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Abstract: 

In this work, three types of 3D woven fabric (orthogonal, angle interlock and layer-to-layer) 

were used to study the effect of weaving architecture on processing and mechanical properties. 

In order to characterize the fabrics for liquid composite molding (LCM) processes, the 

compaction and permeability characteristics of the reinforcements were measured as function of 

fiber volume fraction. High compaction pressures were required to achieve a target fiber volume 

fraction of 0.65, due to presence of through-thickness binder yarns that restricts fiber nesting. In-

plane permeability experiments were completed and flow front patterns were obtained to 

understand the anisotropy in the laminates. The RTM process was then used to manufacture 

panels that were then tested under quasi-static flexure and low velocity impact conditions. It was 

found that the flexural strength and modulus was higher along the weft direction, where high in-

plane permeability of the reinforcement was observed, due to fiber alignment. Impact tests on 

composite plates based on the three types of fabric indicated that the orthogonal system offered a 

slightly higher perforation resistance and lower levels of damage at any given energy. 
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1.0 Introduction 

The term Liquid Composite Molding (LCM) describes a number of processes, in which dry 

fibrous reinforcements are draped on a mold to create a preform, the mold is then closed and the 

preform is impregnated with a polymeric resin to displace the trapped air. Glass and carbon 

textiles are normally used as reinforcements. The quality and mechanical properties of a 

composite part is mainly characterized by two parameters; these being the fiber volume fraction 

(Vf) and the defects present, mostly as void content. In general, higher Vf means superior 

mechanical properties and stronger parts. When the dry preform is enclosed between rigid molds, 

the Vf can be accurately controlled by the cavity thickness. Hence, a higher and more uniform Vf 

is achieved using the LCM process than traditional hand lay-up techniques.  LCM processes are 

mainly categorized into three major variants; e.g. resin transfer molding (RTM), compression 

RTM (CRTM) and vacuum assisted RTM (VARTM). The process selection depends on two 

parameters; the end-product requirements (mechanical properties, quality and surface finish) and 

the process requirements (size, cycle time, and labor costs). In RTM, the reinforcement, 

traditionally a two dimensional (2D) fabric, is placed in the lower mold cavity. The upper rigid 

mold closes the cavity containing the preform and holds it under a clamping force. Clamping 

forces are usually applied through a press or mechanical clamps. The Vf is controlled by the 

cavity thickness. The resin is injected in the mold from one or multiple gates.  

 

The preform offers resistance to flow, known as permeability of the fiber bed. High Vf may cause 

very slow flow fronts at low pressures and high viscosity. Hence, an optimization of the process 

parameters is required [1, 2]. RTM molds are typically made of steel or aluminum and can be 

both heavy and expensive.  When manufacturing large parts, larger presses are required and high 
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injection pressures become essential, which can significantly increase the cost of the process.  

These factors render the RTM process more suited for small parts with very tight geometrical 

tolerances. The whole process can be automated in operations such as, preforming, resin 

injection and de-molding. During mold closure in LCM, changes in the internal structure of the 

fabric play an important role in determining the mechanical properties and failure mechanisms of 

the finished composite part. 

 

2D fabrics have been extensively used in the manufacture of composite structures over the past 

50 years or so. More recently, advanced textile weaving techniques have been used to produce 

3D textiles for composite processing.  A detailed description of the 3D weaving process has been 

given by a number of researchers [3-6]. Three dimensional woven reinforcements are prepared in 

alternating non-crimped layers of weft and warp yarns. The binder yarns hold these layers 

together, increasing the interlaminar strength of the resulting composite. The most common 

production techniques for 3D textiles are weaving, braiding and knitting [4]. The mechanical 

properties can be tailored by having different binder yarn paths. In 3D textiles, it is possible to 

weave near net-shape and complex structures. Stiffeners and stringers are common examples of 

single piece 3D preforms. Three dimensional fabrics can help overcome many delamination 

problems. Zikry et al. [7-9] showed that 3D woven composites have a better damage resistance 

than 2D woven composites, due to the interactions of surface wefts and z-crimps. 3D woven 

composites can dissipate energy over a large area with superior perforation strength than 2D 

woven composites [7]. Rao et al [10] showed with experimental contour mapping of several 

failure modes that the z-yarns effectively isolate the interlaminar cracks.  
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The incentive for using 3D textiles in composites has been motivated by several needs; e.g. to 

reduce processing costs by reducing laying-up times, increase the through-thickness strength of 

the component whilst reducing the likelihood of delamination. Although there has been 

significant work on the properties and failure of 3D woven composites under quasi-static and 

impact loading [11-19], there are few published studies on the compaction characterization of 3D 

fabrics as reinforcements for LCM processes [20-24]. Endruweit et al. [23] concluded that 

different fabric architectures exhibited different compression mechanisms during LCM 

processing. For an angle interlock weave at high compression levels, the main mechanism is the 

change in bundle cross section. In contrast, the main controlling mechanism in an orthogonal 

fabric is the compaction behavior of the through thickness z-fiber bundles. Polturi and Sagar [24] 

studied the compression response of different 3D weaving patterns and validated a model based 

on an energy-minimization technique using their experimental data. The impregnation of liquid 

resin in thick 3D preforms is expected to be more complex than 2D preforms. More specifically, 

the z-binder fibers effectively influence both the in-plane and through-thickness permeability 

[25-31]. To date, a thorough investigation of LCM processing and its effects on mechanical 

performance of 3D woven composites is lacking. 

 

Here, we investigate the potential of using 3D woven reinforcements in LCM processes and 

characterize the mechanical properties of the resulting composite plates. Initially, the compaction 

and permeability responses of 3D reinforcements are studied. One of the key challenges faced 

when using 3D reinforcements is to overcome the through-thickness stiffness, due to the z-binder 

yarns. The binder yarns tend to restrict movement of adjacent tows and prevent nesting, resulting 

in an increased resistance to deformation in the through-thickness direction. As a result, the 
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reinforcement generally achieves a low Vf under vacuum pressure, if VARTM process is used. 

Due to high tooling forces required to achieve Vf values greater than 60%, RTM process was 

selected as best manufacturing route for the selected reinforcements. Experimental mold filling 

times were obtained and compared with analytical solutions using a simple 1D rectilinear filling. 

Flexural and impact tests were carried out on three different 3D fabrics. The damage in the 

manufactured plates was analyzed using optical microscopy and x-ray micro computed 

tomography (XCT). 

  

2.0 Experimental Procedure 

2.1 Materials 

Three different types of 3D reinforcement, supplied by Sigmatex, UK, were investigated in this 

study. It was expected that these three reinforcement architectures would exhibit different 

behaviours in terms of processing and mechanical properties. The z-binder yarns in all three 

architectures have different paths or orientations to hold the weft and warp fibers together, see 

Figure 1. Fabrics in Figure 1a and 1b are orthogonal and angle interlock respectively, each fabric 

having eight layers of 12K carbon fiber warp, nine layers of weft and 6K through-thickness z- 

yarns acting as binder yarns. Fabric in Figure 1c is a layer to layer fabric with six weft layers and 

five warp layers with interlacing yarns. In an angle interlock weaving process, the z-binder tows 

are woven at an angle, which is called the undulation angle, with the warp direction. Whereas in 

an orthogonal interlock weaving procedure, the z-binder tows are placed through the thickness 

direction of the fabric that interlaces together all the layers. In layer to layer interlocking process, 

a binder tow interlaces one, or a few adjacent layers. The orthogonal fabrics can provide better 
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fiber volume fraction in a composite compared to angle interlock fabrics, while the angle 

interlock fabrics may have better distortion capability and flexibility than the orthogonal fabrics. 

The layer to layer interlocking can also offer better fiber volume fraction due to the overlapping 

arrangement of binders in the thickness direction [3]. It is anticipated that orthogonal fabrics will 

produce composites with better through thickness performance, whereas layer to layer and angle 

interlock fabrics will produce complex configurations. 

 

2.2 Reinforcement Characterization 

Compaction Response  

Dry compaction tests were carried out in a 150 mm x 150 mm square steel fixture installed in an 

MTS universal testing machine. A 300 kN load cell was attached to the moving crosshead of the 

machine. A compressive load was applied to 100 mm x 100 mm sample up to a target fiber 

volume fraction of 0.65, then holding the displacement and allowing the stress to relax for 10 

minutes. In an actual LCM process, the dry compaction represents mold closing and the hold 

period when the resin is being injected. The compaction tests were conducted to determine the 

tooling forces required to compress to Vf = 0.65. All tests were performed at a constant crosshead 

displacement rate of 0.033 mm/s.  

 

Permeability Measurements 

 

In this study, permeability measurements were conducted on a purpose-built radial, in-plane 

permeability rig [31]. Similar radial permeability test rigs were used in previous studies [32-34]. 

The test fixture consists of a 300 mm square toughened glass plate mounted in an aluminum 
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frame. The rig was installed on an MTS testing machine with a maximum load capacity of 300 

kN.  The reinforcements were compressed from above using a 250 mm diameter circular steel 

plate. The steel plate contained a 10 mm diameter hole in its center through which fluid was 

injected. The injection pressure was measured using a pressure transducer mounted on the top 

plate. The test fluid used in this study was Shell Tellus S2 M32, a hydraulic oil with a room 

temperature (23oC) viscosity of 0.052 Pa.s. The use of such a fluid, rather than a resin, avoids 

unwanted effects associated with curing of the resin during the test. The hydraulic oil was 

injected using a pressure pot, that was in turn connected to a compressed air supply. The location 

of the flow front during the test was continuously monitored using a high definition 8MP camera 

positioned directly under the glass plate. The flow front was illuminated using a simple light 

source. A computer with data acquisition software (LabVIEW) was used to record the injection 

pressure. In order to ensure in-plane radial flow in the preforms, a 10 mm hole was created using 

a metal punch. The preform was positioned on the glass plate and aligned to ensure that the hole 

was aligned with the opening in the upper platen.  

At the start of the test, a compressive pre-stress was applied to the preform and this was followed 

by loading at 0.033 mm/s to the ultimate required fiber volume fraction (values of 0.45, 0.50, 

0.55 and 0.65 were considered here). The crosshead displacement was then maintained constant 

for approximately two minutes to monitor the resulting stress relaxation. The hydraulic oil was 

then injected at a constant pressure of 150 kPa. Information from the pressure transducer, the 

universal test machine and the camera was recorded. Finally, the flow front data was post 

processed using the image processing capabilities in Matlab software package.  
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2.3 RTM Experiments 

A 400 mm x 400 mm square aluminum mold was designed for the RTM experiments. The mold 

cavity size was 250 mm x 250 mm x 2.8 mm. To achieve different values of Vf, the bottom half 

can be replaced with another half with a different thickness. Depending on the injection strategy, 

the upper mold half has several ports to be used as gates and vents. The ports that were not in use 

were closed using a plug. This configuration enables the mold to be used in both rectilinear and 

radial injection strategies (see Figure 2). In order to achieve target Vf  of approximately 0.65, the 

mold was placed in a 100 ton heated hydraulic press (Carver Press, USA) (Figure 2b). A two part 

epoxy resin system, Gurit Prime 20 LV™ with a slow hardener was injected using the iject RTM 

injection system supplied by Wolfangel, Germany (Figure 2c). This system has an automatic 

dosing unit for resin mixing. The flow rate was measured by the number of strokes the system 

makes during the injection. The maximum allowable pressure can be set in the machine. The 

inlet pressure was recorded using a pressure transducer connected to the inlet. 

 

The 3D reinforcement samples were cut to the mold cavity dimensions. A mold release wax was 

applied to the two halves of the mold for easy removal of the part. The reinforcements were 

placed in the mold cavity, and the mold was placed in the press using a sliding table. A 

rectilinear injection strategy was adopted in the weft direction. In this direction, the permeability 

was higher, thereby reducing the filling time during the experiment. To prevent race tracking 

(edge effects), a silicon seal was applied along the edges. A constant injection pressure was 

applied by the machine. After checking the mixing ratio, the injection valve was opened and the 

flow continued until the resin appeared from the vents. After that, the injection gates and vents 
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were clamped. Based on the manufacturer’s cure cycle, the mold was heated to 65oC and the 

resin was left to cure for 7 hours.  

The total mold filling time tfill was compared with experiments and values obtained from 

analytical solutions [35] of a unidirectional flow in a flat geometry were derived from Darcy’s 

law; 

 

t fill
(1Vf )

KxxPinj

L2

2
      (1) 

 

Where µ is resin viscosity (0.3 Pa.s), Kxx is the permeability in the flow direction, Pinj is the 

injection pressure and L is the total flow length (0.25 m), other parameters are given in Table 1. 

 

2.4 Flexural Testing  

Five specimens for each 3D fabric with dimensions of 120 mm x 13 mm x 2.8 mm were cut 

along weft and warp directions in preparation for flexural testing. Flexural tests were conducted 

using a three-point bending rig, with the hemispherical supports positioned to maintain a span to 

thickness ratio of 32:1. The rig was mounted on an Instron 4505 universal testing machine and 

the crosshead displacement rate was maintained at 1 mm/min. All tests were performed 

according to ASTM D7264. Micro CT scans were undertaken after flexural testing using the GE 

Phoenics nanotom® XCT scanner.  

 

2.5 Impact Testing 

Impact tests were conducted on the three types of CFRP panel, using the falling-weight impact 

facility shown schematically in Figure 3. Here, test square specimens, with dimensions of 130 x 
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130 mm, were supported by a steel ring with a 100 mm internal opening and impacted by a 

falling carriage with a 12.5 mm steel hemispherical head. The impact energy was varied between 

5 Joules and 40 Joules by increasing the carriage mass up to 2836 grams. For the majority of 

tests, the release height of the falling carriage was approximately 1.6 meters. Table 2 summarizes 

the impact energies, the associated carriage masses, release heights and impact velocities. After 

impact, the carriage was caught manually in order to avoid unwanted secondary impacts. The 

impact load was recorded using a piezoelectric load-cell located immediately above the 

hemispherical indentor and the associated displacement of the target was monitored using a high 

speed video camera positioned in front of the impact rig. The absorbed energies were then 

calculated by integrating the merged area under the load-displacement traces. After testing, both 

the front and rear surfaces of the specimens were photographed to elucidate any prevailing 

damage. Finally, a number of samples were sectioned, polished in order to investigate the failure 

mechanisms occurring during impact loading. 

Following impact testing the flexural strength of the panels was assessed by conducting quasi-

static tests on the circular plates supported under the same conditions as those used during 

impact tests. This testing mode was selected since it was considered to be a more appropriate 

mode of testing and avoided the need to remove beam-like specimens, that would be heavily 

damaged and unrepresentative of the larger structure, from the centers of the panels. Here, plates 

were supported on a steel ring with an internal diameter of 100 mm and loaded by a 20 mm 

diameter steel indentor. It should be noted that this indentor was larger than that used during 

impact tests to avoid it simply pushing through the perforation zone in the heavily-damaged 

plates. 
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3.0 Results and Discussion 

3.1 Compaction Response  

Dry compaction experiments were conducted to determine peak forces required to compress the 

reinforcements contained inside a mold to the target thickness or fiber volume fraction. Figure 4 

shows dry compaction curves (stress versus time) after achieving a target thickness 

corresponding to 0.65 Vf, for each type of reinforcement. After reaching the peak value, the stress 

drops instantaneously and continues to relax until there is no further evident drop. The 

orthogonal fabrics compacted at around 2.3 MPa peak stress, whereas the layer to layer fabrics 

offered the lowest peak stress values of approximately 1 MPa. The angle interlock fabrics 

exhibited a stress level of approximately 2.0 MPa. Due to reduced nesting effects between the 

tows, the meso-scopic spaces remained opened in the fabric during compaction, before mold 

filling. Usually, in a 2D fabric, the compaction of a fiber reinforcement begins with a gap 

reduction between the weft and warp tows, once the inter-tow gap reduces, the tows start to 

flatten and nest with adjacent tows. The orthogonal fabrics were found to be stiff, due to the 

tightly woven patterns of the vertical z-binder yarns. In the orthogonal and angle interlock 

fabrics, the tows did not expand freely, due to the presence of the vertical z-binder yarns, hence 

higher compaction loads were required. As a result, in an actual LCM process such as RTM, the 

orthogonal and angle interlock fabrics will require high tooling forces or will compact to a lower 

fiber volume content under 1 atm (100 kPa) vacuum pressure, such as with VARTM.  

 

3.2 Permeability Measurements  
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Figure 5 presents the in-plane permeability results for all of the 3D fabrics tested, showing the 

influence of reinforcement architecture on the permeability. These tests were conducted to 

determine the principal permeability values for a range of fiber volume fractions. Figure 6 shows 

photographs of flow front profiles of each type of reinforcement at three different Vfs. The 

components of the in-plane permeability tensor are defined as the principal directions of the 

ellipse observed at the flow front. Often, these principal directions are different from the warp 

and weft directions, but in our case the angle of deviation from principal direction was 

negligible. For all of the reinforcements tested here, Figure 5 shows that the permeability in the 

warp (K22) direction was consistently lower than the weft (K11) direction. The orthogonal and 

angle interlock preforms exhibited the highest values of permeability at low Vf. This was due to 

the presence of large meso-scopic gaps around the z-binder yarns, which can be clearly seen in 

the XCT scans in Figure 1. The layer to layer fabric exhibited more elliptical flow front profiles 

with greater differences between the two principal permeability values. In the orthogonal 

preforms, at 0.65 Vf, the binder yarns were flattened considerably, resulting in a reduction in the 

number of surface pores, causing the permeability values to converge towards the angle interlock 

permeability values. For the layer to layer preforms, the meso-scale gaps that run through the 

thickness were very few, giving the lowest rates of in-plane flow and the lowest permeability of 

the three fabrics considered.  

 

3.3 RTM Experiments  

The experimental values of permeability, injection pressures and Vf used in the RTM 

experiments at a cavity thickness of 2.8 mm are listed in Table 1. The permeability values were 

determined using the exponential fit to the permeability data. The RTM equipment uses constant 
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injection pressures for mold fillings hence, injection pressures of 1.5 to 2.4 bars were recorded at 

the injection gate using a pressure transducer. Since we used closed mold RTM, comparisons of 

flow front positions at different time intervals were not possible. Here, we only compare total 

mold filling times with analytical solutions, as shown in Table 1. The mold filling times were in 

good agreement with the predicted ones for all fabrics. A good co-relation between measured 

permeability and RTM results can be drawn here. According to permeability results, orthogonal 

and angle interlock preforms exhibited highest permeability in K11 direction, due to the presence 

of large meso-scopic gaps around the z-binder yarns, as shown in Figure 1. The layer to layer 

preforms showed lowest in-plane permeability values, as a result, the flow front progression was 

slowest, resulting in highest mold filling time. 

 

3.4 Flexural Response  

Figure 7 shows the flexural strength and modulus values for the three types of 3D fabric 

composite. The trends agree with the observations in Figure 6. The flow front patterns showed 

that fiber alignment in the weft (K11) direction was very dominant in the layer to layer fabrics, 

hence a more pronounced elliptical flow front was recorded, leading to high flexural strength and 

modulus values compared to the warp (K22) direction. If we compare all three fabrics, the 

differences in strength and modulus of the orthogonal and angle interlock fabrics was not 

significant, whereas, the differences in strength and modulus properties in warp and weft 

directions of the layer to layer fabric was very large. Figure 8 shows XCT images following 

flexural testing. Crack propagation initiated from resin-rich areas around z-binder yarns and 

propagated along the z-yarns with warp layer delamination in both the orthogonal and angle 
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interlock fabric composites. The cracks typically followed the binder yarn patterns. The layer to 

layer fabric exhibits a delamination-type failure (similar to that commonly observed in 2D 

fabrics) where the top most layers delaminated from remainder of the structure.   

 

3.5 Impact Behavior of the Plates 

Figure 9 shows impact load-displacement traces for the orthogonal and angle interlock systems 

The layer-to-layer traces were similar to the angle interlock and are therefore not included here. 

All of the curves exhibit an oscillatory response during the elastic phase of loading, due to 

ringing effects in the load-cell, induced by the initial contact between the indentor and the panel. 

These effects are also observed in fully clamped panels. They can be removed by filtering the 

impact traces at a frequency associated with this oscillatory response, however, this can result in 

the loss of information and was therefore avoided in the present case. 

As expected, the maximum impact force increases with impact energy. For all energies up to 40 

Joules, impact on the orthogonal composites did not result in perforation of the panel and the 

projectile therefore rebounded following contact. In contrast, the angle interlock panel exhibited 

significant damage following a 30 Joule impact and was perforated during a 40 Joule impact, 

resulting in the impactor becoming wedged in the panel following testing. Additionally, it is 

worth noting that the highest impact forces were recorded following tests on the orthogonal 

panels, with values up to 10 kN being observed following a 40 Joule impact. The load-

displacement traces for the layer-to-layer composites were similar to those of the angle interlock 

systems, with these panels also being perforated at the highest impact energy of 40 Joules. 
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The energy absorbed during the impact event was calculated by determining the area under the 

load-displacement traces. Figure 10 shows a plot of the absorbed energy as a function of impact 

energy. At the lowest impact energies, the energy-absorbing response of the three panels is 

similar with the plates absorbing approximately 50% of the incident energy during 10 and 15 

Joule impacts. Differences in response appear following impacts at energies of 20 Joules and 

above, with the orthogonal laminates absorbing less energy than its two counterparts. This 

continues up to impacts at 40 Joules, where the angle interlock and layer-to-layer absorb 

virtually all of the incident energy (i.e. they are perforated and the orthogonal exhibits a capacity 

to absorb greater levels of energy). 

Figure 11 shows photographs of the front and rear surfaces of panels following an impact energy 

of 40 Joules. Damage in the orthogonal laminate is clearly less severe than that observed in the 

two remaining systems. Here, local denting and isolated cracking on the uppermost surface and 

fiber fracture on the lower surface is observed in the orthogonal panel. In contrast, the angle 

interlock and layer-to-layer exhibit an entrance hole as well as significant splitting and fiber 

failure as the projectile exited the rear surface. This is clearly seen in the images taken parallel to 

the rear surface, shown in Figure 11. 

A more detailed understanding of the failure mechanisms occurring during impact was achieved 

by sectioning panels subjected to an incident energy of 25 Joules, Figure 12. Damage in the 

orthogonal laminate is clearly very limited, taking the form of denting, a small delamination 

adjacent to the impact location on the top surface, lower surface fiber fracture within the volume 

under the impactor. In contrast, damage was much more severe in the angle interlock and layer-

to-layer laminates, where significant levels of fiber fracture, delamination and volumetric 

damage are evident in the photomicrographs.  
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The residual load-carrying capacity of the panels was assessed through a series of flexural tests 

at quasi-static rates of strain. It should be recalled that these flexural tests were conducted on the 

square panels, simply-supported on a similar steel ring that was used for the impact tests. The 

samples were loaded by a larger hemisphere than used for dynamic testing in order to avoid the 

possibility of the indentor simply pushing through the perforation region in the more heavily-

damaged panels. Testing indicated that the orthogonal panels offered a superior load-bearing 

capacity relative to the layer to layer and angle interlock systems. For example, following an 

impact energy of 30 Joules, the orthogonal laminate offered a flexural strength that was over 

50% higher than its two remaining counterparts. At 40 Joules, these differences were reduced, 

with the orthogonal laminate being 25% stronger than the angle interlock and just 5% stronger 

than the layer-to layer composite. Much of this improved performance is, however, linked to the 

fact that the undamaged flexural strength of the orthogonal panel is 17% and 35% higher than 

that of the angle interlock and layer to layer composites, respectively. In order to account for 

these differences in undamaged strength, the residual flexural properties of the three fabrics were 

normalized by the respective undamaged values and these values are plotted against impact 

energy in Figure 13. Here, it is evident that, at low and intermediate energies, there is not a 

significant difference between the residual properties of the three fabrics. Some differences are 

apparent at higher energies, with the layer to layer and possibly the orthogonal laminates, 

offering superior properties. 
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4.0 Conclusions 

The focus of this study was to manufacture and mechanically characterize three different types of 

3D woven fabric with high fiber volume content. Compaction characterization tests were carried 

out to determine the peak stresses required to compact the fabrics to the target fiber volume 

fraction of 0.65. Low pressure LCM processes, such as VARTM, use vacuum pressure for 

compaction and are not suitable for achieving a high fiber volume content in these 3D woven 

reinforcement systems, due to the very high compaction pressures involved. Among the three 

types of reinforcement, it was concluded that the orthogonal fabrics required the highest stress of 

approximately 2.3 MPa, whereas the layer to layer fabric, which was closer to a 2D fabric, 

required the lowest peak stress of approximately 1 MPa to achieve 0.65 Vf. In-plane permeability 

tests showed greater promise for the orthogonal and angle interlock fabrics, due to presence of 

meso-scale surface pores around the vertical z-binder yarns. The flow front patterns in the layer 

to layer fabric were more anisotropic, due to greater levels of fiber alignment in the weft 

direction. RTM experiments showed good agreement with predicted mold filling times obtained 

from analytical solutions for all cases. Layer to layer fabric showed slowest mold filling due to 

low in-plane permeability. The RTM mold filling results give good confidence in the measured 

permeability.  

Flexural test showed that samples cut along the weft direction offered higher strength values 

compared to samples cut along warp direction, this confirmed the findings of the flow front 

study, where the highest permeability was along weft direction. Finally, low velocity impact 

testing has shown that the orthogonal fabrics exhibited slightly lower levels of damage and a 

higher perforation resistance than the layer to layer and angle interlock fabrics. 
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List of Tables 

Table 1: RTM filling time comparisons 

 

Fabric 
Fiber Volume 
Fraction (Vf) 

 Injection 
Pressure (bars) 

Permeability 
K11 (m

2) 
Mold Filling Time (s) 

Experiment Analytical
Orthogonal 0.66 1.5 2.93E-11 769 725 

Angle 
Interlock 0.63 2.4 2.27E-11 660 635 
Layer to 

layer 0.65 2.0 1.14E-11 1560 1430 
 

 

Table 2: Impact tests on CFRP with increasing energy 

Test No. 
 

Impact 

Energy 

(J) 

Drop 

Height 

(m) 

Impact 

Velocity 

(m/s) 

Drop 

Weight 

(g) 

1st 5 0.78 3.9 657.58 

2nd 10 1.55 5.5 657.58 

3rd 15 1.61 5.6 952.07 

4th 20 1.43 5.2 1457.58 

5th 25 1.54 5.5 1657.58 

6th 30 1.58 5.6 1952.07 

7th 35 1.78 5.9 2016.07 

8th 40 1.47 5.3 2836.22 

 

 

 

 

 



 

 

(a)

(b)

(c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 

) 

) 

1. XCT scan

Meso‐scopic

ns and Texge

c pores 

List 

en models of
Lay

of Figure

f 3D fabrics 
yer to layer.

We

es 

(a) Orthogo

eft 

onal, (b) Anggle interlock

Wef

Weft

24 

, (c) 

ft 



 

25 
 

 

 Figure 2. RTM set-up, (a) Upper and lower mold halves, (b) mold in 100 ton hot press (c) 
resin injection system. 
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Figure 3. Schematic of drop-weight impact rig and clamped specimen. 
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Figure 4. Dry compaction response of 3D fabrics. 
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Figure 5. In-plane permeability of 3D fabrics (a) Orthogonal, (b) Angle interlock, (c) Layer to 
layer. 
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Figure 7. Summary of the flexural properties of the 3D fabric composites (a) flexural strength and (b) 
flexural modulus. 

 

 

 

0

100

200

300

400

500

600

700

Orthogonal
(Weft)

Orthogonal
(Warp)

Angle Interlock
(Weft)

Angle Interlock
(Warp)

Layer to Layer
(Weft)

Layer to Layer
(Warp)

F
le

xu
ra

l S
tr

en
gt

h
 (

M
P

a)

0

10

20

30

40

50

60

70

Orthogonal
(Weft)

Orthogonal
(Warp)

Angle Interlock
(Weft)

Angle Interlock
(Warp)

Layer to Layer
(Weft)

Layer to Layer
(Warp)

F
le

xu
ra

l M
od

u
lu

s 
 (

G
P

a)

b) 

a) 



 

 

Figure 8.

 

 

3 m

3 m

3 m

a) 

c) 

e) 

Crack pr

Cra

 XCT scans o

mm 

mm 

mm 

Fr

ropagation 

ack propagation 

 

 

of front and si

ont View 

Crack propaga

ide of sample
Interlock, 

ation 

 

 

es tested after 
(e,f) Layer to

3

3

3

b) 

d) 

f) 

D

flexural tests
o layer.  

3 mm 

3 mm 

3 mm 

S

Delam

Delamination 

 

s (a,b) Orthog

Side View 

mination 

Del

gonal, (c, d) A

lamination 

31 

 

 

Angle 



 

32 
 

 
 

 

Figure 9. Load-displacement traces following low velocity impact tests on of 3D fabrics (a) Orthogonal, 

(b) Angle interlock. The incident impact energies are marked on the appropriate traces. 
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Figure 10. The variation of absorbed energy with impact energy for the 3D fabrics composites (a) 

Orthogonal, (b) Angle interlock, (c) Layer to layer composites. 
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Figure 11. Comparison of the front and rear surfaces of the 3D fabrics composites following a 40 Joule 
impact (a) Orthogonal, (b) Angle interlock, (c) Layer to layer. 
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Figure 13. The variation of the composite plates with impact energy. 
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