Palladium(II)-mediated Addition of Benzenediamines to Isocyanides. Generation of Three Types of Diaminocarbene Ligands Depending on Isomeric Structure of the Nucleophile

Mikhail A. Kinzhalov, ${ }^{\mathbf{a}}$ Svetlana A. Timofeeva, ${ }^{\text {a }}$ Konstantin V. Luzyanin, ${ }^{\text {a,b }}{ }^{\text {b }}$ Vadim P. Boyarskiy, ${ }^{\text {a* }}$ Anton A. Yakimanskiy, ${ }^{\text {a }}$ Matti Haukka, ${ }^{\text {c }}$ Vadim Yu. Kukushkin ${ }^{\text {a }}$

(a) Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034 Russia, E-mail: v.boiarskii@spbu.ru;
(b) Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom, E-mail: konstantin.luzyanin@liv.ac.uk;
(c) Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Finland

Abstract

Coupling of the palladium-bis(isocyanide) complexes cis-[$\left.\mathrm{PdCl}_{2}(\mathrm{CNR})_{2}\right]\left(\mathrm{R}=2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathbf{1}\right.$, 2-$\mathrm{Cl}-6-\mathrm{MeC}_{6} \mathrm{H}_{3}$ 2) with benzene-1,3-diamine (BDA1) leads to the diaminocarbene species cis-$\left[\mathrm{PdCl}_{2}(\mathrm{CNR})\left\{\mathrm{C}(\mathrm{NHR})=\mathrm{NH}\left(1,3-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}\right)\right\}\right]$ (5 and 6, respectively). In this reaction, BDA1 behaves as a monofunctional nucleophile that adds to one of the RNC ligands by one amino group. By contrast, reaction of $\mathbf{1}$ and $\mathbf{2}$ with benzene-1,4-diamine (BDA2) involves both amino functionalities of the diamine and leads to the binuclear species $\left[\right.$ cis $-\mathrm{PdCl}_{2}(\mathrm{CNR})\{\mu$ -$\left.\underline{\mathrm{C}}(\mathrm{NHR})=\mathrm{NH}\left(1,4-\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NH}=\underline{\mathrm{C}}(\mathrm{NHR})\right\}-($ cis $\left.)-\mathrm{PdCl}_{2}(\mathrm{CNR})\right] \quad(6$ and 7) featuring two $1,4-$ bifunctional diaminocarbene ligands. Reaction of cis- $\left[\mathrm{PdCl}_{2}(\mathrm{CNR})_{2}\right]$ ($\mathrm{R}=$ cyclohexyl 3) with either BDA1 or BDA2 does not afford any isolable carbene derivatives. The most versatile chemistry was observed when 1-3 were treated with benzene-1,2-diamine (BDA3) and the relevant substituted 1,2-diamines, viz., 4,5-dimethylbenzene-1,2-diamine (BDA4) and 4,5-dichlorobenzene-1,2-diamine (BDA5). Addition of these diamines brings about the formation of the monocarbene cationic complexes cis-[PdCl(CNR) $\left.\left\{\underline{\mathrm{C}}(\mathrm{NHR})=\mathrm{NHC}_{6} \mathrm{H}_{2} \mathrm{X}_{2} \mathrm{NH}_{2}\right\}\right] \mathrm{Cl}(\mathrm{X}=\mathrm{H}, \mathrm{Me}, \mathrm{Cl})(8-16)$, the Chugaev-type C, C-bound bis-carbenes cis- $\left[\mathrm{PdCl}_{2}\left\{\underline{\mathrm{C}}(\mathrm{NHR})=\mathrm{NHC}_{6} \mathrm{H}_{2} \mathrm{X}_{2} \mathrm{NH}=\underline{\mathrm{C}}(\mathrm{NHR})\right\}\right](\mathbf{1 7}, 18)$, and the bis $(C, N$-chelated $)$ carbene complexes cis- $\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{NHR})=\mathrm{NHC}_{6} \mathrm{H}_{2} \mathrm{X}_{2} \mathrm{NH}_{2}\right\}_{2}\right] \mathrm{Cl}_{2}$ (19-24). All prepared complexes (with an exception of $\mathbf{1 7}$ and $\mathbf{1 8}$) were isolated as colorless or pale yellow solids and characterized by elemental analyses (C, H, N), HRESI ${ }^{+/-M S}, I R,{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopies, and 4, 7, 13, 16, and 24 by X-ray diffraction. Complexes 17 and 18 were characterized by $\mathrm{HRESI}^{+/-}$-MS, IR spectroscopy, and their structures were established by X-ray crystallography.

Introduction

Metal-mediated addition of N-nucleophiles to coordinated isocyanides is known to afford complexes bearing acyclic diaminocarbene ligands (M-ADCs). ${ }^{1-4}$ These species are recognized as efficient organometallic catalysts, ${ }^{5-13}$ with corresponding palladium derivatives demonstrating outstanding performance in cross-coupling processes, ${ }^{5,6,10,11}$ whereas platinum-ADCs are efficient in hydrosilylation of alkenes. ${ }^{8}$

The vast majority of known palladium-ADC species are monodentate and are generated through nucleophilic addition of monofunctional N-nucleophiles (e.g. amines) to metal-bound CNR ligands. ${ }^{1-3}$ The addition of bifunctional N, N-nucleophiles is so far limited to few examples. ${ }^{4}$ Thus, the interplay between bis-isocyanide palladium(II) complexes and aliphatic 1,2-diamines proceeds via the attack by both amino groups on two CNR ligands leading to C, C-chelated biscarbene derivatives (Scheme 1, Route A). ${ }^{14,15}$ Closely related addition of aliphatic hydrazines brings about the formation of the Chugaev-type ${ }^{4} C, C$-bound bis-carbenes (Route B). ${ }^{16,17}$ Coupling of palladium bis-isocyanides with ambident N-phenylbenzamidine proceeds regioselectively to afford C, N-chelated species, and the regioselectivity is controlled by the nature of R in RNCs (Route C). ${ }^{18}$ Reaction of palladium-CNRs with such heterocyclic imines as 1,3diiminoisoindolines and 3-iminoisoindolin-1-ones produces C, N-chelated diaminocarbenes (Route D). ${ }^{19-21}$ Finally, the reaction of (RNC)Pd ${ }^{\mathrm{II}}$ species with aminopyridines leads to the binuclear complexes containing bridging aminocarbene ligand; this reaction proceeds through the intermediate generation of the mononuclear carbene species that further attacks the starting palladium-isocyanide complex (Route E)..22,23

Scheme 1. Coupling of isocyanides in cis- $\left[\mathrm{PdCl}_{2}(\mathrm{CNR})_{2}\right]$ with various ambident nucleophiles.

Although regioselectivity of the addition of bifunctional reagents to RNC ligands was studied, the effect of the isomeric composition of polyfunctional nucleophiles on structure of the product formed has never been investigated. Thus, while in the case of benzene-1, n -diamines ($\mathrm{n}=$ $2-4)$, Belluco and co-workers reported ${ }^{24}$ the reaction of benzene-1,2-diamine with a coordinated isocyanide in cis-[$\left.\mathrm{PdCl}_{2}(\mathrm{CNPh})_{2}\right]$ leading to the conventional monodentate Pd -ADC complex cis-$\left[\mathrm{PdCl}_{2}(\mathrm{CNPh})\left\{\mathrm{C}(\mathrm{NHPh})=\mathrm{NH}\left(1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}\right)\right\}\right]$ (Scheme 2), no reaction with the isomeric benzene-1,3- and 1,4-diamines was studied.

Scheme 2. The reported addition of benzene-1,2-diamine to $\mathrm{Pd}^{\mathrm{II}}$-bound isocyanides. ${ }^{24}$

In the framework of our projects on metal-involving reactions of $\mathrm{RNCs}^{1,4,10,11,18,19,21-23,25-27}$ and catalytic activity of (ADC)M systems, ${ }^{5,8,10,11,20,21,28,29}$ we undertook a systematic study aimed
at recognition of the influence of isomeric composition of aromatic benzene-1, n -diamines $(\mathrm{n}=2-$ 4) on the structure of the carbene product formed upon reaction with palladium-bound isocyanides. We observed that isomeric composition strongly affects the nature of ADC formed and our results are disclosed in the sections that follow.

Results and Discussion

For this study, we addressed, on the one hand, the known palladium-isocyanide complexes cis-$\left[\mathrm{PdCl}_{2}(\mathrm{CNR})_{2}\right]\left[\mathrm{R}=2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{Xyl}) \text { 1, 2-Cl-6- } \mathrm{MeC}_{6} \mathrm{H}_{3} \text { 2, cyclohexyl (Cy) 3] }\right]^{22,30}$ and, on the other hand, the isomeric benzene-1,n-diamines (Figure 1), i.e., benzene-1,3-diamine (BDA1), benzene-1,4-diamine (BDA2), and benzene-1,2-diamine (BDA3). In addition, substituted 1,2diamines such as 4,5-dimethylbenzene-1,2-diamine (BDA4) and 4,5-dichlorobenzene-1,2-diamine (BDA5) were employed as reactants.

BDA1

BDA2

BDA3

BDA4

BDA5

Figure 1. Isomeric benzene-1, n-diamines BDA1-BDA5.
(i) Reactions of palladium-isocyanide complexes $\mathbf{1} \mathbf{- 3}$ with benzene-1,3-diamine (BDA1). Owing to the absence of conjugation between the two amino groups, benzene-1,3-diamine BDA1 among the isomeric benzene-1,n-diamines is the most related to aniline. Consequently, the reaction of BDA1 and complexes $\mathbf{1}$ (or 2) in a molar ratio 1:1 (RT , MeCN, overnight) affords
typical monodentate diaminocarbene palladium species 4 or 5 ($76-80 \%$; Scheme 3) and these results agree with those reported by Belluco et al. for benzene-1,2-diamine. ${ }^{24}$ The products were separated by filtration and $\mathrm{HRESI}^{+/-}$-MS monitoring of the dark filtrate indicated the absence of any other palladium complexes apart from $\mathbf{4}$ or $\mathbf{5}$ that exist in the mixture with some organic species.

Scheme 3. Reactions of $\mathbf{1}$ and $\mathbf{2}$ with BDA1 and BDA2.

In agreement with the IR and NMR data (see Experimental) both $\mathbf{4}$ and $\mathbf{5}$ possess pendant unprotonated amino group. We attempted to involve both amino group of BDA1 in the reaction with RNC ligand by refluxing a mixture of complex 1 (2) with BDA1 in molar ratios 1:1 and 2:1 in $\mathrm{MeCN}(4 \mathrm{~h})$ or $\mathrm{CHCl}_{3}(4 \mathrm{~h})$. Monitoring of the reaction mixture by $\mathrm{HRESI}^{+/-}-\mathrm{MS}$ indicated the presence of palladium complex of $\mathbf{4}(\mathbf{5})$ and $\left[\mathrm{PdCl}(\mathrm{CNR})\left\{\mathrm{C}(\mathrm{NHR})=\mathrm{NH}\left(1,3-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}\right)\right\}\{1,3-\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NH}_{2}\right)_{2}\right\}\right]^{+}$along with a broad range of yet unidentified Pd species. Our attempts to isolate any pure palladium compound from these reaction mixtures were unsuccessful.

Furthermore, treatment of one equiv of bis(isocyanide) complex $\mathbf{1}$ with $\mathbf{4}$ (or bis(isocyanide) complex $\mathbf{2}$ with 5) does not lead to the coupling of the unreacted amino group with the RNC ligands either. All these observations indicate that the nucleophilic addition of one amino
group of BDA1 onto $\mathrm{Pd}^{\mathrm{II}}$-activated RNC reduces the nucleophilicity of the pendant NH_{2}-moiety and it loses its reactivity toward the isocyanide ligands. It is noteworthy, that the reaction of complex $\mathbf{3}$ with BDA1 even at RT yielded a mixture of yet unidentified products along with traces of metallic Pd.
(ii) Coupling of palladium-isocyanide complexes 1-3 with benzene-1,4-diamine (BDA2). The reaction between benzene-1,4-diamine (BDA2) and any one of $\mathbf{1 - 3}$ in an MeCN solution at RT yielded Pd black and no pure palladium complex was isolated from those reaction mixtures. Monitoring of these mixtures by $\mathrm{HRESI}^{+/-}$-MS indicated the presence of $\left[\mathrm{PdCl}(\mathrm{CNR})\left\{\mathrm{C}(\mathrm{NHR})=\mathrm{NH}\left(1,4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}\right)\right\}\right]^{+}, \quad\left[\mathrm{PdCl}(\mathrm{CNR})\left\{\mathrm{C}(\mathrm{NHR})=\mathrm{NH}\left(1,4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}\right)\right\}(1,4-\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NH}_{2}\right)_{2}\right)\right]^{+}$ions, and some unidentified Pd complexes. However, reflux of complexes $\mathbf{1}$ or $\mathbf{2}$ and BDA2 in a molar ratio 1:1 in CHCl_{3} instead of MeCN for 4 h led to formation of binuclear species 6 or 7, where both amino groups are involved in generation of the carbene moieties (Scheme 3); approximately a half of the starting diamine remains unreacted as verified by ${ }^{1} \mathrm{H}$ NMR. The reaction of bis(isocyanide) complexes $\mathbf{1}$ or $\mathbf{2}$ with BDA2 in a molar ratio $2: 1\left(\mathrm{CHCl}_{3}\right.$, reflux, 4 h) afforded 6 or 7 in good yields (74% and 80%, respectively), which were separated by filtration after cooling the reaction mixture to RT. We believe that the reason for the difference in reactivity between the 1,3 - and 1,4 -diamines is due to the higher nucleophilicity of benzene-1,4diamine. ${ }^{31}$ Noticeably, complex $\mathbf{3}$ is reduced to Pd black by diamine BDA2 in a CHCl_{3} solution.
(iii) Coupling of palladium-isocyanide complexes 1-3 with 1,2-diamines BDA3-BDA5. The reaction of 1-3 and BDA3-BDA5 (molar ratio $1: 1, \mathrm{CHCl}_{3}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, overnight) in all possible combinations gave monocationic aminocarbene complexes 8-16 in $69-82 \%$ isolated yields (Route A, Scheme 4; see Table 1 for compound numbering). Based on the X-ray data, in 8-16, the aminocarbene ligands are coordinated to the metal centers in a bidentate mode, i.e. through the carbene carbon and via the second amine group of the 1,2 -diamine moiety thus leading to the C, N-coordination. The close similarities of the IR spectra of $\mathbf{8 - 1 6}$ in the solid state (either in Nujol or in KBr) and in a solution $\left(\mathrm{CHCl}_{3}\right)$ indicate that $\mathbf{8}-\mathbf{1 6}$ in the solution also exist in
the chelated form. This coordination mode was previously reported for the range of ambident nucleophiles (Scheme 2, products of $\mathbf{C}-\mathbf{E}$). ${ }^{4}$

Scheme 4. Nucleophilic additions of 1,2-diamines BDA3-BDA5 to the isocyanides in 1-3.

Table 1. Numbering for the compounds 8-16 and 19-24 (for the latter given in parentheses).

Benzene-1,n- diamine used	R in starting complex cis- $\left[\mathrm{PdCl}_{2}(\mathrm{CNR})_{2}\right]$		
	$\mathbf{8}(\mathbf{1 9})$	$\mathbf{X y (2 0)}$	$\mathbf{1 0}(\mathbf{2 1})$
BDA4 $\left(\mathrm{X}=4,5-\mathrm{Me}_{2}\right)$	$\mathbf{1 1 (2 2)}$	$\mathbf{1 2}(\mathbf{2 3)}$	$\mathbf{1 3}(\mathbf{2 4})$
BDA5 $\left(\mathrm{X}=4,5-\mathrm{Cl}_{2}\right)$	$\mathbf{1 4}(-)$	$\mathbf{1 5}(-)$	$\mathbf{1 6}(-)$

Complexes 8-16 are stable upon reflux in CHCl_{3} or MeCN for ca. 24 h . However, after 2 months at RT a small amount of crystalline material ($\mathbf{1 7}$ and 18; Scheme 4, Route B) was released from solutions of $\mathbf{1 3}$ and 16, correspondingly. These crystals were mechanically separated and
characterized by IR spectroscopy and X-ray diffraction indicating that $\mathbf{1 7}$ and $\mathbf{1 8}$ are the Chugaevtype ${ }^{4} C, C$-chelated bis-carbene derivatives.

We believe that appearance of $\mathbf{1 7}$ and $\mathbf{1 8}$ in the system is the result of the palladium(II)mediated intramolecular nucleophilic addition of the pendant amine moiety to the CNR ligand in 13 and 16 that occurs similarly to other reported insertions of ambident nucleophiles (see Section 2.4 of our review ${ }^{4}$). However, all attempts to develop high yielding synthetic routes to $\mathbf{1 7}$ and $\mathbf{1 8}$ by either treatment of $\mathbf{1 3}$ and $\mathbf{1 6}$ with the corresponding CNRs or by treatment of $\mathbf{1 3}$ and $\mathbf{1 6}$ with excess $\left(n-\mathrm{Bu}_{4} \mathrm{~N}\right) \mathrm{Cl}$ were not successful. If in the former case we obtained broad mixtures with no 17 and 18, in the latter case no reaction was observed.

Addition of 2 equiv BDA3 or BDA4 to a suspension (for 1 and 2) or a solution (for 3) of one equiv the corresponding isocyanide complex $(\mathrm{MeCN}, \mathrm{RT})$ led to a rapid precipitation of biscarbenes 19-24 (Scheme 4, Route C; Table 1) except for the reaction between $\mathbf{3}$ and BDA4 that proceeded for ca. 2 h only at $70^{\circ} \mathrm{C}$. Complexes 19-24 were also obtained by the reaction of $\mathbf{8}-\mathbf{1 3}$ with BDA3 or BDA4 (a molar ratio 1:1) in MeCN (80-93\%) (Scheme 4, Route D). The reactions of BDA5 with any one of $\mathbf{1 - 3}$ (a molar ratio $2: 1$) furnished only corresponding monocarbene products 14-26 (via Route B) and no bis(C, N-chelated)carbene complexes were detected in the reaction mixture even after reflux of $\mathbf{1 - 3}$ (1 equiv) in an MeCN solution in the presence of large excess of BDA5 (4 equiv) for 24 h .

It should be mentioned that the lower reactivity of the second isocyanide ligand toward the nucleophilic addition is commonly observed for bis-isocyanide metal species, e.g. cis$\left[\mathrm{PdCl}_{2}(\mathrm{CNR})_{2}\right]$. A possible rationale for this behavior is that the carbene ligand formed, being a stronger donor compared to the isocyanide, deactivates the second CNR ligand toward the nucleophilic addition. ${ }^{5}$ In this study, we found that the reaction of palladium bis-isocyanides with 1,2-diaminobenzenes proceeds at both isocyanide ligands and, most likely, the chelation drives the second addition.

Characterization of the aminocarbene complexes. Complexes 4-16 and 19-24 were obtained as colourless or pale yellow solids and characterized by elemental analyses ($\mathrm{C}, \mathrm{H}, \mathrm{N}$), $\mathrm{HRESI}^{+/-}-\mathrm{MS}, \mathrm{IR},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopies. In addition, the structures of $\mathbf{4}, \mathbf{7}, \mathbf{1 3}, \mathbf{1 6}$, and 24 were elucidated by single-crystal X-ray diffraction studies. Complexes $\mathbf{1 7}$ and $\mathbf{1 8}$ were characterized by IR spectroscopy, $\mathrm{HRESI}^{+/-}$-MS, and their structures were determined by X-ray crystallography.

Complexes 4-16 and 19-24 gave satisfactory CHN-microanalyses that are consistent with the proposed formulas. In the $\mathrm{HRESI}^{+}-\mathrm{MS}$ of $\mathbf{4} \mathbf{- 1 6}$ and 19-24, ions $[\mathrm{M}-\mathrm{Cl}]^{+}$and/or $[\mathrm{M}-2 \mathrm{Cl}-\mathrm{H}]^{+}$ with the characteristic isotopic distribution were detected. In addition, the $m / 2$ peaks from [M$2 \mathrm{Cl}]^{2+}$ were observed in the mass spectra of $\mathbf{6}$ and $\mathbf{7}$. The HRESI ${ }^{-}$-MS of 5, 12, and 22-24 display ion peaks $[\mathrm{M}-\mathrm{H}]^{-}$and/or $[\mathrm{M}-\mathrm{Cl}-2 \mathrm{H}]^{-}$. The IR spectra of 4-24 indicated formation of the carbene moiety, thus, intense absorption at $1570-1545 \mathrm{~cm}^{-1}$ was assigned to $v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right)$ and corresponding $v(\mathrm{~N}-\mathrm{H})$ bands emerge in the range of $3250-3040 \mathrm{~cm}^{-1}$, whereas $\delta(\mathrm{N}-\mathrm{H})$ is closer to $1500 \mathrm{~cm}^{-1}$. The IR spectra of $\mathbf{4} \mathbf{- 1 6}$ display one strong $v(\mathrm{C} \equiv \mathrm{N})$ stretching vibration in the range between 2240 and $2198 \mathrm{~cm}^{-1}$ belonging to one unreacted isocyanide ligand, whereas starting complexes $\mathbf{1 - 3}$ display two overlapped $v(\mathrm{C} \equiv \mathrm{N})$ bands in the interval $2265-2208 \mathrm{~cm}^{-1} .22,30,32,33$ The IR spectra of 17-24 display no bands in the range between 2300 and $2190 \mathrm{~cm}^{-1}$ corresponding to $v(\mathrm{C} \equiv \mathrm{N})$, thus supporting the transformation of both isocyanide ligands into aminocarbenes.

The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data also confirmed the structures of the synthesized species. Addition of BDA1-BDA5 to 1-3 is accompanied by a pronounced downfield $\delta{ }^{13} \mathrm{C}$ shift of one or both of the isocyanide quaternary C atom to the range that is specific for $\mathrm{ADC} \operatorname{Pd}-\mathrm{C}_{\text {carbene }}$ ($\delta_{\mathrm{C}} 160-224$ ppm). ${ }^{11,15,19,22,34}$ The $\mathrm{C}_{\text {carbene }}=\mathrm{NH}{ }^{13} \mathrm{C}$ signals in $\mathbf{4}-\mathbf{1 6}$ were found to resonate in the range of δ_{C} $173-184 \mathrm{ppm}$, that is $c a .70 \mathrm{ppm}$ downfield shifted vs. 1 (e.g. $\delta_{\mathrm{C}} 115 \mathrm{ppm}$ for $C \equiv \mathrm{~N}$). These δ values for the $\mathrm{C}_{\text {carbene }}=\mathrm{NH}{ }^{13} \mathrm{C}$ signal are upfield relatively to those ($\delta_{\mathrm{C}} 197-201 \mathrm{ppm}$) reported for the series of palladium complexes bearing the chelating acyclic aminocarbene ligands $\left[\operatorname{PdCl}\left\{\mathrm{C}\left(\mathrm{N}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{R}^{2} \mathrm{R}^{3} \mathrm{R}^{4} \mathrm{R}^{5} \mathrm{CON}\right)\right)=\mathrm{N}(\mathrm{H}) \mathrm{R}^{1}\right\}\left(\mathrm{CNR}^{1}\right)\right] .{ }^{19}$ In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 19-24,
the $\mathrm{C}_{\text {carbene }}-\mathrm{NH}$ signals were found to resonate in the range of $\delta_{\mathrm{C}} 183-188 \mathrm{ppm}$, which is slightly ($5-10 \mathrm{ppm}$) downfield from the signals of monocarbene complexes 4-16.

The crystallographic data and processing parameters for $\mathbf{4}, \mathbf{7}, \mathbf{1 3}, \mathbf{1 6} \mathbf{- 1 8}$, and $\mathbf{2 4}$ are listed in Table S1 (Supplementary Information); the plots for the structures can be found in Figures 2-6.

Figure 2. View of 4 with the atomic numbering scheme. Thermal ellipsoids are drawn with the 50% probability. Hydrogen labels are omitted for simplicity. Selected bond lengths (\AA) and angles $\left(^{\circ}\right):$ Pd1-C16 1.929(3) Pd1-C1 1.979(3); Pd1-Cl2 2.3289(8); Pd1-Cl1 2.3843(7); N1-C1 1.320(3); N1-C2 1.446(3); N2-C1 1.329(4); N2-C10 1.440(3); N3-C12 1.388(4); N4-C16 1.156(4); N4-C17 1.405(4); C16-Pd1-C1 90.49(11); C16-Pd1-Cl2 175.94(8); C1-Pd1-Cl2 86.49(8); C16-Pd1-Cl1 89.84(8); C1-Pd1-Cl1 175.53(8); Cl2-Pd1-Cl1 93.39(3); C1-N1-C2 125.7(2); C1-N2-C10 126.3(2); C16-N4-C17 171.5(3); N1-C1-N2 118.0(3); N1-C1-Pd1 119.6(2); N2-C1-Pd1 122.3(2); N4-C16-Pd1 175.9(2).

Figure 3. View of 7 with the atomic numbering scheme. Thermal ellipsoids are drawn with the 50% probability. Hydrogen labels are omitted for simplicity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): ~ \mathrm{Pd} 1-\mathrm{C} 12$ 1.935(6); Pd1-C1 1.974(5); N3-C12 1.159(7); N3-C(13) 1.385(7); N2-C1 1.326(6); N2-C(10) 1.432(6); N1-C1 1.312(6); N1-C2 1.443(7); C12-Pd1-C1 86.8(2); C1-N1C2 122.9(4); N1-C1-N2 119.3(5); C12-N3-C(13) 176.1(5); N3-C12-Pd1 176.0(4); N2-C1-Pd1 118.2(4); N1-C1-Pd1 122.5(4).
(1) Cl_{4}

Figure 4. View of $\mathbf{1 3}$ (left) and $\mathbf{1 6}$ (right) with the atomic numbering schemes. Thermal ellipsoids are drawn with the 50% probability. Hydrogen labels are omitted for simplicity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 13: Pd1-C17 1.942(3); Pd1-C1 1.974(3); Pd1-N3 2.063(2); Pd1Cl1 2.3439(7); N1-C1 1.339(3); N1-C2 1.419(3); N2-C1 1.332(3); N2-C(9) 1.418(3); N4-C17 1.152(4); N4-C18 1.397(4); C17-Pd1-C1 94.32(11); C1-Pd1-N3 86.80(10); N2-C1-N1
114.4(2); C17-N4-C18 169.4(3). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 16: Pd1-C15 1.950(7); Pd1-C1 1.998(6); Pd1-N3 2.061(5); Pd1-Cl1 2.3315(16); Pd1-C15B 1.942(7); Pd1-C1 2.003(6); Pd1-N3B 2.052(5); Pd1-Cl1 2.3264(15); N2-C1 1.331(7); N1-C1 1.334(7); N4-C15 1.143(8); N4-C16 1.398(8); C15-Pd1-C1 96.4(2); C15-Pd1-N3 177.7(2); C1-Pd1-N3 85.2(2); N2-C1-N1 113.9(5); C15-N4-C16 172.6(6).

Figure 5. View of $\mathbf{1 7}$ (left) and $\mathbf{1 8}$ (right) with the atomic numbering schemes. Thermal ellipsoids are drawn with the 50% probability. Hydrogen labels are omitted for simplicity Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 17: Pd1-C1 1.961(7); Pd1-C17 1.974(7); Pd1-Cl2 2.3742(18); Pd1-Cl1 2.3777(18); Pd1-C1 1.961(7); Pd1-C17B 1.970(7); Pd1-Cl1 2.3693(19); Pd1-Cl2B 2.3778(18); N3-C17 1.333(9); N4-C17 1.306(9); N4-C18 1.427(9); N2-C1 1.324(9); N1-C1 1.336(9); N1-C2 1.459(9); C1-Pd1-C17 84.7(3); Cl2-Pd1-Cl1 94.09(7); C1-Pd1-C17B 86.3(3); Cl1-Pd1-C12B 92.50(7); N4-C17-N3 119.2(6); C17-N4-C18 126.2(6); C1-N1-C2 124.4(6); N2-C1-N1 118.3(6); and for 18: Pd1-C1 1.960(3); Pd1-C15 1.958(3); Pd1-Cl2 2.3683(9); Pd1Cl1 2.3755(8); N1-C1 1.319(4); N2-C1 1.338(4); N3-C15 1.334(4); N4-C15 1.326(4); C15-Pd1-C1 86.82(13); Cl2-Pd1-Cl1 93.24(3); N1-C1-N2 119.2(3); N4-C15-N3 118.1(3).

Figure 6. View of 24 with the atomic numbering scheme. Thermal ellipsoids are drawn with the 50% probability. Hydrogen labels are omitted for simplicity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \operatorname{Pd} 1-\mathrm{C} 12.008(3) ; \mathrm{Pd} 1-\mathrm{C} 17$ 2.027(3); Pd1-N3 2.095(2); Pd1-N(6) 2.105(2); N3-C16 1.438(4); N1-C1 1.329(4); N1-C2 1.434(4); N2-C1 1.332(4); N2-C(9) 1.420(4); N4-C17 1.331(4); N4-C18 1.443(4); N5-C17 1.333(4); N5-C25 1.420(4); N(6)-C32 1.443(4); C1-Pd1N3 84.04(11); C17-Pd1-N(6) 84.68(11); N1-C1-N2 117.6(3); C1-N1-C2 126.4(3); N4-C17-N5 116.3(3).

Complexes $\mathbf{4}, \mathbf{7}, \mathbf{1 3}, \mathbf{1 6}-18$, and 24 exhibit a slightly distorted square planar geometry around the metal centers. The $\mathrm{Pd}-\mathrm{C}_{\text {carbene }}$ distances are typical for the single $\mathrm{Pd}-\mathrm{C}$ bond and are comparable to those reported for the relevant palladium aminocarbene complex cis$\left[\mathrm{PdCl}_{2}\left\{\mathrm{C}\left(\mathrm{N}(\mathrm{H}) \mathrm{N}=\mathrm{CPh}_{2}\right)=\mathrm{N}(\mathrm{H}) \mathrm{Xyl}\right\}(\mathrm{CNXyl})\right](1.924(3) \AA)^{11}$ and cis$\left[\mathrm{PdCl}_{2}\{\underline{\mathrm{C}}(\mathrm{Ind})=\mathrm{N}(\mathrm{H}) \mathrm{Cy}\}(\mathrm{CNCy})\right](1.976(3) \AA) .{ }^{25}$ In all studied complexes, the carbene moieties are roughly planar and the angles around the carbene carbon atoms are near 120°. All the $\mathrm{C}-\mathrm{N}$ bonds of the carbene fragments have similar length and lies between single CN bond distance (1.469(10) \AA in amines ${ }^{35}$) and double CN bond distance (1.279(8) \AA in imines ${ }^{35}$). In the isocyanide ligand, the CN bond [C17-N4 1.152(4) for $\mathbf{1 3}$ and $\mathrm{C} 15-\mathrm{N} 41.143(8)$ for $\mathbf{1 6}, \AA]$ has a normal value for the triple CN bond in $\mathrm{Pd}-\mathrm{CNR}$ species. ${ }^{36-38}$

Final remarks

The results from this work may be considered from at least two perspectives. Firstly, we found that the direction of the reaction between the isocyanide-palladium species and benzene-1,ndiamines ($\mathrm{n}=2-4$) depends on the position of the amino group in the benzene ring, viz. on different basicity and nucleophilicity of these nucleophiles. ${ }^{31}$ Benzene-1,3-diamine BDA1 reacts with only one isocyanide group of complexes $\mathbf{1}$ and $\mathbf{2}$ leading to the typical monodentate Pd-ADC complexes 4 and 5, respectively. The reaction between benzene-1,4-diamine (BDA2) and complexes $\mathbf{1}$ and $\mathbf{2}$ includes participation of both amino groups of the nucleophile accomplishing binuclear Pd-ADC 6 and 7. By contrast, the reaction of benzene-1,2-diamines BDA3-BDA5 with palladium-isocyanides opens up the route for preparation of a wide range of aminocarbene species of different structure. Thus, a reaction of equimolar amounts of 1,2-diamines BDA3-BDA5 and bisisocyanide complexes 1-3 (a molar ratio 1:1) affords aminocarbene monocationic complexes 8-16. Some of them ($\mathbf{1 3}$ and 16) are able to form Chugaev-type C, C-chelated bis-carbene complexes 17 and $\mathbf{1 8}$ at long time exposition of the reaction mixture. The addition of two-fold excess of BDA3 or BDA4 (2 equiv) to isocyanide complexes 1-3 leads to C, N-chelated bis-carbene complexes 19-24.

Secondly, prepared diaminocarbene complexes represent different types of aminocarbene palladium species and they might be potentially interesting as acyclic diaminocarbene-based catalysts for cross-coupling reactions. ${ }^{5,6}$ In this context, palladium complexes with monodentate aminocarbene ligands ${ }^{10,11,28,29}$ as well as with C, C - and C, N-chelated bidentate aminocacarbenes ${ }^{14,17,21}$ have demonstrated an outstanding catalytic efficiency in different organic transformations, including catalysts that outperform the most active phosphine- and NHC-based complexes. At the same time, application of these compounds in other catalyzed organic transformations, e.g., Buchwald-Hartwig amination, or Heck reaction is significantly less studied but worth exploring and works in this direction are underway in our group.

Acknowledgements. This work was supported by Russian Science Foundation (grant 14-4300017). SAT is grateful to Saint Petersburg State University for the postdoctoral fellowship (12.50.2525.2013). Physicochemical studies were performed at the Center for Magnetic Resonance and Center for Chemical Analysis and Materials Research (all belong to Saint Petersburg State University). The authors declare no competing financial interests.

Supporting Information. Crystal data and structure refinement data.

Experimental

Materials and Instrumentation. Solvents, PdCl_{2}, benzenediamines, and isocyanides were obtained from commercial sources and used as received, whereas CHCl_{3} was purified by the conventional distillation over calcium chloride. Complexes 1-3 were prepared by known procedures. ${ }^{22} \mathrm{C}, \mathrm{H}$, and N elemental analyses were carried out on a Euro EA 3028HT CHNSO analyzer. Mass spectra were obtained on a Bruker micrOTOF spectrometer equipped with electrospray ionization (ESI) source and $\mathrm{MeOH}, \mathrm{MeCN}$, or $\mathrm{MeOH} / \mathrm{DMSO}$ mixture, were used as the solvents. The instrument was operated both at positive and negative ion modes using m / z range of $50-3000$. The capillary voltage of the ion source was set at $-4500 \mathrm{~V}\left(\mathrm{ESI}^{+}\right)$or $3500 \mathrm{~V}\left(\mathrm{ESI}^{-}\right)$ and the capillary exit at $\pm(70-150) \mathrm{V}$. The nebulizer gas pressure was 0.4 bars and drying gas flow 4.0 L/min. The most intensive peak in the isotopic pattern is reported. Infrared spectra (4000-400 $\left.\mathrm{cm}^{-1}\right)$ were recorded on a Shimadzu FTIR 8400S instrument in KBr pellets. $1 \mathrm{D}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, DEPT) NMR spectra were acquired on a Bruker Avance 400 spectrometers, while 2D $\left({ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right.$ COSY, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMQC} / \mathrm{HSQC}$, and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$) NMR correlation experiments were recorded on Bruker Avance II+ 500 MHz (UltraShield Magnet) spectrometers, at ambient temperature.

X-ray Structure Determinations. The crystals of 4, 7, 13, 16-18, and 24 were immersed in Fomblin® oil (Aldrich), mounted in a Nylon loop, and measured at $100-123 \mathrm{~K}$. The X-ray diffraction data were collected on a Bruker Kappa Apex II, Bruker Kappa Apex II Duo, or Agilent SuperNova diffractometer using Mo K α radiation $\left(\lambda=0.71073 \AA\right.$). The Apex 2^{39} or CrysAlisPro ${ }^{40}$ program packages were used for cell refinements and data reductions. The structures were solved by direct methods using the $\operatorname{SHELXS}-97^{41}$ or charge flipping method using Superflip ${ }^{42}$ programs. A semi-empirical or analytical absorption correction $\left(S A D A B S^{43}\right.$ or CrysAlisPro ${ }^{40}$) was applied to all data. Structural refinements were carried out using SHELXL-97. ${ }^{41}$ Due to slight disorder the carbon C16 in structure 7 was restrained so that its U_{ij} components approximate to isotropic
behavior. In 13, the chlorine and methyl substituents (Cl 2 and C 8) on one of the aromatic rings were disordered over alternative sides of the ring with occupancy ratio of $0.76 / 0.24$. The $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{Cl}$ distances were restrained to be similar on both sides of the ring. Also, the anisotropic displacement parameter of the alternative C and Cl were set to be equal. The crystals of $\mathbf{1 6}$ and $\mathbf{1 7}$ were diffracting only weakly. All 1-chloro-3-methylbenzene groups in these structures were disordered in such a way that the Me and Cl groups were flipping over alternative side of the ring. Therefore, a series of geometric and displacement restraints and constraints were applied to these disordered groups. In 18, the chlorine $(\mathrm{Cl} 3$ and C 16$)$ and the methyl $(\mathrm{C} 8$ and C 22$)$ substituents on the aromatic rings were again disordered over alternative sides of the ring with occupancy ratios of $0.61 / 0.39$ and $0.77 / 0.23$. The $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{C}$ distances were restrained to be similar on both sides of the ring and the anisotropic displacement parameters of the disordered C and Cl atoms were set to be equal. The NH and NH_{2} hydrogen atoms were located from the difference Fourier map or positioned geometrically and refined isotropically or constrained to ride on their parent atom, with $\mathrm{U}_{\text {iso }}=1.2 \mathrm{U}_{\mathrm{eq}}($ parent atom $)$. Other hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.95-1.00$ and $\mathrm{U}_{\mathrm{iso}}=1.2-1.5 \mathrm{U}_{\mathrm{eq}}$ (parent atom). The crystallographic details are summarized in Table S1. Supplementary crystallographic data for this paper have been deposited at Cambridge Crystallographic Data Centre (CCD 1435500-1435506) and can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Synthetic work

Synthesis of 4 and 5. Solid BDA1 $(0.1 \mathrm{mmol})$ was added to the suspension of isocyanide complex (1 or 2, 0.1 mmol) in $\mathrm{MeCN}(5 \mathrm{~mL})$. The reaction mixture was stirred at RT for 3 h and then left overnight. The precipitate was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ (three 1-mL portions) and dried in air at RT.

4. Yield 76%. Calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Pd}$: C, $52.62 ; \mathrm{H}, 4.78 ; \mathrm{N}, 10.23$. Found:

C, $52.60 ; \mathrm{H}, 4.78 ; \mathrm{N}, 10.20 . \mathrm{HRESI}^{+}-\mathrm{MS}(70 \mathrm{~V}, \mathrm{MeOH}, m / z)$: calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{ClPd}^{+} 511.0875$, found $511.0881[\mathrm{M}-\mathrm{Cl}]^{+}$, calc. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{Pd}^{+}$ 475.1109, found $475.1110[\mathrm{M}-2 \mathrm{Cl}-\mathrm{H}]^{+}$. $\mathrm{HRESI}^{-}-\mathrm{MS}(-70 \mathrm{~V}$, $\mathrm{MeOH}, m / z$): calc. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Pd}^{-} 545.0497$, found $545.0509[\mathrm{M}-\mathrm{H}]^{-}$. IR $\left(\mathrm{KBr}\right.$, selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3322-$ $3268(\mathrm{~m})$ and $3157(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2991(\mathrm{~m}), v(\mathrm{C} \equiv \mathrm{N}) 2198(\mathrm{~s}), v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1551(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1505(\mathrm{~s})$, $\delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 775(\mathrm{~s}) . \delta_{H}\left(400.130 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}\right): 2.25\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.31\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.41(2 \mathrm{H}, \mathrm{br}$, $\left.\mathrm{NH}_{2}\right), 6.51\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{Ar}}\right), 6.59\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{Ar}}\right), 7.08\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{Ar}}\right), 7.14-7.23$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 7.27\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{Ar}}\right), 7.38\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{Ar}}\right), 9.40(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $10.74(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) . \delta_{C}\left(100.613 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): 18.3$ and $18.4\left(\mathrm{CH}_{3}\right), 111.3,112.9$ and 113.7 $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 118.5(\mathrm{C}, \mathrm{C} \equiv \mathrm{N}), 125.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.6,128.8,129.0,129.4$ and $130.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.9,135.7,135.8$ and $141.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 178.3\left(\mathrm{C}_{\text {carbene }}\right)$.

5. Yield 80%. Calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{Cl}_{4} \mathrm{Pd}: \mathrm{C}, 44.89 ; \mathrm{H}, 3.42 ; \mathrm{N}, 9.52$. Found: C, 45.32; H, 3.40; N, 9.48. $\mathrm{HRESI}^{+}-\mathrm{MS}(70 \mathrm{~V}, \mathrm{MeOH}, m / z)$: calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{Cl}_{3} \mathrm{Pd}^{+} 550.9783$, found $550.9791[\mathrm{M}-\mathrm{Cl}]^{+}$, calc. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Pd}^{+} 515.0016$, found $515.0018[\mathrm{M}-2 \mathrm{Cl}-\mathrm{H}]^{+}$. IR $\left(\mathrm{KBr}\right.$, selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-$ H) 3416-3188 (m) and $3067(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2924(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2854(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2806(\mathrm{~m}), v(\mathrm{C} \equiv \mathrm{N})$ $2197(\mathrm{~s}), v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1553(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1497(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \mathrm{Ar}) 781(\mathrm{~s}) . \delta_{H}(400.130 \mathrm{MHz}$, DMSO$\left.\mathrm{d}_{6}\right): 2.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.52-6.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 7.22-7.59\left(8 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 9.76$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.08(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) . \delta_{C}\left(100.613 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 18.3$ and $18.4\left(\mathrm{CH}_{3}\right), 111.3,112.9$
and $113.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 118.5(\mathrm{C}, \mathrm{C} \equiv \mathrm{N}), 125.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.6,128.8,129.0$, 129.4 and $130.8\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, 134.9, 135.7, 135.8 and $141.5\left(\mathrm{C}_{\text {Ar }}\right), 178.3\left(\mathrm{C}_{\text {carbene }}\right)$.

Synthesis of 6 and 7. The mixture containing BDA2 (0.05 mmol) and isocyanide complex ($\mathbf{1}$ or $\mathbf{2}$, 0.10 mmol) in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was refluxed for 4 h . The yielded precipitate was filtered off, washed with CHCl_{3} (two 1-mL portions) and dried in air at RT .

6. Yield 74%. Calc. for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{Cl}_{4} \mathrm{Pd}_{2}$: C, $51.08 ; \mathrm{H}, 4.49 ; \mathrm{N}, 8.51$.

Found: C, 51.01; H, 4.48; N, 8.43. $\mathrm{HRESI}^{+}-\mathrm{MS}(70 \mathrm{~V}, \mathrm{MeOH}, m / z)$: calc. for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{Cl}_{3} \mathrm{Pd}_{2}{ }^{+} 949.0757$, found $949.0764[\mathrm{M}-\mathrm{Cl}]^{+}$, calc. for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{Cl}_{2} \mathrm{Pd}_{2}{ }^{2+} 458.0534$, found $458.0563[\mathrm{M}-2 \mathrm{Cl}]^{2+}$. IR (KBr , selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3286-3269(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2953-2851(\mathrm{~m}), v(\mathrm{C} \equiv \mathrm{N}) 2199(\mathrm{~s}), v(\mathrm{~N}-$ $\left.\mathrm{C}_{\text {carbene }}\right) 1550(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1516(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 775(\mathrm{~s}) . \delta_{H}\left(400.130 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 2.28(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.38\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.30-7.60\left(12 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 7.70-7.90\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 9.99(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.25$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) . \delta_{C}\left(100.613 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 18.6$ and $19.0\left(8 \mathrm{CH}_{3}\right), 128.9-136.0\left(30 \mathrm{C}, \mathrm{CH}_{\mathrm{Ar}}\right), 179.4$ ($\mathrm{C}_{\text {carbene }}$), the isocyanide C signal was not detected.

7. Yield 80%. Calc. for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{Cl}_{8} \mathrm{Pd}_{2}$: C, $42.69 ; \mathrm{H}, 3.02 ; \mathrm{N}, 7.86$. Found: C, 42.59; H, 3.00; N, 7.79. $\mathrm{HRESI}^{+}-\mathrm{MS}(70 \mathrm{~V}, \mathrm{MeOH}, m / z)$: calc. for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{Cl}_{7} \mathrm{Pd}_{2}^{+} 1028.8572$, found $1028.8586[\mathrm{M}-\mathrm{Cl}]^{+}$, calc. for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{Cl}_{6} \mathrm{Pd}_{2}{ }^{2+} 498.9427$, found $498.9477[\mathrm{M}-2 \mathrm{Cl}]^{2+}$. IR $\left(\mathrm{KBr}\right.$, selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3230-3180(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2957-2852(\mathrm{~m}), v(\mathrm{C} \equiv \mathrm{N}) 2200(\mathrm{~s})$, $\mathrm{v}\left(\mathrm{N}-\mathrm{C}_{\text {carbene }}\right) 1544(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1508(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 777(\mathrm{~s}) . \delta_{H}\left(400.130 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): 2.28$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.38\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.30-7.60\left(12 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 7.70-7.90\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 9.99(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}), 11.25(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{C}\left(100.613 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 18.8$ and $19.3\left(4 \mathrm{C}, \mathrm{CH}_{3}\right), 124.1-129.2$ $\left(30 \mathrm{C}, \mathrm{CH}_{\text {Ar }}\right), 180.4\left(\mathrm{C}_{\text {carbene }}\right)$, the isocyanide C signal was not detected.

Synthesis of 8-16. The solid benzenediamines (BDA3-BDA5; 0.1 mmol) were added to the solution or suspension of any one of $\mathbf{1 - 3}(0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and the reaction mixture left at RT overnight. The yielded precipitate was filtered off, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and dried in air at RT (portion 1). The initial solution and the filtrate were combined, dried in vacuo at RT, washed with cooled mixture of $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2} 9: 1$ (1 mL), then $\mathrm{Et}_{2} \mathrm{O}$ (two 1-mL portions), and dried in air at RT (portion 2).

8. Yield 69%. Calc. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Pd}$: C, $47.68 ; \mathrm{H}, 6.00 ; \mathrm{N}, 11.12$. Found: C, 47.67; H, 5.96; $\mathrm{N}, 11.13$. HRESI $^{+}-\mathrm{MS}(70 \mathrm{~V}, \mathrm{MeOH})$: calc. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{ClPd}^{+}$ 467.1188, found $m / z 467.1191[\mathrm{M}-\mathrm{Cl}]^{+}$. IR $\left(\mathrm{KBr}\right.$, selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-$ H) 3429 (m), $v(\mathrm{C}-\mathrm{H}) 2932-2852(\mathrm{~m}), v(\mathrm{C} \equiv \mathrm{N}) 2233$ (s$), v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1570(\mathrm{~s})$, $\delta(\mathrm{N}-\mathrm{H}) 1500(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 757(\mathrm{~s}) . \delta_{H}\left(400.130 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 0.95-2.20\left(20 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.65-$ $3.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ from Cy), $3.85-4.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ from Cy), $6.94\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{Ar}}\right)$, $7.05-7.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 7.23\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{Ar}}\right), 9.60\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.8 \mathrm{~Hz}, \mathrm{C}_{\text {carbene }}-\mathrm{NH}-\right.$ $\mathrm{Cy}), 11.07(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) . \delta_{C}\left(100.613 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 22.7,24.5,24.7,24.9,31.9$, and $33.8\left(\mathrm{CH}_{2}\right.$ from Cy$), 55.8$ and $59.2\left(\mathrm{CH}\right.$ from Cy), 121.3, 121.9, 125.0, and $126.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2$ and 135.9 $\left(\mathrm{C}_{\text {Ar }}\right), 178.9$ ($\left.\mathrm{C}_{\text {carbene }}\right)$, signal from isocyanide C was not detected.

9. Yield 78%. Calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Pd}: \mathrm{C}, 52.62 ; \mathrm{H}, 4.78 ; \mathrm{N}, 10.23$. Found: C, 52.64; H, 4.80; $\mathrm{N}, 10.23$. $\mathrm{HRESI}^{+}-\mathrm{MS}(70 \mathrm{~V}, \mathrm{MeOH})$: calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{ClPd}^{+}$ 511.0875, found $m / z 511.0883[\mathrm{M}-\mathrm{Cl}]^{+}$. IR (KBr, selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-$
H) 3447 (m), $v(\mathrm{C}-\mathrm{H}) 2950(\mathrm{~m}), v(\mathrm{C} \equiv \mathrm{N}) 2207$ (s$), v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1552(\mathrm{~s}), \delta(\mathrm{N}-$ H) $1503(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 776(\mathrm{~m}) . \delta_{H}\left(400.130 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 2.14\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.57(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 6.79-7.33\left(10 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 11.06(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 12.35(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) . \delta_{C}\left(100.613 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right):$ 18.3 and $19.9\left(\mathrm{CH}_{3}\right), 121.2,122.3$ and $125.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.3,127.8,128.1$ and 128.3 $\left(\mathrm{CH}_{\text {Ar }}\right)$, $129.3\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $130.1\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, 135.2, 135.6 and $137.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 183.7\left(\mathrm{C}_{\text {carbene }}\right)$, signal from isocyanide C was not detected.

7 Cl
10. Yield 72%. Calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{Cl}_{4} \mathrm{Pd}$: C, 48.89 ; $\mathrm{H}, 3.42$; $\mathrm{N}, 9.52$. Found: C , 48.93; H, 3.44; N, 9.53. $\mathrm{HRESI}^{+}-\mathrm{MS}(70 \mathrm{~V}, \mathrm{MeOH})$: calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{Cl}_{3} \mathrm{Pd}^{+}$ 550.9783 , found $m / z 550.9788[\mathrm{M}-\mathrm{Cl}]^{+}$. IR (KBr , selected bands, cm^{-1}): $v(\mathrm{~N}-$ H) 3446-3130 (m), v(C-H) $2962(\mathrm{~m}), v(\mathrm{C} \equiv \mathrm{N}) 2210(\mathrm{~s}), v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1556(\mathrm{~s})$, $\delta(\mathrm{N}-\mathrm{H}) 1503(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 784(\mathrm{~m}) . \delta_{H}\left(400.130 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.59(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 7.14-7.63\left(10 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right) . \delta_{C}\left(100.613 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 17.4$ and $17.8\left(\mathrm{CH}_{3}\right), 121.9,122.4$, 126.6, 126.7, 127.5 and $128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 129.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 130.0$ and 130.4 $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.9$ and $131.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.6,135.3,138.0$ and $139.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 177.0\left(\mathrm{C}_{\text {carbene }}\right)$, signal from isocyanide C was not detected.

11. Yield 77%. Calc. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Pd}$: C, 49.68 ; $\mathrm{H}, 6.44$; $\mathrm{N}, 10.53$. Found: C, 49.78; H, 6.50; N, 10.48. $\mathrm{HRESI}^{+}-\mathrm{MS}(70 \mathrm{~V}, \mathrm{MeOH})$: calc. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{ClPd}^{+}$495.1501, found $m / z 495.1503[\mathrm{M}-\mathrm{Cl}]^{+}$. IR (KBr , selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3430(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2935-2850(\mathrm{~m}), v(\mathrm{C} \equiv \mathrm{N})$ $2235(\mathrm{~s}), v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1570(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1500(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \mathrm{Ar}) 755(\mathrm{~s}) . \delta_{H}\left(400.130 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ 0.76-2.00 ($20 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.55-3.70(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.77-3.87$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.72\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{Ar}}\right), 6.92\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{Ar}}\right), 9.40\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.9 \mathrm{~Hz}, \mathrm{C}_{\text {carbene }}-\mathrm{N} H-\mathrm{Cy}\right)$, $10.90(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) . \delta_{C}\left(100.613 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 19.1,22.7,24.5,24.7,24.9$ and $31.9\left(\mathrm{CH}_{2}\right), 55.6$ and $59.1(\mathrm{CH}), 122.4$ and $122.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.2,133.4,133.7$ and $135.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 178.5\left(\mathrm{C}_{\text {carbene }}\right)$, signal from isocyanide C was not detected.

12. Yield 73%. Calc. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Pd}$: C, $54.23 ; \mathrm{H}, 5.25 ; \mathrm{N}, 9.73$. Found: C, $54.17 ; \mathrm{H}, 5.19 ; \mathrm{N}, 9.68$. HRESI $^{+}-\mathrm{MS}(70 \mathrm{~V}, \mathrm{MeOH})$: calc. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{ClPd} 539.1188$, found $m / z 539.1194[\mathrm{M}-\mathrm{Cl}]^{+}$. HRESI-MS (-70 $\mathrm{V}, \mathrm{MeOH}, m / z$): calc. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{ClPd}^{+} 537.1032$, found 539.1044 [$\mathrm{M}-$ $\mathrm{Cl}-2 \mathrm{H}]^{-}$. IR (KBr, selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3446(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2950(\mathrm{~m}), v(\mathrm{C} \equiv \mathrm{N}) 2203(\mathrm{~s})$, $v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1555(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1513(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 781\left(\mathrm{~m} \delta_{H}\left(400.130 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.99(3 \mathrm{H}, \mathrm{s}\right.$, $\left.\mathrm{CH}_{3}\right), 2.09\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.54\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.74-6.82\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 6.84(1 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{H}_{\mathrm{Ar}}\right), 6.98-7.00\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 7.15-7.19\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 10.70(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 12.14(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) . \delta_{\mathrm{C}}$ (100.613 MHz, $\left.\mathrm{CDCl}_{3}\right): 18.5\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 18.9$ and $19.0\left(\mathrm{CH}_{3}\right), 20.1\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 122.3$ and 123.4 $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.8$ and $127.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.3$ and $130.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.0,134.3$, 135.2, 135.7 and $135.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 137.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 183.0\left(\mathrm{C}_{\text {carbene }}\right)$, signal from isocyanide C was not detected.

$\mathrm{R}^{1}=2-\mathrm{Cl}-6-\mathrm{MeC}_{6} \mathrm{H}_{3}$
13. Yield 82%. Calc. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{Cl}_{4} \mathrm{Pd}$: C, $46.74 ; \mathrm{H}, 3.92 ; \mathrm{N}, 9.08$. Found: C, 46.71; H, 3.98; N, 9.03. HRESI ${ }^{+}$-MS (70 V, MeOH): calc. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{Cl}_{3} \mathrm{Pd}^{+}$579.0096, found $m / z 579.0102[\mathrm{M}-\mathrm{Cl}]^{+}$. IR $(\mathrm{KBr}$, selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3440(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2960(\mathrm{~m}), v(\mathrm{C} \equiv \mathrm{N}) 2210$ (s), $v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1556(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1500(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 785(\mathrm{~m}) . \delta_{H}$ ($400.130 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $2.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.29(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 6.82-6.90\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 7.08\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{Ar}}\right), 7.11-7.37\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 11.25(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 12.54$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) . \delta_{C}\left(100.613 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 18.7,18.8,18.9$ and $19.8\left(\mathrm{CH}_{3}\right)$, 122.4-138.0 (18C, $\left.\mathrm{C}_{\mathrm{Ar}}\right)$, 182.9 ($\mathrm{C}_{\text {carbene }}$), signal from isocyanide C was not detected.

14. Yield 52%. Calc. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{Cl}_{4} \mathrm{Pd}$: C, $41.94 ; \mathrm{H}, 4.93 ; \mathrm{N}, 9.78$. Found: C, 42.07; H, 4.96; N, 9.73. HRESI $^{+}-\mathrm{MS}(70 \mathrm{~V}, \mathrm{MeOH})$: calc. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{Cl}_{3} \mathrm{Pd}^{+} 535.0409$, found m / z : $535.0415[\mathrm{M}-\mathrm{Cl}]^{+}$. IR $(\mathrm{KBr}$, selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3483-3175(\mathrm{~m}), v(\mathrm{C}-\mathrm{H})$ 2935-2857(m), $v(\mathrm{C} \equiv \mathrm{N}) 2240(\mathrm{~s}), v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1566(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1586(\mathrm{~s}) . \delta_{H}\left(400.130 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 1.22-2.18$ $\left(20 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.00-4.10(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.10-4.20(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.61\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{Ar}}\right), 7.62(1 \mathrm{H}, \mathrm{s}$, H_{Ar}). $\delta_{C}\left(100.613 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 22.2,24.3,24.5,24.4,31.3$ and $31.9\left(\mathrm{CH}_{2}\right), 54.7$ and $55.4(\mathrm{CH})$, 123.0 and $123.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.4,129.3$, 129.4 and $135.6\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $173.7\left(\mathrm{C}_{\text {carbene }}\right)$, signal from isocyanide C was not detected.

selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3286-3012(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2831-2756(\mathrm{~m}), v(\mathrm{C} \equiv \mathrm{N}) 2203(\mathrm{~s}), v(\mathrm{~N}-$ $\left.\mathrm{C}_{\text {carbene }}\right) 1553(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1476(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 801(\mathrm{~s}) . \delta_{H}\left(400.130 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 2.41(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.52\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.24-7.40\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 7.42\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{Ar}}\right), 7.73\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{Ar}}\right) . \delta_{C}(100.613$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: 17.2 and $17.5\left(\mathrm{CH}_{3}\right), 123.4,124.0,128.1$ and $129.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 129.5$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.8,134.9,135.2$ and $136.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 177.0\left(\mathrm{C}_{\text {carbene }}\right)$, signal from isocyanide C was not detected.

16. Yield 66%. Calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{Cl}_{6} \mathrm{Pd}$: C, 40.19 ; $\mathrm{H}, 2.76 ; \mathrm{N}, 8.52$. Found: C, 40.27; H, 2.86; N, 8.44. $\mathrm{HRESI}^{+}-\mathrm{MS}(70 \mathrm{~V}, \mathrm{MeOH})$: calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{Cl}_{5} \mathrm{Pd}^{+} 618.9003$, found $m / z 618.9012[\mathrm{M}-\mathrm{Cl}]^{+} . \mathrm{IR}(\mathrm{KBr}$, selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3443-3111(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2924(\mathrm{~m}), v(\mathrm{C} \equiv \mathrm{N})$ $2208(\mathrm{~s}), v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1550(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1487(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 780(\mathrm{~s}) . \delta_{H}$ (400.130 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): 2.47\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.57\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.35-7.54\left(7 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 7.72(1 \mathrm{H}$, $\mathrm{s}, \mathrm{H}_{\mathrm{Ar}}$). $\delta_{C}\left(100.613 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 17.4$ and $17.8\left(\mathrm{CH}_{3}\right), 123.4,123.8,127.4,128.0$ and 129.2 $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.3$ and $129.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 130.0$ and $130.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.9,131.2$ and $131.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.8$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 137.9$ and $139.4(\mathrm{CH}, \mathrm{Ar}), 177.6\left(\mathrm{C}_{\text {carbene }}\right)$, signal from isocyanide C was not detected.

Synthesis of $\mathbf{1 7}$ and 18. The solutions of 13 and $16(0.05 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ were evaporated slowly at RT for 2 months. A few crystals of formed $\mathbf{1 7}$ and $\mathbf{1 8}$ were mechanically separated and studied by HRESI-MS and X-ray crystallography.

17. HRESI $^{+}-\mathrm{MS}(70 \mathrm{~V}, \mathrm{MeOH}, m / z)$: calc. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{Cl}_{3} \mathrm{Pd}^{+}$579.0096, found $579.0081[\mathrm{M}-\mathrm{Cl}]^{+}$. IR (KBr , selected bands, cm^{-1}): $v(\mathrm{~N}-\mathrm{H}) 3217-$ $3085(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2960(\mathrm{~m}), v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1560(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1505(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H}$ Ar) 785 (s).

18. HRESI $^{+}-\mathrm{MS}(70 \mathrm{~V}, \mathrm{MeOH}, m / z)$: calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{Cl}_{5} \mathrm{Pd}^{+}$618.9003, found $618.8989[\mathrm{M}-\mathrm{Cl}]^{+}$. IR (KBr , selected bands, cm^{-1}): $v(\mathrm{~N}-\mathrm{H}) 3243-$ $3090(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2940(\mathrm{~m}), v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1560(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1500(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H}$ Ar) $780(\mathrm{~s})$.

Synthesis of 19-24. A solution of diamine (BDA3 or BDA4, 0.22 mmol$)$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ was slowly added at RT to a solution or suspension of any one of $\mathbf{1 - 3}(0.10 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$. The color of the reaction mixture turned immediately from light yellow to bright yellow, which gradually turned back to the light yellow. For all complexes except $\mathbf{2 2}$ the reaction mixture was stirred for 1h at RT until a crystalline precipitate formed; complex $\mathbf{2 2}$ was obtained via heating up to $70^{\circ} \mathrm{C}$ for 2 h and cooling to RT . The formed precipitates were filtered off, washed with MeCN $(1 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$ (two 1-mL portions) and dried in air at RT.

19. Yield 80%. Calc. for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{Cl}_{2}$ Pd: C, $51.03 ; \mathrm{H}, 6.26$; N , 11.59. Found: C, 50.98 ; H, 6.25; N, 13.73. HRESI $^{+}-\mathrm{MS}$ (70 V, $\mathrm{MeOH})$: calc. for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{ClPd}^{+}$575.1876, found $m / z 575.1883$ $[\mathrm{M}-\mathrm{Cl}]^{+}$, calc. for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~N}_{6} \mathrm{Pd}^{+}$539.2109, found $m / z 539.2113[\mathrm{M}-2 \mathrm{Cl}-\mathrm{H}]^{+}$. IR $(\mathrm{KBr}$, selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3429(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2932-2855(\mathrm{~m}), v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1562(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H})$ $1500(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 754(\mathrm{~s}) . \delta_{H}\left(400.130 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 1.10-2.10\left(20 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.85-4.05$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{NH}-\mathrm{CH}), 7.10-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.35-7.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 7.45-7.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right) . \delta_{C}$ (100.613 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): ~ 24.5,24.9$ and $31.8\left(\mathrm{CH}_{2}\right), 52.6(\mathrm{CH}-\mathrm{NH}), 121.4,122.3,125.2$ and 125.7 $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.8$ and $135.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 183.5\left(\mathrm{C}_{\text {carbene }}\right)$.

20. Yield 91%. Calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{Cl}_{2} \mathrm{Pd}$: C, 54.93 ; $\mathrm{H}, 5.22$; N , 12.81. Found: C, 54.94; H, 5.23; N, 12.83. HRESI $^{+}-\mathrm{S}(70 \mathrm{~V}$, $\mathrm{MeOH})$: calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{ClN}_{6} \mathrm{Pd}^{+} 619.1563$, found $m / z 619.1567$ $[\mathrm{M}-\mathrm{Cl}]^{+}$, calc. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{Pd}^{+}$583.1796, found $m / z 583.1799$ $[\mathrm{M}-2 \mathrm{Cl}-\mathrm{H}]^{+}$. IR $\left(\mathrm{KBr}\right.$, selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3410(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2980(\mathrm{~m}), v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right)$
$1545(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1500(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 780(\mathrm{~m}) . \delta_{H}\left(400.130 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 2.38\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $7.20-7.35\left(12 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 7.55-7.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right) . \delta_{C}\left(100.613 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 18.0\left(4 \mathrm{C}, \mathrm{CH}_{3}\right)$, $122.3,123.8,126.3,126.4,129.3$ and $129.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.8,134.1,135.8$ and $135.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 186.3$ ($\mathrm{C}_{\text {carbene }}$).

$\mathrm{R}^{1}=2-\mathrm{Cl}-6-\mathrm{MeC}_{6} \mathrm{H}_{3}$
$7 \mathrm{Cl}_{2}$ 21. Yield 87%. Calc. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{Cl}_{4} \mathrm{Pd}: \mathrm{C}, 48.26 ; \mathrm{H}, 4.05$; N , 12.06. Found: C, 48.27; H, 4.07; N, 12.08. HRESI $^{+}-\mathrm{MS}$ (70 V, $\mathrm{MeOH})$: calc. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{Cl}_{3} \mathrm{Pd}^{+}$659.0470, found $m / z 659.0473$ $[\mathrm{M}-\mathrm{Cl}]^{+}$, calc. for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{Cl}_{2} \mathrm{Pd}^{+}$623.0704, found $m / z 623.0709$ $[\mathrm{M}-2 \mathrm{Cl}-\mathrm{H}]^{+}$. IR (KBr, selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3408(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2979(\mathrm{~m}), v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right)$ $1546(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1502(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 778(\mathrm{~m}) . \delta_{H}\left(400.130 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.22-7.27\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 7.36-7.41\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 7.44-7.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 7.60-$ $7.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right) . \delta_{C}\left(100.613 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 17.8\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 122.0,123.3,126.0,126.2,128.0$, 129.9 and $130.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.2,131.8,131.9,132.1,132.2,135.3,135.4,138.6$, and $138.7\left(\mathrm{C}_{\mathrm{Ar}}\right)$, 186.7 ($\mathrm{C}_{\text {carbene }}$).

22. Yield 85%. Calc. for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{Cl}_{2} \mathrm{Pd}$: C, $53.94 ; \mathrm{H}, 6.94 ; \mathrm{N}$, 12.58. Found: C, 53.97 ; H, 6.98 ; N, 12.56. HRESI $^{+}-\mathrm{MS}(70 \mathrm{~V}$, $\mathrm{MeOH})$: calc. for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{ClPd}^{+} 631.2502$, found 631.2507 [M$\mathrm{Cl}]^{+}$, calc. for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{Pd}^{+} 595.2735$, found $m / z 595.2742$ [M$2 \mathrm{Cl}-\mathrm{H}]^{+}$. HRES厂-MS ($-70 \mathrm{~V}, \mathrm{MeOH}, m / z$): calc. for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{Cl}_{2} \mathrm{Pd}^{-} 665.2123$, found $m / z 665.2131$ $[\mathrm{M}-\mathrm{H}]^{-}$, calc. for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{ClPd} 629.2356$, found $m / z 629.2362[\mathrm{M}-\mathrm{Cl}-2 \mathrm{H}]^{-}$. IR (KBr , selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3430(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2935-2850(\mathrm{~m}), v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1560(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1500(\mathrm{~s})$, $\delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 753(\mathrm{~s}) . \delta_{H}\left(400.130 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 2.48-3.64\left(20 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.23$ and $2.25(16 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 3.19-3.24$ and $3.87-3.93(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.92,6.97,7.12,7.23,7.28$ and $7.91\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{Ar}}\right) . \delta_{C}$ (100.613 MHz, $\mathrm{CD}_{3} \mathrm{OD}$): 17.71, 17.77, 17.81, 17.88, 24.6-25.0, 31.7, 31.9, 32.1, 31.8, 34.5, 52.5, $53.5,58.5,59.2,122.3,122.4,122.5,122.6,122.9,123.0,123.1,128.1,128.5,128.8,132.8,133.0$, 133.2, 133.3, 133.7, 134.0, 134.2, 134.4, 134.5, 134.6, 134.7, 183.1 and 189.9 ($\mathrm{C}_{\text {carbene }}$).

23. Yield 93%. Calc. for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{Cl}_{2} \mathrm{Pd}$: C, 57.35 ; H, 5.95 ; N, 11.80. Found: C, 57.37; H, 5.48; N, 11.83. HRESI $^{+}$-MS (70 V, $\mathrm{MeOH})$: calc. for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{ClPd}^{+} 675.2189$, found $m / z 675.2195$ $[\mathrm{M}-\mathrm{Cl}]^{+}$, calc. for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~N}_{6} \mathrm{Pd}^{+}$639.2422, found $m / z 639.2419$ $[\mathrm{M}-2 \mathrm{Cl}-\mathrm{H}]^{+}$. $\mathrm{HRESI} I^{-}-\mathrm{MS}\left(-70 \mathrm{~V}, \mathrm{MeOH}, m / z\right.$): calc. for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{ClPd}^{-} 673.2043$, found m / z $673.2047[\mathrm{M}-\mathrm{Cl}-2 \mathrm{H}]^{-}$. IR (KBr, selected bands, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3423(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2958(\mathrm{~m})$, $v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1546(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1511(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 780(\mathrm{~s}) . \delta_{H}\left(400.130 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 2.21$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.25\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.37\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.97\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{Ar}}\right), 7.20-7.30\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right)$, $7.39\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{Ar}}\right) . \delta_{C}\left(100.613 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 19.0-19.2\left(8 \mathrm{C}, \mathrm{CH}_{3}\right), 124.1$ and $125.5\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $129.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 130.2$ and $130.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.2,135.1,135.7,136.0$ and $136.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 186.9\left(\mathrm{C}_{\text {carbene }}\right)$.
 $7 \mathrm{Cl}_{2}$
24. Yield 88%. Calc. for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{Cl}_{4} \mathrm{Pd}$: C, 51.05 ; H, 4.82; N , 11.16. Found: C, 51.07 ; H, 4.80; N, 11.13. HRESI $^{+}$-MS (70 V, $\mathrm{MeOH})$: calc. for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{Cl}_{2} \mathrm{Pd}^{+}$679.1330, found $m / z 679.1334$ $[\mathrm{M}-2 \mathrm{Cl}-\mathrm{H}]^{+}$. $\mathrm{HRESI}^{-}-\mathrm{MS}(-70 \mathrm{~V}, \mathrm{MeOH}, m / z)$: calc. for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{Cl}_{3} \mathrm{Pd}^{-} 713.0951$, found $713.0948[\mathrm{M}-\mathrm{Cl}-2 \mathrm{H}]^{-}$. IR (KBr , selected bands, cm^{-1}): $\mathrm{v}(\mathrm{N}-\mathrm{H})$ $3424(\mathrm{~m}), v(\mathrm{C}-\mathrm{H}) 2973(\mathrm{~m}), v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right) 1546(\mathrm{~s}), \delta(\mathrm{N}-\mathrm{H}) 1515(\mathrm{~s}), \delta(\mathrm{C}-\mathrm{H} \operatorname{Ar}) 779(\mathrm{~s}) . \delta_{H}$ ($400.130 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $2.22\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.26\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $6.99\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{Ar}}\right), 7.36-7.39\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right), 7.43-7.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}}\right) . \delta_{C}\left(100.613 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right):$ 19.1-19.2 $\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 124.2,125.4$ and $129.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.3$ and $131.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.2$, $133.3,133.5,133.7,134.2,135.8,136.2$, and $140.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 187.6$ ($\left.\mathrm{C}_{\text {carbene }}\right)$.

Synthesis of 19-24 from 8-13. A solution of the corresponding diamine (0.12 mmol) in MeCN (1 mL) was slowly added to a solution or suspension of any one of monocarbene complex 8-13 (0.10 $\mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$. The reaction mixture was stirred for 1 h at RT. The formed colorless solid was filtered off and washed with $\mathrm{MeCN}(1 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$ (two 1-mL portions). Yields: 19 (87\%), $\mathbf{2 0}$ (93\%), 21 (85%), 22 (82%), 23 (87%), and 24 (92%).

References

(1) Luzyanin, K. V.; Pombeiro, A. J. L., Carbene Complexes Derived from Metal-Bound Isocyanides: Recent Advances, in Isocyanide Chemistry; Wiley-VCH Verlag GmbH \& Co. KGaA, 2012, pp. 531-550.
(2) Vignolle, J.; Catton, X.; Bourissou, D. Chem. Rev. 2009, 109, 3333-3384.
(3) Michelin, R. A.; Pombeiro, A. J. L.; Guedes da Silva, M. F. C. Coord. Chem. Rev. 2001, 218, 75-112.
(4) Boyarskiy, V. P.; Bokach, N. A.; Luzyanin, K. V.; Kukushkin, V. Y. Chem. Rev. 2015, 115, 2698-2779.
(5) Boyarskiy, V. P.; Luzyanin, K. V.; Kukushkin, V. Y. Coord. Chem. Rev. 2012, 256, 20292056.
(6) Slaughter, L. M. ACS Catal. 2012, 2, 1802-1816.
(7) Jaimes, M. C. B.; Böhling, C. R. N.; Serrano-Becerra, J. M.; Hashmi, A. S. K. Angew. Chem., Int. Ed. Engl. 2013, 52, 7963-7966.
(8) Rocha, B. G. M.; Valishina, E. A.; Chay, R. S.; M.F.C. Guedes da Silva; T.M. Buslaeva; Pombeiro, A. J. L.; Kukushkin, V. Y.; Luzyanin, K. V. J. Catal. 2014, 309, 79-86.
(9) Hashmi, A. S. K.; Lothschutz, C.; Boohling, C.; Rominger, F. Organometallics 2011, 30, 2411-2417.
(10) Kinzhalov, M. A.; Luzyanin, K. V.; Boyarskiy, V. P.; Haukka, M.; Kukushkin, V. Y. Organometallics 2013, 32, 5212-5223.
(11) Luzyanin, K. V.; Tskhovrebov, A. G.; Carias, M. C.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L.; Kukushkin, V. Y. Organometallics 2009, 28, 6559-6566.
(12) Handa, S.; Slaughter, L. M. Angew. Chem., Int. Ed. Engl. 2012, 51, 2912-2915.
(13) Knorn, M.; Lutsker, E.; Reiser, O. Organometallics 2015, 34, 4515-4520.
(14) Wanniarachchi, Y. A.; Kogiso, Y.; Slaughter, L. M. Organometallics 2008, 27, 21-24.
(15) Wanniarachchi, Y. A.; Slaughter, L. M. Chem. Commun. 2007, 31, 3294-3296.
(16) Burke, A.; Balch, A. L.; Enemark, J. H. J. Am. Chem. Soc. 1970, 92, 2555-2557.
(17) Wanniarachchi, Y. A.; Slaughter, L. M. Organometallics 2008, 27, 1055-1062.
(18) Tskhovrebov, A. G.; Luzyanin, K. V.; Kuznetsov, M. L.; Sorokoumov, V. N.; Balova, I. A.; Haukka, M.; Kukushkin, V. Y. Organometallics 2011, 30, 863-874.
(19) Luzyanin, K. V.; Pombeiro, A. J. L.; Haukka, M.; Kukushkin, V. Y. Organometallics 2008, 27, 5379-5389.
(20) Chay, R. S.; Luzyanin, K. V. Inorg. Chim. Acta 2012, 380, 322-327.
(21) Chay, R. S.; Luzyanin, K. V.; Kukushkin, V. Y.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L. Organometallics 2012, 31, 2379-2387.
(22) Tskhovrebov, A. G.; Luzyanin, K. V.; Dolgushin, F. M.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L.; Kukushkin, V. Y. Organometallics 2011, 30, 3362-3370.
(23) Kinzhalov, M. A.; Luzyanin, K. V.; Boyarskiy, V. P.; Haukka, M.; Kukushkin, V. Y. Russ. Chem. Bull. 2013, 62, 758-766.
(24) Zanella, R.; Boschi, T.; Crociani, B.; Belluco, U. J. Organomet. Chem. 1974, 71, 135-143.
(25) Kinzhalov, M. A.; Boyarskiy, V. P.; Luzyanin, K. V.; Dolgushin, F. M.; Kukushkin, V. Y. Dalton Trans. 2013, 42, 10394-10397.
(26) Kinzhalov, M. A.; Novikov, A. S.; Luzyanin, K.; Haukka, M.; Pombeiro, A. J. L.; Kukushkin, V. Y. New J. Chem. 2015, in press, DOI: 10.1039/C5NJ02564H.
(27) Kinzhalov, M. A.; Boyarskii, V. P. Russ. J. Gen. Chem. 2015, 85, 2313-2333.
(28) Valishina, E. A.; Silva, M. F. C. G. d.; Kinzhalov, M. A.; Timofeeva, S. A.; Buslaeva, T. M.; Haukka, M.; Pombeiro, A. J. L.; Boyarskiy, V. P.; Kukushkin, V. Y.; Luzyanin, K. V. J. Mol. Cat. A 2014, 395, 162-171.
(29) Timofeeva, S. A.; Kinzhalov, M. A.; Valishina, E. A.; Luzyanin, K. V.; Boyarskiy, V. P.; Buslaeva, T. M.; Haukka, M.; Kukushkin, V. Y. J. Catal. 2015, 329, 449-456.
(30) Crociani, B.; Boschi, T.; Belluco, U. Inorg. Chem. 1970, 9, 2021-2025.
(31) Vollhardt, P.; Schore, N. E., Amines and Their Derivatives, in Organic Chemistry: Structure and Function; W. H. Freeman and Company: New York, 2011, Chapter 21, pp. 971-1018.
(32) Michelin, R. A.; Zanotto, L.; Braga, D.; Sabatino, P.; Angelici, R. J. Inorg. Chem. 1988, 27, 85-92.
(33) Michelin, R. A.; Zanotto, L.; Braga, D.; Sabatino, P.; Angelici, R. J. Inorg. Chem. 1988, 27, 93-99.
(34) Martínez-Martínez, A. J.; Chicote, M. T.; Bautista, D.; Vicente, J. Organometallics 2012, 31, 3711-3719.
(35) Allen, H. F.; Kennard, O.; Watson, D. G.; Brammer, L.; Guy Orpen, A.; Taylor, T. J. Chem. Soc. Perkin Trans 2 1987, S1-S19.
(36) Kitano, Y.; Hori, T. Acta Crystallogr. B 1981, 37, 1919-1921.
(37) Drouin, M.; Perreaul, D.; Harvey, P. D.; Michel, A. Acta Crystallogr. C 1991, 47, 752754.
(38) Kinzhalov, M. A.; Luzyanin, K. V.; Boyarskaya, I. A.; Starova, G. L.; Boyarskiy, V. P. J. Mol. Struct. 2014, 1068, 222-227.
(39) Bruker APEX2 Software Suite for Crystallographic Programs; Bruker AXS, Inc.: Madison, WI, USA, 2009.
(40) Agilent CrysAlisPro; Agilent Technologies inc.: Yarnton, Oxfordshire, England, 2013.
(41) Sheldrick, G. M. Acta Crystallogr. A. 2008, A64, 112-122.
(42) Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786-790.
(43) Sheldrick, G. M. SADABS - Bruker AXS area detector scaling and absorption; University of Göttingen: Germany, 2008.

Graphical abstract

