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Abstract

This paper investigates the delay-dependent stability problem of continuous neural networks with a bounded time-

varying delay via Lyapunov-Krasovskii functional (LKF) method. This paper focuses on reducing the conservatism

of stability criteria by estimating the derivative of the LKF more accurately. Firstly, based on several zero-value

equalities, a generalized free-weighting-matrix (GFWM) approach is developed for estimating the single integral

term. It is also theoretically proved that the GFWM approach is less conservative than the existing methods commonly

used for the same task. Then, the GFWM approach is applied to investigate the stability of delayed neural networks,

and several stability criteria are derived. Finally, three numerical examples are given to verify the advantages of the

proposed criteria.
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1. Introduction

Neural networks have been successfully applied in image processing, pattern recognition, associative memory,

optimization problem, etc. [1]-[3]. For those applications, the artificial neural networks usually must be stable [6].

However, the finite switching speed of amplifiers and the inherent communication time between neurons inevitably

cause time delays during the implementation of artificial neural networks [7]. These delays might lead to undesired

dynamics like oscillation and instability. Therefore, it is an important job to determine the admissible maximal delay

bound (AMDB) such that the delayed neural networks (DNNs) with a delay less than this bound remain stable. In

the past few decades, such delay-dependent stability analysis problem has become a hot issue in the field of neural

networks [4].

These delays are usually time-varying and Lyapunov-Krasovskii functional (LKF) method can easily handle such

DNNs, thus, the LKF method has become the one of most popular methods for stability analysis and finding the

AMDBs. The DNNs with bounded delays are asymptotically stable if there exists an LKF, which consists of state

vector based quadratic terms, is positive definite and has a negative gradient over the time. Linear matrix inequalities

(LMIs) based delay-dependent stability criteria can be easily used to check whether or not such LKF can be found for

the DNNs. However, the criteria derived have some conservatism since they are only sufficient conditions. In order
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to find the AMDBs more accurately, one important issue in the related research is to develop new criteria with less

conservatism. This paper also investigates the stability of DNNs following this direction.

By constructing a special form of LKF candidate, tractable LMI-based stability criteria are derived using necessary

techniques to estimate the LKF and its derivative. Therefore, the construction and the treatment for the LKF are the

basic issues related to how conservative the criteria are.

In the early research, the LKFs for the stability analysis of the DNNs were constructed by introducing delay-based

single and double integral terms into the typical non-integral quadratic form of Lyapunov function for delay-free

systems [5], [6], [8]-[14]. Later, researchers have developed many new LKFs by making the previous ones more

general in three aspects.

1) Firstly, based on several subintervals divided from the whole delay region, some scholars have developed

the delay-partition-based LKFs by replacing the original integral terms with multiple new integral terms with

smaller domain of integration [16]-[30].

2) Secondly, by using various state vectors (current, delayed, and/or integrated state vectors etc.), some scholars

have developed new LKFs by augmenting the quadratic terms of original LKFs [31]-[42].

3) Thirdly, since the triple integral term was found to be helpful for reducing the conservatism of stability criteria

for linear time-delay systems [47], similar and/or extended forms have also been widely applied to stability

analysis of various DNNs [49]-[58].

Although those LKFs have different forms, they all include a common term with the form of
∫ 0

−h

∫ t

t+θ
yT (s)Ry(s)dsdθ

(Here h > 0 is the scalar, y(s) is the system state-based vector, and matrix R > 0.). Then its derivative contains the

term as follows

−

∫ t

t−h

yT (s)Ry(s)ds (1)

This term was directly dropped in the early literature [5], but such treatment is very conservative. Later, this term

was retained to improve the results, in which case it must be estimated to represent the criterion in the form of tractable

LMI. As mentioned in [43], the estimation of the above single integral term is strongly related to the conservatism of

criteria. Therefore, the stability criteria of DNNs have been improved gradually by using more effective techniques

for this estimation task.

The basic inequality was used to estimate the single integral term [6]. Since He et al. [44] proposed the free-

weighting matrix (FWM) approach, which is more effective than the basic inequality, the FWM approach has been

widely used in the stability analysis of DNNs [8]-[13], [28]-[32]. The slack matrices introduced by the FWM approach

provide great freedom of the criteria.

An alternative method that estimates the original integral terms directly was also used in the stability analysis of

DNNs. The criteria from this type of method are strongly linked to the inequalities used. At the beginning, the Jensen

inequality has been wildly applied to analyze the stability of the DNNs [14]-[26], [33, 34, 51, 52]. In 2013, Seuret et

al. [43] presented a Wirtinger-based inequality and proved that it is less conservative than the Jensen inequality. Since

then, Wirtinger-based inequality has become the most popular method to estimate the single integral term during the

investigation of DNNs [27], [37]-[41], [53]-[56].
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Very recently, Zeng et al. proposed a free-matrix-based inequality (FMBI) in [45] and extended it to the research

of DNNs [42, 50]. To the best of the authors’ knowledge, this inequality is the least conservative among the existing

inequalities for estimating single integral term. However, there is further room to be investigated using the FMBI.

Some slack matrices in the FMBI do not seem to contribute to a reduction of the conservatism. In [42], the FMBI was

only used to estimate the single integral term without any augmented vector, while the augmented integral term was

still estimated via the Jensen inequality.

It can be expected that stability criteria with less conservatism will be obtained by developing and using a more

effective approach to estimate the single integral term. This motivates the present research.

This paper further investigates delay-dependent stability of DNNs following the development of a more effective

method to estimate the single integral term (1). The contributions of the paper are summarized as follows:

1) A general free-weighting-matrix (GFWM) approach is developed to estimate single integral term. Based on

several zero-value equalities, a new estimation method, named as GFWM approach, is developed by following

the basic estimation procedure of the FWM approach. And a new inequality is derived based on the GFWM

approach (Lemma 5).

2) Necessary theoretical studies are carried out to compare the GFWM approach and several previous estimation

methods. It is proved that the inequality obtained from the GFWM approach can encompass the Wirtinger-based

inequality and the FMBI.

3) Several new stability criteria with less conservatism for the DNNs are derived. For generalized neural networks

with a time-varying delay, based on two LKFs (one with delay-product-type terms and the other without similar

terms), two stability criteria are derived by using the GFWM to estimate the single integral term appearing in

the derivative of the LKFs.

The remainder of the paper is organized as follows. Section 2 gives the problem formulation and necessary

preliminary. In Section 3, the development of the GFWM approach and its comparison to previous methods are

discussed in detail. The GFWM approach is applied to a generalized DNN and several stability criteria are derived

in Section 4. In Section 5, three numerical examples are used to demonstrate the benefits of the proposed criteria.

Conclusions are given in Section 6.

Notations: Throughout this paper, the superscripts T and −1 mean the transpose and the inverse of a matrix,

respectively; Rn denotes the n-dimensional Euclidean space; Rn×m is the set of all n × m real matrices; ‖ · ‖ refers to

the Euclidean vector norm; P > 0 (≥ 0) means that P is a real symmetric and positive-definite (semi-positive-definite)

matrix; diag{· · · } denotes a block-diagonal matrix; the symmetric term in a symmetric matrix is denoted by ∗; and

Sym{X} = X + XT .

2. Problem formulation and preliminary

This section describes the problem to be investigated and gives related preliminaries.

2.1. Problem formulation

Consider the following generalized DNNs [35]:

ẏ(t) = −Ay(t)+W0g(Wy(t))+W1g(Wy(t − d(t)))+J (2)
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where y(t) = [y1(t) y2(t) · · · yn(t)]T is the state vector associated with the n neurons; g(·) = [g1(·) g2(·) · · · gn(·)]T

represents the neuron activation function with g(0)= 0; A= diag{a1, a2, · · · , an}>0; W, W0 and W1 are the connection

weight matrices; J= [J1 J2 · · · Jn]T is a vector representing the bias; and d(t) is a time-varying delay satisfying

0 ≤ d(t) ≤ h (3)

and

CaseI : ḋ(t) ≤ µ (4)

CaseII : |ḋ(t)| ≤ µ (5)

where h and µ are constants.

Assumption 1. The neuron activation function gi(·) is assumed to be bounded and satisfies the following condition:

σ−i ≤
gi(s1) − gi(s2)

s1 − s2

≤ σ+i , s1 , s2, i = 1, 2, · · · , n (6)

where σ−
i

and σ+
i

are known real constants.

Remark 1. Constants σ+
i

and σ−
i

in Assumption 1 are allowed to be positive, negative, or zero, and many activation

functions (monotonic or non-monotonic) satisfy the condition of (6) [15].

Based on this assumption for the activation function, there exists an equilibrium point y∗ for the neural network,

i.e., 0 = −Ay∗ +W0g(Wy∗) +W1g(Wy∗) + J. Using transformation x(t) = y(t) − y∗ [4], one can shift the equilibrium

point y∗ of (2) to the origin and rewrite system (2) as:

ẋ(t) = −Ax(t) +W0 f (Wx(t)) +W1 f (Wx(t − d(t))) (7)

where f (.) = [ f1(·) f2(·) · · · fn(·)]T and fi(W2ix(t)) = gi(W2i x(t) +W2iy
∗) − gi(W2iy

∗) with fi(0) = 0 and W2i denoting

the i-th row vector of the matrix W. Then,

it follows from (6) and fi(0) = 0 that [51]

σ−i ≤
fi(s1) − fi(s2)

s1 − s2

≤ σ+i , s1 , s2 (8)

σ−i ≤
fi(s)

s
≤ σ+i , s , 0 (9)

This paper is concerned with the delay-dependent stability of DNN (2). In order to determine the AMDBs more

accurately, this paper aims to derive new delay-dependent stability criteria with conservatism as small as possible.

As mentioned in Section I, the construction of LKFs and the treatment of their derivatives are two aspects related to

conservatism. Since there are many different forms of LKFs, this paper mainly pays attention to the treatment of the

single integral term that appears in the derivative of all LKFs.
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2.2. Preliminary

The following lemmas are used in subsequent sections of this paper.

Lemma 1. Wirtinger-based inequality [43]: For symmetric positive definite matrix R ∈ Rn×n, scalars a < b, and

vector ω : [a, b] 7→ Rn such that the integrations concerned are well defined, then the following inequality holds

∫ b

a

ωT (s)Rω(s)ds≥
1

b − a

















χ1

χ2

















T 















R 0

0 3R

































χ1

χ2

















(10)

where χ1=
∫ b

a
ω(s)ds and χ2=χ1 −

2
b−a

∫ b

a

∫ s

a
ω(u)duds=−χ1 +

2
b−a

∫ b

a

∫ b

s
ω(u)duds.

Lemma 2. Free-matrix-based inequality [42]: For symmetric matrices R ∈ Rn×n and Z1, Z3 ∈ R
3n×3n, any matrices

Z2 ∈ R
3n×3n and N1,N2 ∈ R

3n×n, such that





























Z1 Z2 N1

∗ Z3 N2

∗ ∗ R





























> 0 (11)

and vector ν : [a, b] 7→ Rn such that the integration concerned are well defined, the following inequality holds

∫ b

a

ν̇T(s)Rν̇(s)ds ≥ −(b − a)ςT
0

(

3Z1 + Z3

3

)

ς0 − Sym{ςT
0 N1ς1 + ς

T
0 N2ς2} (12)

where ς0 = [νT (b), νT (a),
∫ b

a

νT (s)

b−a
ds]T , ς1 = ν(b) − ν(a), and ς2 = ν(b) + ν(a) − 2

∫ b

a

ν(s)

b−a
ds.

Lemma 3. Reciprocally convex inequality [59]: For any vectors β1 and β2, symmetric matrix R, any matrix S satis-

fying

















R S

∗ R

















≥ 0, and real scalar 0 ≤ α ≤ 1, then the following inequality holds

1

α
βT

1 Rβ1 +
1

1 − α
βT

2 Rβ2 ≥

















β1

β2

















T 















R S

∗ R

































β1

β2

















(13)

Lemma 4. For any symmetric matrices Π0, Π1, and Π2, and a scalar continuous function α(t) ∈ [0, γ] with γ being

constant, the following holds

1) :

γ2Π0 + γΠ1 + Π2 ≤ 0

γΠ1 + Π2 ≤ 0

Π2 ≤ 0



























=⇒ α2(t)Π0 + α(t)Π1 + Π2 ≤ 0 (14)

2) :

Π0 ≥ 0

γ2Π0 + γΠ1 + Π2 ≤ 0

Π2 ≤ 0



























=⇒ α2(t)Π0 + α(t)Π1 + Π2 ≤ 0 (15)

3) :

Π0 ≤ 0

γΠ1 + Π2 ≤ 0

Π2 ≤ 0



























=⇒ α2(t)Π0 + α(t)Π1 + Π2 ≤ 0 (16)
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Proof. Rewriting α2(t)Π0+α(t)Π1+Π2 yields

α2(t)Π0 + α(t)Π1 + Π2 =
α(t)

γ2

[

α(t)(γ2Π0+γΠ1+Π2)
]

+
α(t)

γ2

[

(γ − α(t))(γΠ1+Π2)
]

+
γ − α(t)

γ
Π2

Obviously, 1) of Lemma can easily be obtained from the above representation. If Π0 ≥ 0, γ2Π0+γΠ1+Π2 ≤ 0 =⇒

γΠ1 + Π2 ≤ 0, then 2) of Lemma is obtained. If Π0 ≤ 0,γΠ1+Π2 ≤ 0 =⇒ γ2Π0+ γΠ1 + Π2 ≤ 0, then 3) of Lemma is

obtained. This completes the proof.

3. Estimation of single integral term via the GFWM approach

This section develops the GFWM approach to estimate the single integral term. The comparison of the GFWM

approach and the existing commonly used methods (Wirtinger-based inequality and FMBI) is also given.

3.1. The GFWM approach

Based on several zero-value equalities, the GFWM approach is developed by following the basic estimation pro-

cedure of the FWM approach. More specifically, the following new inequality is established for single integral term.

Lemma 5. (The GFWM-based inequality) For symmetric positive definite matrix R ∈ Rn×n, any matrices L,M, and

vector ω : [a, b] 7→ Rn such that the integration concerned are well defined, then the following inequality holds

∫ b

a

ωT (s)Rω(s)ds ≥ −Sym{χT
0 Lχ1 + χ

T
0 Mχ2} − (b − a)χT

0

(

3LR−1LT + MR−1MT

3

)

χ0 (17)

where χ0 is any vector and χ1, χ2 are defined in Lemma 1.

Proof. For a function λ(s) = k1 + k2s, the calculation based on integration by parts leads to

∫ b

a

λ(s)ω(s)ds = λ(a)

∫ b

a

ω(s)ds + k2

∫ b

a

∫ b

s

ω(u)duds

By setting λ(a) = −1, k2 =
2

b−a
, i.e. λ(s) = −b−a

b−a
+ 2

b−a
s, the above equality is rewritten as

∫ b

a

λ(s)ω(s)ds = χ2 (18)

Then the following zero-value equality is obtained for any vector χ0 and any matrix M:

0 = 2

∫ b

a

λ(s)χT
0 Mω(s)ds − 2χT

0 Mχ2 (19)

Similarly, the following zero-value equalities are derived:

0 = 2

∫ b

a

χT
0 Lω(s)ds − 2χT

0 Lχ1 (20)

0 =

∫ b

a

χT
0 (LR−1LT )χ0ds − (b − a)χT

0 (LR−1LT )χ0 (21)

0 =

∫ b

a

λ(s)χT
0 (MR−1MT )λ(s)χ0ds −

b−a

3
χT

0 (MR−1MT )χ0 (22)
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0 = 2

∫ b

a

χT
0 (LR−1MT )λ(s)χ0ds (23)

Based on the estimation idea of the FWM approach, by adding the right sides of (19)-(23) to the single integral

term in inequality (17), the following equality is derived:

∫ b

a





























χ0

λ(s)χ0

ω(s)





























T 



























LR−1LT LR−1 MT L

∗ MR−1 MT M

∗ ∗ R

























































χ0

λ(s)χ0

ω(s)





























ds =

∫ b

a

ωT (s)Rω(s)ds (24)

+Sym{χT
0 Lχ1 + χ

T
0 Mχ2} + (b − a)χT

0

(

3LR−1LT + MR−1 MT

3

)

χ0

It follows from the Schur complement that





























LR−1LT LR−1MT L

∗ MR−1MT M

∗ ∗ R





























≥ 0 (25)

thus
∫ b

a

ωT (s)Rω(s)ds + Sym{χT
0 Lχ1 + χ

T
0 Mχ2} + (b − a)χT

0

(

3LR−1LT + MR−1MT

3

)

χ0 ≥ 0

which implies (17). This completes the proof.

Remark 2. From the proof procedure, it can be found that the GFWM-based inequality is obtained by using several

zero-value terms and following the similar idea of the FWM approach. The advantages of the GFWM approach

compared with the FWM approach are reflected in two aspects: For the FWM approach [44], ω = ν̇, and only two

zero-value terms (18) and (21) are introduced, while the GFWM approach does not require ω = ν̇ such that it can

handle single integral term with more general form. And it includes more zero-value terms, namely, (19), (22), and

(23), which would reduce the gap between original integral term and its estimated value.

3.2. The comparison investigation

This part shows that the inequality obtained by the GFWM approach encompasses the ones given in Lemmas 1

and 2.

(a) The GFWM-based inequality (17) encompasses the Wirtinger-based inequality (10)

Letting χT
0

L = − 1
b−a
χT

1
R and χT

0
M = − 3

b−a
χT

2
R yields

−Sym{χT
0 Lχ1 + χ

T
0 Mχ2} − (b − a)χT

0

(

3LR−1LT + MR−1 MT

3

)

χ0 =
χT

1
Rχ1 + 3χT

2
Rχ2

b − a
(26)

Then inequality (17) reduces to inequality (10). Thus, the GFWM-based inequality (17) encompasses the Wirtinger-

based inequality (10).

(b) The GFWM-based inequality (17) encompasses the FMBI (12)

First step: proving that (17) encompasses a new inequality (27). Let ω = ν̇, then χ1 = ς1, χ2 = ς2. By setting

χ0 = ς0, (17) is rewritten as
∫ b

a

ν̇T (s)Rν̇(s)ds ≥ −Sym{ςT
0 Lς1 + ς

T
0 Mς2} − (b − a)ςT

0

(

3LR−1LT + MR−1MT

3

)

ς0 (27)

Second step: proving that (27)⇐⇒(12).
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• On one hand, if set N1=L, N2=M, Z1=LR−1LT , and Z3=MR−1MT , then (12) can be rewritten as

∫ b

a

ν̇T(s)Rν̇(s)ds ≥ −(b − a)ςT
0

(

3Z1 + Z3

3

)

ς0 − Sym{ςT
0 N1ς1 + ς

T
0 N2ς2}

= −(b − a)ςT
0

(

3LR−1LT + MR−1MT

3

)

ς0 − Sym{ςT
0 Lς1 + ς

T
0 Mς2} (28)

Thus, (12)=⇒(27).

• On the other hand, if there exists matrices X, Y, and Z satisfying X ≥ LR−1LT , Y ≥ LR−1MT , and Z ≥ MR−1MT ,

then the following inequalities hold





























X Y L

∗ Z M

∗ ∗ R





























≥ 0 (29)

and

∫ b

a

ν̇T (s)Rν̇(s)ds ≥ −Sym{ςT
0 Lς1+ς

T
0 Mς2}−(b−a)ςT

0

(

3LR−1LT +MR−1MT

3

)

ς0

≥ −Sym{ςT
0 Lς1 + ς

T
0 Mς2}−(b−a)ςT

0

(

3X + Z

3

)

ς0 (30)

Then, if set L = N1, M = N2, X = Z1, Y = Z2, and Z = Z3, then inequalities (29) and (30) become inequalities

(11) and (12). Thus, (27)=⇒(12), (11).

Therefore, the GFWM-based inequality (17) encompasses the FMBI (12).

Remark 3. From the comparison studies, it can be found that the Wirtinger-based inequality is special case of the

GFWM-based inequality and can be obtained by fixing some slack matrices. Thus, the GFWM approach is less

conservative since the slack matrices provide additional freedom. Moreover, the equivalence of the FMBI and (27)

shows that some slack matrices in the FMBI (Zi, i = 1, 2, 3) do not contribution to reducing the conservatism. In

addition, the FMBI can only handle the case of ω = ν̇.

4. Delay-dependent stability analysis of the DNNs

This section investigates the stability of DNN (2) by using the GFWM approach and derives three stability criteria.

The following notations are introduced at first for simplifying the representation of subsequent parts:

hd(t) := h − d(t), xd(t) := x(t−d(t)), xh(t) := x(t−h)

f (t) := f (Wx(t)), fd(t) := f (Wx(t−d(t))), fh(t) := f (Wx(t−h))

v1(t) :=
∫ t

t−d(t)

x(s)

d(t)
ds , v2(t) :=

∫ t−d(t)

t−h

x(s)

hd(t)
ds

v3(t) :=
∫ t

t−d(t)

∫ t

s

x(u)

d(t)
duds v4(t) :=

∫ t−d(t)

t−h

∫ t−d(t)

s

x(u)

hd (t)
duds

ξ1(t) := [xT (t) xT
d (t) xT

h (t)]T ξ2(t) := [ f T (t) f T
d (t) f T

h (t)]T

ζ(t) := [ξT1 (t) ξT2 (t) vT
1 (t) vT

2 (t) vT
3 (t) vT

4 (t)]T
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ei := [0n×(i−1)n In×n 0n×(10−i)n], i = 1, 2, · · · , 10

es := [−A 0 0 W0 W1 0 0 0 0 0]

eg := [eT
1 eT

2 eT
4 eT

5 eT
7 eT

8 eT
9 eT

10]T , e0 := [0 0 0 0 0 0 0 0 0 0]

Σ1 := diag{σ+1 , σ
+
2 , · · · , σ

+
n }, Σ2 := diag{σ−1 , σ

−
2 , · · · , σ

−
n }

4.1. Case I: Stability of DNN (2) with the delay satisfying (4)

For DNN (2) with the delay satisfying (4), construct the following LKF candidate:

V1(t) =

















x(t)
∫ t

t−h
x(s)ds

















T

P

















x(t)
∫ t

t−h
x(s)ds

















+

∫ t

t−d(t)

εT
1 (s)Q1ε1(s)ds +

∫ t

t−h

εT
1 (s)Q2ε1(s)ds +

∫ 0

−h

∫ t

t+θ

εT
2 (s)Zε2(s)dsdθ

+

n
∑

i=1

∫ W2i x

0

[

λ1i(σ
+
i s− fi(s))+λ2i( fi(s)−σ−i s)

]

ds (31)

where

ε1(t) = [xT (t) f T (t)]T , ε2(t) = [xT (t) ẋT (t)]T

and P, Qi, i = 1, 2, and Z are the symmetric positive definite matrices; and Λi = diag{λi1, λi2, · · · , λin}, i = 1, 2 are the

symmetric diagonal matrices.

Based on LKF (31), the following stability criterion is derived by using the GFWM-based inequality (17) to derive

single integral terms appearing in the derivative of the LKF.

Theorem 1. For given scalars h and µ, DNN (2) with time delay satisfying (3) and (4) and activation function

satisfying (6) is asymptotically stable, if there exist positive symmetric matrices P,Q1,Q2, Z ∈ R
2n×2n, symmetric

matrices Za, Zb ∈ R
n×n; positive diagonal matrices Λ1,Λ2,U j,H j ∈ R

n×n, j = 1, 2, 3; and any matrices Li,Mi ∈

R8n×2n, i = 1, 2, such that the following LMIs hold





























Ψ1(d(t))|d(t)=h − hΞ5 heT
g L1 heT

g M1

∗ −hZ̄a 0

∗ ∗ −3hZ̄a





























≤ 0 (32)





























Ψ1(d(t))|d(t)=0 − hΞ7 heT
g L2 heT

g M2

∗ −hZ̄b 0

∗ ∗ −3hZ̄b





























≤ 0 (33)

where

Ψ1(d(t)) = Υ0 + d(t)Υ1 + hd(t)Υ2 (34)

Υ0 = Ξ0 + Ξ3

Υ1 = Ξ1 + Ξ
T
1 + Ξ4 + Ξ

T
4 + Ξ5

Υ2 = Ξ2 + Ξ
T
2 + Ξ6 + Ξ

T
6 + Ξ7

Ξ0 = Sym



































e1

e0

















T

P

















es

e1 − e3



































+

















e1

e4

















T

(Q1+Q2)

















e1

e4

















−

















e3

e6

















T

Q2

















e3

e6

















− (1 − µ)

















e2

e5

















T

Q1

















e2

e5

















+ h

















e1

es

















T

Z

















e1

es
















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+eT
1 Zae1 + eT

2 (Zb − Za)e2 − eT
3 Zbe3 + Sym

{[

(Σ1We1−e4)TΛ1 + (e4−Σ2We1)TΛ2

]

Wes

}

+

3
∑

i=1

Sym
{

(Σ1Wei −ei+3)T Hi(ei+3−Σ2Wei)
}

+

2
∑

i=1

Sym
{

[Σ1W(ei − ei+1)−(ei+3 − ei+4)]T Ui[(ei+3 − ei+4)−Σ2W(ei − ei+1)]
}

+Sym
{

[Σ1W(e1−e3)−(e4−e6)]T U3 [(e4−e6)−Σ2W(e1−e3)]} (35)

Ξ1 =

















e0

e7

















T

P

















es

e1−e3

















(36)

Ξ2 =

















e0

e8

















T

P

















es

e1−e3

















(37)

Ξ3 = Sym















eT
g L1

















e0

e1−e2

















+ eT
g M1

















2e9

e1+e2 − 2e7































+ Sym















eT
g L2

















e0

e2−e3

















+ eT
g M2

















2e10

e2+e3 − 2e8































(38)

Ξ4 = eT
g L1

















e7

e0

















+ eT
g M1

















−e7

e0

















(39)

Ξ5 = eT
g

(

L1Z̄−1
a LT

1 +
1

3
M1Z̄−1

a MT
1

)

eg (40)

Ξ6 = eT
g L2

















e8

e0

















+ eT
g M2

















−e8

e0

















(41)

Ξ7 = eT
g

(

L2Z̄−1
b LT

2 +
1

3
M2Z̄−1

b MT
2

)

eg (42)

Z̄a = Z +

















0 Za

Za 0

















, Z̄b = Z +

















0 Zb

Zb 0

















(43)

Proof. Firstly, differentiating V1(t) along the solutions of (7) yields

V̇1(t) ≤ 2

















x(t)

d(t)v1(t) + hd(t)v2(t)

















T

P

















ẋ(t)

x(t) − xh(t)

















+εT
1 (t)(Q1 + Q2)ε1(t)−εT

1 (t−h)Q2ε1(t−h) − (1 − µ)εT
1 (t − d(t))Q1ε1(t − d(t))

+2
{

[Σ1Wx(t)−f (t)]TΛ1+[ f (t)−Σ2Wx(t)]TΛ2

}

Wẋ(t) + hεT
2 (t)Zε2(t) −

∫ t

t−h

εT
2 (s)Zε2(s)ds (44)

Secondly, by taking into account the assumption of the activation function, (8) and (9), the following inequalities

hold:

hi(s) :=2
[

Σ1Wx(s)− f (s)
]T

Hi

[

f (s)−Σ2Wx(s)
]

≥0

ui(s1, s2) :=2
[

Σ1W(x(s1) − x(s2))−( f (s1) − f (s2))
]T

Ui

[

( f (s1) − f (s2))−Σ2W(x(s1) − x(s2))
]

≥0

where

Hi = diag{h1i, h2i, · · · , hni} ≥ 0, i = 1, 2, 3
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U j = diag{u1 j, u2 j, · · · , un j} ≥ 0, j = 1, 2, 3

Thus, the following inequalities hold:

h1(t)+h2(t−d(t))+h3(t−h) ≥ 0 (45)

u1(t, t−d(t))+u2(t−d(t), t−h)+u3(t, t−h) ≥ 0 (46)

Thirdly, for symmetric matrices Za, Zb, the following zero-value term is obtained [51]:

0= xT (t)Zax(t) − xT
d (t)Zaxd(t)−2

∫ t

t−d(t)

xT (s)Za ẋ(s)ds + xT
d (t)Zbxd(t) − xT

h (t)Zb xh(t) − 2

∫ t−d(t)

t−h

xT (s)Zb ẋ(s)ds (47)

Fourthly, introducing (45)-(47) into (44) and combining the d(t)- and hd(t)-dependent terms yield

V̇1(t) ≤ ζT (t)Γ1(d(t))ζ(t) − V̇s(t) (48)

where ζ(t) is defined in (31), and

Γ1(d(t)) = Ξ0 + d(t)(Ξ1 + Ξ
T
1 ) + hd(t)(Ξ2 + Ξ

T
2 )

V̇s(t) =

∫ t

t−d(t)

εT
2 (s)Z̄aε2(s)ds +

∫ t−d(t)

t−h

εT
2 (s)Z̄bε2(s)ds

and Ξi, i = 0, 1, 2 are defined in (35)-(37), Z̄a, Z̄b are defined in (43).

Fifthly, for any matrices Li,Mi ∈ R
8n×2n, i = 1, 2, letting χ0 in (17) be

χ0 = η0 = [xT (t), xT
d (t), f T (t), f T

d (t), vT
1 (t), vT

2 (t), vT
3 (t), vT

4 (t)]T = egζ(t) (49)

and using the GFWM-based inequality (17) to estimate the single integral term V̇s(t) yield

V̇s(t) ≥ −Sym
{

ηT
0 L1η1 + η

T
0 M1η2

}

− d(t)ηT
0













3L1Z̄−1
a LT

1
+ M1Z̄−1

a MT
1

3













η0

−Sym
{

ηT
0 L2η3 + η

T
0 M2η4

}

− (h − d(t))ηT
0













3L2Z̄−1
b

LT
2
+ M2Z̄−1

b
MT

2

3













η0 (50)

where

η1 =

















d(t)v1(t)

x(t)−xd(t)

















, η2 =

















−d(t)v1(t) + 2v3(t)

x(t)+xd(t) − 2v1(t)

















, η3 =

















hd(t)v2(t)

xd(t)−xh(t)

















, η4 =

















−hd(t)v2(t) + 2v4(t)

xd(t)+xh(t) − 2v2(t)

















which implies

−V̇s(t) ≤ ζ
T (t)Γ2(d(t))ζ(t) (51)

where

Γ2(d(t)) = Ξ3 + d(t)(Ξ4+Ξ
T
4 +Ξ5) + hd(t)(Ξ6+Ξ

T
6 +Ξ7)

and Ξi, i = 3, 4, . . . , 7 are defined in (38)-(42).

Finally, combining (48) and (51) yields

V̇1(t) ≤ ζT (t)Ψ1(d(t))ζ(t) (52)
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where Ψ1(d(t)) is defined in (34).

On the other hand, based on Schur complement, LMIs (32) and (33) leads to

Ψ1(d(t))|d(t)=h ≤ 0, Ψ1(d(t))|d(t)=0 ≤ 0 (53)

which is equivalent to Ψ1(d(t)) ≤ 0 based on the convex combination method [60].

Therefore, if LMIs (32) and (33) hold, then the following holds for a sufficiently small scalar ǫ > 0:

V̇1(t) ≤ −ǫ||x(t)||2 (54)

which shows the asymptotical stability of DNN (2) with time delay satisfying (3) and (4) . This completes the

proof.

In order to clearly show the GFWM approach is more effective than the Wirtinger-based inequality, the following

stability criterion is also obtained by using the LKF (31) and applying the Wirtinger-based inequality (10) to estimate

the single integral term arises in the derivative of the LKF.

Theorem 2. For given scalars h and µ, DNN (2) with time delay satisfying (3) and (4) and activation function

satisfying (6) is asymptotically stable, if there exist positive symmetric matrices P,Q1,Q2, Z ∈ R
2n×2n, symmetric

matrices Za, Zb ∈ R
n×n; positive diagonal matrices Λ1,Λ2,U j,H j ∈ R

n×n, j = 1, 2, 3; and any matrices S 1, S 2 ∈

R2n×2n, such that the following LMIs hold

Ψ3(d(t))|d(t)=0 ≤ 0 (55)

Ψ3(d(t))|d(t)=h ≤ 0 (56)

Φ1 =

















Z̄a S 1

∗ Z̄b

















> 0 (57)

Φ2 =

















Z̄a S 2

∗ Z̄b

















> 0 (58)

where

Ψ3(d(t)) = Υ3 + d(t)Υ4 + hd(t)Υ5 (59)

Υ3 = Ξ0 + Ξ8

Υ4 = Ξ1 + Ξ
T
1 + Ξ9

Υ5 = Ξ2 + Ξ
T
2

Ξ8 = −
ET

1
Φ1E1 + 3ET

3
Φ2E3

h
(60)

Ξ9 = −
Sym{ET

1
Φ1E2 + 3ET

3
Φ2E4}

h
(61)

E1 =











































e0

e1−e2

he8

e2−e3











































, E2=−E4 =











































e7

e0

−e8

e0











































, E3=











































2e9

e1+e2−2e7

2e10−he8

e2+e3−2e8










































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Proof. By constructing the LKF same to (31), its derivative is given as (48). Then by using the Wirtinger-based

inequality (10) and Lemma 3 to estimate the single integral term V̇s(t) yields

−

∫ t

t−d(t)

εT
2 (s)Z̄aε2(s)ds −

∫ t−d(t)

t−h

εT
2 (s)Z̄bε2(s)ds

≤ −
1

d(t)
ζT (t)



































d(t)e7

e1−e2

















T

Z̄a

















d(t)e7

e1−e2



































ζ(t) −
1

hd(t)
ζT (t)



































hd(t)e8

e2−e3

















T

Z̄b

















hd(t)e8

e2−e3



































ζ(t)

−
3

d(t)
ζT (t)



































2e9−d(t)e7

e1+e2−2e7

















T

Z̄a

















2e9−d(t)e7

e1+e2−2e7



































ζ(t) −
3

hd(t)
ζT (t)



































2e10−hd(t)e8

e2+e3−2e8

















T

Z̄b

















2e10−hd(t)e8

e2+e3−2e8



































ζ(t)

≤ −
1

h
ζT (t)





















































































d(t)e7

e1−e2

hd(t)e8

e2−e3











































T

Φ1











































d(t)e7

e1−e2

hd(t)e8

e2−e3





















































































ζ(t) −
3

h
ζT (t)





















































































2e9−d(t)e7

e1+e2−2e7

2e10−hd(t)e8

e2+e3−2e8











































T

Φ2











































2e9−d(t)e7

e1+e2−2e7

2e10−hd(t)e8

e2+e3−2e8





















































































ζ(t)

= −
1

h
ζT (t)[E1 + d(t)E2]TΦ1[E1 + d(t)E2]ζ(t) −

3

h
ζT (t)[E3 + d(t)E4]TΦ2[E3 + d(t)E4]ζ(t)

= ζT (t)(Ξ8 + d(t)Ξ9 + d2(t)Ξ10)ζ(t) (62)

where Φ1 and Φ2 are defined in (57) and (58), respectively, Ξ8 and Ξ9 are defined in (60) and (61), respectively, and

Ξ10 = −
ET

2
Φ1E2 + 3ET

4
Φ2E4

h
(63)

Then, combining (48) and (62) yields

V̇1(t) ≤ ζT (t)Ψ2(d(t))ζ(t) (64)

where

Ψ2(d(t)) = Ψ3(d(t)) + d2(t)Ξ10

= Υ3 + hΥ5 + d(t)(Υ4 − Υ5) + d2(t)Ξ10 (65)

andΨ3(d(t)) is defined in (59). Obviously, Ξ10 ≤ 0, thus, based on 3) of Lemma 4, Ψ2(d(t)) ≤ 0 requires the following

holds

Υ3 + hΥ5 ≤ 0, Υ3 + hΥ5 + h(Υ4 − Υ5) ≤ 0 (66)

That is,

Ψ3(d(t))|d(t)=0 ≤ 0, Ψ3(d(t))|d(t)=h ≤ 0 (67)

Therefore, if LMIs (55)-(58) hold, then the following holds for a sufficiently small scalar ǫ > 0:

V̇1(t) ≤ −ǫ||x(t)||2 (68)

which shows the asymptotical stability of DNN (2) with time delay satisfying (3) and (4) . This completes the

proof.
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Remark 4. In [42], the FMBI was used to analyze the stability of DNN (2). Compared with the criterion derived in

this paper, there are some drawbacks in [42]. Firstly, although the single integral term in V̇3(xt), −
∫ t

t−τ
ẋT (s)Z1 ẋ(s)ds,

was estimated by using FMBI, however, the single integral terms in V̇5(xt), −
∫ t

t−d(t)

















x(s)

ẋ(s)

















T 















Z2 U1

∗ Z3

































x(s)

ẋ(s)

















ds and

−
∫ t−d(t)

t−τ

















x(s)

ẋ(s)

















T 















Z2 U2

∗ Z3

































x(s)

ẋ(s)

















ds,

were still estimated via the Jensen inequality, which is more conservative than Wirtinger-based inequality and the

GFWM-based inequality. Secondly, there exists an error during the discussion of d(t) (i.e., Remark 3 therein). Specif-

ically, in LMI (11) of Theorem 1, Ξ can be rewritten as

Ξ(d(t)) = Ω0 + d(t)Ω1 + d2(t)Ω2 (69)

where Ωi, i = 0, 1, 2 are delay-independent matrices, and Ω2 = −











































e7

e0

−e8

e0











































T

(Φ3 +
Φ4

τ
)











































e7

e0

−e8

e0











































which is obtained from

ΠT
6
Φ3Π6 and ΠT

21
Φ4Π21. In Remark 3 therein the authors claimed that Ξ(d(t)) ≤ 0 for all d(t) ∈ [0, τ] if Ξ(0) ≤ 0 and

Ξ(τ) ≤ 0. However, due to Φ3 +
Φ4

τ
≥ 0, it is not correct based on 3) of Lemma 4 in this paper. Therefore, the results

in [42] are incorrect and will not be listed in the following numerical studies. Note that the notations, Remark, and

Theorem mentioned in this remark are all defined in [42] if not explicity stated.

4.2. Case II: Stability of DNN (2) with the delay satisfying (5)

For DNN (2) with the delay satisfying (5), the following LKF candidate with delay-product-type terms is con-

structed:

V2(t) = V1(t)+V3(t)+V4(t)+V5(t)−

















x(t)
∫ t

t−h
x(s)ds

















T

P

















x(t)
∫ t

t−h
x(s)ds

















(70)

where

V3(t) =





























x(t)
∫ t

t−d(t)
x(s)ds

∫ t−d(t)

t−h
x(s)ds





























T

P0





























x(t)
∫ t

t−d(t)
x(s)ds

∫ t−d(t)

t−h
x(s)ds





























V4(t) = d(t)

















x(t)
∫ t

t−d(t)

x(s)

d(t)
ds

















T

P1

















x(t)
∫ t

t−d(t)

x(s)

d(t)
ds

















V5(t) = (h − d(t))

















x(t)
∫ t−d(t)

t−h

x(s)

hd(t)
ds

















T

P2

















x(t)
∫ t−d(t)

t−h

x(s)

hd(t)
ds

















and V1(t) is defined in (31), and Pi, i = 0, 1, 2 are the symmetric positive definite matrices.

Based on LKF (70) and the GFWM-based inequality (17), the following stability criterion is derived.

Theorem 3. For given scalars h and µ, DNN (2) with time delay satisfying (3) and (5) and activation function

satisfying (6) is asymptotically stable, if there exist positive symmetric matrices P0 ∈ R
3n×3n, P1, P2,Q1,Q2, Z ∈
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R2n×2n, symmetric matrices Za, Zb ∈ R
n×n; positive diagonal matrices Λ1,Λ2,U j,H j ∈ R

n×n, j = 1, 2, 3; and any

matrices Li,Mi ∈ R
8n×2n, i = 1, 2, such that the following LMIs hold





























Ψa − hΞ5 heT
g L1 heT

g M1

∗ −hZ̄a 0

∗ ∗ −3hZ̄a





























≤ 0 (71)





























Ψb − hΞ7 heT
g L2 heT

g M2

∗ −hZ̄b 0

∗ ∗ −3hZ̄b





























≤ 0 (72)





























Ψc − hΞ5 heT
g L1 heT

g M1

∗ −hZ̄a 0

∗ ∗ −3hZ̄a





























≤ 0 (73)





























Ψd − hΞ7 heT
g L2 heT

g M2

∗ −hZ̄b 0

∗ ∗ −3hZ̄b





























≤ 0 (74)

where

Ψa = Ψ4(d(t), ḋ(t))|d(t)=h,ḋ(t)=−µ

Ψb = Ψ4(d(t), ḋ(t))|d(t)=0,ḋ(t)=−µ

Ψc = Ψ4(d(t), ḋ(t))|d(t)=h,ḋ(t)=µ

Ψd = Ψ4(d(t), ḋ(t))|d(t)=0,ḋ(t)=µ

Ψ4(d(t), ḋ(t)) = Ῡ0 + d(t)Ῡ1 + hd(t)Ῡ2 + Ξ11(d(t), ḋ(t)) + Ξ12(d(t), ḋ(t)) + Ξ13(d(t), ḋ(t)) (75)

Ῡ0 = Ξ0 + Ξ3 − Sym



































e1

e0

















T

P

















es

e1 − e3



































Ῡ1 = Ξ4 + Ξ
T
4 + Ξ5

Ῡ2 = Ξ6 + Ξ
T
6 + Ξ7

Ξ11(d(t), ḋ(t)) = Sym



























































e1

d(t)e7

hd(t)e8





























T

P0





























es

e1 − (1 − ḋ(t))e2

(1 − ḋ(t))e2 − e3



























































(76)

Ξ12(d(t), ḋ(t)) = ḋ(t)

















e1

e7

















T

P1

















e1

e7

















+ Sym



































e1

e7

















T

d(t)P1

















es

e0



































+ Sym



































e1

e7

















T

P1

















e0

e1 − (1 − ḋ(t))e2 − ḋ(t)e7



































(77)

Ξ13(d(t), ḋ(t)) = −ḋ(t)

















e1

e8

















T

P2

















e1

e8

















+Sym



































e1

e8

















T

hd(t)P2

















es

e0



































+ Sym



































e1

e8

















T

P2

















e0

(1 − ḋ(t))e2 − e3 + ḋ(t)e8



































(78)

and Ξi, i = 0, 3, 4, . . . , 7, are defined in (35), (38)-(42).
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Proof. The derivatives of the Vi(t), i = 3, 4, 5 can be obtained as

V̇3(t) = 2





























x(t)
∫ t

t−d(t)
x(s)ds

∫ t−d(t)

t−h
x(s)ds





























T

P0





























ẋ(t)

x(t) − (1 − ḋ(t))xd(t)

(1 − ḋ(t))xd(t) − xh(t)





























= ζT (t)
(

Ξ11(d(t), ḋ(t))
)

ζ(t) (79)

V̇4(t) = ḋ(t)

















x(t)
∫ t

t−d(t)

x(s)

d(t)
ds

















T

P1

















x(t)
∫ t

t−d(t)

x(s)

d(t)
ds

















+ 2

















x(t)
∫ t

t−d(t)

x(s)

d(t)
ds

















T

d(t)P1



















ẋ(t)

x(t)−(1−ḋ(t))xd (t)−ḋ(t)
∫ t

t−d(t)

x(s)
d(t)

ds

d(t)



















= ζT (t)
(

Ξ12(d(t), ḋ(t))
)

ζ(t) (80)

V̇5(t) = −ḋ(t)

















x(t)
∫ t−d(t)

t−h

x(s)

hd(t)
ds

















T

P2

















x(t)
∫ t−d(t)

t−h

x(s)

hd(t)
ds

















+ 2

















x(t)
∫ t−d(t)

t−h

x(s)

hd(t)
ds

















T

hd(t)P2



















ẋ(t)

(1−ḋ(t))xd (t)−xh(t)+ḋ(t)
∫ t−d(t)

t−h

x(s)

hd (t)
ds

hd(t)



















= ζT (t)
(

Ξ13(d(t), ḋ(t))
)

ζ(t) (81)

where Ξi, i = 11, 12, 13, are defined in (76)-(78).

Combining the proof of Theorem 1, the derivative of the V2(t) can be estimated as

V̇2(t) ≤ ζT (t)Ψ4(d(t), ḋ(t))ζ(t) (82)

where Ψ4(d(t), ḋ(t)) is defined in (75).

It can be found that the Ψ4(d(t), ḋ(t)) can be presented as

Ψ4(d(t), ḋ(t)) = Ω3 + ḋ(t)Ω4 + d(t)[Ω5 + ḋ(t)Ω6] (83)

where Ωi, i = 3, 4, 5, 6 are delay-independent matrices. Thus, Ψ4(d(t), ḋ(t)) ≤ 0 requires the following holds

Ψ4(d(t), ḋ(t))|d(t)∈{0,h},ḋ(t)∈{−µ,µ} ≤ 0 (84)

which can be guaranteed by LMIs (71)-(74) based on Schur complement.

Therefore, if LMIs (71)-(74) hold, then the following holds for a sufficiently small scalar ǫ > 0:

V̇2(t) ≤ −ǫ||x(t)||2 (85)

which shows the asymptotical stability of DNN (2) with time delay satisfying (3) and (5) . This completes the

proof.

To verify the contribution of delay-product-type terms V4(t) and V5(t), the stability criterion obtained from Theo-

rem 3 by setting P1 = 0 and P2 = 0 (i.e., V4(t) = 0 and V5(t) = 0) is given as follows.

Corollary 1. For given scalars h and µ, DNN (2) with time delay satisfying (3) and (5) and activation function

satisfying (6) is asymptotically stable, if there exist positive symmetric matrices P0 ∈ R
3n×3n, Q1,Q2, Z ∈ R

2n×2n,

symmetric matrices Za, Zb ∈ R
n×n; positive diagonal matrices Λ1,Λ2,U j,H j ∈ R

n×n, j = 1, 2, 3; and any matrices

Li,Mi ∈ R
8n×2n, i = 1, 2, such that LMIs (71)-(74) with Pi = 0, i = 1, 2 hold.
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Remark 5. In Section 4.1, based on a simple augmented LKF, the comparison of Theorem 1 and Theorem 2 is given

to show the advantage of the GFWM approach. In Section 4.2, the GFWM approach is extended to a new LKF with

some delay-product-type terms, whose contribution to conservatism reduction can be verified through the comparison

of Theorem 3 and Corollary 1. In fact, as mentioned in Section 1, the estimation of the single term is unavoidable for

different LKFs. Therefore, it can be expected that better stability criteria can be obtained by extending the GFWM

approach to other LKFs with more general forms. Moreover, the GFWM approach can be applied to investigate other

problems, such as the analysis of dissipative [61, 62] and/or exponential stability [63, 64], and the DNNs with infinite

delay [65] and/or leakage delays [66, 67].

Remark 6. It is worthy pointing out that the GFWM-based criteria developed in this paper achieve the conservatism

reduction at the cost of many slack matrices, which may increase the calculation complexity. Although such problem

may be solved with the development of high performance computer, it is also important to develop some new criteria

that can reduce the conservatism without introducing additional decision variables. For example, the novel integral

inequalities developed in [46] can achieve this objective and will be extended into the study of the DNNs in our future

work.

5. Numerical examples

In this section, three numerical examples are given to show the advantages of the obtained criteria. As mentioned in

Section 1, the important aim of the stability analysis of DNNs is to determine the AMDBs. And the stability criterion

that provides larger AMDBs is less conservative than the one that gives smaller ones. Therefore, the advantages of

the proposed criteria are demonstrated via the comparison of the AMDBs calculated by various criteria.

5.1. Results comparison

Example 1. Consider DNN (2) with the following parameters:

A = diag{1.5, 0.7}, W = diag{1, 1}, W0 =

















0.0503 0.0454

0.0987 0.2075

















, W1 =

















0.2381 0.9320

0.0388 0.5062

















Σ1 =

















0.3 0

0 0.8

















, Σ2 =

















0 0

0 0

















, J =

















0.4

0.2

















In order to verify the advantages of the proposed method, the AMDBs of the delay satisfying ḋ(t) ≤ µ with respect

to various µ obtained by the proposed criteria are given in Table 1, where the AMDBs calculated by stability criteria

in the literature are also listed for comparison. The following observations are summarized from the results.

• It can be easily found that the proposed stability criteria can produce the larger AMDBs for all cases than those

given in the existing literature. It shows that the proposed criteria are indeed less conservative than the ones in

the literature.

• Theorem 1 and Theorem 2 are respectively derived via the proposed GFWM approach and the Wirtinger in-

equality based on the same LKF, and the AMDBs of Theorem 1 are larger than the ones of Theorem 2. That is,

the GFWM approach is more effective than the widely used Wirtinger inequality approach, which matches the

theoretical analysis in Section 3.
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• The comparison between the AMDBs calculated by of Theorem 3 (with delay-product-type terms) and the ones

of Corollary 1 (without delay-product-type terms) clearly verifies the delay-product-type terms, V4(t) and V5(t)

in (70), are effective in the reduction of conservatism.

• The comparison between the results of Theorem 1 (for the case of ḋ(t) ≤ µ) and the ones of Theorem 3 (for

the case of |ḋ(t)| ≤ µ) shows that the additional information of delay changing rate, i.e., the lower bound of the

delay changing rate, is helpful to further reduce the conservatism of the results.

• The comparison of NDVs included by different stability criteria listed in Table 1 shows that the GFWM-based

inequality achieves the reduction of conservatism at the cost of the increase of decision variables.

Example 2. Consider DNN (2) with the following parameters:

A = diag{7.3458, 6.9987, 5.5949}, W =





























13.6014 −2.9616 −0.6936

7.4736 21.6810 3.2100

0.7290 −2.6334 −20.1300





























, W0 = diag{0, 0, 0}, W1 = diag{1, 1, 1}

Σ1 = diag{0.3680, 0.1795, 0.2876}, Σ2 = diag{0, 0, 0}, J =
[

0.4 0.2 0.3
]T

The DNN described above is a static neural network, and its stability has been widely studied in [14], [25], [32],

[37], [38], [41], [49], [53], [55]. For different µ, the AMDBs calculated via the criteria presented in this paper and

the ones in the literature are summarized in Table 2, where ’-’ represents that the allowable upper bounds for the

corresponding cases are not provided in those literatures. The results given reveal that the GFWM-based Theorem 1 is

more effective than both the stability criteria in existing literature and the one developed via the Wirtinger inequality.

Example 3. Consider DNN (2) with the following parameters:

A = diag{1.2769, 0.6231, 0.9230, 0.4480}, W = diag{1, 1, 1, 1}

W0 =











































−0.0373 0.4852 −0.3351 0.2336

−1.6033 0.5988 −0.3224 1.2352

0.3394 −0.0860 −0.3824 −0.5785

−0.1311 0.3253 −0.9534 −0.5015











































, W1 =











































0.8674 −1.2405 −0.5325 0.0220

0.0474 −0.9164 0.0360 0.9816

1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775











































Σ1 = diag{0.1137, 0.1279, 0.7994, 0.2368}, Σ2 = diag{0, 0, 0, 0}, J = [0.4, 0.2, 0.3, 0.1]T

This example has often been used to compare the conservativeness of the stability criteria in the literature [20,

35, 25, 52, 36, 29, 21, 23, 42, 40]. Table 3 gives the corresponding AMDBs with respect to different µ obtained by

the proposed stability criteria as well as the ones given in literature. The stability criteria in [9, 12], derived based

on the FWM approach, lead to smaller AMDBs than Theorem 1 does. It shows that the GFWM approach is more

effective than the FWM approach, which verifies the statement in Remark 1. The LKFs with more general form, such

delay-partition-based LKFs [20, 16, 25, 29, 21, 40, 23], augmented LKF [33], or the LKF with triple integral term

[52], have improved the results, while they are still more conservative than the ones obtained by the proposed criteria

since the Jensen inequality used therein is more conservative than the proposed GFWM approach.
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5.2. Simulation verification

From the parameters of the DNNs, the equilibrium points of them can be obtained as y∗ = [0.6760 0.9077]T ,

y∗ = [0.0948 0.0532 0.0261]T , and y∗ = [0.1501 0.3471 0.3037 0.2401]T , respectively. From tables, the DNNs are

stable for the cases: Example 1, µ = 0.4, and h = 9.7430; Example 2, µ = 0.1, and h = 1.1118; and Example 3,

µ = 0.1, and h = 4.3583. Thus, simulation studies for the following three cases are given:

• Example 1: g(y) =

















0.3 tanh(y1)

0.8 tanh(y2)

















, y(t) = [0.8, 0.5]T , t ∈ [−9.7430, 0]; d(t) = 9.7430
2
+ 9.7430

2
sin

(

0.8
9.7430

t
)

;

• Example 2: g(y) =





























0.3680 tanh(y1)

0.1795 tanh(y2)

0.2876 tanh(y3)





























y(t) = [0.2, 0.1, 0.3]T, t ∈ [−1.1118, 0]; d(t) = 1.1118
2
+ 1.1118

2
sin

(

0.2
1.1118

t
)

;

• Example 3: g(y) = [0.1137 tanh(y1), 0.1279 tanh(y2), 0.7994 tanh(y3), 0.2368 tanh(y4)]T , y(t) = [0.3, 0.1, 0.2, 0.4]T,

t ∈ [−4.3583, 0]; d(t) = 4.3583
2
+ 4.3583

2
sin

(

0.2
4.3583

t
)

;

The responses of the DNNs are shown in Figs. 1-3, and the results show that the DNNs are stable at their equilibrium

points, which verifies the effectiveness of the proposed methods.

6. Conclusions

This paper has developed a novel GFWM approach to analyze the delay-dependent stability of continuous DNN

with a bounded time-varying delay, and several new stability criteria with less conservatism have been established.

The improvement of the proposed stability criteria is benefit from the development of the GFWM approach, which can

estimate the single integral term arising in the derivative of the LKF more accurately. It has been theoretically proved

that the GFWM approach encompasses the widely used Wirtinger-based inequality and the recently presently FMBI

approach. Finally, the comparison of the AMDBs for three numerical examples calculated based on the proposed

criteria and the existing ones has clearly verified the advantages of the proposed criteria.
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Table 1: The AMDBs h for various µ (Example 1)

Cases Criteria
µ

NDVs
0.40 0.45 0.50 0.55

ḋ(t) ≤ µ [11] 3.9972 3.276 3.059 2.9814 12.5n2 + 5.5n

[28] (Th.1) 4.39 3.67 3.46 3.41 35.5n2 + 7.5n

[25] (Th.4, ρ = 0.5) 4.5023 3.7588 3.5472 3.4885 12.5n2 + 23.5n

[52] (Th.1) 4.5543 3.8364 3.5583 3.4110 63.5n2 + 11.5n

[51] (Co.1) 4.8748 4.2702 4.0551 3.9369 30.5n2 + 23.5n

[36] (Th.1) 5.1029 4.1100 3.6855 3.4434 30.5n2 + 8.5n

[48] (Th.1) 5.2420 4.4301 4.1055 3.9231 87.5n2 + 11.5n

[55] (Co.3) 7.4203 6.6190 6.3428 6.2095 11.5n2 + 13.5n

Theorem 2 6.7883 6.1800 5.9623 5.8481 17n2 + 13n

Theorem 1 8.3498 7.3817 7.0219 6.8156 73n2 + 13n

|ḋ(t)| ≤ µ [58] (Th.2.1) 8.9704 7.6635 7.1554 6.8550 59.5n2 + 20.5n

[51] (Th.3) 9.7094 7.7523 6.8570 6.2977 42n2 + 27n

Corollary 1 12.3721 10.0868 9.2340 8.7839 75.5n2 + 13.5n

Theorem 3 13.8671 11.1174 10.0050 9.4157 79.5n2 + 15.5n

22



Table 2: The AMDBs h for various µ (Example 2)

Cases Criteria
µ

NDVs
0.0 0.1 0.5 0.9

ḋ(t) ≤ µ [25] (Th.4, ρ = 0.5) 1.7683 1.0426 0.4313 – 12.5n2 + 23.5n

[38] (Co.1) 1.8764 1.1127 0.4464 – 26n2 + 17n

[53] (Co.1) 1.5575 0.9430 0.4417 0.3632 38n2 + 19n

[14] (Th.2) 1.3323 0.8245 0.3733 0.2343 2.5n2 + 5.5n

[32] (Co.2) 1.3323 0.8402 0.4264 0.3214 8.5n2 + 6.5n

[49] (Co.1) – 0.8411 0.4296 0.3227 25.5n2 + 8.5n

[55] (Co.3) 1.5857 0.9567 0.4432 – 11.5n2 + 13.5n

[41] (Co.1) 1.6386 0.9956 0.4464 0.3800 104.5n2 + 17.5n

Theorem 2 1.6124 0.9727 0.4442 0.3662 17n2 + 13n

Theorem 1 1.7302 1.0453 0.4486 0.3938 73n2 + 13n

|ḋ(t)| ≤ µ [37] (Pro.2) 1.8899 1.1114 0.4514 – 17n2 + 14n

Corollary 1 1.8899 1.1132 0.4920 0.4700 75.5n2 + 13.5n

Theorem 3 1.8899 1.1135 0.4922 0.4701 79.5n2 + 15.5n

Table 3: The AMDBs h for various µ (Example 3)

Cases Criteria
µ

NDVs
0.1 0.5 0.9

ḋ(t) ≤ µ [20] (Th.2 ρ = 0.6) 3.3574 2.5915 2.1306 15n2 + 7n

[35] (Pro.2) 3.5204 2.7167 2.2141 10.5n2 + 8.5n

[25] (Th.4, ρ = 0.5) 3.8739 2.7415 2.3011 12.5n2 + 23.5n

[52] (Th.1) 3.623 2.965 2.352 63.5n2 + 11.5n

[36] (Th.1) 3.4984 2.7243 2.2029 30.5n2 + 8.5n

[29] (Th.3, m = 2) 3.7665 2.6814 2.2274 17n2 + 8n

[21] (Th.1, m = 2) 3.8428 2.7081 2.2485 7n2 + 9n

[55] (Co.3) 4.1838 3.1510 2.8347 11.5n2 + 13.5n

[23] (Th.1, m = 2) 4.1840 2.8387 2.3423 20n2 + 11n

[42] (Th.1) 4.1903 3.0779 2.8268 66.5n2 + 18.5n

[40] (Co.3.1) 4.2143 3.1059 2.7494 13.5n2 + 6.5n

Theorem 2 4.1268 3.0778 2.7619 17n2 + 13n

Theorem 1 4.2778 3.2152 2.9361 73n2 + 13n

|ḋ(t)| ≤ µ [26] (Th.1) 3.7515 – 2.4628 12.5n2 + 9.5n

[51] (Th.3) 3.9337 3.5307 3.2627 42n2 + 27n

Corollary 1 4.3939 3.5657 3.3591 75.5n2 + 13.5n

Theorem 3 4.4167 3.5986 3.3755 79.5n2 + 15.5n
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Figure 1: State trajectories of the DNN of Example 1.
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Figure 2: State trajectories of the DNN of Example 2.
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Figure 3: State trajectories of the DNN of Example 3.

25


