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Abstract 

Metropolitan regions worldwide are experiencing rapid urban growth and the 

planners often employ prediction models to forecast the future expansion for 

improving the land management policies and practices. These regions are a mix 

of urban, peri-urban and rural areas where each sector has its unique expansion 

properties. This study examines the differences in urban and peri-urban growth 

characteristics, and their impact at different stages of prediction modeling, in city 

district Lahore, Pakistan.  The analysis of multi-temporal land use/land cover 

maps revealed that the associations between major land transitions and the factors 

governing land changes were unique at city district, urban and peri-urban scales. 

A multilayer perceptron neural network was employed for modeling 

urbanization, and it was found that the sub-models developed for urban and peri-

urban subsets returned better accuracies than those produced at the city district 

scale. The prediction maps of 2021 and 2035 were also produced through this 

approach. 

Keywords: driving factors; land use/land cover change; multiple scenarios; neural 

network; peri-urban; urban growth modeling 
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1. Introduction 

Urban growth is a complex process driven by a variety of spatio-temporal 

characteristics and a mixture of diverse components (Deng, Wang, Hong, & Qi, 2009). 

It takes place on a regional level and is usually hard to interpret and quantify (Jaeger, 

Bertiller, Schwick, & Kienast, 2010). Generally resulting in an increase in urban and 

decrease in rural areas, the land use/land cover (LULC) changes are governed by a 

myriad of choices like suitability of location, policies and individual preferences (Irwin 

& Bockstael, 2004). A metropolitan region includes urban, peri-urban (also referred as 

suburban) and rural areas; McGee (1995) mentioned that its development and growth 

must be dealt with as region- rather than city-based. A peri-urban area is generally 

defined as the transition zone between urban and rural areas possessing some 

characteristics of the both (Shi, Sun, Zhu, Li, & Mei, 2012). However, urban and peri-

urban areas have their own trajectories and patterns of urbanization (Zanganeh Shahraki 

et al., 2011). Moreover, the factors governing land management and growth in peri-

urban areas are somewhat different compared to the urban areas, and thus cannot be 

simultaneously used to understand the dynamics of the both. 

Unplanned urban sprawl in metropolitan regions is a serious concern; 

development and implementation of appropriate land management practices is the only 

means to make the urban growth sustainable (Zhao, 2010). The modern-day techniques 

like remote sensing play a vital role in assisting the decision makers to take informed 

measures. A number of techniques are available for mapping the built-up areas (Bhatti 

& Tripathi, 2014; Lo & Choi, 2004; Powell, Roberts, Dennison, & Hess, 2007), and one 

of the basic methods to study the urban sprawl is to examine the temporal variations in 

the land across heterogeneous geographical areas (Wilson, Clay, Martin, Stuckey, & 

Vedder-Risch, 2003; Zeng, Sui, & Li, 2005). The land managers also take help from the 

simulation models that assist is estimating the future urban growth (Zanganeh Shahraki 

et al., 2011). However, urban sprawl varies in different areas depending upon the land 

conversion patterns, which involves a number of factors. Zhao (2010) found that the 

socioeconomic factors and attitudes to residential plots influence the transportation 

patterns, which consequently affects the land development in peri-urban areas. Trip 

distances also influence the urban sprawl (Kenworthy & Laube, 1996). The significance 

of the socioeconomic and physical factors to observe the dynamics of urban growth 

have been established by other researchers as well (Longley & Mesev, 2000). Serra, 
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Pons, and Saurí (2008) used biophysical and socioeconomic factors to identify the 

driving factors responsible for land use change, whereas Almeida et al. (2005) used 

infrastructure and socioeconomic indicators for analyzing the probability for urban 

growth. Population growth, employment and change in built-up area have also been 

used as the indicators of urban growth (Fulton, Pendall, Nguyen, & Harrison, 2001). 

Most of the studies have employed methods to determine the LULC conversions 

considering the area under examination as a single region (Mundia & Murayama, 2010; 

Zanganeh Shahraki et al., 2011). For instance, Irwin and Bockstael (2004) studied land 

changes in the residential/urban areas only, whereas Martinuzzi, Gould, and Ramos 

González (2007) used the built-up density in both urban and rural areas to determine the 

urban sprawl. A few solely concentrated on transforming the rural landscapes/peri-

urban to urban forms (Shi et al., 2012). However, Miller and Grebby (2014) focused on 

sprawl by classifying their study area into urban (densely built-up), peri-urban (houses 

having gardens) and rural (green and pervious surfaces) areas but did not consider the 

factors governing land changes. They confirmed that the peri-urban areas have more 

rapid growth than the urban or rural.  

The land use types and driving factors exhibit a non-linear relationship in both 

space and time and encompass many factors that may be categorized as biophysical 

(topography, slope, geographic conditions, etc.), infrastructure (roads, business centers, 

industries, etc.) and socioeconomic (population growth, population density, 

employment opportunities, etc.). The artificial neural network (ANN) framework 

carefully handles such non-linear relationships (Thapa & Murayama, 2012) and the 

most commonly used is the multilayer perceptron neural network (MLPNN) (Hu & 

Weng, 2009; Kavzoglu & Mather, 2003). Based on the network developed from land 

classes and driving factors, the ANN efficiently determines the areas that are likely to 

change, however it could not decide how much to change. Thus, specific land demands 

can be computed through empirical or dynamic models such as Markov chain (MC), 

system dynamic, etc., which present quite reliable estimates (Luo, Yin, Chen, Xu, & Lu, 

2010; Ti-yan, 2007). The accuracy of modeling also needs to be tested for validation 

purposes; area under the receiver operating characteristic curve (AUC) method has been 

efficient at evaluating the LULC change model’s accuracy (Peterson, Pape , & Soberón, 

2008; Pontius & Schneider, 2001). This method compares the actual LULC change with 

the one computed through the model, and quantifies the level of agreement between the 

both. 
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Nevertheless, urban growth is an inevitable process which, if meticulously 

addressed, can be considered as an indicator of social and economic development in any 

region. This study presents an approach to handle the variable growth dynamics of 

urban and peri-urban areas (within a metropolitan region) in a simulation model. Four 

exploratory scenarios are developed based on two different LULC change rates and two 

land development conditions. The specific objectives of this study comprise: (1) 

exploratory analyses of model inputs and outputs at metropolitan scale and its subsets 

(urban and peri-urban); (2) multi-scale simulation of different exploratory scenarios and 

accuracy assessment using the actual land changes; and (3) future LULC prediction 

through the devised modeling approach to examine the spatio-temporal dynamics in the 

study area. 

2. Study area 

Lahore, the capital city of the province of Punjab, Pakistan, was selected as the study 

area for this research. The city, also termed as “city district Lahore”, is stressed in terms 

of rapid urbanization with total population of around 9.16 million (2013 estimates) 

where 82% resides in the urban and the rest in peri-urban areas (Bureau of Statistics, 

2013). The city is administratively divided into 10 towns (including a cantonment) and 

covers an area of around 179000 hectares (Figure 1A).  The towns are further 

subdivided into 150 union councils (UCs), where 122 are urban and the rest are peri-

urban/rural (Bureau of Statistics, 2013). Population in the city district has increased 

manyfold during the past decades, and clearly indicates the trend of urbanization 

(Figure 1B). The urban and peri-urban populations in 1951 in the city district were 

around 0.85 and 0.28 million, respectively (Population Census Organization, 1998); the 

difference in both was around 0.57 million at that time, which increased to 5.9 million 

in 2013 (Bureau of Statistics, 2013). 
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Figure 1. (A) Study area map showing the city district Lahore (urban and peri-urban 

towns), Pakistan and (B) population growth in the study area from 1951 to 2013 

(Bureau of Statistics, 2013; Population Census Organization, 1998). 

The study area was divided into two zones, urban and peri-urban. The towns 

having more than 70% of the area covered by the urban UCs were classified as urban, 

whereas the rest were categorized as peri-urban. With an area of around 26400 ha, the 

urban zone included Cantonment, Data Gunj Baksh, Gulberg, Ravi, Samanabad and 

Shalimar towns, while the peri-urban zone comprised Aziz Bhatti, Iqbal, Nishtar and 

Wagha towns covering around 152600 ha of area. 

3. Methods of data 

3.1. Datasets 

A variety of datasets were used in this study for modeling the urban growth in city 

district Lahore at three spatial scales, city district, urban and peri-urban. Images 

acquired from landsat thematic mapper and operational land imager satellites (30 m 

spatial resolution) were processed through a hybrid classification approach (a mix of 
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supervised and unsupervised classification) (Castellana, D’Addabbo, & Pasquariello, 

2007; Lo & Choi, 2004) to obtain the LULC maps of 1999, 2011 and 2013. Based on 

the focus of this study (urban growth modeling) and dominant geographical features in 

the study area, five LULC classes were mapped, which included agriculture (cropland 

and area used for agricultural activities), bare (unutilized land and open spaces), built-

up (residential, commercial, industrial and transportation), vegetation (trees, shrubs and 

grasslands) and water (open water features, streams, canals and river) (Anderson, 1976). 

Other datasets mainly comprised the driving factors of LULC change, which 

were acquired from different sources including Advanced Spaceborne Thermal 

Emission and Reflection Radiometer, OpenStreetMap, The Urban Unit, Lahore and the 

reports on District Census of Lahore, Multiple Indicator Cluster Survey and Punjab 

Development Statistics. They were classified into three categories namely biophysical, 

infrastructure and socioeconomic to analyze their influence on urban growth (Table 1).  

Appropriate pre-processing was carried out to prepare each dataset for further analyses. 

The Euclidean distance method was used to obtain the distance to streams/canals, 

housing schemes, roads, city center, built-up, built-up change areas (1999-2011), 

railway lines, hospitals and schools (Batisani & Yarnal, 2009). All input datasets were 

prepared at 30 m spatial resolution to be consistent with that of the LULC maps. 

3.2. Change analysis and selection of land transitions 

The land change modeler (LCM) module of IDRISI Selva software was used to 

simulate the land changes; the LULC maps of 1999 and 2011 were used to prepare the 

model, whereas the map of 2013 was used for the validation of prediction results. 

Future projections were made for 2021 and 2035. Cross tabulation method was used to 

develop a transition matrix to show the change in the state of each LULC class over the 

period from 1999 to 2011 in the city district, urban and peri-urban areas, separately. The 

land transitions involving a considerable amount of land change area, and significant to 

this study (urban growth modeling), were then selected for modeling. 
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Table 1. Driving factors and notations. 
Category Notation Driving Factor 
Biophysical Elev Surface elevation 

Slop Surface slope 
DStr Distance to streams/canals 

Infrastructure DHSc Distance to housing schemes 
DRd Distance to roads  
DCC Distance to city center  
DBU Distance to built-up 
DBUC Distance to areas changed to built-up during 1999-2011 
DR Distance to railway lines 
DH Distance to hospitals  
DS Distance to schools  
ImpDW Percentage households having access to improved drinking water 
DWPre Percentage households having drinking water access on premises  
ImpSa Percentage households having access to improved sanitation facilities 
DisWW Percentage households having facilities for proper disposal of wastewater  
DisSW Percentage households having facilities for proper disposal of solid waste 

Socioeconomic PopG Annual population growth rate 
PopD Population density 
Lit Literacy rate 
Emp Percentage population employed 
OH Percentage population having ownership of the house 

3.3. Exploratory analysis and selection of driving factors 

A critical aspect of urban growth modeling is the selection of driving factors that can be 

associated to the LULC change (Thapa & Murayama, 2010). Cramer’s V analysis, 

which quantitatively measures the association between two variables, was performed for 

the selection of driving factors. This analysis was used to test whether or not a driving 

factor explained a particular land transition. The Cramer’s V value is computed by 

Equation 1. 

  (1) 

Where  is the mean square contingency coefficient, k is the number of columns and r 

is the number of rows (Acock & Stavig, 1979). The value of Cramer’s V ranges from 0 

to 1, where a higher value indicates greater association between the land class and 

driving factor being tested and vice versa. A value of V greater than or equal to 0.15 

implies the usefulness of that particular driving factor, while a value above 0.4 suggests 

a good association (Eastman, 2012). For each selected land transition, the factors 

returning Cramer’s V value greater than or equal to 0.15 were selected. In line with the 

objectives of this study, the driving factor sets were prepared at three spatial extents, 
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city district, urban and peri-urban, for all selected transitions. 

3.4. Sensitivity analysis and development of sub-models 

After the selection of land transitions and pertinent driving factors, a sensitivity analysis 

was conducted using the relative operating characteristic (ROC) method through 

logistic regression to finalize the land transitions appropriate for development of sub-

models (Mozumder & Tripathi, 2014; Oñate-Valdivieso & Bosque Sendra, 2010). The 

ROC value ranges from 0 to 1, where values higher than 0.5 indicate some association 

between the maps of reality and suitability, and values close to 1 indicate a strong fit 

between the two maps (Eastman, 2012). Only the transitions having ROC value greater 

than or equal to 0.75 were considered appropriate, and were selected for the 

development of sub-models. These transitions were grouped into sub-models, where a 

sub-model shares a common set of driving factors (Eastman, 2012; Geneletti, 2013; 

Mozumder & Tripathi, 2014). Subsequently, four sub-models, each were determined for 

the city district, urban and peri-urban areas to generate the transition potential maps. 

The contribution of biophysical, infrastructure and socioeconomic driving 

factors to the land transitions at the city district, urban and peri-urban scales was also 

analyzed. For each land transition, the contribution percentage (CP) of the three types of 

driving factors was computed separately by Equation 2. 

  (2) 

Where DFS is the number of driving factors selected from a particular domain 

(biophysical, infrastructure or socioeconomic) for any transition, and DFT is the total 

number of driving factors in that particular domain. The value of CP was used to 

analyze the association of each driving factor domain with the land transitions. 

3.5. Transition potential modeling and determination of transition rates 

A separate transition potential map was generated for each land transition modeled 

through the MLPNN in LCM. For each sub-model consisting “X” number of 

transitions, “2X” example classes were fed, half of which comprised the transition 

samples and the rest were the persistent samples. A network of neurons was created 

between the “2X” example classes and the corresponding driving factors, where the web 
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of connections comprised the sets of weights that were initially determined randomly by 

the MLPNN (Eastman, 2012; Mozumder & Tripathi, 2014). These weights were 

adjusted during each iteration to obtain an accurate set to generate a multivariate 

function. Out of the total samples selected by the MLPNN, 50% were used for training, 

whereas the rest were used for the validation of neural network. Modeling accuracies 

were tested for the sub-models and separate transition potential maps were generated for 

all land transitions at the city district, urban and peri-urban scales. 

Two transition rates were considered in this study, the first one (R1) was derived 

by MC prediction (Bell, 1974; Geneletti, 2013), which considers that the type and rate 

of future land transitions will be the same as in the past. The second rate (R2) was 

determined considering a more rapid rise in urbanization, and increasing the Markovian 

rate by 50% for the land transitions to built-up (Geneletti, 2013).  

3.6. Transition scenarios and LULC prediction 

Two growth scenarios were considered in this study; the first one (S1) was the business 

as usual in which no constraints or preferences were set on the future land transitions, 

whereas the second one (S2) was based on the restrictions and preferences for future 

LULC in the study area. The map of constraints/incentives was prepared for S2 that 

comprised four classes: prohibited (educational institutes, transportation areas like 

airports, parks and recreational areas, areas around streams and railway lines, and 

floodplain), disfavored (waterlogged, vegetated and water areas), neutral (all areas 

except prohibited, disfavored or favored) and favored (preset and planned housing 

schemes). Integer values of 0, 0.5, 1 and 2 were assigned to these classes respectively. 

During the change prediction process, this map is multiplied by the transition potential 

maps where the numeric value of each class in the constraints/incentives map restricts, 

decreases or increases the transition potential in the respective areas (Eastman, 2012). 

The MLPNN transition potential maps and the transition rates (R1 and R2) were 

used to produce the prediction maps of 2013 for both scenarios (S1 and S2). All four 

possible exploratory scenarios, R1S1, R1S2, R2S1 and R2S2, were considered to 

produce the prediction maps at three scales, city district, urban and peri-urban (total 12 

maps). 
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3.7. Model validation and prediction of 2021 and 2035 

All prediction maps of 2013 were compared with the actual LULC map of 2013 to 

examine their accuracy; AUC method was used which determines how well a 

continuous surface predicts the locations given in the distribution of actual LULC 

change (Eastman, 2012). The best approach (modeling at the city district or urban/peri-

urban scale) was determined based on the AUC values, and the prediction maps of 2021 

and 2035 were generated for all four exploratory scenarios using the selected approach. 

The selection of these years for prediction was based on fact that the local development 

authorities have prepared a master plan of 2021 (Jamal, Mazhar, & Kaukab, 2012; 

Nadeem, Haydar, Sarwar, & Ali, 2013; NESPAK-LDA, 2004), and are in process of 

preparing one of 2035 (Dawn, 2012; LDA, 2012; Nadeem et al., 2013) for the city 

district Lahore. The results of this study could be useful for the concerned departments 

and may help improving the future planning. 

4. Results and discussion 

4.1. LULC change analysis 

The urban growth dynamics in the study area were examined at city district, urban and 

peri-urban scales for the period from 1999 to 2011; Figure 2 and Table 2 shows the 

LULC changes and the cross tabulation results respectively. 
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Figure 2. LULC maps and area graphs of 1999 and 2011 at the (A) city district, (B) 

urban and (C) peri-urban scales. 

Table 2. Cross tabulation of LULC changes between 1999 and 2011 (in hectares). 
From (1999) 

To (2011) Agriculture Bare Built-up Vegetation Water 
City District 
   Agriculture 43,239.78 1,875.42 1.98 1,533.96 180.99 
   Bare 8,289.36 66,521.43 6.30 7,324.29 399.15 
   Built-up 4,103.82 6,404.40 25,104.87 3,858.39 141.30 
   Vegetation 1,917.09 3,750.03 2.97 3,486.06 69.57 
   Water 73.53 441.00 0.63 65.61 293.58 
Urban 
   Agriculture 102.24 35.55 0.45 128.34 2.88 
   Bare 659.16 7,628.67 1.35 878.22 57.24 
   Built-up 566.64 1,120.32 12,448.71 1,044.99 7.56 
   Vegetation 215.91 124.83 2.07 1,298.79 2.43 
   Water 6.66 84.06 0.00 14.94 26.28 
Peri-urban 
   Agriculture 43,137.54 1,839.87 1.53 1,405.62 178.11 
   Bare 7,630.20 58,892.76 4.95 6,446.07 341.91 
   Built-up 3,537.18 5,284.08 12,656.16 2,813.40 133.74 
   Vegetation 1,701.18 3,625.20 0.90 2,187.27 67.14 
   Water 66.87 356.94 0.63 50.67 267.30 
Numbers in bold indicate significant changes, and their corresponding transitions are considered in this 
study. 
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At city district scale, it was observed that the majority of built-up area existed 

towards the north and northwestern parts in 1999, which extended towards the south by 

2011 basically due to the rise in population (Figure 2A). The built-up area almost 

doubled during this period where major contributors of land were bare, agriculture and 

vegetation (Table 2). Examining the study area at urban scale, the majority of built-up 

area expansion was found in the northwestern and eastern parts where it increased from 

47% of the total urban area in 1999 to 57% of that in 2011 (Figure 2B). The major 

contributors to the built-up area, along with bare, were vegetation and agriculture (Table 

2). A significant reduction in the agricultural and vegetated areas was also observed. At 

the peri-urban scale, a significant rise in built-up area (around 84%) was observed 

towards the northern (adjoining the urban areas) and southern parts during 1999 and 

2011 (Figure 2C). The major land contributors to built-up area were bare, agriculture 

and vegetation (Table 2). Vegetation and agricultural area reduced by around 39% and 

17%, respectively, during this period in the peri-urban zone. 

These results indicate that the significant land transitions were different at 

different spatial scales within the same metropolitan region. Thus, separate land 

transitions were selected for urban growth modeling at the city district, urban and peri-

urban scales which involved four LULC classes and included: (1) agriculture to bare, 

agriculture to built-up, bare to built-up, bare to vegetation, vegetation to bare and 

vegetation to built-up in city district; (2) agriculture to bare, agriculture to built-up, bare 

to built-up, vegetation to bare and vegetation to built-up in urban; and (3) agriculture to 

bare, agriculture to built-up, bare to built-up, bare to vegetation, vegetation to bare and 

vegetation to built-up in peri-urban areas. 

4.2. Analysis of driving factors and land transitions 

The association between the four significant land classes and twenty-one driving factors 

was checked quantitatively through Cramer’s V values (Table 3). Instead of considering 

the overall V, the values of individual LULC classes were examined as they provide a 

better indication of the association between driving factors and land classes (Eastman, 

2012).  
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The majority of driving factors had an acceptable association (Cramer’s V value 

> 0.15) with agriculture at the city district and peri-urban scales; however, only distance 

to roads was found to have a better association with agriculture at the urban scale. This 

implies that the changes in agricultural areas in the urban zone are mainly related to the 

physical accessibility factor (transportation through roads). Different sets of driving 

factors were found to be associated with the bare and built-up areas at the three spatial 

scales. A decent relationship was observed between distance to housing schemes and 

built-up change areas with built-up class at the city district and peri-urban scales, 

however, this association was weak in the urban areas. Similar kinds of differences were 

also found in several other driving factors related to the bare class in urban areas, 

implicating that the factors governing land changes are different from each other in the 

urban and peri-urban zones. 

An interesting finding was the weak association of driving factors with 

vegetation at all three spatial scales. This could be attributed mainly to the irregular 

changes in vegetation that might have resulted due to variability in weather conditions 

or some other pertinent factors. Since the focus of this study was to examine changes in 

the built-up areas and not the vegetation, the factors selected could not completely 

explain the changes in vegetated areas. Nevertheless, an important thing deduced was 

that the driving factors governing land changes are different at different spatial scales, 

hence implying the need to model and simulate the land transitions separately for urban 

and peri-urban areas. 

A sensitivity analysis was conducted by the ROC method through logistic 

regression for final selection of land transitions for modeling (Table 4). The majority of 

selected land transitions had a strong relationship with the associated driving factors at 

the city district, urban and peri-urban scales (high ROC value). However, three 

transitions returned ROC value less than 0.75 (weak relationship with the driving 

factors), which were therefore dropped (Table 4).  
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Table 4. ROC values showing the level of association between selected land transitions 

and the driving factors (city district, urban and peri-urban scales). 
City district 

 
Urban Peri-urban 

Sub-
model 

LULC 
transition ROC Sub-

model 
LULC 
transition ROC Sub-

model 
LULC 
transition ROC 

1 Agriculture 
to bare 0.8771 - Agriculture 

to bare 0.6957 1 Agriculture 
to bare 0.8681 

2 Agriculture 
to built-up 0.9989 1 Agriculture 

to built-up 0.9737 2 Agriculture 
to built-up 0.9985 

3 Bare to 
built-up 0.9922 2 Bare to 

built-up 0.9629 2 Bare to 
built-up 0.9928 

3 Vegetation 
to built-up 0.9862 3 Vegetation 

to bare 0.7845 3 Vegetation 
to built-up 0.9913 

4 Bare to 
vegetation 0.846 4 Vegetation 

to built-up 0.946 4 Bare to 
vegetation 0.8687 

- Vegetation 
to bare 0.6587    - Vegetation 

to bare 0.59 

Numbers in bold indicate weak relationship (ROC value less than 0.75), and their corresponding 
transitions are discarded. 

 

The percentage association of each category of driving factors (biophysical, 

infrastructure and socioeconomic) with the selected land transitions was analyzed 

separately at city district, urban and peri-urban scales. The land transitions at city 

district scale were explained mainly by the infrastructure related driving factors, 

followed by the socioeconomic and biophysical categories (Figure 3A), indicating that 

the majority of land transitions were taking place as a result of changes in infrastructure 

and socioeconomic conditions. The trend was slightly different in the urban zone where 

all selected land transitions, except for bare to built-up, were explained chiefly by the 

infrastructure related factors, followed by the socioeconomic and biophysical ones 

(Figure 3B). The bare to built-up transition was explained majorly by the 

socioeconomic related driving factors implying that this transition was more sensitive to 

the changes in selected socioeconomic variables. In peri-urban areas, the majority of 

land changes were found to be related to the variability in biophysical and infrastructure 

related factors (Figure 3C). 
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Figure 3. Percentage of driving factors in each category contributing to the land 

transitions in the (A) city district, (B) urban and (C) peri-urban areas. The size of the 

circle represents the percentage, bigger means higher and vice versa. 

 

The land transitions were grouped into four sub-models, each for the city 

district, urban and peri-urban areas, where a sub-model comprised a common set of 

driving factors (Table 4). At city district scale, the accuracies of about 71, 74, 67 and 72 

percent were obtained from transition potential maps of the sub-models 1, 2, 3 and 4, 

respectively. The accuracies of outputs from the urban area sub-models 1, 2, 3 and 4 

were around 79, 73, 81 and 75 percent, respectively, whereas for peri-urban areas, the 

accuracies of around 84, 72, 79 and 87 percent were obtained from the sub-models 1, 2, 

3 and 4, respectively. Examining the averages of sub-model accuracies at the city 

district (71%), urban (77%) and peri-urban (81%) scales, it could be inferred that the 

land transitions were explained better by the driving factors at urban and peri-urban 



17 
 

scales than the ones at the city district scale. This implies that the transition potential 

maps at urban and peri-urban scales were more suitable for modeling land changes than 

the city district ones. 

4.3. Prediction results and model validation 

The prediction maps of 2013 were generated at city district, urban and peri-urban scales 

for the four exploratory scenarios (R1S1, R1S2, R2S1 and R2S2), and prediction 

accuracies were evaluated through the AUC method. Figures 4A-C shows the prediction 

maps and Figure 4D shows the actual LULC map of 2013. Figure 5 shows the area 

statistics comparison between all predicted maps and the actual LULC map of 2013. 

 

Figure 4. Prediction maps of 2013 with the AUC values for all exploratory scenarios at 

the (A) city district, (B) urban and (C) peri-urban scales, and (D) the actual LULC map 

(2013). 
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Figure 5. Predicted and actual land areas of 2013 for all scenarios at the (A) city district, 

(B) urban and (C) peri-urban scales. 

 

At city district scale, the prediction maps of all the scenarios indicated an 

expansion of built-up area mainly towards the southern parts of the metropolitan region 

(Figure 4A). The areas of all LULC classes were almost similar in R1S1 and R1S2, and 

were also comparable in R2S1 and R2S2 (Figure 5A). The areas of agriculture and 

water classes were predicted with a decent accuracy, when compared to the actual ones 

in 2013, whereas that of vegetation was on the higher side in the predictions. This 
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deviation can be attributed to the weak association between driving factors and the 

vegetation class that was observed during the analysis of driving factors. The areas of 

bare and built-up classes were slightly less in all predicted maps compared to the actual 

ones. However, the accuracies obtained in terms of AUC values of 0.711, 0.725, 0.712 

and 0.731 for the exploratory scenarios R1S1, R1S2, R2S1 and R2S2, respectively, 

were quite decent. At urban scale, an increase in the built-up area was observed towards 

the city center and the east (Figure 4B). The area statistics reveal that the predictions for 

all scenarios were quite close to the actual land areas (Figure 5B). In addition, the AUC 

values of 0.834, 0.762, 0.844 and 0.764 for the exploratory scenarios R1S1, R1S2, 

R2S1 and R2S2, respectively, also indicated that the prediction maps were quite 

accurate in comparison with the actual LULC map of 2013. An expansion in the built-

up area was observed mainly towards the south when examined at the peri-urban scale 

(Figure 4C). The area statistics indicated slight differences in the predicted areas of 

bare, vegetation and built-up classes compared to the actual ones in 2013 (Figure 5C). 

However, the AUC values of 0.771, 0.773, 0.779 and 0.762, respectively, for the R1S1, 

R1S2, R2S1 and R2S2 scenarios implied that these differences were not significant and 

the predictions were reasonable. 

Comparing the AUC values of prediction maps at different scales, it can be 

deduced that the predictions made at the urban and peri-urban scales were more 

accurate than the city district ones. This finding is in line with the results of sensitivity 

analysis (ROC values) and the MLPNN model accuracy statistics. The R2S2, R2S1 and 

R2S1 scenarios returned the highest accuracies at city district, urban and peri-urban 

scales, respectively. Since the prediction results are more accurate with R2S1 scenario 

at urban and peri-urban scales, it can be implied that the land conversions, at present, 

are taking place at a high rate without considering the restrictions or preferences for 

land transitions, thus signifying the need for appropriate land management. 

4.4. Prediction of 2021 and 2035 

The prediction maps of 2021 and 2035 were generated using the subset approach by 

modeling the urban and peri-urban areas separately for the R1S1, R1S2, R2S1 and 

R2S2 scenarios. However, for each scenario, the outputs from both the subsets were 

combined to present the whole metropolitan region (city district Lahore) (Figure 6). 
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The built-up area is expected to expand mainly towards the south and east of the 

metropolitan region by 2021 (Figure 6A), and is likely to further extend towards the 

west by 2035 (Figure 6B). Majority of the land transition towards the south and east is 

expected to occur at the cost of agricultural area. The area statistics in Figure 6 show the 

estimates of the increase in built-up and decrease in agricultural areas during the period 

from 2021 to 2035.  

 

Figure 6. Prediction maps and area graphs of (A) 2021 and (B) 2035 for all exploratory 

scenarios. 

 

Considering the R2S1 scenario to prevail in the future, as identified through the 

2013 prediction (Section 4.3), the expansion and densification of built-up area is 

expected to be quite high around the urban areas, towards the west, south and east of the 

study area. Figure 7 shows the predicted LULC areas in 2021 and 2035 for R2S1; the 

statistics suggest a reduction in the agriculture and bare areas whereas the built-up area 

is expected to rise significantly. 
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Figure 7. Predicted LULC areas of 2021 and 2035 for R2S1 scenario. 

 

5. Conclusions 

The LULC maps of 1999 and 2011 were examined at different scales, and it was found 

that the major land transitions varied in the urban and peri-urban zones within the 

metropolitan region. Moreover, the factors governing land changes were dissimilar for 

the same land transitions in both the zones. This finding was in conformity with the 

results discussed by Thapa & Murayama (2010), and suggested to consider multiple 

scales for analysis and modeling. The MLPNN modeling accuracies and the AUC 

values of the prediction maps of 2013 derived at multiple scales (city district, urban and 

peri-urban) verified this inference. These findings signify the need to develop careful 

understanding of the factors of land change in different zones within a metropolitan 

region; the planners need to develop separate land management strategies for urban and 

peri-urban areas. 

The use of more than one growth scenarios for investigating the LULC changes 

has been demonstrated in several research studies (Geneletti, 2013; Mozumder & 

Tripathi, 2014; Oñate-Valdivieso & Bosque Sendra, 2010). The study of multiple 

growth scenarios contributed to this particular research in two ways; (1) they helped in 

understanding the present growth dynamics in the study area through comparison of the 

results of different growth scenarios with the actual LULC, and (2) assisted in 

examining the impacts of implementing different growth scenarios, especially the ones 
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related to restricting/promoting LULC changes, on the future LULC conditions. The 

results imply that the proposed approach, by considering the differences in growth 

dynamics of the urban and peri-urban areas and integrating the various growth 

scenarios, could be useful to model and predict the urban growth in a metropolitan 

region. 
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