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1 Introduction

Reinsurance, if exploited appropriately, can be an effective risk management tool for an insurer. In

a typical reinsurance contract, the insurer pays a certain amount of premium to a reinsurer in return

for some indemnification when losses occur from a designated risk. This indemnification is always

a function of the risk, and the premium is determined by the resulting indemnification function,

together with a given premium principle. While a higher stipulated indemnification implies a lower

risk exposure to the insurer, this is achieved at the expense of a higher upfront reinsurance premium.

This demonstrates the classical tradeoff between risk retention and risk transfer and the problem

of optimal reinsurance is to address the optimal risk sharing between insurer and reinsurance for a

given prescribed objective and constraints.

Two pioneering works on optimal reinsurance are attributed to Borch (1960) and Arrow (1963).

Borch (1960) demonstrated that the stop-loss reinsurance is the best contract if the insurer measures

risks by variance and the reinsurer prices risks by the expected value premium principle. Arrow

(1963) also showed that the stop-loss reinsurance is an optimal one if the insurer is an expected

utility maximizer under the assumption of the expected value premium principle. These fundamental

results have been generalized in a number of interesting and important directions. Just to name a few,

Kaluszka (2001) extended the Borch’s result by considering the mean-variance premium principle,

while Young (1999) elaborated Arrow’s result by taking Wang’s premium principle into account.

More recently, there is a surge of interest in formulating the optimal reinsurance problem involving

more sophistical risk measures such as Value at Risk (VaR), Conditional Value at Risk (CVaR) and

more generally distortion risk measures. Fo example, Cai and Tan (2007), Cai et al. (2008), Cheung

(2010) and Tan et al. (2011) discussed the minimization of VaR and CVaR of the insurer’s total

risk exposure with expected value premium principle. Cheung et al. (2014) further explored Tan

et al. (2011)’s results under the general law-invariant convex risk measure. Balbás et al. (2009)

also studied the optimal reinsurance problem when risk is measured by a general risk measure. Chi

and Tan (2013), and Chi and Weng (2013) considered VaR and CVaR with premium principles

which preserve the convex ordering. Zheng et al. (2014) designed the optimal reinsurance contract

under distortion risk measure, but assuming that the distortion function is piecewise concave or

convex. Cui et al. (2013) studied a general model involving the distortion risk measure and the

distortion premium principle. Cheung and Lo (2015) extended the model of Cui et al. (2013) to a

cost-benefit framework. Assa (2015) demonstrated that the optimal reinsurance model of Cui et al.

(2013), without the premium constraint, can be tackled more elegantly via a marginal indemnification

function (MIF) formulation.

The primary objective of the present paper is to extend the MIF-based method so as it can be

used to derive analytically the solution to the distortion risk measure based reinsurance model in

the presence of a premium budget constraint. It is well-known that in many optimization problems,

the complexity of the optimization problem can be significantly increased by merely imposing a

constraint. In particular, one often discovers that while an optimization procedure can be used

to solved an unconstrained optimization problem analytically, the same procedure may no long be
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applicable when a constraint is imposed on the model. This is precisely the issue with the method of

MIF proposed by Assa (2015). As demonstrated in Assa (2015) that without the premium constraint

the MIF formulation elegantly solves the reinsurance model of Cui et al. (2013). The same method,

however, cannot be readily used in the presence of the premium budget.

The MIF method makes full use of the absolute continuity of admissible ceded loss functions.

It is well known that an absolute continuous function over real line is, out of a Lebesgue null set,

differentiable. The derivative of the ceded loss function is called marginal indemnification function,

because it measures the increase in ceded loss per unit of increase in the group-up loss. It should be

pointed out that Balbás et al. (2015) have independently proposed the MIF formulation for optimal

reinsurance models, though the term “MIF" was not used. The authors considered a general mean-

risk reinsurance model under uncertainty of the group-up risk and formulated the reinsurance model

with the derivative of the retained loss function being the decision variable, which they referred to as

“sensitivity". Moreover, they proposed to impose a lower bound on the decision variable to effectively

eliminate the moral hazard from the insurer. This translates to an upper bound on the MIF in our

formulation. For Ẽρ-translation invariant risk measures (which satisfy subadditivity), Balbás et al.

(2015) developed two duality methods of transforming optimal reinsurance models, which may be

non-linear, into functional linear programming problems.

The objective of this paper is to demonstrate that by integrating MIF with a Lagrangian method,

one can derive explicit optimal reinsurance policies for problems with a budget constraint on rein-

surance premium and bounds on the derivative of admissible ceded loss functions. Compared to the

approach of Cui et al. (2013) for solving the same reinsurance model with premium budget con-

straint, our proposed integrated MIF and Lagranging method possesses at least the following three

advantages. Firstly, it is simpler and more transparent. More specifically, the approach of Cui et

al. (2013) critically depends on a pre-conjectured candidate solution. This implies we need to first

guess an optimal solution and then apply certain comparison analysis to prove its optimality. Their

method, therefore, requires us to have a preconception on the shape of the optimal solution in order

to justify its optimality. Our integrated method, on the other hand, does not require any preanalysis

on the shape of optimal solutions. Secondly, due to the nature of the procedure in searching for the

solution developed by Cui et al. (2013), it is difficult to discuss the uniqueness of optimal solution.

In contrast, the uniqueness of solution can be easily studied, and the non-uniqueness of solutions

can also be uncovered from our optimization procedure. Thirdly, even if bounds are imposed on the

derivative of the admissible ceded loss functions, our proposed integrated method can similarly be

used to derive the explicit solutions of the models.

To highlight the practicality of our proposed solution, we consider a particular reinsurance model

that minimizes CVaR (a special distortion risk measure) and with the premium being dictated by the

inverse-S shaped distortion (ISSD) premium principle. The ISSD premium principle is a distortion

premium principle with a distortion function such that it has derivative which changes from being

strictly decreasing to being strictly increasing derivative at a certain point. Thus, it encompasses

both the concave and convex distortion premium principles as special cases. Indeed, as it will become

clear in Section 5, the optimal solutions for either a concave or a convex distortion premium principle
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can be recovered from those we obtained for the ISSD premium principle as special cases.

Another important feature of the ISSD premium principle is its economic interpretation in that

the insurance provider may overweight not only large losses but also small ones in underwriting

the insurance risks. This is consistent with the empirically observed phenomena in psychological

experiments (Quiggin 1982, 1992; Tversky and Kahneman 1992; Tversky and Fox 1995; Gonzalez

and Wu, 1999). Furthermore, Kaluszka and Krzeszowiec (2012) introduced a premium principle

from the perspective of the Cumulative Prospect Theory (CPT). The ISSD premium principle can

also be viewed as a special CPT premium principle corresponding to a linear utility function and a

zero reference point. Unlike the concave distortion premium principle, the ISSD premium principle

has not received much attention in the actuarial literature. This, in part, can be attributed to its

relatively new concept and its short history. Other reasons could be due to the possibility that

the ISSD introduces additional technical hurdles, such as non-convex order property, for solving

optimization problems.

The rest of the paper proceeds as follows. In Section 2, we formally specify our optimal reinsurance

models and develop their corresponding MIF’s. Section 3 gives the optimal solutions for the model

without premium budget constraint. In Section 4, we integrate the Lagrangian dual method with

the MIF formulation and derive explicit solutions for the model with reinsurance premium budget

constraint. In Section 5, we demonstrate the practicality of our proposed approach by resorting to a

specialized example involving risk measure CVaR and reinsurance premium principle ISSD. Section

6 concludes the paper.

2 Model Setup

Throughout the paper, all the random variables are defined on a common probability space

(Ω,F,P). The indicator function is denoted by 1A(s), i.e., 1A(s) = 1 for s ∈ A and 1A(s) = 0

for s /∈ A. The capital letter X is exclusively used to denote the non-negative random variable for

which the insurer seeks reinsurance coverage and M , esssupX. For convenience, the domain of the

random variable X is consistently denoted by [0,M ]. While this suggests that the domain of X is

a bounded interval, it should be emphasized that all the results obtained in the paper hold even if

esssupX = ∞; i.e. even if [0,M ] is replaced by [0,∞).

The problem of optimal reinsurance is concerned with the optimal partitioning ofX into f(X) and

r(X) such that X = f(X) + r(X), where f and r are two measurable functions defined over [0,M ].

Here f(X) represents the portion of loss that is ceded to a reinsurer and r(X) is the residual loss

that is retained by the insurer. The functions f and r are respectively referred to as “indemnification

function" (or “ceded loss function") and “retained loss function". While the presence of reinsurance

reduces the retained loss of the insurer, it incurs an additional cost to the insurer in the form of

reinsurance premium. Generally, this premium is positive and is a functional of f(X), say Π(f(X))

for some functional Π. Therefore, the total risk exposure of the insurer in the presence of reinsurance
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is given by

Tf = r(X) + Π(f(X)). (1)

2.1 Admissible Set

It is common in the literature (e.g., Chi and Tan, 2013; Cui et al., 2013; Assa, 2015) to consider

the following admissible set of ceded loss functions:

F0 , {f : [0,M ] 7→ [0,M ] |f(0) = 0, 0 ≤ f(x)− f(y) ≤ x− y, y < x with y, x ∈ [0,M ]}, (2)

where we note that every function f ∈ F0 is absolutely continuous, and thus, it is almost everywhere

differentiable on [0,M ], i.e., there exists a Lebesgue integrable function h such that

f(x) =

∫ x

0

h(z)dz, x ∈ [0,M ]. (3)

Here h(z) is the slope of the ceded loss function f at z, and thus, we must have h(z) ∈ [0, 1],

z ∈ [0,M ]. The function h(z) can be interpreted as the “marginal indemnification" from an increase

of the loss X. Thus, the function h is referred to as a “marginal indemnification function (MIF)".

Obviously, two MIF’s only differing each other over a Lebesgue null set result in the same ceded loss

function f everywhere.

The admissible set F0 is typically justified by the argument of avoiding moral hazard. Note that

each ceded loss function in F is non-decreasing and any increment in compensation is always less

than or equal to the increment in loss, hence potentially reducing moral hazard for both the insurer

and reinsurer.

With the above admissible set F0, a stop-loss or closely related contracts frequently solve a

variety of optimal reinsurance models. As pointed by Balbás et al. (2015), in practice reinsurers

rarely accept these solutions due to the lack of incentives of the insurer to verify claims beyond some

thresholds. To rectify this, Balbás et al. (2015) proposed to impose a strictly positive lower bound

on the derivative of admissible retained loss functions, which is equivalent to imposing an upper

bound on the derivative h of admissible ceded loss function.

In the present paper, we follow the argument of Balbás et al. (2015) and consider the following

admissible set of MIF’s:

H , {h : [0,M ] 7→ R |h0 ≤ h ≤ h1 a.e., and h is Lebesgue measurable} , (4)

where h0 and h1 are two constants with 0 ≤ h0 < h1 ≤ 1. Accordingly, the admissible set of ceded

loss functions is given by

F =

{
f : [0,M ] 7→ [0,M ]

∣∣∣∣f(x) =
∫ x

0

h(z)dz, x ∈ [0,M ], h ∈ H

}
. (5)
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Using the representation (3), it is easy to check that the admissible set F can be equivalently written

as

F , {f : [0,M ] 7→ [0,M ] |f(0) = 0,

h0 · (x− y) ≤ f(x)− f(y) ≤ h1 · (x− y), ∀ y < x with y, x ∈ [0,M ]}. (6)

2.2 Distortion Risk Measure and Distortion Premium Principle

In this paper, the optimal reinsurance is defined as those policies which minimize a certain

distortion risk measure of the insurer’s total risk exposure Tf over the feasible set F defined in (5),

or equivalently, (6). Before introducing the distortion risk measure, it is useful to define the following

set of functions:

G ,

{
g : [0, 1] → [0, 1]

∣∣∣g(t) is non-decreasing and left continuous, g(0) = 0 and g(1) = 1
}
.

The left continuity imposed in the definition of G is to facilitate the subsequence analysis. As we will

see shortly, such an assumption retains Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)

in the class of distortion risk measures. Formally, the distortion risk measures is defined as follows.

Definition 2.1 A a distortion risk measure ρg of a random variable Z with a distortion function

g ∈ G is defined as a Choquet integral:

ρg(Z) =

∫ ∞

0

g(1− FZ(t))dt+

∫ 0

−∞

[g(1− FZ(t))− 1] dt, (7)

where FZ denotes the cumulative distribution function of random variable Z, provided of the existence

of the integrals.

We note that (7) reduces to

ρg(Z) =

∫ ∞

0

g(1− FZ(t))dt

for nonnegative random variables Z. We also note the following properties of distortion risk measures:

• Commonotonic Additivity: ρg(X + Y ) = ρg(X) + ρg(Y ) for two commonotonic random

variables X and Y ;

• Translation Invariance: ρg(Z +C) = ρg(Z) +C for any constant C and random variable Z

such that the resulting integral is well defined;

• Monotonicity: ρg(X) ≤ ρg(Y ) whenever X ≤ Y a.s.

The distortion risk measure encompasses many interesting risk measures as its special cases. Two

prominent examples are VaR and CVaR, which are respectively defined as follows.
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Definition 2.2 The VaR and CVaR of a random variable Z at a confidence level α (with 0 < α < 1)

are respectively defined as

VaRα(Z) , inf{z ∈ R : P(Z ≤ z) ≥ α},

and

CVaRα(Z) ,
1

1− α

∫ 1

α

VaRs(Z)ds,

provided that the integral exists.

For any distortion function g ∈ G, define g̃(s) = 1 − g(1 − s), which is right continuous. Then,

the distortion risk measure ρg can be equivalently expressed as

ρg(Z) ,

∫ 1

0

VaRs(Z)d g̃(s); (8)

see, for example, Theorem 6 in Jhaene et al. (2012). Therefore, VaRα and CVaRα, for some

α ∈ (0, 1), are two distortion risk measures, respectively corresponding to g̃(s) = 1[α,1](s) and

g̃(s) = s−α
1−α

1[α, 1](s), or equivalently g(t) = 1(1−α, 1](t) and g(t) = min{1, t
1−α

}. The family of

spectral risk measures, which is defined by Acerbi (2002) and in a form of
∫ 1

0
VaRs(Z)φ(s)ds for

some probability density φ on (0, 1), also obviously falls into the class of distortion risk measures.

We assume that the reinsurance premium in (1) is also a distortion principle as defined below.

Definition 2.3 The distortion premium principle is defined as

πg(Y ) , (1 + θ)ρg(Y ),

where the constant θ ≥ 0 and g ∈ G.

In the above definition, θ is the safety loading of the reinsurer. When g(x) = x, the distortion

premium principle recovers the expected value premium principle. Furthermore, when the distortion

function is concave with θ = 0, the distortion principle recovers Wang’s premium principle.

2.3 Optimal Reinsurance Model

We now formulate the two optimal reinsurance models that we will analyze in this paper. These

models are described as problems 2.1 and 2.2 below.

Problem 2.1

{
inf
f∈F

ρg1(Tf)

s.t. πg2(f(X)) ≤ π0,
(9)
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where g1 and g2 are two distortion functions from G, π0 > 0 is a constant denoting the reinsurance

premium budget. The presence of the premium constraint signifies that the insurer is willing to seek

reinsurance protection as long as the cost does not exceed π0. We assume π0 ∈
[
πg2(h0X), πg2(h1X)

]
,

because, from the definition of F in (6), it is obvious that πg2(f(X)) ∈
[
πg2(h0X), πg2(h1X)

]
for any

f ∈ F .

As it will become clear shortly, when the reinsurance premium budget π0 is larger than a certain

threshold, the solution to problem 2.1 coincides with the following problem 2.2 where no premium

budget constraint is imposed.

Problem 2.2

inf
f∈F

ρg1(Tf ). (10)

In the above two problems, we assume that ρg1(X) and ρg2(X) are finite so that, for every f ∈ F ,

ρg1(Tf ) = ρg1(r(X) + Π(f(X)))

= ρg1(r(X)) + (1 + θ)ρg2(f(X))

≤ ρg1(X) + (1 + θ)ρg2(X)

<∞,

where the first inequality is due to the monotonicity of distortion risk measure.

Remark 2.1 In principle, if we could solve problem 2.1 for a general π0 ∈
[
πg2(h0X), πg2(h1X)

]
,

the solution to problem 2.2 follows trivially by taking π0 = πg2(h1X). As pointed earlier, analyzing

problem 2.1 is much more technically involved compared to problem 2.1 due to the existence of the

premium constraint.

Remark 2.2 While problem 2.2 closely resembles to that studied by Assa (2015) and Cui et al.

(2013), it has some distinctive differences. Notably, lower bound h0 and upper bound h1 are imposed

on the derivative of ceded loss functions (see (4)) in problem 2.2. By setting h0 = 0 and h1 = 1,

problem 2.2 reduces to the model studied by Assa (2015) and Cui et al. (2013). By imposing an

upper bound h1 ∈ (0, 1) on the derivative of ceded loss functions, this has the effect of ensuring the

optimal retained loss is strictly increasing. As advocated by Balbás et al. (2015), this in turn has the

advantage of reducing moral hazard of the insurer.

Prompted by the difficulty of directly applying the MIF-based method of Assa (2015) of solving

a constrained optimal reinsurance model; i.e. problem 2.1 with the premium budget constraint, this

paper alleviates this issue by integrating the MIF formulation with a Lagrangian method.

Comparing our proposed integrated method to the construction method of Cui et al. (2013) for

solving problems 2.1 and 2.2, our proposed method has the advantage of not requiring any preconcep-

tion on the shape of optimal solutions. Moreover, our method allows us to study the uniqueness of

solution (see Corollary 3.1 and Proposition 4.2). Furthermore, our integrated method can similarly

be used for deriving solutions to our reinsurance model, even if there are bounds on the derivative of

admissible ceded loss functions.
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2.4 MIF Formulation

By exploiting the equivalent expression of F given in (5), this subsection transforms problems

2.1 and 2.2 into their equivalence problems in terms of MIF. The following lemma plays a critical

role in accomplishing this objective.

Lemma 2.1 Given any g ∈ G and f ∈ F , there exists h ∈ H, independent of g, such that

f(x) =

∫ x

0

h(z)dz, x ∈ [0,M ], and ρg(f(X)) =

∫ M

0

g (1− FX(z)) h(z)dz.

Proof: We first assume M <∞. For any f ∈ F , let us define

f−1(t) := inf{z ≥ 0 : f(z) ≥ t}, t ∈ [0, f(M)].

Then, the two events {f(X) ≥ t} and {X ≥ f−1(t)} are identical for every t ∈ [0, f(M)], since

f ∈ F is non-decreasing and continuous. P(f(X) > t) and P(f(X) ≥ t), as two functions of t on

[0, f(M)], differ from each other at most over a countable set. These facts imply

ρg(f(X)) =

∫ f(M)

0

g
(
P(f(X) > t

)
dt =

∫ f(M)

0

g
(
P(f(X) ≥ t

)
dt =

∫ f(M)

0

g
(
P(X ≥ f−1(t))

)
dt. (11)

Further note that f(f−1(t)) = t for any t ∈ [0, f(M)], whereby applying a change-of-variable and

invoking the representation (3) yield

ρg(f(X)) =

∫ f−1(f(M))

0

g
(
P(X ≥ z)

)
df(z) =

∫ M

0

g
(
P(X ≥ z)

)
df(z) =

∫ M

0

g
(
P(X ≥ z)

)
h(z)dz,

(12)

where the second equality holds due to the fact that f−1(f(M)) ≤M and that, if f−1(f(M)) < M ,

f must equal to the constant f(M) on [f−1(f(M)),M ].

Next, we assume M = ∞ and denote f(M) = limx↑∞ f(x). We recall that, in this case, “ [0,M ]"

is interpreted as “ [0,∞)" throughout the paper. If f(M) < ∞, the proof in the above still holds.

If f(M) = ∞, we define f−1(t) on [0,∞). Then, all the equalities in (11) and (12) still hold if we

replace M , f(M) and f−1(f(M)) by ∞, and replace “ [0, f(M)]" by “ [0,∞)". Thus, this completes

the proof. �

It follows from Lemma 2.1 that, for any f ∈ F , there exists a function h ∈ H, independent of g1

and g2, with f(x) =
∫ x
0
h(z)dz, ∀ x ∈ [0,M ], such that the reinsurance premium πg2(f(X)) can be

represented as

πg2(f(X)) = (1 + θ)ρg2(f(X)) = (1 + θ)

∫ M

0

g2 (1− FX(z)) h(z)dz, (13)

and the objective in problem 2.1 can be rewritten as

ρg(Tf) = ρg1(X − f(X) + πg2(f(X)))
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= ρg1(X)− ρg1(f(X)) + (1 + θ)ρg2(f(X))

= ρg1(X)−

∫ M

0

g1(1− FX(z))h(z)dz + (1 + θ)

∫ M

0

g2(1− FX(z))h(z)dz

= ρg1(X)−

∫ M

0

ψ(FX(z))h(z)dz, (14)

where

ψ(t) = g1(1− t)− (1 + θ)g2(1− t), t ∈ [0, 1]. (15)

Since ρg1(X) is a constant, it suffices to analyze the term
∫M
0
ψ(FX(z))h(z)dz for optimal solutions

of problems 2.1 and 2.2. As a consequence, problems 2.1 and 2.2 can be respectively transformed

into a MIF formulation as follows:

Problem 2.3





sup
h∈H

U(h) ,

∫ M

0

ψ(FX(z))h(z)dz

s.t.

∫ M

0

g2 (1− FX(z)) h(z)dz ≤ π1,

(16)

where π1 =
π0
1+θ

∈
[
h0ρ

g2(X), h1ρ
g2(X)

]
;

Problem 2.4

sup
h∈H

∫ M

0

ψ(FX(z))h(z)dz. (17)

Remark 2.3 The transformed problems 2.3 and 2.4 are well-posed in the sense that the supremum

is finite, because the objectives in both problems are bounded from above for every h ∈ H. More

specifically, every h ∈ H is bounded by h1 from the above, and thus,

U(h) ≤

∫ M

0

[
g1(1− FX(z)) · h(z)

]
dz ≤ h1ρ

g1(X) <∞.

In Sections 3 and 4, we will respectively obtain feasible MIF which attains the supremum of the

objective for problems 2.3 and 2.4.

A formal result on the equivalence between the MIF formulation (i.e., problems 2.3 and 2.4) and

the formulation in terms of ceded loss functions (i.e., problems 2.1 and 2.2) is summarized in the

following proposition.

Proposition 2.1 An element h∗ solves problem 2.3 (or problem 2.4) if and only if f ∗(x) =
∫ x
0
h∗(z)dz

for x ∈ [0,M ], solves problem 2.1 (problem 2.2).
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Proof: We only show the relationship between problems 2.1 and 2.3 as the result can be similarly

proved for the other pair of problems. We furnish the proof by a contradiction argument. We first

consider the “if” part. Assume that h∗ ∈ H, which is the derivative of f ∗, is not an optimal solution

to problem 2.3, i.e., there exists another element, say ĥ ∈ H, satisfying U(ĥ) > U(h∗). Then, we

define f̂(x) =
∫ x
0
ĥ(z)dz, ∀ x ∈ [0,M ], to get

ρg1(X)− ρg1(T
f̂
) = U(ĥ) > U(h∗) = ρg1(X)− ρg1(Tf∗),

which means that f ∗ cannot be a solution to problem 2.1. Therefore, if f ∗ solves problem 2.1, its

derivative h∗ must be a solution to problem 2.3).

To show the “only if" part, we assume that f ∗ as given is not a solution to problem 2.1. Then,

there must exist another element f̂ ∈ F with ρg1(T
f̂
) < ρg1(Tf∗), which combines with the equation

(14), further implies U(ĥ) > U(f ∗), where ĥ is the derivative of f̂ . This in turn implies that

h∗ is not a solution to problem 2.3, leading to a contradiction. Therefore, if h∗ solves problem 2.3,

f ∗(x) =
∫ x
0
h∗(z)dz ∀ x ∈ [0,M ] must be one solution to problem 2.1, and thus, the proof is complete.

�

3 Optimal Reinsurance without Premium Constraint

In this section, we first focus on solving problem 2.4, which by Proposition 2.1, is equivalent to

solving problem 2.2. Here and thereafter, we use µ to denote the Lebesgue measure.

Theorem 3.1 h∗ ∈ H solves problem 2.4 if and only if it admits the following representation:

h∗(z)
a.e.
=





h1, if ψ(FX(z)) > 0,

κ(z), if ψ(FX(z)) = 0,

h0, if ψ(FX(z)) < 0,

(18)

where the domain of h∗ is [0,M ], and κ(z) can be any Lebesgue measurable and [h0, h1]-valued

function on {z ∈ [0,M ] : ψ(FX(z)) = 0}.

Proof: Let l ∈ H be a function which differs from h∗ on a Lebesgue set A ⊂ {z ∈ [0,M ] :

ψ(FX(z)) 6= 0} with µ(A) > 0. We need to show U(l) < U(h∗). Indeed,

U(l)− U(h∗)

=

∫ M

0

ψ(FX(z))l(z)dz −

∫ M

0

ψ(FX(z))h
∗(z)dz

=

∫

{z∈[0,M ]|ψ(FX (z))>0 }

ψ(FX(z))
[
l(z)− h∗(z)

]
dz +

∫

{z∈[0,M ]|ψ(FX (z))<0 }

ψ(FX(z))
[
l(z)− h∗(z)

]
dz

=

∫

{z∈[0,M ]|ψ(FX (z))>0 }

ψ(FX(z))
[
l(z)− h1

]
dz +

∫

{z∈[0,M ]|ψ(FX(z))<0 }

ψ(FX(z))
[
l(z)− h0

]
dz < 0,
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and hence the proof is complete. �

Remark 3.1 In the optimal control theory, if an optimal control switches from one extreme point

of the feasible set to the other (i.e., is strictly never in between the bounds), then that control is

referred to as a bang-bang solution. A bang-bang solution is often optimal for a (functional) linear

programming problem, and it is indeed the case for our problem 2.4. To see this, we take either

κ(z) ≡ h0 or κ(z) ≡ h1 in (18), the optimal solution h∗ is obviously an extreme point of the feasible

set of problem 2.4. The concept of bang-bang solutions have been previously pointed out by Balbás et

al. (2015) in the context of optimal reinsurance design. As pointed our earlier, Balbás et al. (2015)

developed two dual methods of transforming a class of mean-risk reinsurance models which may be

non-linear into functional linear programming problems. The existence of bang-bang solutions have

been studied by the authors in Balbás et al. (2015).

Remark 3.2 By setting h0 = 0 and h1 = 1, Theorem 3.1 recovers the optimal solutions obtained by

Assa (2015).

By Proposition 2.1, the optimal ceded loss functions for problem 2.2 can be obtained as

f ∗(x) =

∫ x

0

h∗(z)dz, ∀ x ∈ [0,M ],

where h∗ can be any MIF as given in (18). In particular, if we take κ(z) = h0 on the set {z ∈ [0,M ] :

ψ(FX(z)) = 0} in (18), then the MIF h̃ defined by

h̃(z) , h11{ψ(FX (z))>0} + h01{ψ(FX (z))≤0}, z ∈ [0,M ], (19)

solves problem 2.4, and f̃ defined by

f̃(x) = h1µ({z ∈ [0, x] |ψ(FX(z)) > 0}) + h0µ({z ∈ [0, x] |ψ(FX(z)) ≤ 0}), x ∈ [0,M ], (20)

is one optimal ceded loss function of problem 2.2.

Corollary 3.1 The optimal solution to problem 2.2 is unique on [0,M ], if and only if

µ({z ∈ [0,M ] |ψ(FX(z)) = 0}) = 0.

Proof: The result trivially follows from Proposition 2.1 and Theorem 3.1. �
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4 Optimal Solutions with Premium Constraint

In this section, we analyze the solutions of problem 2.1. In view of Proposition 2.1, we first

focus on problem 2.3. Once we derive a solution h∗ for problem 2.3, function f ∗ defined by f ∗(x) =∫ x
0
h(z)dz, ∀ x ∈ [0,M ], is an optimal ceded loss function for problem 2.1. To proceed, let us denote

π̃ ,

∫ M

0

g2 (1− FX(z)) h̃(z)dz, (21)

where h̃ is given in (19), which is a solution of problem 2.4. If π1 ≥ π̃, then h̃ is obviously an optimal

solution to problem 2.3, and thus, the ceded loss function f̃ given in (20) solves problem 2.1 in this

case.

In the subsequent analysis we assume π1 < π̃ to exclude the known case. We resort to a La-

grangian dual method to solve problem 2.3. This entails introducing a multiplier λ and the following

auxiliary problem:

inf
h∈H

V (λ, h) ,

∫ M

0

ψ(FX(z))h(z)dz − λ
(∫ M

0

g2 (1− FX(z)) h(z)dz − π1

)
. (22)

The connection between problem 2.3 and auxiliary problem (22) will be developed in Lemma 4.1

and Theorem 4.1.

Noticing the definition of ψ in (15), we write V (λ, h) =
∫M
0
ψλ(FX(z))h(z)dz + λπ1, where

ψλ(t) = g1(1− t)− (1 + θ + λ)g2(1− t), t ∈ [0, 1]. (23)

Thus, following the same reasoning as in the proof of Theorem 3.1, we obtain the solutions of auxiliary

problem (22) as given by:

hλ(z)
a.e.
=





h1, if z ∈ Aλ

κλ(z), if z ∈ Bλ,

h0, if z ∈ Cλ,

(24)

where the domain of hλ is [0,M ], and κλ is any Lebesgue measurable and [h0, h1]-valued function,

and 



Aλ = {z ∈ [0,M ] |ψλ(FX(z)) > 0},

Bλ = {z ∈ [0,M ] |ψλ(FX(z)) = 0},

Cλ = {z ∈ [0,M ] |ψλ(FX(z)) < 0}.

(25)

Lemma 4.1 below provides sufficient conditions for a solution of the form (24) with certain special

value of λ to solve problem 2.3. The existence of such λ will be proved in Theorem 4.1 in the sequel.

Lemma 4.1 Assume that there exists a constant λ∗ ≥ 0 such that hλ∗ solves problem (22) for λ = λ∗

and
∫ M

0

g2 (1− FX(z)) hλ∗(z)dz = π1. (26)

Then, h∗ , hλ∗ solves problem 2.3.

13



Proof: We denote the optimal value of problem 2.3 by u(π1). Then, it follows

u(π1) = sup
h∈H∫M

0
g2(1−FX(z))h(z)dz≤π1

U(h)

≤ sup
h∈H∫M

0
g2(1−FX(z))h(z)dz≤π1

[
U(h)− λ∗

(∫ M

0

g2 (1− FX(z)) h(z)dz − π1

)]

≤ sup
h∈H

[
U(h)− λ∗

(∫ M

0

g2 (1− FX(z)) h(z)dz − π1

)]

=U(hλ∗) ≤ u(π1),

where we apply the fact that hλ∗ is feasible to problem 2.3. Hence, h∗ := hλ∗ solves problem 2.3. �

Remark 4.1 To establish an analytical solution h∗, we need to determine the specific value of λ∗

and a function κλ∗ to satisfy (26). By (24), we take κλ(z) = a for some a ∈ [h0, h1] and write

∆(λ, a),

∫ M

0

g2(1− FX(z))hλ(z)dz

= h1

∫

Aλ

g2(1− FX(z))dz + a

∫

Bλ

g2(1− FX(z))dz + h0

∫

Cλ

g2(1− FX(z))dz,

which can be viewed as a function of λ and a. This motivates us to follow a two-step procedure to

determine λ∗ and κλ∗. Firstly, we identify the value of λ∗ as the λ such that ∆(λ, h1) is closest to

π1, and secondly, we stick to the determined λ∗ and take a [h0, h1]-valued constant function for κλ∗

such that equation (26) is satisfied. The proof of part (a) in Theorem 4.1 below indeed follows such

a procedure.

The following Proposition 4.1 shows that, when the set {z ∈ [0,M ] |ψ(FX(z)) = 0} is a µ-null

set, the condition (26) is also necessary for hλ∗ to solve problem 2.3 in the case of π1 < π̃.

Proposition 4.1 Assume π1 < π̃, and µ{z ∈ [0,M ] |ψ(FX(z)) = 0} = 0. Then, any solution h∗ of

problem 2.3 must satisfy
∫M
0
g2 (1− FX(z)) h

∗(z)dz = π1.

Proof: By Corollary 3.1, if µ{z ∈ [0,M ] |ψ(FX(z)) = 0} = 0, then the optimal solution of problem

2.4 is unique almost everywhere, and given by h̃ as defined in (19), which satisfies

∫ M

0

g2 (1− FX(z)) h̃(z)dz = π̃ > π1. (27)

We prove the desired result by a contradiction argument. Assume that an optimal solution h∗ of

problem 2.3 satisfies

∫ M

0

g2 (1− FX(z)) h
∗(z)dz < π1.
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This, combined with (27), implies that there exists a constant β ∈ (0, 1) to satisfy
∫ M

0

g2 (1− FX(z))
(
βh∗(z) + (1− β)h̃(z)

)
dz = π1.

We observe that βh∗+(1−β)h̃ is a feasible solution of problem 2.3. Moreover, since h̃ is the unique

optimal solution of problem 2.4, U
(
βh∗+(1− β)h̃

)
= βU(h∗) + (1− β)U(h̃) > U(h∗), which contra-

dicts to the optimality of h∗, and thus the proof is complete. �

To invoke Lemma 4.1 for optimal solutions of problem 2.3, we need to show that there indeed

exists a constant λ∗ ≥ 0 for a function hλ∗ defined in (24) with some function κλ∗ that satisfies

equation (26). To this end, for λ ≥ 0 and a ∈ [h0, h1], we define function

hλ,a(z) := h11Aλ
(z) + a1Bλ

(z) + h01Cλ
(z), z ∈ [0,M ]. (28)

Obviously, hλ,a solves (22) for any constant a ∈ [h0, h1]. The existence of λ∗ is summarized in part

(a) of Theorem 4.1. Part (b) of the theorem is simply a restatement of the optimality of h̃ as we have

justified in the beginning of the section, and such a restatement is present for convenient development

in section 5.

Theorem 4.1 (a) Given any π1 < π̃, there exists λ∗ ≥ 0 and a∗ ∈ [h0, h1] for hλ∗,a∗ to satisfies (26)

and thus, it solves problem 2.3.

(b) For π1 ≥ π̃, h0,h0 = h11A0
+ h01B0∪C0

solves problem 2.3.

Proof: See Appendix. �

Remark 4.2 We note that the optimal MIF’s hλ∗,a∗ in part (a) of Theorem 4.1 for the case of

π1 ≤ π̃ satisfy (26) and thus, in view of (13), the corresponding optimal reinsurance contracts must

saturate the premium budget constraint in this case. In contrast, the optimal MIF obtained in part

(b) of Theorem 4.1 for the case of π1 > π̃ is given by h0,h0, which is identical to h̃ given in (19) and

thus, in view of (21), the corresponding reinsurance premium is equal to π̃. In this case, the obtained

optimal reinsurance contracts do not saturate the premium budget constraint.

In summary, Theorem (4.1) implies that the optimal reinsurance contracts do not exhaust a large

premium budget but they do saturate a small premium budget constraint. Such a result has been

frequently observed in the literature (e.g., Tan, et al., 2011).

Proposition 4.2 below can be used to verify the uniqueness of solution of problem 2.3. Some

interesting sufficient conditions to satisfy (29) are given in Remarks 4.3 and 4.4.

Proposition 4.2 Assume π1 < π̃, and

µ({z ∈ [0,M ] |ψλ(FX(z)) = 0}) = 0 for any λ ≥ 0. (29)

Then, the optimal solution to problem 2.3 is unique almost everywhere.
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Proof: Since µ({z ∈ [0,M ] |ψλ(FX(z)) = 0}) = 0 for any λ ≥ 0, by Theorem 4.1, there exists

λ∗ ≥ 0 such that the resulting hλ∗(z) = h11Aλ∗
(z)+h01Cλ∗

(z) satisfies
∫M
0
g2 (1− FX(z)) hλ∗(z)dz =

π1 and hλ∗ solves problem 2.3. Let ĥ be another solution to problem 2.3, which differs from hλ∗ on

a Lebesgue set B with µ(B) > 0.

We recall from (25) that

Aλ∗ = {z ∈ [0,M ] |ψλ∗(FX(z)) > 0}, and Cλ∗ = {z ∈ [0,M ] |ψλ∗(FX(z)) < 0}.

Then, obviously ψ(FX(z)) > λ∗g1(1 − FX(z)) on Aλ∗ and ψ(FX(z)) < λ∗g1(1 − FX(z)) on Cλ∗ .

Moreover, since hλ∗ = h11Aλ∗
+h01Cλ∗

, we have hλ∗−ĥ = h1−ĥ ≥ 0 on Aλ∗ , and hλ∗−ĥ = h0−ĥ ≤ 0

on Cλ∗ . Consequently, if further noticing the condition of µ{z ∈ [0,M ] |ψλ∗(FX(z)) = 0} = 0, we

obtain
∫ M

0

ψ(FX(z))hλ∗(z)dz −

∫ M

0

ψ(FX(z))ĥ(z)dz

=

∫

Aλ∗

ψ(FX(z))
(
hλ∗(z)− ĥ(s)

)
dz +

∫

Cλ∗

ψ(FX(z))
(
hλ∗(z)− ĥ(z)

)
dz

=

∫

Aλ∗∩B

ψ(FX(z))
(
hλ∗(z)− ĥ(z)

)
dz +

∫

Cλ∗∩B

ψ(FX(z))
(
hλ∗(z)− ĥ(z)

)
dz

>

∫

Aλ∗∩B

λ∗g2(1− FX(z))
(
hλ∗(z)− ĥ(z)

)
dz +

∫

Cλ∗∩B

λ∗g2(1− FX(z))
(
hλ∗(z)− ĥ(z)

)
dz

=

∫

Aλ∗

λ∗g2(1− FX(z))
(
hλ∗(z)− ĥ(z)

)
dz +

∫

Cλ∗

λ∗g2(1− FX(z))
(
hλ∗(z)− ĥ(z)

)
dz

=

∫ M

0

λ∗g2(1− FX(z))
(
hλ∗(z)− ĥ(z)

)
dz

=0,

which contradicts to the optimality of hλ∗ and thus, the solution to problem 2.3 is unique almost

everywhere. �

Remark 4.3 In this remark, we make some comments on the condition (29). Note that, from (23),

ψλ(FX(z)) = g1(1− FX(z))− (1 + θ + λ)g2(1− FX(z)), z ∈ [0,M ].

We assume that FX(x) is strictly increasing. Then, a sufficient condition for (29) is given by

µ{t ∈ [0, 1] |g1(t) = c · g2(t)} = 0, ∀ c ≥ 1 + θ. (30)

Define

w(t) ,
g1(t)

g2(t)
, t ∈ (c, 1], where c , sup{z ∈ [0, 1] |g2(z) = 0}. (31)

Then, a further sufficient condition for (30) in terms of w(t) is given as below:
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(a) If c = 0 and (0, 1] has a finite partition with (0, 1] = ∪∞
i=1(αi, αi+1] such that w(t) is either

strictly increasing or strictly decreasing on each interval (αi, αi+1].

(b) If c > 0, g1(t) > 0 for t > 0 and (c, 1] has a finite partition with (c, 1] = ∪∞
i=1(βi, βi+1] such

that w(t) is either strictly increasing or strictly decreasing on each interval (βi, βi+1].

The analysis of optimal solutions in section 5 critically depends on w(1 − t) as a function of t; see

the function k defined in (33).

Remark 4.4 In this remark, we make further comments on the condition (29) for ρg1 = VaRα

and ρg1 = CVaRα, respectively, in the objective of problem 2.1, where α ∈ (0, 1). We still assume

that FX(x) is strictly increasing so that (30) is a sufficient for (29). Then, we have the following

observations:

(a) If ρg1 = VaRα, then g1(t) = 1(1−α, 1](t) and thus, (30) holds for any g2 ∈ G with

g2(t) > 0 for t ∈ (0, 1− α] and µ{t ∈ (1− α, 1] |g2(t) = a} = 0 for any a ∈

(
0,

1

1 + θ

]
.

(b) If ρg1 = CVaRα, then g1(t) = min{1, t
1−α

}. Therefore, (30) is satisfied by any g2 ∈ G with

µ{t ∈ [0, 1− α] |g2(t) = at} = 0 for any a ∈

(
0,

1

(1− α)(1 + θ)

]
,

and µ{t ∈ (1− α, 1] |g2(t) = a} = 0 for any a ∈
(
0, 1

1+θ

]
.

To complete this section, we conclude the optimal ceded loss functions for problem 2.1 by in-

voking Proposition 2.1. Let λ∗ ≥ 0 and a∗ ∈ [h0, h1] be the two constants in Theorem 4.1 such

that hλ∗,a∗ solves problem 2.3. For x ∈ [0,M ], we denote Aλ∗,x = {z ∈ [0, x] : ψλ∗(FX(z)) > 0},

Bλ∗,x = {z ∈ [0, x] : ψλ∗(FX(z)) = 0} and Cλ∗,x = {z ∈ [0, x] : ψλ∗(FX(z)) < 0}. Then, combining

Proposition 2.1 and Theorem 4.1, we obtain optimal ceded loss function for problem 2.1 with a

reinsurance budget of π1 < π̃ as follows:

fλ∗,a∗(x) =

∫ x

0

hλ∗,a∗(z)dz = h1µ (Aλ∗,x) + a∗µ (Bλ∗,x) + h0µ (Cλ∗,x) , x ∈ [0,M ].

5 CVaR Minimization with ISSD Premium Principle

In this section, we apply the results from the preceding section to study optimal reinsurance

treaties where the distortion risk measure is CVaR and the reinsurance premium is computed by the

Inverse-S Shaped Distortion (ISSD) principle. The ISSD premium principle is a special distortion

premium principle with an inverse-S shaped distortion function. It has interesting economic meaning

in pricing insurance contracts. It can be seen shortly that the optimal solutions under general concave
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distortion premium principle can be easily retrieved from those obtained under the ISSD premium

principle.

We will focus on the derivation of the optimal MIF to problem 2.3, because the optimal indemni-

fication functions to problem 2.1 can be easily obtained by an integration once we derive the optimal

MIF. Moreover, the MIF can equally tell us the exact shape of the optimal indemnification function

if not better.

5.1 ISSD Premium Principle

The ISSD premium principle is defined as πg = (1 + θ)ρg with a loading factor θ and an ISSD

distortion function satisfying those conditions in Definition 5.1 below.

Definition 5.1 (ISSD Function) A distortion function g is called an ISSD function, if and only if

it satisfies the following conditions:

(1) It is a continuous and strictly increasing mapping from [0,1] onto [0,1] and twice differentiable

in the interior;

(2) There exists b ∈ (0, 1) such that g′(·) is strictly decreasing on (0, b) and strictly increasing on

(b, 1);

(3) g′(0) , limx↓0 g
′(x) > 1 and g′(1) , limx↑1 g

′(x) > 1.

As proposed by Tversky and Kahneman (1992), a plausible (and popular) ISSD function is of the

form

gγ(x) =
xγ

(xγ + (1− x)γ)
1

γ

,

where γ is a parameter. Figure 1 displays this inverse-S shaped distortion function for γ = 0.5.

As noted by Rieger and Wang (2006) and Ingersoll (2008), this probability distortion function is

increasing and inverse-S shaped for any γ ∈ (0.279, 1).

To understand the economic meaning of an ISSD premium principle, we apply a simple transform

to derive

πg(Y ) =

∫ ∞

0

sg′(1− FY (z))dFY (z). (32)

When g is concave, it indicates that the insurance provider puts more weights on great losses (bad

outcomes) than small ones (good ones) in pricing risks. In contrast, when g is SSID, g′(0) > 1 and

g′(1) > 1 and thus, the insurance provider overweights not only large losses but also small ones,

which is consistent with the empirically observed phenomena in psychological experiments (Quiggin

1982,1992; Tversky and Kahneman 1992; Tversky and Fox 1995; Gonzalez and Wu, 1999).

Moreover, Kaluszka and Krzeszowiec (2012) introduce a premium principle which relies on Cu-

mulative Prospect Theory (CPT). The ISSD premium principle can be viewed as a special CPT
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Figure 1: This is an inverse-S shaped probability distortion function which satisfies Definition 5.1.

The point c is explained in Lemma 5.1.

premium principle corresponding to a linear utility function and a zero reference point. Numeri-

cal estimates of the probability distortion function are studied in Abdellaoui (2000) and Wu and

Gonzalez (1996).

By introducing η(x; g) , g(x)/x on x ∈ (0, 1] for a given ISSD distortion function, its property,

which is stated in Lemma 5.1 below, will be useful in our subsequent discussion.

Lemma 5.1 If g is an ISSD function, then there exists a unique point c ∈ [b, 1] such that η(·; g) is

strictly decreasing from 0 to c and strictly increasing from c to 1.

Proof: Firstly, η(·; g) is a continuous function on (0, 1]. Moreover, η(·; g) is strictly decreasing on

(0, b] since g′(·) is strictly decreasing (or equivalently g(·) is strictly convex) on (0, b]. Then, we take

the derivative of η(x; g) with respect to x on (b, 1) to get η′(x; g) = g′(x)x−g(x)
x2

. So, we only need to

know the sign of m(x) , g′(x)x − g(x). Now, m′(x) = g′′(x)x > 0 for x ∈ (b, 1) which means that

m(x) is a strictly increasing function on x ∈ (b, 1). Thus, the desired result follows. �

From Definition 5.1, an ISSD distortion function becomes a concave distortion function as b→ 1,

and in this case, the point c at which η′(x; g) changes its sign as given in Lemma 5.1 is equal to 1. As

we can see shortly, the optimal solutions under the CVaRα and an ISSD premium principle depend

on such point c, and accordingly, the optimal solutions for a concave distortion premium principle

can be obtained by replacing c with 1 in those solutions obtained for an ISSD principle below.

5.2 Optimal Solutions for CVaR Minimization
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For presentation convenience, we assume that FX is strictly increasing in the present section,

unless otherwise stated. It is well known that CVaRα is a special distortion risk measure with a

distortion function g1(s) = min{ s
1−α

, 1} so that

g1(1− s) =




1, if 0 ≤ s ≤ α,

1−s
1−α

, if α < s ≤ 1.

Assume that g2 in the reinsurance premium principle πg2 is an ISSD function as defined in Definition

5.1. By denoting

k(t) ,
g1(1− t)

g2(1− t)
=





1
g2(1−t)

, if 0 ≤ t ≤ α,

1−t
(1−α)g2(1−t)

, if α < t < 1,
(33)

and k(1) = 1
(1−α)g′

2
(0+)

, the function ψ defined in (15) is then given by

ψ(t) = g2(1− t)
(
k(t)− (1 + θ)

)
, t ∈ [0, 1].

Since FX(z) is strictly increasing, the set {z ∈ [0,M ] |ψ(FX(z)) = 0} has a zero Lebesgue measure,

and thus, according to (18), the optimal MIF to the unconstrained problem 2.4 is given by h̃(z) =

h11{ψ(FX(z))>0} + h01{ψ(FX(z))≤0}. Moreover, the function ψλ defined in (23) is given by

ψλ(t) = g2(1− t)
(
k(t)− (1 + θ + λ)

)
, t ∈ [0, 1]. (34)

We further denote

α̂ = min{1− α, c} and s∗ = VaR1−α̂(X).

Lemmas 5.2 and 5.3 state, respectively, how functions k(t) and k(FX(z)) change their increas-

ing/decreasing patten at the point of 1− α̂ and s∗. These results are useful in analyzing the optimal

reinsurance contracts.

Lemma 5.2 The function k is strictly increasing on [0, 1− α̂] and strictly decreasing on [1− α̂, 1].

Proof: First, we consider the case of 1 − α ≤ c so that α̂ = 1 − α. Since g2(1 − t) is strictly

decreasing on [0, 1], k is strictly increasing on [0, α]. Moreover, from Lemma 5.1, g2(1−t)
1−t

is strictly

increasing on [α, 1] as 1 − α ≤ c, and hence k is strictly decreasing on [α, 1]. Second, we assume

1 − α > c so that α̂ = c and α < 1 − c. Since g2 is strictly increasing, k(t) = 1/g2(1 − t) is

strictly increasing on [0, α]. Moreover, from Lemma 5.1, 1
k(t)

= (1 − α) g2(1−s)
1−s

is strictly decreasing

on [α, 1− c]. Thus, k is strictly increasing on [0, 1− c]. Further, from Lemma 5.1, g2(1−s)
1−s

is strictly

increasing on [1− c, 1] and thus k is strictly decreasing on [1− c, 1]. �

To proceed, recall that M , esssupX. Since FX(s) is strictly increasing and g2(s) is continuous,

Lemma 5.2 and equation (34) imply that the set µ({z ∈ [0,M ] |ψλ(FX(z)) = 0}) = 0 for any λ ≥ 0.

Therefore, according Proposition 4.2, the solution to problem 2.3 is unique almost everywhere.
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Lemma 5.3 The function k(FX(s)) is strictly increasing on s ∈ [0, s∗) and k(FX(s)) is strictly

decreasing on s ∈ [s∗,M ].

Proof: For s < s∗ = VaR1−α̂(X), we have FX(s) < 1−α̂. Thus, by Lemma 5.2 and the assumption

that FX(·) is strictly increasing, we conclude that k(FX(s)) is strictly increasing on s ∈ [0, s∗). For

s > s∗, we get FX(s) > FX(s
∗) ≥ 1− α̂, and hence, k(FX(s)) is strictly decreasing on s ∈ (s∗,M ]. �

Generally, the maximum of k(FX(s)) may not be attainable, which occurs when lims↑s∗ k(FX(s)) >

k(FX(s
∗)). In view of Lemma 5.3, let

k̃ = max
{
lim
s↑s∗

k(FX(s)), k(FX(s
∗))

}
.

To derive the optimal solutions to our reinsurance model, the analysis in section 4 indicates that

we need to consider the set {z ∈ [0,M ] |ψλ(FX(z)) > 0} for an optimal MIF while (34) additionally

suggests that we need to take into account the value of k(FX(z)). Together with Lemma 5.3, this

implies that it is necessary to determine the optimal reinsurance on a case-by-case basis depending

on the relative magnitude of the following four critical values:

k̃, k0 , k(FX(0)), kM , k(FX(M)), 1 + θ.

Figure 2 enumerates all the cases that we need to consider. For each of these cases, the corresponding

proposition that gives the optimal solution is also provided.

k̃, 1 + θ,

k0 , k(FX(0)),

kM , k(FX(M))

k̃ ≤ 1 + θ

Proposition 5.1

k̃ > 1 + θ

k0 ≤ 1 + θ k0 > 1 + θ

kM ≤ 1 + θ

Proposition 5.2

kM > 1 + θ

Proposition 5.3

kM ≤ 1 + θ

Proposition 5.4

kM > 1 + θ

Proposition 5.5

Figure 2: Possible cases for the optimal reinsurance

We now analyze the optimal solution on the first case.
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Proposition 5.1 If k̃ ≤ 1 + θ, an optimal solution to problem 2.3 is given by h∗(z) = h0 for

z ∈ [0,M ].

Proof: When k̃ ≤ 1 + θ, ψλ(t) ≤ 0, ∀ t ∈ [0, 1], and Aλ = ∅, for any λ ≥ 0. The result therefore

follows from Theorem 4.1. �

For the case of k̃ > 1+θ, we need to discuss a few further subcases based on the relative magnitude

of k0 and kM compared to 1 + θ. If k0 ≤ 1 + θ and kM ≤ 1 + θ, then there exists p ∈ [0,VaR1−α̂(X)]

and q ∈ [VaR1−α̂(X),M ] such that k(FX(s)) ≤ 1 + θ for s ∈ [0, p)
⋃
[q,M ] and k(FX(s)) ≥ 1 + θ for

s ∈ [p, q).

Proposition 5.2 Assume that k̃ > 1 + θ, k0 ≤ 1 + θ and kM ≤ 1 + θ hold.

(i) If π1 ≥ π̃, one optimal solution to problem 2.3 is given by

h∗(z) =





h0, if 0 < z < p,

h1, if p < z < q,

h0, if q < z < M.

(ii) If π1 < π̃, the optimal solution to problem 2.3 is given by

h∗(z) =





h0, if 0 < z < l,

h1, if l < z < n,

h0, if n < z < M,

where l ∈ [p,VaR1−α̂(X)], n ∈ [VaR1−α̂(X),M ] and β are such that k(FX(s)) ≤ β for s ∈

[0, l)
⋃
[n,M ], k(FX(s)) ≥ β for s ∈ [l, n) and h0

∫ l
0
g2(1 − FX(z))dz + h1

∫ n
l
g2(1 − FX(z))dz +

h0
∫M
n
g2(1− FX(z))dz = π1.

Proof: The proof of part (i) follows from Theorem 4.1 (b), where A0 = (p, q). For the part (ii),

the existence of l, n and β follows from Lemma 5.3. Denote by λ∗ = β − 1 − θ, it is easy to show

that h∗ in part (ii) satisfies (24) with λ = λ∗. The residual result follows easily from Theorem 4.1

(a). �

In the case of k̃ > 1+θ and kM > 1+θ, there exists p ∈ [0,VaR1−α̂(X)] such that k(FX(s)) ≤ 1+θ

for s ∈ [0, p), and k(FX(s)) ≥ 1 + θ for s ∈ [p,M ] and there exists q ∈ [0,VaRα̂(X)] such that

k(FX(s)) ≤ kM for s ∈ [0, q) and k(FX(s)) ≥ kM for s ∈ [q,M ]. Let us denote

π̂ = h0

∫ q

0

g2(1− FX(z))dz + h1

∫ M

q

g2(1− FX(z))dz.
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Proposition 5.3 Assume that k̃ > 1 + θ, k0 ≤ 1 + θ and kM > 1 + θ hold.

(i) If π̃ ≤ π1, then the optimal solution to problem 2.3 is h∗ = h̃, which is given as

h∗(z) =




h0, if 0 < z < p,

h1, if p < z < M.

(ii) If π̂ ≤ π1 < π̃, then the optimal solution to problem 2.3 is

h∗(z) =




h0, if 0 < z < d,

h1, if d < z < M,

where d is such that h0
∫ d
0
g2(1− FX(z))dz + h1

∫M
d
g2(1− FX(z))dz = π1.

(iii) If π1 < π̂, then the optimal solution to problem 2.3 is

h∗(z) =





h0, if 0 < z < l,

h1, if l < z < n,

h0, if n < z < M,

where l ∈ [p,VaR1−α̂(X)], n ∈ [VaR1−α̂(X),M ] and β are such that k(FX(s)) ≤ β for s ∈

[0, l)
⋃
[n,M ], k(FX(s)) ≥ β for s ∈ [l, n) and h0

∫ l
0
g2(1 − FX(z))dz + h1

∫ n
l
g2(1 − FX(z))dz +

h0
∫M
n
g2(1− FX(z))dz = π1.

Proof: The proof is similar to that of Proposition 5.2 and hence is omitted. Noted that λ∗ in

parts (ii) and (iii) are k(FX(d))− 1− θ and β − 1− θ respectively. �

Remark 5.1 Proposition 5.3 confirms that when the budget is not sufficiently high enough, the

optimal reinsurance policy will change from the stop-loss contract to a one layer contract, i.e., a

contract of stop-loss with an upper limit.

If k0 > 1 + θ and kM ≤ 1 + θ, then there exists p ∈ [V aR1−α̂(X),M ] such that k(FX(s)) ≥ 1 + θ

for s ∈ [0, q) and k(FX(s)) ≤ 1 + θ for s ∈ [q,M ] and there exists q ∈ [V aR1−α̂(X),M ] such that

k(FX(s)) ≥ k0 for s ∈ [0, q) and k(FX(s)) ≤ k0 for s ∈ [q,M ]. By denoting π̂ = h1
∫ q
0
g2(1 −

FX(z))dz + h0
∫M
q
g2(1− FX(z))dz, we have the following proposition.

Proposition 5.4 Assume that k̃ > 1 + θ, k0 > 1 + θ and kM ≤ 1 + θ hold.

(i) If π̃ ≤ π1, then the optimal solution to problem 2.3 is h∗ = h̃, which is given as

h∗(z) =




h1, if 0 < z < p,

h0, if p < z < M.
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(ii) If π̂ ≤ π1 < π̃, then the optimal solution to problem 2.3 is

h∗(z) =




h1, if 0 < z < d,

h0, if d < z < M,

where d is such that h1
∫ d
0
g2(1− FX(z))dz + h0

∫M
d
g2(1− FX(z))dz = π1.

(ii) If π1 < π̂, then the optimal solution to problem 2.3 is

h∗(z) =





h0, if 0 < z < l,

h1, if l < z < n,

h0, if n < z < M,

where l ∈ [p,VaR1−α̂(X)], n ∈ [VaR1−α̂(X),M ] and β are such that k(FX(s)) ≤ β for s ∈

[0, l)
⋃
[n,M ], k(FX(s)) ≥ β for s ∈ [l, n) and h0

∫ l
0
g2(1 − FX(z))dz + h1

∫ n
l
g2(1 − FX(z))dz +

h0
∫M
n
g2(1− FX(z))dz = π1.

Proof: The proof is the same as that of Proposition 5.3 and hence is omitted. �

If k0 > 1 + θ and kM > 1 + θ, without loss of generality, we assume that k0 ≤ kM . Then, then

there exists p ∈ [0, V aR1−α̂(X)] such that k(FX(s)) ≤ kM for s ∈ [0, p) and k(FX(s)) ≥ kM for

s ∈ [p,M ]. By setting π̂ = h0
∫ p
0
g2(1 − FX(z))dz + h1

∫M
p
g2(1− FX(z))dz, we obtain the following

proposition, where the proof is the same as above.

Proposition 5.5 Assume that k̃ > 1 + θ, k0 > 1 + θ and kM > 1 + θ hold.

(i) If π1 = E[X ], then the optimal solution to problem 2.3 is h∗(z) = 1 for z ∈ [0,M ].

(ii) If π̂ ≤ π1 < E[X ], then the optimal solution to problem 2.3 is

h∗(z) =




h0, if 0 < z < d,

h1, if d < z < M,

where d is such that h0
∫ d
0
g2(1− FX(z))dz + h1

∫M
d
g2(1− FX(z))dz = π1.

(ii) If π1 < π̂, then the optimal solution to problem 2.3 is

h∗(z) =





h0, if 0 < z < l,

h1, if l < z < n,

h0, if n < z < M,

where l ∈ [p,VaR1−α̂(X)], n ∈ [VaR1−α̂(X),M ] and β are such that k(FX(s)) ≤ β for s ∈

[0, l)
⋃
[n,M ], k(FX(s)) ≥ β for s ∈ [l, n) and h0

∫ l
0
g2(1 − FX(z))dz + h1

∫ n
l
g2(1 − FX(z))dz +

h0
∫M
n
g2(1− FX(z))dz = π1.
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6 Conclusion

The quest for optimal reinsurance has remained a fascinating subject to academicians and prac-

titioners. Over the last few decades many reinsurance models were proposed to provide better

guidance for insurers to manage their risk. This paper contributed to the literature by providing

better approach in solving sophisticated optimal reinsurance model whereby the distorted prefer-

ence of an insurer’s total risk exposure is minimized under the general distortion risk measure while

subject to a budget constraint on premium. To eliminate the moral hazard which potentially occur

on the resulting reinsurance contracts, general lower and upper bounds are imposed on the deriva-

tive of admissible ceded loss functions. Such optimal reinsurance is quite general. For example,

the distortion risk measure includes VaR, CVaR and spectral risk measure as special cases while

the distortion premium principle includes the expected value principle and Wang’s premium princi-

ple as special cases. We solved this problem explicitly by using marginal indemnification function

formulation in conjunction with the method of Lagrange. Compared to the existing method, our

proposed method has the advantages of simplicity and transparent. As another added advantage of

our method, the uniqueness of the optimal reinsurance policy can also be analyzed. By resorting to

a well-specified optimal reinsurance model with CVaR as the risk measure and the inverse-S shaped

distortion function as the premium principle, the proposed method was used to derive explicitly the

optimal solutions.
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Appendix

Proof of Proposition 4.1. (a) Let φ(λ, a) ,
∫M
0
g2 (1− FX(z)) hλ,a(z)dz, λ ≥ 0 and a ∈ [h0, h1],

where hλ,a is given in (28). We denote Cp = {z ∈ [0,M ] |g2(1− FX(z)) > 0} and C0 = {z ∈

[0,M ] |g2(1− FX(z)) = 0}. It is easy to check

lim
λ→∞

µ(Aλ ∩ Cp) = 0 and lim
λ→∞

µ(Bλ ∩ Cp) = 0.

Further note that g2(1− FX(z)) = 0 on C0. Thus,

φ(λ, a)
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=h1

∫

Aλ

g2(1− FX(z))dz + a

∫

Bλ

g2(1− FX(z))dz + h0

∫

Cλ

g2(1− FX(z))dz

=(h1 − h0)

∫

Aλ

g2(1− FX(z))dz + (a− h0)

∫

Bλ

g2(1− FX(z))dz + h0

∫ M

0

g2(1− FX(z))dz

=(h1 − h0)

∫

Aλ∩Cp

g2(1− FX(z))dz + (a− h0)

∫

Bλ∩Cp

g2(1− FX(z))dz + h0

∫ M

0

g2(1− FX(z))dz

Combining the above two displays, we get limλ→∞ φ(λ, a) = h0
∫M
0
g2(1 − FX(z))dz for any a ∈

[h0, h1]. Moreover, for λ = 0 and a = h0, it follows that hλ,a = h̃ , which means φ(0, h0) = π̃.

It is easy to check

lim
γ→λ+

{z ∈ [0,M ] : ψγ(FX(z)) > 0} = {z ∈ [0,M ] : ψλ(FX(z)) > 0},

and

lim
γ→λ−

{z ∈ [0,M ] : ψγ(FX(z)) ≥ 0} = {z ∈ [0,M ] : ψλ(FX(z)) ≥ 0}.

Thus, we apply the Dominated Convergence Theorem to obtain

lim
γ→λ+

φ(γ, h0) = φ(λ, h0), and lim
γ→λ−

φ(γ, h1) = φ(λ, h1).

Define λ∗ = supSπ1, where

Sπ1 = {λ ≥ 0 : φ(λ, h1) ≥ π1} .

On one hand, given ǫ > 0, by the supremum property of λ∗, there exists some λ ∈ (λ∗ − ǫ, λ∗] and

λ ∈ Sπ1 such that

φ(λ∗ − ǫ, h1) ≥ φ(λ, h1) ≥ π1,

where the first inequality is due to the non-increasing property of φ(λ, a) as a function of λ. On the

other hand, the superium property of λ∗ implies λ∗ + ǫ /∈ Sπ and thus,

φ(λ∗ + ǫ, h0) ≤ φ(λ∗ + ǫ, h1) < π1.

Letting ǫ→ 0 in the last two displays yields

φ(λ∗, h0) ≤ π1 ≤ φ(λ∗, h1). (A.1)

Moreover, it is clear from the definition of φ(λ, a) and hλ,a that φ(λ∗, a) is a continuous function of

a. Thus, it follows form (A.1) and the Intermediate Value Theorem, there exists some a∗ ∈ [h0, h1]

such that φ(λ∗, a∗) = π1, as desired.

(b) The result has been clearly shown at the beginning of section 4. �
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