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Abstract 

This paper aims to optimize the inventory replenishment policy in an integrated supply chain 

consisting of a single supplier and a single buyer. The system under consideration has the features 

such as backorders-lost sales mixture, controllable lead time, stochastic demand, and stockout costs. 

The underlying problem has not been studied in the literature. We present a novel approach to 

formulate the optimization problem, which is able to satisfy the constraint on the number of 

admissible stockouts per time unit. To solve the optimization problem, we propose two algorithms: 

an exact algorithm and a heuristic algorithm. These two algorithms are developed based on some 

analytical properties that we established by analysing the cost function in relation to the decision 

variables. The heuristic algorithm employs an approximation technique based on an ad-hoc Taylor 

series expansion. Extensive numerical experiments are provided to demonstrate the effectiveness of 

the proposed algorithms. 

Keywords: Integrated supply chain; replenishment policy; stochastic demand; controllable lead 

time; backorders; lost sales; joint economic lot size 

 

1. Introduction 

Supply chain management involves a range of decision-making tasks including planning and 

management of sourcing, procurement, conversion, and logistics. Accomplishing these tasks in 

isolation may lead to conflicts among supply chain parties (Zhao et al., 2016). Moreover, the 

players in a supply chain (such as vendors, retailers, distributors, etc.) may belong to different 

corporate entities and be more prone to minimize their own cost rather than that of the supply chain 

as a whole. However, this single-sided optimal strategy is not suitable for today’s competitive 

environment (Jha and Shanker, 2013). Increasingly intensive competition has forced companies to 

seek stronger collaborative relations with their suppliers and/or customers (Yi and Sarker, 2014). 

Facing fierce market competition, companies that belong to the same supply chain have recognized 

the significance of synchronizing and coordinating their policies with the objective of reducing 

operation costs and improving performance (Jia et al., 2016). 

Nowadays, business companies have realized that a better management of inventories across the 

supply chain can be achieved through cooperation rather than acting independently This 

collaborative perspective within the supply chain has led researchers to develop models that 

consider coordinated inventory replenishment decisions between buyer(s) and vendor(s). The 

integrated inventory model takes the view of the supply chain’s total cost/profit to determine the 

optimal production-delivery schedule in the context of a centralized system and information 
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sharing. The optimization of replenishment decisions in integrated inventory models can be traced 

back to the definition of the so-called Joint Economic Lot Size (JELS) problem (Goyal 1977). 

After Goyal (1977), an impressive number of studies has emerged in the context of JELS models. 

The most recent review of JELS models is owed to Glock (2012), which covers the relevant papers 

published before 2012. In the following, the relevant papers published after 2012 will be reviewed 

briefly. Das et al. (2013) presented an integrated model for a constant deteriorating item, in which 

shortages are not allowed, but a delay in payment is offered to retailer by supplier. The procurement 

cost linearly depends on the credit period and the process cost is a linear cost of the quantity 

purchased by retailer. Diabat (2014) addressed the issue of maximizing the profit of a supply chain 

under Vendor-Managed Inventory (VMI) given a nonlinear and non-convex objective function. 

Sadeghi et al. (2014a) extended the model of Zavanella and Zanoni (2009) to include fuzzy 

demand, transportation cost, and several additional constraints. Chang (2014) developed an 

improved method to optimize a two-echelon supply chain for a deteriorating item where the 

deterioration rate is constant or follows a probability distribution. Rad et al. (2014) studied a 

vendor-buyer integrated supply chain with imperfect production and shortages, where demand is 

sensitive to the selling price. Lin and Lin (2014) presented a model involving defective items and 

quantity discounts, in which the objective is to optimize pricing and ordering strategies. Sadeghi et 

al. (2014b) developed a bi-objective VMI model with one vendor and several retailers, in which 

different machines work in series to produce a single item. They assumed that the demand is 

deterministic and known, whereas the budget, required storage space, replenishment frequencies, 

and average inventory are constrained. Jauhari et al. (2014) investigated a single vendor-single 

buyer supply chain under deterministic demand, taking into account unequal-sized shipments, 

defective items and carbon emission cost. Braglia et al. (2014a; 2014b) first presented a new 

approach to evaluate physical space occupation costs, and then gave a new cost formulation for an 

integrated production-inventory model under VMI with consignment stock. Sadeghi and Niaki 

(2015) proposed a bi-objective VMI model for a supply chain with a single vendor and multiple 

retailers in which the demand is fuzzy and the vendor faces two constraints: number of orders and 

available budget. Sadeghi (2015) considered a VMI model for a two-echelon supply chain where 

several retailers’ inventories are replenished with different rates by a single vendor, taking into 

account a capacity constraint on the vendor’s warehouse. Nagaraju et al. (2015) studied inventory 

replenishment decisions for centralized and decentralized supply chain with price dependent 

demand. Giri et al. (2015) developed a single vendor-single buyer model where the capacity of the 

vendor’s warehouse is limited. The model assumes that, whenever the vendor's on-hand inventory 

level reaches the maximum attainable capacity, she/he follows a modified consignment stock policy 

until the production lot is completed. Glock and Kim (2015) studied a supply chain model that 

considers both the downstream flow of materials from the manufacturer to the buyer and the 

circulation of returnable transport items (RTIs) between two actors. Braglia et al. (2016) proposed a 

novel approach to manage safety stock in a supply chain under VMI with consignment stock where 

the lead time is assumed to be controllable and costs are evaluated using the present value criterion. 

Lin (2016) formulated a model that considers partial backlogging and stochastic lead time. The lead 

time variability is supposed to be controllable through a capital investment. Hariga et al. (2016) 

examined a supply chain where a single vendor supplies a single buyer with a finished product 

packed in RTIs. The RTI return time is assumed to be stochastic and, in case the return of empty 

RTIs is delayed, the vendor can rent RTIs from a nearby service provider. Finally, Jauhari et al. 

(2016) studied a three-echelon supply chain under deterministic demand, where the production 

process is imperfect and inspections include errors. 

Real inventory systems are typically characterized by demand uncertainty. When facing stochastic 

demand, an important issue is concerned with controlling the replenishment lead time (Glock, 

2012). In fact, a longer lead time exposes the company to a higher risk of running out of stock; 

while a shorter lead time may lead to smaller safety stock, better customer service level, reduced 

stockout losses, and lower expected total costs. Hence, controlling lead time may permit to achieve 
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lower investments in inventory, better product quality, less scrap, reduced storage space 

requirements, increased productivity, and improved competitive position of the company (Glock, 

2012; Hariga, 2000). There exist several approaches to incorporating lead time control: lead time is 

assumed to be made of several independent components that can be shortened by paying a crashing 

cost (Chang et al., 2006; Jha and Shanker, 2009; Lin et al., 2011; Lin, 2013; Panda et al., 2014); it 

can be represented as a linear function of the production rate and the order quantity (Glock, 2012; 

Song et al., 2013; Abdelsalam and Elassal, 2014); it can be considered to be an independent 

decision variable with a crashing cost expressed as a power or linear function (Chandra and Grabis, 

2008) or as an exponential function (Moon et al., 2014). 

In the context of stochastic demand, another important issue is the assumption of backorders or 

lost sales to represent customers’ purchase behaviour when facing stockouts. Earlier literature often 

assumed either backorders or lost sales. Recent stochastic inventory models have considered the 

situation of backorders-lost sales mixture (Chang and Lo, 2009; Sicilia et al., 2012; Wang and 

Tang, 2014; Castellano, 2016). The backorders-lost sales mixture is a more general phenomenon 

that represents the scenarios in which some customers may be willing to wait until demand is 

satisfied (such demands are backordered); while others are impatient (such demands are lost). In 

fact, the case of backorders or lost sales can be treated as a special scenario of backorders-lost sales 

mixture. However, optimizing safety stock, replenishment policy and lead-time length in supply 

chains with the backorders-lost sales mixture has been understudied.   

This paper investigates an integrated supply chain taking into account controllable lead time, 

backorders-lost sales mixture, and stockout costs. The objective is to optimize the replenishment 

policy and the length of lead time by minimizing the expected total cost per time unit. In the 

literature, the optimization of the replenishment policy (that implies safety stock and expected 

shortage) is often tackled by treating the order (or shipment) quantity and the service level as 

mutually independent decision variables, or by imposing a service level constraint (Jha and 

Shanker, 2009; Lin et al., 2011; Shahpouri et al., 2013; Moon et al., 2014). This paper proposes a 

different approach. In particular, we introduce a parameter about the number of admissible 

stockouts per time unit to express the service level (and thus the safety factor, too) as a function of 

the order quantity. This allows us to optimize safety stock and expected shortage considering the 

constraint given by this parameter. Our approach has a couple of unique features that complement 

the traditional approaches. First, the introduced parameter has physical meaning, representing the 

number of admissible stockouts per time unit. Thus, the obtained optimal replenishment policy 

would satisfy the constraint on the number of admissible stockouts per time unit. This is useful in 

practice. For example, the buyer may impose it as a tangible performance indicator concerning the 

inventory replenishment policy. This may be particularly true in some circumstances, for example, 

when the cost coefficients are not accurately defined. Second, as it will be evident in later sections, 

a further benefit is the reduction of the number of decision variables to be considered in the 

optimization problem. Note that the amount of calculation effort may increase quickly with the 

number of items; this advantage may not be negligible when the optimization procedure is applied 

in practice. 

The papers that are most closely related to the present paper are Braglia et al. (2014b; 2016). 

However, their models did not include two fundamental aspects: backorders-lost sales mixture and 

stockout costs. That is, they mainly focused on the optimization of safety stock, thus neglecting the 

optimization of expected shortage. To authors’ knowledge, the joint optimization of safety stock 

and expected shortage, taking into account the relationship between service level and order quantity 

given by the parameter about the number of admissible stockouts per time unit, has never been 

considered in literature. Hence, we extend previous researches to a different and, under many 

aspects, more general context, In fact, the problem under consideration is more challenging and 

harder than that in Braglia et al. (2014b; 2016). To solve our optimization problem, we will first 

formulate an exact algorithm, and then propose an efficient heuristic algorithm based on an 

approximation technique. The main idea of the approximation technique is to replace part of the 
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cost function with an ad-hoc Taylor series expansion so that the approximated cost function 

becomes more tractable. The heuristic algorithm has computational advantages over the exact 

algorithm. Numerical experiments will illustrate the effectiveness of the proposed algorithms. 

 

To solve the optimization problem, we present an exact algorithm and an efficient approximated 

procedure. The heuristic algorithm is given with the additional purpose to foster the application in 

practice of the proposed model. The approximation technique consists in replacing part of the cost 

function with an ad-hoc Taylor series expansion. Numerical experiments investigate the 

performance achieved by the proposed algorithms and the sensitivity of the model with respect to 

some fundamental parameters. 

The rest of the paper is organized as follows. In Section 2, we give notation and assumptions. In 

Section 3, we define the problem and formulate the model. In Section 4, we present the solution 

methods. Numerical experiments are given in Section 5. Finally, conclusions are drawn in Section 

6. 

 

2. Notation and assumptions 

The following list gives the main notation adopted in the paper: 

Decision variables: 

q Order (or shipment) quantity (quantity unit). 

n Number of shipments per production batch. 

L Length of replenishment lead time (time units). 

z Safety factor. 

r Reorder point (quantity unit), which is an equivalent decision variable to z. 

Parameters: 

P Production rate (quantity unit/time unit). 

S Setup cost (money/setup). 

Vh   Unit stockholding cost rate for the vendor (money/quantity unit/time unit). 

D Demand rate at the buyer (quantity unit/time unit). 

σ Standard deviation of the demand rate at the buyer (quantity unit/time unit). 

A Ordering cost (money/order). 

K Fixed transportation cost (money/shipment). 

Bh  Unit stockholding cost rate for the buyer (money/quantity unit/time unit). 

β Fraction of shortage that is lost. 

1  Fixed penalty cost per unit shortage (money/quantity unit). 

0  Marginal profit per unit (money/quantity unit). 

k Number of admissible stockouts per time unit. 

Random variables: 

X Lead-time demand. 

Functions and operators: 

f Standard normal probability density function (p.d.f.). 

F Standard normal cumulative distribution function (c.d.f.). 

G Standard normal loss function. 

 E   Mathematical expectation. 

Pr   Probability function. 

x  Maximum between 0 and x. 

 1  Indicator function on the set . 

 sgn   Sign function. 
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 erf   Error function (Abramowitz and Stegun, 1972). 

Sets: 

 Natural numbers. 

Our model is based on the following main assumptions: 

 One vendor supplies a single item to one buyer. 

 The buyer orders a lot of size q. The vendor manufactures nq units with a finite production rate 

P (with P D ) at one setup, and ships in quantity q to the buyer over n times. For each 

shipment (of size q), the buyer pays a fixed transportation cost K. The vendor incurs a setup 

cost S for each production run of size nq. The buyer bears an ordering cost A n  for each order 

of size q. 

 The buyer adopts a continuous-review (r,q) inventory replenishment policy. An order of size q 

is placed when the on-hand inventory level drops to the reorder point r. 

 Shortages are allowed and partially backordered with ratio 1  . The fraction of shortage with 

ratio β is lost. 

 The reorder point is given by r DL z L  , where the first addendum is the expected lead-

time demand and the second one is the safety stock. 

 The lead time demand X is a Gaussian random variable with mean DL and standard deviation 

L . The expected shortage per cycle is, therefore, given by    E X r LG z
  

 
 (see, 

e.g., Ouyang et al. (2004)). 

 The time horizon is infinite. 

We further assume that the replenishment lead time consists of M deterministic and mutually 

independent components (Chang et al., 2006; Jha and Shanker, 2009; Lin et al., 2011; Lin, 2013; 

Panda et al., 2014). The generic mth component has a minimum duration mb , a normal duration ms  

and a crashing cost per time unit mc . We order the lead time components in a way such that 

1 2 ... Mc c c   . Components are crashed one at a time starting with that of least unit crashing cost. 

If mL  is the length of lead time with components 1,2,...,m  crashed to their minimum durations, 

then we can write 

     0 1 1 2 2 ...m m mL L s b s b s b        ,  

where 0 mm
L s . 

The lead-time crashing cost  R L  is, therefore, given by 

       
1:

1

1
m m

M

mL L L L
m

R L L R L
 



 ,  0,ML L L , (1) 

where 

         1 1 1 1 2 2 2 1 1 1...m m m m m mR L c L L c s b c s b c s b            .  

We can note that  R L  is a piecewise-linear, decreasing function in the interval  0,ML L . It is also 

continuous and convex in  0,ML L . 

 

3. Problem definition and model formulation 

We focus on a single vendor-single buyer integrated supply chain. It is worth noting that such 

inventory system represents a milestone in the JELS literature and is still of interest to researchers. 

The problem under consideration is to optimize the decision variables including the order quantity, 

the number of shipments per production batch, the length of replenishment lead time, and the safety 

factor by minimizing the total system cost incurred to both supplier and buyer. The controllable lead 

time is modelled by a set of independent components that can be shortened by paying a crashing 
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cost. The backorders-lost sales mixture is modelled by a parameter to represent the fraction of 

shortage that is lost. More importantly, we have introduced a parameter (k) to denote the number of 

admissible stockouts per time unit, which will be treated as a constraint to the optimization 

problem. 

3.1. Standard formulation 

In this subsection, we will first derive the standard formulation of the expected total cost per time 

unit given the assumptions stated in Section 2. After that, we will discuss the need of a new 

approach in order to take into account the number of admissible stockouts per time unit. 

In Figure 1, it is possible to observe how the vendor’s inventory and the buyer’s inventory vary 

over time for a sample case with 4n  . First, let us derive the costs associated with the buyer. The 

cycle length is given by q D . The expected cost per time unit relevant to each shipment is 

 A n K D q . The expected backorders per cycle and the expected lost sales per cycle are given 

by    1 E X r
  

 
 and  E X r

 
 

, respectively. The stockout cost per time unit is 

therefore given by  LG z D q , where 1 0    , which represents the sum of the penalty 

cost for shortage and the loss of profit due to partial lost sales.. The expected net inventory levels 

just before receiving an order and at the beginning of the cycle are given by 

 r DL E X r
   

 
 and  q r DL E X r

    
 

 respectively. Hence, the expected 

stockholding cost per time unit is   2Bh q z L LG z   . The last cost component relevant 

to the buyer is the lead-time crashing cost per time unit, which is given by  R L D q . 

Second, let us consider the costs that pertain to the vendor. The cycle length for the vendor is 

nq D . The expected setup cost per time unit is 
SD

nq
. As observed, e.g., by Ouyang et al. (2004), 

the average inventory of the vendor is  2 1 2q n n D P     . Therefore, the expected 

stockholding cost per time unit is  2 1 2Vh q n n D P     . 

----------------------- 

FIGURE 1 HERE 

----------------------- 

In summary, the long-run expected total cost per time unit for the considered system, in the 

standard formulation, is: 

     

     

, , ,
2

1 2 .
2

B

V

D q
C q z n L A S nK h z L LG z

nq

D D q D
LG z R L h n n

q q P

 



 
      

 

 
      

 

  (2) 

Given this formulation, the safety stock and the expected shortage are typically optimized 

considering q and z as mutually independent decision variables. Additionally, a service level 

constraint could also be imposed (Jha and Shanker, 2009; Lin et al., 2011; Shahpouri et al., 2013; 

Moon et al., 2014). However, the above formulation and solution does not ensure the number of 

stockouts per unit time, which is a more tangible performance indicator. Different from the above 

traditional approach, we introduce an explicit parameter k about the number of admissible stockouts 

per time unit that converts the service level (and thus the safety factor as well) into a function 

depending on the order quantity. Such treatment permits us to optimize safety stock and expected 

shortage, and hence the inventory replenishment policy, taking into account the constraint imposed 

by k. It is worth noting that a further relevant benefit of such treatment is the reduction of the 

number of decision variables to be considered in the optimization problem. In practical terms, when 
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the amount of calculations needed grows with the number of items, this advantage may not be 

negligible. 

It should be pointed out that in practice the parameter k is helpful to operational managers as it is 

an important tangible performance indicator. On the other hand, by pre-specifying an appropriate 

level of k, our approach is able to design the corresponding optimal inventory replenishment policy. 

In the next section, we will reformulate Eq. (2) to consider the parameter k so as to put the service 

level (denoted as p), and consequently service factor z, in functional dependence with the order 

quantity q. 

3.2. New formulation 

The new formulation is developed based upon the fundamental relationship between service level p 

and order quantity q. This expression links p and q by means of the parameter k about the number of 

admissible stockouts per time unit. 

In accordance to Braglia et al. (2014b; 2016), the service level p can be expressed as follows: 

  1 1 1
k k q

p p q
D D

n
nq q


       , 

(3) 

where D k  . Therefore, given k (and D), p is fully determined for any value q. It is possible to 

assume that 1  , as the demand rate is typically larger than the number of admissible stockouts 

per time unit. Note that the notation  p p q  would emphasize the functional dependence between 

service level and order quantity. 

It is therefore evident that the introduction of k has allowed us to establish a functional 

relationship between service level and order quantity. As observed in the previous section, this is a 

practically important aspect that has been rarely considered in the inventory management literature.  

Since 0 1p  , we can write 0 1 1q    ; that is, the relation 0 q    must hold. We recall 

that, in general, the quantity 1 p    is the stockout probability. In our model, α represents the 

accepted stockout risk per ordering cycle. 

Let 
1F 
 be the quantile function of the standard normal distribution. Under our assumptions, the 

safety factor z and the service level p are linked through the equation  1z F p . This relation can 

be rewritten as follows by taking into account Eq. (3): 

  1 1
q

z z q F


  
   

 
. (4) 

If we now insert Eq. (4) into Eq. (2), we get 

        

      

, ,
2

1 2 .
2

B

V

D q
C q n L A S nK h z q L LG z q

nq

D D q D
LG z q R L h n n

q q P

 



 
      

 

 
      

 

  (5) 

We can note that, differently from the standard formulations, the safety stock (i.e.,  z q L ) and 

the expected shortage at the end of the cycle (i.e.,   LG z q ) are function of the order quantity 

q. According to Eq. (4), these quantities are parameterized by the number of admissible stockouts 

per time unit (i.e. k). Therefore, the optimal order quantity defines the optimal level of safety stock 

and expected shortage that satisfies the constraint given by k. 

The optimization of safety stock and expected shortage, and hence of the inventory replenishment 

policy, under the constraint given by k can be achieved by solving the following problem: 
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 0

P min , ,

s.t. 0, ,

,

, .M

C q n L

q

n

L L L







   

 

4. Solution methods for problem (P) 

4.1. Exact optimization algorithm 

The cost function in Eq. (5) is new and there is no existing algorithm available to solve it. We will 

propose two algorithms to solve it. Firstly, we start with an analyse of the relationships between the 

cost function C(q, n, L) and the decision variables. The purpose is to obtain some interesting 

properties that could be used to design the exact optimization algorithm for problem (P). For fixed 

 ,q n  and  1,m mL L L  , we have 

       
2

32

2

, , 0
4

B

D
C q n L h qz q G z q D q

L
qL


 


      

,  

which means that  , ,C q n L  is strictly concave in L. Hence, the minimum in L lies on one of the 

endpoints of  1,m mL L  ; that is, we can write 

 
 

 
  , , ,

min , , min min , , | 0,1,...,m
q n L q n

C q n L C q n L m M  .  

If we relax the integrality constraint on n, we can note that 

 
 2

2 3

2
, , 0

D A S
C q n L

n qn


 


.  

Therefore,  , ,C q n L  is strictly convex in n, for fixed  ,q L . 

Now, let us consider a fixed  ,n L . We can observe that  z q   as 0q  . In fact, 

  1p q   as 0q  , and   1F z   asymptotically, i.e., as z  . With a similar argument, we 

have that  z q   as q   . Consequently, it follows that   G z q   as q    and that 

   0G z q   as 0q  . 

Given the above limit properties, it is therefore possible to show that 

    , , sgn 1BC q n L k h     as q    and that  , ,C q n L   as 0q  . Moreover, 

since the shortage cost is typically greater than the stockholding cost over the inventory cycle of the 

buyer, one can reasonably assume that  1 0Bk h    . Hence, we can write that 

 , ,C q n L   as q tends to 0  or  
. If we further consider that  , ,C q n L  is continuous in q 

for  0,q  , then the minimum of  , ,C q n L  in q over  0,  necessarily lies on a stationary point. 

It is not possible to analytically determine the number of stationary points that  , ,C q n L  admits 

in q over  0, . This is based on two facts: (i) the First-Order Condition of optimality in q cannot 

be solved in closed form, and (ii) to prove the convexity of  , ,C q n L  in q is hard. Therefore, the 

problem concerned with the optimization of  , ,C q n L  in q over  0, , for fixed  ,n L , can only 

be solved by adopting an iterative/numerical technique or a meta-heuristic algorithm. We would, 

however, observe that extensive numerical experiments have shown that  , ,C q n L  is convex in q 
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over  0, , for fixed  ,n L , under a wide range of parameter values. This suggests that  , ,C q n L  

admits a unique stationary point in q over  0, . 

In conclusion, if we let *C  denote the minimum cost and  * * *, ,q n L  denote the optimal solution, 

we propose the following exact algorithm to solve problem (P): 

Algorithm 1. 

Step 1. Set *C   . 

Step 2. For each 0,1,...,m M , do Steps 2.1-2.4. 

Step 2.1. Set 1n   and *C   . 

Step 2.2. Find 
 

 
0,

ˆ arg min , , m
q

q C q n L


 . 

Step 2.3. If  * ˆ, , mC C q n L , then set  * ˆ, , mC C q n L , 
* ˆq q , 1n n   and go to Step 

2.2; otherwise, set * 1n n   and go to Step 2.4. 

Step 2.4. If  * * *, , mC C q n L , set  * * *, , mC C q n L , 
* *q q , * *n n  and *

mL L . 

The stockout probability, the safety factor and the safety stock corresponding to the optimum 

solution are respectively given by 
*

* q



 ,  * 1 *1z F    and * *U z L . Note that the 

proposed exact algorithm in Algorithm 1 makes use of the analytical properties of the cost function 

that were established earlier on. Moreover, Algorithm 1 is able to find the optimal solution to 

problem (P). An alternative method is to use meta-heuristic algorithms to optimize (q, n, L) 

simultaneously. However, applying meta-heuristic algorithms directly to optimize multi-

dimensional problems is more time-consuming and cannot guarantee the optimality of the 

(Pasandideh et al., 2011; Shahvari et al., 2012; Shahvari and Logendran, 2016; 2017). 

In Algorithm 1, the one-dimensional minimization problem at Step 2.2 is solved using an 

iterative/numerical technique or a meta-heuristic algorithm. This aspect may incur difficulties in 

applying the model in practice (Platt et al., 1997; Eynan and Kropp, 2007; Castellano, 2016). For 

example, there may be technical difficulties strictly concerned with the implementation of the 

particular method chosen to solve the sub-problem at Step 2.2, and/or the issues related to the 

required computational effort, which may become significant as the number of items to be managed 

grows. For that reason, the development of an efficient approximated solution procedure to 

approach problem (P), which is able to find a “good” solution at the cost of a reasonable 

computational effort, is therefore encouraged. We will propose a heuristic optimization algorithm in 

the next section. 

4.2. Heuristic optimization algorithm 

The heuristic solution method is based on the idea of replacing  z q  and   G z q , in Eq. (5), with 

the respective second-order Taylor series expansion in q centred in 

 

 

2 ,

2B

J n L
q

h H n



,  

where    , 1 2 2VJ n L n n D P h       and      1H n D A S n K R L      . It is possible 

to note that q  is the q-value that minimizes the expected total cost in deterministic conditions, for a 

given  ,n L . A similar approximation method has been used in literature (Eynan and Kropp, 2007; 

Braglia et al., 2016; Castellano, 2016). 

We would informally observe that the minimum-cost solution in stochastic conditions lies in a 

neighbourhood of the minimum-cost solution in deterministic conditions, for the same inventory 

system and with same parameter values. The “distance” between the two solutions clearly increases 

as the degree of randomness of the system (evaluated, for example, by Cv D ) grows. 



10 

Therefore, following an intuitive argument, the smaller Cv, the better the approximation of the 

optimum provided by the heuristic approach. In the numerical study section, details about the error 

will be provided. 

With reference to a neighbourhood of q  and recalling that       1G z f z z F z    (see, e.g., 

Ouyang et al. (2004)), we can write 

     
2

1 2 3

1

2
z q d d q q d q q     , (6) 

      
2

4 5 6

1

2
G z q d d q q d q q     , (7) 

where 

 1d z q ,  

  2

1
d

f z q
  ,  

 

  
3 2

z q
d

f z q

 
 

,  

  4d G z q ,  

  
  5

1 F z q
d

f z q


 ,  

  

  
6 2

G z q
d

f z q

 
 

.  

With some algebraic manipulations, Eqs. (6) and (7) can conveniently be rewritten as follows: 

  2

1 2 3z q g g q g q   , (8) 

   2

4 5 6G z q g g q g q   , (9) 

where 

2

1 1 2 3

1

2
g d d q d q   ,  

2 2 3g d d q  ,  

3 3

1

2
g d ,  

2

4 4 5 6

1

2
g d d q d q   ,  

5 5 6g d d q  ,  

6 6

1

2
g d .  

According to Eqs. (8) and (9),  , ,C q n L  can, therefore, be approximated in a neighbourhood of 

q  by the following function: 

  2ˆ , ,
u

C q n L vq wq y
q

    ,  

whose coefficients are given by 

  4,u J n L g D L  ,  
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   6 2 5
2

B
B

h
v H n g D L h g g L        ,  

 3 6Bw h g g L   ,  

 5 1 4By g D L h g g L     .  

For fixed  ,n L ,  ˆ , ,C q n L  corresponds to the deterministic EOQ cost structure plus a constant 

and a quadratic term in q. Imposing the First-Order Condition of optimality in q, we have 

   ˆ , , 0 , , 0C q n L N q n L
q


  


,  

where 

  3 2, , 2N q n L wq vq u   ,  

which is a cubic equation in q (for fixed  ,n L ). 

Let us assume that the coefficient of  , ,N q n L  are positive. It is possible to note that  , ,N q n L  

always (i.e., for any configuration of its roots) admits a unique positive real root. Let us denote such 

root by q̂ . The explicit expression of q̂  can easily be found according to the procedure proposed by 

Nickalls (1993). 

In conclusion, the following heuristic algorithm can be adopted to approach problem (P) so as to 

find a near-optimal solution  , ,q n L  and the corresponding cost C : 

Algorithm 2. 

Step 1. Set C   . 

Step 2. For each 0,1,...,m M , do Steps 2.1-2.4. 

Step 2.1. Set 1n   and 
*C   . 

Step 2.2. Find q̂  as the unique positive solution to  , , 0N q n L  . 

Step 2.3. If  * ˆ, , mC C q n L , then set  * ˆ, , mC C q n L , 
* ˆq q , 1n n   and go to Step 

2.2; otherwise, set * 1n n   and go to Step 2.4. 

Step 2.4. If  * *, , mC C q n L , set  * *, , mC C q n L , 
*q q , *n n  and 

mL L . 

The stockout probability, the safety factor and the safety stock relevant to the solution  , ,q n L  are 

given by q  ,  1 1z F    and U z L , respectively. 

 

5. Numerical study 

5.1. Performance analysis 

In this section, we first evaluate the error achieved by the heuristic algorithm. Then, the exact 

algorithm is compared with the heuristic algorithm in terms of computational time required to solve 

a batch of randomly generated problems. 

With regard to the error analysis, we adopt the Design of Experiments approach. In this way, we 

are able to assess both the magnitude of the error that is achieved and the influence of parameters on 

the error. For each parameter, we consider two disjoint intervals of values. That is, we assume that a 

parameter can take values belonging to two different levels: “low” (labelled “1”) or “high” (labelled 

“2”). For each combination of parameter levels, 30 trials have been carried out. In a given trial, 

parameter values are randomly drawn within the interval relevant to the level that corresponds to 

each parameter. 

The magnitude of the error that pertains to a certain combination of parameter levels is evaluated 

by means of the Mean Absolute Percentage Error (MAPE) calculated over all 30 trials: 
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30

1

1
MAPE APE

30
i

i

  ,  

where APEi  is the Absolute Percentage Error in the ith trial: 

*

*
APE 100

i i

i

i

C C

C


  .  

In the expression of APEi , 
*

iC  is the cost of the optimum solution obtained by Algorithm 1, while 

iC  is the cost of the heuristic solution obtained by Algorithm 2. 

The minimization problem at Step 2.2 in Algorithm 1 has been approached exploiting a Simulated 

Annealing (SA) algorithm taken from Optimization Toolbox
™

 in MATLAB
®
 R2015b. Parameters 

have been kept to default values. SA is selected due to its proved effectiveness and robustness to 

solve minimization problems (Suman and Kumar, 2006). 

In our experiments, we take the year as time unit. The lead time is assumed to be made of three 

components, whose duration and unit crashing cost are given in Table 1. Table 2 shows the intervals 

associated with the parameter levels. 

----------------------- 

TABLE 1 HERE 

----------------------- 

----------------------- 

TABLE 2 HERE 

----------------------- 

It is worth noting that Table 2 shows the coefficient of variation Cv of the demand rate instead of its 

standard deviation σ, which can, therefore, be readily obtained as Cv D   . 

We would remind the reader that the normal approximation to the lead-time demand is appropriate 

for small values of Cv. That is, the approximation is more accurate for increasingly smaller values 

of  Pr 0X   (Zipkin, 2000). 

If we let XCv  be the coefficient of variation of the lead-time demand, it is possible to observe that 

XCv Cv , which implies 

   
1 2 1 2

Pr 0 1 erf 1 erf
2 2 2 2X

X Cv
Cv Cv


      

              
         

.  

In Figure 1, it is possible to see a plot of  Cv  for 0 0.5Cv  . To assure a small  Pr 0X   in 

our numerical experiments, we have taken 0.4Cv   (  0.4 0.6%  ). 

----------------------- 

FIGURE 2 HERE 

----------------------- 

The results of the error analysis are shown in Figure 3. The first evident outcome is that the 

maximum MAPE is about 0.015%. This result is satisfactory and proves numerically that the 

heuristic procedure is actually effective. For what concerns the effect of parameters on the error, we 

can observe that: 

 The parameters that greatly affect the error with positive direction (i.e., the higher the 

parameter value, the greater the error) are Cv, D and Bh . 

 The parameters that greatly affect the error with negative direction (i.e., the higher the 

parameter value, the smaller the error) are K, β, Vh  and 1 . 

 The influence given by the other parameters is practically negligible. 

----------------------- 

FIGURE 3 HERE 
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----------------------- 

With regard to the analysis about the computational effort required, we compare the performance 

of the heuristic procedure (Algorithm 2) with that of the exact algorithm (Algorithm 1). The 

minimization problem at Step 2.2 of Algorithm 1 is again approached with SA. 

The comparison has been carried out in terms of computational time needed to solve 1000 

randomly generated problems. Parameter values have been randomly drawn within the intervals in 

Table 2. Although the time difference on a single problem is in the order of a few seconds (on 

average), the discrepancy among performances over several problems may become significant. 

We would further observe that thousands of items may be needed to manage in practice (e.g., 

consider a large retailer). Hence, the control variables (i.e., the order quantity, the number of 

shipments and the lead time) necessitate to be determined for all items. Moreover, these decision 

variables plausibly require to be recalculated frequently as the system parameters may change over 

time. 

Tests have been made on a PC with an Intel® Core™ i7 processor at 2.4GHz with 16GB of RAM. 

We have observed the following results: 

 Algorithm 1 has required 14,124 seconds; 

 Algorithm 2 has required 35 seconds. 

The advantage in terms of computational time provided by the heuristic algorithm is evident: the 

percentage of computational time reduction is more than 99%. 

In conclusion, our numerical tests have shown that the approximated minimization procedure is 

highly efficient. Comparing to the exact algorithm, the heuristic algorithm achieves practically 

negligible error and the computational time is substantially smaller. Therefore, the approximated 

procedure appears to be promising for a practical application. 

5.2. Sensitivity analysis 

In this section, we evaluate how the minimum-cost solution  * * *, ,q n L , the minimum cost *C  and 

other significant quantities (i.e., the stockout probability *  and the safety stock *U ) react to 

variations in the values of Cv of k. The parameter values relevant to the lead-time components are 

given in Table 1. Table 3 shows the value of those parameters that have been kept fixed. The results 

of this analysis are shown in Table 4. We can draw the following conclusions about this analysis. 

For fixed Cv, 
*q  is increasing for small values of k. For 0.1 0.3k  , there is a change in the 

trend; that is, 
*q  becomes decreasing in k. This becomes more noticeable for 0.3 1.1k  . For 

small Cv, this fact is not clearly visible due to the order of magnitude adopted in the table. 

However, it can be observed at the fourth decimal place. The opposite behaviour characterizes *n . 

In fact, it decreases (increases) as 
*q  increases (decreases). This is particularly evident for 0.4Cv 

. With fixed k, 
*q  is increasing as Cv increases, while *n  is decreasing in Cv. A similar behaviour 

to 
*q  characterizes *C . This first results permit to observe that, for fixed Cv, the optimal order 

quantity becomes smaller as the number of admissible stockouts per time unit increases. That is, if 

the manager accepts a greater stockout risk, then the optimal order quantity decreases, and 

consequently the (optimal) number of shipments increases (the trend of 
*q  and *n  is clearly 

opposite). On the other hand, for fixed k, if the variability (i.e., Cv) increases, then the system tends 

to increase the optimal order quantity and to decrease the number of shipments. This effect is due to 

the natural behaviour of the system to contrast (because k is fixed) the growth of the stockout 

probability, which evidently tends to increase with the variability of the lead-time demand. 

For fixed Cv, 
*L  is constant in k, while it is decreasing in Cv for fixed k. This is an expected result 

since a higher variability leads the system to shorten the lead time so as to optimize replenishments. 

In fact, if k is fixed, then the system tends to react to the growth in the variability in order to 

compensate the increase of the stockout probability. That is, if the variability of the lead-time 
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demand (which is an increasing function of L) increases because Cv grows, then the system 

evidently tends to shorten L. 

Let us now consider the behaviour of the stockout probability * . It is clearly increasing in k, for 

fixed Cv. This is not surprising as a greater k means accepting a higher number of stockouts, which 

therefore leads to a larger stockout probability. The same happens if we let Cv vary and keep k 

fixed. This is evident as Cv measures the system variability. Hence, if the variability in the system 

increases, for fixed k, then the stockout probability grows. 

With fixed Cv, the safety stock *U  diminishes as k increases. On the contrary, *U  grows with Cv 

for a given k. In fact, the safety stock operates as a buffer designed to protect the system against 

randomness in the demand. It is therefore obvious that the higher the variability (i.e., Cv), the larger 

the buffer (i.e., *U ). 

----------------------- 

TABLE 3 HERE 

----------------------- 

----------------------- 

TABLE 4 HERE 

----------------------- 

 

6. Conclusions 

When facing uncertain demand, two important issues deserve more attention. The first is lead time 

control, which is an effective mechanism to reduce the variability of demand during the lead time. 

The second is the way to represent customers’ purchase behaviour when facing stockouts, e.g. 

backorders or lost sales. The aim of this paper was to optimize safety stock and expected shortage in 

an integrated supply chain consisting of a single vendor and a single buyer. The system under 

consideration has the following features: backorders-lost sales mixture, controllable lead time, 

stochastic demand, and stockout costs. The decision variables include order quantity, reorder point, 

and number of shipments and length of lead time. 

Our main contributions include: (i) we investigated the inventory replenishment problem in an 

integrated supply chain with backorders-lost sales mixture and controllable lead time, which has 

been understudied in the literature. Traditionally, customers’ purchase behaviour is often assumed 

to be backorders only or lost sales only. However, the backorders-lost sales mixture is a more 

appropriate representation since it generalizes the case of backorders or lost sales (e.g. they can be 

included in our model by letting  = 0 or 1). Hence, our study enriches the literature on inventory 

management in integrated supply chains.  (ii) Contrarily to standard approaches that treat the order 

quantity and the service level as mutually independent decision variables, we adopted a novel 

approach to formulate the optimization problem. Specifically, we put the service level and the order 

quantity in functional dependence by means of the parameter about the number of admissible 

stockouts per time unit. This parameter was introduced as a constraint in the problem of 

determining the replenishment policy (i.e., order quantity, reorder point, and number of shipments) 

and the length of lead time that minimize the long-run expected total cost per time unit. Hence, the 

optimal policy obtained through our approach defines the best level of safety stock and expected 

shortage that satisfies the constraint given by the number of admissible stockouts per time unit. (iii) 

To solve the optimization problem, we present two algorithms: an exact algorithm and a heuristic 

algorithm. These two algorithms were developed based on some analytical properties that we 

established by analysing the cost function in relation to the decision variables. The heuristic 

algorithm employed an approximation technique based on an ad-hoc Taylor series expansion. The 

first set of numerical experiments demonstrated that the heuristic solution procedure can find near-

optimal solutions in a wide range of scenarios, and is highly efficient in terms of required 

computational effort. Additional tests were performed to investigate the sensitivity of the model 

with respect to some system parameters. 
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From the practical perspective, an operational manager may impose the number of admissible 

stockouts per time unit as a tangible performance indicator concerning the inventory replenishment 

policy. By pre-specifying an appropriate level of this parameter, our approach can be employed to 

design the optimal inventory replenishment policy subject to the specified constraint. The proposed 

heuristic solution procedure is able to produce high quality solutions with small computational 

effort, which implies that the solution procedure is readily applicable in practice. Moreover, the 

results obtained from the sensitivity analysis offer useful managerial insights into how the decision 

variables should response to the changes of key system parameters.  

Several future developments are possible. The sensitivity analysis has shown that a minimum cost 

with respect to the number of admissible stockouts per time unit could exist. Hence, a method that 

permits to optimize costs with respect to this parameter may be investigated. It should be noted that 

a major limitation of the considered supply chain model is that it is relatively simple. Therefore, 

future works may be devoted to extend the proposed approach to more complex inventory systems. 

In addition, other types of uncertainties, e.g. machine breakdown, unreliable transportation, and 

defective or deteriorating items, could be incorporated.  
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Figure 1. Inventory pattern for the vendor and the buyer. 
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Figure 2. Plot of  Cv  for 0 5Cv  . 

 

 
Figure 3. Results of the error analysis. 
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 Duration (days) Unit crashing cost 

(moneys/day) Component - m Normal - 
m

s  Minimum - 
m

b  

1 12 7 0.3 

2 12 7 2.1 

3 10 8 5.3 

Table 1. Lead time data. 

 

 

 Levels 

Parameters Low (“1”) High (“2”) 

B
A  [50, 70] [100, 120] 

V
A   [140, 160] [190, 210] 

K [15, 25] [35, 45] 

B
h  [15, 18] [25, 28] 

V
h  [2, 6] [10, 14] 

D [700, 1000] [1400, 1700] 

P [2000, 2300] [2700, 3000] 

Cv
1
 [0.05, 0.15] [0.3, 0.4] 

  [0.1, 0.2] [0.8, 0.9] 

0
  [80, 90] [140, 150] 

1
  [20, 30] [60, 70] 

k [0.07, 0.10] [0.7, 1.0] 

1
Coefficient of variation of demand, i.e., Cv D . 

Table 2. Intervals where parameters take values. 

 

 

Parameters Values 

B
A  107 

V
A   204 

K 18 

B
h  28 

V
h  10 

D 797 

P 2278 

  0.87 

0
  148 

1
  28 

Table 3. Parameter values adopted in the sensitivity analysis. 
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 Number of admissible stockouts per year - k 

Cv 0.01 0.05 0.1 0.3 0.5 0.7 0.9 1.1 

0.001 

q
*
 = 34.34 q

*
 = 34.34 q

*
 = 34.34 q

*
 = 34.34 q

*
 = 34.34 q

*
 = 34.33 q

*
 = 34.32 q

*
 = 34.32 

n
*
 = 8 n

*
 = 8 n

*
 = 8 n

*
 = 8 n

*
 = 8 n

*
 = 8 n

*
 = 8 n

*
 = 8 

L
*
 = 34 L

*
 = 34 L

*
 = 34 L

*
 = 34 L

*
 = 34 L

*
 = 34 L

*
 = 34 L

*
 = 34 

C
*
 = 2665 C

*
 = 2662 C

*
 = 2661 C

*
 = 2661 C

*
 = 2663 C

*
 = 2665 C

*
 = 2668 C

*
 = 2671 

α
*
 = 0.04% α

*
 = 0.22% α

*
 = 0.43% α

*
 = 1.29% α

*
 = 2.15% α

*
 = 3.02% α

*
 = 3.88% α

*
 = 4.74% 

U
*
 = 0.81 U

*
 = 0.69 U

*
 = 0.64 U

*
 = 0.54 U

*
 = 0.49 U

*
 = 0.46 U

*
 = 0.43 U

*
 = 0.41 

0.008 

q
*
 = 34.51 q

*
 = 34.53 q

*
 = 34.54 q

*
 = 34.54 q

*
 = 34.51 q

*
 = 34.47 q

*
 = 34.41 q

*
 = 34.35 

n
*
 = 8 n

*
 = 8 n

*
 = 8 n

*
 = 8 n

*
 = 8 n

*
 = 8 n

*
 = 8 n

*
 = 8 

L
*
 = 34 L

*
 = 34 L

*
 = 34 L

*
 = 34 L

*
 = 34 L

*
 = 34 L

*
 = 34 L

*
 = 34 

C
*
 = 2825 C

*
 = 2802 C

*
 = 2795 C

*
 = 2796 C

*
 = 2809 C

*
 = 2828 C

*
 = 2849 C

*
 = 2873 

α
*
 = 0.04% α

*
 = 0.22% α

*
 = 0.43% α

*
 = 1.30% α

*
 = 2.16% α

*
 = 3.03% α

*
 = 3.89% α

*
 = 4.74% 

U
*
 = 6.48 U

*
 = 5.55 U

*
 = 5.11 U

*
 = 4.33 U

*
 = 3.93 U

*
 = 3.65 U

*
 = 3.43 U

*
 = 3.25 

0.04 

q
*
 = 39.03 q

*
 = 39.15 q

*
 = 39.20 q

*
 = 39.18 q

*
 = 39.02 q

*
 = 38.80 q

*
 = 35.23 q

*
 = 34.94 

n
*
 = 7 n

*
 = 7 n

*
 = 7 n

*
 = 7 n

*
 = 7 n

*
 = 7 n

*
 = 8 n

*
 = 8 

L
*
 = 29 L

*
 = 29 L

*
 = 29 L

*
 = 29 L

*
 = 29 L

*
 = 29 L

*
 = 29 L

*
 = 29 

C
*
 = 3515 C

*
 = 3410 C

*
 = 3376 C

*
 = 3380 C

*
 = 3444 C

*
 = 3532 C

*
 = 3633 C

*
 = 3743 

α
*
 = 0.05% α

*
 = 0.25% α

*
 = 0.49% α

*
 = 1.47% α

*
 = 2.45% α

*
 = 3.41% α

*
 = 3.98% α

*
 = 4.82% 

U
*
 = 29.62 U

*
 = 25.28 U

*
 = 23.20 U

*
 = 19.56 U

*
 = 17.69 U

*
 = 16.39 U

*
 = 15.75 U

*
 = 14.94 

0.1 

q
*
 = 47.45 q

*
 = 53.54 q

*
 = 53.68 q

*
 = 53.59 q

*
 = 47.40 q

*
 = 46.48 q

*
 = 46.02 q

*
 = 45.14 

n
*
 = 6 n

*
 = 5 n

*
 = 5 n

*
 = 5 n

*
 = 6 n

*
 = 6 n

*
 = 6 n

*
 = 6 

L
*
 = 22 L

*
 = 22 L

*
 = 22 L

*
 = 22 L

*
 = 22 L

*
 = 22 L

*
 = 22 L

*
 = 22 

C
*
 = 4665 C

*
 = 4434 C

*
 = 4357 C

*
 = 4367 C

*
 = 4512 C

*
 = 4710 C

*
 = 4940 C

*
 = 5194 

α
*
 = 0.06% α

*
 = 0.34% α

*
 = 0.67% α

*
 = 2.02% α

*
 = 2.97% α

*
 = 4.11% α

*
 = 5.20% α

*
 = 6.23% 

U
*
 = 63.42 U

*
 = 53.04 U

*
 = 48.35 U

*
 = 40.12 U

*
 = 36.88 U

*
 = 34.01 U

*
 = 31.82 U

*
 = 30.05 

0.4 

q
*
 = 71.79 q

*
 = 87.71 q

*
 = 88.72 q

*
 = 87.87 q

*
 = 71.00 q

*
 = 66.70 q

*
 = 54.58 q

*
 = 45.64 

n
*
 = 4 n

*
 = 3 n

*
 = 3 n

*
 = 3 n

*
 = 4 n

*
 = 4 n

*
 = 5 n

*
 = 6 

L
*
 = 22 L

*
 = 22 L

*
 = 22 L

*
 = 22 L

*
 = 22 L

*
 = 22 L

*
 = 22 L

*
 = 22 

C
*
 = 9893 C

*
 = 8931 C

*
 = 8606 C

*
 = 8658 C

*
 = 9290 C

*
 = 10,145 C

*
 = 11,111 C

*
 = 12,143 

α
*
 = 0.09% α

*
 = 0.55% α

*
 = 1.11% α

*
 = 3.31% α

*
 = 4.45% α

*
 = 5.86% α

*
 = 6.16% α

*
 = 6.30% 

U
*
 = 244.28 U

*
 = 199.00 U

*
 = 178.91 U

*
 = 143.81 U

*
 = 133.08 U

*
 = 122.63 U

*
 = 120.63 U

*
 = 119.76 

Table 4. Results of the sensitivity analysis. 

 


