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Abstract—It has been shown that the correlation between the 

radiation patterns of two antennas can be measured in a 
reverberation chamber (RC). In this paper, it is shown that the 
self-correlation coefficient of an antenna, defined as the 
correlation between the radiation pattern of an antenna under test 
(AUT) and a transformed version of itself, can also be measured in 
an RC. It is found that the three-dimensional (3D) radiation 
pattern of the AUT can be reconstructed from the measured 
self-correlation coefficient by using spherical wave decomposition. 
Moreover, the axial ratio of the AUT can also be measured 
efficiently in the RC when the pattern is directional. Numerical 
simulations and measurements in the RC and in an anechoic 
chamber have been undertaken. Good agreement is obtained 
which confirms the validity of the proposed method. Thus this 
novel method can become a very useful, cost-effective and efficient 
method for 3D antenna radiation pattern measurement.  
 

Index Terms—Antenna measurement, axial ratio, envelop 
correlation coefficient, antenna radiation pattern measurement, 
reverberation chamber. 
 

I. INTRODUCTION 
REVERBERATION chamber (RC) has been proven to be 
an important and useful facility for measuring antenna 

properties, such as radiation efficiency [1-5], free-space 
impedance/S-parameters [6], and diversity gain [7-10]. 
However, it is not easy to measure the radiation pattern of an 
antenna in an RC because of multipath interference. It has been 
shown that by using a deconvolution technique [11], the 
radiation pattern of the antenna under test (AUT) can be 
reconstructed in a non-anechoic environment. It is also possible 
to measure the pattern directly in an RC when the line-of-sight 
(LoS) response dominates the unstirred part. In this case, the 
 

Manuscript received Nov. 29, 2015. Corresponding author: Y. Huang. This 
work was supported in part by the National Natural Science Foundation of 
China (61601219) and Natural Science Foundation of Jiangsu Province 
(BK20160804). 

Q. Xu and L. Xing are with College of Electronic and Information 
Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 
211106, China (emxu@foxmail.com). 

Y. Huang, C. Song, Z. Tian and M. Stanley are with the Department of 
Electrical Engineering and Electronics, The University of Liverpool, 
Liverpool, L69 3GJ, UK (e-mail: yi.huang@liv.ac.uk; sgcsong2@liv.ac.uk;  
zhihao.tian@liv.ac.uk; manoj.stanley@liv.ac.uk). 

S. Alja’afreh is with the Electrical Engineering Department at Mu’tah 
University, Mu’tah, 61710, Jordan (e-mail: saqer1981@yahoo.com). 

pattern can be extracted by using the K-factor [12-14] or 
Doppler shift [15-16]. A typical measurement setup is shown in 
Fig. 1(a) where two antennas are connected to the measurement 
instrument, a high directivity transmitting (Tx) or receiving 
(Rx) antenna is fixed and directed towards the AUT. The 
non-line-of-sight (NLoS) part can either be averaged out by 
rotating the stirrer [13, 14], or be filtered by using the Doppler 
shift (moving the AUT along a sliding track) [15, 16]. By 
rotating the turntable, the angle dependency of radiation pattern 
can be measured. That is, the information hidden behind the 
LoS/unstirred response is extracted while removing the 
NLoS/stirred response. It is also possible to extract the 
radiation pattern by using the time-reversal technique in the RC 
[17-19], but the time-reversal behavior of the RC need to be 
carefully characterized and calibrated.  
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Fig. 1.  Antenna radiation pattern measurement setup in the RC, (a) existing 
methods, (b) proposed method. 
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In this paper, we propose a new method which can extract the 
3D pattern of the AUT from the NLoS/stirred response while 
the LoS/unstirred response is not needed. This is very different 
from previous methods. The measurement setup is shown in 
Fig. 1(b) where the Tx/Rx antenna is not directed to the AUT. 
Since the RC is inherently a rich multipath environment, using 
the stirred part is actually easier than using the unstirred part. 
As can be seen later, the measurement time using the setup in 
Fig. 1(b) is comparable with the measurement time in an 
anechoic chamber (AC). In Fig. 1(a), the LoS/unstirred part 
needs to be extracted by rotating the stirrers or moving the AUT 
(along the sliding track) for each AUT angle, this could be very 
time consuming.  

In the proposed method, the radiation pattern of the AUT is 
decomposed into spherical harmonics with unknown 
coefficients, and the pattern measurement becomes a 
generalized mode matching problem. By measuring the 
self-correlation coefficient of the radiation pattern in the RC, 
the coefficients of the spherical wave modes/harmonics can be 
inverted and thus the radiation pattern can be reconstructed. 

The paper is organized in four sections. The theory is given 
in Section II where the forward problem and inverse problem 
are defined, and it is found that the axial ratio (AR) of the AUT 
can also be measured under a certain approximations. In 
Section III, simulations and measurements are conducted to 
verify the proposed method, results from the RC and AC are 
compared and good agreement is obtained. Finally, discussions 
and conclusions are presented in Section IV. 

II. THEORY 
In this section, we first explain the forward problem: if the 

radiation pattern of the antenna is already known, the 
self-correlation coefficient can be calculated. Then, the inverse 
problem is introduced to reconstruct the radiation pattern from 
the self-correlation coefficient. Finally, the expression for the 
axial ratio (AR) is derived under a certain approximation. 

It is well-known that the far-field radiation pattern of an 
antenna can be decomposed into a superposition of spherical 
wave harmonics [20-24]. Two types of decomposition have 
been used: vector spherical harmonics (VSHs) with scalar 
coefficients and scalar spherical harmonics (SSHs) with vector 
coefficients. It has been shown that SSHs with vector 
coefficients can avoid the singularity problem of the antenna 
field on the poles [22-24], therefore we use SSHs with vector 
coefficients in this paper. 

The far-field of an antenna can be expressed as [23] 
 

𝐄(𝜃,𝜑) = lim
𝐿→∞

� � 𝒂𝑙𝑙

𝑙

𝑙=−𝑙

𝑌𝑙𝑙(𝜃,𝜑)
𝐿

𝑙=0

                 (1) 

 
where 𝜃 , 𝜑  are the polar angle and azimuthal angle in the 
spherical coordinate system respectively, 𝑌𝑙𝑙(𝜃,𝜑)  is the 
scalar spherical harmonic with level 𝑙 and mode 𝑚 defined by 
 

𝑌𝑙𝑙(𝜃,𝜑) = �
(2𝑙 + 1)

4𝜋
(𝑙 − 𝑚)!
(𝑙 + 𝑚)!

𝑃𝑙𝑙(𝑐𝑜𝑠𝜃)𝑚𝑗𝑙𝜑         (2) 

 
𝑃𝑙𝑙(𝑐𝑜𝑠𝜃) is the associated Legendre functions of the first kind 
[23]. The vector coefficients 𝒂𝑙𝑙 can be obtained by using the 
orthogonality of the SSHs [22] with each component 𝑚𝑥,𝑙𝑙 , 
𝑚𝑦,𝑙𝑙  and 𝑚𝑧,𝑙𝑙 , ( 𝒂𝑙𝑙 = [𝑚𝑥,𝑙𝑙  𝑚𝑦,𝑙𝑙  𝑚𝑧,𝑙𝑙] , 𝐄(𝜃,𝜑) =
[𝐸𝑥(𝜃,𝜑) 𝐸𝑦(𝜃,𝜑) 𝐸𝑧(𝜃,𝜑)]) 
 

𝑚𝑥,𝑙𝑙 = ∫ ∫ 𝐸𝑥(𝜃,𝜑)𝑌𝑙𝑙∗(𝜃,𝜑)𝑠𝑖𝑚𝜃𝜋
0 𝑑𝜃2𝜋

0 𝑑𝜑   
 

𝑚𝑦,𝑙𝑙 = ∫ ∫ 𝐸𝑦(𝜃,𝜑)𝑌𝑙𝑙∗(𝜃,𝜑)𝑠𝑖𝑚𝜃𝜋
0 𝑑𝜃2𝜋

0 𝑑𝜑   
 

 𝑚𝑧,𝑙𝑙 = ∫ ∫ 𝐸𝑧(𝜃,𝜑)𝑌𝑙𝑙∗(𝜃,𝜑)𝑠𝑖𝑚𝜃𝜋
0 𝑑𝜃2𝜋

0 𝑑𝜑      (3) 
 
where * means complex conjugate.  

  

A. Forward Problem 
If the far-field of the radiation pattern is known, using (3), the 

far-field can be decomposed into SSHs using (1) with a 
truncation of level 𝐿  [23]. Suppose we have two antennas, 
where the radiation patterns are 𝐄1(𝜃,𝜑)  and 𝐄2(𝜃,𝜑) 
respectively, the correlation coefficient 𝜌𝐸 between these two 
antennas is [25, 26] 

 

𝜌𝐸 =
|∬𝐄1(𝜃,𝜑) ⋅ 𝐄2∗  (𝜃,𝜑)𝑑Ω|

�∬|𝐄1(𝜃,𝜑)|2𝑑Ω∬|𝐄2(𝜃,𝜑)|2𝑑Ω
          (4) 

 
where ∬∎𝑑Ω = ∫ ∫ ∎𝑠𝑖𝑚𝜃𝜋

0 𝑑𝜃2𝜋
0 𝑑𝜑 means the integral over 

a unit spherical surface. Suppose that 𝐄1(𝜃,𝜑) and 𝐄2(𝜃,𝜑) 
are expanded by using the SSHs with order 𝐿 
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𝐄2(𝜃,𝜑) = � � 𝒃𝑙𝑙

𝑙
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𝐿

𝑙=0

                  (5) 

 
Since the SSHs are orthogonal to each other on a unit spherical 
surface, substituting (5) into (4) gives the correlation 
coefficient 
 

𝜌𝐸 =
�∑ ∑ 𝒂𝑙𝑙 ⋅ 𝒃𝒍𝒎∗𝑙

𝑙=−𝑙
𝐿
𝑙=0 �

�∑ ∑ ‖𝒂𝑙𝑙‖2𝑙
𝑙=−𝑙

𝐿
𝑙=0 �∑ ∑ ‖𝒃𝑙𝑙‖2𝑙

𝑙=−𝑙
𝐿
𝑙=0

     (6) 

 
Since 𝑚𝑥,𝑙𝑙 , 𝑚𝑦,𝑙𝑙 , and 𝑚𝑦,𝑙𝑙  are complex numbers, we use 
‖𝒂𝑙𝑙‖2  to represent the square of the magnitude of each 
coefficient, which is ‖𝒂𝑙𝑙‖2 = �𝑚𝑥,𝑙𝑙�

2 + �𝑚𝑦,𝑙𝑙�
2 + �𝑚𝑧,𝑙𝑙�

2
. 

Now we introduce the concept of the self-correlation 
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coefficient. Suppose 𝐄2(𝜃,𝜑)  can be transformed from 
𝐄1(𝜃,𝜑) by using rotations. That is,  𝐄2(𝜃,𝜑) is a transformed 
version of 𝐄1(𝜃,𝜑), they have the same shape but different 
reference coordinate systems. It should be noted that, to obtain 
a rotated version of 𝐄1(𝜃,𝜑), we only need to apply a rotation 
matrix to the coefficients at each level 𝑙 [22, 27], which is  
 
[𝑏𝑥𝑙,−𝑙 ⋯  𝑏𝑥𝑙,𝑙 𝑏𝑦𝑙,−𝑙 ⋯  𝑏𝑦𝑙,𝑙 𝑏𝑧𝑙,−𝑙 ⋯  𝑏𝑧𝑙,𝑙]
= [𝑚𝑥𝑙,−𝑙 ⋯  𝑚𝑥𝑙,𝑙 𝑚𝑦𝑙,−𝑙 ⋯  𝑚𝑦𝑙,𝑙 𝑚𝑧𝑙,−𝑙 ⋯  𝑚𝑧𝑙,𝑙]𝐌𝑙(𝛼,𝛽, 𝛾)  

(7) 
 
where 𝐌𝑙(𝛼,𝛽, 𝛾)  is the rotation matrix at level l; (𝛼,𝛽, 𝛾) 
means the pattern is rotated around x-axis first with angle 𝛼, 
then rotated around y-axis with angle 𝛽 , and finally rotated 
around z-axis with angle 𝛾 all with the right-hand rule, which 
means 𝐌𝑙(𝛼,𝛽, 𝛾) = 𝐌𝑙(𝛼, 0,0)𝐌𝑙(0,𝛽, 0)𝐌𝑙(0,0, 𝛾) . Since 
the total radiated power of 𝐄1(𝜃,𝜑) and 𝐄2(𝜃,𝜑) are the same, 
we have ∑ ∑ |𝒂𝑙𝑙|2𝑙

𝑙=−𝑙
𝐿
𝑙=0 = ∑ ∑ |𝒃𝑙𝑙|2𝑙

𝑙=−𝑙
𝐿
𝑙=0 , (6) becomes  

 

𝜌𝑆𝑆(𝛼,𝛽, 𝛾) =
�∑ ∑ 𝒂𝑙𝑙 ∙ 𝑇𝛼𝛽𝛾∗ (𝒂𝑙𝑙)𝑙

𝑙=−𝑙
𝐿
𝑙=0 �
∑ ∑ ‖𝒂𝑙𝑙‖2𝑙

𝑙=−𝑙
𝐿
𝑙=0

           (8) 

 
which is the definition of the self-correlation coefficient (𝜌𝑆𝑆), 
where we use 𝑇𝛼𝛽𝛾(𝒂𝑙𝑙) to represent the transformed version 
of 𝒂𝑙𝑙 by using (7). Since 𝑇𝛼𝛽𝛾 depends on the rotation angles, 
𝜌𝑆𝑆 is also a function of rotation angles. 

As expected, the forward problem is well-defined, once the 
radiation pattern of the antenna 𝐄1(𝜃,𝜑)  is known, the 
self-correlation coefficient can be calculated using (7) and (8). 
The calculation procedure for the rotation matrix 𝐌𝑙(𝛼,𝛽, 𝛾) 
can be found in [22, 27].  

 

B. Inverse Problem 
If the angle dependency of 𝜌𝑆𝑆 in (8) is known, by solving (8) 

for 𝒂𝑙𝑙 , the 3D radiation pattern of the AUT can be 
reconstructed. As can be seen, the inverse problem is actually a 
generalized mode matching problem, that is, the coefficients of 
the spherical wave modes need to be solved to match the angle 
dependency of 𝜌𝑆𝑆. 

Luckily, this self-correlation coefficient can be measured in 
the RC using the setup as shown in Fig. 1(b).  The measurement 
procedure is very similar to the diversity gain measurement 
[7-10], the only difference is: in the diversity gain measurement, 
𝐄1(𝜃,𝜑) and 𝐄2(𝜃,𝜑) in (4) are the radiation pattern of the two 
multiple-input multiple-output (MIMO) antenna branches; in 
this measurement, 𝐄2(𝜃,𝜑) is a rotated version of 𝐄1(𝜃,𝜑). 
We just need to rotate the AUT for a set of angles (𝛼,𝛽, 𝛾) 
instead of switching the receiving/transmitting port in the 
diversity gain measurement. 

The correlation coefficient can be obtained by measuring the 
S-parameters in the RC [25, 26, 28] 

 
𝜌𝑆(𝛼,𝛽, 𝛾) = 𝑐𝑜𝑟𝑟(𝑆31, 𝑆32) 

=
|∑ (𝑆31(𝑘) − ⟨𝑆31⟩)(𝑆32(𝑘) − ⟨𝑆32⟩)∗𝑁

𝑘=1 |

�∑ |𝑆31(𝑘) − ⟨𝑆31⟩|2 ∑ |𝑆32(𝑘) − ⟨𝑆32⟩|2𝑁
𝑘=1

𝑁
𝑘=1

 (9) 

 
where 𝑁 represents the total number of samples collected, ⟨∙⟩ 
means the average value of N samples. In the diversity gain 
measurement, 𝑆31  and 𝑆32  represent the measured 
S-parameters between the Tx/Rx antenna (in Fig. 1(b)) and two 
MIMO branches respectively. In this measurement, 𝑆31 and 𝑆32 
represent the measured S-parameters between the Tx/Rx 
antenna and AUT at two different positions respectively. Since 
position 2 is the same antenna rotated from position 1, and it 
has been shown that the correlation of measured S-parameters 
equals the correlation of the radiation patterns [25, 26], thus we 
have  
 

𝜌𝑆(𝛼,𝛽, 𝛾) = 𝜌𝑆𝑆(𝛼,𝛽, 𝛾)                     (10) 
 

To solve 𝒂𝑙𝑙, two more conditions are needed: the radiated 
power should be normalized to 1 (otherwise 𝒂𝑙𝑙 can be scaled 
arbitrarily), and the far-field condition should be satisfied. This 
is because we use the SSHs rather than VSHs, while in the 
VSHs, the far-field condition can be satisfied automatically 
(but the singularity problem needs to be treated separately [22]). 
Mathematically, these two conditions are  

 
∑ ∑ ‖𝒂𝑙𝑙‖2𝑙

𝑙=−𝑙
𝐿
𝑙=0 = 1                       (11) 

 
𝐫�(𝜃,𝜑) ⋅ ∑ ∑ 𝒂𝑙𝑙𝑙

𝑙=−𝑙 𝑌𝑙𝑙(𝜃,𝜑)𝐿
𝑙=0 = 0          (12) 

 
where 𝐫�(𝜃,𝜑) is the unit vector in radial direction.  

As can be seen, the inverse problem is a generalized mode 
matching problem defined by the nonlinear equation system 
(10) - (12), and these can be solved numerically by using the 
Levenberg-Marquardt algorithm [29] as shown later in this 
paper. 
 

C. Axial Ratio 
It is interesting to note that, under certain approximations, 

the problem can be simplified. If the antenna is a directional 
antenna, the integral in (4) can be approximately evaluated 
using the field in the main beam as shown in Fig. 2. Suppose 
that the main beam is aligned with z-axis and rotated around it 
by an angle 𝛾. The integral (4) can be approximated as 

  

𝜌𝑆𝑆(𝛾) =
|∬𝐄1(𝜃,𝜑) ⋅ 𝐄2∗  (𝜃,𝜑)𝑑Ω|

�∬|𝐄1(𝜃,𝜑)|2𝑑Ω∬|𝐄2(𝜃,𝜑)|2𝑑Ω
 

 
Fig. 2.  Self-correlation of a directional antenna, the integral result is 
dominated by the field in the main beam direction. 
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𝐸𝑥
𝑗𝐸𝑦
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𝐸𝑥
𝑗𝐸𝑦

�
∗
�  

𝐸𝑥2 + 𝐸𝑦2
 

=
��𝐸𝑥2 + 𝐸𝑦2�𝑐𝑜𝑠𝛾 − 2𝑗𝐸𝑥𝐸𝑦𝑠𝑖𝑚𝛾� 

𝐸𝑥2 + 𝐸𝑦2
            (13) 

 
where 𝐄1(𝜃,𝜑) is the original pattern, 𝐄2(𝜃,𝜑) is the rotated 
pattern with angle 𝛾 . It can be found from (13) that, when 
𝛾 = 90° the 𝜌𝑆𝑆(𝛾) has the minimum value 
 

𝜌𝑆𝑆(𝛾)𝑙𝑚𝑚 ≈
2𝐸𝑥𝐸𝑦
𝐸𝑥2 + 𝐸𝑦2

                            (14) 

 
Note that the AR is defined as 𝐸𝑥/𝐸𝑦, thus the minimum of 
𝜌𝑆𝑆(𝛾) can be related to the AR of the antenna 
 

𝜌𝑆𝑆(𝛾)𝑙𝑚𝑚 ≈
2𝐸𝑥𝐸𝑦
𝐸𝑥2 + 𝐸𝑦2

=
2�𝐸𝑥/𝐸𝑦�

1 + �𝐸𝑥/𝐸𝑦�
2 =

2�𝐸𝑦/𝐸𝑥�

1 + �𝐸𝑦/𝐸𝑥�
2 

 

=
2𝐴𝑅

1 + 𝐴𝑅2
                               (15) 

 
and the AR can be obtained from 
 

𝐴𝑅 ≈
1 + �1 − 𝜌𝑆𝑆2 (𝛾)𝑙𝑚𝑚

𝜌𝑆𝑆(𝛾)𝑙𝑚𝑚
                   (16) 

 
This offers an opportunity to measure the AR in the RC for 
directional antennas. 
 

III. SIMULATIONS AND MEASUREMENTS 
In this section, simulations and measurements are conducted 

to verify the proposed method. Before conducting the 
measurements, numerical simulations are carried out. Since in 
the numerical simulation, once the geometrical structure of the 
AUT is defined, the radiation pattern of the AUT can be 
obtained by using the full wave simulation software (CST 
Microwave Studio is used in this paper). Thus the simulated 
radiation pattern can be used as the reference, and we can 

compare the reconstructed pattern (obtained from the 
self-correlation coefficients) with the pattern obtained by using 
CST to verify the proposed method. Then measurements in the 
RC and AC are conducted and the results are compared. We use 
the measured results obtained in AC as the reference to confirm 
the effectiveness of the proposed method. 

A. Simulations 
A typical rectangular horn antenna shown in Fig. 3 is used as 

the AUT in the numerical simulation. The definitions of the 
rotation angles are also given (right-hand rule). The simulated 
radiation pattern at 5 GHz is obtained by using CST Microwave 
Studio and given in Fig. 4 with maximum E-field magnitude 
normalized to 1V/m.  

The radiation pattern can be decomposed into SSHs with 
coefficients 𝒂𝑙𝑙  (the forward problem) by using (3). The 
magnitude and phase of each component of 𝒂𝑙𝑙 are shown in 
Fig. 5. We use 𝐿 up to 15 in Fig. 5, as can be seen, when 𝑙 > 8, 
the magnitude of the SSHs is already very small (<-27 dB). 
Then, (8) is used to obtain the self-correlation coefficients of 
the radiation pattern, since the AUT is rotated only around the 
x-, y-, and z-axes, we use 𝜌𝑆𝑆(𝛼), 𝜌𝑆𝑆(𝛽) and 𝜌𝑆𝑆(𝛾) instead of 
𝜌𝑆𝑆(𝛼, 0,0), 𝜌𝑆𝑆(0,𝛽, 0) and 𝜌𝑆𝑆(0,0, 𝛾) respectively.  

After the self-correlation coefficients of the radiation pattern 
are obtained, the radiation pattern of the AUT can be 
reconstructed (the inverse problem). Mathematically, by 
combining (10), (11) and (12), the inverse problem can be 
expressed as 

 
Fig. 4.  The simulated E-field magnitude pattern (linear scale) at 5 GHz, the 
maximum value is normalized to 1 V/m.  
 

 

 
Fig. 5.  The decomposed magnitude (dB scale, 20log|∎|) and phase (degree) 
of the SSHs of the radiation pattern in Fig. 4,  𝒂𝑙𝑙 is normalized to make sure 
∑ ∑ ‖𝒂𝑙𝑙‖2𝑙

𝑚=−𝑙
𝐿
𝑙=0 = 1. 

 

 
Fig. 3.  The dimensions of the horn antenna and the definition of the rotation 
angles 𝛼, 𝛽, 𝛾 and axes 𝑥, 𝑦, 𝑧. The antenna is excited by using a lumped port 
located at the center of the waveguide. 
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(17) 
 

where 𝐿 = 8  is chosen, 𝜌𝑆𝑆(𝛼) , 𝜌𝑆𝑆(𝛽)  and 𝜌𝑆𝑆(𝛾)  are 
sampled at 1 degree/step, 𝕊 is the point set chosen on the sphere,   
5 degree/step is used for both 𝜃 and 𝜑 angles. 

The nonlinear system of equations (17) can be 
solved/optimized using the Levenberg-Marquardt algorithm 
[29] in Matlab. After optimization, the reconstructed 𝒂𝑙𝑙 are 
obtained and shown in Fig. 6. As can be seen, compared with 
Fig. 5, they have a very similar magnitude but different phase, 
which is not an issue since the phase is a relative value.  The 
reconstructed 𝜌𝑆𝑆 calculated from the reconstructed 𝒂𝑙𝑙 are is 
shown in Fig. 7, comparisons between the reconstructed 𝜌𝑆𝑆 
and 𝜌𝑆𝑆 of the original pattern (Fig. 4) are shown. As can be 
seen, a very good agreement has been obtained except at some 
angles. The 3D radiation pattern can be obtained quickly using 
𝐄(𝜃,𝜑) = ∑ ∑ 𝒂𝑙𝑙𝑙

𝑙=−𝑙
8
𝑙=0 𝑌𝑙𝑙(𝜃,𝜑) and is shown in Fig. 8. 

Compared with Fig. 4, a very similar pattern is reconstructed. 
Comparisons of co-polarization and cross-polarization 
components in the YOZ plane and the relative error in all angles 
are given in Fig. 9. As can be seen, a good agreement is 
obtained in the main lobe of the pattern. However, the back lobe, 
side lobe and the cross-polarization component are not exactly 
the same, which will be discussed in the next section. 

The AR measurement result in the RC can also be verified 
through simulation. We use a conical horn antenna with two 

 

 
Fig. 6.  Reconstructed 𝒂𝑙𝑙 from (17). 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 7.  Reconstructed 𝜌𝑆𝑆  and the original 𝜌𝑆𝑆 . (a), (b) and (c) are the 
self-correlation rotated around x-, y- and z-axis respectively. 

 
Fig. 8.  Reconstructed E-field magnitude pattern (linear scale) at 5 GHz, the 
maximum value is normalized to 1 V/m. 
 

 

                                      (a)                                                     (b) 
Fig. 9.  (a) Co-polarization (CP) and cross-polarization (XP) of the original 
pattern (Fig. 4) and the reconstructed pattern (Fig. 8) in YOZ plane, 
normalized to the peak value in dB; (b) 20log�|𝐄|− |𝐄′|�, relative error in all 
angles in dB, where 𝐄  and 𝐄′  are the original pattern (Fig. 4) and the 
reconstructed pattern (Fig. 8) respectively (𝐄 and 𝐄′ are normalized to the 
peak value of 1V/m). 
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perpendicular excited ports to generate a directional pattern 
with different AR values. To improve the radiation pattern, a 
layer of absorbing material is used to suppress the side lobe and 
back lobe. The model is shown in Fig. 10, by tuning the phase 
difference between port 1 and port 2, waves with different AR 
can be simulated. 

Patterns with different AR values are generated and 
decomposed into SSHs with 𝒂𝑙𝑙, thus 𝜌𝑆𝑆(𝛾) can be obtained 
by using (8) with different rotation angles. Results are given in 
Fig. 11 with minimum value markers. Finally, (16) is used to 
extract the AR values from 𝜌𝑆𝑆(𝛾)𝑙𝑚𝑚 and compared with the 
AR values obtained from CST (shown in Fig. 12). As can be 
seen, a very good agreement is obtained. 

 

B. Measurements 
Measurements were conducted in the AC and RC at the 

University of Liverpool, the radiation pattern measurement 
setup in the AC is shown in Fig. 13, the SATIMO® SH 2000 

horn antenna was used as the AUT. In the AR measurement, we 
used a homemade wide band log-periodic cross dipole as the 
AUT (Fig. 14). Measurement setup in the RC is also shown in 
Fig. 15, foams were used to hold the AUT for three different 
rotation axes. The measurement scenarios and procedures were 
the same for different AUTs and different rotation axes. 

In the pattern reconstruction, the procedure was the same as 
in the simulation, the only difference was that, 𝜌𝑆𝑆(𝛼), 𝜌𝑆𝑆(𝛽) 

 
Fig. 10.  The conical antenna and a typical radiation pattern at 1.5 GHz, two 
perpendicular lumped ports are used to synthesize waves with different AR 
values. 

 
Fig. 11.  𝜌𝑆𝑆(𝛾) with different AR values, the AR values in the legend are read 
from CST directly. 
 

 
Fig. 12.  AR obtained from 𝜌𝑆𝑆(𝛾)𝑚𝑚𝑚 using (16) and AR obtained from CST. 
 

 
Fig. 13.  Radiation pattern measurement in the AC and the definition of x-, y-, 
and z-axis. 
 

 
Fig. 14.  AR measurement in the AC. 
 

 
Fig. 15.  Measurement setup in the RC, AUT rotated around z-, y-, and x-axis 
are shown in (a), (b) and (c) respectively, AR measurement is shown in (d). 
 

 
Fig. 16.  Self-correlation measurement flowchart in the RC. 
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and 𝜌𝑆𝑆(𝛾) were measured in the RC rather than simulated. The 
self-correlation coefficients were measured at 4 GHz with 50 
points of frequency stir (in 10 MHz bandwidth), the turntable 
was rotated with 1 degree/step for 360 degrees and the stirrers 
were rotated with 3 stirrer positions. Therefore, we had 
frequency stir [30], source stir [31-33] and mechanical stir for 
each rotation angle, and 𝑁 = 50 × 360 × 3 = 54000 sample 
points in (9) for each angle of self-correlation coefficient 
calculation. It should be noted that, the turntable and the stirrer 
were not rotated simultaneously. When the turntable was 

rotated for a full revolution, the stirrer position was fixed at one 
position to make sure the environment was the same (shown in 
Fig. 16), and we assumed that the size of the antenna was not so 
large that rotating the antenna would perturb the field in the RC 
greatly, otherwise the results would be decorrelated and always 
gave small 𝜌𝑆. After all the S-parameters were collected, (9) 
was used to obtain the self-correlation coefficient for different 
angles of 𝛼, 𝛽, and 𝛾. 

The measured 𝜌𝑆𝑆  are shown in Fig. 17, and the 
reconstructed 𝜌𝑆𝑆  from 𝒂𝑙𝑙  are also given. As expected they 
agree well with the measured results. The reconstructed 3D 
pattern from 𝒂𝑙𝑙  by using the summation of SSHs is also 
shown in Fig. 18. To validate the results, the pattern in the XOY 
plane and the XOZ plane were also measured in the AC, results 
are compared in Fig. 19. As can be seen, very good agreement 
is obtained for the main beam; however, the error becomes 
large when the magnitude of the pattern becomes small (side 
lobes, back lobes and cross-polarization). The maximum error 
for the co-polarization component in the XOY plane occurs at 
𝜃 = 90°,𝜑 = 252° where the measured value is -23.8 dB and 
the reconstructed value is -15.0 dB. In the XOZ plane, the 
maximum error for the co-polarization component occurs at 
𝜃 = 113°,𝜑 = 180° where the measured value is -34.4 dB and 
the reconstructed value is -26.1 dB. This phenomenon is very 
similar to that in the numerical simulation and will be discussed 
in the next section. 

In the AR measurement in Fig. 14, the AUT (the measured 
S11 is given in Fig. 20) was rotated on the turntable with 1 
degree/step in the frequency range from 200 MHz to 5 GHz, 
S-parameters were collected for each degree between the AUT 
and the Tx antenna, the maximum and minimum values in a 
revolution are shown in Fig. 21. The AR values can be obtained 
using [34] 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 17.  Measured and reconstructed 𝜌𝑆𝑆  of the AUT (SATIMO® SH 2000), 
(a), (b) and (c) are the self-correlation rotated around x-, y- and z-axis 
respectively, the definition of three axes are shown in Fig. 13. 

 
Fig. 18.  Reconstructed E-field magnitude pattern (linear scale) of the AUT 
(SATIMO® SH 2000), the maximum value is normalized to 1 V/m. 
 

 
(a) 

 
(b) 

Fig. 19.  Measured and reconstructed radiation pattern in XOY and XOZ 
plane, peak value is normalized to 0 dB, CP means co-polarization 
component, XP means cross-polarization component, (a) radiation pattern in 
XOY plane, (b) radiation pattern in XOZ plane. 
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𝐴𝑅 =
|𝑆21|𝑙𝑎𝑥
|𝑆21|𝑙𝑚𝑚

                                    (18) 

 
Similarly, the AR measurement was conducted in the RC using 
(16), measured 𝜌𝑆𝑆(𝛾) in the RC are shown in Fig. 22 at each 
frequency and the minimum values were extracted to calculate 
the AR. Finally, the obtained AR in the AC and RC are shown 
in Fig. 23, as can be seen, a very good agreement is obtained 
when the AUT is close to the circular polarization (1 GHz ~ 3.5 
GHz). 

 

IV. DISCUSSION 
It should be noted that, in both simulation and measurements, 

the reconstructed patterns are similar to the original pattern but 
not exactly the same (Fig. 8 and Fig. 18), possible error sources 
and error analysis are discussed in this section. 

1) The SSHs are truncated at level 𝐿.To analyze the error 
caused by 𝐿, different 𝐿 are used to decompose the far-field in 
Fig. 4, by comparing the far-field calculated from 𝒂𝑙𝑙 in (1) 
with the original pattern, the truncation effect is shown in 
Fig. 24, both average error and maximum error are given. As 
can be seen, for the antenna pattern in Fig. 4, when 𝐿 = 8, the 
average pattern error is quite small. 

2) The inverse problem is a complex nonlinear problem and 
could have multiple solutions.  𝜌𝑆𝑆 for all 𝛼,𝛽, 𝛾 angles in Fig. 
5 and Fig. 6 can be calculated using (8) and is shown in Fig. 25. 
In the measurements, because of the limitation of the facility, 
only three cut planes were measured which correspond to the 
values on the three axes in Fig. 25 (𝛼 = 1° ~ 360°, 𝛽 = 0, 
𝛾 = 0 ; 𝛼 = 0 , 𝛽 = 1° ~ 360° , 𝛾 = 0 ; 𝛼 = 0 , 𝛽 = 0 , 𝛾 =
1° ~ 360°). As can be seen, at some regions these two 𝜌𝑆𝑆 are 
different, which means that it could be possible to have two sets 
of 𝜌𝑆𝑆 with the same value on three axes but have differences in 
some regions. To quantify the relation between the pattern error 
and the error in the self-correlation coefficients, 𝜌𝑆𝑆  was 
perturbed with random values 2000 times. The pattern error 
was calculated in each case.  Results are given in Fig. 26 which 
shows a direct statistical understanding between the error in 𝜌 
and the error in the pattern. It can be seen that, when the 
reconstructed 𝜌 is accurate, statistically it is more likely to get a 
more accurate pattern. It is also possible to sample 𝜌𝑆𝑆(𝛼,𝛽, 𝛾) 
in 3D to reconstruct the radiation pattern. To simulate this 
procedure, the original 𝜌𝑆𝑆(𝛼,𝛽, 𝛾) in Fig. 25(a) was sampled 
in 3D with different degrees per step for all 𝛼, 𝛽, and 𝛾. Using 
the resampled 𝜌𝑆𝑆 to reconstruct the pattern, the pattern errors 
with different step size can be obtained and are shown in 
Fig. 27. As expected, more 3D samples can improve the 
accuracy of the reconstructed pattern, but more time is needed 
in the optimization. 

  
Fig. 20.  Measured 𝑆11 of the AUT (wide band log-periodic cross dipole). 
 

 
Fig. 21.  Measured maximum and minimum |𝑆21| in a revolution in the AC. 
 

 
Fig. 22.  Measured 𝜌𝑆𝑆(𝛾) at all frequencies in the RC (linear scale). 

 

 
Fig. 23.  Measured 𝜌𝑆𝑆(𝛾) at all frequencies in the RC (linear scale). The 
directivity in 1 GHz ~ 3.5 GHz is about 5 dBi ~ 6.5 dBi. 

 
Fig. 24.  Average and maximum pattern error with different 𝐿, the average 
error is defined as 20log�𝑚𝑚𝑚𝑚�|𝐄|− |𝐄′|��  and the maximum error is 
defined as 20log�𝑚𝑚𝑚�|𝐄|− |𝐄′|��, where 𝐄 and 𝐄′ are the original pattern 
and the pattern approximated by using SSHs respectively (𝐄  and 𝐄′  are 
normalized to the peak value of 1V/m), mean and max means obtaining the 
average and maximum value over all angles respectively; the error patterns 
(20log�|𝐄|− |𝐄′|�) are also given when 𝐿 = 2, 4, 6, 8. 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAP.2016.2633901

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

9 

3) The inverse problem is a multi-goal optimization problem, 
the reconstruction accuracy is limited by the 
Levenberg-Marquardt algorithm; the optimized 𝒂𝑙𝑙 could be at 
a local minimum rather than the global minimum. Normally, 
the main beam with co-polarization has the highest magnitude 
thus has higher weight than the other components (side lobes, 
back lobes, cross-polarizations, etc.). 

4) To investigate the convergence of 𝜌 , different sample 
numbers are used to repeat the calculation. The average 𝜌 error 
with different sample numbers is shown in Fig. 28. As can be 
seen, when the sample number is large the measured 𝜌 
converges with small uncertainties. 

Although the reconstructed pattern in the RC is not as 
accurate as that measured in the AC, an RC is more 

cost-effective than an AC. There are also other advantages. For 
example, the proposed method can be conducted in 2D while 
the reconstructed radiation pattern is always in 3D. The 
proposed method is based on the NLoS/stirred part of the 
measured S-parameters. The AUT and the Tx/Rx antenna do 
not need to be carefully aligned as they would need to be in the 
AC, which makes the measurement setup more robust and 
insensitive to antenna positions. The measurement time is 
shorter than some of the methods using the LoS/unstirred part 
[13-16] (at each angle, the stirred part needs to be cancelled out 
by averaging S-parameters at many stirrer positions or using the 
Doppler shift). The measurement time could be even shorter 
than the direct measurement of the 3D radiation pattern in the 
AC with an acceptable loss of accuracy, since 3D sample points 
could be much larger than 2D sample points. Also, more time is 
needed in the post processing of the measurement data.  

The AR of a directional antenna has also been measured 
approximately in the RC. This is under the assumption that the 
pattern integral is dominated by the main beam in (13). To 
investigate how the accuracy degrades over the directivity, we 
use a pyramid to block the wave in +z direction. By tuning the 
size of the pyramid we can tune the directivity but not change 
the AR in +z direction. Results with different directivity are 
shown in Fig. 29. As can be seen, even when the directivity is 0 
dBi at +z direction, the maximum error of AR in (16) is 1.3. 
Therefore (16) is a very good approximation and different 
antenna may have different degradation curves. 

It is also interesting to note that, by combing the existing 
measurement methods in the RC, with the same measurement 
setups but different data post-processing techniques, nearly all 
antenna parameters (such as radiation efficiency [1], 3D pattern 
in this paper, 𝑆11  [6] and gain) can be obtained in one 
measurement. 

There are also potential issues: when the directivity of the 

 
                             (a)                                                     (b) 
Fig. 25.  Calculated 𝜌𝑆𝑆(𝛼,𝛽, 𝛾)  from (a) original 𝒂𝑙𝑙  in Fig. 5 and (b) 
reconstructed 𝒂𝑙𝑙 in Fig. 6, a different region is marked with dotted circle (the 
color represents the value of 10log𝜌𝑆𝑆(𝛼,𝛽, 𝛾), dB scale). 

 

 
Fig. 26.  The average 𝜌 error (averaged over all selected sample angles) and 
the pattern error in dB: the average error is defined as 20log�𝑚𝑚𝑚𝑚�|𝐄| −
|𝐄′|�� and the maximum error is defined as 20log�𝑚𝑚𝑚�|𝐄|− |𝐄′|��, where 𝐄 
and 𝐄′ are the original pattern and the reconstructed pattern respectively (𝐄 
and 𝐄′ are normalized to the peak value of 1V/m): mean and max means the 
average and maximum value over all angles respectively. 

 

    
                             (a)                                                     (b) 
Fig. 27.  (a) Typical reconstructed pattern error and the step size of 3D 
(𝛼,𝛽, 𝛾), e.g. 10 degrees/step means all 𝛼, 𝛽 and 𝛾  are sampled every 10 
degrees in the range of 0°  to 360° , thus has 37 samples in each angle 
dimension and 50653 samples in total. Definitions of average and maximum 
are the same as in Fig. 26; (b) optimization time in hours for different 
degrees/step, the results are based on the same initial values and convergence 
tolerance in the Levenberg-Marquardt algorithm. 

 
Fig. 28.  The average 𝜌 error (averaged over all selected sample angles) and 
the sample number, 𝜌 values with 54000 samples are used as the reference. 

 
Fig. 29.  Degradation curves with different directivity, AR curves deviate (16) 
(AR from 𝜌𝑚𝑚𝑚) when directivity reduces in +z direction. 
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AUT is high (e.g. a parabolic antenna with a large reflector), 
𝜌𝑆𝑆 becomes uncorrelated very quickly, and a very fine rotation 
step for the turntable is needed which could be time consuming 
for a whole revolution. Also, to approximate a high directivity 
pattern, more coefficients are required [35], which further 
increases the optimization time when solving (17), and the 
unknown numbers increase quickly at the order of 𝑂(𝐿2). For 
𝐿 = 8 in this paper, the optimization time is around 2 hours on 
a personal computer. How to quickly reconstruct 𝒂𝑙𝑙 of high 
directivity antenna could be challenging. 

 

V. CONCLUSIONS 
The concept of the self-correlation coefficient has been 

introduced in this paper. It has been shown for the first time that 
the 3D radiation pattern of the AUT can be reconstructed using 
the self-correlation coefficient of the antenna pattern which can 
be measured in an RC. The proposed method only used the 
NLoS components, it can be considered as a generalized mode 
matching method which optimizes the SSH coefficients to 
match the measured self-correlation coefficients. This results in 
a system of nonlinear equations which can be solved/optimized 
using the well-developed Levenberg-Marquardt algorithm [29]. 
It has also been shown that the AR of an antenna can be 
measured in an efficient manner (rotated around one axis) in an 
RC. An overview of the framework of this novel method is 
shown in Fig. 30. Simulations and measurements have been 
conducted to verify the proposed theory. Error sources have 
been analyzed and quantified, and have been shown to be small 
for all of the cases considered in this paper. 
 

REFERENCES 
[1] C. L. Holloway, H. A. Shah, R. J. Pirkl, W. F. Young, D. A. Hill and J. 

Ladbury, “Reverberation chamber techniques for determining the 
radiation and total efficiency of antennas,” IEEE Trans. Antennas 
Propagat., vol. 60, no. 4, pp. 1758-1770, Apr. 2012. 

[2] S. J. Boyes, P. J. Soh, Y. Huang, G. A. E. Vandenbosch and N. Khiabani, 
“Measurement and performance of textile antenna efficiency on a human 
body in a reverberation chamber,” IEEE Trans. Antennas Propagat., vol. 
61, no. 2, pp. 871-881, Feb. 2013. 

[3] X. Chen, “On statistics of the measured antenna efficiency in a 
reverberation chamber,” IEEE Trans. Antennas Propagat., vol. 61, no. 
11, pp. 5417-5424, Nov. 2013. 

[4] X. Chen, “Generalized statistics of antenna efficiency measurement in a 
reverberation chamber,” IEEE Trans. Antennas Propagat., vol. 62, no. 3, 
pp. 1504-1507, Mar. 2014. 

[5] Q. Xu, Y. Huang, X. Zhu, L. Xing, Z. Tian and C. Song, “A modified 
two-antenna method to measure the radiation efficiency of antennas in a 

reverberation chamber,” IEEE Antennas Wireless Propag. Lett., vol. 15, 
pp. 336-339, 2016. 

[6] P. -S. Kildal, C. Carlsson and J. Yang, “Measurement of free-space 
impedances of small antennas in reverberation chambers,” Microw. Opt. 
Technol. Lett., vol. 32, pp. 112-115. 2002. 

[7] P.-S. Kildal and K. Rosengren, “Correlation and capacity of MIMO 
systems and mutual coupling, radiation efficiency, and diversity gain of 
their antennas: Simulations and measurements in a reverberation 
chamber,” IEEE Commun. Mag., vol. 42, no. 12, pp. 104–112, Dec. 2004. 

[8] K. Rosengren and P.-S. Kildal, “Radiation efficiency, correlation, 
diversity gain and capacity of a six-monopole antenna array for a MIMO 
system: Theory, simulation and measurement in reverberation chamber,” 
Proc. Inst. Elect. Eng., Microw. Antennas Propag., vol. 152, no. 1, pp. 7–
16, Feb. 2005. 

[9] P.-S. Kildal, K. Rosengren, J. Byun, and J. Lee, “Definition of effective 
gain and how to measure it in a reverberation chamber,” Microw. Opt. 
Technol. Lett., vol. 34, no. 1, pp. 56–59, Jul. 2002. 

[10] Q. Xu, Y. Huang, X. Zhu, S. S. Alja’afreh and L. Xing, “A new antenna 
diversity gain measurement method using a reverberation chamber,” 
IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 935-938, 2015. 

[11] J. Koh, A. De, T. K. Sarkar, H. Moon, W. Zhao and M. S.-Palma, “Free 
space radiation pattern reconstruction from non-anechoic measurements 
using an impulse response of the environment,” IEEE Trans. Antennas 
Propag., vol. 60, no. 2, pp. 821–831, Feb. 2012. 

[12] V. Fiumara, A. Fusco, V. Matta, and I. M. Pinto, “Free-space antenna 
field-pattern retrieval in reverberation environments,” IEEE Antennas 
Wireless Propag. Lett., vol. 4, pp. 329–332, 2011. 

[13] P. Besnier, C. Lemonie, J. Sol and J. –M. Floc’h, “Radiation pattern 
measurements in reverberation chamber based on estimation of coherent 
and diffuse electromagnetic fields,” in IEEE Conference on Antenna 
Measurements & Applications (CAMA), pp.1-4, 16-19 Nov. 2014. 

[14] C. Lemoine, E. Amador, P. Besnier, J. –M. Floc’h and A. Laisne, 
“Antenna directivity measurement in reverberation chamber from Rician 
K-factor estimation,” IEEE Trans. Antennas Propagat., vol. 61, no. 10, 
pp. 5307-5310, Oct. 2013. 

[15] M. Á. García-Fernández, D. Carsenat, and C. Decroze, “Antenna 
radiation pattern measurements in reverberation chamber using plane 
wave decomposition,” IEEE Trans. Antennas Propag., vol. 61, no. 10, pp. 
5000–5007, Oct. 2013. 

[16] M. Á. García-Fernández, D. Carsenat and C. Decroze, “Antenna gain and 
radiation pattern measurements in reverberation chamber using Doppler 
effect,” IEEE Trans. Antennas Propagat., vol. 62, no. 10, pp. 5389-5394, 
Oct. 2014. 

[17] H. Moussa, A. Cozza and M. Cauterman, “A novel way of using 
reverberation chambers through time reversal,” in ESA Workshop on 
Aerospace EMC (ESA’09), pp. 10-2, Mar. 2009. 

[18] A. Cozza and A. Abou el-Aileh, “Accurate radiation-pattern 
measurements in a time-reversal electromagnetic chamber,” IEEE 
Antennas and Propagation Magazine, vol. 52, no. 2, pp. 186-193, Apr. 
2010. 

[19] F. Monsef, A. Cozza, P. Meteon and M. Djedidi, “Preliminary results on 
antenna testing in reverberating environments,”  in IEEE Conference on 
Antenna Measurements & Applications (CAMA), pp. 1-4, 16-19 Nov. 
2014. 

[20] J. Jackson, Classical Electrodynamics. New York: Wiley, 1983. 
[21] Y. Chen and T. Simpson, “Radiation pattern analysis of arbitrary wire 

antennas using spherical mode expansions with vector coefficients,” 
IEEE Trans. Antennas Propag., vol. 39, no. 12, pp. 1716–1721, Dec. 
1991. 

[22] G. D. Galdo, J. Lotze, M. Landmann and M. Haardt, “Modelling and 
manipulation of polarimetric antenna beam patterns via spherical 
harmonics,” in 14th European Signal Processing Conference, pp.1-5, 4-8 
Sep. 2006. 

[23] J. Rahola, F. Belloni and A. Richter, “Modelling of radiation patterns 
using scalar spherical harmonics with vector coefficients,” in 3rd 
European Conference on Antennas and Propagation (EuCAP), 
pp.3361-3365, 23-27 Mar. 2009. 

[24] M. Mhedhbi, S. Avrillon and B. Uguen, “Comparison of vector and scalar 
spherical harmonics expansions of UWB antenna patterns,” in 
International Conference on Electromagnetics in Advanced Applications 
(ICEAA), pp.1040-1043, 9-13 Sep. 2013. 

[25] J. Yang, S. Pivnenko, T. Laitinen, J. Carlsson and X. Chen, 
“Measurements of diversity gain and radiation efficiency of the eleven 
antenna by using different measurement techniques,” in 4th European 

 
Fig. 30.  An overview of the framework in this paper. 
 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAP.2016.2633901

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

11 

Conference on Antennas and Propagation (EuCAP), pp.1-5, 12-16 Apr. 
2010. 

[26] X. Chen, P. –S. Kildal and J. Carlsson, “Comparisons of different 
methods to determine correlation applied to multi-port UWB eleven 
antenna,” in 5th European Conference on Antennas and Propagation 
(EuCAP), pp.1776-1780, 11-15 Apr. 2011. 

[27] Z. Gimbutas, L. Greengard, “A fast and stable method for rotating 
spherical harmonic expansions,” Journal of Computational Physics, vol. 
228, no. 16, pp. 5621-5627, 2009. 

[28] P. Hallbjorner, “Accuracy in reverberation chamber antenna correlation 
measurements," in International Workshop on Antenna Technology: 
Small and Smart Antennas Metamaterials and Applications (IWAT '07), 
pp.170-173, 21-23 Mar. 2007 . 

[29] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear 
parameters,” Journal of the Society for Industrial and Applied 
Mathematics, vol. 11, no. 2, pp.431–441, 1963. 

[30] D. A. Hill, “Electronic mode stirring for reverberation chambers,” IEEE 
Trans. EMC, vol. 36, no. 4, pp. 294-299, Nov. 1994. 

[31] P. –S. Kildal, C. Carlsson and J. Yang, “Measurement of free-space 
impedances of small antennas in reverberation chambers,” Microwave 
and Optical Technology Letters, vol. 32, no. 2, pp. 112-115, Dec. 2001. 

[32] Y. Huang and D. J. Edwards, “A novel reverberating chamber: 
source-stirred chamber,” in Proceeding of IEE 8th International 
Conference on EMC, pp. 120-124, Sep. 1992. 

[33] K. Rosengren, P. –S. Kildal, C. Carlsson and J. Carlsson, 
“Characterization of antennas for mobile and wireless terminals in 
reverberation chambers: improved accuracy by platform stirring,” 
Microwave and Optical Technology Letters, vol. 39, no. 6, pp. 391-397, 
Sep. 2001. 

[34] IEEE Standard Test Procedures for Antennas, IEEE Std, 149-1979. 
[35] F. Jensen and A. Frandsen, “On the number of modes in spherical wave 

expansions,” TICRA, Copenhagen, Denmark, Jan. 2005 [Online]. 
Available: http://www.ticra.com. 
 
 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAP.2016.2633901

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


