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Abstract— We are interested in developing A-Life-like models
to study the evolution of emotional systems in artificial worlds
inhabited by autonomous agents. This paper focuses on the
emotional component of an agent at its very basic physical level.
We adopt an evolutionary perspective by modelling the agent
based on biologically plausible principles, whereby Emotions
emerge from homeostatic mechanisms. We suggest that the agent
should be embodied so as to allow its behaviour to be affected
by low-level physical tasks. By embodiment we mean that the
agent has a virtual physical body whose states can be sensed
by the agent itself. The simulations show the emergence of a
stable emotional system with emotional contexts resulting from
dynamical categorization of objects in the world. This proved
to be effective and versatile enough to allow the agent to adapt
itself to unknown world configurations. The results are coherent
with Antonio Damasio’s theory of background emotional system
[1]. We demonstrate that body/world categorizations and body
maps can evolve from a simple rule: self-survival.

I. I NTRODUCTION

The importance of Emotions has been emphasized through-
out the years in several areas of research. An interesting path
has been traced by several researchers. There are findings in
neuroscience, psychology and cognitive sciences indicating the
surprising role of Emotions in intelligent behaviour. Specially
interesting for us are the studies looking at physiological
interferences, and the relation between body and affective
states, as well to the evolutionary mechanisms. Emotions have
an important role in behaviour and adaptation in biological
systems.

In our modeling approach we share the neurobiological and
evolutionary perspectives to Emotions [1], as discussed in the
following sections.

A. Our perspective on Emotions

Going back to the 19th century we find the earliest scientific
studies on Emotions: Charles Darwin’[2] observations about
bodily expression of Emotions, William James’ [3] search for
the meaning of emotion and Wilhelm Wundt’s [4] appeal for
the importance of including Emotions among the research
topics in psychology studies. But for many years, studies
on behaviour focused on higher level processes of mind,
discarding Emotions altogether [5]. Still the ideas changed
considerably throughout time, and nowadays Emotions are the
focus of many researchers.

The line connecting mind and body, and the role played by
Emotions in rationality came emphasized after Walter Cannon
[6]. He suggested that there are neural paths from our senses
that flow in two directions - the experience of an emotion
and the physiological responses occur together. Later Silvan
Tomkins [7], [8], Robert Plutchik [9], [10] and Carroll Izard
[11], [12], [13] developed similar evolutionary theories of
Emotions. They claimed that Emotions are a group of identical
processes of certain brain structures and that each of them
has a unique concrete emotional content, reinforcing their
importance. Paul Ekman proposed the basic (and universal)
Emotions [14], based on cross-cultural studies [15]. These
ideas were widely accepted in evolutionary, behavioural and
cross-cultural studies, by their proven ability to facilitate
adaptive responses.

Important insights come from Antonio Damasio [16][1][17],
who brought to the discussion some strong neurobiological
evidence, mainly exploring the connectivity between body and
mind. He suggests that, the processes of Emotion and Feeling
are part of the neural machinery for biological regulation,
whose core is formed by homeostatic controls, drives and
instincts. Survival mechanisms are related this way to Emo-
tions and feelings, in the sense that they are regulated by the
same mechanisms. Emotions are complicated collections of
chemical and neural responses, forming a pattern; all Emotions
have some regulatory role to play, leading in one way or
another to the creation of circumstances advantageous to the
organism exhibiting the phenomenon. The biological function
of Emotions can be divided in two: the production of a specific
reaction to the inducing situation (e.g. run away in the presence
of danger), and the regulation of the internal state of the
organism such that it can be prepared for the specific reaction
(e.g. increased blood flow to the arteries in the legs so that
muscles receive extra oxygen and glucose, in order to escape
faster). Emotions are inseparable from the idea of reward or
punishment, of pleasure or pain, of approach or withdrawal,
or personal advantage or disadvantage.

From a neurobiological perspective, the sequence of events
in the process of Emotion, can be summarized as:

1) engagement of the organism by an inducer of emotion;
2) signals consequent to the processing of the object’s

image activate all the neural sites that are prepared to
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respond to the particular class of inducer to which the
object belongs. These sites have been preset innately,
although past experience has modulated the manner in
which they are likely to respond;

3) emotion induction sites trigger a number of signals
toward other brain sites (for instance, monoamine nuclei,
somatosensory cortices, cingulated cortices) and toward
the body (for instance, viscera, endocrine glands).

Edmund Rolls [18], as Antonio Damasio [1], underlines
the division of two concepts: Emotion and Feeling. The
first corresponds to states derived from reinforcement stimuli;
the second represents the real “feeling”. A reinforcement
signal brings information about reward and punishment. By
the internal representation of an object, already biologically
qualified as an emotion inducer (or acquired), generalization
and association processes occur (e.g. fear: one snake ... all
snakes). A perception followed by an emotional reaction can
be the activation of a representation. The brain is modulated
by reward/punishment processes, and its goal is to maximize
rewards and minimize punishments [18].

We share some of Rolls ideas regarding the re-
ward/punishment system, from the perspective in which the
evolution of higher brain systems were guided by previous
neurobiological predispositions [19]. Other implications of his
ideas, specially in the relation between Emotion and Memory,
are not part of our discussion. Nevertheless, this gives rise to
an interesting discussion about interaction between affect and
logic, Emotions and cognition. Sustained for an evolutionary
perspective certain organizational principles in the brain might
reflect emotional states.

For further details and references on Emotions, cognition
and behaviour, please refer to [1] [19] and [20].

B. Arousal and Valence

An interesting approach to Emotions is the Dimensional Ap-
proach. In short, an emotion has at least two qualities: valence
(pleasantness or hedonic value) and arousal (bodily activation).
Both may be defined as subjective experiences [21]. Valence is
a subjective feeling of pleasantness or unpleasantness; arousal
is a subjective state of feeling activated or deactivated. A two
dimensional model has been proposed to reflect the degree to
which different individuals incorporate subjective experiences
of valence and arousal into their emotional experiences [22].
In Fig. 1, there is a possible representation of this two-
dimensional space.

C. Concept and Hypothesis

Due to a progressive change in theoretical studies in a broad
range of areas, models of cognition, attention and behaviour
now frequently include Emotions as part of the behavioural
system. Emotional cues as states that might influence behav-
iour and adaptation is an idea that became stronger in the
last decades, and gained special attention in computational
models of cognition and behaviour [23], [24], [25], [26], [27],
to cite but a few. Different perspectives were adopted when
working with Emotions. While some of these models are

Fig. 1. Arousal-Valence Space.

inspired by different properties of an emotional system for
task solving issues, and specific application (e.g. using facial
expressions for social engagement), we are interested in using
computational models to understand the basic mechanisms of
the emotional systems. We are interested in studying how these
systems evolved, which mechanisms do they use, and the role
of the body.

We created a conceptual A-Life model to implement ar-
tificial worlds inhabited by autonomous emotional agents,
modelling the agent based on biologically plausible principles.
We focused on the idea of having an embodiment (in the sense
that the agent has a virtual physical body whose states can be
sensed by the agent itself) so that low level tasks (e.g. satiate
body needs) influence its overall performance, by affecting its
behaviour. A neural network endows the agent with cognitive
capabilities, processing information related with its body, and
its environment. The agent’s emotional state is mirrored into a
set Background Emotions. This term is used by Damasio [1]
for the responses caused by “...certain conditions of internal
state engendered by ongoing physiological processes or by the
organism’s interactions with the environment or both”1.

The agent learns through a reward and punishment system,
to adapt itself to the environment by interacting with it.
Our algorithm is inspired on Rolls’ “Stimulus-Reinforcement
Association Learning” [28]: (̇...) stimuli or events which, if
their occurrence, termination, or omission is made contingent
upon the making of a response, alter the probability of the
future emission of that response. Moreover, some stimuli are
unlearned or primary reinforcers (e.g. pain), while others may
become reinforced by learning, because of their association
with such primary reinforcers: the secondary reinforcers”2. We
use the arousal/valence dimensions referred in the previous
subsection, to scale and quantify the interactions results. This
way we intend to create the basis of we believe to be essential
for the emergence of an emotional system (in the sense
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that acts such like mechanism): a body, a brain, and their
interaction.

In this model, Emotions act as an adaptation mechanism.
We implemented the agents’ background structure, which will
eventually allow us to contextualize the foreground emotional
system (and the so called Basic Emotions [14]), in order to
define the agents’s foreground (to use Damasio’ terminology)
emotional state.

The aim of this exercise is to design an embodied agent-
based cognitive model and establish how an emotional system
can emerge from self-regulatory Homeostatic Processes, by the
interaction between a body and a brain. For that we propose
a model of these biological mechanisms. The objective is to
understand the role and the importance of Emotions in self-
survival tasks; hence one of the reasons to implement a single-
agent system at this stage. We also are interested in studying
how the regulation of the Homeostatic Processes can influence
world categorization and decision making (currently at a low
level and for single tasks). We also analyze how Emotions act
as a system of internal rewards, that preserve the system, and
permit continuous adaptation process in self-survival tasks, by
signalling and scaling pleasant or unpleasant interactions.

II. T HE SIMULATION ENVIRONMENT

The simulation environment (programmed in C++) is rep-
resented as a two-dimensional world populated by several
objects (See Fig. 2). An autonomous agent inhabits this
artificial world and is able to move within the borders that
define its limits. The objects have different representations
(see Table I). Each one of them is related with a physiological
interference. We also created obstacles in the world that, in
the simplest case, are only the topological limits (or borders)
of the world; these borders are considered as sources of pain.

Fig. 2. The artificial world.

In short, we have an autonomous agent, which has to adapt
itself to a world by controlling self-survival tasks, and by
attributing emotional meanings to objects; objects might have
different meanings for different situations. No representation
or meaning of these objects is given to the agent beforehand.
In order to design the autonomous agent, its structure includes
cognitive, emotional and embodiment systems, endowing the

Object Representation Physiological Motivation
color interference
Red Food Increase Blood Sugar Eat

Green Bed Increase Energy Rest
Blue Obstacles Increase Pain -
White Water Increase Vascular Volume Drink
Pink Toy Increase Endorphine Play

TABLE I

OBJECTS REPRESENTATION AND INTERFERENCES.

agent with capabilities of interacting with the world, sense the
body and the world, and learn from that.

III. T HE AUTONOMOUSAGENT

We developed a versatile structure for the agent, which
will allow us to extend it as the project develops; e.g., the
creation of a truly interactive artificial society. Currently, the
agent comprises three main formalized systems: Perceptual
System, Nervous System and Motor System. These structures
will be developed at a later stage in order to incorporate more
complex interaction interfaces between agents and interaction
with more complex objects (possibly associated with higher
level tasks in the world). As a basis to create this system,
information is stored as “genomic” structure, that represents
the characteristics of the body and nervous system of the agent.
We emphasize the fact that no structure was explicit coded
for Emotions: we are studying the possibility of an emergent
phenomena due to the modelled biological system.

A. Perceptual System

In order to perceive the world, an agent contains a retina
(here represented as a color array) that resembles a biological
retina on a functional level, inspired in LIVIA [29] and GAIA
[30]. It senses a bitmap world (environment) through aray
tracing algorithm, which is inspired on the photons travel
from the light-emitting objects to the retina. At each time
step, an agent fetches in a certain number of directions for
visual input from its world. Each light ray that hits the sensing
cells is traced to its origin in order to determine its intensity
and colour, which feeds directly a color array. This array is
then relayed to the nervous system. Each of the five colors is
mapped into 4 neurons in the neural network input, as seen in
Fig. 3. The directions in which the agent fetches the objects
is calculated by Equation 1 (wherei stands for the direction
index, andαi the fetching angle for each direction).

αi =
2 · π · i

retina size
(1)

Another characteristic is the attenuation of visual cues in
function of the distance of the objects in relation to the agent.
There is a maximum value for distances in which the agent
can see (sight range). Colors are linearly attenuated according
to their distance from the agent. That is, afoggy world was
created. Currently, the agent has a sight range of 80 pixels in
a 250x250 bi-dimensional world. Bothretina size(number of
fetching angles) andsight rangeare coded into the “genomic”
structure of the agent.



B. Nervous System

The nervous system includes a feed-forward neural network
(NN) with a genetically encoded structure (fixed during life-
time). The neural network is organized in layers: an input
layer (two groups: retina and body sensors), an output layer
(two groups: motivations and motor control) and a hidden
layer (with excitatory-only and inhibitory-only neurons). We
distinguish between excitatory and inhibitory hidden groups
due to the fact that the agent will have to perform tasks
related to the activation or inhibition of certain behaviours.
In the current version of the nervous system, each neuron
of a layer connects to all neurons of the following layer.
The inputs are propagated to the output through the synapses,
processing one layer at the time from the input to the output.
Each area has projections (a group of synapses) to any other
area of the following layer. In Fig. 3, we present the NN
architecture. Table II shows the current values that define the
NN architecture.

Group Number Number of
Neurons Synapses

Retina 20 20 · 16 = 320
Body Sensors (Drives) 5 5 · 16 = 80

Hidden Layer 16 (8 excit.+8 inhib.) 16 · 9 = 144
Motivations 6 0

Motor Control 3 0

TABLE II

THE VALUES FOR THENEURAL NETWORK ARCHITECTURE.

The activation function for the input neurons is presented
in Equation 2, while the activation for all other neurons is
calculated by Equation 3.

Finput =

(
tan−1(x)

π/2

)
(2)

F =

(
1

1 + exp−α·x

)
(3)

C. Motor System

The concept of Emotions, and body relatedness imply the
notion of an interactive embodiment system.

We created a simple structure for this: the agent controls
a motor system through linear and angular speed signals,
allowing it to travel around the world (including obstacle
avoidance and object interaction). These signals are provided
by the neural network, which means that motor skills also have
to be learned. With this capabilities the agent will be able to
navigate in its environment, approaching or avoiding certain
states. This constitutes an important aspect for this study.

D. Embodied Emotional Process

As a starting point, we shall highlight one important aspect:
rather than model emotional systems, we are interested in
modeling the basic biological interactive elements (body and
brain) from where Emotions and Feelings might emerge. In

other words, we are interested in modelling the conditions
for the emergence of Emotions, instead of programming
Emotions.

Fig. 3. Body/Brain interaction. System overview.

Fig. 3, gives a simple overview of the system. Inspired by
Izard’s work [13], we categorized the stimuli sensed by the
agent as follows:

1) Somatic - body state (physiological data, drives);
2) World Perception (vision);
3) Body - external interactions (pain).

The agent perceives the world through a retina, and this signal
is used to feed a set of input layers of the NN, together with
its internal body state.

The body state consists of a map of the agent’s body.
We introduce a set of Physiological Variables into the agents
embodiment (see Tables III and IV) that reflect the state of the
agent’s body. They range from a minimum to a maximum val-
ues, centered on an ideal value. Physiological state is affected
by the agent’s interaction with the environment (metabolism
and objects).

E. Drives and Motivations

The Drives define the current and past body states that drive
the agent attention towards specific needs. They are controlled
only by the agent body, which reacts to its environment, with
no other interference. They translate physiological changes
into specific alarms or urges to action (e.g hunger if blood



Physiological Range Variation
Data

Blood Sugar 10 - 30 - 50 metabolism: KBSugDec*speed
food: KBSugInc*FoodValue

Endorphine 0 - 20 - 40 metabolism: KEndInc

toy: KEndDec*ToyValue
Energy 100 - 120 - 140 metabolism: KEnDec*speed

bed: KEnInc*RestValue
Vascular 5 - 25 - 45 metabolism KV V olDec*speed
Volume water: KV V olInc*WaterValue

Pain 0 - 20 metabolism KPainDec

obstacles: KPainInc*speed

TABLE III

PHYSIOLOGICAL DATA , DRIVES, AND THEIR DYNAMICS .

Constant Value

KBSugDec -0.0050
KBSugInc 0.50
KEndDec) -0.50
KEndInc 0.0020
KEnDec -0.0030
KEnInc) 0.50

KV V olDec -0.0080
KV V olInc 0.50
KPainDec -0.005
KPainInc 0.50

TABLE IV

PHYSIOLOGICAL VARIABLES CONSTANT VALUES

sugar is low). They vary from a minimum of -10, and to a
maximum of 10. The value indicates the excess or absence of
certain stimuli in the body, specifically certain physiological
needs (by excess or deficit). In any moment the agent can be
hungry or not hungry, tired or energetic, etc. This takes in
consideration the existence of a “temporary memory”: in each
moment the drive contains physiological information from the
last M (see Equations 4 and 5) time steps. M corresponds to the
agent’ memory size, where past states influence is attenuated,
while ∆Vi corresponds to the deviation of the drive value from
its homeostatic position (value between -10 and 10).

DriveV alue(t) = K ∗
M∑

i=0

(
∆Vi ∗Ki

)
(4)

Ki =
1

i + 2
; K =

1
M + 2

(5)

For instance, a growing level of Blood Sugar level during a
certain period, will increase the Hunger drive. This implies a
change on the body state (see Fig. 3), and consequent effect on
other neural process (e.g. decision making), since they share
the same neural network.

As defined in Sec. II, changes in the body state are caused
by interaction with objects. But, as shown in Table III, the
environment also changes the body of the agent indirectly
because of its metabolism. Agent’s ongoing tasks (when not
interacting with objects) change its internal physiological data;
i.e., corresponding to a decrease/increase in a physiological

variable according to the metabolism (decrease blood sugar,
increase pain, etc.). At each iteration, each Drive is feed and
propagated into the NN together with retina signals.

To express its desire to act in the environment, the agent
possesses a set of Motivations. These correspond to the level
of will to adopt a certain behaviour (Eat, Drink, etc.). The
Motivational System is controlled by the neural process. One
action is chosen from the Motivations set (neural network
output layer), according to aroulette algorithm: Motivations
with higher value (higher output neurons activation), have
more probability of being chosen (see Fig. 3).

F. Background Emotions

The agent’s emotional state is processed in parallel and
is mirrored into a set Background Emotions (see Sec. I-C).
Background Emotions (see Table V) are obtained from the
analysis of the Goal System (See Table VI), and the body. The
goal system corresponds only to self-survival tasks, related
with body state evolution. They reflect the success or failure
of a certain self-survival task or behaviour.

Background Affected by
Emotion

wellness/malaise survivalGoal
relaxation/tension pain, survivalGoal
fatigue/excitement energy, ongoingGoal

TABLE V

BACKGROUND EMOTIONS.

Goals Description

survivalGoal survival status (0%-100%, low fitness-high fitness)
ongoingGoal successfully achieved tasks

TABLE VI

GOALS.

G. Reward and Punishment: “feeling” the interaction

Learning is performed by means of an algorithm inspired by
the TD-Learning technique, a type of reinforcement learning
algorithm [31]. One characteristic of this algorithm is that it
associates a Q-value (the predicted reward) with each output
continuously, corresponding to the desirability of choosing that
behaviour. The reward received in the future (when the task
finishes, successfully or not) is used to update the weights that
activated the chosen outputs by means of a back-propagation
algorithm.

As introduced in Sec. I-C, Emotions are usually associated
with either pleasant or unpleasant feelings that can act as a
reinforcement [32][28]. For that we created a different reward
scheme. The outputs (see Fig. 3) do not have an associated
Q-value. Rewards depend on the agent’s actions: they are
proportional to their effect on the agent’s well-being, and their
valence (positive or negative) depends on the pleasantness
of the new body state. These rewards are received after



interacting with the world, reflecting the consequences of the
action performed.

There are two types of rewards: one for the movements and
another for the chosen motivation. They are used to update the
weights of the NN using a back-propagation algorithm. The
agent’s internal representation of the objects is an important
aspect of the model. The learning process enables the agent to
attribute meanings to the objects. They don’t have any internal
explicit representation.

The following steps are taken in a complete cycle of the
system : the new body states are calculated according to the
interactions (objects and metabolism), new body state is com-
pared with the previous body state (e.g. pain increase), Goals
and Background Emotions are updated, reward is calculated
according to the arousal and valence of the interaction (huge
pain augment implies negative reward - high arousal, negative
valence), the neural network inputs (retina and drives) are
refreshed, and finally the neural network outputs are calculated
(and new Motivation and movement chosen).

IV. SIMULATION RESULTS

With this framework we aim, at this point, to test three main
hypothesis:

1) An emotional system can emerge from the interaction
of self-regulatory Homeostatic Processes and the Envi-
ronment;

2) The regulation of the Homeostatic Processes influences
world categorization and decision making by attributing
emotional meanings to objects, and by affecting cogni-
tive processes (e.g. driving attention);

3) Emotions act as a system of internal rewards, that
preserve the system, and permit continuous adaptation
process in self-survival tasks, by signalling and scaling
pleasant or unpleasant interactions/stimuli.

We analyzed several simulations. Each simulation ran with
different initial weights of the NN, which were randomly
generated. One agent was inserted in a world populated with
the objects as referred in Sec.II. Each simulation ran for
40000 cycles. (Each cycle corresponds to an agent’s time step
to update internal variables, apply Reinforcement Learning,
receive and process stimuli, propagate data through the NN,
and choose the next action). The following data corresponds
to a representative set from our experiments.

A. Adaptation and Self-survival

This section analyzes the agent’s ability to regulate its
Homeostasis. We assessed the degree of adaptation (Fitness)
of the agent, through a Fitness3 function that expresses the
body state of the agent: the agent’shealth coefficient.

fitness = 1−
(

1
n ∗DriveMaxLevel

)
·

n∑

k=1

·|drivesi|
(6)

3We use the Fitness concept due to the fact that we are already using
Genetic Algorithms in our ongoing work.

DriveMaxLevelstands for the absolute maximum level that
Drives can have (10, in the current version), whilen corre-
sponds to the current number of Drives (five) anddrivesi to
the value of each drive (numbered from one to five).

Fig. 4. Fitness and Drives evolution in time: representative simulation 1

Fig. 5. Fitness and Drives evolution in time: representative simulation 2

Figs. 4 and 5 show the relation between the Fitness function
and the evolution of Drives for two representative simulations.

The evolution of the Fitness value in time shows an overall
increase of the agent’s ability to regulate its body state by
interacting with the world. In fact, it can be seen in both
charts that after an initial unstable phase the agents were
capable of associating the resources in the world with their
own internal needs, and use these resources as they needed.
Another interesting phenomena can be seen by analyzing the
Drives variation in time: when learning allows the agent to
reach a stable situation, the Drives variation is maintained
within a range of values near to the optimal value (i.e., 0). The
agent is not only capable of increasing its Fitness, but it does
so maintaining a “healthy behaviour”. Extreme body states
are avoided, showing the ability of the agent to regulate its
own body status, by coping with its metabolism and managing
competitive internal stimuli. Note that, as an initial help for
the system to learn, when the fitness value is below 40%, the



agent’s physiological data are reset to their initial values. This
explains the initial picks in the first iterations on the chart.

These results are coherent with our hypothesis. In fact,
the properties of an emotional system, can emerge from the
interaction between an organism self-regulatory Homeostatic
Processes and its Environment (the fundamental role of the
body), through the learning process used. The attribution of
emotional meanings to objects, through Associative Learning
driven by the body, proved to be effective and fundamental to
adaptation process.

B. Categorization

We analysed the system further in order to better understand
the dynamics of the NN and the learning process. Specially, we
wanted to study the effect of the reward system. We suggested
previously that an agent would be able to categorize objects in
the external world by giving meanings to objects in relation
to their body state: the emotional categorization of objects.
For these tests we analysed the hidden layer activations of
the agent presented in Fig. 4, using Principal Components
Analysis (PCA).

To test the NN categorization process, we presented the
agent one object at a time. For each object we activated all
Drives to their maximum level (also one at the time, see Table
VII). For instance, in a state of Hunger, all five objects in
the environment were perceived individually. The clusters seen
on the PCA chart (Fig. 6) group the stimuli for each object
presented to the agent in the tests phase.

Input Number Object

1-5 Food (Red)
6-10 Bed (Green)
11-15 Obstacle (Blue)
16-20 Water (White)
21-25 Toy (Purple)

TABLE VII

NN OBJECTS STIMULI.

It can be seen that the agent was able categorize the world.
In fact, identical external stimuli (objects) are represented
internally in a specific and dedicated way.

But how does the agent contextualize the object with its
body state? When does it decide to interact with objects in
order to survive? Taking a deeper look at these clusters, we can
find patterns that are identical to each other. Our hypothesis is
that they may represent a second categorization level. A new
test scenario was created to analyze these important aspects: in
the presence of related object, we varied each of the agent’s
drives from its minimum value (-10) to its maximum value
(+10), considering steps of 2 units (-10, -8, ..., 8, 10). See
Table VIII. In Fig. 7 we plotted the PCA analysis for the
1st and 2nd Principal Components of this test case, using the
object Food, and the drive Hunger.

There is a clear definition of the different drive levels:
starting from the extreme need of food (measures 1-4), passing
through the absence of the hunger stimulus (measure 6), to the
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Fig. 6. PCA: Categorization Process

Input Number Active Drive

1, 6, 11, 16, 21 Hunger
2, 7, 12, 17, 22 Thirst
3, 8, 13, 18, 23 Boredom
4, 9, 14, 19, 24 Fatigue
5, 10, 15, 20, 25 Withdraw

TABLE VIII

NN DRIVES STIMULI.
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Fig. 7. PCA: variable Hunger level internal representations.

representation of excess of blood sugar (measure 8-11). The
agent can identify its own body needs and attribute dynamical
meanings to the objects by a 2nd level categorization. It
is evident by the sequence the complete separation of the
different states of well-being (over-stimulated, homeostatic
level, under-stimulated). These results are aligned with our
Hypothesis (3): the signalling and scaling of pleasant or



unpleasant interactions/stimuli .

C. The Role of the Body

Next, we tested the detection of “emotional-competent-
stimulus” [1], as defined by Damasio. These would be objects
or situations (present or remembered) that would lead to a
specific emotional state, which could be observable in a stable
emotional system.

We considered 3 test cases:
1) No body stimuli (only visual stimuli);
2) No visual stimuli (only body stimuli);
3) Both.
In Fig. 8 drives were kept at zero level (Homeostatic

Regime) and we presented each type of object to the agent
(no body stimuli) - test case 1. Then, each drive was activated
at its maximum level, and the agent was isolated from the
environment (no visual stimuli) - test case 2.
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Fig. 8. PCA: test cases.

In Fig. 9 we plot the previous test plus additional more test
cases (11 to 15 in the chart): we activated each drive to its
maximum level and presented the object that would satiate
that need of the agent (e.g. high hunger level in the presence
of food) - test case 3.

From both figures, it can be seen that when the agent
was situated in its Homeostatic Regime (all drives at level
0, test case 1), objects were categorized within an emotional
meaning, not showing special distinction between them. The
variance values for each test case can be seen in Table
IX 4. By comparison with the other test cases, test case 1
variance, can be considered very low. This seems coherent
with our expectancies, taking into account that the objects
have a meaning when related with the body. Even though
a discrimination among objects can be seen: probably an
influence from the new neural predisposition (after interacting
and learning with the experience).

4The variance was calculated for the different test cases using the first 3
Principal Components. The presented values for the variance are separated by
dimension.

Fig. 9. PCA: test cases.

Test Component Component Component
Case 1 (x) 2 (y) 3 (z)

1 0.0004 0.0015 0.0026
2 0.0062 0.0156 0.0144
3 0.0071 0.0201 0.0127

TABLE IX

VARIANCE VALUES FOR THE FIRST3 PRINCIPAL COMPONENTS

(DIMENSIONS).

In the absence of external stimuli (test case 2) the agent
identified clearly its body state, and its body needs trough the
creation of an implicit body map (i.e., a internal representation
of the body state). This fact becomes even more evident in test
case 3, when the object to satiate the body need is present (Fig.
9): objects and drives are strongly associated, showing that the
agent acquired specific ways to respond to specific internal and
external events (similar symbols refer to the same Drive).

Distance Value
d31 0.4092
d32 0.0365
d21 0.3754

TABLE X

DISTANCES BETWEEN CLUSTERS’ ATOMIC POINTS.

Summarizing, several facts can be observed: the variance in
test case 1 (“no-internal-stimuli”) is lower than in both other
test cases; test case 3 results are closer to test case 2 results
(“no-external-stimuli”), than to test case 1 (see Table X):
d31 = 0.4092 (distance from groups 3 to 1), andd32 = 0.0365
(distance from group 3 to 2); group 1 presents a similar pattern
to the other groups, an influence in the categorization process.

These observations indicate a great influence of the body
on the cognitive processes, in the case related with the
internal representation of a perceived object. Indicates also
the preferential perceptual processing regarding the pleasant or



unpleasant “meaning” of objects, influencing the accuracy of
object representation during the perceptual process. There is a
scaling factor for the object’s internal representation (as seen
in the previous section). These results are strongly coherent
with Damasio’s theory [1].

V. CONCLUSION AND FUTURE WORK

Damasio refers to the importance of Emotions in assisting
an individual to maintain its survival because they seem to be
an important mechanism for adaptation and decision making in
dynamical systems [1], [16], [17]. In this phase of our work
we focused on the basic foundations of Emotions from an
evolutionary perspective: we assumed the existence of neural
pathways that facilitate survival. Moreover we use the dimen-
sional approach (arousal/valence), together with an Associative
Learning process [28], to drive adaptation contingencies, using
the body to drive such process.

We addressed the notion of the emergence of a stable
emotional system by means of self-regulatory Homeostatic
Processes. In the previous section we demonstrated that it is
possible to model such phenomenon. As suggested by Dama-
sio [1], environmental events of value should be susceptible
to preferential perceptual processing regarding their pleasant
or unpleasant meaning. We believe that the architecture and
specially the reward system (the agent’s appetite for well-
being) were responsible for the emergence of stable emotional
systems in our simulations. Furthermore, the results are coher-
ent with Damasio’s convincing theories about the existence
of a background emotional system [1]. We demonstrated that
phenomena such as body/world categorization and existence
of a body map can evolve from a simple rule: self-survival.
As already discussed in the previous sections, we were able
to evaluate our hypothesis.

Our model also demonstrated that physical restrictions (even
with a very simple artificial embodiment) can play an impor-
tant role in the adaptation of the agent to its environment.
The use of a learning algorithm based on the environment
and embodiment allows for the agent’s “brain” to dynamically
categorize the world regarding bodily, environmental and
individual aspects (metabolism). Agent and environment are
strongly coupled in learning and living. The emergence of a
stable emotional system (albeit in low level tasks), potentiated
dynamical categorization of objects due to their emotional
context, proving to be effective and versatile enough to allow
the agent to adapt to an unknown environment.

Currently, we are looking at more complex tasks to be
performed on top of our background emotional model. We are
in the process of defining a system of foreground emotional
states, and developing the current one. A more close investi-
gation about the changes in the body state due to an induced
emotion, is also an interesting perspective. At this stage we
will then be able to develop our investigations on the role of
music in emotional states, and on the possible existence of
co-evolutionary mechanisms reinforcing the relation between
Emotions and Music.

On the long run, we hope to apply our model to decision
making tasks (e.g. music composition ), as it allows to reduce
the space state of choices, through an emotional categorization.
Another interesting perspective comes from recent claims,
specially in Robotics, more specifically in a new field: Internal
Robotics [33].
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