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Abstract

The stability of an under-actuated nonlinear aasiel wing section is addressed using a
robust passivity-based continuous sliding-mode robmtpproach. The controller is shown to
be capable of stabilising the system in the preseniclarge matched and mismatched
uncertainties and large input disturbance. It isnolestrated in theory that within known
bounds on the input disturbance and nonlinearigettainty, the controller is able to stabilise
the system globally. A numerical example, basetherTexas A&M University experimental
rig, is used to demonstrate the stabilisation ef g¢istem with a fully-developed limit cycle
oscillation and a flap deflection limited to 20 degs. This is of practical interest because it
shows that the system is at least stabilised ipcathereas global stability is a concept limited
to theoretical studies and is impossible to denratestn practice.

Keywords: Robust passivity-based control; Sliding-mode aantMatched uncertainty;
Mismatched uncertainty; Input disturbance; Undduated nonlinear wing section

1. Introduction

Structural nonlinearity is encountered quite oftemnodern aircraft and is likely to be found
more frequently in the future as increasingly hghight and more flexible structural
materials are introduced. The resultant nonlindattefr, typically limit cycle oscillation
(LCO), is already encountered in military and ciaircraft [1-6] leading to a reduced
aeroelastic performance, structural fatigue ancdh éaure of the vehicle. Never-the-less the
requirements of next-generation flight vehiclescplancreasing and contradictory demands
on designers, typically greater structural flexiijl improved manoeuvrability and greater
operational safety in severe environmental conakti¢/7]. Hence, active nonlinear flutter
suppression becomes increasingly important in @mguhe safety and efficiency of future
aircraft [8] and presents intellectual challendest have attracted the interest of researchers
in aerospace and control communities for more these decades.

In the control community, mechanical systems wliakie fewer independent actuators than
degrees of freedom to be controlled are known demactuated mechanical systems [9]. The
control design of under-actuated aeroelastic systisnof importance, firstly for reasons of
actuator failure and the need to rely on fewer a&ois. Secondly, under-actuation might be
motivated by weight and cost constraints imposednert-generation flight vehicles. A
typical under-actuated aeroelastic system is adiw@ensional nonlinear wing section with a
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single control surface in incompressible flow, whis the control objective of the present
paper.

Linear control techniques, namely pole placemefi,[linear quadratic regulation [11] and

linear quadratic Gaussian methods [12], have bewiaged for nonlinear flutter suppression
in two-dimensional wing sections with a single cohsurface, but with limited success [11].

Hence, nonlinear control methodologies are requigedflutter suppression in nonlinear

aeroelastic systems, e.g. Ko et al. [13, 14] enmgdofeedback linearisation techniques to
control a prototypical wing section with torsiomalnlinearity.

In practice, unmodelled dynamics, parameter unicgytaand external disturbances in
nonlinear control systems are unavoidable. Adagive robust control are two of the leading
techniques for uncertainty compensati@everal adaptive control algorithms have been
proposed for control of typical wing sections wskructural nonlinearity using a single
trailing-edge control, namely adaptive feedbackdirsation [15], structured model reference
adaptive control [16], output-feedback adaptivetamrjl7] and backstepping-based adaptive
control [18]. Alternatively, Lyapunov-based robgsintrol is considered in [19] for an under-
actuated nonlinear wing section. A robust contralkethe form of state feedback control in
conjunction with a proportional-integral observisrused for active flutter suppression of a
nonlinear two-dimensional wing-flap system [20].udBy, robust constant-gain feedback
control allows for the handling of small uncertas, while adaptive control is applicable for
a wider range of parameter variation but is seresitd unstructured uncertainty [9].

In recent years, sliding-mode control, a varialiteeture controller, has been developed for
control design of dynamic systems under uncertadotyditions. The idea of sliding-mode

control is to design a high-frequency switchings¢dintinuous) control law to drive the

system onto a specified sliding surface in staBes@nd maintain it there for all subsequent
time. The resultant sliding mode is claimed to hsensitive to model uncertainties and
disturbances which do not steer the system away fhe specified surface. The advantage of
sliding-mode control is its tolerance of large nm&id uncertainty and large input disturbance.

Continuous sliding-mode control [21], second-oragdiding-mode control [22, 23] and
dynamic sliding-mode control [24] have been appliecdsuppress flutter instability in two-
dimensional nonlinear wing sections with leadingd &railing-edge control surfaces, i.e. fully
actuated aeroelastic systems. Very little reseapgears to have been carried out on the use
of sliding-mode control for under-actuated aerdetasystems. Examples include the robust
control of supersonic three degree-of-freedom adeofusing sliding-mode control [25].
Guijjula and Singh [26] designed a discontinuoudirslj-mode controller for the pitch angle
trajectory control of an unsteady aeroelastic systgth a single control surface. Of course
control of under-actuated systems is more comg@dc#tan the control of fully-actuated ones,
requiring the consideration of global stability ahd presence of mismatched uncertainty.

Usually, for under-actuated systems, local asynptability can be achieved by existing
nonlinear control techniques. However, global asytip stabilisation for tracking control of
under-actuated mechanical systems is considerdz textremely challenging [9, 27]. For
example, by using feedback linearisation technigthes stability of the zero dynamics only
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guarantees local stability of the system, globghgsotical stability can only be achieved if
the internal dynamics is input-to-state stable [28hder-actuated nonlinear aeroelastic
systems are even more complicated owing to thangitruncertainty.

The main contribution of this paper is to developlaust passivity-based continuous sliding-
mode control approach, which in theory can globsiabilise all the degrees of freedom of an
under-actuated nonlinear prototypical wing sectuath matched and mismatched uncertainty
and input disturbance - practical limitations mehat stability can only be demonstrated
locally, as will be shown in a numerical case stulyobust passivity-based control method
is used for the design of globally asymptotically €xponentially) stable nonlinear sliding

surfaces. Moreover, a proposed continuous slidingencontrol is able to alleviate the

chattering which occurs in the process of discartus sliding-mode control. The sufficient

conditions for global asymptotic stability and ghblstability of under-actuated two-degree-
of-freedom nonlinear aeroelastic systems are peavi€@ompared with feedback linearisation
or adaptive feedback linearisation, the proposethoterelaxes the requirements for global
asymptotical stability because it does not reqthee internal dynamics to be input-to-state
stable. Bounds must be specified on the nonlineeemtainty, but knowledge of the structure
of the nonlinearity is not needed.

The nonlinear aeroelastic model is presented ini@e@ of this paper. In Section 3, the
cascaded structure of the under-actuated aeraelasidel is obtained by an appropriate
coordinate transformation to facilitate the contelsign. Bounded nonlinear pitch-stiffness
uncertainty is considered, resulting in both madchad unmatched uncertainty terms. The
proposed controller is designed in Section 4 tadimist not only to these uncertainties but
also to control input disturbances. A numericalkcstsidy is used to illustrate the working of
the proposed method. The research described irp#per form a basis for further work on

passivity-based sliding-mode controllers to hanude only structural uncertainties but also
uncertain aerodynamic parameters and to include dyramics of the actuator in the

formulation.

2. Nonlinear aeroelastic model

The under-actuated nonlinear system in questiosstéthe form of a generic two-dimensional
wing section with trailing-edge control surface,d&picted in Fig. 1. This example was used
previously for classic aeroelastic analysis andtrobrdesign [16]. The wing section with

chordc =2band spars, is supported by a linear spring with stiffnd§s in plunge and a
nonlinear torsional spring with stiffness, (a) in pitch. The springs are attached at a
distancea,b from the midchord, defining the elastic axis. Teatre of mass is at a distance

ry =X%,b from the elastic axis.
The governing equations of motion of the model wgven by Ko et al. [16] ,

mh+m,x bid+Ch+K.h=-L (1)



myXbh+1,d+C,a+K,(a)a=M )

whereh anda denote plunge and pitch displacements respectivelys the total mass of
wing and its supporting structurg), is the mass of wingt,is the mass moment of inertia

about the elastic axis; arfd, and C, are structural damping coefficients in plunge aitdhp
respectively.

L and M are the aerodynamic lift and moment about the ielagkis. Quasi-steady
aerodynamic forces [29] are employed such that,

h (1 a
L=oV?bs,C_ (a +V+(§—ahjbvj + Vs, C B (3)
2 h,(1 al, o
M=oV bSNCM[,(a-FV"-[E_ahijj‘FpV bSWCMﬁIG (4)

where p is the air densityy is free airflow speedpfis the trailing-edge control surface
deflection’C,_and CLﬂ are aerodynamic lift derivatives due to the amgfleattack and the

deflection of trailing-edge control surface; aﬁqa and CMﬁ are the aerodynamic moment

derivatives.

b . .
b Ta,, “/elastlc axis

4"¥ c.g.

x,b

Fig. 1 The aeroelastic model with pitch and plungeeafrees of freedom

In this paper, bounded nonlinear torsional uncetyaand control input disturbance are
considered. Then by combining equations (1)-(4) emwbducing the nonlinear uncertainty
and input disturbance, it is found that,

AG+(D+B)q+(C+E)q +AEq=Db(B+AB) (5)

where,



M mxb] | ARG, ARG (V2-a,) | -pV°bs,C,
mwb 1, ]| —pwbPs,C, —pVES,Cy, (1/2-3,) | [ AVPS,Cy,

[0 pvibs,C fc, o7 _ [K, © [o o0 _(h
C__o —pvzbzswCMJ'D{O CJ’E_[O Ka(a)]AE_[O AKa(a)}'q_[aj'

and AKa(a) and AS represent the nonlinear torsional uncertainty amuit disturbance

respectively.

It is assumed that the structural nonlinearity utaety is bounded by,
‘AK a‘ < ‘n a‘ (6)
Wheren(a) is a known upper bound of the uncertain nonlingarit

T

If [h a h d]T =[x x, X, x,] =x", then Equations in (5) may be cast in state-

space form,
=f(x)+g(B+0B)+d (7)
where,
X 0 0
f(x)= - _| © =tAK 2| ©
(X)_ _k1X1_(k2V2+ p(XZ))XZ—Clxg—CQ(4 97 03 A a(Xz)Xza = t, ’
—kgxl—(k4\/2+q(x2)) X,7CX37C Xy 94 t

d=mpl, —mx2®, k= 1,K,/d, k =(1,008,C. +m,x,00%,C, )/d,
ks = =myx,bK,/d, k, ==(m,x,b%s,C_ +m pb’s,C,, )/d,
p(%) = ~myx,bK, (%,)/d, ¢ =[1,(C, + oVbs,C., )+ m,x,oV0%,C,, |/d,
a(x) =mK, (%)/d, & =[-m,x,b(C, + pvbs,C_ ) - m pVb?s,C,,, |/d,
¢, =[1,0W0%,C_ (V2-a,)-m,x,bC, +m,x,ovb's,C, (12-a,)]/d,

:[mr(ca—pVbssNCMa(J/Z—ah))—”anPng%C (Y23, ]/d



g, = ~V(1,008,C,, +m,x,00°,Cy, )/d, 0, =V2(m,x,00%,C., +m pb%s,C,, ) /d,

t, =m,x,b/d andt, =-m,/d

3. Normal Form
In this paper, the pitch angle is selected as tieud feedback variable,
y=x=a (8)

The relative degree of the system, denoted,hkg determined by the number of times the

output can be differentiated until the input appeaplicitly in the expression for the" time
derivative. In the present case,

y=%
dy dx
=YL= Y () ra (s 05)+9)
X
X4

1010 A (kv p(x) xemoxsme x g B+ BB)+UAK, (X)X T g
)

_k3xl_(k4V2 +q(x2)) X,=CX3=CX,T g 4(,3+A,3)+t AK, (x X

dy dx _dx,
dydt Ck[@f +g[@ﬂ+Aﬂ)+6)

=[0 0 0 qf(x)+g{B+AB)+3)
=~k = (V2 +0(%,)) X, X~ X, + 9 (B+AB) +

where d, =t,AK,, (X,) X,.

Since the inpug4(,8+A,8) appears in the expression frit is apparent that relative degree

r =2. The significance of this is that the nonlineasteyn may be divided into an external
sub-system of dimension, generally with nonlinear input, and a sub-systefnn-r
nonlinear equations known as the internal dynanticghe present case both subsystems are
of order 2. This arrangement of equations is knewnhe normal form, which in the present
case may be obtained by means of the transformation

4 -9, O 0 0 X
Z, 0 1 0 0 X3
zZ, 0 O 0 1 X,



dz,
dx
input does not appear explicitly in the equatiohthe internal dynamics. The matiix being
invertible, is a global diffeomorphism.

where ¢, = g.C, + g402—c3gz3/g .~ Cg. such thatz—ilg =0, g=0 to ensure that the

Application of equation (10), in (7) leads to tr@mal form,

Ziy = fl(z(l_z))+f2(z(}3,zs) Z,+9, (11)
2,=2, (12)
z,=1,(2)+ 9, UB+0B)+7, (13)
where,
— _ 0 _¢4
fy (2(1—2)) _Sz(l—z) _[_¢1/¢4 @, } qry (14)
P,

23] = (—ﬂ(¢2¢4+¢31+¢3;<a(z3)) 4o
fb (Z) = ¢7Z1 + ¢4¢8(23_ 22) "'¢91Z 3+¢ 9£<a (Z ; Z gt ¢ 1% (16)

0

_|4 _7 - _(0)_

Z19 -{22} 8, =1AK, (z)z, —@— QM X,0+ gy (17)

2 ¢,d
6, =k,(05/9.) Ky 5=k +a kY —k {939 )-g kY’ (18)

$,=¢;(05/9.) ¢, d=-(amx,brgm)/d, ¢ =kg, ¢ ~cjg. (19)

b=~ (k(9:/9.) +kV?), $=-m/d and ¢, =~(c{g {g )*c)  (20)

In the new coordinate system, equations (12) aBi d@mprise a chain of simple integrators
whereas the internal dynamics, determined by egudfil), are not directly affected by the
control input. Together, equations (11)-(13) defmeascaded system of equations in the
normal form. The structural nonlinearity uncertgims represented in the new coordinate

system in the form of unmatched and matched urinégsd, # 0 and 9, Z0.

The zero dynamics of the system (11)-(13), withoutertainty and disturbance, are given by
the linear system,



2y =t(205) =57, (21)

when the output is set to zerg=z, =0, which in turn causeg, to vanish, i.ez, =0. The

zero dynamics in nonlinear systems is equivalenthéozero dynamics in LTI systems in that
stability of the zero dynamics means that the syste minimum phase. In feedback
linearisation, the global exponential stabilitytbé zero dynamics is a necessary condition for
the global asymptotic stability of the overall st the sufficient condition being that the
internal dynamics is input-to-state stable [28]eTionlinear system is globally minimum
phase if the zero dynamics has a global, asymptbtistable equilibrium point. It is apparent
from equation (21) that in the present case the-dgnamics system is nominal even in the
presence of pitch stiffness uncertainty.

In this paper, we will employ sliding-mode conttolstabilise the nonlinear system (11)-(13).
The idea of sliding-mode control is to design atoannput S to force the system states to

move toward a desired stable sliding surface 0, and maintain the states on it. Once on the
sliding surface, all the states will move along $hiding surface and converge to zero. On the
sliding surface, the behaviour of the system igmheined by the prescribed sliding surface. It
will be shown later that the design of a stabldisg-mode surface will stabilise the internal
dynamics.

Due to the form of equations (11)-(13) it is cones to choose a nonlinear sliding surface as,

s=2,-®,(z,,)=0 22)

.
— T . - . .
wherez,_, —[2(1_2),23] and @1(2(1_3)) is an unknown function to be designed with the

requirement that the origin of the dynamics oftb@uced-order model,
Z(y9) :fl(z(1—2))+f2(z(1—2)123) Z;+9, (23)

2,=0,(z, ) (24)

confined to the sliding surface, shall be globadlgymptotically stable. The design of
¢1(Z(1_3)) amounts to solving a stabilisation problem for thgstem (23)-(24) with

z, = ¢1(z(1_3))viewed as the control input.

In view of its importance, the stability propertiesthe zero dynamics of system (11)-(13)
will now be considered. Suppose the origin of zdymamicsz,_, :fl(z(l_z)):S%3 is
globally asymptotically stable, theBis Hurwitz,det(S—A1) =A% - ¢,A - ¢, so thatg,, @, <O.

Hence, for any given positive definite symmetrictxaQ , there exists a positive definite
symmetric matrixP that satisfies the Lyapunov equation,
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PS+S P=-C (25)

Correspondingly, there exists a continuously défdiable, radially unbounded storage
function” W (z) satisfying,

2

/]min(P)‘ ZSW(Z(l—Z)): Zy P%}QS/]max( F)H £:

2
Zi-y) , (26)

and,

@

W(z, ) :dz—(H))fl(Z(l—a) =-2, Q% ;<A (Q 74,

(-2

for Oz, , OR™, whereW(z(l_z)) and dW(z(H))/dz(l_z) are the differentials oW(z(l_z))
with respect to timet and z, , respectively, A,,(¢) and A,(+) are minimum and

In the analysis above, positive-definii®z may be chosen arbitrarily, but in this paper keta
to be,

maximum eigenvalues ¢#), and

is the Euclidean norm d*) [28].

Q:ql 0 g>0,0,>0 (28)
0 o] o

ThenPis found as,

$.9, _ Q9 +¢2q1 A,

P{pu plz}z 20.9: 28, 2 2,
P Pz m —&+@
2¢1 2¢2 2¢1¢2

(29)

which is indeed a positive-definite, symmetric matsince the zero dynamics are linear they
are not only globally asymptotically stable but zerge to zero exponentially.

4. Robust passivity-based continuous sliding mode camwtler design

This section presents the design of a sliding nomderoller. Firstly, a robust stable sliding-
mode surfaces=0 is designed such that the internal dynamics isilstad. Then, a control

input S is designed to force the system states to moveartbwhe designed stable sliding
surfaces=0 and maintain the states on it. Once on the slidindace, all the states will
move along the sliding surface and converge to.zero

! A radially unbounded function is a functin’(Z) for which||Z|| — 00 :>W(Z) - 00,
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4.1.Robust passivity-based sliding surface design

Consider the system (11) and (12)may be viewed as the input to the system ajide

output variable. According to the definition of tsh passivity [30], and using equations (11)
and (12), the system (11), (12) is said to be rblaisctly passive if there exists a

differentiable and positive definite storage fuontUl(z(l_g)) such that,

: :dU1(2(1—3)) 1‘1(2(1_2))+f2(z(1_2),z3)23+61

U, <zz, Uz,Z0 (30)

(1-3) Z,
holds for anyd, subjected to the constraint (6). This may be undedsphysically as follows.
If Ul(z(H)) represents the energy of the system, then indy@0) indicates that the system

(11) and (12) is dissipative because the energwgtorate is less than the external energy
supply ratez,z,, with the difference being the energy dissipatiate. If z,is designed such

thatU, <O with Oz, # 0, then the system can be stabilised with input Here, the robust
feedback passivity property [28, 31] is used toigles, :CDl(z(l_s)) such that global
stability of the system (11) and (12) is obtained.

Lemma 4.1 Suppose the origin of the zero dynanﬁr(:lsz) :fl(z(l_z)) :S§}3is globally

exponentially stable and IW(Z(H)) be a continuously differentiable, radially unboedd
Lyapunov function candidate satisfying (26) and)(Z2Fhen there exists a positive real

constantd such that,
2
dw/|z dw/|( z
( (1—2))f M[ ( ‘“))f} <

2

(31)

}Z(l—z)

dz )

(1-2) 2

where ) is a positive constant.

Proof:  Since z,_,, =fl(z(1_2)) =S5z, , is globally exponentially stable, there exists a
continuously differentiable, radially unbounded pyaov functionW(z(l_z)) satisfying (26)

and (27). Thus from (26),

dw/|z
Mf:&T Pt = Zz(zlp12+22p22) (32)

(2-2)
(:-2)

Therefore,
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dW(z(l2))fl+i{dw(z(lz))fJ2

dz,.
(2 (33)

dw (2(1_2))

2T (2Pt 20 )

(+-2)

Then, due to (27) and the expression,
(2P +2,P,,)" <2(2p,)" +2(z p ,)* < 2may p,p%) (2°+ 2°) (34)

equation (33) becomes,

dW(Z(lz))fl+i[dW(Z(1z))fJ2

2 qua

2

(35)

< —[/]mm (Q) - 4/1f22 max( p122 ’pgz)] 215

2
Zu-2)|

2

= h

Amin (Q ) )
4t max( pZ, p2,)

where J, > Oprovided that1 <

O

Lemma 4.2 Suppose the origin of the zero dynanﬂr(‘lsz) =f1(z(1_2)) = S%H) is globally

exponentially stable, then the origin of the urm@rtsubsystem (11)-(12) can be globally
exponentially stabilised by,

Z, :¢1(Z(1_3))———f2—§n2(23) Z3;— X7, (36)

WhereW(z(l_z)) is a radially unbounded, positive-definite Lyapurfanction satisfying (26)

and (27).

Proof: Suppose the origin of the zero dynami'l&_z) = fl(z(l_z)) = S%H) is globally
exponentially stable and there exist a radiallyaumuled, positive definite Lyapunov function
W(z(l_z)) satisfying (26) and (27).

Take a storage function candidate,

11



Usza):“4%ray“%é 37)

for the uncertain subsystem (11)-(12), WhW(éz(l_z))satisfies (26) and (27). It may be

shown that,

z (38)

min()lmin (P) %)

zsul(z(l_g) < ma»{/imax( P —;j

Z(1—3) %1— 3

The derivate otJ, is,

. du. . dw(z,. Z,
Ul - . 1 2(1_3) - d( (1 2)) z, |: (? 2):| (39)
Z. 2(1_2) 23

Substitution of (11) and (12) in (39) leads to,

W (2, ,)
dz, 4

dW(Z(H))t~
7.y

dw ( Z 2))
dz(

U, = dﬁiz‘“’)

f,+z,

f2+ 6l+ZE~Z4

(1-2) 2
< AW (7., . Wz, ,)

Az, (+2

(40)

2z, o, (2)2]

and using the bound on the nonlinearity (6),

Ulsﬂ@135ﬁ¢fk%dmdz&a)

Az, Zy g

dW(Z(H)f

f.+zz,+
2 324 dZ(}Z)

n(z)z} (41)

Since,

mN(Qra)f
dz

el )

(:-2)

T \fea) ¢5I+%(V%k(%)%gz (42)

inequality (41) becomes,
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2
= 1
—)tJ +§n2(23)232 (43)
Then, by using feedback control (36),

W (z,,) dW(Zu—z))f

U<s—xZ+——f +=
1= 7X% dz,, , L2 dz, ,
2
<-XZ -~ V1|2 , (44)
2
=7V2 209

where y, =min(x,y;) > 0.

Hence, by invoking Theorem 4.10 [28] with inequati(88) and (44), the origin of the
system (11) and (12) is found to be globally expiadly stable.
O

Now considering the reduced order system defineddmatons (11) and (12), if the zero
dynamics,'z(l_z) :fl(z(l_3)=S%H), is globally exponentially stable, in the preserafe
bounded torsional nonlinearity uncertainty and ingisturbance, the nonlinear sliding-mode
surface may be chosen according to (22), repeatedds,

s=2,-®,(z,,)=0 (45)

to ensure that the reduced-order uncertain sysgewbustly exponentially stable. However, it
is still necessary to determine the inpfitthat ensures that the states of the system are

attracted to the sliding surface and remain upon it

4.2. Sliding mode control input design

The sliding-mode control input aims to compel thetes of the system, starting away from
the sliding surface=0, to move toward it (i.e., the reaching phase) aed to be maintained
upon it (i.e., sliding phase). In this way the siglisurfaces=0is made globally attractive.
Here, an approach based on Lyapunov stability thisanged for the design of a sliding-mode
control input. If a candidate Lyapunov functiorsedected as,

U, (s) =S—22 (46)

then the control input should be designed such that
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U,=s8<0 (47)

By differentiating equation (45) and combining thigh equations (69), (11)-(12), and (14)-
(17), the derivative o may be determined as,

$=12, _cbl(z(l—s)) =0,(2)+P,(2) 8K, (25) 2+ 9 ( B+L0) (48)

with @, (z) given by equation (70) in Appendix 1 and,

¢3(z):{t4+f2£q2+(&—%j(¢31+¢350(zg)]:l (49)

The term on the left-hand-side of inequality (4ttmes,
U, =5[®@, (2) +®,(2) 2K, (2,) 2+ 9.(B+05) (50

To ensure (47) is satisfied globally, a discontimicsliding-mode control input may be
applied in the form,

/3:(_ Pelz) £l S@J'ﬂ(S)‘lsJ (51)
9, 9. 9,

where &(z), & , v>0. The term-®,(z)/g,, a continuous control input, is used to

neutralise the known term, (z) in equation (50). The other three terms in (51)ehaegative
signs, so that deviation of the dynamic responsm f§ =0 leads to an input that returns the
system to the sliding surface. Specificaty(¢,/g,)sgn(s) and—(f(z)/g4)sgn(s) are used

to compensate the input disturbance and nonlineanitertainty respectively.(u/ g4)s is an

exponential approaching law that guarantees anrexi@l convergence rate in the reaching
phase and consequently reduces the approachingdithe sliding surface.

Substituting (51) into (50) leads to,
U, <[, (2)|x|n(2,) 2{x|8 - & (2)|o + s AB- & | -0 (52)
It is assumed that,
®4(2)|X|n(2) 2| <n(2) +14£(2) (53)
and,

l9.08 <né (54)
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where /7(2)20 is a continuous functiorQ<r),<1. 17, and { are chosen based upon an

estimate of the input uncertainty and the knowrg, while 0<7, <1.
Then by combining (52), (53) and (54) it is fouhdtt
U, <-(1-1,) &\~ (1-7,)&]s-vs* < 0 (55)

provided thaté (z) = % +& and &, >0.

0

Inequality (55) shows that the discontinuous cdntrput (51) is able to compel the states of
the system, with bounded torsional nonlinearity extainty and control input disturbance
satisfying (53) and (54) respectively, to move tothe sliding surface (45). Once the states
are restricted to the sliding surface (45), theyposentially converge to zero as time
approaches infinity because the sliding surfacé (@%slesigned to be globally exponentially
stable. It is however well known that a discontiasigliding control will result in chattering,
which presents an obstacle to the practical apgpicaf sliding-mode control [32].

The continuous sliding-mode approach is commonlgduso overcome the problem of
chattering caused by the signum function in equattd). Here, the signum functioxgn(s)

is replaced by a saturation function,

sa{SJZ A (56)

s
= |gse
£
where ¢ is a small positive constant that defines a boundayer of constant width
neighbouring the sliding surface st 0.
Then the continuous sliding-mode control input lmees,

GRS MR o7

g, 9, €) O,

If the zero dynamics are exponentially stable,ntbelinearity uncertainty is bounded by (6)
and satisfies the condition (53), and the inputudizance is bounded by (54), then the system
can be globally stabilised by using the continusliding mode control input (57) and the
trajectories are shown in Appendix 2 to reach th&tpvely invariant set,

Q, :{Ul(z(l_ ))sU3(£)}ﬂ{|S|S£} (58)

close to the sliding surface defined by a boundayer of thickness and an associated
energy termJ, (&) defined in the Appendix 2.
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The system (11)-(12) witla, = ¢3(z(1_3)) is globally exponentially stable./ﬂ(O) =0, 7,=0

and ASB =0, then for a small enough, the origin of the full closed-loop system is simonv
Appendix 2 to be globally asymptotically stable.

Remark 1. The analysis above, and in Appendix 2, does ngily an assumption of
smallness of the torsional nonlinear uncertainty sput disturbance. Hence the controller is
able to admit large matched and mismatched unoédaiunder the practical limitation of the
control surface deflection.

Remark 2: Although in theory the continuous control inpufpi®ven to stabilise the system
globally, practical limits on the control surfacefléction mean that stability can only be
guaranteed locally.

Remark 3: The proposed controller is also capable of stabgishe system in the presence
of measurement noise, which of itself leads to @sdary input disturbandgs, limited by
the inequality(54).

Proof: Assume the control input disturbanfg consists of the primary control input
disturbance AS, and a secondary control inpulisturbance AB, resulting from the
measurement noise. Then we have

AB=N0B +1B, (59)

The discontinuous sliding mode control input systhed from measurement noise-free state
variables, described by Eq. (51), may be rewritten

ﬂ:{_ ®,(2) _¢(7)+&+¢ sgn[s(;)j—is(z)] (60)

9, 9, 9,

s(z
whereé =¢&,+¢&,. The term—ésgn(¥j is used for compensatiny5, and the term

& sgn(ﬂj for AB,.
9, €

Denote the measurement noisé\as Then the control input disturbance resulting frim
measurement noise may be expressed as

Aﬁz = :82 _:8 (61)

where

ﬁz{_%(zwz)_f(z+Az)+sz+sssgn[s( z:Mj

—is(zmz)] (62)
g, J,4

0,4
is the discontinuous sliding mode control inputthgsised with noisy measured states .
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In the presence of measurement noise, Eq. (47)bemames
U, =s[®,(2) +®,(2) 8K, (2;) 2.+ 9.( 8.+ 05) ] (63)
and substituting Eq. (61) into Eq. (63) leads to

U, =s[@,(2)+P,(2) K, (25) 2,+ 9 ,(B+DB,+AB) |

:S[q)z (2)+,(2)AK, (z5) 2+ g4(l[p’+Aﬁ)} (64)

which is exactly identical to Eq.(50).

Therefore, according to the analysis in the Secti@) when the inequality (54) holds, that is
‘94(A,81+A,82)‘ <n,(&,+&,) or|o,03 <, the nominal control input (57) is able to
stabilise the system in a noisy environment.

5. Numerical Case Study

A two-degree-of-freedom pitch-plunge prototypicahg section with torsional nonlinearity
[16] is used here for the purposes of demonstratidre performance of the proposed
controller is firstly investigated in the presencé nonlinear pitch-stiffness uncertainty
(producing both matched and unmatched uncertamsperThen in the second part of the case
study the controller is made robust to disturban@@susoidal and random) added to the
control input. The system parameters are giveraiold 1.

Table 1 System parameters

Parameters Value Parameters Value
m, 12.3870 Kg Cua (0.5+a,)C,
m,, 2.0490 Kg C, 3.358

b 0.135m Cus -1.94

P 1.225 Kg/m"3 K, 2844.4 N/m
feg 0.0873-(b+a,b) m C, 27.43 Kgls
l, Myf +0.0517 kg.m~2 C, 0.036 Kg m"2/s
Sy 0.6 m a, -0.6847
C. 2m

5.1. Nonlinear pitch stiffness uncertainty.
The nominal nonlinear torsional stiffness is givsn

K,(a)=6.8614 ¥ 1.1438+ 96.6686+ 9.518%+ 727.684)( N.Oy (65)
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with globally bounded uncertainty,
|aK, (a)a|<0.1K, (a)a| (66)

Suppose that the coefficients in (6%),, k,;andk,;are 8%, 7% and 9% underestimated
respectively, and,, and k,, are 2% and 5% overestimated respectively. The nonlinear
uncertaintyAK, (a)a =0.0&,,a - 0.0X,,a° + 0.0k, a°- 0.05,a°+ 0.694° is found to
satisfy the inequality (66).

The linear flutter boundary of the open-loop sysienfound to be 11.5 m/s and at velocity

16m/s, the nonlinear responses of the real systengiaen in Fig. 2. Clearly, the system
exhibits LCO.

0.02 i
0.01

-0.01-
-0.02- i

Plunge displacement (m)

0.2

o1 | |

Pitch angle (rad)

2 4 6 8 10
Time (sec)

Fig. 2 The open-loop time histories with initial codition [h(O) a(9 h(0 of (ﬂT =[0.02 0 0 }5

To demonstrate the capability of the controlleisuppressing LCO at =16m/s, the wing
section is subjected to an initial disturbance, LB&omes fully established and then the
controller is activated at=5sec.

Let,

_[0.006 0 _09,.(Q) _ ) n(2)
Q—[ 0 o.ooe] A W max( pfz,piz)’ x=32, v= 0.015(2)_—1_,70 +& , (67)

7,=0,7,=0.98,&= 001,= 1.1g= 0.0%(z)=|d,(2z)x|n(z)z| AB= (68)
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The time histories with control are shown in Figd8monstrating the asymptotic stability of
the closedoop system. The matrif)Q may be any positive definite matriyy and v are

/]min (Q)
ag; max( pf, ,p3,)
&(z), &, &, n(z) . n, and n, are arbitrarily chosen such that (53), (54) and

arbitrarily chosen positive real numberk,is chosen such that < and

z
&(2)2 7(2) + &, are satisfied within the limitations of the contimput level.

0

The sliding surface is depicted in Fig. 4, wherecan be seen to begin away from the
boundary layer. It firstly achieves the positivalyvariant set (58) and then stabilises
asymptotically to the origin. This is because thegino of the reduced-order system is

exponentially stable{](O) =0 and 77,=0 for the current aerofoil with nonlinear pitch
stiffness uncertainty and the absence of contmltimisturbancAf =0. The control input in
Fig. 4 is seen to be smooth and within the limftpractical implementation.

Al
J

0.02 a
0.01 a

-0.01- .
-0.02- |

Plunge displacement (m
o

0.2

o©
=
T
L

Pitch angle (rad)

0 2 4 6 8 10
Time (sec)

Fig. 3 Time histories of plunge displacement and gh angle - nonlinear pitch stiffness uncertainty
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Control input (degree)
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<

1 2 3 4 5 6 7 8 9 10
Time (sec)

|
N
(@)

Fig. 4 Sliding surface and trailing edge control sdace angle — nonlinear pitch stiffness uncertainty

5.2. Nonlinear pitch stiffness uncertainty and control nput disturbance.

The robustness of the proposed controller, wittapaters given in (67) and(68), to various
control input disturbance, is considered. Sinuaslcathd random input disturbances are chosen
separately to satisfy the inequality (54). As befdhe controller is activated at 5sec after

a LCO has been developed from an initial pertudmati

(a) Snusoidal input disturbance.

A sinusoidal input disturbanmA,B:O.Zsin( 5(1)) Is applied and time histories given in Fig.

5 show the complete state of the closmap system to be stable with a very low amplitude
sinusoidal response. Fig. 6 confirms that the nesp® are bounded in a small region around
the origin, as explained by (58). Also, the contrngdut, shown in Fig. 6, is sinusoidal with
low amplitude.

20



\E/ 1e-005
5 00 MWW
g 001 -1le-005 -
c_% 9 10
g 0
©
() -0.01- 7
2
5 -0.02- i
[a
0.2
0.0002
£ o4l H MNANVVVWY |
s 7 ~0.0002
()
= 9 10
£ 0
e
S
T -0.1f u u .
_02 1 1 1 1
0 2 4 6 8 10

Time (sec)

Fig. 5 Time histories of plunge displacement and pih angle- nonlinear pitch stiffness uncertainty anginusoidal
input disturbance
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Fig. 6 Sliding surface and trailing edge control siface angle — nonlinear pitch stiffness uncertaintyand sinusoidal
input disturbance.
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(b) Random input disturbance including the effects of measurement noise.

The measured plunge displacement, pitch angle,gplwelocity and pitch velocity are
assumed to be contaminated by uniformly distributemise of amplitude 0.0005m,
0.0002radian, 0.001m/s and 0.00lradian/s respéctaenpled at 0.001 second intervals. In

addition, the control input disturbandgs, is a uniformly distributed noise of amplitude
0.001 radian. The combined control input disturleaiscpresented in Fig. 7 where it can be
seen thattg4(A,81+A,82)‘ =|g.AB <n£,=1.078. The time histories in Fig. 8 and Fig. 9 show

that the complete state of the clogedp system is stable and confined to the slidingace

with a small bounded region according to (58). €betrol input is seen to be random and of
low amplitude.

Despite the presence of very low amplitude respensgher (a) sinusoidal or (b) random -
the large-amplitude open-loop responses are comstrdo a very small positively invariant
set around the origin, which significantly alle@ateffects of nonlinear flutter.

2

1.5r

1,

o
o

g, (0B, +AB)
o

|
©
13

5
Time (s)

Fig. 7 The combined control input disturbance
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6. Conclusions

A new approach is developed for the suppressioftutier instability in an undeactuated

prototypical wing section with torsional nonlinggriRobust passivity-based control is used
to design a nonlinear sliding-mode surface in tmes@nce of matched and unmatched
uncertainty and input disturbance. A continuoudisgj-mode control input is employed to

overall system. With known boundeguindisturbance and nonlinearity

uncertainty, the controller is able in theory tolgdlly stabilise the overall system when the
zero dynamics are globally exponentially stabletHa presence of practical limits on the
actuator flap deflection, as represented in a nicaecase study, the controlled system is

stabilise the

shown to be stable in the local sense.
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Appendix 1: Expressions ford)l(z(l_g)) and ®,(z)

dbl(z

(-3

?,(2,4)= =

)may be determined using (15), (26) and (29) as,

_aw(z,,)

1 1
f.-—n?(z.)z.— xz.=-2z Pf.—-—n’°(z.)z.— xz.
L T2 (z:) 2= X2s= =22, Pt~ 20" (2]) 25~ xz.

) _K Zzl;jz _;_j 2 _%(¢31+¢32Ka (23))} z, ©9)

1,
_{qZ +(ﬁ_ Zj;j(¢31+¢32Ka (Zs))} Zz_an (23) Z57XZ4

while ®,(z), using (14)-(17), (48) and (69), may be expressed

®,()=

+

+

¢721+¢4¢8(23_22)+¢9;3+¢ 9§<a(z ;Z 3+¢ % 4
{ﬂ_ij%_i(¢31+¢3zKa(23))}¢4(Z3—22)

ICY AN
_qZ+(ﬁ—§:§j(¢m+¢3;<a(zs))} (70)

x(_%j[¢121+¢4¢2(23_ ZZ) +¢3123+¢ 3%” (Z 9 z ?]

+

4.0, 6 4.9 ). |K,(z) 10(n*(2)z)
{ , Zl+¢32(¢2¢4 mH oz, XTI oy,
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Appendix 2: Continuous sliding-mode control design.

The motion during continuous slidingode control generally consists only ofr@aching
phase, during which trajectories, starting away from #iieling surfaces=0, move towards
it and are then confined to a thin boundary laylese to it. There is generally no sliding
phase because the states never reach the slidiagesexactly.

In the reaching phase, i.&s = z, —¢1(z(1_3)) # 0, the system (11)-(12) becomes,
21 :fl(z(l—z))+f2(z(l—3)23+81 (71)

2,=®,(z,4)+s (72)

Equations (71)-(72) define a reduced order systath svviewed as input. The saturation
function in equation (57) allows the behaviour untieo different input levels, outside the

boundary laye{|s > ¢) and inside the boundary lay@s < ¢), to be considered separately.

Outside the boundary layer, | > &

The substitution of equation (57) into (50) leaals t
: S S
U, =50, (2)0K, (2) 2,5t ()saf | ragpp-sesef 2|08 @9
Then by combining this expression with the inedied{53), (54) and (56) it is found that,
U, <=(1-17,) &~ (1-7,)&s-us’< 0 (74)

Inequality (74) implies that whene\*s(O)‘>£, ‘s(t)‘ will decrease until it reaches in the

boundary layer(|§<¢) and afterwards remain there. The boundary Ifgks ¢) is a

positively invariant set.
Inside the boundary layer, H <E:

The behaviour of the overall closed-loop systemlmaifurther examined by investigating the
behaviour of the system (71)-(72) with|g < £ , viewed as the input.

Taking Ul(z(H)) given by (37) as a Lyapunov function candidatetlersystem (71)-(72),

U. = du, . _ dW(Z(l—z)) z {2(1—2):| (75)
1 .
dZ(l_Z) z,
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combining with equations (74Y2),

Ul _ dV:Z(Z(l_Z))f1+Z3dvv(z(l_2))f2+ d‘N(Z(l‘z)

6-2) Az 5 4z

o, +z® 1(2(1_3) ) +z$8 (76)

and with (6), (36) and (42) leads to,

W (7, ,)

dz

ok, (z)2d - (z) - xzi e zs
(=3

f,+
+d“4%rﬁf
Az

g dW(Z(l—Z)) f, +d[d\/\;£Z(12))f]2 _ng +7s

1
‘n(zs)23‘—§n2(z3)z§—)(z§+23s (77)

(-2

(2

Now, introducing the inequality(35),

. 2
Ui <12y 2—,\/z§+|23||s| (78)
. 2 . 2 C 2
and  separating-,|z,,| into three parts, —(1-¢) 41|z, , 0 N2, and
_%yl Z4 z and xz: into two parts,x(1- )z and xuz, then,
. 2 C 2 C 2
U,<-(1-¢)p Z(1-9) 2_§y1 219 Z_EVl A1), (79)
~X(1- 1) Z - iz +[z|
whereO<¢,u<1.
It is readily seen thae,| < |z, , z and|z,|<|z, , z in which case,
e (11— z_ _ 2_¢ _¢ _ 2
U s-(1-¢)n Za-2)|, x(1-1)Z 2V1|ZJ] 2V1|221 XUZ+|z |3 (80)
If |sl/(xu) <|z|, such that,
~XHZ; +|z|s| <O (81)

then,
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. 2
U, < _(1_C)J/1 ) 5 —)((1—,U) z —%VJZ]J _52y1|24
2
< _(1_C)J/1 ) 5 —)((l—,U)Zé (82)
2
s—min((l—c)yl,)((l—,u)) Zug),
<0
Also, if
z|<[s/(xu) and 25" /(oxs) <z (83)
or,
|z/<|s/(xu) and 3" /(om;)<|z) (84)
then,
¢ _ ¢
€ 2] [zl =0 or ~SyJzl+|zf4= 0 &)
and,
. 2
U, <=(1=¢)ni|20 ), ~ X (1= 1) Z - xuz;
2
<-(1-¢)n Z1-9), -x(1-p)Z (86)

2

< —min((l—c)yl,)((l—,u))
<0

209,

By combining the conditions (81), (83) and (84)tbe inequality (82) and (86), the dynamics
of the system is found to be stable under the singhdition that there exists a positive real

number ), such that,

P

2 _z(s) =max{|s/(xu) . 35" f(omn)} Oz, DR (87)

()

increasing function ofs| with «(0) = 0.

Z( (19

3,

where

_is the infinity norm of(+) and 0z, , DR*. It can be seen that(|s) a strictly

Then by invoking Theorem 4.19 [28] with inequaktig8), (82), (86) and (87) the subsystem
(71)}(72) is found to be input-to-state stable so that states are bounded under bounded
input.

Lemma A2.1 Consider the system (11)-(12). Suppose the zenardicsz = fl(z) =Sz are
globally exponentially stable and inequalities (&3) and (54) are satisfied. Then using the
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continuous slidingnode controller (57), the trajectory of the fulbged-loop system will be
bounded for allt >0 and reaches a positively invariant set (92) cdietloby the design

parametee . Moreover, if77(0)=0, 7,=0 and AB =0, then there exists" >0 such that

for all 0< &< &, the origin of the full closed-loop system will lggobally asymptotically
stable.

Proof: The preceding analysis shows that When@@)‘ > g, ‘s(t)‘ will decrease until it
reaches the boundary Iay@e|sg) and remain inside thereafter. The boundary lagea i

positively invariant sef|s< &} .

Recalling that/((|54) is a strictly increasing function ¢$| we now choos¢s|:£ as the

upper limit of |s| within the boundary layer. Theb, may be introduced as a strictly

increasing function ot as,

U,(e)= max(/\max(P) %} (ik(e)jz (88)

18

where|g<¢.

Let us assume th&il(z(l_s)) >U,(¢). Then by combining (38) and (88) it is found that,

2
1) 1 1 2
U, (&)= max()lmax(P) EJ(—K(f)j sUl(z(l_s))s ma{)lmax( P) —]‘ Zy 4 (89)
Vs 2 2
which means that,
1
73’((5) —‘2(1-3) , (90)
Sincels < €, inequality (90) becomes,
1 1
‘2(1_3) >=k(e)2—«(d) (91)

Z Vs Vs

This result confirms the inequality (87). Thus, ides the boundary layer, if
{Ul(z(H)) 2U3(£)} , thenU, <0, so that the system is globally stable under tralition,

0, ={U, (7,4) <Us(e)} s < & (92)

where() denotes the intersection.
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Thus, wheneves(0)| > ¢, |s(t)| will decrease until it reaches the boundary lajg< £) and

afterwards remain there. Eventually, the trajectiryhe full closedoop system is found to
be bounded for alf = 0 and reaches a positively invariant set (92) cdletloby the design

parametet . Moreover, the system (11)-(12) with :¢3(z(1_3)) is globally exponentially
stable. If/7(0) =0, /7,=0 and AB =0, then according to Theorem 14.2 [28], there exdsts

such that for all0<e<eg , the origin of the full closed-loop system will lagobally
asymptotically stable.

O
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