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Abstract:  

This paper aims to propose an auxiliary random finite element method (ARFEM) for efficient 

three-dimensional (3-D) slope reliability analysis and risk assessment considering spatial 

variability of soil properties. The ARFEM mainly consists of two steps: (1) preliminary 

analysis using a relatively coarse finite-element model and Subset Simulation, and (2) target 

analysis using a detailed finite-element model and response conditioning method. The 3-D 

spatial variability of soil properties is explicitly modeled using the expansion optimal linear 

estimation approach. A 3-D soil slope example is presented to demonstrate the validity of 

ARFEM. Finally, a sensitivity study is carried out to explore the effect of horizontal spatial 

variability. The results indicate that the proposed ARFEM not only provides reasonably 

accurate estimates of slope failure probability and risk, but also significantly reduces the 

computational effort at small probability levels. 3-D slope probabilistic analysis (including 

both 3-D slope stability analysis and 3-D spatial variability modelling) can reflect slope 

failure mechanism more realistically in terms of the shape, location and length of slip surface. 

Horizontal spatial variability can significantly influence the failure mode, reliability and risk 

of 3-D slopes, especially for long slopes with relatively strong horizontal spatial variability. 

These effects can be properly incorporated into 3-D slope reliability analysis and risk 

assessment using ARFEM. 

Keywords: Slope stability; Reliability analysis; Risk assessment; Spatial variability; Random 

finite element method; Response conditioning method 
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1  Introduction 1 

Slope failure (e.g., landslides) is one of the major natural hazards in the world. The 2 

occurrence probability and risk of slope failure are related to various geotechnical 3 

uncertainties (e.g., Li et al., 2011, 2015c, 2016d; Tang et al., 2013, 2015; Phoon and Ching, 4 

2014; Le, 2014; Jiang et al., 2014; Chen et al., 2016; Kasama and Whittle, 2016), among 5 

which spatial variability of soil properties is one of the most significant uncertainties 6 

affecting slope reliability and risk. Previous studies on slope reliability analysis and risk 7 

assessment that account for spatial variability mainly focus on two-dimensional (2-D) 8 

analysis, such as Griffiths and Fenton (2004), Santoso et al. (2011), Wang et al. (2011), 9 

Huang et al. (2013), Zhu et al. (2013), Li et al. (2014a,b, 2015a, 2016c), Jamshidi Chenari 10 

and Alaie (2015). As shown in Fig. 1, 2-D analysis implicitly assumes infinite length of slope 11 

and perfect correlation of soil properties (i.e., infinite spatial autocorrelation distance) in the 12 

axial direction. Based on these assumptions, slopes fail along columnar slip surface with 13 

infinite length in three-dimensional (3-D) space. This is inconsistent with the actual failure 14 

surfaces observed in slope engineering, where slope may fail at any locations of the slope 15 

with an irregular and finite slip surface. Thus, it is necessary to investigate 3-D slope 16 

reliability analysis and risk assessment, particularly with both 3-D slope stability analysis and 17 

3-D spatial variability modeling of soil properties. 18 

Several studies (e.g., Vanmarcke, 1977, 2011; Griffiths et al., 2009; Hicks and Spencer, 19 

2010; Ji, 2014; Ji and Chan, 2014) have made attempts to assess 3-D slope reliability. These 20 

studies can be classified into three categories according to the adopted reliability methods: 21 
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first-order second-moment method (FOSM), first-order reliability method (FORM), and 22 

Monte Carlo Simulation (MCS). Vanmarcke (1977, 2011) pioneered analytical 3-D slope 23 

reliability analysis using FOSM and considered the problem as an extension of 2-D slope 24 

reliability analysis based on local average and first-passage theories. This work is elegant and 25 

valuable. However, it assumed that slope fails along several prescribed cylindrical slip 26 

surfaces, which may lead to an overestimated slope reliability since many other potential slip 27 

surfaces (e.g., non-cylindrical ones) are ignored. By only accounting for the axial spatial 28 

variability, FORM was also applied to 3-D slope reliability analysis (Ji, 2014; Ji and Chan, 29 

2014). If 3-D spatial variability in axial, lateral and vertical directions as shown in Fig. 1 are 30 

completely taken into consideration, FORM may encounter computational difficulties, such 31 

as high-dimensional problem (Schuëller et al., 2004). 32 

Compared with FOSM and FORM, MCS is the most widely-used reliability method for 33 

3-D slope reliability analysis, thanks to the development of random finite element method 34 

(RFEM) (Griffiths and Fenton, 2004). The original RFEM, also referred as MCS-based 35 

RFEM, incorporates the spatial variability of soil properties into slope reliability analysis 36 

using finite-element (FE) analysis and MCS. There are several successful applications of 37 

RFEM in reliability analysis of 3-D slope (e.g., Griffiths et al., 2009; Hicks and Spencer, 38 

2010; Hicks et al., 2014; Li et al., 2015b) and slope risk assessment (e.g., Huang et al., 2013; 39 

Li et al., 2016a). RFEM is a rigorous approach since the FE analysis of slope stability can 40 

automatically locate the critical slip surface without assumptions on the shape and location. 41 

Nevertheless, MCS-based RFEM usually requires intensive computational efforts (Ji and Low, 42 
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2012), particularly for detailed 3-D FE models and small probability levels (e.g., slope failure 43 

probability Pf < 10−3). One simple strategy to address this problem is to adopt a relatively 44 

coarse FE model (e.g., the model with coarse FE mesh) in RFEM to improve the 45 

computational efficiency of deterministic slope stability analysis. However, coarse FE model 46 

may not produce accurate results compared to detailed FE model (e.g., the model with fine 47 

FE mesh). For this reason, another RFEM run with detailed FE model is still requisite if more 48 

accurate results are required, for example, at later design stages. The computational effort 49 

paid for the coarse FE model-based RFEM is thus wasted, and it cannot facilitate the detailed 50 

FE model-based RFEM neither, because of no interaction between the two RFEM runs. 51 

In addition, previous studies based on 2-D analysis indicated that the horizontal spatial 52 

variability (i.e., lateral spatial variability in the 3-D perspective, see Fig. 1) has minimal 53 

influence on slope reliability (e.g., Jiang et al., 2015; Xiao et al., 2015). One possible reason 54 

is that the lateral scale of slopes is almost in the same order of magnitude as the horizontal 55 

autocorrelation distance, namely 20m ~ 40m (Phoon and Kulhawy, 1999). In this case, the 56 

effect of horizontal spatial variability cannot be captured in 2-D slope reliability analysis. For 57 

3-D slopes, the axial scale can be much larger than the horizontal autocorrelation distance. 58 

The effect of horizontal spatial variability on 3-D slope reliability and risk has not been 59 

explored systematically. 60 

This paper aims to propose an auxiliary random finite element method (ARFEM) for 61 

efficient 3-D slope reliability analysis and risk assessment, and explore the effect of 62 

horizontal spatial variability on 3-D slopes. To achieve these goals, the paper is organized as 63 
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below. In Section 2, the ARFEM is developed. In Section 3, the modeling of 3-D spatially 64 

variable soil properties is presented. The computational effort of ARFEM is discussed in 65 

Section 4 and the implementation procedure of ARFEM is summarized in Section 5. A 3-D 66 

soil slope example is then presented in Section 6 to demonstrate the validity of ARFEM. 67 

Finally, a sensitivity study is carried out to explore the effect of horizontal spatial variability 68 

on 3-D slope reliability and risk in Section 7. 69 

2  Auxiliary random finite element method 70 

In slope reliability analysis and risk assessment, the probability of slope failure, Pf, is defined 71 

as the probability that the safety factor of slope stability, FS, is smaller than a given threshold 72 

fs (e.g., fs = 1), namely Pf = P(FS < fs), and the slope failure risk, R, can be defined as the 73 

product of Pf and the average failure consequence C  (Huang et al., 2013; Li et al., 2016a). 74 

The computational efficiency and accuracy of Pf and R depend on the deterministic analysis 75 

model of slope stability, such as the FE models with coarse and fine FE meshes (referred as 76 

coarse and fine FE models, respectively). Both of these two FE models are adopted in 77 

ARFEM, which, in turn, constitute two major steps of ARFEM: (1) preliminary analysis 78 

using a relatively coarse FE model and Subset Simulation (SS) (Au and Beck, 2001), and (2) 79 

target analysis using a fine FE model and response conditioning method (RCM) (Au, 2007). 80 

They are provided in the following two subsections. To facilitate understanding, subscripts 81 

"p" and "t" shall denote the estimates obtained from preliminary and target analyses of 82 

ARFEM, respectively. 83 

2.1 Preliminary analysis using coarse FE model and SS 84 
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Preliminary analysis aims to efficiently assess slope reliability and risk. For this purpose, 85 

coarse FE model and SS are adopted to perform deterministic slope stability analysis and 86 

slope reliability analysis at small probability levels, respectively. SS (Au and Beck, 2001; Au 87 

and Wang, 2014) stems from the idea that a small failure probability can be expressed as a 88 

product of larger conditional failure probabilities for some intermediate failure events, 89 

thereby converting a rare event simulation problem into a sequence of more frequent ones. 90 

Let fs1 > fs2 > … > fsm−1 > fs > fsm be a decreasing sequence of intermediate threshold values, 91 

and Fp,k = {FSp < fsk, k = 1, 2, …, m} be the intermediate failure events. In implementation, 92 

fsk (k = 1, 2, …, m) are determined adaptively so that the estimates of P(Fp,1) and 93 

P(Fp,k|Fp,k−1), k = 2, 3, …, m, always correspond to a common specified value of conditional 94 

probability p0. An SS run with m simulation levels (including one direct MCS level and m−1 95 

levels of Markov Chain MCS) and N samples in each level results in mN(1−p0)+Np0 samples 96 

in total. 97 

During SS, the sample space is divided into m+1 mutually exclusive and collectively 98 

exhaustive subsets k, k = 0, 1, …, m, by intermediate threshold values, i.e., fs1, fs2, …, fsm, 99 

where 0 = {FSp ≥ fs1}, k = {fsk+1 ≤ FSp < fsk}, k = 1, 2, …, m−1, and m = {FSp < fsm}. 100 

Using the Theorem of Total Probability (Ang and Tang, 2007), the Pf,p estimated from 101 

preliminary analysis can be expressed as 102 

   
 

, ,

0 0 1

kNm m
k

f p p k k p kj

k k j k

P
P P F P I

N  


               (1) 103 

where P(Fp|k) is the conditional preliminary failure probability given sampling in k, which 104 

can be estimated by ,1

kN

p kj kj
I N

 ; Ip,kj = I(FSp,j < fs|k) is the indicator function of slope 105 
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failure for j-th sample in k using coarse FE model; Ip,kj = 1 if the corresponding FS of j-th 106 

sample FSp,j < fs, otherwise, Ip,kj = 0; Nk is the number of random samples falling into k, and 107 

it is equal to N(1−p0) for k = 0, 1, …, m−1, and Np0 for k = m; P(k) is the occurrence 108 

probability of k, and it is taken as  0 01kp p  for k = 0, 1, …, m−1, and 
0

kp  for k = m 109 

(Wang et al., 2010). In this study, the FS of slope stability is calculated using the shear 110 

strength reduction technique (Griffiths and Lane, 1999).  111 

In the context of slope risk assessment, slope failure consequence, C, for each sample 112 

should be determined. As pointed out by Huang et al. (2013), slope failure consequence 113 

depends on the sliding mass volume, V, which can be taken as an equivalent index to quantify 114 

the slope failure consequence for simplicity. Analogous to the estimation of Pf,p, slope failure 115 

risk, Rp, in preliminary analysis can also be estimated as 116 

   
, , ,

0 1 0 1

k kN Nm m
k k

p p kj p kj p kj

k j k jk k

P P
R C I V

N N   

 
             (2) 117 

where Cp,kj and Vp,kj are the failure consequence and sliding mass volume corresponding to 118 

j-th sample in k based on coarse FE model, respectively. It can be proved (Li et al., 2016a) 119 

that Eq. (2) is equal to the conventional definition of R, namely, R = Pf×C . Herein, failure 120 

consequence is evaluated by Cp,kj = Ip,kj×Vp,kj because it is associated with the occurrence of 121 

slope failure. Specifically, failure consequence is represented by the sliding mass volume if 122 

slope fails (i.e., Ip,kj = 1); otherwise, no failure consequence should be considered. In this 123 

study, the sliding mass is identified by k-means clustering method (Huang et al., 2013) based 124 

on the node displacements obtained from the FE analysis. In addition to V, the sliding mass 125 

length, L, is also taken into consideration to investigate the slope failure mechanism. If there 126 
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is only one sliding mass along the axis of slope, L is defined as the maximum axial length of 127 

the sliding mass; otherwise, L is estimated as the sum of axial lengths of all sliding masses, 128 

which might occur when the axial spatial variability of soil properties is strong. 129 

Although Pf,p and Rp obtained using coarse FE model are approximate, preliminary 130 

analysis can be finished with acceptable computational effort in practice and provides 131 

valuable information and insights (e.g., k, k = 0, 1, …, m, and random samples in these 132 

subsets) for understanding the slope stability problem. How to incorporate such information 133 

and insights into the more realistic fine FE model-based reliability analysis has not been 134 

explored in the literature. RCM (Au, 2007) opens up a possibility to link these two types of 135 

reliability analyses. It is adopted in ARFEM to incorporate the information generated from 136 

the coarse FE model-based preliminary analysis into the fine FE model-based target analysis, 137 

so as to obtain the refined and consistent estimates of Pf and R efficiently.  138 

2.2 Target analysis using fine FE model and RCM 139 

RCM makes use of the information (i.e., random samples in different subsets) about the 140 

problem generated using an approximate solution (e.g., the coarse FE analysis) to achieve 141 

efficient and consistent reliability estimates with an accurate solution (e.g., the detailed FE 142 

analysis). Note that samples in their close neighborhood will have similar performances 143 

(Pradlwarter and Schuëller, 2010). Taking advantage of this property, it is reasonable to select 144 

a part of samples as the representative samples in small sample space, which is referred as the 145 

sub-binning strategy in RCM (Au, 2007). By this way, k can be further divided into Ns 146 

sub-bins kj, j = 1, 2, …, Ns, which are ranked in a descending order according to FSp values 147 
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estimated from preliminary analysis and have the same number of random samples. In each 148 

kj, one of Nk/Ns samples is randomly selected as the representative sample to judge whether 149 

kj belongs target failure domain or not, as shown in Fig. 2 schematically. Since kj, j = 1, 150 

2, …, Ns, are mutually exclusive and collectively exhaustive sub-bins of k, the target slope 151 

failure probability, Pf,t, can be expressed as 152 

       
 

, ,

0 0 1 0 1

s sN Nm m m
k

f t t k k t kj kj t kj

k k j k j s

P
P P F P P F P I

N    


             (3) 153 

where P(kj) = P(k)/Ns due to the equal division; P(Ft|k) and P(Ft|kj) are conditional 154 

target failure probabilities given sampling in k and kj, respectively; P(Ft|kj) can be 155 

estimated by It,kj = I(FSt < fs|kj), which is the indicator function of slope failure for the 156 

representative sample in kj using fine FE model; It,kj = 1 if the corresponding FSt < fs, 157 

otherwise, It,kj = 0. Similarly, the target slope failure risk, Rt, can be written as 158 

   
, , ,

0 1 0 1

s sN Nm m
k k

t t kj t kj t kj

k j k js s

P P
R C I V

N N   

 
             (4) 159 

where Ct,kj and Vt,kj are the failure consequence and sliding mass volume corresponding to the 160 

representative sample in kj based on fine FE model, respectively. 161 

Note that Eqs. (3) and (4) are respective analogues of Eqs. (1) and (2). Using the 162 

sub-binning strategy, only (m+1)Ns fine FE analyses are required for estimating Pf,t and Rt in 163 

Eqs. (3) and (4). This number is much smaller than that (i.e., mN(1−p0)+Np0) required for 164 

directly performing SS based on fine FE model. The computational effort is substantially 165 

reduced by incorporating the information generated using SS and coarse FE model in 166 

preliminary analysis. It can be shown that the estimates are asymptotically unbiased (Au, 167 
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2007). This means the results (i.e., Pf,t and Rt) obtained from target analysis of ARFEM 168 

converge to those obtained from directly performing MCS or SS based on fine FE model. 169 

2.3 Statistical analysis, CDF, and CRF 170 

This subsection makes use of the random samples to evaluate the statistics of FE responses 171 

(i.e., FS, V and L) in ARFEM, among which the mean and variance are of great interest to 172 

engineers. Since the samples fall in different sample space with different probability weights, 173 

the mean and variance should be evaluated using a weighted summation. Let X denote the FE 174 

response (e.g., FS, V and L). The mean, E(X), and variance, D(X), of X can be expressed as 175 

 
1 1

n n

i i i

i i

E X X w w
 

                 (5a) 176 

   
22

1 1

n n

i i i

i i

D X X w w E X
 

                  (5b) 177 

where wi is the probability weight of i-th selected sample, which is taken as P(k)/Nk and 178 

P(k)/Ns for samples in k in preliminary and target analyses, respectively; n is the number 179 

of samples used in analysis. If the statistical analysis is performed on the whole sample space, 180 

n is the total sample size (i.e., mN(1−p0)+Np0 in preliminary analysis and (m+1)Ns in target 181 

analysis), and 
1

1
n

ii
w


 . If it is performed on the failure space only, n is the failure samples 182 

size (i.e., nf,p and nf,t for preliminary and target analyses, respectively), and 
1

n

ii
w

  is then 183 

equal to Pf,p for preliminary analysis and Pf,t for target analysis. 184 

Likewise, Pf and R (see Eqs. (1) – (4)) can also be considered as the weighted 185 

summation of the indicator function of slope failure and the failure consequence, respectively, 186 

over the whole sample space. Although samples used in ARFEM are generated according to a 187 



12 

predefined fs (e.g., fs = 1), they can be used for evaluating Pf and R at any fs values without 188 

additional calculation. It only needs to determine the failure samples according to different fs 189 

values and update the indicator functions of slope failure in Eqs. (1) – (4). The variation of Pf 190 

as a function of fs can be described by the cumulative distribution function (CDF) of FS. 191 

Similarly, an analogue of CDF for slope risk assessment is defined in this work, namely the 192 

cumulative risk function (CRF) of FS, which describes the variation of R as a function of fs. 193 

The CDF and CRF reflect the slope failure probability and risk at different safety levels. This 194 

will be further demonstrated through the illustrative example later. 195 

As mentioned previously, mN(1−p0)+Np0 random samples are generated in preliminary 196 

analysis and (m+1)Ns of them are selected for target analysis. This necessitates the same 197 

sample space in the two analyses so that random samples generated in preliminary analysis 198 

can be directly used in target analysis. When the spatial variability is considered in FE 199 

analysis, it can be modeled as a random field (Vanmarcke, 2010). The random field is usually 200 

discretized according to the FE mesh to obtain values of soil properties in each element for 201 

the FE analysis, e.g., mid-point method (Li et al., 2016a,b) and local average subdivision 202 

method (Griffiths et al., 2009; Hicks and Spencer, 2010). Hence, the random field realized in 203 

a coarse FE mesh has less random variables than those generated in a fine FE mesh. This 204 

renders difficulty in using random samples, which are generated during preliminary analysis, 205 

in target analysis. To address this problem, expansion optimal linear estimation (EOLE) 206 

approach (Li and Der Kiureghian, 1993) is adopted in ARFEM for 3-D spatial variability 207 

modeling, which is briefly introduced in the following section. 208 
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3  EOLE for 3-D spatial variability modeling 209 

EOLE (Li and Der Kiureghian, 1993; Sudret and Der Kiureghian, 2000; Vorechovsky, 2008) 210 

is adopted in ARFEM for the following two reasons: (1) the random field realization at the 211 

location of the FE mesh can be estimated according to the random field grid, which makes it 212 

possible to employ a set of random field grid that differs from the FE mesh; (2) EOLE is 213 

computationally efficient and can be easily extended from 2-D to 3-D (Sudret and Der 214 

Kiureghian, 2000). In the context of EOLE, a stationary lognormal random field, S(x), of the 215 

uncertain soil parameter S (e.g., undrained shear strength, Su) can be written as 216 

 
1

exp
r

Ti
i x

i i

S x 






 
    

  
               (6) 217 

where x and  are the coordinates in FE mesh and random field grid, respectively; μ is the 218 

mean value of ln(S); ζ = [ζ1, ζ2, …, ζr]
T is a standard normal random vector with independent 219 

components; r is the number of truncated terms, which is determined by the required 220 

accuracy of random field discretization (e.g., Vorechovsky, 2008); λi and Φi (i = 1, 2, …, r) 221 

are the respective eigenvalues and eigenvectors of the covariance matrix of ln(S) associated 222 

with random field grid, i.e., ΣχχΦi = λiΦi; Σxχ is the optimal linear estimation matrix linking 223 

the FE mesh to the random field grid. The autocorrelation coefficients, ρ, in Σχχ and Σxχ can be 224 

calculated from a prescribed autocorrelation function. Consider, for example, the squared 225 

exponential autocorrelation function, by which ρ is calculated as 226 

2 2 2

exp
h v h

x y z

l l l


        
         

       

            (7) 227 

where Δx, Δy and Δz are the lateral, vertical and axial distances between two different 228 
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locations, respectively (see Fig. 1); lh and lv are the horizontal and vertical autocorrelation 229 

distances, respectively. Eq. (7) assumes that the horizontal spatial variability is isotropic in 230 

the lateral and axial directions. 231 

Figure 3 shows an example of a random field realization for different FE meshes using 232 

EOLE. The random field is first generated on the random field grid as shown in Fig. 3(a) 233 

which is determined according to the accuracy of random field mapping, e.g., two points 234 

within an autocorrelation distance (Sudret and Der Kiureghian, 2000). The random field 235 

realization is then mapped onto three different FE meshes (Figs. 3(b) – 3(d)). The number of 236 

random variables remains unchanged during the random field mapping, thus not relying on 237 

the FE mesh. This property of EOLE is pivotal for the success of ARFEM. 238 

4  Computational effort of ARFEM 239 

The computational effort of ARFEM consists of two parts. The first part is for the evaluation 240 

of mN(1−p0)+Np0 coarse FE analyses in preliminary analysis, and the second part is for the 241 

evaluation of (m+1)Ns fine FE analyses in target analysis. Let ξ denote the ratio of the 242 

computational effort using coarse FE model over that using fine FE model. The total 243 

computational effort of ARFEM can be expressed in terms of the equivalent number, NT, of 244 

3-D slope stability analysis using fine FE model as follow 245 

   0 011T s mN p NpN m N                    (8) 246 

The value of ξ depends on the FE models adopted in the calculation. When ξ is relatively 247 

small, which means that the coarse FE analysis is much more efficient than the fine FE 248 

analysis, the computational effort of ARFEM mainly comes from that used for (m+1)Ns fine 249 
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FE analyses in target analysis, which relies on Ns. Typically, Ns is small compared with N.  250 

To further improve the efficiency, parallel computing strategy can be introduced into 251 

ARFEM for both deterministic 3-D FE analysis and uncertainty propagation (i.e., SS and 252 

RCM). Although the computational efforts of parallel computing and serial computing are 253 

equal in terms of sample size, parallel computing can reduce computational time because 254 

more computational power is utilized simultaneously. Samples from different Markov Chains 255 

(i.e., Np0) can be parallelized for SS, and all selected samples (i.e., (m+1)Ns) can be 256 

parallelized for RCM because they have been determined before the target analysis. 257 

5  Implementation procedure 258 

Figure 4 shows the implementation procedure of ARFEM for 3-D slope reliability analysis 259 

and risk assessment. The procedure mainly consists of five steps:  260 

(1) Determine statistics (e.g., mean, standard deviation, and autocorrelation distance), 261 

autocorrelation function and probability distribution of soil properties, and characterize 262 

slope geometry. 263 

(2) Perform preliminary analysis using SS with coarse FE model, during which 264 

mN(1−p0)+Np0 random samples are generated and k (k = 0, 1, …, m) are progressively 265 

determined based on the FSp values. The results of slope reliability and risk (i.e., Pf,p and 266 

Rp) are calculated using Eqs. (1) and (2), respectively. 267 

(3) Divide k (k = 0, 1, …, m) into Ns equal sub-bins kj (j = 1, 2, …, Ns). In each kj, one 268 

sample is selected randomly, leading to a total of (m+1)Ns selected samples. 269 

(4) Perform target analysis using RCM with fine FE model and the (m+1)Ns samples selected 270 
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in Step (3). The results of slope reliability and risk (i.e., Pf,t and Rt) are refined using Eqs. 271 

(3) and (4), respectively. 272 

(5) Carry out statistical analyses on FE responses using Eq. (5) to obtain their respective 273 

statistics. 274 

Although the abovementioned implementation procedure is somewhat more complicated 275 

and non-straightforward than MCS-based RFEM, ARFEM can be developed as a 276 

user-friendly toolbox and be implemented in a non-intrusive manner (Li et al., 2016a,b). By 277 

this means, the deterministic slope stability analysis is deliberately decoupled from the 278 

uncertainty modeling and propagation. A thorough understanding of ARFEM is always 279 

advantageous but not a prerequisite for engineers to use the toolbox. They only need to focus 280 

on the deterministic slope stability analysis that they are more familiar with, i.e., developing 281 

the coarse and fine FE models for 3-D slope stability analysis in commercial FE software 282 

packages (e.g., Abaqus (Dassault Systèmes, 2015)). The toolbox will repeatedly invoke the 283 

FE models to calculate FS using the shear strength reduction technique and to evaluate V and 284 

L based on sliding mass identification, and will return the preliminary and target results of 285 

slope reliability and risk as outputs. This facilitates the practical application of ARFEM in 286 

slope reliability and risk assessment. 287 

6  Illustrative example 288 

For illustration, this section applies ARFEM to evaluate the failure probability and risk of a 289 

3-D soil slope. As shown in Fig. 5, the slope has a height (H) of 6m, a slope angle (α) of 290 

about 26.6°, and a length (B) of 100m. Two FE models are developed in Abaqus, as shown in 291 
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Fig. 6. The FE mesh size measures 2m×2m×5m for the coarse FE model and 1m×1m×1m for 292 

the fine one. In both models, the bottom (y = 0m), front (z = 100m) and back (z = 0m) sides 293 

of slope are fully fixed, and the left (x = 0m) and right (x = 40m) sides are constrained by 294 

vertical rollers. For soil property, the elastic-perfectly plastic constitutive model with 295 

Mohr-Coulomb failure criterion is used in both FE analyses.  296 

Undrained shear strength, Su, is considered to be lognormally distributed with mean of 297 

30kPa and coefficient of variation (COV) of 0.3. The spatial variability of Su is modeled 298 

using the squared exponential autocorrelation function with horizontal and vertical 299 

autocorrelation distances of 20m and 2m, respectively. More actual information on spatial 300 

variability of soil properties can be inferred from the site investigation (e.g., Cao and Wang, 301 

2014; Lloret-Cabot et al., 2014; Ching and Wang, 2016; Cao et al., 2016; Wang et al., 2016). 302 

The unit weight, Young’s modulus and Poisson’s ratio of soil are 20kN/m3, 100MPa and 0.3, 303 

respectively. Note that, the Poisson’s ratio has minimal influence on the calculated FS in 304 

slope stability analysis as pointed out by Griffiths and Lane (1999) and Griffiths and Marquez 305 

(2007). Although a value of approximately 0.5 for the Poisson’s ratio in undrained condition 306 

would be most appropriate, a value of 0.3 is adopted in this study, which is commonly used in 307 

RFEM-based probabilistic slope stability analysis (e.g., Hicks and Spencer, 2010; Hicks et al., 308 

2014; Li et al., 2015b). 309 

Figure 6 shows the results of deterministic slope stability analysis based on the mean 310 

value of Su. The failure modes (i.e., critical slip surfaces) identified by the two models are 311 

similar and nearly cylindrical. Their sliding mass lengths are almost the same as the slope 312 
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length. These results appear to be similar to those of 2-D analysis, namely, sliding along the 313 

whole slope length from the 3-D perspective. This is because the slope is relatively long and 314 

soil is homogeneous without considering spatial variability, which basically satisfies the 315 

assumptions adopted in 2-D analysis. The FS, V and L calculated by the coarse FE model are 316 

1.651, 7030m3 and 85m, respectively, while they are 1.593, 9068m3 and 91m for the fine FE 317 

model, respectively. The coarse FE model slightly overestimates FS, which is consistent with 318 

the observation reported by Griffiths and Marquez (2007), and underestimates V and L. This 319 

may lead to unconservative estimates of Pf and R in probabilistic slope stability analysis. 320 

Since the coarse FE model is much more efficient than the fine FE model (i.e., 48s vs. 35min), 321 

they are adopted to perform preliminary and target analyses in ARFEM, respectively. 322 

6.1 Comparison between 2-D and 3-D slope stability analyses 323 

As can be seen from the above results, the failure mechanism of a 3-D homogeneous slope is 324 

similar to that of a 2-D slope. However, soils are typically heterogeneous in geotechnical 325 

practice, which can be partially described by spatial variability. Taking this into consideration, 326 

this subsection compares 2-D and 3-D slope stability analyses in spatially variable soils. 327 

A typical random field realization of the slope is shown in Fig. 7(a). The corresponding 328 

FS of 3-D slope stability analysis calculated by the fine FE model is 0.741, which implies the 329 

slope fails. Its slip surface is nearly spherical with a small sliding mass length (i.e., 24m) 330 

located from 19.5m to 43.5m in the axial direction. The 3-D heterogeneous slope considering 331 

spatial variability of soil properties models real slope failure event more realistically than the 332 

3-D homogeneous slope in terms of the shape, location and length of slip surface. A series 333 



19 

(i.e., 100) of cross sections are extracted from the 3-D realization to perform 2-D FE analyses. 334 

As shown in Fig. 7, the 2-D FS values and slip surfaces vary along the axis of slope. The 335 

location of the failed cross sections is from 10.5m to 48.5m, whose length is larger than the 336 

3-D sliding mass length. It is also interesting to find that the location (i.e., 19.5m ≤ z ≤ 42.5m) 337 

where 2-D FS values are smaller than the 3-D FS is comparable with the sliding location (i.e., 338 

19.5m ≤ z ≤ 43.5m) in 3-D slope stability analysis in this example, as shown in Fig. 7(b). 339 

Although 2-D analysis could be more conservative than 3-D analysis based on the cross 340 

section with minimal 2-D FS, the location of the 3-D critical slip surface remains unknown if 341 

the 3-D analysis is not performed. Similar discussion can also be found in Griffiths and 342 

Marquez (2008). Compared with 2-D slope probabilistic analysis, 3-D slope probabilistic 343 

analysis can properly consider horizontal spatial variability in both lateral and axial directions, 344 

and automatically locate the critical slip surface with the help of FE analysis. They are crucial 345 

to slope risk assessment as illustrated in the following subsections.  346 

6.2 Reliability analysis and risk assessment using ARFEM 347 

To estimate the Pf and R for the slope example, one ARFEM run is performed with m = 4, N 348 

= 500, and p0 = 0.1 in preliminary analysis using the coarse FE model (i.e., Fig. 6(a)) and Ns 349 

= 25 in target analysis using the fine FE model (i.e., Fig. 6(c)).  350 

Table 1 summarizes the results of Pf and R for fs = 1. In preliminary analysis, the sample 351 

space is divided into five subsets k, k = 0, 1, …, 4, in a descending order of FSp values 352 

evaluated using the coarse FE model. These subsets contain 450, 450, 450, 450, and 50 353 

random samples, respectively. Among them, 392 samples in 3 and 50 samples in 4 are 354 
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identified as failure samples for fs = 1. Based on these failure samples and their sliding mass 355 

volumes, Pf,p and Rp are estimated as 8.84×10−4 and 1.77m3, respectively. The preliminary 356 

analysis with 1850 coarse FE analyses requires about 7 hours by parallel computing on a 357 

desktop computer with 8 GB RAM and one Intel Core i7 CPU clocked at 3.4 GHz. Twenty 358 

five samples in each subset are then randomly selected for target analysis. As shown in Table 359 

1, using the fine FE model, the target failure probabilities in 2 and 3 are refined from 360 

0/450 and 392/450 to 5/25 and 25/25, respectively. The values of Pf,t and Rt are refined as 361 

2.80×10−3 and 7.09m3, respectively, which are almost three and four times larger than the 362 

preliminary estimates (i.e., 8.84×10−4 and 1.77 m3), respectively. Although only 125 fine FE 363 

analyses are performed in target analysis, its computational time (about 27 hours on the same 364 

computer using parallel computing) is much longer than that for preliminary analysis. In total, 365 

approximate 34 hours (or 1.4 days) is required using ARFEM for the slope example. 366 

Figure 8 shows the variation of Pf and R with fs (i.e., CDF and CRF) obtained from the 367 

preliminary and target analyses in ARFEM. For all fs values, both Pf and R obtained from 368 

preliminary analysis are underestimated, as predicted in deterministic slope stability analysis. 369 

Hence only using coarse FE model in RFEM will lead to unconservative design of slopes. 370 

The shape of CRF is quite similar to that of CDF for the slope example. This indicates that 371 

the average consequence of slope failure (i.e., C  = R/Pf) is relatively insensitive to slope 372 

safety level (i.e., fs) compared with Pf and R. The observation is consistent with that in 2-D 373 

slope risk assessment (Li et al., 2016a). 374 

6.3 Comparison between ARFEM and MCS-based RFEM  375 
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To validate the results obtained from ARFEM, a direct MCS-based RFEM run with 10,000 376 

samples is carried out to calculate the Pf and R of the considered slope, where the fine FE 377 

model is directly used to perform deterministic slope stability analysis. The estimates of Pf 378 

and R are 3.20×10−3 and 7.00m3, respectively, as shown in Table 2. These results agree with 379 

those (i.e., 2.80×10−3 and 7.09m3) obtained from the target analysis in ARFEM because the 380 

same FE model is adopted. For comparison, Fig. 8 also shows the CDF and CRF obtained 381 

from MCS-based RFEM, which coincide with the target results of ARFEM for all fs values. 382 

These results indicate that ARFEM can produce consistent estimates of Pf and R compared 383 

with MCS-based RFEM. 384 

Recall that only 125 fine FE analyses are required in ARFEM, which is much smaller 385 

than that (i.e., 10,000) required in MCS-based RFEM. Since the computational effort ratio ξ 386 

is about 1/50 on average, the equivalent sample size NT of ARFEM calculated by Eq. (8) is 387 

1850/50+125 = 162. In addition to the sample size, the COV of Pf is about  1 f T fP N P  388 

= 0.18 for MCS-based RFEM. Using 20 independent runs, the COV of Pf from ARFEM is 389 

about 0.31. To achieve a fair comparison of the computational efficiency, the unit COV (Au, 390 

2007) is taken as a measure of the computational efficiency in this study, which is defined as 391 

COV(Pf)× TN  and accounts for the effect of number of samples used in simulation on the 392 

variation of reliability estimate. As shown in Table 2, the unit COV values of MCS-based 393 

RFEM and ARFEM are 18 and 3.9, respectively. In other words, ARFEM only requires about 394 

1/21 (i.e., (3.9/18)2) of the computational effort for MCS-based RFEM to achieve the same 395 

computational accuracy. Physically, MCS-based RFEM takes about 89.9 days (about 3 396 
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months) to produce sufficiently accurate results on the same computer using parallel 397 

computing. The computational cost is too high for practitioners. In contrast, the total 398 

computational time of ARFEM is only about 1.4 days, acceptable for 3-D FE-based reliability 399 

analysis in practice. ARFEM significantly improves the computational efficiency of 3-D 400 

slope reliability analysis and risk assessment by incorporating the information obtained from 401 

preliminary analysis with coarse FE model into target analysis with fine FE model. 402 

6.4 Correlation between coarse and fine FE models 403 

Figure 9 compares the FS, V and L of the selected 125 representative samples calculated by 404 

both coarse and fine FE models in Subsection 6.2, and illustrates the 1:1 lines and respective 405 

linear regression lines for reference. Although the linear regression lines do not overlap with 406 

the 1:1 lines, these FE responses are well correlated. The high correlations indicate that the 407 

coarse FE model used in preliminary analysis is appropriate and can reflect the main features, 408 

particularly the FS, of the fine FE model well. In addition, similar to deterministic slope 409 

stability analysis again, using coarse FE model generally leads to overestimation of FS and 410 

underestimation of V and L, which subsequently results in the underestimation of Pf and R. 411 

Such differences become more significant as responses increase. 412 

7  Effect of horizontal spatial variability on 3-D slope reliability and risk 413 

With the aid of the improved computational efficiency provided by ARFEM, this section 414 

carries out a sensitivity study to explore the effect of horizontal spatial variability on 3-D 415 

slope reliability and risk. Five values of horizontal autocorrelation distance (i.e., lh = 10m, 416 

20m, 40m, 80m, and 120m) are considered and the vertical autocorrelation distance lv is taken 417 
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as 2m. For simplicity, all results presented in this section are obtained from target analysis in 418 

ARFEM.  419 

Figure 10(a) shows the slope failure probability and risk for different values of 420 

normalized horizontal autocorrelation distance (i.e., lh/B). When lh/B increases from 0.1 to 1.2, 421 

namely, the horizontal spatial variability becomes weaker, the estimated Pf and R 422 

significantly increase by about two and three orders of magnitude, respectively. The influence 423 

weakens when the horizontal autocorrelation distance exceeds half of the slope length (e.g., 424 

lh/B = 0.8 and 1.2). Since the range of lh is generally within 20m ~ 40m, horizontal spatial 425 

variability will significantly affect Pf and R for long slopes, for instance, several kilometers 426 

long levees. 427 

With respect to slope failure mechanisms, the average sliding mass volume V  and 428 

average sliding mass length L , evaluated by Eq. (5a) and failure samples, are shown in Fig. 429 

10(b). As lh/B increases from 0.1 to 1.2, V  and L  increase slightly in comparison with Pf 430 

and R. Note that V  is equivalent to the average failure consequence C  in this study. It can 431 

be concluded that R (i.e., Pf× C ) is more sensitive to Pf than C , similar to previous 432 

observation in 2-D slope risk assessment (Li et al., 2016a). Additionally, V  and L  follow 433 

similar trends as lh/B increases. This makes the average sliding mass area on the cross section 434 

(i.e., E(V/L)), which should be dominated by the lateral spatial variability, remain roughly 435 

unchanged. Thus, the horizontal spatial variability in the axial direction, instead of that in the 436 

lateral direction, affects 3-D slope failure mechanisms and average failure consequence.  437 

Figure 11 shows the effects of horizontal spatial variability on the mean and COV values 438 
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of FS, V and L, which are evaluated using Eq. (5) and all random samples. As shown in Fig. 439 

11(a), both mean and COV values of FS increase with increasing lh. The increase in COV of 440 

FS leads to the increase in Pf. Figures 11(b) and (c) show that both the mean values of V and 441 

L increase and their COV values decrease as lh increases. This implies that the number of 442 

possible failure modes along the axial direction reduces as the horizontal spatial variability 443 

weakens. For the extreme case that lh becomes infinite, the 3-D slope is homogenous in the 444 

axial direction and can be simplified as a 2-D slope if the slope is long enough. This brings 445 

about only a few slope failure modes caused by the vertical spatial variability. Consequently, 446 

the COV values of V and L are minimal, and the corresponding mean values approach the 447 

results of the deterministic slope stability analysis. 448 

Based on the aforementioned results, the horizontal spatial variability in the axial 449 

direction affects the failure mode, reliability and risk of 3-D slopes significantly, particularly 450 

for long slopes with relatively small horizontal autocorrelation distances (e.g., below half of 451 

the slope length). Such effects are properly incorporated into 3-D slope reliability analysis 452 

and risk assessment by ARFEM.  453 

8  Summary and conclusion 454 

This paper proposed an auxiliary random finite element method (ARFEM) for efficient 455 

three-dimensional (3-D) slope reliability analysis and risk assessment, and explored the effect 456 

of horizontal spatial variability on 3-D slope reliability and risk. A 3-D soil slope example 457 

was investigated to demonstrate the validity of ARFEM, and those results were verified by 458 

Monte Carlo Simulation-based RFEM. Several conclusions can be drawn: 459 
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(1) The proposed ARFEM not only provides reasonably accurate estimates of slope failure 460 

probability and risk, but also significantly reduces the computational effort, particularly at 461 

small probability levels. This benefits from the fact that ARFEM incorporates the 462 

information generated from preliminary analysis based on a coarse finite-element (FE) 463 

model into target analysis based on a fine FE model using response conditioning method. 464 

This can significantly enhance the applications of RFEM in geotechnical practice. 465 

(2) 3-D slope probabilistic analysis (including both 3-D slope stability analysis and 3-D 466 

spatial variability modeling of soil properties) can reflect slope failure mechanism more 467 

realistically in terms of the shape, location and length of slip surface. With the 3-D FE 468 

analysis of slope stability, ARFEM provides a rigorous tool for 3-D slope probabilistic 469 

analysis, where 3-D spatial variability of soil properties are explicitly modeled. 470 

(3) Horizontal spatial variability, particularly in the axial direction, might significantly 471 

influence the failure mode, reliability and risk of 3-D slopes, especially for long slopes 472 

with relatively small horizontal autocorrelation distances (e.g., below half of the slope 473 

length). These effects can be properly incorporated into 3-D slope reliability analysis and 474 

risk assessment using ARFEM. 475 

Although the coarse and fine FE models used in this study differ in their mesh size only, 476 

the proposed method applies generally to a coarse FE model with simplified soil constitutive 477 

model, large time-step, or any other techniques to improve the efficiency of deterministic FE 478 

analysis. 479 
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Fig. 1 Assumptions made in 2-D slope reliability analysis 
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(a) SS using coarse FE model 

 

(b) Sub-binning and selection of representative samples in each subset 

 

 

(c) RCM using fine FE model 

Fig. 2 Schematic diagram of SS and RCM (N = 10, p0 = 0.2, m = 2, Ns = 2) (modified from Li 

et al. (2016b)) 
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Fig. 3 Identical random field realization mapped onto different FE meshes using EOLE 
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Fig. 4 Implementation procedure of ARFEM for 3-D slope reliability and risk assessment 
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Fig. 5 Geometry of slope example 

 

  

(a) FE mesh for coarse FE model (b) Results using coarse FE model 

 

  

(c) FE mesh for fine FE model (d) Results using fine FE model 

Fig. 6 Coarse and fine FE models and deterministic analysis results 
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(a) Slip surfaces for 2-D and 3-D analyses 

 

 

(b) Factor of safety for 2-D and 3-D analyses 

Fig. 7 Results of 2-D and 3-D analyses for a typical random field realization 
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(b) Cumulative risk function (CRF) 

Fig. 8 CDFs and CRFs obtained from MCS-based RFEM and ARFEM 
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(c) Sliding mass length, L 

Fig. 9 Comparison of FE responses obtained from coarse and fine FE models  
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(a) Slope failure probability and risk 
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(b) Average sliding mass volume and length 

Fig. 10 Effect of horizontal spatial variability on results of slope failure 
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(c) Sliding mass length, L 

Fig. 11 Effect of horizontal spatial variability on FE responses of slope 
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Table 1. Results of slope reliability and risk assessment using ARFEM 

k Ωk P(Ωk) 
Preliminary analysis Target analysis 

P(Fp|Ωk) Pf,p Rp (m
3) P(Ft|Ωk) Pf,t Rt (m

3) 

0 1.274 ≤ FSp 9×10−1 0/450 

8.84 

×10−4 
1.77 

0/25 

2.80 

×10−3 
7.09 

1 1.109 ≤ FSp < 1.274 9×10−2 0/450 0/25 

2 1.005 ≤ FSp < 1.109 9×10−3 0/450 5/25 

3 0.917 ≤ FSp < 1.005 9×10−4 392/450 25/25 

4 FSp < 0.917 1×10−4 50/50 25/25 

 

Table 2. Comparison of results between MCS-based RFEM and ARFEM 

Method NT Time (d)a Pf COV(Pf) R (m3) Unit COV 

MCS-based RFEM 10000 89.9 3.20×10−3 0.18 7.00 18 

ARFEM 
Preliminary 1850 

162b 
0.3c 

1.4c 2.80×10−3 c 0.31c 6.71c 3.9 
Target 125 1.1c 

Note: a Estimated by parallel computing; b ξ ≈ 1/50 on average; c Estimated on 20 independent 

runs. 

 


