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1Parker—A New Smart Car-Parking System Based
on Dynamic Resource Allocation and Pricing

Amir O. Kotb, Yao-Chun Shen, Xu Zhu, Senior Member, IEEE, and Yi Huang, Senior Member, IEEE

Abstract—Parking in major cities, particularly with dense traf-
fic, directly effects the traffic flow and people’s life. In this pa-
per, we introduce a new smart parking system that is based
on intelligent resource allocation, reservation, and pricing. The
proposed system solves the current parking problems by offering
guaranteed parking reservations with the lowest possible cost and
searching time for drivers and the highest revenue and resource
utilization for parking managers. New fair pricing policies are also
proposed that can be implemented in practice. The new system
is based on mathematical modeling using mixed-integer linear
programming (MILP) with the objective of minimizing the total
monetary cost for the drivers and maximizing the utilization of
parking resources.

Index Terms—Dynamic pricing, dynamic resource allocation,
mixed integer linear programming (MILP), reservation, smart car
parking.

I. INTRODUCTION

ARKING is an expensive process in terms of either money
or the time and effort spent for the “free spot chasing.”
Current studies reveal that a car is parked for 95 percent of
its lifetime and only on the road for the other 5 percent [1].
If we take England in 2014 as an example, on average a car was
driven for 361 hours a year according to the British National
Travel Survey [2] yielding about 8404 hours in which a car
would be parked. Now where would you park your car for
these very long hours? Cruising for parking is naturally the
first problem caused by the increase of car owners globally. On
average, 30 percent of traffic is caused by drivers wandering
around for parking spaces [3]. In 2006, a study in France
revealed an estimation that 70 million hours were spent every
year in France only in searching for parking which resulted in
the loss of 700 million euros annually [4]. In 2011, a global
parking survey by IBM [5] states that 20 minutes is spent on
average in searching for a coveted spot. With these statistics,
we can assume that a great portion of global pollution and fuel
waste is related to cruising for parking.
Parking spaces are found to be more than plenty in some
places and very rare to find in others. Pricing policies had
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played an important role in the overall parking availability for
decades [6]. Here comes the important question: do we need
to have more parking spaces or do we need better parking
management? We believe it is the later and thus the motivation
behind this work is about better parking management with fair
and profitable pricing policies.

The work presented in this paper combines parking reser-
vation and pricing models to overcome the parking problems.
On the parking reservation side, Mouskos et al. [7] modeled
the reservation process as a resource allocation problem. Their
model is based on MILP with the objective of minimizing
driver cost. Their model offers real time reservations with fixed
pricing. Geng et al. [8] had extended their work by taking into
account the user’s cost in terms of pricing and walking distance.
In addition, they had expanded the model by adding fairness
constraints and applying extensive simulations. Although the
system proposed in [8] is very good, their model is still limited
by being suitable only for short-term reservations and the
parking revenue was not considered.

On the pricing side, Shoup et al. [3] introduced new con-
cepts which led to the development of San Francisco Park
(SFPark) [9] in San Francisco which aims to overcome the traf-
fic congestion by dynamically changing prices based on sensor
historical data. In SFPark, sensors are deployed on the asphalt
to gather parking information that are stored in a database and
processed weekly or monthly. According to historical data, the
prices are increased and decreased proportional to the expected
utilization. Although dynamically changing parking prices shall
balance the supply and demand for parking and increase overall
utilization, it is based on historical data and statistics which may
not be accurate enough to have the proper effect.

In this paper, we present a new smart car parking system,
named iParker, with static resource scheduling, dynamic re-
source allocation and pricing models, to optimize the parking
system for both parking managers and drivers. The contri-
butions of our work include: 1) increasing parking resource
utilization, 2) increasing parking revenue, 3) improving parking
experience of drivers by lowering cost, parking spot searching
and walking times. Our work is different from the one in [8]
where a dynamic resource allocation model was proposed. The
main limitations of that model are that only reservation for
limited period of time (e.g., few minutes) was allowed, fixed
price was used and revenue was not taken into account and
only a single choice of destination was considered. Whereas our
model allows a driver to reserve a parking space for any time in
future, the revenue is considered and new pricing models are
introduced. In addition, a parking solution with their individual
journey planners is proposed. Our work in the pricing side also
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differs from Shoup’s work as we propose a real-time dynamic
pricing in parking and prove its effectiveness.

The rest of this paper is organized as follows: The related
work is presented in Section II. In Section III, the overview,
architecture and reaction scheme of the proposed system are
presented. In Section IV, the smart resource allocation model
is described and formulated. Extensive simulations and discus-
sions are presented in Section V. Last, Section VI concludes
this paper.

II. RELATED WORK

For the past two decades, there have been numerous re-
searches and investments in the car parking domain. Some
of them had been deployed in practice like Parking Guidance
and Information (PGI) systems [10]-[12]. PGI systems provide
drivers with real time information on parking within controlled
areas through variable message signs. They use deployed sen-
sors mainly on the entrances and exits of parking areas to gather
information about total occupancy. Other implementations typ-
ically use one sensor per one parking spot which has been
seen in commercial shopping malls and in business districts to
further utilize parking spaces and decrease searching time.

Most of the researches have focused on how to detect the
occupancy state of parking spots [13]-[16]. However, those
systems still have not solve all the problems. The competition
for parking leads to higher traffic congestion where parking is
monitored, leaving other parking resources vacant. Also this
leads for the known phenomenon of “multiple cars chase same
spot.” It is indeed essential to have the data on the occupancy
state in parking areas but it is more important to efficiently
utilize those data.

There are others researched parking reservation systems. For
instance, Trusiewicz et al. [17] used Unstructured Supplemen-
tary Service Data (USSD) as communication medium between
divers and parking reservation system. Although it is not free to
use USSD for most of network operators, it is still a cheap and
reliable technology to adopt in parking reservations. Inaba et al.
[18] utilized RFID tags to store and update the reservations
status and they discussed the difference between real-time and
share-time reservations where the difference between them is
that in share-time reservations, drivers must use the service in
a known entry and exit time frame as they share the resource
time. Whereas in real-time reservations, they are allowed to
park for unlimited interval of time for being independent on
other drivers. Wang et al. [19] had introduced a prototype for
a distributed system at which there is one central processor
which gathers the reservation requests and redirects them to
the relevant local processors. Their system utilizes Blue-tooth
and WiFi to detect the occupancy states inside parking lots, and
notify the drivers with available spaces accordingly.

Short Message Services (SMS) reservations were presented
in many research papers. For example, Hanif et al. [20] de-
veloped an embedded SMS reservation system using micro-
controller, keypad, gate access control and a remote terminal
unit (Micro-RTU). Micro-RTU is a standalone terminal with
a processor and a GSM module to receive SMS and trigger
I/O pins. Reservation over the internet was demonstrated in
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[21] by using a sensor network of ZigBee and pressure sensors
to detect the occupancy state of parking spots. Reservations
were allowed using a website. These reservation systems could
reduce the overall parking problems indeed. However they
mainly concentrated on the communication technologies or
medium between drivers and the systems and rarely addressed
a model or algorithm that efficiently manages the reservation in
such a fashion that produces significant improvements.

Hashimoto et al. [22] proposed a reservation system that is
auction based, at which there is an interval for the reservation
process, drivers would need to register before the deadline at
which the system will allocate the spaces based on the highest
bid. In general, the auction based methods could lead to many
fairness issues.

III. iPARKER—SYSTEM OVERVIEW

Our new concept is to combine real time reservations (RTR)
with share time reservations (STR), thus a driver can reserve a
spot while heading to it (e.g., few minutes away) and also can
reserve it at any time earlier (e.g., many days away). RTR are
achieved by performing dynamic resource allocation which is
similar to skills based routing in call centers. In the case of RTR,
drivers are constantly allocated the best parking spots available
until they reach their destinations. Whereas STR are achieved
by performing static resource allocation that is based on time
scheduling where a driver can explicitly choose the preferred
resource and the time frame at which it will be occupied at
anytime in the future. Different pricing policies for both types
of reservations that are fair for drivers and parking managers are
proposed in this paper. In addition, a dynamic pricing engine
which periodically updates the parking prices based on real
time resource utilization by occupancy and reservations and
other events is introduced. iParker features the normal and
disabled parking spots and drivers are given the freedom of
choosing multiple destinations and the system will assign the
optimal resources according to their chosen destinations and
circumstances.

Throughout this paper, we will employ the term “parker”
to refer to a driver or a car, “resource” to refer to a group of
parking spots, “D-Type” to refer to a dynamic reservation, RTR
or the type of a driver requesting a dynamic reservation and
“S-Type” to refer to a static reservation, STR or the type of a
driver requesting a static reservation.

A. Architecture and Reaction Scheme

iParker is a semi-distributed system as shown in Fig. 1: there
are one central request center (CRC), one parking manager
(PM) and multiple local smart allocation systems (SASs).

The CRC receives parkers’ requests, processes them and
diverts them to the relevant local SAS. The request process is
as following: parker chooses one to many destinations and if
he/she is an S-type, preferred parking resource can be selected.
Both types have to assign a weight parameter from 0-1 which
reflects their desire between resource-destination proximity
and resource price. Both types also set the maximum price
and walking distance they can tolerate. For S-type, the spot
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Fig. 1. iParker framework.

occupancy interval has to be defined. For D-type, the GPS
coordinates are measured and attached to the request. Finally
the parker identifications (i.e., driver and car license IDs) are
accompanied with the request. CRC also responds back to all
parkers with reservation offers and in the same fashion notifies
the local SAS with parker’s response.

The PM is a central parking manager who is an interface
among parking authorities, parking resource managers, SASs
and local pricing engines. Parking authorities can use the PM
to manually update the relevant pricing engine or data centre.
For instance, to fix pricing values for certain parking resource
or update the data centre with upcoming events near a relevant
resource.

Below we describe the main components of a local smart
allocation system:

* Pricing Engine—Pricing engines are small applications
that run a pricing model on web-servers. The duties of
a pricing engine are to fetch parking utilization data and
updates from parking authorities every predefined time
interval and to set the new parking prices accordingly. The
engine runs independent on the SAS, calculates the new
prices and updates the data centre.

* Sensors—Every resource is occupied with a spot occu-
pancy detection system. Ideally this system must provide
accurate data on the utilization of the parking resource,
deployed either indoors or outdoors. The detection system
is normally composed of a wireless/wired sensor network
that can provide occupation state of every parking spot, or
alternatively composed of counter sensors at the entrance
and exit of parking lots that is only capable of providing
total utilization value. The later method can only work in
controlled environments, therefore we prefer to use sensor
networks and a central processor that updates the data
centre with the utilization values.

* Data Centre—Holds all the information from all iParker
components and store them in a structured data container.
It’s consisted of a pricing table which contains the up
to date information on pricing per resource per minute,

utilization table which holds the utilization data, and
finally authority table which stores other parameters that
is set by parking authorities (e.g., events related). A Data
Centre is also responsible for updating multiple types of
virtual message signs and public devices of up to date
pricing information and parking availability.

* Smart Allocation Centre—A web service that runs a
sophisticated MILP model that optimally and fairly as-
signs/reserves parking resources to the parkers. The as-
signment is based on key variables that are not limited
to driver constraints, current resource utilization, up to
date pricing information and events occurrences. The
centre provides non stop parking reservation service to the
parkers and is described in details in the next section.

¢ Virtual Message Sign (VMS)—Updates parkers/public
with up to date pricing and parking availability informa-
tion. This is achieved by deploying numerous numbers
of VMS panels across cities especially around on-street
parking areas. For off-street parking lots, one VMS panel
at the entrance is sufficient to inform arrivals of updated
information. It is important to mention that a parker
will only pay according to the price rate fixed in the
reservation offer. If the parker is not using the service,
he/she will pay according to the price rate displayed at the
time of his/her parking. VMS is specially and critically
important for non smart-phone.

IV. SMART RESOURCE ALLOCATION

The problem addressed in this study combines the real time
and share time reservation systems. Real time reservations are
typically independent on the amount a parker will consume in
a parking space, i.e., a parker can spend as much time as he/she
needs without affecting the rest of the parkers. On the other
hand, share time reservations are dependent on the exact spot
occupancy and spot leave times. Share time reservations are
generally modeled as birth-death stochastic processes. In our
model, dynamic reservations are real time and static reserva-
tions are share time.
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Fig. 2. Queuing model flow.

The objective of our MILP model is to minimize the total
monetary cost for parkers and ultimately maximize the total
resource utilization to obtain the maximum revenue for parking
managers. We will formulate our model based on the queuing
model in Fig. 2. There are N resources in which every resource
7 is split into P1 spots (number of normal parking spots for dy-
namic reservations), P2 spots (number of normal parking spots
for static reservations) P3 and P4 (similar to P1 and P2 but
for disabled people). The running time of the smart allocation
centre is discretized into small time periods. We will denote
each time period as a decision point K. All parkers arrive to the
allocation center randomly and independently joins the relevant
WAIT queue. At each decision point, the allocation centre will
allocate resources to dynamic and static parkers and move them
to the relevant RESERVE queue. Parkers in the dynamic reserve
queue (DRESERVE) will get re-allocated a better parking spot
(if available) after each decision point until they reach a defined
zone defined as their first destination. Parkers in the static wait
queue (SWAIT) will only get allocated once and then move to
the static reserve queue (SRESERVE). When parkers arrive to
their resources, they will be moved to the occupy queue and
then P1, P2, P3 or P4 will be decremented by the number of
parkers. When parkers leave the parking spaces, they will be
completely removed from the system and again the count of
spaces would be incremented. To fully maximize the utilization
of resources, we will initialize the system by making 50% of
the resources to be “dynamic” and 50% to be “static.” Then
we will follow the strategy in Fig. 3: when parkers in DWAIT
queue reach their destination and fail to get allocated for the
reason that P1 or P3 became zero (i.e., no free parking spaces
for dynamic reservers), the system automatically diverts them
to SWAIT queue, such that they get a chance for allocation for
the “static” resources.

ALLOCATION-S

ACCEPT? SRESERVE

Arrived
Destination?

SRESERVE

Allocated?

Fig. 3. Static-dynamic reservations interface.

A. Problem Formulation

At each decision point K, we will define the state of the
smart allocation system A(K') and the state of parkers X;(K)
as follows (see Table I for the list of definitions):

A(K) = {DW(K), SW(K), DR(K), SR(K), Z(K)} (1)

Xi(K) = {l:(K), ¥i(K), vi(K),wi(K), Fi(K)} . 2

The key input of the allocation system is the feasible re-
sources IF;(K) that each parker is eligible for. To formulate
this, we define some major attributes for parkers. 1) M; is
the maximum total price that parker ¢ can afford to pay.
2) D; is the maximum total walking distance that parker ¢ can
tolerate. 3) ¢; is the type of parking spot that parker ¢ needs.
4) B; is the type of reservation. 5) P;;(K), P;; and g;(K) are
parameters that describe the state of parking resources and are
explained later.
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TABLE 1
SUMMARY OF NOTATIONS

Notation | Definition
K Decision point in time.
DW (K) | Set of parkers in DWAIT queue.
SW(K) | Set of parkers in SWAIT queue.
DR(K) | Set of parkers in DRESERVE queue.
SR(K) | Set of parkers in SRESERVE queue.
Z(K) Set describing the # of vacant spots in all resources.
P1 # of normal parking spots for dynamic reservations.
P2 # of normal parking spots for static reservations.
P3 # of disabled parking spots for dynamic reservations.
P4 # of disabled parking spots for static reservations.
gi(K) Set of resources that contains at least 1 free parking spot.
o(K) Set of free normal parking resources.
7(K) Set of free disabled parking resources.
L; Location of resource j.
Cj(K) Price per hour for occupying resource j.
x5 (K) Binary variable describes if parker 7 is allocated resource j.
[i(K) Location of parker i.
Vi(K) Driving speed of parker i.
M; Maximum total price that parker ¢ can afford to pay.
D; Maximum total walking distance that parker ¢ can tolerate.
M;;(K) | Actual price parker i should pay if allocated resource j.
D;;(K) Actual walking distance parker ¢ if allocated resource j.
Jii(K) Total cost function of parker 7 if allocated resource j.
©i Type of parking spot that parker ¢ needs.
Bi Type of reservation that parker ¢ requests.
Sw; Parker’s weight between price and proximity.
;i (K) Time spent in DRESERVE queue.
w;i(K) Wandering time of parker i.
T; Total occupancy time of parker .
735 (K) Remaining driving time between parker 4 and resource j.
v (K) Reserved resource j by parker 1.

# of dynamic spots in resource j that are feasible for
Pij(K) »

parker 7.
ij (K) # ollz stz/l‘tic spots in resource j that are feasible for

parker 7.
0 Occupancy interval starting time.
U Occupancy interval ending time.

Binary variable describes the state of conflict between
Oinj(K) static parkers.
E(K) Matrix of conflict of interest between static parkers.
to(K) Maximum allowed time of dynamic reservations.
IL;(K) Set of feasible resources for dynamic parkers.
D,(K) Set of feasible resources for static parkers.
Fi(K) Set of feasible resources for any parker 4 of any type.

Below we define some key binary variables:

if ¢ is requesting a normal resource

i = 3

1,
0, if¢isrequesting a disabled resource

, if 7 is requesting a dynamic reservation
Bi = “

0, if¢isrequesting a static reservation

j, if ¢ is reserved the resource j
vi(K) = {7 . ! 5)
0, otherwise

By defining I.; as the location of the resource j, the remain-
ing distance d;; (K') and driving time 7;; (K) at time K between
parker 7 and resource j can be estimated as follows:

dij(K) = [[li(K) = L ||

dii (K
Tij(K):%- (6)
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Now it is possible to set a pricing scheme for parker #’s first
attribute M;;(K) as a function of 7,; (K), ¥, (K), T; (the total
occupancy time) and C;(K) (the current price per hour for
occupying resource j). As shown in (7), we charge the dynamic
parker a reservation fee that is equivalent to his/her total reser-
vation time. On the other hand, we charge the static parker a flat
reservation fee equivalent to the price of an occupancy hour

g%(()i))(wi(K)'f'Ti'f'Tij(K)), if B;=1

M;;(K)= KV .
Cy(gg)TL)_’_Cj(K)’ if B =0,

(N

For both static and dynamic parkers, we allow them to choose
multiple destinations. DL; = {91;,02,,...,0nd;} is the set of
locations of the destinations D; = {1,2,...,nd} chosen by
parker ¢ with 01, being the first destination. A parker can
choose up to nd destination. Parker ¢’s second attribute D;; (K)
can now be formulated to express the total traveling time on
foot. Equation (8) allows the allocation system to identify the
nearest resource j to parker ¢ according to his/her chosen
destinations D;

Dij(K) = Z [on; — Lyl ®)

nebh;

Now we can calculate the total cost function J;; (K) that we
will minimize for parker ¢ according to the weight sw; = [0 —
1]. If parker ¢ wants the cheapest resource, then sw; = 1 is the
choice. If parker ¢ is only interested in the best spot in terms
of walking distance, then sw; = 0 is the choice. A value 0.5 is
also possible for a combination between price and proximity

M;;(K) D;;(K)

Jij(K) = sw; v D.

+ (1 — sw;) )

Remark: We have employed the grouping spot technique in
this model to save computational power, such that a resource j
may have N number of spots. For example, P1; = 1,P2; = 2,
P3; =3 and P1; =4 means that in resource j, there are
1 normal-dynamic, 2 normal-static, 3 disabled-dynamic and
4 disabled-static free spots.

For dynamic parkers, the allocation system must be fed with
data from parking sensors in real-time. Therefore we define
P,;(K) as the number of free dynamic spots in resource j that
is compatible for parker ¢’s parking type. We also define g;(K)
as the set of resources that contains at least 1 free parking spot.
9:(K) will be equal to either the set of free normal parking
resources denoted as o(K) or the set of free disabled parking
resources denoted as 7 (K)

Pii(K) =@iP1;(K) 4 (1 — ¢;)P3;(K) (10)
o(K) = {j: j € Resources, P1,(K) > 0}
(K) = {j: j € Resources, P3,(K) > 0}
) _ J(K)v ifp; =1
5B =16k, ifgi—o. (v

II;(K) can now be defined as the set of feasible resources
that can be allocated to dynamic parkers. IT;(K) is determined
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by filtering all the resources to match with parker ¢’s highest
boundaries on price and proximity (M; and D;). If resource j
is from the same type (normal/disabled) that parker ¢+ demands,
there are free parking spots of that kind and boundary require-
ments are met, j will be added to II; at decision time K

IL(K) ={j: Mi;(K) < M;, Di;(K) < D,

Pij(K) >0, j€g(K)}t. (12)

We will employ different approach to define the feasible
resources for static parkers. As we mentioned earlier that static
reservations are share-time reservation system. Thus the alloca-
tion system will allocate resources to static parkers according to
the availability of free parking spots at the occupancy starting
time for parker ¢ and of course according to parker’s require-
ments.

We define pij as the total number of static spots in resource j
that is compatible for parker ’s parking type, i.e.,

P = P2 + (1 — ;)P4 (13)

©iy; (K) is then computed, which is a binary variable equal to
1 if there is a conflict in occupancy intervals of parkers ¢ and
v in SW(K) and SR(K) on a resource j of the same kind.
Occupancy interval starts at # and ends at ¥,

if ((0u; > 0i5) A (0o < 945)) |

1, ((91] > 91}]’) A (eij < 191,]'))
O (K) =
) Npi = @) AN (Bi = Bu) A (i # )
0, otherwise.

Then we define matrix E(K) = [©;,;(K)] and introduce the
key array conflict;; (K) which allows the resource allocation
for static parkers such that

1€ SW(K),jeResources

conflict;; (K) = E(K) (14)

Based on conflict;; (K') and parker requirements, it is possible
to compute the feasible resources for static parkers ®,(K) as
follows:

O;(K)={j: Mi;(K) <M;, Di;(K)<D;,
conflict;; (K) < P;;(K), j € Resources}. (15)

We will combine all parkers together (dynamic and static) in one
objective function. This can be achieved by introducing F;(K)

as the set of feasible resources for each parker ¢ of any type

if 3; = 1

o (16)
if 61‘ =0.

B. Objective Function

From the parker’s point of view, iParker minimizes the
overall parker cost in terms of price and proximity. From
the parking managers’ point of view, iParker maximizes the
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resource utilization and total revenue. We introduce the binary
decision variable x;; (K) such that

1, if parker i is assigned resource j

otherwise

and define matrix X (K) = [z;;(K)]. Now we can formulate
the objective function and constraints for our problem that is
solved at each decision point K:

> > a(K) - Jij(K)

ieDW (K)UDR(K) jeF; (K)

minimize

+ > 1= Y ay(K) (18)
i€eDW (K)USW (K) JEF; (K)
st: Y zy(K)<1 Vie DW(K)USW(K)  (19)
JEF:(K)
> 2i;(K) <PIK) Vjeo(K) (20)
ieDW (K)UDR(K):p;=1
> 2i;(K) <P3(K) VYjea(K) (1)
ieDW (K)UDR(K):;=0
> @(K)=1 Vie DR(K) (22)
JEF:(K)
> (X)) | = 2 (K) >0
nelf; (K)
Vi,m € DW(K), j € F;(K)
S.t. T (K) > Tij (K)a Vi = Pm (23)
> wiy(K) - Jy(K) < J;(K—1) Vie DR(K)  (24)
jeF;(K)

The objective function in (18) can be split into 2
parts, e pw(K)UDR(K) 2jeF, (k) Tij (K) - Ji; (K)  and
2 icpw (kyusw (k) (1= 22 jer, () i (K)). In this problem we
minimize the objective function and this will have two effects
according to the mentioned parts. The first part aims to minimize
the total monetary cost in (9) for all parkers in DW (K) and
DR(K), such that parker ¢ will be assigned the resource j in
his/her feasible resources IF; with the least .J;;. Note here that
we did not include the parkers from SW(K) nor SR(K);
because static parkers do get allocated only once and for the 5 of
their choice. If we did not add the second part to the equation,
the system will not allocate any parkers by setting all z;; (K') to
zero. Therefore we introduce the second part to allocate as much
parkers as possible in the DW(K) and SW(K). Resource
allocation will be maximized because J;; by its definition is
less than 1, thus adding a cost of 1 to the objective function is
satisfactory enough to guarantee maximum resource allocation.
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TABLE II
UTILIZATION VS. tg VS. PRICE FACTOR

Utilization (%) 0 (10|20 |40 | 60 | 80 | 100
to (min) 120 | 50 | 30 | 20 | 10 2 0
Price Factor (%) | 25 | 30 | 50 | 70 | 100 | 135 | 200
Utilization: percentage of occupied spots in a parking resource.
t0: maximum allowed time of dynamic reservations. Price
Factor: a percentage to be multiplied by the original total
parking price to yield the parking price in dynamic pricing mode.

The constraints in this problem can be described as follows:

* Capacity—1) constraint (19) ensures that all parkers in
DW (K) and SW(K) cannot be assigned more than one
resource. Also it indicates that those parkers might not get
allocated, i.e., z;;(K) = 0. 2) constraints (20) and (21)
indicate that the sum of numbers of dynamic parkers who
are going to get reservations (parkers in DW (K)) and
parkers who already got reservations earlier (parkers in
DR(K)) must be less than the total unoccupied spots at
time K.

* Reservation guarantee—Constraint (22) guarantees that
every parker ¢ in DR(K) must retain their allocation.
Note here that parkers in SR(K) are not mentioned. This
is because static parkers (by the definition of the objective
function) get allocated once and they do not enter the
allocation system again once allocated and therefore their
reservation guarantee is also true.

* Cost guarantee—All kinds of reservation systems must
commit to the offer or quotation they supply to the cus-
tomer, and this is what constraint (24) will achieve. The
system will record all the parkers’ cost J at every decision
time K and it will ensure that it does not reallocate any
parker to a resource j with cost higher than J(K — 1).
Also note that SR(K) is not mentioned in the constraint;
because a static parker will choose the preferred resource
7 that he/she wants to occupy. Thus the value of J of that
parker will never change.

* Fairness—Constraint (23) indicates that if parker 7 is
located nearer to his/her feasible resources F;(K) as
compared to parker m such that 7,,,;(K) > 7;;(K) and
parkers ¢ and m are requesting the same parking type,
then a priority of allocation would be given to parker ¢
such that x,,,; (K) must be set to 0 if x;; (K) = 0.

To further maximize the resource utilization by “dynamic”
parkers, constraint (25) is introduced where we define ¢y (K) to
be the threshold at which a parker must be ¢o(K) further away
from destination in order to be eligible for dynamic allocation.
to(K) is set dynamically according to the real-time resource
utilization following the rules in Table II.

C. Dynamic Pricing Engine

We also examine the effect of dynamically changing the
prices of occupying spots in real time fashion based on real-
time utilization data of each resource j rather than changing
them every couple of days or months based on historical data.
The dynamic pricing engine will operate every predefined
minutes to update prices according to the rules in Table II.

Table II will be utilized as following: if a resource j = 1 at a
given time K =1 with all parking spots free and an original price
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Fig. 4. Program algorithm overview.

C04, the spot price at this time would be set to C (K) = 0.25
C0; because utilization is found to be 0%. Now if Utilization
increased to 60%, the engine will increase the price to the
full original price C'0;. Similarly when the utilization further
increases, the price increases till its maximum (200% of the
original price) and when the utilization falls, the price will drop
to its minimum (25% of the original price).

The motivation behind dynamic pricing is to introduce a fair
balance of utilization and revenue across all parking resources
which in turn will assist in reducing overall traffic congestion. It
is important to note that pricing change would only take effect
on parkers in WAIT queue. Which means that a parker who
already got a reservation or occupied a spot will be paying
at the same rate that was fixed for him/her at the time of
reservation/occupation.

In order to realize this in practice and for drivers who will
not use iParker, VMSs should be deployed nearby the parking
resources to show the latest pricing information and the time at
which the next pricing update would be made.

D. Algorithm and Implementation

The software used to solve the MILP problem is IBM ILOG
CPLEX (CPLEX). In order to evaluate the system effectiveness,
sets of data are first randomized to represent the data of parkers,
resources, destinations and pricing. Using Microsoft Excel, the
parkers arrivals are generated following Poisson distribution
and the rest of parameters are generated following exponential
distribution. A database is then created to store the random
data and act as the storage node for the CPLEX program.
The CPLEX program that is discussed in Fig. 4 inputs the
random data generated earlier and updates the database after
the parkers’ allocation.

V. RESULTS AND DISCUSSIONS

Performance Metrics: from the point of parker’s view, smart
parking should cost less (either in terms of money or walking
distance or searching time or all). On the other hand, from the
point of parking managers’ view, smart parking should provide
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TABLE III
SIMULATIONS SETUP PARAMETERS
R M; D; | t1; | T; A.R. v2
P1:70
P2:30 | 0-8 | 0-1 30 | 60 | N:1 5 70 30
P3:8 | GBP | KM | min | min | D: 2+ | KM/h % %
P4:4
R: Resources. A.R.: Arrival Rate (N: Normal and D: Dense).
D.A.: Dynamic Arrivals. S.A.: Static Arrivals. GBP: Great Britain
Pound. KM/h: kilometer per hour.

D.A. | SA.

g

P1 X
e B'g
D1 = /ﬁ\D2

P2

Fig. 5. Simulation case study environment.

the highest resource utilization and generate the highest rev-
enue. Thus we define the following main performance metrics:

* Total Utilization—is the total average resource utilization
and we denote it as U_avg. We also break it down
in the simulation results to parking (UP), reservation
(UR), normal-parker (U_Normal_avg) and disabled-
parker (U_Disabled_avg) utilization.

* Revenue—is the revenue generated and we break it to on-
street and off-street revenues in the simulations.

» Searching Time—is the average time spent by a parker
from the time of reaching their destination to the time of
physically occupying it.

» Total Cost—is the average total cost incurred to a parker
who ultimately had occupied a parking resource and can
be formulated as TotalCost = (1/3)(2(sw;(M;;(K)/
M;)+ (1 —sw;)(D;;(K)/D;)) + (SearchingTime, (K')/
SearchingTime,,. ))

* Wandering—is the ratio of parkers who arrived to their
destination, however they could not find or get allocated
an available parking resource.

By adding “—on” or “—off” to any of the metrics, we denote
to on-street and off-street respectively. Also note that “D” refers
to “Dynamic” and “S” refers to “Static.”

Simulations Setup: In this section, iParker system is denoted
as Smart-Parking (SP), guided system as (G) and nonguided as
(NG). G is modeled to be a smart parking system but without
reservations and it is described as follows: parkers know about
the real-time availability of parking resources, their pricing and
their proximity to their targeted destinations. Parkers in G will
minimize their cost exactly as in SP. As for NG, parkers do not
have any information about parking resources availability nor
price information. In NG system, parkers will search for a free
tolerated parking resource in an increasing radius method until
they occupy it. The values in Table III will be used in all simu-
lations (see Fig. 5 for the simulation case study environment).
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TABLE IV
SYSTEM PERFORMANCE USING UNIFORM ARRIVAL RATES

Normal Traffic Dense Traffic

SP | G | NG| SP G | NG
U_avg (%) 51.91|31.61|31.24| 84.99 |64.13|61.60
UP avg (%) 29.33|31.61|31.24| 49.78 |64.13|61.60
UR_avg (%) 22.59) NA | NA || 35.21 | NA | NA
U-on (%) 77.84/50.94|51.81|/108.64|85.57|83.87
UP-on (%) 45.97/50.94|51.81| 63.82 |85.57|83.87
UR-on (%) 31.87) NA | NA | 44.82 | NA | NA
U-off (%) 25.99/12.28|10.67| 61.34 |42.69|39.34
UP-off (%) 12.69(12.28|10.67| 35.74 |42.69|39.34
UR-off (%) 13.30]| NA | NA | 25.60 | NA | NA
Revenue_avg (%) 48.87|32.29|32.01| 77.27 |65.84(62.97
Revenue-on (%) 72.99(52.33|53.26| 96.33 |88.51(85.99
Revenue-off (%) 24.75/12.25|10.76| 58.22 |43.17|39.94
Revenue D-on (%) 47.84| NA | NA | 57.10 | NA | NA
Revenue_D-off (%) 21.22) NA | NA || 51.13 | NA | NA
Revenue_S-on (%) 25.16) NA | NA | 39.23 | NA | NA
Revenue S-off (%) 353 | NA | NA | 7.09 | NA | NA
Cost_avg (%) 29.61/25.78|34.59| 27.30 |37.03|55.17
Parking Price avg(£/h) | 2.51|1.41 | 137 | 2.72 | 1.70 | 1.67
Wandering (%) 0.00 | 1.11 [30.00|| 0.00 |16.77|50.76
Searching Time (min) | 4.36 | 7.13 |12.11] 4.46 115.27/29.86

Scalability: MILP problems are NP-Hard and the time con-
sumption of problem solving is highly proportional to the
problem complexity. In addition, the static allocation part of
our problem gets more time consuming as the parkers reserve
resources in the late future. In our problem, it is critical to obtain
a solution at each decision point in a reasonable time interval.
Therefore, the following strategies are considered to reduce the
size of the problem and are adopted in the next simulations:
1) Grouping: The number of resources can be very much re-
duced by grouping resources together, such that a resource will
contain several parking spaces (e.g., a parking lot or a street).
Similarly, destinations that are close can be grouped. 2) Area
splitting: If the number of resources and destinations are still
very large, the area can be split to a number of sub-areas where
a problem will be solved for each. 3) Reservations control: The
dynamic reservations can be limited by discriminating users
who are very far away from their destinations. Whereas the
static reservations can be limited by reducing the time frame
at which a parker can reserve a spot (e.g., 1 week).

A. Simulations Results I: Uniform Arrival Rate

The results in Table IV prove the concepts behind our system.
From the parking managers’ point of view, the total average
utilization increases by 21% which represents 16% and 14%
increase in revenue as compared with non-guided and guided
systems, respectively. Although the utilization by parking (de-
noted by UP) is higher in other systems compared to SP, the
total utilization by SP is the highest due to the introduction
of dynamic and static reservations. The effect of dynamically
varying to(K) can be seen in the results as the U-on of SP in
dense traffic is lower than that of G and NG. We expected this
to occur as by definition of (25). When the parking spaces are
close to being saturated, to(K ) approaches zero. This happens
more quickly for on-street parking in dense traffic because they
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Fig. 6. Performance metrics using variant arrival rate.

TABLE V
PERFORMANCE METRICS WITH DIFFERENT
DYNAMIC-STATIC RESOURCE RATIOS

DR:SR 10:90 | 30:70 | 50:50 | 70:30 | 90:10
Cost 034 | 034 | 034 | 033 0.33
Revenue 0.50 | 0.53 0.55 0.56 | 0.54
Utilization | 0.45 0.47 0.48 049 | 048

are much cheaper than off-street parking, therefore the SP sys-
tem allocates the incoming arrivals to off-street parking till the
on-street utilization decreases. This however can be considered
as an advantage because it has introduced a good balance of
utilization between different parking resources which in turn
balances the general traffic flow.

On the other hand, from the parkers’ point of view, SP proven
to offer parkers the lowest combined cost as compared to G and
NG. For instance, in dense traffic, the total cost is reduced by
28% and 10% as compared to NG and G respectively. Although
the cost in terms of money in SP due to reservations is higher
than other systems, the overall parker satisfaction is higher
when using SP. This is clearly shown in the results for dense
traffic where the searching time is decreased in SP by about
25 minutes as compared to NG and 11 minutes as compared
to G. The increase in searching time in G in dense traffic is
mainly due to the phenomenon of “multiple cars chasing the
same spot.” The dramatic increase of searching time in NG
is due to the fact that they search for available spaces blindly.
Also SP has the lowest cost because of the zero wandering time
(the time spent when a parker arrives destination and finds no
available parking space). The wandering ratio for parkers in NG
increases by about 20% in dense traffic as compared to normal
traffic and by about 16% in G.
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B. Simulations Results II: Variant Arrival Rate

The merits of iParker are more visualized in Fig. 6 where we
have performed another simulations with variant arrival rates
from high rate in the morning and in the evening and low rate
in the afternoon. The second simulation results agree with the
first simulation results in terms of maximizing the utilization
parking resources, increasing revenue and minimizing parkers’
cost.

However there are a few things to note here: 1) the revenue
at 7 PM for SP is greater than 1. This could normally happen
when the parking resource is near to be fully occupied and
taking into account that the fees for reservation is added on top.
2) the total cost of parkers is not reduced in SP as compared
to G in the times with low arrival rate. This is because, in G,
the cost is minimized exactly like in SP, and when the arrival
rate is low, the probability of wandering in G is close to zero
and therefore the searching time is minimal. This however
can be solved by reducing the reservation fees at the times of
low arrival rate. 3) the searching time in SP is about constant
throughout the day, which confirms that our model does not
allow wandering for users and thus decreases the overall traffic
congestion.

We compared our system with that of [8] and it is shown
in Fig. 6 that our model yields on average about 5% more
utilization, 40% less searching time and 18% more revenue.
The increase in utilization and revenue is clearly because our
model allows static reservations and also the reservation time
threshold for dynamic reservations is not fixed as in [8]. Finally
an increase of 4% in the total parker cost is seen and this is
because in [8], they do not charge fees for reservations. These
conclude that our model does outperform the one in [8].
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Fig. 7. Utilization comparison under fixed and dynamic pricing. The comparison is between parking resources 1, 2, and 3.

Most of the parameters used in the simulations are set to be
dynamic and are not fixed except for the parameter that sets
the ratio between the resources that are configured for dynamic
reservations to the static ones (DR:SR). Table V shows the main
performance metrics with different DR:SR under variant arrival
rate. The table shows DR:SR=70:30 having the best results.
The reason is that the arrival rate is set to 70:30 for parkers
as shown in Table III. However the changes observed are neg-
ligible. This proves the good efficiency of the dynamic-static
interface discussed earlier. Therefore the DR : SR = 50:50 will
be reasonable to be the default setting as the parkers’ choices
between dynamic and static reservations in real world will not
be constant.

C. Simulations Results Ill: Fixed Pricing vs. Dynamic Pricing

In this section, we explore the effect of dynamically varying
the resource pricing according to real time utilization measure
using the scheme in Table II and we present the results in Fig. 7.
It is observed as expected that by continuously changing the
prices of resources, we can control and limit the utilization
of those resources. Furthermore, these changes results in a
fair balance of utilization between parking resources which in
turn assist in reducing the overall traffic congestion caused by
parking. The average utilization of the parking resource 1 is
higher than that of other resources when using fixed pricing.
On the other hand, a significant change occurs when using
dynamic pricing, such that the average utilization of the 3
parking resources is close to identical.

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed iParker, a new smart parking
system which is based on MILP model that yields optimal
solution for dynamically and statically allocating parking re-
sources to parkers—providing flexible reservation options. The
new concepts introduced in this paper are the combination of
real-time reservations with share-time reservations, dynami-
cally performing system decisions (reservation time constraints
and pricing) according to real-time utilization information, and
offering the drivers the choice of choosing multiple destinations
and reservation type. We also have proposed pricing policies for
both static and dynamic reservations that maximize the profit
from parking. Extensive simulation results indicate that the
proposed system significantly cuts the total effective cost for
all parkers by as much as 28%, maximizes the total utilization
by up to 21% and increases the total revenue for parking
management up to 16% as compared to the non-guided parking
system. Finally we proposed a dynamic pricing scheme and by
integrating it to iParker’s model, we found by simulations that
it balances the utilization across all the parking resources and
thus assist in eliminating the overall traffic congestion caused
by parking.

Currently, the research focuses on a new parking sensing
infrastructure and an indoor navigation service for car parking.
In the future, we aim to evaluate our system using real-time data
and greater number of resources and destinations. In addition, a
scalability analysis is to be performed to examine the efficiency
of the proposed scalability techniques. Last, it would also be
useful to simulate different parking arrival scenarios in real life.
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