,000 trials. At each trial the

difference between the true class quantities and estimated class quantities were divided

by the predicted standard deviation (computed by using the CRB on each components,

then error propagation to combine into class errors) and recorded in a Pull distribution as

described in section 1.4.3. If errors were predicted correctly with no bias then the standard

deviation of the Pull distribution around zero should equal unity, i.e. the mean ratio of

observed to predicted errors should be one. If the spread of the errors were predicted

correctly but with a bias then the standard deviation of the Pull distribution about the

mean should equal unity, but the standard deviation about zero would be larger, i.e.

the predicted errors would describe the repeatability of the measurements, but the mean

difference between true and estimated values would be non-zero.

Figure 11 plots the standard deviations of the Pull distributions about their means for

each histogram size and relative quantity of testing data. This plot shows measurement

repeatability, excluding any possible bias. Figure 12 plots the standard deviations of the

Pull distributions about their zero points, including the effects of any bias. If successful,

the data points within both of these plots would cluster around unity within statistical
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Figure 11: This plot compares CRB error estimates to the observed spread of estimated
quantities for varying ratios of training to testing data. The y-axis shows the ratio of
observed to predicted errors.

limits of computing the Pull distributions, i.e. +/- 0.022 from equation (6) of section

1.4.3.

4.4 Discussion

Figure 11 shows that the CRB performs well as a predictor of statistical fluctuations

in estimated quantities. For all models and quantities of data tested there was high

agreement between widths of estimated quantity distributions (around mean values) and

those predicted. However, as a predictor of errors around true quantities the CRB performs

increasingly poorly as the relative quantity of testing data grows. Figure 12 shows that

the CRB becomes unusable as a predictor of true errors once the quantity of incoming

data exceed that which was used during training.

The discrepancy between the spread of estimated quantities and residuals from true

values can be explained by systematic effects present in trained PMFs. These systematic

effects were first noted in section 3.6.2, where the goodness-of-fit function of equation (45)

had to be modified to account for modelling errors. The consequence of these systematic

effects are to bias the Likelihood estimation process, as Likelihood assumes that the model

is error free. If the CRB method is to be used for constructing error bars on summary

outputs for practical applications then the quantity of data analysed must be kept small.

This limitation is too restrictive for the large scale analysis of planetary images suggesting

either the histogram based model or error estimation approach should be reconsidered.

A histogram is the most generic form of representation for a statistical model and has

been justified with reference to the properties of planetary images. However, it is also

the least accurate form of model due to the large number of parameters which must to be

estimated, i.e. each individual bin frequency. This equally applies to their unit normalised
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Figure 12: This plot compares CRB error estimates to the observed total error from true
values on estimated quantities for varying ratios of training to testing data. The y-axis
shows the ratio of observed to predicted errors.

counterparts - the PMFs which are used as model components. A parametric alternative,

such as a Gaussian mixture model, requires far fewer parameters (mean, standard devi-

ation and scaling) per component, potentially providing far more accurate models given

the same number of data points. If a parametric model could be estimated to high levels

of accuracy then CRB error predictions may be sufficient by themselves, or at least any

systematic effects could be minimised. However, this is predicated upon finding a valid

parametric form, understanding its error characteristics and then corroborating its appro-

priateness on test data, all with no guarantee of success. Arguably, it is better to develop

an understanding of the worst-case systematic errors, allowing them to be quantified and

factored in to error predictions, rather than seeking a new model. The next chapter will

develop this latter option. For quantitative use it is sensible to provide this worst-case

error estimate, as it is less likely to lead to over-interpretation of measurements. Unless it

is shown that greater accuracy is required then there is no justification for increasing the

complexity of the model at this stage.

4.5 Summary

A standard method for estimating errors on maximum Likelihood computed parameters

has been applied to the non-parametric linear Poisson models with some success. The

repeatability of estimated parameters, i.e. spread around mean estimates, has been shown

to be effectively predicted using the CRB. However, systematic effects caused by sampling

noise during training precludes the use of the CRB alone as a predictor of errors around

true quantities.

The next chapter will provide a more comprehensive analysis, incorporating statistical

and systematic errors, to widen the scope of the linear modelling method to larger relative
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quantities of data.
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5 Systematic Error Estimation

The previous chapter provided a method for predicting statistical errors on quantities of

classes, Q, estimated for linear Poisson histogram models. It was shown that a combination

of the Cramer Rao Bound and error propagation could be used to compute a covariance

matrix, CQ, which successfully predicted the spread of estimated quantities around mean

estimated values. However, total deviations around true values were seen to be greater than

predicted due to biases caused by systematic modelling errors. This chapter will address

the issue of systematic errors in model components by analysing how sampling noise

introduced during training propagates though the EM algorithm. It will also be shown

that the same approach can be used to give an alternative to the CRB for quantifying

the effects of statistical errors from incoming data. Monte-Carlo testing will be used to

corroborate the error estimation theory for a range of quantities and distributions.

5.1 EM Error propagation

The CRB method presented in the previous chapter might be considered as a top-down

approach to error estimation though an analysis of the Likelihood function being optimised.

This chapter applies a bottom-up approach by first identifying the underlying sources of

uncertainty then approximating, to first order, the effects small changes in those sources

have on estimated quantities through the repeated application of the EM algorithm. This

approach involves the following steps:

• identify the sources of uncertainty in inputted data;

• approximate the effect those sources of uncertainty have on the EM update function;

• approximate the amplification of errors during the iterative convergence of the EM

algorithm.

These three steps will be explored in the following sections.

5.1.1 Sources of uncertainty

Two sources of uncertainty can be identified in the linear Poisson histogram models de-

scribed in chapter 3. These are:

1. Poisson sampling noise contained within exemplar training histograms;

2. and Poisson sampling noise found in incoming data under analysis.

The EM ICA training algorithm takes a set of sampled histograms as input. From

these histograms a set of linear components are extracted approximating the underlying
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data generating distributions, R(X|k), which are contaminated by sampling noise, as

explained in section 3.6.2. The normalised versions of these distributions, P (X|k), are
computed in equation (37) forming the basis of the linear model components. The noise

in these components is believed to be the cause of the biased quantity estimates observed

in the previous chapter. This will be referred to as the systematic error. The extracted

component distributions, R(X|k), will be treated as sampled histograms in the following

sections, which is permissible given their origin and Poisson behaviour. For compactness

and to emphasise their histogram nature they will be denoted:

HX|k = R(X|k) (59)

whereH is a histogram vector; X is a bin within the histogram; and k is the component

the histogram describes.

Whilst not the main focus of this chapter, statistical errors will also be included for

completeness. The sampling noise in incoming histograms are the cause of statistical

fluctuations in estimated quantities which were successfully predicted using the CRB in

the previous chapter. The bottom-up approach to error estimation in this chapter will be

shown to be consistent with the previous CRB method. The incoming data histogram will

continue to be denoted by HX .

5.1.2 Single EM step error

For the purposes of error propagation it is convenient to consider the EM update function

in terms of a single histogram bin, X, and every other bin which is not X, which will

be denoted X̄, e.g. HX̄ =
∑

Y 6=X HY . It is also convenient to consider components in a

similar notation using k and all other components, k̄, e.g. Qk̄ =
∑

l 6=k Ql. This grouping

of terms will assist in the computation of derivatives. The update function can then

be stated in terms of incoming histogram, HX , (data) and extracted components, HX|k,

(model) bins giving:

Q′
k = P (k|X)HX + P (k|X̄)HX̄ (60)

=

(

HX|kQk

HX|k+HX̄|k

)

HX

(

HX|kQk

HX|k+HX̄|k
+

HX|k̄Qk̄

HX|k̄+HX̄|k̄

) +

(

HX̄|kQk

HX|k+HX̄|k

)

HX̄
(

HX̄|kQk

HX|k+HX̄|k
+

HX̄|k̄Qk̄

HX|k̄+HX̄|k̄

) (61)

where Q′ is the updated quantity; and Q is the previous quantity. Uncertainty from

the two sources of error can be propagated through this update function by considering

how small changes in the inputs affect the estimated vector of quantities. As the two

sources are independent their contributions to the covariance can be derived separately

then summed:

87



CEMStep = Cdata +Cmodel (62)

Cij(data) =
∑

X

[(

∂Q′
i

∂HX

)(

∂Q′
j

∂HX

)

σ2
HX

]

(63)

Cij(model) =
∑

X

[

∑

k

(

∂Q′
i

∂HX|k

)(

∂Q′
j

∂HX|k

)

σ2
HX|k

]

(64)

where Cdata is the statistical contribution from the incoming histogram data; and

Cmodel is the systematic contribution from the training exemplar histograms used to con-

struct the component models.

The statistical contribution is straightforward giving:

Cij(data) =
∑

X

P (i|X)P (j|X)HX (65)

In contrast, the systematic contribution involves relatively complex derivatives and

is best approached in parts. The derivative of a quantity with respect to an exemplar

histogram bin can be divided into two independent terms:

∂Q′
j

∂HX|k
=

∂P (j|X)HX

∂HX|k
+

∂P (j|X̄)HX̄

∂HX|k
(66)

Defining the total quantity of training data for component k as Tk = HX|k +HX̄|k, in

the cases where j = k the two terms are given by

∂P (k|X)HX

∂HX|k
=

(

HX|kQk

Tk
+

HX|k̄Qk̄

Tk̄

)

P (X̄|k)Qk

Tk
−

(

HX|kQk

Tk

)

P (X̄|k)Qk

Tk

(

HX|kQk

Tk
+

HX|k̄Qk̄

Tk̄

)2 HX

=
P (X|k̄)Qk̄P (X̄|k)QkHX

Tk[P (X|k)Qk + P (X|k̄)Qk̄]
2
× P (X|k)

P (X|k)

=
P (k|X)P (k̄|X)P (X̄|k)HX

TkP (X|k) (67)

and

∂P (k|X̄)HX̄

∂HX|k
=

−
(

HX̄|kQk

Tk
+

HX̄|k̄Qk̄

Tk̄

)

P (X̄|k)Qk

Tk
+
(

HX̄|kQk

Tk

)

P (X̄|k)Qk

Tk

(

HX̄|kQk

Tk
+

HX̄|k̄Qk̄

Tk̄

)2 HX̄

= − HX̄|k̄Qk̄P (X̄|k)QkHX̄

Tk̄Tk[P (X̄|k)Qk + P (X̄|k̄)Qk̄]
2

= −P (k̄|X̄)P (k|X̄)HX̄

Tk

(68)
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giving
∂Q′

k

∂HX|k
=

P (k|X)P (k̄|X)P (X̄|k)HX

TkP (X|k) − P (k̄|X̄)P (k|X̄)HX̄

Tk

(69)

In the case where j 6= k the same terms become

∂P (j|X)HX

∂HX|k
=

−
(

HX|jQj

Tj

)

P (X̄|k)Qk

Tk

(

HX|kQk

Tk
+

HX|k̄Qk̄

Tk̄

)2HX

= − P (X|j)QjP (X̄|k)QkHX

Tk[P (X|k)Qk + P (X|k̄)Qk̄]
2
× P (X|k)

P (X|k)

= −P (j|X)P (k|X)P (X̄|k)HX

TkP (X|k) (70)

and
∂P (j|X̄)HX̄

∂HX|k
=

P (X̄|j)QjP (X̄|k)QkHX̄

Qk[P (X̄|k)Qk + P (X̄|k̄)Qk̄]
2

=
P (j|X̄)P (k|X̄)HX̄

Qk

(71)

giving

∂Q′
j

∂HX|k
=

P (j|X̄)P (k|X̄)HX̄

Qk

− P (j|X)P (k|X)P (X̄|k)HX

TkP (X|k) (72)

Substituting these results back into the covariance calculation provides an estimate of

the error on quantities after performing a single EM step.

5.1.3 Error amplification

If the EM algorithm is seeded with the ground truth, i.e. Q is set to match the proportions

of the data generating processes which actually generated incoming data, then noise in

the model and data will cause convergence to occur some distance away from the ground

truth. Beginning at the true values for the prior quantities, an iteration of the EM update

function will cause these values to change. This error will bias the next and subsequent

estimates amplifying the initial effect, making the final error potentially much larger. In

general, the true values with which to seed the EM algorithm are not available, but the

convergence point (assuming there are no local minima) will be the same distance away

from the true values irrespective of where the algorithm started. This insight supports

a possible approach for estimation of the deviation. This section will approximate the

deviation using a convergent geometric series, and so generate a linear approximation for

the amplification process, suitable for use in error propagation.

If ∆ is a vector of quantity errors evaluated at a particular time, t, then the accumu-

lation of error from one step to the next is given by
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∆|t ≈ (∆|t−1)
T∇Q|t−1 (73)

where ∇Q is the Jacobian

∇Qij|t−1 =
∂Qi|t−1

∂∆j

(74)

The diagonal terms of the Jacobian are given by

∇Qii =
∂Qi

∂∆i

(75)

=
∑

X

P (X|i)[P (X|i)Qi + P (X |̄i)Qī]− P (X|i)2Qi

[P (X|i)Qi + P (X |̄i)Qī]2
HX (76)

where P (X|i)Qi + P (X |̄i)Qī ≈ HX giving

=
∑

X

P (X|i)HX − P (X|i)2Qi

H2
X

HX (77)

=
∑

X

P (X|i)− P (X|i)2Qi

HX

(78)

which via Bayes Theorem becomes

∇Qii =
∑

X

P (X|i)− P (X|i)P (i|X) (79)

Similar treatment gives the off-diagonal terms

∇Qij =
∂Qi

∂∆j

(80)

=
∑

X

−P (X|i)QiP (X|j)
[P (X|j)Qj + P (X|j̄)Qj̄]2

HX (81)

=
∑

X

−P (X|i)QiP (X|j)
H2

X

HX (82)

=
∑

X

−P (X|j)P (X|i)Qi

HX

(83)

i.e.

∇Qij =
∑

X

−P (X|j)P (i|X) (84)

Assuming the derivative computed at any time is approximately equal, i.e. ∂Qi|t−1

∂∆j
≈

∂Qi|t
∂∆j

, such that for all t then ∇Q|t ≈ ∇Q, then the error accumulation from the first step

onwards becomes
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∆|1 ≈ ∆|0∇Q (85)

∆|2 ≈ ∆|1∇Q ≈ ∆|0∇Q2 (86)

∆|t ≈ ∆|0∇Qt (87)

The total vector change in the quantity Q is then given by

∆ ≈
∞
∑

t=0

∆|t = ∆|0 +
∞
∑

t=1

∆|0∇Qt (88)

∆ ≈ ∆T |0
[

I+
∞
∑

t=1

∇Qt

]

= ∆T |0 [I−∇Q]−1 (89)

so that the total error amplification can be approximated by a single linear process

∆ ≈ ∆T |0A (90)

where the amplification matrix is

A = [I−∇Q]−1 (91)

Finally, the covariance matrix for the quantity vector can be given by scaling the one

step covariance by the amplification matrix:

C = A⊺CEMStepA (92)

This provides the component covariance, which can be used to compute the class

covariance, CQ using equation (58).

Whilst this formulation looks considerably different from the original CRB covariance

estimate the two are consistent. It will be shown numerically that when model error terms

are all zero the error propagation version described above produces equivalent results to

the CRB version (figure 15). Importantly, this confirms that the approach taken provides

an appropriate approximation of the EM amplification effect.

5.2 Monte-Carlo testing

Tests were performed to ensure that the new error predictions could successfully estimate

measurement errors, appropriately accounting for both statistical and systematic effects.

Tests were also performed to confirm that the error propagation approach to computing

the statistical component of the error was equivalent to the previous CRB version.
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Figure 13: This plot compares total error estimates, incorporating both systematic and
statistical sources of uncertainty, with observed errors around true values for varying ratios
of training to testing data. The y-axis shows the ratio of observed to predicted errors.
Note the slight over-estimated errors at 0.01.

To ensure consistency with previous experiments the histograms, components, classes

and quantities used in the previous chapter (section 4.3) were reused following the same

methodology. The experiments conducted previously were repeated for the error propaga-

tion approach, first including both statistical and systematic error predictions, then only

including the statistical errors.

The ratio of observed to predicted total errors (stat + sys) can be seen in figure

13, which can be directly compared to figure 12 of chapter 4. The change in relative

contributions from statistical and systematic effects to the total error as the ratio of

training to testing data increases can be seen in figure 14. Finally, the relationship between

statistical errors computed using the CRB verses the same errors computed using error

propagation can be seen in figure 15.

5.3 Discussion

Total errors around true quantities were successfully predicted by the bottom-up error

propagation approach. Figure 13 shows close agreement between predicted and observed

deviations from ground truth, in contrast to figure 12 from the previous chapter where the

CRB failed to account for additional errors caused by inaccuracies in model components.

The marginal over-estimation of errors at very low quantities of data might be explained by

the truncation of assumed Gaussian noise at zero, as negative estimates are not possible.

The contribution to the total error from systematic effects grows with the quantity of data

being analysed. Figure 14 shows that systematic errors grow to dominate the uncertainty

in estimated quantities when the amount of incoming data exceeds that which was used

during training. An inspection of the covariance calculations reveals that statistical errors
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Figure 14: This plot shows how contributions from statistical and systematic sources to
the total error change in proportion as the relative quantity of testing data increases. The
contribution from the statistical component is below the curve.

Figure 15: The plot shows the equivalence between the CRB predicted statistical error
and the error propagation alternative over a range of quantities.

93



grow with the square-root of estimated quantities, whereas systematic components grow

linearly.

The bottom-up approach is more complex than the CRB method, but can be seen to

be numerically equivalent for predicting statistical errors. Figure 15 confirms, over 300

trials, that errors estimated using the CRB match statistical errors computed using error

propagation on the EM algorithm. Whilst the approach presented in this chapter has a

wider domain of applicability, for applications involving small relative quantities of data

it may be preferable to implement the simpler CRB method.

The Likelihood estimation process with goodness-of-fit validation, combined with an

understanding of the statistical and systematic errors on estimated quantities, constitutes

(in theory) a completely quantitative system. The Monte-Carlo simulations conducted

during chapters 3 and 4, and those undertaken in this chapter show that the quantitative

criteria specified during the introductory chapter, section 1.6, have been fulfilled. Assum-

ing the behaviour of real data follows the properties given in section 3.2, which were the

basis of Monte-Carlo data, then the methods presented so far should be capable of making

quantitative measurements from planetary images.

It was noted in section 4.4 that a histogram model was likely to be the least accurate,

giving the worst systematic errors, due to the large number of parameters estimated during

training. This worst-case could be improved upon, given an appropriate parametric alter-

native. However, this thesis will continue to use the simple non-parametric model. But,

as a challenge to the pattern recognition and machine learning communities, a detailed

theoretical analysis of errors should be undertaken for alternative statistical models (para-

metric or otherwise). Moreover, those analyses should include empirical corroboration to

ensure that theoretically more accurate models are capable of describing the data, i.e.

they should have their own goodness-of-fit criterion and produce error predictions match-

ing observed error distributions. Some alternatives which could be investigated include

models constructed from different linear ICA algorithms (with alternative cost functions),

those which use kernel methods to address non-linearities (e.g. Kernel PCA, Gaussian

Process Latent Variable Models etc.) and those which form fixed decision boundaries

rather than data densities (e.g. SVM, Boosting, Random Forests etc.). Only with such

an understanding of errors can these alternatives meet the quantitative criteria set by this

thesis.

5.4 Summary

This chapter has explained how errors around true quantities can be predicted by consider-

ing underlying sources of error, including modelling errors caused by sampling noise during

training and incoming sampling noise from histograms being analysed. These sources of

error were propagated through the EM update function, then amplified to account for the

iterative nature of the EM algorithm. The resulting error predictions, corroborated by
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Monte-Carlo studies, have provided a sufficiently detail understanding of linear Poisson

histogram models to allow quantitative measurements to be taken from real data, assum-

ing that data behaves as expected. The remaining chapters of this thesis will work towards

applying the methods developed thus far to increasingly realistic data.
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PART 2: APPLICATION

The chapters found within this part of the thesis will: demonstrate how martian ter-

rains can be measured; show the filtering of citizen science crater data; and draw overall

conclusions.

Supporting material, including preliminary work and publications generated from this

part, include:

• P.D. Tar, N.A. Thacker, M.A. Jones and J.D. Gilmour, A Quantitative Approach

to the Analysis of Planetary Terrains, Proc. Remote Sensing and Photogrammetry

Soc. Conf., 2012

• P.D. Tar, N.A. Thacker, J.D. Gilmour and M.A. Jones, Automated Quantitative

Planetary Measurements, Proc. European Planetary Science Congress, 2013

• P.D. Tar, N.A. Thacker, Coalescence and refinement of Moon Zoo crater annotations,

Proc. European Planetary Science Congress, 2014

• P.D. Tar, N.A. Thacker, Quantification of false positives within Moon Zoo crater

annotations, Proc. European Planetary Science Congress, 2014

• P.D. Tar, N.A. Thacker, J.D. Gilmour and M.A. Jones, Automated Quantitative

Measurements and Associated Error Covariances for Planetary Image Analysis, Preprint

submitted to Advances in Space Research

• P.D. Tar, The Application of Appearance Models to Martian Impact Craters, Inter-

nal Memo, 2010-011, www.tina-vision.net

• P.D. Tar, N.A. Thacker, A Quantitative Representation for the Segmentation of

Martian Images, Internal Memo, 2011-002, www.tina-vision.net

• P.D. Tar, N.A. Thacker, Towards a Quantitative Analysis of Martian Terrains, In-

ternal Memo, 2011-005, www.tina-vision.net

• P.D. Tar, N.A. Thacker, A Connected Blob Image Representation for Poisson Linear

Models, Internal Memo, 2012-006, www.tina-vision.net
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6 Martian Terrains: BRIEF Representation

A statistical model for planetary image data based upon linearly combined histograms has

been developed over the previous chapters. An error theory has also been included for

predicting the accuracies with which model parameters can be estimated. It was argued

that these parameters could be linked to measurements sought from surface imagery, so

the estimation of parameters, and their errors, could constitute a quantitative measure-

ment system satisfying the criteria of section 1.6. However, this assumed an appropriate

encoding could be found for representing patterns within data that had the properties

stated in section 3.2. Image encoding schemes must now be investigated and their statis-

tical properties analysed to ensure that they are appropriate as input for the algorithms

described thus far.

The wide ranging science applications noted in section 1.2.2 suggest the need for a

generic method for analysing varied martian terrains. To accommodate this a texture-

based approach will be adopted allowing arbitrary terrains to be decomposed in terms of

repeating local patterns. This chapter proposes a simple representation for local image

structures which can be used to populate linear histogram models with texture informa-

tion. The representation will conveniently provide a one-to-one correspondence between

model weighting quantities and surface area measurements, from which many other mea-

surements can be derived. The performance of the representation will be examined using

synthetic martian terrain images created from real martian data. A martian terrain sim-

ulator tool will be developed allowing unlimited quantities of test data to be generated

with known ground-truths. A range of experiments will reveal the limitations of the image

encoding, resulting in a better understanding of the properties of planetary images and an

appreciation of the difficulties involved in making statistical theories operate successfully

in practice.

6.1 Local BRIEF descriptors

Several image representations were discussed in section 2.1 of the literature review pro-

viding numerous possible encodings from which histograms could be constructed. An

appropriate representation must be readily adaptable to provide small pattern vectors,

X, forming the independent Poisson histogram bins expected by the model. One such

representation is BRIEF [92], which has been shown to be effective in object matching

tasks and is scalable to small patches allowing local structures to be encoded in short

binary strings. Inspired by BRIEF, the representation adopted in this chapter is based

upon circular local image descriptors consisting of η pixel pairs selected within a ι pixel

radius. The endpoints of each pair are initially selected at random as a set of offsets

relative to the origin of the sampling disc. All subsequent descriptors use this definition

of pairs providing a deterministic way of sampling pixels from source images. From the
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Figure 16: This illustration shows an 8 bit local BRIEF descriptor constructed by com-
paring pairs of pixels within a circular patch. The origin of the patch is shifted across the
image one pixel at a time until every pixel has acted as the BRIEF descriptor’s origin.
The model histogram, HX , is populated with the frequency of occurrence of each type of
BRIEF pattern.

pixel pairs, [(α1, β1), . . . , (αη, βη)], an η-bit binary pattern is constructed, X = [x1, . . . , xη],

where a bit, xi, is set if the corresponding αi pixel is brighter than the corresponding βi

pixel by a given threshold, i.e. xi = δ(αi − βi > θ). This representation is BRIEF-like,

differing only by the introduction of a threshold which may be interpreted as a statistical

hypothesis test on the brightness difference in comparison to image noise, avoiding the

need to smooth images which entails loss in image detail. Populating a histogram then

proceeds by computing overlapping BRIEF descriptors, exhaustively covering each loca-

tion in an image by shifting the origin of the BRIEF sampling patch one pixel at a time.

Each unique pattern can be assigned to a histogram bin with the frequency of occurrence

of each pattern recorded. Figure 16 illustrates this process.

Besides the simplicity and convenience of the BRIEF encoding, there are other reasons

for believing this style of representation is appropriate for planetary terrain images. It was

shown in [93] that sets of pair-wise comparisons can be used to reconstruct an underlying

function up to a rank-order, therefore a sufficiently dense set of pixel pairs can be used

as a complete representation of local patches. Also, relative pixel comparisons discard

absolute pixel values, which in planetary images are subject to illumination effects and

local albedo, therefore the encoding gives a level of invariance and reduces the number of

patterns which must be learned. Finally, local BRIEF descriptors provide a one-to-one

mapping between model quantities, Q, and surface area measurements, as each descriptor
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can be associated with a single pixel at the origin of the circular sampling patch.

It is acknowledged that the encoding scheme selected is just one of many possibilities.

What is important is that whichever representation is used, the patterns produced have

the necessary properties for the histogram models to work correctly. The analysis of

errors in quantity estimation (section 4.1.2) implies theoretically that the performance

of a representation is determined by its ability to produce the least ambiguous patterns.

The difference between one appropriate representation6and another should only manifest

in larger or smaller errors on quantity measurements, but the quantitative criteria of

section 1.6 does not insist upon best possible accuracy. It is reasonable to first seek a

representation that can be used quantitatively, and only if it is shown later that greater

accuracy is required should effort be spent finding a more sophisticated solution.

6.2 Generating test data: Martian terrain simulator

The Monte-Carlo testing of previous chapters compared predicted errors to empirically

observed error distributions by repeating measurements over thousands of independent

trials over wide ranges of quantities. Performing such tests on martian terrain data would

require prohibitively large quantities of ground-truth. A practical and highly flexible

alternative is described below which can synthesize arbitrarily composed terrains using

samples from real martian data.

The strategy for generating large quantities of independent martian terrains with

known ground-truth can be summarised by the following points:

1. Gather large images containing examples of martian terrains;

2. Using smoothing kernels with different widths, separate the low and high frequency

spatial components of the terrain images;

3. Divide the example images into many small tiles;

4. Provide a labelled template showing the desired layout for a synthetic martian image;

5. Randomly select tiles (with replacement) for the terrain types prescribed by the

template;

6. Slightly perturb the shape of each tile through stretching;

7. Following the template, form a composite image using the tile’s high-frequency spa-

tial components;

8. Add uniform Gaussian noise to pixel values in the high-frequency image;

6An appropriate representation is one which provides independent Poisson bins which can be linearly
combined. A representation which does not provide these properties is inappropriate for the method and
should not be used at all.
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Dataset A: (0) EPS 023675 0930 (1) EPS 024889 2605 (2) EPS 024926 2525
Dataset B: (0) EPS 017810 1850 (1) EPS 019243 2550 (2) EPS 024984 2610
Dataset C: (0) EPS 023661 0931 (1) EPS 017866 2855 (2) EPS 024979 2550
Dataset D: (0) EPS 023738 0915 (1) EPS 023744 1775 (2) EPS 024927 2555
Dataset E: (0) EPS 020558 0930 (1) EPS 022543 0950 (2) EPS 024949 2440
Dataset F: (0) EPS 023767 0925 (1) EPS 024662 2555 (2) EPS 024950 1870
Dataset G: (0) EPS 017866 2855 (1) EPS 019104 1740 (2) EPS 024899 2540
Dataset H: (0) EPS 023729 0935 (1) EPS 022882 2030 (2) EPS 024991 2540
Dataset I: (0) EPS 023621 0970 (1) EPS 023676 0925 (2) EPS 024983 2160
Dataset J: (0) EPS 018948 2250 (1) EPS 024724 1760 (2) EPS 024883 1525

Table 2: HiRISE datasets used in testing

9. Following the template, form a composite image using the tile’s low-frequency spatial

components;

10. Heavily smooth the low-frequency image;

11. Add together the high and low frequency images giving the final synthetic terrain;

Combining the low and high frequency components separately minimises discontinuities

between contrasting terrains which may cause artifacts at tile boundaries. Stretching tiles

randomly by up to 10% in both x and y directions and adding additional noise ensures

each simulated terrain is unique, giving independent statistical samples.

30 martian images were taken from the HiRISE project [11] (samples can be seen in

figure 17) each of which was divided into 200 rectangular tiles providing the raw material

for the terrain simulator. An example template and resulting synthetic terrain images can

be seen in figure 18 and figure 19. The 30 HiRISE terrains were grouped into 10 triplets,

as given in table 2, so that 10 different 3-class problems could be tested.

The synthetic images are unrealistic in the respect that the types of terrains combined

are unlikely to occur adjacent to one another in genuine martian images. Also, the bound-

aries between the synthetic terrains are more distinctive than those likely to be found on

Mars. However, the underlying patterns form textures which do occur in practice. The

use of synthetic images, derived from real martian data, thus permits valid testing of the

statistical modelling method and error estimation theories.

6.3 Statistical properties of BRIEF histograms

The need to find an image encoding which satisfies the statistical properties expected

by the developed methods has been emphasised several times. Tests must be performed

on BRIEF histograms to check if those properties are fulfilled. Section 3.6.2 provided a

goodness-of-fit test to confirm that a linear model could be successfully fitted to data.

However, this goodness-of-fit only provided a single valued summary giving a mean es-

timate of the behaviour of model-data residuals. The goodness-of-fit function therefore
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Figure 17: Samples of the 30 HiRISE images used as source data for simulated martian terrains.
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Figure 18: Synthetic martian terrain generator data. Left: Terrain template image de-
termining layout of synthetic image. Middle: Composite image formed without high and
low spatial feature separation and without smoothing causing sharp discontinuities at
tile boundaries. Right: Smoothly composited image with high and low spatial features
combined separately.

Figure 19: Example of synthetic terrain following more complex boundaries than previous
figure.
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cannot be used alone to confirm that all of the statistical properties of the BRIEF en-

coding are appropriate. Instead, a correlation matrix can be estimated from N multiple

model fits allowing each residual, i.e. each pattern, to be inspected. Such a matrix can

test if individual patterns follow Poisson statistics and are independent from one another.

An m by m residual correlation matrix, ρ, with elements for each possible pair of X

patterns can be constructed to give the identity matrix under ideal conditions. If the

BRIEF encoding provides truly independent Poisson bins, as is required by the model,

then there should be no correlations giving expected off-diagonal terms of zero. Expected

diagonal terms of unity can be achieved by normalising each residual to its predicted

error. Significant variations away from the identity matrix would be evidence that a

representation did not have the necessary properties stated in section 3.2. The elements

of the correlation matrix can be computed using:

ρXY =
1

N

N
∑

r=1

δXrδY r + covdof (δXr, δY r)

σδXr
σδY r

(93)

where δXr =
√

HX(r) −
√

MX(r) is the residual between data and model at bin X for

sample r, consistent with equation (45); σδXr
=

√

1
4
+ σ2√

MX(r)

is the predicted standard

deviation of the residual, also consistent with equation (45); and covdof (δXr, δY r) is a degree

of freedom correction. The correction term is required as the estimation of quantities,

Q, during model fitting minimises residuals, removing additional variation which would

otherwise be observed if the true values of Q were used. The degree of freedom correction

reintroduces this missing variance and can be computed using error propagation:

covdof (δX , δY ) =
∑

i

∑

j

(

∂δX
∂Qi

)(

∂δY
∂Qj

)

cov(Qi,Qj) (94)

where

∂δX
∂Qi

=
P (X|i)
2
√
MX

(95)

This is a generalisation of the method used in [153] where covariances from eigenvector

shape models required correction.

Measuring significant changes away from the ideal identity matrix requires knowledge

of the stability of the correlation coefficients. Figure 20 confirms the ideal correlation

coefficients using Monte-Carlo data with 9 components and 64 bins. The correlation

matrix is shown as a 2D plot, with grey levels indicating coefficient values. This figure

also gives the ideal probability distributions of the coefficients when computed from 1,000

Monte-Carlo samples, which can be compared to future correlation matrices computed

from equal samples of BRIEF patterns.
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Figure 20: Left: distribution of diagonal and off-diagonal correlation coefficients when
computed using 1,000 samples for use as a base-line against which future correlations can
be compared. Right: Monte-Carlo correlation matrix summary showing diagonal terms
near unity and off-diagonal terms near zero.

6.4 Synthetic terrain testing

Tests were conducted using synthetic images to assess the estimation method’s ability

to make surface area measurements when images were composed from different terrain

classes. Before this could be achieved model components for each class of terrain were

extracted from histograms created using a range of BRIEF parameters. The sampling

circle size parameter, ι, was held fixed at 8 pixels, whilst the number of pixel pairs, η, was

tested at 8, 10 and 12 to give increasing spatial resolutions. The brightness comparison

threshold, θ, was tested at values of 3, 5 and 7 times the simulated image noise. Models of

the 30 HiRISE textures were created for each set of BRIEF parameters. The models were

derived from synthetic images 2048x4096 pixels in size. A 10 row by 10 column rectangular

grid was used to divide each image into 100 regions, with individual BRIEF histograms

created per region. These histograms were fed into the EM ICA training algorithm, just

as Monte-Carlo histograms were used previously in chapter 4.3.

Figure 21 shows a per-terrain breakdown of the model selection process for BRIEF pa-

rameters of 8 pixel pairs with a threshold of 5, with model convergence for other parameters

following similar curves. Figures 22 and 23 summarise the model selection process for other

parameters by plotting mean curves for ease of comparison. In all cases the best fitting

models were achieved by reaching approximately 6 components. These figures should be

compared to figure 5 of chapter 3 which shows model selection on Monte-Carlo histogram

data when ideal data is provided.

To test surface area measurements the trained models, using 6 components per class,

were fitted to BRIEF histograms sampled from test images created using 3 strips of dif-

ferent quantities of each terrain following the 10 groups listed in table 2. Each group was
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Figure 21: This plot shows the convergence of the goodness-of-fit function when used to
select an optimal number of model components to describe the distribution of BRIEF
descriptors. Each curve represents a terrain from table 2. The BRIEF parameters used
were 8 pixel pairs within an 8 pixel radius with a threshold of 5 times the image noise.
This plot is indicative of other BRIEF parameters.

tested using images with dimensions of 2048x6144, 2048x12288, and 2048x24576 pixels.

100 independent images for each group and quantity of data were generated, with esti-

mated class quantities, Q, compared to ground truth surface areas at each trial. Predicted

errors were compared to observed deviations from ground truth and recorded using Pull

distributions, consistent with previous Monte-Carlo testing. The proportional size of the

errors in comparison to the estimated areas were also recorded to test how accurately

surface areas could be measured. Figure 24 shows a per-terrain breakdown of predicted

to observed error agreements for BRIEF parameters of 8 pixel pairs with a threshold of

5 over a range of image sizes. This figure also summarises error agreements over other

parameters. The proportional size of the predicted errors are summarised for different

parameters in figure 25.

Correlation matrices were generated from a subset of the data (with fixed parameters

of 8 pixel pairs with a threshold of 5 times image noise tested on images of 2048x12288

pixels) generated from 1,000 model fits allowing direct comparison to Monte-Carlo results.

Results from these tests are summarised in figure 26.

6.5 Discussion

The tests performed using BRIEF histograms yielded mixed results. The shapes of plotted

curves were generally consistent with what would be expected from theory. However, the

overall scale of many curves suggest that the BRIEF representation is not an appropriate
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Figure 22: This plot shows the convergence of the goodness-of-fit function across a range of
BRIEF parameters. Each curve represents the mean curve of 30 HiRISE terrains modelled
using 8, 10 and 12 pixel pairs. The threshold was fixed at 5 time the image noise.

Figure 23: This plot shows the convergence of the goodness-of-fit function across a range of
BRIEF parameters. Each curve represents the mean curve of 30 HiRISE terrains modelled
using thresholds of 3, 5 and 7 times image noise. The number of pixel pairs was held fixed
at 8.
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Figure 24: These plots show the agreement between predicted and observed surface area
measurement errors over a range of parameters, with the ratio of observed to predicted
errors indicated on the y-axis. Left: A breakdown of all terrains’ error agreements as
a function of image size, where the width of each image was held fixed at 2048 pixels.
Centre: The mean error agreements as a function of the number of pixel pairs in the
BRIEF representation. Right: The mean error agreements as a function of the BRIEF
threshold.

Figure 25: These plots show the mean sizes of the predicted surface area measurement
errors as a function of parameters. Left: the percentage area measurement error as a
function of image size. Centre: the percentage area measurement error as a function of
the number of BRIEF pixel pairs. Right: the percentage area measurement error as a
function of the BRIEF threshold.
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Figure 26: Left: distribution of diagonal and off-diagonal correlation coefficients when
computed using 1,000 samples of BRIEF histograms. Right: BRIEF Correlation matrix
summary showing diagonal terms above unity and off-diagonal terms with greater than
expected spread around zero.

Figure 27: This plots shows the link between poor model fits when fitting to new incoming
data and the quantity of data which is uninformative. Each point represents a model fit
to a different terrain using BRIEF with 8 pixel pairs and a threshold of 5 times image
noise.
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encoding scheme for use as input into linear Poisson histogram models. The general be-

haviour of the histograms will be discussed first, followed by an analysis of the problematic

scaling of results.

6.5.1 Behaviour consistent with theory

During training, the goodness-of-fit improved monotonically as the number of extracted

components increased. This behaviour was consistent across all terrain types as seen in

figure 21. This was to be expected, as each additional component increased the model’s

ability to describe the data and therefore reduced the model-data residuals. Similar results

were observed for other BRIEF parameters, with only marginally different convergence

rates.

During testing of area measurements the predicted to observed error ratios remained

consistent at fixed (yet biased) values for each terrain across different quantities of data,

as seen in figure 24. This showed that the statistical and systematic components of the

predicted errors, which are both functions of data quantity, produced self-consistent (yet

biased) estimates as their relative contributions to total errors changed. This general be-

haviour was to be expected and had been observed in Monte-Carlo tests as seen previously

in figures 11 and 13.

The average size of the predicted errors changed as a function of the quantity of data

and BRIEF parameters as seen in figure 25. As the quantity of data (image height)

increased the proportional error decreased consistent with the proportional reduction in

statistical error noted in section 5.3 which stated that statistical errors grew with the

square-root of quantities and systematic errors grew linearly, i.e. giving an overall sub-

linear growth. The average size of predicted errors also decreased as the number of pixel

pairs increased consistent with the theory that errors are smaller for less ambiguous pat-

terns, as explained in section 4.1.2. As the number of pixel pairs increased more informa-

tion was encoded about local structure therefore each pattern became more discriminating,

i.e. less ambiguous. Finally, average errors increased as the BRIEF threshold increased,

again consistent with levels of ambiguity with larger thresholds being less discriminating

of subtle changes in pixel grey levels.

Despite the general behaviour of plots following what would be expected from theory,

the overall scale of some plots highlighted issues: the goodness-of-fits and error agreement

ratios should have reached unity, but they did not. These issues are discussed next.

6.5.2 Problematic behaviour

The ICA training algorithm was incapable of extracting sufficiently descriptive linear com-

ponents to achieve model goodness-of-fits of unity. Extrapolating the model selection

curves of figure 21 suggests that extracting a greater number of components would be of
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no benefit. The apparent floor in attainable model fits could have been caused by model-

data residuals quantised above the level predicted by the counting of individual Poisson

events. This might be explained if BRIEF descriptors systematically appeared in pairs, or

larger multiples, causing underlying Poisson events to be double counted. Further evidence

of a double counting effect can be seen in the correlation matrices, summarised in figure

26 (in comparison to the expected correlations of figure 20), which reveal diagonal terms

significantly above 1. The larger than expected diagonal terms suggest that individual

pattern events are being scaled upwards by some unknown factor consistent with Poisson

events being recorded multiple times. Off-diagonal terms, some of which were significantly

away from zero, also suggest that correlated clusters of patterns were being generated in

batches. The possible double counting of events is not addressed in the statistical model,

nor are the correlations between patterns. These violations of model assumptions are a

likely cause of error predictions failing to match errors observed empirically, as seen in

figure 24.

It was argued in section 3.1.1 that patterns within planetary images are likely to follow

Poisson statistics due to the physical systems from which they arise, e.g. it is reasonable

to assume that impact events which cause craters are Poisson distributed, with some mean

number of impacts expected per unit of time. However, it may have been näıve to believe

that fixed-sized overlapping BRIEF descriptors would trivially correspond to the patterns

produced through these processes. Indeed, the evidence suggests that if Poisson events are

behind the generation of the data then individual events do not correspond to individual

BRIEF samples, but rather they correspond to groups of related samples. This obser-

vation, if correct, explains discrepancies between predictions and observations, and could

provide the insights needed to design an improved image encoding better approximating

independent Poisson events. An improved representation would be one that grouped to-

gether all patterns related to individual events so that they could be counted individually,

mitigating the problems described above.

Evidence of further model assumption violations may be seen in uninformative data.

Featureless parts of images containing empty space results in the generation of large num-

bers of BRIEF descriptors with all bits set to zero. An increase in uninformative de-

scriptors coincide with increasingly poor goodness-of-fits when models are fitted to new

incoming data, as seen in figure 27. The counting of non-features, i.e. uninformative de-

scriptors, cannot easily be attributed to Poisson events. Also, as uninformative data may

appear in almost all terrains it is difficult to attribute uninformative descriptors to appro-

priate classes raising some difficult philosophical questions. For example, should empty

space between dunes be counted as part of the surface area of the dunes, or should such

space be attributed to some other background classification? Or, at a sparse boundary

between dunes and boulders, at which point should the empty space around the boundary

be attributed to the boulder field rather than the dune field? It may be beneficial to
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exclude uninformative regions in general analysis tasks, leaving their interpretation to the

needs of specific applications.

6.6 Summary

An image encoding based upon local BRIEF descriptors was proposed for converting im-

age data into pattern histograms suitable for linear Poisson histogram models. It was

hoped that each BRIEF pattern, X, would behave as an independent Poisson event at-

tributable to individual image locations so that estimated model quantities could be used

as surface area measurements. Synthetic martian images were generated in large quantities

to test area estimates and predicted errors against known ground truths and empirically

observed measurement repeatability. Unfortunately the method failed because of the en-

coding’s inability to capture the underlying Poisson events believed to be responsible for

the generation of the data. It could be argued that the data generators are not Poisson

and/or not linear, but this conclusion would require the statistical modelling methods

developed to be abandoned. Instead it will be assumed that linearly combined Poisson

processes can be used to describe martian image data and the insights gained will be used

to develop an improved encoding better approximating the required properties.
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7 Martian Terrains: Poisson Blob Representation

The techniques for modelling pattern distributions and computing errors presented in

chapters 3, 4 and 5 were developed under the assumptions that histograms are linearly

composed, with independent Poisson bins. The previous chapter suggested the use of

a fixed sized BRIEF-like representation for translating images into such histograms so

the techniques could be applied to make surface area measurements for martian terrains.

Unfortunately, the simple BRIEF-like representation proved ineffective, leading to suspi-

cions that spatial correlations were not being correctly accounted for, thereby violating

the assumption of independence.

An alternative representation will be presented in this chapter which groups related

image data points together. This representation will combine neigbouring BRIEF-like

patterns, forming connected ‘blobs’, better approximating independent Poisson events.

However, as blobs can be irregular in shape and size it will be seen that the new encoding

requires additional interpretation to convert model quantities, Q, into meaningful area

measurements with adjusted error estimates. Two alternative approaches to the calcu-

lation of area covariances will be presented then both areas and error estimates will be

tested using Monte-Carlo simulated blob histograms and simulated martian images.

7.1 Blobs and Areas

In the previous chapter X bins represented fixed sized BRIEF patterns taken at every

image location, with each location being treated as an individual Poisson event. This

resulted in a convenient one-to-one correspondence between estimated model quantities, Q

and physical surface areas. However, evidence was observed that BRIEF patterns came in

clusters, suggesting that Poisson processes operating on a higher level were double counted

in the form of multiple similar X and correlated X patterns. The proposed Poisson blob

representation replaces each fixed size X with groups of connected image points sharing

a common BRIEF pattern, thereby removing the double counting of individual patterns

and reducing the magnitude of correlations between them, but not necessarily removing

the correlations entirely. Entries are then made in histogram bins on a blob-by-blob basis.

As blobs encompass multiple image locations the representation, X = {π, γ}, must encode

two pieces of information: π, the BRIEF descriptor common to all image locations within

the blob; and γ, a size band indicating the size of the blob. The size bands are organised

into logarithmic (base-2) bins spanning a large dynamic range of possible blob sizes whilst

keeping the pattern space reasonably small. Figure 28 illustrates how image pixels are

converted into Poisson blobs. In addition to the X encoding, the location and precise size

(in pixels) of each blob can be recorded separately for use in area calculations. Finally,

to remove problems associated with uninformative space all patterns containing BRIEF

descriptors with all bits set to zero are excluded.
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Figure 28: The Poisson blob representation groups together adjacent image locations which
share a common BRIEF pattern. Here, blob X = {π, γ} contains a chain of correlated
locations sharing the BRIEF pattern π = 011010 placed into size bin γ = 3. Blob Y is a
large connected region of empty space with pattern π = 000000 in size band γ = 15.

The model component weighting quantities, Q, must now be interpreted as blob counts

rather than surface areas. The estimated areas, A, covered by component k then becomes:

Ak =
∑

X

P (k|X)aX (96)

aX =
∑

d

adδ(Xd = X) (97)

where Ak is the area estimate for component k; aX is the total area covered by blobs

of type X; d is a specific blob (with pattern Xd); ad is the specific area of blob d; and

δ(Xd = X) is 1 if the pattern at d matches X and is zero otherwise. These per-component

area estimates can be combined, analogously to quantities in equation (25), to give total

class area estimates:

A = KA (98)

where K is the mapping matrix between components and their classes.
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7.2 Area Errors

Chapter 5 provided a covariance matrix, C, for estimated quantities, Q, from which an

area covariance matrix, CA, can be computed for estimated areas, A. Two methods are

considered:

• dividing the covariance, C, across individual area terms then re-accumulating an

area covariance by scaling the individual terms;

• and applying conventional error propagation to the sources of uncertainty (estimates

of Q and blob sizes aX) found within area estimation calculations.

Once known, the component area covariances can be combined, analogously to quantity

covariances in equation (58), to give total class area covariances:

CA = KCAK
⊺ (99)

providing the total predicted accuracies on terrain surface area measurements. The

approaches to computing CA are described in the next two sections.

7.2.1 Per X bin covariance scaling approach

As explain in chapter 5, the covariance for quantities is composed of statistical and sys-

tematic errors, Cdata and Cmodel. The statistical errors come from sampling fluctuations

in incoming data and systematic errors are due to errors in estimated model compo-

nents. As a consequence, statistical errors are independent over individual blobs, while

systematic model errors are identical between blobs of the same X. In terms of area

contributions, the statistical effects can be viewed as operating as a sum over individual

blobs:
∑

d P (k|X)ad; whereas the systematic effects can be viewed as operating as a sum

over blob types:
∑

X P (k|X)aX .

For systematic errors, logically it must be possible to write the total covariance as a

sum over X:

Cmodel =
∑

X

CX,model (100)

And for statistical errors, it must be possible to write the total covariance as a sum

over d:

Cdata =
∑

d

Cd,data (101)

The challenge is then to estimate from Cmodel and Cdata the term-by-term contribu-

tions, CX,model and Cd,data, and how much they should be scaled by.
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Beginning with the systematic error, CX,model can be interpreted as the contribution

to the covariances arising due to all equivalent X patterns and giving rise to the contri-

bution P (k|X)HX to total Qk. We can write this as a measurement and covariance for

each contribution:

QX = HXPX ±CX,model (102)

where PX is a vector of posterior probabilities {P (k = 1|X), P (k = 2|X), . . . , P (k =

n|X)}⊺. By simple scaling, the contributions to the total area P (k|X)aX must therefore

have an associated covariance of CX,model(aX/HX)
2.

It follows that the total covariance of systematic errors on A is the sum of the errors

on each independent area estimate, given by:

CA,model =
∑

X

a2XCX,model

H2
X

(103)

While the statistical errors are given by:

Cdata =
∑

X

CX,data =
∑

d

CXd,data

HXd

(104)

which is the uncertainty in the final area estimate associated with each individual blob,

i.e.

Qd = PX ±Cdata/HXd
(105)

and so continuing as above

CA,data =
∑

d

a2dCXd,data

HXd

(106)

Both components of the error can now be recombine to estimate the total uncertainty

on areas A:

CA = CA,data +CA,model (107)

The above expressions can be tested for consistency by checking the covariance esti-

mates for the case when blobs are pixel, in which case C should equal CA. So, letting

aX = HX and ad = 1:

CA,model =
∑

X

H2
XCX,model

H2
X

=
∑

X

CX,model = Cmodel (108)

and
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CA,data =
∑

d

CXd,data

HXd

=
∑

X

CX,data = Cdata (109)

as expected.

7.2.2 Error propagation approach

To apply error propagation the area measurement calculation of equation (96) can be

rewritten using Bayes Theorem:

Ak =
∑

X

(

P (X|k)Qk

MX

)

aX (110)

= Qk

∑

X

P (X|k)aX
MX

where the sources of errors are noise in Q and noise in areas aX ; P (X|k) is the prob-

ability of X given histogram component k; and MX is the modelled frequency of X. The

uncertainties stemming from elements of Q are expected to be the dominant source of

error, as the total blob areas for each X, aX , should be relatively stable given the large

number of blobs within an image. However, at very low sample sizes this additional er-

ror may become noticeable. Error propagation can be applied giving an area covariance

including both sources:

CA = ∇QC∇T
Q +

∑

X

[∇aX ⊗∇T
aX
]σ2

aX
(111)

where ∇Q is the matrix of partial derivatives:

∇Q,ij =
∂Ai

∂Qj

(112)

and ∇aX is the vector of derivatives:

∇aX ,k =
∂Ak

∂aX
(113)

For the case when i = j is:

∇Q,ij =
∑

X

P (X|j)aX
M(X)

(114)

=
∑

X

P (X|j)Q(j)aX
MXQj

=
∑

X

P (j|X)aX
Qj

(115)

=
Aj

Qj

(116)
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and is zero for i 6= j forming a diagonal matrix. The other terms are given by:

∇aX ,k = Qk

P (X|k)
MX

(117)

= P (k|X)

The variance on an aX can be estimated by summing the individual independent blob

variances:

σ2
aX

= HXσ
2
aXd

=
∑

d,δ(Xd=X)

(ad− < aXd >)2 (118)

which can be done as above using sample variances. Alternatively, assuming a uniform

size-band distribution (which may be justified if the logarithmic size bands are narrow

enough to be locally flat) the blob variances can be computed using:

σ2
aXd

=
1

12
(γXl

− γXu
)2 (119)

where γXl
and γXu

are the lower and upper bounds of the size bin γ for blob type X.

7.3 Monte-Carlo and synthetic terrain testing

The additional theory required to convert model quantities into terrain surface area mea-

surements was first tested using Monte-Carlo generated blob histograms. The Monte-Carlo

histogram generating methods of chapter 4 were amended to create histogram bin frequen-

cies with accompanying blobs. The size fields, γ, and blob areas, ad, were set to cover

a range of possible conditions: blobs of fixed finite sizes; blobs of uniformly distributed

random sizes; and blobs with random size distributions as a function of X. Fixed finite

blob sizes of 1 and 10 pixels were tested; random blob sizes uniformly selected between 1

and 10 were tested; and X specific random blob sizes between 1 to 10, 11 to 20, etc. for

increasing X were tested.

The blob histograms were created with 9 components spread over 64 pattern bins, using

the same hand-coded distributions as found in chapter 4. Different quantities of training

and testing data were used, with predicted errors repeatedly computed over 1,000 trials

per experiment. The per-X covariance method (section 7.2.1) and the error propagation

method (section 7.2.2) for computing errors were both tested. Pull distributions were used,

consistent with previous Monte-Carlo experiments, to test agreement between observed

and predicted area errors for the different ratios of training and testing data.

Monte-Carlo experiments were also conducted using the error propagation method

(section 7.2.2) to test the relative contributions and stabilities of the sources of uncertainty

at very low sample statistics, i.e. uncertainties in quantities and uncertainties in blob sizes.

The effects of blob size uncertainties were tested by predicting errors with and without
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Figure 29: This plot shows the agreement between observed and predicted blob Monte-
Carlo area errors over a range of quantities using the per X covariance method and the
error propagation method. Under all circumstances (fixed sized blobs, random sized blobs)
the error propagation method produces good predictions. However, the per X covariance
method fails to produce good predictions when random blob sizes are simulated.

blob size variance contributions, i.e. with noise only propagated from Q and with noise

propagated from both Q and blob areas, aX .

Once corroborated in Monte-Carlo, blob histograms were sampled from HiRISE data.

To provide continuity of testing the synthetic martian terrain image experiments of the

previous chapter (section 6.4) were repeated using the Poisson Blob representation. To

allow a direct comparison to be made the tests were conducted under the same condi-

tions and parameter setting as BRIEF. Area covariances were computed using the error

propagation method of section 7.2.2 and ground-truth areas were amended to exclude all

uninformative regions. The improvements in model selection and error predictions were

reported using the same methods as earlier.

7.4 Discussion

This discussion will be divided into three parts covering: the additional theory required

to convert quantity estimates into area measurements; the improvements gained through

the use of Poisson blobs rather than BRIEF; and the limitations of the improved image

encoding.
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Figure 30: These plots show the negligible, yet systematic, underestimation of area errors
when blob size uncertainty is omitted from the error propagation approach. Left: errors
without random blob size contribution. Right: errors with random blob size contribution.

Figure 31: This plot shows the convergence of the goodness-of-fit function when used to
select an optimal number of model components to describe the distribution of Poisson
blobs. Each curve represents a terrain from table 2. The underlying BRIEF parameters
used were 8 pixel pairs within an 8 pixel radius with a threshold of 5 times the image
noise. This plot is indicative of other parameters. See figure 21 for comparison with
BRIEF encoding.
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Figure 32: This plot shows the convergence of the goodness-of-fit function across a range
of parameters. Each curve represents the mean curve of 30 HiRISE terrains modelled
using 8, 10 and 12 pixel pairs. The threshold was fixed at 5 time the image noise. See
figure 22 for comparison with BRIEF encoding.

Figure 33: This plot shows the convergence of the goodness-of-fit function across a range
of parameters. Each curve represents the mean curve of 30 HiRISE terrains modelled
using thresholds of 3, 5 and 7 times image noise. The number of pixel pairs was held fixed
at 8. See figure 23 for comparison with BRIEF encoding.
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Figure 34: These plots show the agreement between predicted and observed surface area
measurement errors over a range of parameters, with the ratio of observed to predicted
errors indicated on the y-axis. Left: A breakdown of all terrains’ error agreements as
a function of image size, where the width of each image was held fixed at 2048 pixels.
Centre: The mean error agreements as a function of the number of pixel pairs. Right:
The mean error agreements as a function of threshold. See figure 24 for comparison with
BRIEF encoding.

Figure 35: These plots show the mean sizes of the predicted surface area measurement
errors as a function of parameters. Left: the percentage area measurement error as a
function of image size. Centre: the percentage area measurement error as a function of
the number of pixel pairs. Right: the percentage area measurement error as a function of
threshold. See figure 25 for comparison with BRIEF encoding.
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Figure 36: Left: distribution of diagonal and off-diagonal correlation coefficients when
computed using 1,000 samples of Poisson blob histograms. Right: Correlation matrix
summary showing diagonal terms close to unity and off-diagonal terms with slightly greater
than expected spread around zero. See figure 26 for comparison with BRIEF encoding.

Figure 37: This plots shows the link between model fits when fitting to new incoming data
and the quantity of data which is uninformative. The curves compare the original BRIEF
and Poisson blob representations. Each point represents a model fit to a different terrain
using 8 pixel pairs and a threshold of 5 times image noise.
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7.4.1 Area measurements from blobs

The per-X area covariance method (section 7.2.1) only worked in limited cases, whereas the

error propagation method (section 7.2.2) worked generally. Monte-Carlo blob histograms

showed that the per-X covariance scaling method for area error predictions failed in the

most realistic test, that of random blob sizes as a function of X. This can be seen on the

light blue curve in figure 29. This failure in the method, despite the logical arguments for

the approach, might be explained by missing terms which should be present in the per-X

covariances. The approach to computing the per-X covariances, CX , took a top-down

short-cut by assuming it was valid to divide the total covariance over the independent

area terms. Correctly derived per-X covariances from the bottom-up, following a scheme

similar to that used in section 5.1.2, may have proven more effective. Despite this, in many

cases the approach did work, but can not be guaranteed for general use. In contrast, the

error propagation approach performed well under all circumstances, hence its adoption in

later tests.

The Monte-Carlo blob testing at very low sample statistics was primarily intended

to observe the importance of blob area error contributions. However, this testing also

revealed the breakdown of the error theory when quantities of blobs dropped below a

limit7 which can be seen in figure 30. Conveniently this is a safe mode of failure, as the

predicted errors were overestimated at low samples, avoiding the possibility of accidental

over-interpretation of results. This overestimation can be explain as predicted area errors

are assumed to be Gaussian, with tails which may straddle zero. When low quantities are

observed in practice they are truncated at zero, making true error distributions narrower

than predicted.

The effect of the random spread of individual blob sizes within any given X bin is

shown to be negligible in figure 30. Here, the effect of omitting this additional variance

from the area error estimates (
∑

X [∇aX ⊗ ∇T
aX
]σ2

aX
) can be seen to give a systematic

underestimate of error in comparison to the corresponding blob quantity error. However,

this error is within the noise of the ability to measure the effect and is only evident from its

systematic nature (with the red diamond area points always being above the blue square

quantity points).

7.4.2 Poisson blob improvements

Trained models of martian images constructed using Poisson blobs proved to be far more

descriptive than those produced using BRIEF. During model selection, the goodness-of-

fit approximately reached unity for all terrains using between 3 to 8 components. A

comparison between figure 21 (BREIF) and figure 31 (Poisson blob) shows that where

BRIEF was limited to goodness-of-fits of around 5, blob fits could reach the ideal score

7The 400 sample limit is likely a function of the 64 pattern bins. This limit will be different for other
datasets depending upon the complexity of the model and number of patterns.
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of unity suggesting that the the double counting effects previously observed had been

significantly reduced. Similar results were obtained using a range of parameters, as seen

in figures 32 and 33.

Surface area measurements were computed with predicted errors typically between a

factor of 2 to 3 of observed errors across most terrains and parameters. Whilst Poisson blob

error predictions continue to be underestimated, they are an improvement upon BRIEF

error predictions which were typically underestimated by between a factor of 3 to 10, as

seen by comparing figure 34 (Poisson blob) with figure 24 (BRIEF). Evidence also shows

that the improved image encoding scheme produces less ambiguous patterns, as across

all parameters the percentage measurement errors on average were less than 1 percent in

contrast to BRIEF which gave a range of errors up to 10 percent or greater, depending

upon the parameters used. This can be seen by comparing figure 35 (Poisson blob) with

figure 25 (BRIEF). This improvement in accuracy could be attributed to the removal

of ambiguity resulting from the exclusion of uninformative regions, as seen in figure 37.

It may also be attributed to the increased amount of information encoded about image

content via the addition of a size field allowing groups of similar BRIEF patterns to be

differentiated based upon their local abundance.

An inspection of the correlation matrices and distribution of correlation coefficients

shows another improvement, with diagonal and off-diagonal terms moving closer to what

would be expected if model assumptions were not being violated. The spread of both terms

is smaller than for BRIEF, especially the diagonal terms as seen by comparing figure 36

(Poisson blob) with figure 26. Whilst all correlations have not been completely removed

it is clear that the Poisson blob representation is much closer in behaviour to what is

required by the modelling method than the BRIEF alternative.

7.4.3 Poisson blob limitations

Despite the many improvements, on average all terrain surface area measurements were

less accurate than theory would predicted by a factor of 2 to 3. The residual correlations

between blobs were the likely cause of these discrepancies, suggesting that there was

still some form of Poisson event double counting occurring. Figure 38 illustrates this

problem by representing blob types as grey levels positioned relative to underlying image

features. It can be seen in this figure that ‘echoes’ of features occur in the form of similarly

shaped adjacent blobs, always occurring together in a spatially correlated manner. Upon

inspection, these spatial correlations between echoes often correspond to the peaks in off-

diagonal correlation matrix terms. These effects could be a systematic result of the blob

extraction process. The BRIEF descriptors from which blobs are constructed are sampled

within a small radius (8 pixels in the experiments) such that the image regions used to

construct each blob overlap one another. The echoes observed in the figure are consistent

with parts of features straddling the circumference of the BRIEF sampling discs, resulting
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Figure 38: This illustration shows the link between correlated spatial features and corre-
lation matrix elements. The split image on the left shows Poisson blobs sampled from a
subset of a martian terrain image and how they correspond to the originating structures.
The ‘echoes’ seen match the strong correlations in the associated correlation matrix.

in blobs occurring some distance away from the discs’ origins.

Removing the echoes may not be necessary to fix the correlation problems. Instead,

a sub-sampling approach could be taken where blobs are only recorded in histograms if

they are a sufficient distance away from one another to be no longer correlated. Such an

approach would require further work to convert model quantities into surface areas.

7.5 Summary

This chapter has presented an improved image encoding scheme designed to reduce the

correlated effects observed when local BRIEF descriptors were used to populate linear

model histograms. It has been shown that Poisson-like behaviour is better approximated

when BRIEF patterns are clustered into blobs providing a more appropriate input into the

algorithms developed thus far. Model fits, error predictions and measurement accuracies

all improved when the blob representation was used to sample martian terrain images.

However, the method became more complex, as additional computation was required

to convert linear model quantities into surface area measurements with associated error

predictions.

Despite the improvements, residual correlations still prevented perfect results leading

to error predictions which were around a factor of 2 to 3 away from those observed in

practice. But the source of these correlations has been identified and a sparse sub-sampling

approach has been proposed to fix the problem.

The experiments on synthetic martian images used over the previous two chapters

have been of value for selecting an appropriate image encoding method, but they remain

somewhat artificial. The next chapter will attempt to apply the methods developed to

more realistic data to make quantitative crater Size Frequency Distributions from lunar

images.
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8 Lunar Crater Counting: Moon Zoo Part 1

The experiments performed in previous chapters have been limited to artificial problems.

The Monte-Carlo histograms from chapters 3 to 5 were designed to generate ideal data,

conforming fully to the assumptions made by the algorithms applied to them. The syn-

thetic martian terrains, found within chapters 6 and 7, were also constructed to give ideal-

istic surfaces, drawn from a common pool of image tiles to ensure that training and testing

images were representative. Idealised Monte-Carlo data has been successfully analysed,

yet the more realistic simulated martian terrain data raised problems with underestimated

errors. So far it is not clear whether any genuine planetary science data is amenable to

the types of analysis proposed.

Work now will attempt to demonstrate the utility of the developed methods on a real

planetary science problem, whilst avoiding the pitfalls of a fully automated analysis of

complex terrains. The methods will be applied to the filtering of citizen science crater

data from the Moon Zoo project, taken around the Apollo 17 landing site. This will be

a real analysis task involving the counting of lunar craters, where an extensive list of

potential candidate craters has already been provided by non-expert human users, albeit

incomplete and with some contamination.

Martian terrain analysis work showed that image data has to be carefully encoded to

make it suitable for analysis via linear histogram modelling techniques. The raw Moon

Zoo data and associated images also require encoding before analysis. This provides

an opportunity to test alternative image representations that may be more appropriate

than BRIEF or Poisson blob formats for describing isolated features (lunar craters), as

opposed to extended connected regions (martian terrains), which suffer problematic spatial

correlations. It will be seen that this encoding task for Moon Zoo data is non-trivial. To

make the task more manageable this work will be divided across the next two chapters.

This current chapter will focus on preprocessing raw Moon Zoo crater data to create a set

of outputs appropriate for populating linear histogram models. The subsequent chapter

will focus on the analysis of preprocessed craters in order to estimate the number of true

positives, false positives and false negative entries.

8.1 Moon Zoo project

Moon Zoo is a citizen science project allowing members of the public to assist in the

interpretation of lunar images [53]. Volunteers are asked to identify features within selected

images by highlighting regions using a graphical interface embedded inside a website8.

A large database of mouse clicks has been accumulated via this website providing the

locations and sizes of features which researchers hope to use to answer planetary science

questions. Aims of the project include identifying impact craters and novel features,

8www.moonzoo.org
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and determining the relative abundance of boulders. The counting of impact craters is of

particular interest and will be the focus of the next two chapters. The ultimate goal will be

to take Moon Zoo data and convert it into crater Size-Frequency Distributions (SFDs)[29].

However, candidate craters identified by non-expert citizen scientists contains duplication,

contamination, missing craters and systematic effects which must be quantified before

useful SFDs can be created.

The automated counting of craters was noted in section 1.2.1 as being a prime applica-

tion. A semi-automated solution which combines citizen science data and lunar imagery is

a step towards the end goal of full automation, which avoids the need for an initial global

image search for potential candidate craters. It is hoped that experience gained here will

provide valuable insights into how a fully automated solution could be achieved.

8.1.1 Properties of Moon Zoo crater data

Raw data

The data used within the following chapters was supplied by the Moon Zoo science team

in pixel coordinates, relative to two lunar images captured via the Narrow Angle Camera

aboard NASA’s Lunar Reconnaissance Orbiter [14]. These relate to images M104311715LE

and M104311715RE, which contain relatively sparse populations of craters in comparison

to the heavily cratered lunar highlands, such that few craters intersect one another. The

crater data contains the coordinates of centres and the radii of candidate craters identified

by multiple different users. Many craters within this data are highlighted multiple times

by different users. This gives correlated groups of candidates, corresponding to the same

true crater, with slightly perturbed centres and sizes indicative of the human accuracy

attainable using the Moon Zoo interface. Amongst these candidates will be a number of

false positives, caused by users erroneously highlighting craters in ambiguous images, or

purposefully introducing errors though acts of cyber-vandalism. There are over 40,000

candidate craters in total. A sample of these candidates can be seen in figure 39.

Systematic effects

There are systematic effects found in the data due to a minimum candidate crater size and

default crater size imposed by the Moon Zoo graphical interface. This results in a bias

towards craters of these fixed sizes through two mechanisms: craters below the minimum

crater size are highlighted with erroneously large radii, as users attempt to identify craters

which are too small; and larger craters are highlighted with the erroneously small default

radii, as users forget to adjust the crater size appropriately. These effects occur on several

scales, as Moon Zoo users are presented with images at various fixed zoom levels. Figure

40 shows the candidate crater size distributions, with and without the biased values.
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Figure 39: A sample of raw Moon Zoo crater data overlain onto corresponding LROC
NAC image frame of lunar surface. Each circle represents a potential crater. Note the
clusters of candidates where multiple users have marked the same craters several times.

Missing data

There are also real craters existing in source images which have not been highlighted by

users and therefore do not appear in the Moon Zoo database. Some of these false negatives

will be due to craters being difficult to spot. Others will be due to random fluctuations

in user behaviour and image selection, as Moon Zoo presents images randomly and does

not insist that every crater is identified by each volunteer. The missing craters could bias

results, giving systematic underestimates in crater counts.

Questions

The challenges involved in converting this data into useful SFDs can be summarised with

the following questions:

• Can multiple mark-ups be reliably coalesced into uniquely identifiable craters?

• Can the parameters of candidate craters be corroborated against image data, e.g. to

spot default crater size effects?

• Can the quantities of false positive contamination and true positive craters be esti-

mated using linear histogram models?

• Can the above quantities be measured consistently within predicted errors under

different conditions?
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Figure 40: Top: Candidate Moon Zoo crater radii distribution, including biases due to
default crater size. Bottom: Radii distribution with systematically biased crater size bins
removed.
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• Can the quantities of false negative missing craters be accounted for?

These questions naturally lead to a processing pipeline, each stage of which will require

the application of appropriate statistical methods.

8.2 Crater processing pipeline

The following set of processing stages will be investigated over the following two chapters:

1. Coalescence: the multiple x, y and radius parameters from different users will be

clustered to give a consensus as to the location and size of individual craters (chapter

8).

2. Refinement: x, y and radius parameters for each crater will be refined by searching

locally within images for optimal matches against crater template images (chapter

8).

3. Linear Modelling: linear histogram models will be applied to histograms of tem-

plate match scores to estimate crater counts and background contamination, with

associated error estimates (chapter 9).

4. False Negative Calibration: any underestimation in SFDs caused by missing craters

will be corrected for by calibration against preprepared ground truth SFDs (chapter

9).

The first step must aim to find a deterministic clustering method which will produce

consistent, uniquely identifiable craters. To perform this task optimally, the algorithm

employed must make efforts to approximate a Likelihood solution, thereby giving the

most probable set of unique craters in light of the mouse click evidence available. The

second step must aim to reconcile as many discrepancies as possible between candidate

craters and underlying image evidence. To perform this task optimally, the algorithm

employed must make efforts to model the appearance of typical Moon Zoo craters and

match them to candidate craters, thereby giving the most probable parameters for the

image evidence available. Both of these steps will be investigated during the remainder of

this chapter.

The linear modelling step must aim to construct well-behaved histograms for true and

false positive craters, which can be fitted to Moon Zoo data in order to estimate the

number of genuine craters within the data. The calibration step must compare SFDs

produced by the above pipeline with those prepared under expert supervision. These two

steps will be investigated separately in the next chapter.

130



8.3 Step 1: Coalescence

When a single crater is highlighted by multiple users, a cluster of related candidate craters

appears in the data. Each candidate will be slightly different, with a spread of centres

and radii corresponding to users’ abilities to measure crater locations and scales. The

accuracy may also be affected by the degradation of craters, with older craters having

less well-defined rims and therefore less precisely measured parameters. This randomness

around true crater parameters prevents a trivial solution in which identical candidates are

merged. Random parameter errors mean the identicality of candidate craters can only be

considered probabilistically. This section will investigate a method to assign such noisy

clusters to individual craters using an approximate Likelihood solution, given a small set

of assumptions about the data. It will be assumed that:

• there is an unknown number of true craters, each associated with zero or more

candidate mark-ups;

• each candidate is independent;

• any candidate could belong to any true crater;

• the noise on a candidate’s x, y and radius parameters are Gaussian distributed;

• the probability of multiple true craters heavily overlapping is negligible.

The method described in the following subsections will attempt to find the most prob-

able set of true craters, given the proximity of candidates to one another and the overlap

between their Gaussian distributed parameters. At this point the problem of false pos-

itives and false negatives will be ignored, as will the systematic bias in radii due to the

Moon Zoo minimum crater size.

8.3.1 A Likelihood solution

An algorithm for approximating a Likelihood solution to the clustering problem can be

developed by first considering an individual candidate crater in isolation, then considering

the effects of adding further candidates. If there is only a single candidate with parameters

(x1, y1, r1) and errors (σx, σy, σr), the probability of finding a true crater within the range

(xl, yl, rl) to (xu, yu, ru) is simply

Psingle(crater) =

∫ ru

rl

∫ yu

yl

∫ xu

xl

N (x, y, r; x1, y1, r1; σx, σy, σr)dxdydr (120)

where N is a 3D normal distribution with means x1, y1, r1 and widths σx, σy, σr. If

there is only a single true crater and a single candidate then the most probable parameters

of the true crater are those where Psingle(crater) peak. This will trivially correspond to the

single candidate’s originally assigned values. Now, if a second candidate crater is added
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with parameters (x2, y2, r2) there are two alternative interpretations. The first interpreta-

tion assumes that there is still only a single true crater, in which case the probability of

finding this one true crater within the same range becomes

Pand(crater) =

(
∫ ru

rl

∫ yu

yl

∫ xu

xl

N (x, y, r; x1, y1, r1; σx, σy, σr)dxdydr

)

(121)

×
(
∫ ru

rl

∫ yu

yl

∫ xu

xl

N (x, y, r; x2, y2, r2; σx, σy, σr)dxdydr

)

where the two independent candidates can be combined multiplicatively, consistent

with the ‘and’ relation in probability theory. This ‘and’ relation is appropriate, as in this

interpretation candidate 1 and candidate 2 both originate from the same true crater. The

most probable parameters of the one true crater can then be found by searching for the

largest peak in Pand(crater) (assuming there is one clear peak). Alternatively, the second

interpretation assumes that there could be any number of true craters, such that both

candidates could correspond to the same crater or two different craters. In this second

interpretation the probability of finding any true crater within the above range becomes

Por(crater) ∝
(
∫ ru

rl

∫ yu

yl

∫ xu

xl

N (x, y, r; x1, y1, r1; σx, σy, σr)dxdydr

)

(122)

+

(
∫ ru

rl

∫ yu

yl

∫ xu

xl

N (x, y, r; x2, y2, r2; σx, σy, σr)dxdydr

)

where the two independent candidates are combined additively, consistent with the

‘or’ relation in probability theory. This ‘or’ is appropriate, as in this interpretation either

candidate crater could have originated from one true crater or another. In this case the

probability is only proportional, as the total normalisation becomes dependent upon the

unknown number of true craters. Both the ‘and’ and ‘or’ interpretations can be extended

to any number of candidates in the Moon Zoo data. Either interpretation will be correct

for some parts of that data and not others, as clearly some candidates are associated with

the same true crater, yet there are many different true craters.

On average, within the Moon Zoo data, candidates will belong to different craters,

making the ‘or’ interpretation preferable. Plus, despite Likelihood functions generally

being multiplicative, additive components are not unprecedented. For example, the EM

Likelihood function of equation (27) contains a summation to account for data originating

from one class or another. An ‘or’ based Likelihood may be statistically less efficient, but

should still result in valid estimates when summed over all candidates, i:

L =
∑

i

(
∫ riu

ril

∫ yiu

yil

∫ xiu

xil

N (x, y, r; xi, yi, ri; σx, σy, σr)dxdydr

)

(123)
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Peaks found within this function can be interpreted as belonging to individual craters.

It must be noted, however, that closely overlapping true craters may become erroneously

combined into single peaks. But, the Moon Zoo data is quite sparse, with the explicate

assumption of rarely interacting craters already being made at the start of section 8.3.

An implementation of this function would resemble the accumulation of weighted votes

within a parameter space, like a probabilistic Hough transform.

Given the Moon Zoo data, the only unknowns remaining in the Likelihood formulation

are the values of σx, σy and σr, and their relationships to crater parameters, e.g. are

they all constants, are they all the same etc.? Estimating these values will be the topic

of the next subsection in order to inform the development of a more concrete Hough

transform-like algorithm.

8.3.2 Parameter accuracy

Incorporating equation (123) into a working clustering algorithm requires knowledge of

the accuracies of crater x, y and radius parameters. This knowledge will determine how

a Hough transform parameter space should be constructed and how much weight should

be given to entries.

The most straightforward method of measuring the accuracies of these parameters

might be to manually cluster a set of candidates believed to be associated with a single

crater, then compute sample standard deviations directly. Unfortunately, this approach

is problematic because there are relatively few mark-ups in each cluster. There are as

few as one, and up to approximately a dozen candidates per cluster, based upon visually

inspecting candidates overlaid onto lunar images such as in figure 39. This is far fewer than

the 30+ samples recommended by standard statistical texts, which would give very poor

σ estimates. It is therefore necessary to combine samples from multiple clusters, ideally

without having to manually (and subjectively) cluster the data first. This can be achieved

by sampling the deviations between all candidates, irrespective of their true cluster, then

removing the background contamination introduced by not separating the clusters first.

Let X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, and R = {r1, r2, . . . , rn} be vectors

containing the x coordinates, y coordinates and radii parameters of n candidate craters,

respectively. If there was only 1 candidate per crater and assuming that changes in crater

density due to surface age differences will be averaged over wide areas, the X and Y

vectors should be approximately uniformly distributed. The R vector will be distributed

according to a size-frequency distribution, with fewer large radii and many more smaller

radii, resembling an exponential decay curve. However, as there are multiple candidates

per crater these distributions will become ‘lumpy’, with local clusters interrupting the basic

distribution shapes. Each ‘lump’ will correspond to a different cluster, all of which can

be aligning to a common origin before plotting deviations, superimposing the parameter

error distributions on top of the natural parameter distributions.
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Figure 41: Distribution of X parameter accuracies as a function of crater size, with mean
crater radii of 15, 25 and 35 pixels, respectively. The Gaussians fitted all have widths
approximately 0.2 times the crater radii.

Figure 42: Distribution of Y parameter accuracies as a function of crater size, with mean
crater radii of 15, 25 and 35 pixels, respectively. The Gaussians fitted all have widths
approximately 0.2 times the crater radii.

More precisely, the distribution of the differences between each combination of candi-

date, e.g. the distribution of x1 − x2, x1 − x3, to x1 − xn followed by x2 − x3, x2 − x4, to

xn etc., giving a total of n(n−1)
2

comparisons, can be plotted. Plotting the differences this

way has the effect of making each candidate the origin of the distribution, i.e. aligning

the ‘lumps’. This can be done for various cuts of the data. The same can be done for Y

and R vectors.

This process was performed using the Moon Zoo data with cuts only allowing entries

to be plotted that are within a few diameters distance from the origin to reduce the

uniform/SFD backgrounds, e.g. if x1 − x2 was larger than twice the diameter of either

crater 1 or 2 then it was not included in the plot. Figures 41, 42 and 43 show these

distribution for each parameter, with plots given for three ranges of crater size. The size

bands investigated covered radii between 10 to 20, 20 to 30, and between 30 to 40 pixels.
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Figure 43: Distribution of R parameter accuracies as a function of crater size, with mean
crater radii of 15, 25 and 35 pixels, respectively. The Gaussians fitted all have widths
approximately 0.2 times the crater radii.

Figures 41 and 42, showing theX and Y distributions, both contain Gaussian central peaks

sitting on top of a uniform background. Figure 43, showing the R distributions, contain

Gaussian central peaks which have been slightly skewed by the exponential background

of size-frequencies.

In each case Gaussian curves have been roughly fitted manually9, with standard devia-

tions of 3, 5 and 7 pixels for respective size bands. These correspond to average parameter

errors with standard deviations which are 20% of a candidate’s radius. The plots pro-

vide evidence of a link between measurement accuracies and crater radii making the error

characteristics of the crater parameter space non-uniform:

σx = cxr (124)

σy = cyr (125)

σr = crr (126)

where cx, cy and cr appear to be the same constant of 0.2. Note that the observed

behaviour is an average across all types of crater, not accounting for states of degradation.

The observation that errors are radially dependent has important consequences for the

construction of a clustering algorithm reliant upon the proximity of points. Whilst it is

possible to use Pythagorean arguments for the closeness of two points, their statistical

closeness (i.e. the probability of their closeness) must be argued in terms of measurement

9Background contamination from spatial and size distributions of craters makes it difficult to reli-
ably apply a fitting routine to estimate curve widths. Upon inspection, the manually fitted curves are
convincing enough for the purposes of estimating parameter errors.
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accuracies. If a parameter space is uniform and isotropic then a given length will have

the same statistical significance no matter where it is measured in that space making

euclidean comparisons compatible with their statistical counterparts. If errors are not

uniform or isotropic this will not generally be the case, such that the same distance

in one part of the space could have a difference significance than the same distance in

another. Ideally, a parameter space would be chosen which provides complete uniformity

of statistical significance in all directions allowing euclidean distances to be compared

directly. This is known as a homoscedastic space [82]. The non-uniform errors found within

the Moon Zoo crater data, however, forms a hetroscedastic space, which complicates the

coalescence problem.

8.3.3 Coalescence algorithm

This subsection will now combine the Likelihood function L (equation 123) and knowl-

edge of parameter errors to form a probabilistic Hough transform [95][96] style clustering

algorithm.

The first step is to construct a quantised parameter space containing x, y and radius

dimensions to act as the Hough transform space. Then rather than explicitly implementing

equation (123), point entries can be accumulated in the parameter space for each candidate

before being smoothed with a Gaussian kernel with widths commensurate to the accuracies

of the crater parameters. This smoothing approximates the normally distributed values

of equation (123). The Hough parameter space can then be searched for peaks which can

be taken as the most likely candidates for the crater parameters being sought.

In light of the non-uniform errors the actual Hough parameter space must be smoothed

carefully. Whilst x and y errors vary as a function of radius, within any given radial slice σx

and σy are uniform and isotropic (at 0.2 of the radius), such that a 2D Gaussian smoothing

kernel can be convolved with the slice giving the desired effect. However, a vertical slice

through different radii will have smoothly varying σr from top to bottom preventing a

simple convolution with a fixed width kernel. Fortunately, a simple transformation exists

for converting the proportional radial errors into a homoscedastic space:

r′i =
ln ri
cr

(127)

where the transformed variable r′ is forced to have constant unit width errors. The

updated parameter space (x, y, r′) is a preferred space for the Hough transform permitting

easy smoothing via convolution whilst maintaining the statistical significance of distances

in the radius dimension.

The width of the bins in the Hough transform space should be selected for consistency

with the Rayleigh Criterion [173], i.e. the bin widths can be no wider than half the distance

at which adjacent peaks are resolvable, which for the Moon Zoo data is approximately half
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of the smallest measurement error. The smallest crater candidates within the Moon Zoo

data are 10 pixels in radius, making the smallest measurement errors approximately 2

pixels (0.2 proportional error).

Once populated, the bins can be searched for peaks corresponding to the most likely

craters. The collection of peak parameters can be converted back into the data’s native

parameter space, from r′ to r, using the inverse transformation. For practical implementa-

tion reasons the resolution of the parameter space can be limited. However, a 3D quadratic

interpolation scheme can be used to estimate parameters to sub-bin level accuracy.

8.3.4 Testing

Clustering mistakes can occur when two or more distinct craters are coalesced despite being

separate. This will result in some craters being unaccounted for, introducing additional

false negatives. This may occur when the craters are very close to one another, intersecting

or even nesting. This particular mode of failure is not expected to occur often, as it

was assumed at the start of section 8.3 that the probability of craters interacting was

negligible. Mistakes can also occur when two or more mark-ups of a single crater are highly

dissimilar leading to multiple craters being generated when only a single crater exists. This

mode of failure will introduce additional false positives. A lack of objective ground-truth

accompanying the Moon Zoo data precludes testing clustering efficiency directly on the

target data. However, the data generation mechanism (excluding systematic effects due to

default crater sizes and false positives) is sufficiently simple to construct a realistic Monte-

Carlo to empirically evaluate clustering performance. Subsequent clustering of real Moon

Zoo data can then be performed with performance estimated by comparison to clustering

efficiencies in a similar Monte-Carlo, e.g. similar size image, number of craters, number of

mark-ups etc.

Monte-Carlo data was generated by randomly defining true crater locations and radii

within different set ranges. For each defined crater a number of random mark-ups was

drawn from a Normal distribution with widths set to 20% of the radius, consistent with

the accuracies measured from the real data. Datasets were generated for different numbers

of craters, crater size ranges, image sizes and different numbers of multiple mark-ups per

crater. Each dataset was entered into the Hough transform clustering algorithm, with the

number of output clusters compared to the correct number of craters.

8.3.5 Discussion

Figure 44 shows the efficiency of clustering over a range of conditions. There are general

trends showing that for sparse data (low crater densities) containing few multiple mark-

ups (less than 10 candidates per true crater) there is an initial over estimate of craters with

some counts growing up to 10% above ground truth. The additional peaks in the Hough

transform space can be explained by there being insufficient evidence populating local
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regions preventing candidates from the same crater to be smoothed together effectively.

Close to this point, for sparse data containing larger numbers of mark-ups (greater than

10 candidates per true crater) then efficiencies between 90% to 100% are achievable, as

there are few interacting craters and sufficient local evidence to smoothly merge candidates

giving distinctive peaks. Figure 46 shows results attainable in this range of data. However,

as the coverage of craters increases the opportunity for craters to interact increases, leading

to a decrease in efficiency as adjacent craters begin to be inappropriately merged. As

craters begin to saturate the data, efficiencies can be seen to drop below 20%. The sub-

figures all show a decrease in efficiency as a function of increases in crater density. An

increase in density can be due to increasing total crater counts, decreasing image sizes,

increasing numbers of mark-ups per crater, and increasing the size of craters. Finally,

figure 48 shows how the number of mark-ups per crater relate to Hough peak heights,

which will be useful for estimating the number of times candidates in Moon Zoo data are

highlighted by users.

The Apollo 17 Moon Zoo crater data was clustered using the same method, with

and without the biased crater size bins. There were a total of 23,957 candidate craters

in the original data, which was reduced to 9,057 craters after coalescence. There were

a total of 11,419 candidate craters when biased crater sizes were excluded, which was

reduced to 4,350 craters after coalescence. These craters were distributed over a large

image of approximately 5,000 by 50,000 pixels. Figure 47 shows the non-cumulative size-

frequency distributions for these two clustered results. Figure 45 plots the distribution of

peak heights when biased sizes are excluded. Finally, figure 49 shows a small sample of

clustering results overlaid on to the Apollo 17 NAC image region. The candidate crater

densities (candidate crater count divided by image area) of 9.6 × 10−5 and 4.4 × 10−5,

including and excluding biased bins, respectively, are on the low end of the Monte-Carlo

testing ranges, suggesting that clustering is being performed with good efficiency (very few

genuine craters will be lost), with some double counting of craters due to some failures in

merging. Visual inspection of craters confirms this in sample regions. This provides an

answer to the first question posed in section 8.1.1, that it is possible to reliably cluster

multiple mark-ups. Any failed mergers could potentially be fixed during the subsequent

pipeline stages. Failed merger leading to new false positives or false negatives can be

quantified in the final steps which will be covered in the next chapter.

8.4 Step 2: Refinement

Systematic effects, user subjectivity and inefficiencies in clustering can combine to produce

inconsistencies between coalesced crater parameters and actual evidence in underlying im-

age data. Craters marked using the minimum/default crater sizes and craters which have

only been marked up by one or two users might be particularly prone to systematic and

subjective effects. A refinement stage can enforce consistency by matching a set of crater
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Figure 44: The efficiency of the Hough transform clustering algorithm. Top left: Clustering
efficiency (cluster count divided by true crater count) as a function of true crater count,
with curves for 4 sizes of image. Top right: Clustering efficiency as a function of true
crater count, with curves for different numbers of candidates per true crater. Bottom
left: Efficiency as a function of true crater count, with curves for different crater size
distributions. Bottom right: Efficiency as a function of crater density (crater count divided
by image area).

Figure 45: Typical peak heights within Hough transform parameter space for different
ranges of crater size
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Figure 46: Example before and after clustering of Monte-Carlo data for sparse craters
with 10 candidates per crater. Efficiencies close to 100% can be achieved with data in this
range.

image templates to candidates, locally searching centres and radii to find optima within

some match score. For the approach to work it requires reliable, representative templates

to be defined. Crater templates must accommodate differences in local albedo and illumi-

nation, morphology and states of degradation. Ideal templates would also accommodate

crater interactions and occlusion conditions, but this will be omitted due to the assumption

of rarely interacting craters. These issues will be addressed in the following subsections.

8.4.1 A Likelihood solution

The refinement of crater locations though the matching of templates can be linked to

Likelihood by adopting the standard assumption of uniform Gaussian noise on pixel values.

Given a template of pixels, a, and an image patch centred and scaled to a specific x, y,

and radius, b, the residuals between each pixel, ai − bi, should also be distributed as a

Gaussian, e−(ai−bi)
2
. Incorporating this into a Likelihood suggests that a sum of squares

is an appropriate function for computing template match scores:

Lmatch ∝
∏

i

e−(ai−bi)
2

(128)

lnLmatch ∝ −
∑

i

(ai − bi)
2 (129)

Finding peaks in this Likelihood, or a function closely approximating it, can therefore

be defended as being a good choice for a template matching algorithm. However, this

Likelihood interpretation assumes the only sources of template matching errors are in the
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Figure 47: Crater size distribution of Moon Zoo data after Hough coalescence step.
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Figure 48: Distribution of Hough peak heights in Moon Zoo coalesced data.

pixel values themselves. In reality craters contain additional sources of uncertainty due to

local conditions, morphology and erosion. Steps to mitigate against this will be suggested

during the selection of templates and match scores.

8.4.2 Template selection

The first requirement for the generation of template craters is to find a source of example

craters. Given the availability of clustered candidate craters in the Moon Zoo data, it

is convenient to make use of the Moon Zoo data itself to guide template construction,

as opposed to using expertly prepared examples. It is reasonable to assume that craters

highlighted by multiple Moon Zoo users are more likely to be true craters than those which

have been highlighted only once. Under this assumption templates can be created only

from craters which have been highlighted more than a given minimum number of times.

Given the variability in crater appearances steps should be taken to make templates as

representative as possible, i.e. to remove additional variations beyond just pixel Gaussian

noise. This might be achieved by only retaining the most invariant attributes of a crater.

Firstly, craters can be scaled to a known fixed size to better align their rims. Templates’

mean grey levels can be subtracted to remove regional illumination and albedo effects

within the vicinity of the candidates which could otherwise cause large discrepancies be-

tween templates are target craters. Derivative images can also be used to remove more

localised illumination effects, as the relative differences between closely adjacent pixel val-

ues will be less affected by larger scale illumination or albedo changes across the diameter

of a crater.
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Figure 49: Sample from Moon Zoo Apollo 17 site craters. Top: before coalescence. Bot-
tom: after coalescence.
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Figure 50: Similarities between physical crater degradation and Gaussian smoothing of
crater images. Top row: Apollo 17 site craters showing different levels of degradation.
Bottom row: Approximation of degradation levels by successive smoothing of a relatively
clear crater.

One of the largest modes of crater variation is the state of degradation. Over time,

weathering via micrometeorites and mass wasting causes the contours of a crater to become

less well-defined. Visually, degraded craters are similar to fresh crater images which have

been smoothed, as can be seen in figure 50. Using this observation, a template can be

compared to craters in varying states of degradation using a free parameter which controls

levels of smoothing. Refining a crater’s position would then involve a search over x, y,

radius and smoothing parameters. The addition of a smoothing parameter not only could

be used to improve template fits, but could also be used to give a degradation index which

could be valuable to researchers.

Two types of fixed sized templates will be investigated: a grey level template modelling

an average crater’s appearance, with mean grey level subtracted; and a pair of gradient

templates, again an average, but computed using x and y derivative images. Figure 51

shows example templates crated from the Moon Zoo data from craters which were marked

by 3 or more users. These template use 60 by 60 pixel patches, including a crater of

radius 20 and a margin of 20 pixels. The gradient templates are expected to be the most

invariant, as they model the relative structure of craters, as opposed to the grey level

templates which might still be susceptible to local changes in illumination.
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Figure 51: Left: Mean grey level crater template derived from Moon Zoo data. Right:
Combined horizontal and vertical gradient (x, y derivative) template.

8.4.3 Match score selection

The match scores which will be analysed are: a mean sum of squared errors (MSE) and a

per-pixel normalised dot product (DP). Given a template vector, a, and image vector, b,

containing N pixel samples, these match scores become:

SMSE =
1

N

∑

i

(ai − bi)
2 (130)

SDP =
a ◦ b
‖a‖N (131)

It was noted in section 8.4.1 that under standard Gaussian noise assumptions a function

proportional to the sum of squared residuals will have peaks consistent with a likelihood

solution. The SMSE match score clearly fits this framework.

The dot product style match score contains terms which are sums of products, a ◦ b =
∑

i aibi, normalised to different values. Similar sums can be seen in the expanded version

of the SMSE:

SMSE =
1

N

∑

i

a2i +
∑

i

b2i − 2
∑

i

aibi (132)

where the first two summation terms will be relatively constant over local areas, with

the dot-product style final summation term performing the real template comparison. This

observation suggests that the MSE and DP match scores should peak at approximately the

same locations, with the MSE score disregarding more of the regional variations. These

two match scores will also differ in their error characteristics.

Under the standard assumes that image noise is uniform, normally distributed and

independent between samples, error propagation can be applied to these match scores to

predict their stability. Assuming the template is error free and there is uniform noise of σ

on the image being matched, the error on a match score, σS, can be approximated using:
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σ2
S =

∑

i

[

∂S

∂bi

]2

σ2 (133)

This will be performed below for the different matching functions.

MSE errors

The mean squared error match score can be broken into individual terms:

SMSE =
1

N

∑

i

(ai − bi)
2 =

∑

i

si (134)

si =
a2i + b2i − 2aibi

N
(135)

with derivatives for each term given by:

∂si
∂bi

=
2bi − 2ai

N
(136)

These can be inserted into the formula for error propagation to give:

σ2
S =

∑

i

[

2bi − 2ai
N

]2

σ2

=
4σ2

N2

∑

i

(bi − ai)
2 (137)

As can be seen, this match score’s stability is functionally dependent upon the incoming

data. Given a fixed sized template, the errors on a match to that template will vary from

image location to image location. This might suggest that this match score will perform

with different efficiencies in different parts of the Moon Zoo data, potentially leading to

some poorly refined craters.

DP errors

The per-pixel normalised dot product can be analysed following the same pattern as above,

beginning with exposing the inner workings of the match score:

SPNDP =
a ◦ b
‖a‖N

=
u

v
=

∑

i aibi

N
√
∑

i a
2
i

(138)

Then the derivatives of numerator and denominator, respectively, are given by:

∂u

∂bi
= ai (139)
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∂v

∂bi
= 0 (140)

Applying the quotient rule again gives:

∂S

∂bi
=

vu′ − uv′

v2

=
Nai

√
∑

i a
2
i

[

N
√
∑

i a
2
i

]2

=
ai
√

∑

i a
2
i

N
∑

i a
2
i

(141)

Which when substituted back into the formula for error propagation gives:

σ2
S =

∑

i

a2i
∑

i a
2
i

[N
∑

i a
2
i ]

2σ
2 (142)

This template match score has a stability which is independent of the pixel values

contained within the image being matched. Errors on this score will be the same regardless

of where it is applied. It is only dependent upon the template and the uniform image noise.

This could suggest a more stable, better behaved metric.

8.4.4 Refinement algorithm

The template matching refinement algorithm will utilise both styles of template and match

score, testing each possible combination of:

• Grey level template with MSE match score;

• Gradient template with MSE match score;

• Grey level template with DP match score;

• and Gradient template with DP match score.

The algorithm begins with the construction of templates, followed by a candidate

by candidate comparison where a brute-force search computes match score values for a

range of local x, y and radius parameters. This is repeated for different levels of image

smoothing to allow for differences in crater degradation. The refined parameters are those

which correspond to the best overall match scores, leading to updated values for x, y and

radius parameters. An addition output is the smoothing parameter indicating the level at

which the candidates achieved their best matches. The details of template construction

and searching are given below.
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Template construction

There are thousands of candidate craters in Moon Zoo data which could be used to generate

a mean crater template, but this data also contains false positives which could introduce

contamination. To avoid this the candidates are first filtered to only include those which

have been marked-up by at least 3 users. This is determined by the candidate’s peak hight

in the coalescence Hough transform space.

The candidates that make the cut are scaled to the dimensions of the desired template,

which during subsequent testing becomes 60 by 60 pixels, with the candidate centered

with a 20 pixel margin. The mean regional grey level of each example is computed then

subtracted. From here, the process forks to create one mean template and one compound

gradient template.

The mean template is created simply by computing a mean image from all of the

examples. The gradient template is created by computing two derivative images per

example: one by calculating pixel value differences at a 4 pixel horizontal offset; the

other by using a 4 pixel vertical offset. Mean horizontal and vertical gradient images are

computed from all of the examples, then tiled together next to one another making a single

gradient template 120 by 60 pixels in size. The grey level and gradient templates can be

seen in figure 51.

Local search

The refinement search is repeated multiple times for different levels of image smoothing,

moving through 16 logarithmic smoothing levels. This starts with no smoothing, then

smoothing with a Gaussian kernel 2 pixels wide, followed by width increases of 20% each

iteration. The logarithmic scale allows a wide range of smoothing levels to be tested

emulating the degradation of small to large craters.

For each smoothing level and each candidate, a quantised x, y and radius parameter

space is constructed covering values +/- 3 standard deviations (60% of radius) around

each candidate’s initial parameter values. The parameter space is similar to the Hough

transform parameter space of section 8.3.3, but without any parameter transformations

(i.e. using r, not r′). For each parameter bin an image region corresponding to those

parameters is extracted, scaled and normalised to give grey level and gradient images

compatible with the mean templates. Template match scores are computed and recorded.

After every smoothing level has been tried each candidate’s parameter values are up-

dated to those corresponding to the overall best x, y, radius and smoothing where the

match scores are optimal. If there is no clear peak in match scores then the candidate’s

original parameter values are retained. The sub-bin location of peaks in the quantised

search space can be estimated using 3D quadratic interpolation, as used previously to find

Hough transform peaks.
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Figure 52: Sample of refined craters using gradient template with dot-product (Grad
D.P.), Gradient template with MSE (Grad MSE), Grey template with dot-product (Grey
D.P.) and Grey template with MSE (Grey MSE). Yellow stars in Grad MSE, Grey D.P
and Grey MSE images indicate clear mistakes in comparison to the Grad DP bench-mark.

8.4.5 Testing

The refinement algorithm was tested on the clustered Moon Zoo data outputted from

step 1 (section 8.3), with match scores and types of template tried in all combinations.

Examples of refined locations and scales for each combination can be seen in figure 52.

A lack of definitive ground truth, with precise x, y and radius parameters, makes

objectively assessing the success of the algorithm problematic. Whilst an expert may be

able to state, with confidence, that a candidate represents a true crater in the vicinity of

the candidate’s parameters, there will always be uncertainty as to that crater’s true centre

and size. Given these difficulties, during testing the refinement results can be visually

inspected. The match score and template combination yielding the fewest ‘obvious’ errors

can then be selected as the best. Obvious errors include offsets and sizes outside the 20%

mark-up error, however, this manual checking is a clear source of subjectivity.

8.4.6 Discussion

An inspection of refined candidates suggests that using a gradient image template matched

using the pixel normalised dot product gives the best overall results. The samples seen in
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figure 52 illustrate this within a region of the Moon Zoo data. This result is consistent with

the arguments given in sections 8.4.2 and 8.4.3 regarding the use of invariant information.

The gradient images discard low frequency grey level changes across craters, focusing more

on the local structure. The DP match score also discards low frequency information. It

would appear that it is the higher frequency spatial details which provide most information

about a crater’s parameters. This is also consistent with reports from stereo matching

algorithms using similar derivative images and dot product comparisons [98][99].

Returning to the questions of section 8.1.1, in particular the second: Can the param-

eters of candidate craters be corroborated against image data? The answer would appear

to be yes. Although, due to subjectivity and a lack of exact parameter ground truth, the

refinement algorithm might be better considered as a definitional process for providing

output for the next pipeline stage. The refined match score distributions will be used in

the next chapter where they will be used to train linear histogram models.

8.5 Summary

This chapter began by stating the goals and challenges involved in the processing of Moon

Zoo crater data, with the ultimate aim of generating crater size-frequency distributions.

The properties of Moon Zoo data was described, including multiple mark-ups per true

crater, contamination from false positives, missing craters and systematic biases in certain

crater sizes.

A four stage processing pipeline was proposed to convert the raw Moon Zoo data into

SFDs, with the first two steps being designed, implemented and tested for this chapter.

These steps coalesced multiple mark-ups into individual crater candidates and refined the

parameters of those candidates to better match evidence of craters within the associated

lunar images. A Likelihood justification was provided for each step, where coalescence was

achieved using a Hough transform-like clustering algorithm and refinement was achieved

using a combination of templates and match scores. The performance of the coalescence

algorithm was assessed using Monte-Carlo, with conclusions drawn that the sparseness

of craters in the Moon Zoo data would lead to few mistakes during clustering. The per-

formance of the refinement algorithm was assessed subjectively, but produced observable

differences in size and location distributions, with conclusions drawn that matching is best

performed with gradient templates and dot product style comparisons.

The input into the first step of the processing pipeline contained over 40,000 candidates

covering two NAC images. The output of this chapter, which will feed into steps 3 and 4

of the pipeline, contains approximately 20,000 clustered and refined craters. This reduced

dataset will still contain false positives, true positives and false negatives. Some of the

false positives and false negatives would have persisted in the data from the outset, but

additional false positives and negatives could have been introduced due to inefficiencies in

the first steps of the processing pipeline.
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The next chapter will complete the Moon Zoo processing pipeline by implementing and

testing steps 3 and 4: Linear modelling to estimate true verses false positive craters; and

false negative estimation to correct for missing craters. The final three questions posed

in section 8.1.1 will then be answered: Can the quantities of false positive contamination

and true positive craters be estimated using linear histogram models? Can the above

quantities be measured consistently within predicted errors under different conditions?

And can the quantities of false negative missing craters be accounted for?
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9 Lunar Crater Counting: Moon Zoo Part 2

The previous chapter described the goals of the Moon Zoo project and explained the

challenges involved in interpreting the citizen science crater data it produced. To briefly

review, raw Moon Zoo data contains multiple mark-ups detailing the potential locations

and sizes of thousands of lunar impact craters from selected regions of the Moon. Amongst

those mark-ups are genuine craters (true positives) which have been correctly identified by

Moon Zoo users and bogus craters (false positives) which have been incorrectly identified.

There are also missing craters (false negatives) which exist within the lunar images but

have not been marked-up by any user and therefore do not appear within the crater

data. Further to the raw location and size information, evidence of potential craters

can be supported by analysing the associated image regions by searching for crater-like

structures.

A four stage filtering pipeline was proposed in the previous chapter to reduce the Moon

Zoo data to create size-frequency distributions. This pipeline contains the steps:

1. Coalescence: the clustering of related mark-ups into individual craters via a Hough

transform-like algorithm;

2. Refinement: the refinement of candidate crater parameters via a local brute-force

image search using crater templates;

3. Linear Modelling: the application of linear histogram models to estimate the quan-

tity of true and false positive craters, via analysing the distribution of template

match scores;

4. False Negative Calibration: the correction of underestimated SFDs caused by missing

craters via calibration against preprepared ground truth SFDs.

The first two of these steps were implemented and tested in the previous chapter. This

chapter will complete the processing pipeline by implementing and testing the final two

steps, and answering the final questions of section 8.1.1:

• Can the quantities of false positive contamination and true positive craters be esti-

mated using linear histogram models?

• Can the above quantities be measured consistently within predicted errors under

different conditions?

• Can the quantities of false negative missing craters be accounted for?
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9.1 Moon Zoo reduced crater data

The source of data used within this chapter is the output of pipeline step 2 described

in the previous chapter (section 8.4). This data includes the following information per

candidate crater:

• the refined coordinates of each crater centre within the pixel coordinate system of

the source image;

• the refined radius of each crater in pixels;

• the peak hight of the Hough transform cluster associated with each crater;

• the smoothing kernel width required to best match the crater image with a mean

crater template;

• the grey image template mean squared error match score (MSE of equ (130));

• the gradient image template mean squared error match score (MSE of equ (130));

• the grey image template pixel-normalised dot product (DP of equ (131));

• and the gradient image pixel-normalised dot product (DP of equ (131)).

It is the match score values which will be of most use in this chapter.

9.1.1 Ground truth

The pipeline steps investigated in this chapter are designed to quantify two complementary

effects, that of contamination from false positives and of inefficiencies due to false negatives.

In addition to the above data different ground truths are required for investigating these

different effects.

To perform experiments and to quantify contamination from false positives a ground

truth is required which labels all candidates in the reduced dataset as being either true or

false craters. It is necessary to divide the candidates into these classes so that appropriate

training data can be provided. It is also necessary to know the true quantities so that

estimates from linear modelling can be checked against known values. To estimate the

quantity of missing craters in size-frequency distributions an alternative ground truth is

required in the form of known size-frequency distributions. These SFDs will assume that

there are no false positives, simplifying the analysis.

The ground truths will necessarily be somewhat subjective, but efforts should be made

to match expert definitions as closely as possible. The ground truths used within this

chapter were created by visually inspecting craters in the dataset. This was undertaken

by non-expert crater counters with some experience of inspecting lunar images (the thesis
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Figure 53: Left: Mean Squared Error match score distribution computed using grey level
image template. Right: MSE match score distribution computed using gradient image
template.

author and group of School of Earth, Atmospheric and Environmental Sciences under-

graduates), followed by a subsample being verified by a lunar expert.

The reduced dataset ground truth of 20,565 potential craters includes 6,291 assigned

as false positives and 14,274 as true positives, giving a Moon Zoo user false positive error

rate of approximately 31%. The SFD ground truths were constructed for 8 regions of the

data, with craters counted down to the minimum crater size of 10 pixels in radius.

9.2 Step 3: Linear modelling

The problem of measuring the quantity of true craters verses bogus craters can be viewed

as a two class categorisation problem in which a subset of true and false positives can

be used as training data then applied to independent subsets for making measurements.

Various combinations of match score histograms can be used in the process.

Unlike the martian terrain histograms populated from densely sampled BRIEF (chap-

ter 6) or Poisson blob (chapter 7) descriptors, match score values are continuous and

sparsely sampled from non-overlapping spatial regions. This potentially avoids problems

with correlated residuals which have previously lead to underestimated error predictions.

This also provides the opportunity to investigate previously untested aspects of theory

by constructing histograms with different axises and different binning resolutions, which

should produce statistically equivalent measurements differing only by the size of the error

bars.

The following subsections will investigate the use of linear histogram models in this

context primarily to solve the Moon Zoo false positive problem, but will also test consis-

tency over varying sampling conditions.

9.2.1 Match score distributions and histogram selection

A combination of 1 dimensional and 2 dimensional histograms are used in this chapter.

The 1 dimensional histograms are constructed for each individual match score. The 2 di-
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Figure 54: Left: Dot Product match score distribution computed using grey level image
template. Right: DP match score distribution computed using gradient image template.

mensional histograms combine 2 complementary match scores. Each match score contains

different information about the underlying image, as described in the previous chapter in

section 8.4.3. The histograms tested are then:

1D histograms:

• Grey templates with MSE match scores (Grey MSE);

• Gradient templates with MSE match scores (Grad MSE);

• Grey templates with DP match scores (Grey DP);

• and Gradient templates DP match scores (Grad DP)

2D histograms:

• Grey MSE vs Grey DP;

• Grey MSE vs Grad DP;

• Grad MSE vs Grey DP;

• Grad MSE vs Grad DP;

• Grey MSE vs Grad MSE;

• Grey DP vs Grad DP.

The individual match score distributions can be seen in figure 53 and figure 54. The

MSE style match scores have an intuitive shape, with true craters accumulating near

MSE values of zero (zero being a perfect template match) and false craters forming an

overlapping distribution away from zero. The DP style match scores also take an intuitive

form, with a peak at low values straddling zero and going negative for false positives and

higher values for true positives.
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According to the error theories developed in chapters 4 and 5, assuming the data can

be sufficiently approximated using a linear combination of independent Poisson bins (fol-

lowing properties of section 3.2), any valid histogram description of the data should yield

statistically valid measurements. Estimated quantities of false and true positives should

be consistent, within errors, with ground truth, and predicted measurement accuracies

should match observed accuracies over repeated trials. The measurement from different

histograms should differ only by the size of the final error bars, with less ambiguous rep-

resentations giving better accuracies than histograms with large overlapping classes. The

best results are therefore anticipated from most separable match score distributions.

Given that match scores are continuous values there is also choice available for the

binning of each histogram. This is in contrast to the BRIEF and Poisson blob histograms

used previously during martian terrain analysis experiments where binning was dictated

by discrete patterns with no clear adjacency relation between them. With match scores,

the choice of a wider binning will result in better populated bins with lower relative per-

bin Poisson errors, but with potentially more overlap between classes. Whereas a greater

number of narrower bins may provide better separability at the boundaries between classes,

i.e. less ambiguity at overlaps, but at the expense of fewer entries per bin. Achieving best

results will therefore be a function of the selected match score(s) and their sampling.

9.2.2 Populating histograms

The histograms listed in the previous section must be described in terms of linear sub-

components before they can be fitted to new data for the task of estimating false and true

positive quantities of craters. This requires multiple exemplar histograms to be sampled

for both true and false positive classes in order to conduct the model building histogram

Independent Component Analysis. Once extracted, the linear model components must be

fitted to large numbers of independent histograms and done so repeatedly in order to ex-

amine actual error distributions to corroborate error predictions. Both of these processes

requires large quantities of data. Previously, when constructing and testing linear models

for martian terrain analysis, there was an infinite quantity of training and testing data

available via the terrain simulator Monte Carlo. Unfortunately this is not the case with

selected Moon Zoo data, where the 20,000+ craters limits the total quantity of indepen-

dent samples available. To solve this the Moon Zoo data can be repeatedly reused by

sampling with replacement.

To keep the sampling with replacement realistic the sampling can be performed on a

regional basis, as opposed to a crater-by-crater basis. This strategy is important for main-

taining possible regionally dependent variations in match score distributions. To sample

N true positive craters a rectangular image region containing at least N true positives can

be selected uniformly at random. The first N true positives found within that region, from

left to right, top to bottom, can be entered into the histogram being populated. The same
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scheme can be applied for false positives. The sampling with replacement can be achieved

by allowing regions to overlap an unlimited number of times. To ensure uniqueness of the

samples a small amount of additional noise can be added to each sampled match score

value. This additional noise, significantly less than the binning resolution, should not

adversely change the shape of the distributions.

9.2.3 Testing

During each trial 10,000 craters were selected in the form of 10 rectangular regions sampled

with replacement. The 10 histograms were then used to train a linear model. For each

trial these models were fitted to different quantities of testing data, with approximately

one quarter being false positives to match the demographics of the raw Moon Zoo data.

The estimated quantities of true and false positive craters were then extracted from the

model using equation (25), which map directly onto counts of craters.

After each trial the difference between known ground-truth values and estimated values

were divided by the predicted error and recorded in pull distributions in line with previous

experiments (e.g. section 6.4). The predicted accuracies were also recorded as percentage

errors on measured quantities. 1,000 repeated measurements were taken per trial, again

consistent with previous martian tests.

The building and fitting of linear models was tested under varying conditions, including

the measuring of different quantities of data across each type of histogram and the testing

of different histogram binnings. Both 1D and 2D histograms were tested using 0.01,

0.10, 1.00, 10.00 and 100.00 times as much testing data as training data. 1D histograms

were also tested using 4 to 256 histogram bins spanning the range of the match score

distributions, which for MSE scores ranged between 0 and 1,200 and for DP scores ranged

between -0.2 to +0.5.

9.2.4 Discussion

The models built show that match score distributions contain relatively low amounts of

regional variability. Linear models of both true and false positives can be constructed

using as few as 10 regions each, with only 3 to 4 linear components per class required to

describe data with sufficient goodness-of-fit. Figure 61 shows the model selection curves

for selected histograms, using 10 regions and increasing numbers of components. These

are in contrast to the relatively large amounts of variability found in previous martian

terrain models, with model selection curves for comparison plotted in figures 21 and 31.

Each experiment confirmed that it is possible to quantify the amounts of true and false

positive craters within predictable accuracies using the linear modelling techniques. This

can be seen in figures 55 and 59 where the ratio of predicted to observed errors approxi-

mately equals unity consistently across different ratios of training to testing data. Further

more, there are no apparent problems with under estimated errors suggesting that the
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Figure 55: Corroboration that predicted measurement errors are seen in practice when
linear models are constructed and fitted using 1D match score histograms. The x-axis
indicates the relative quantities of training and testing data. The y-axis shows observed
errors over 1,000 trials per point divided by the predicted errors.

Figure 56: Measurement errors as percentage of measured quantities when using 1D match
score histograms. The x-axis indicates the relative quantities of training and testing data.
The y-axis shows one standard deviation of predicted accuracies as a percentage of the
measurement.
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Figure 57: Corroboration that predicted measurement errors are seen in practice when
linear models are constructed and fitted using 2D match score histograms. The x-axis
indicates the relative quantities of training and testing data. The y-axis shows observed
errors over 1,000 trials per point divided by the predicted errors.

Figure 58: Measurement errors as percentage of measured quantities when using 2D match
score histograms. The x-axis indicates the relative quantities of training and testing data.
The y-axis shows one standard deviation of predicted accuracies as a percentage of the
measurement.
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Figure 59: Agreement between observed and predicted errors when using different binnings
with 1D match score histograms. The x-axis indicates the number of bins spanning the
range of match score values (0 to 1,200 for MSE and -0.2 to +0.5 for DP scores). The
y-axis shows observed errors over 1,000 trials per point divided by the predicted errors.

Figure 60: Measurement errors as percentage of measured quantities when using 1D match
score histograms with different binnings. The x-axis indicates the number of bins spanning
the range of match score values (0 to 1,200 for MSE and -0.2 to +0.5 for DP scores).
The y-axis shows one standard deviation of predicted accuracies as a percentage of the
measurement.
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Figure 61: Model selection curves for 1D histograms. Each curve shows an alternative
match score. The number of extracted components increases along the x-axis. The y-axis
gives the goodness-of-fit, which should reach unity.

spatially correlated residual problems previously observed during martian terrain analyses

do not occur in this new context. The behaviour of the predicted errors can be seen in

figures 56 and 58 to be consistent with theory and previous experiments, with percent-

age errors reducing as the quantity of data increases. The poorest accuracies were seen

at relatively low quantities on the 1 dimensional MSE type histograms, with percentage

errors around 30%. The best accuracies were seen at relatively high quantities on the 1

dimensional DP type histograms and 2 dimensional histograms, which incorporated the

DP type information, with best percentage errors around 0.5%. This is consistent with

the relative levels of ambiguity between MSE and DP distributions, where visually it is

clear that there is less overlap between the true and false positive distribution in the DP

match scores, as seen previously in figures 53 and 54. Consistent results were also observed

for different binning resolutions, with percentage errors varying across the plot in figure

60, generally improving as the number of bins increases until bins become too narrow and

underpopulated.

Importantly, irrespective of the match scores sampled or the binning selected, sta-

tistically valid measurements were achieved under all conditions. It was emphasised in

introductory chapters (e.g. section 1.6) that a quantitatively successful method need not

be the most accurate in absolute terms. In the context of filtering Moon Zoo citizen science

data the developed linear modeling and quantity estimation methods must be considered

successful and trustworthy for scientific use, assuming the other issues with Moon Zoo data

(false negatives, subjectivity of ground truth etc.) are appropriately addressed. With pre-

dictable accuracies it becomes possible to automate the process of comparing crater counts

from different geological units with confidence. This leads to practical considerations of
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usability in terms of spotting significant crater count differences. Whilst any histogram

and binning will give valid measurements, a researcher comparing crater counts will only

be able to measure significant differences if the quantities of craters differ by at least a

couple of standard deviations of the measurement accuracy. For science, this practical

criteria should supersede conventional pattern recognition thinking that best ROC results

represent the best algorithms. Rather, it should be acknowledged that quantitative error

predictions are essential, and the absolute levels of accuracy required for an application

only need to be commensurate with the differences expected to be measured in the target

data. One consequence of this for crater counting is that counts are fundamentally lim-

ited to best-case Poisson errors, therefore there will be a minimum region size associated

with any analysis which hopes to spot differences in crater counts. Very small regions

containing very few craters will necessarily have large relative errors, and no algorithm

can improve upon this.

Whilst achieving better than Poisson errors on quantity estimates is impossible accord-

ing to theory, the quantification of Moon Zoo data could potentially be improved towards

this accuracy limit by improving the crater templates used to gather match score informa-

tion. The grey level and gradient image templates developed in the previous chapter had

few degrees of freedom to adapt to target craters. An improved model would maintain the

x, y and radius parameters, but could dispense with the smoothing parameter and instead

extract modes of crater variation using either an eigenvector model, as has been used

in various proposed crater detection algorithms [64][65], or perhaps with an ICA model,

possibly reusing some linear modeling code already developed for histograms10. Further,

to better differentiate between craters and common false positive features additional tem-

plates could be constructed for ridges, hillocks and other ambiguous entities. The match

scores from these additional templates can be treated as new histogram dimensions in the

hope of providing wider separation between classes.

9.3 Step 4: False negative calibration

The following subsections will attempt to answer the question ‘Can the quantities of false

negative missing craters be accounted for?’

Previous pipeline stages had the character of reducing the number of craters in the

dataset. The clustering reduced multiple mark-ups into individual craters and the linear

modelling reduced the dataset to (probabilistic) true verses false craters. If the original

raw data contained every single real crater, plus contamination, then by step 3 the task

would be complete. However, there are missing craters in the raw data which will cause

underestimated SFD bins. It is hoped that the efficiency of Moon Zoo users is relatively

10Whilst pixel grey levels cannot be treated as Poisson distributed quantities, appropriate modifica-
tions to the linear modelling theory could potentially lead to a nested linear model for the hierarchical
interpretation of complex data.
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consistent across the data. If this is so, a single correction factor can be determined and

applied to boost SFD bin counts to approximately correct levels.

9.3.1 Testing

8 random regions of the data were selected for calibration. These regions spanned the full

width of the source images in 400 pixel high strips. The regions selected were:

1. Image M104311715LE, pixel rows 400 to 800

2. Image M104311715LE, pixel rows 6,000 to 6,400

3. Image M104311715LE, pixel rows 15,200 to 15,600

4. Image M104311715LE, pixel rows 32,000 to 32,400

5. Image M104311715LE, pixel rows 49,500 to 49,900

6. Image M104311715RE, pixel rows 400 to 800

7. Image M104311715RE, pixel rows 6,000 to 6,400

8. Image M104311715RE, pixel rows 15,200 to 15,600

Undergraduates of the School of Earth, Atmospheric and Environmental Sciences,

University of Manchester, marked-up each image twice, annotating all craters down to 10

pixels. The annotations were then checked by a lunar expert11. The double mark-ups

were clustered using the coalescence method of step 1 (section 8.3), then used to construct

SFDs. Poisson errors were assumed on final bin counts. The same regions were analysed

using refined data from step 2 (section 8.4), followed by linear modelling of step 3 (section

9.2), before also being converted to SFDs. Predicted errors from step 3 were assumed on

final bin counts. Figure 62 shows the comparative results.

9.3.2 Discussion

Unfortunately, for smaller craters of less than 20 pixels, there were large discrepancy be-

tween ground-truth and filtered SFDs. These discrepancies were also regionally dependent,

preventing the use of a single correction factor. However, above 20 pixels there was good

agreement between filtered Moon Zoo SFDs and ground-truth, albeit at low sample sizes

with large relative errors.

There is weak evidence of a link between efficiencies and total numbers of craters, with

efficiency going down as the total number of craters goes up, as seen in figure 63. If this

relationship is genuine then there is an intuitive interpretation: citizen scientists can only

11The names of these undergraduates and lunar expert are noted within the acknowledgements.
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work at a finite speed, and within a given time-span, a heavily cratered region will be less

well counted than a sparsely populated one.

With further investigation it might be possible to determine a relative calibration

based upon user behaviour. However, there is a very simple solution to the false negative

problem: images can be left on-line for much longer to ensure few craters are missed.

9.4 Summary

Within this chapter it has been shown that linear histogram models can be used to quantify

the amount of contamination in Moon Zoo crater data from false positives. This was

achieved with real-world data to within predictable accuracies. This demonstration shows

that the methods developed within this thesis have practical utility for at least some

real-world problems.

The Moon Zoo processing pipeline developed over the previous two chapters still only

constitutes a semi-automated crater counting system. There is an obvious extension to the

above method involving a global image template search for all crater-like features, which

is usually the starting point of other proposed automated crater detection algorithms.

However, such a system could suffer from false negatives, where genuine yet atypical

craters fail to secure decent template match optima. Scaling up to this type of system is

the next logical step and should be the focus of future work.
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Figure 62: Comparative SFDs for 8 randomly selected regions of data.
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Figure 63: Relationship between crater counting efficiency within the smallest size bin and
the total number of ground-truth craters in those size bins.
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10 Conclusions

This thesis began by arguing in chapter 1 for the need of an automated solution to the

analysis of planetary images. This need was motivated by an unmanageable accumula-

tion of data, a limited supply of experts and the inherent subjectivity of humans. From

the outset the needs of researchers wishing to make objective measurements was empha-

sised and a set of quantitative criteria stated against which the success of any proposed

automated methods could be compared. These criteria specify that measurements are

driven by evidence, accompanied by error estimates, and that measurements in practice

do not deviate by more than their predicted accuracies. The criteria also encouraged the

use of additional tools for corroborating that measurements can be trusted. A review of

literature in chapter 2 concluded that the conceptual building blocks necessary to fulfil

the criteria existed, but were rarely combined into scientifically useful systems and that

empiricism was often favoured over theoretical considerations of measurement errors.

Within the first half of the thesis theoretical considerations and assumptions about

data generation lead to the development of a flexible histogram-based pattern recognition

system capable of learning complex and variable distributions. The basics of a histogram-

based statistical model was provided in chapter 3, followed by the development of a predic-

tive error theory in chapters 4 and 5. During these chapters a new method of Independent

Component Analysis was created specifically for histogram data as part of a training al-

gorithm and an Expectation Maximisation algorithm was created for fitting extracted

components to new data for the purposes of making measurements. The Cramer Rao

Bound (lower variance bound) and error propagation were applied to estimate the statis-

tical and systematic uncertainties within measured quantities. These methods were tested

using Monte-Carlo simulated histograms showing that for ideal data, which abided by the

assumed data properties, the developed system fulfilled all of the quantitative criteria.

The second half of the thesis took on the challenge of applying the pattern recogni-

tion system to more realistic data. This began with synthetic martian terrains derived

from HiRISE images in chapters 6 and 7, then moving on to lunar craters with assistance

from the Moon Zoo team and their many citizen scientists in chapters 8 and 9. Different

image encoding schemes were used as input to the system for the tasks of measuring mar-

tian terrain surface areas and counting lunar craters. Experiments revealed the inherent

difficulties in making a new statistical method work in practice, as various experiments

unveiled problems with the assumed data properties. These problems were examined us-

ing a goodness-of-fit function, residual correlation matrices and repeated measurements

compared against ground-truth values. This resulted in a better understanding of image

properties and the limitations of the method. Success was achieved in chapter 9, where an

appropriate image encoding allowed the quantitative measurement of true positive verses

false positive craters in Moon Zoo data.

Now in this concluding chapter the main findings will be summarised. The strengths
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and limitations of the developed methods will be explored and opportunities for future

work identified.

10.1 Theory summary

The quantitative pattern recognition theory developed centres around a linear additive

model which combines weighted probability mass functions to approximate arbitrary his-

togram distributions. The constituent PMFs are extracted from training data using a

form of ICA, leading to a flexible model capable of being fitted to new data containing

varying proportions of subcomponents. Measurements are extracted by fitting the model

to new data and relating model parameters to physical quantities. An error theory ac-

companies this model for making first-order approximations to how perturbations in input

data affects the stability of measured quantities. This error theory provides measurement

error covariances appropriate for scientific use, assuming the data to which the method is

applied meets certain criteria.

10.1.1 Findings

Early insights into the behaviour of measurements came from inspecting error covariance

calculations and testing error predictions using Monte-Carlo techniques. The main findings

were:

• statistical perturbations in measurements can be modelled upon assumptions of Pois-

son noise in incoming histogram data;

• there are systematic effects in measurements which can be modelled by Poisson noise

in training data which becomes fixed in the model;

• statistical errors grow proportionally to the square-root of the measured quantities:

σstat = α
√
Qk;

• systematic errors grow proportionally to measured quantities: σsys = βQk;

• and the levels of proportionality, α and β, are functions of the ambiguity between

classes which grows as the level of overlap between component distributions increases.

One consequence of these findings leads to a lower bound on attainable accuracies. In

the best possible case where there is no ambiguity between classes, i.e. P (X|k) is either
exactly 1 or 0 for all X and k, then the expected error on measured quantities is Poisson,

i.e. σ2
Qk

=< Qk >, and the systematic term goes to zero. In the general case of ambiguity

the statistical component dominates the total error at small relative quantities of data and

the systematic component grows to dominate at large quantities. This change is relative

to the quantity of training data where: 10 times as much training data than testing data
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leads to dominant statistical effects; 1 to 1 training to testing data leads to roughly half

statistical/half systematic effects; and 10 times as much testing data than training data

leads to systematic effects dominating. These changes in effects motivated the x-axis of

various plots throughout later chapters, where different ratios of training to testing data

were tested to confirm that error predictions worked in both extreme cases.

10.1.2 Strengths

The strengths of the modelling and estimation methods include:

• the non-parametric choice of histogram models allows any distribution to be approx-

imated;

• the ability to construct histograms using arbitrary numbers of linear components

allows many modes of variation to be modelled;

• because the entire data density is being modelled (unlike decision boundary methods)

per bin predictions of pattern frequencies can be produced, MX , and these can be

tested;

• and the error theories give case-by-case data-driven error predictions (unlike ROC

alternatives).

The choice of histogram models was purposeful, as few assumptions could be made

regarding the shape of pattern distributions in planetary terrains. Similarly, there are

few assumptions which can be made regarding how distributions may vary making the

ability to add additional components as required highly advantageous. This flexibility

ensures that a wide range of data can be modelled. Plus, to ensure data is being modelled

sufficiently well the bin-by-bin predictions of frequencies, MX , can be compared to data,

HX , to construct goodness-of-fit functions (equ 45) and correlation matrices (equ 93) for

corroboration. Yet the biggest strength is the ability to produce full error covariance

predictions for measured quantities, which is believed to be a unique feature of this style

of supervised pattern recognition system.

10.1.3 Limitations

The limitations of the modelling and estimation methods include:

• the assumed properties of data must be met;

• Monte-Carlo testing is artificial;

• the method represents a worse-case scenario requiring large numbers of parameters

to be trained.

169



• training and testing requires large quantities of data;

• and ICA extracted model components might not span the full range of possible data

variability.

Some major limitations of the theory emerge from the assumed data properties stated

in section 3.2, which require histogram data to contain independent Poisson bins form-

ing distributions describable using linear combinations of base components. Monte-Carlo

testing did corroborate the method’s validity, but the simulated data used was specifically

constructed to ensure that necessary properties were fulfilled. It can not be assumed that

the methods will work more generally on all histograms.

Other major limitations of the method are linked to the worse-case nature of histograms

as a representation for distributions. Whilst it is true that any distribution can be ap-

proximated with a histogram, sufficient data is required to populate it. A valid parametric

description with few parameters could be more accurate, even with far less data, than a

histogram alternative where each bin requires estimation. Histograms were selected for

flexibility, simplicity and understandability, but a quantitative system could benefit from

parametric components if the application demanded it.

Lots of data is required to both train and test histogram models. Underpopulated

bins can lead to problems as seen in sections 5.3 and 7.4.1 where approximations break

down. Holes may appear in distributions when insufficient data is provided. Gaussian

approximations to Poisson variances (as is assumed in error propagation) and square-

root transforms to improve approximations (as is used in the goodness-of-fit function)

both fail eventually at low enough statistics. Even with well-populated histograms, if an

insufficient number of exemplar histograms are provided to the ICA training algorithm

the full range of data variability might not be modelled. This issue was explained in

section 3.8, as extracted components can only describe histogram subspaces accessible

via positive coefficients. Only the variability seen in training data can be expected to be

modelled correctly when applied to unseen data.

10.2 Application

Beyond the basic Monte-Carlo studies where histograms were synthesised directly, the

methods were tested using histograms derived from real images. These images included

simulated martian terrains constructed using martian HiRISE data and lunar crater images

partially annotated by Moon Zoo users. Inspired by the BRIEF representation, local

BRIEF descriptors and correlated BRIEF blobs approximating Poisson events were used

to encode martian terrains. Grey level and gradient template images with a smoothing

parameter were used to represent lunar craters. These different image representations were

used to measure martian surface areas and to count true lunar craters in the presence of

false positive contamination.
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10.2.1 Findings

Applying the developed methods to realistic data provided many insights into the difficul-

ties of appropriately encoding images into usable histograms. These difficulties include:

• real histograms are more complex than an assumed accumulation of independent

Poisson events;

• if Poisson events are driving the data there is no guarantee that there is a one-to-one

correspondence between patterns (i.e. individual histogram bins) and the generating

events;

• the goodness-of-fit function alone cannot spot all problems with properties of incom-

ing data;

• a correlation matrix can be used as an effective safety net for corroborating several

required data properties;

• and additional layers of theory may be required for converting estimated model

parameters to useful measurements.

Real histograms populated using the BRIEF (ch. 6) and Poisson Blob (ch. 7) rep-

resentations proved to be more complex than assumed. The properties of section 3.2

were violated in multiple ways. Double counting and highly localised correlations between

histogram bins suggested that any underlying Poisson events generating the image data

caused clusters of related patterns to appear together. This resulted in poor model fits

for BRIEF histograms and underestimated error predictions for both BREIF and Poisson

Blob histograms. However, a combination of goodness-of-fit and correlation matrices were

shown to be effective at identifying such violations making it possible to spot issues and

disregard untrustworthy estimates.

Attempts to encode image data in a more Poisson-like way, i.e. Poisson Blobs, improved

agreement between theory and practice but at the cost of complicating the analysis. The

irregular shape of the blobs required additional steps to be taken to convert model param-

eters to measurements, ie. from blob counts to surface areas. This included extensions to

the error theories.

It was found that there was a real planetary science application and image representa-

tion amenable to quantitative analysis. The successful estimation of true and false positive

craters in Moon Zoo data demonstrated the value of the method.

10.2.2 Strengths

In practice there are several strengths of the method:

• quantitative criteria can be met for many martian terrain types;
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• quantitative criteria can be met for Moon Zoo crater data;

• high levels of accuracy are attainable when making some measurements (within +/-

fractions of a percent);

• equivalent measurements can be taken using different encodings, assuming the data

is well-behaved;

• the method scales from small to large histograms using few or many components.

Despite discrepancies between predicted and observed measurement errors during mar-

tian terrain surface area tests some terrains could be measured to within a factor of two of

these errors, fulfilling quantitative criteria. Amongst these results, accuracies as good as

+/- 0.5% were achieved under some parameter settings of the Poisson blob representation.

Very good agreement was achieved between predicted and observed measurement errors

when quantifying true and false positive Moon Zoo craters, again achieving accuracies

as good as +/- 0.5% when using dot-product style template match scores. The prac-

tical implications of this is the ability to measure small percentage differences between

measurements to several standard deviations’ significance, given the right encoding.

As predicted by theory, and observed in practice, for well-behaved data the same

measurements can be taken using different information resulting in statistically equivalent

estimates, differing only by the size of their errors. Experiments using Moon Zoo data,

using different binning and match scores, demonstrated this clearly. This strength of the

method emphasises the importance of measurement reliability and consistency rather than

just absolute levels of accuracy as is common in the computer vision field.

10.2.3 Limitations

The most significant limitations of applying the system in realistic data are due to vio-

lations of assumptions made about the data, i.e. independent Poisson bins which can be

linearly combined:

• it is difficult to find an appropriate encoding for image data which gives the necessary

properties;

• the goodness-of-fit function alone cannot spot all problems with data;

• correlation matrices require large quantities of data to populate;

• uninformative image regions which contain no information are problematic for in-

terpretation;

• and the selected image encodings don’t fully address issues of occlusion and bound-

aries.
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For the system to work correctly it was important to supply data which was well-

behaved, i.e. met the properties of section 3.2. Multiple failures of the system were

observed when using more realistic data, as was explained above in the Findings sec-

tion. Amongst the least well-behaved areas of data was uninformative image regions, as

there was no information within them to differentiate between empty space belonging to

different features. It also extended over wide regions, making it difficult to interpret as

individual Poisson events. Uninformative space was excluded from analyses from Poisson

Blob experiments in chapter 7.

Given the difficulties in formatting data appropriately, it was especially important to

provide mechanisms for spotting difficulties so that end users could be given honest in-

formation about the analysability of their data. The Chi-squared per degree of freedom

goodness-of-fit function could spot larger than expected residuals in BRIEF histograms,

yet was incapable of spotting residual correlations in Poisson Blob histograms. A corre-

lation matrix was successful at spotting problematic correlations, but required multiple

model fits to generate. The quantity of data required to construct such correlations ma-

trices excludes their use for checking individual fits. The Method-of-Runs [79] might be

a workable solution to spotting correlations if the adjacencies between bins is well under-

stood, but for BRIEF and Blob representations there was no simple way in which this

method could have been applied.

Finally, the image encodings largely avoided issues of occlusion. Martian terrains

were simulated with simple boundaries and Moon Zoo craters rarely overlapped. In more

complex terrains boundaries and interactions between features might not be so easily

ignored.

10.3 Future work

The methods developed could be extended in several ways, including:

• accommodating correlations between bins;

• investigating improved image encodings;

• nesting the model to create a hierarchical description of data;

• and optimising image region selection via minimising measurement uncertainty.

The thrust of future work should be aimed at widening applicability of the methods to

more realistic data. Part of this includes accommodating correlations between bins. This

will be required if martian terrain surface area measurements are to be improved. This

might be achieved simply by spotting highly correlated bins and merging them together,

or a more sophisticated solution could be to extend the theory to incorporate knowledge

of bin covariances. Alternatively, a data whitening stage might be considered.
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Improved image encodings might mitigate against violations of data assumptions. An

adaptive representation which can learn the structure of underlying Poisson events (if

they exist at all) would be ideal. These goals of learning representations may be similar

in scope to sparse coding, e.g. [175][176] and Deep Learning, e.g. [177][178]. Extending

the theory to include nested models, where sets of estimated quantities from one layer act

as input to the next, might be an integral part of such a system. For example, an adapted

form of the histogram ICA learning algorithm might learn correlations between pixels

to form appearance models. The parameters of such models might then be learned for

classification of features. This hierarchical organisation might move closer to a quantitative

Deep Learning framework.

Despite all attempts to model image data, there is always the possibility in complex

images that things will appear that just can not be analysed successfully. The work

presented in this thesis took a naive approach to region selection, simply choosing random

rectangles or entire images as sources. A more intelligent system may subdivide an image

into regions which optimise either the level of error on estimated quantities, or optimises

the goodness-of-fit in each region. Such a system would aim to mask off problematic data,

including boundary conditions and occlusions. A fine-grain region selection might even

operate on individual descriptors (BRIEF or otherwise) to maximise the probability of

patch classification based upon local evidence.

Improvements may lead to wide ranging applications, beyond image analysis. The

goal of an improved system should be to facilitate, as far as possible, the analysis of truly

arbitrary histogram data. Indeed, at the time of writing funds have been awarded by the

Leverhulme Trust (grant RPG-2014-019) to undertake this work in which further planetary

science data and complex mass spectra will be analysed. A proposal submitted to STFC is

also under consideration for additional planetary science applications. Finally, the Moon

Zoo team are considering adopting the developed methods for their data analysis needs.

10.4 Conclusion

Many existing computer vision systems are constructed using modular code blocks freely

available to download. Modules are available for encoding images, decomposing data,

classifying features and visualising results. In general such blocks are pieced together into

pipelines with little statistical understanding of how such blocks interact. The end results

are often only analysable empirically, leading to after-the-event evaluations of performance

and ‘shoot-outs’ to determine which components should be considered ‘state-of-the-art’.

Under this ethos, success is usually measured in terms of ‘best attainable accuracy’ rather

than measurement reliability and understandability. This leads to the adoption of new

building blocks only if those modules equal or outperform rivals. From the outset this the-

sis took a different approach. The empiricist’s plug’n’play black-box methodology which

dominates the field[85] was rejected in favour of a data-driven statistical approach with

174



‘state-of-the-science’ taking centre stage. Here, the goal was always to achieve statistically

valid, meaningful and honest measurements that could be used with confidence. In this

regard, this work is more akin to research in the physical sciences than in the computer

science tradition. The original goals have been largely achieved, but much work will be

required to widen applicability to other real science problems.

This work (along with a small but growing list of others e.g. [80][153][179][180]) rep-

resents a potentially new paradigm, or at least a new sub-topic, for computer vision

research: Quantitative Vision. In Quantitative Vision algorithms are designed specifically

to cater for the properties of the target data. This necessitates a detailed understanding

of distributions, correlations and perturbations, i.e. statistics. In Quantitative Vision the

performance of an algorithm must be understandable, allowing predictions to be made

which can, and must, be tested before the algorithm can be applied with confidence in

scientific applications. As a challenge to the computer vision and pattern recognition com-

munities it would be of great value if researchers re-evaluated existing algorithms under

the quantitative criteria of section 1.6. This will require black-box methods to be opened

up to statistical scrutiny with questions being asked such as:

• Can we predict the performance of our algorithm ahead of time?

• Can we understand the origins and nature of any statistical or systematic errors in

our results?

• How far must our algorithm’s performance deviate from predictions before we con-

clude that the algorithm or our understanding is flawed?

• What does our new algorithm assume about the data?

• How can we test that incoming data meets the assumptions made by our algorithm?

• How do we know that our model is truly describing our data?

• Can we relate our algorithm to probability theory? And if so, can we show that our

results are in principle the most probable given the evidence?

In the case of the quantitative pattern recognition system developed in this thesis there

are positive answers to all of the above questions.

Planetary scientists wishing to adopt automated analysis methods should too be asking

these questions, and they must also be prepared to learn the fundamentals of how and why

such methods work. The limited range of applications approached in this thesis revealed

the difficulties in applying quantitative methods correctly. Planetary scientists wishing

to use such techniques more generally will be required to make extensions to theory and

algorithms as necessary, which will require the development of statistical and computer

programming skills.
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