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Abstract: 

Two of the biggest challenges in medicine today are the need to detect diseases in a 

non-invasive manner, and to differentiate between patients using a single diagnostic 

tool. The current study targets these two challenges by developing a molecularly-

modified Silicon Nanowire Field Effect Transistors (SiNW FETs) and showing its use 

in the detection and classification of many disease breathprints (lung cancer, gastric 

cancer, asthma and Chronic Obstructive Pulmonary Disease). The fabricated SiNW 

FETs are characterized and optimized based on a training set that correlated their 

sensitivity and selectivity towards volatile organic compounds (VOCs) linked with 

diseased states. The best sensors obtained in the training set are then examined 

under real-world clinical conditions, using breath samples from 374 subjects. 

Analysis of the clinical samples showed that the optimized SiNW FETs can detect 

and discriminate between almost all binary comparisons of the diseases under 

examination with >80% accuracy. Overall, this approach has the potential to support 

detection of many diseases in a direct positive way, which can reassure patients and 

prevent numerous negative investigations. 
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Physicians are always challenged by the need to give the correct diagnosis as early 

in the onset of a disease is possible, whether the disease-related symptoms are 

absent or not evident.1 Symptoms are not always characteristic of one particular 

disease; overlap of symptoms is common in, for example, lung diseases.2 Patients 

with different respiratory diseases, such as malignant or benign tumors, or   

substantially less severe diseases, may have similar symptoms, e.g. cough, chest 

pain, difficulty to breathe, etc. These symptoms may be characteristic of lung cancer 

(LC), pneumonia, asthma, and chronic obstructive pulmonary disease (COPD).1,2  

Therefore, it is of particular clinical importance to find a diagnostic tool capable of 

distinguishing between these diseases. A diagnostic tool that involves no needle, 

surgery and/or active materials and/or radioactive exposure would have a benefit.  

A highly promising approach that could meet the aforementioned need is 

based on the detection and classification of the disease breathprint, viz. the chemical 

profiles of highly- and semi-VOCs in exhaled breath linked with disease.3-15 The 

rationale behind this approach relies on the fact that VOCs generated by cellular 

metabolic pathways during a specific disease circulate in the blood stream and 

diffuse into exhaled breath, which is easily sampled.4,16,17 In certain instances, 

analysis of breathprints offers several potential advantages, such as: (a) breath 

samples are non-invasive and easy to obtain; (b) breath contains less complicated 

mixtures than either serum or urine; and (c) breath testing has the potential for direct 

and real-time diagnosis and monitoring.3,18-21  

Several mass-spectrometry and spectroscopy studies have shown that the 

breathprint of a specific disease differs from that of healthy controls.22-26 Some of the 

investigated VOCs are present in different concentrations in the breath of patients 

with a specific disease than in the breath of controls.22-26 Spectrometry and 

spectroscopy techniques are powerful tools for detecting VOC of breathprints. 

However, to date, these techniques has been impeded by the need for expensive 

equipment, high levels of expertise to operate such instruments, the speed required 

for sampling and analysis, and the need for pre-concentration techniques.22,27-29 For 

breathprint testing to become a clinical reality, several advances in the sensor 

development are needed. Chemical sensor matrices, based on nanomaterials, are 

more likely to become clinical and laboratory diagnostic tools, because they are 

significantly smaller, easier-to-use, and less expensive.18,30,31 An ideal chemical 

sensor for breathprint analysis should be sensitive at very low VOC concentrations in 

the presence of water vapor because headspace of clinical samples is fully 

humidified. Furthermore, it should respond rapidly and differently to small changes in 

concentration, and provide a consistent output specific to a given exposure.18,30,31 
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When not in contact with the analyte, the sensor should return to its baseline state 

rapidly, or be simple and inexpensive so that one could manufacture large numbers 

of disposable units.  

We have developed Silicon Nanowire Field Effect Transistors (SiNW FETs)32-44 

as the sensing matrices for the detection and discrimination between disease 

breathprints. As representative diseases, we chose gastric cancer (GC), lung cancer 

(LC), asthma and Chronic Obstructive Pulmonary Disease (COPD). NOTE: For this 

study, the asthma and COPD are considered as a control group for LC, and is 

abbreviated as “AC” henceforth. These diseases cover both the direct and quasi-

direct track to the breath.4,16 Indeed, GC-related VOCs might reach the breath directly 

through the esophagus or from the lung alveoli. While LC- and AC-related VOCs 

reach the breath either by release directly into the airways or by diffusion in alveoli. 

The SiNW FETs are characterized and optimized based on a training set that 

correlated their sensitivity and selectivity towards the VOCs linked with the disease 

states under examination. The best sensors obtained in the training set are examined 

under real-world clinical conditions, using breath samples from 374 subjects. The 

high sensitivity, low-power consumption, fast-response times, and the compatibility 

with conventional silicon technology and readout circuitry, have the potential to get 

SiNW FETs to give us simple signal transductions of disease breathprints, as well as 

being amenable to miniaturization and scalability.45-50 

  

Results and Discussion 

Preparation of molecularly-modified SiNW FETs 

The study consisted of 3 phases (Figure 1a). In the first, FETs based on well-aligned 

array of SiNWs (density ~ 1 NW/ 100 µm2; 40±8 nm in diameter; and 8.5±1.5 µm in 

length) were fabricated and characterized. Each SiNW FET was coated with different 

molecular modification (Table 1). The aim of the molecular modification was to 

passivate the surface states on the SiNW and optimize the interaction of VOCs with 

the SiNWs. Four SiNW FETs were coated with molecules having mostly non-polar 

(functional) side-groups (S1-S3 & S5) to improve their interaction with the non-polar 

VOCs in the breathprint. Two SiNW FETs were coated with molecules having mostly 

polar side groups (S4 & S6) to improve their interaction with the polar VOCs found in 

the breathprint.  
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Figure 1.  Schematic representation of the experimental procedure divided into: (a) surface 

modification of the SiNW FET sensors (SSM: single-step modification; TSM: 2-step 

modification); (b) exposure of sensors to breathprint simulants, representative VOCs 

recognized as potential biomarkers of each disease; and (c) exposure to real breath samples 

of patients suffering from known diseases, compared with healthy control  volunteers. (d) 

Representation of the artificial neural networks (ANN)
33,51

 analysis method, where the sensing 

features are the inputs of the model, and the sample classification label is the output. ANNs 

are machine-learning algorithms that use a set of input vectors (sensing features in Figure 

1b) to determine weighted parameters and mathematical functions, and to classify the 

samples (the sample classification label is the output).  
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Table 1:  List of the molecular modifications used to coat the SiNWs - to optimize the 

interaction of the SiNW FETs with the breathprint-related VOCs 

Structure Modification Sensor # 

 

Trichloro phenethyl silane 

(TPS) 
S1 

 

Trichloro trifluoro propyl silane 

(TTPS) 
S2 

 
Heptanoyl Chloride S3 

 

3-Aminopropyl triethoxysilane  

(APTES) 
S4 

 
Anthracene S5 

 

Bromopropyl trichlorosilane 

(BPTS) 
S6 

 

 

Testing the sensors exposed to simulants of disease breathprints 

In the second phase of the study, the molecularly-modified SiNW FET sensors were 

exposed to a number of VOCs presumed as breathprint biomarkers for the chosen 

diseases: GC, LC and AC (Table 2). The presumed VOCs linked with GC conditions 

via breathprint are: 2-propenenitrile, furfural, 6-methyl-5-hepten-2-one.14,31 The 

presumed VOC linked with AC conditions by breathprint is pentane.31 The presumed 

VOCs linked with LC conditions by breathprint are: heptane, decane, 2-

methylpentane, 2-ethyl-1-hexanol, propanal, pentanal and acetone.31 Each SiNW 

FET was exposed to 4 concentrations of each VOC, and each exposure was 

repeated 3 times. In each exposure to VOC, the source-drain current (Ids) vs. back 

gate voltage (Vgs) characteristic curve was obtained by sweeping the gate voltage 

between +40V and -40V (Figure 2a). For the sake of reference, Ids-Vgs curves were 

obtained in vacuum before and after exposure to the VOC (Figure 2a). 
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Table 2: List of the representative VOCs linked with gastric cancer (GC), asthma & COPD 

(AC), or lung cancer (LC) from breathprint showing significant statistical differences (p<0.05 in 

previous clinical studies). The VOC concentrations exposed to the molecularly-modified SiNW 

FETs, as well as the transition from concentration in pa/po terms (pa is the partial pressure of 

the VOC and po is the vapor pressure of the VOC) to parts per billion units (ppb), are 

presented. 

 

Disease VOC 
Pa 

(mmHg) 

Concentratio

ns tested 

(pa/p0) 

Concentrations 

tested (ppb) 

GC 

2-Propenenitril 83 0.001-0.008 100-870 

Furfural 2 0.001-0.008 2.6-21 

6-Methyl-5-heptene-2-

one 
0.8 0.001-0.008 0.98-7.9 

AC Pentane 6.2 0.001-0.008 8-65 

LC 

Heptane 40 0.001-0.008 50-420 

Decane 1.5 0.001-0.008 2-15 

2-Methylpentane 350.3 0.001-0.008 460-3680 

2-Ethyl-1-hexanol 0.23 0.001-0.008 0.29-2.36 

Propanal 258 0.0005-0.004 170-1360 

Pentanal 26 0.001-0.008 34-273 

Acetone 230 0.001-0.008 300-2420 
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Figure 2. (a) Characteristic Ids-Vgs curve of SiNW FET modified with heptanoyl chloride (S3) in 

vacuum (black line) and on exposure to 2-propenenitrile at a concentration of pa/p0=0.001 (red 

line). Curves are presented in both linear (solid line) and logarithmic (dashed line) scales. 

Sensing response of: (b) Vth, (c) µh and (d) Ids @ Vgs = -30V on exposure to 2-propenenitrile at 

a concentration of pa/p0=0.001. “Vac” stands for “vacuum” and “Exp” stands for exposure. (e) 

3 repetitive response cycles of Ids @ Vgs = -30V exposed to 2-propenenitrile (pa/p0=0.001) 

condition for evaluating the repeatability of the sensing signals. 

 

In most instances, exposing the SiNW FETs to VOCs resulted in a change in 

the Ids-Vgs curves. Figure 2a presents the characteristic Ids-Vgs curve of a SiNW FET 

modified with heptanoyl chloride (S3) under vacuum (black lines) and under 

exposure to pa/p0=0.001 of 2-propenenitrile (red lines). The FET curve changes on 

exposure to 2-propenenitrile. Closer examination of the curves shows that several 

FET features are changed on exposure, which include the voltage threshold (Vth; the 

voltage under which the charge transfer regime changes from depletion to 

accumulation), the charge carrier (hole) mobility (µh; the velocity of the charge 
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carriers moving under the influence of the electrical field), and the Ids @ different Vgs 

values. The extraction and calculation of these features is described in the 

Experimental Methods section. As these features change with exposure, their values 

(which can be monitored and recorded during the experiment) may be informative. 

For example, the Vth values decrease on exposure to 2-propenenitrile from -27 to  

-29.5V (Figure 2b) at the time the µh values increase from 125 to 140 cm2/V�s 

(Figure 2c), and the Ids @ Vgs=-30V values decrease slightly from 120 to 80 µA 

(Figure 2d). In the representative example (Figure 2e), repeated exposure cycles on 

the same sensor are usually characterized by a relatively stable baseline and an 

almost repeatable sensing features from cycle to cycle (±3% variance). 

The detection limit of the sensors to each VOC as well as the concentrations 

found in breath can be found in the Supporting Information (Table S1). The detection 

limit of each sensor is different and depends on the VOC’s structure. In this context, it 

is important to clarify that the SiNW FET sensors do not obey the lock-and-key 

sensing approach.18,31 Instead, they have affinity to multiple VOCs and, therefore, the 

sensing signal on exposure to a mixture of VOCs (e.g., a breath sample) reflects the 

fingerprint of all the VOCs in it. Under these circumstances, different molecular 

modifications of the SiNW change the affinity balance between the different VOCs 

found in a specific mixture. Therefore, even if the detection limit of specific SiNW FET 

to a certain VOC is higher than its concentration in the breath, the SiNW FET can still 

detect the change in breath sample composition, as the overall change (sum) of VOC 

changes in the breath due to disease state is in the range of a few to 10s of ppm. 

These SiNW FETs have a very wide dynamic range between their limit of detection 

(Table 1) up to thousands of ppm, when a thin film of condensed liquid begins to 

develop on the surface of the sensors. 

The ability to separate disease-related VOCs by a single sensor stems from 

their ability to respond simultaneously to different VOCs, each of which induces a 

different effect on the FET features due to one or a combination of the following 

scenarios: (i) charge-charge interactions between the functional group of the 

modified SiNW, which changes the charge density on the surface of the SiNW, 

resulting in a change to Vth, µh or the currents in the linear region; (ii) addition of polar 

or polarizable molecules on the surface of the SiNW, which changes the electrical 

field on the surface, resulting in a change to the value of the subthreshold currents 

and other features, similarly to molecular gating phenomena previously reported;35 

(iii) passivation of the surface states by the VOCs.34,35   

 Investigation of the change in the entire Ids-Vgs, mainly the depletion and 

accumulation features, could help significantly an increase in the number of multiple 
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sensing features. These features operate as “virtual sensors”, viz. a set of 

independent sensing signals extracted from the electrical measurements of the 

device, and can be monitored separately as if they are individual sensors. This 

behavior leads to a decrease in the number of sensors needed for classification, and 

thus simplifies the system in terms of its supporting circuitry and infrastructure. To 

avoid unnecessary computation, a process of feature selection was applied by 

choosing only features with a signal-to-noise ratio >3 and by choosing only features 

that represent physical phenomena in the device. 

Following the initial feature selection, artificial neural network (ANN) analysis 

was applied. Its purpose was to test the ability of the sensors to correlate VOCs with 

the disease to which they should relate, and to assess which sensor would be more 

suitable for disease diagnosis. ANN was applied on the basis of 36 samples for GC 

simulation, 12 samples for AC simulation, and 84 samples for LC simulation. 

Separation of GC-related VOCs from AC biomarkers was called “Test-A”; separation 

of LC-related VOCs from AC-related VOCs was Test-B”; and separation between 

LC- and GC-related VOCs was “Test-C”. In Test-A and Test-B, the cancer group 

was considered the "positive" group, whereas AC was considered the "negative" 

group. In Test-C, LC was considered the "positive" group and GC was considered 

"negative". The success in classification of the ANN analysis in each test is 

presented in Figure 3. 

 

 

Figure 3. Classification results of sensing signals obtained from the molecularly-modified 

SiNW FETs upon exposure to a simulated VOC-related breathprint of the diseases. The color 

bar indicates the percentage of correct classification of samples comparing VOC of GC vs AC 

(Test-A); LC vs AC (Test-B); and LC vs GC (Test-C).  
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The ANN model calculated values of sensitivity, specificity and accuracy of 

each comparison, the method being found in the Experimental Methods section. 

Results from the vast majority of the sensors (Figure 3), and in most comparisons, 

were satisfactory (>80% accuracy). Besides this accuracy for the classification, a few 

important findings were recorded. In Test-A, most sensors correctly classified 100% 

of the cases, irrespective of the vapor pressure values of the VOCs. In Test-B, S4 

had a similar classification ability to S2 and S3 for LC (~100% accuracy) and gave 

slightly better classification than S1, S5 and S6. On the other hand, S1 showed the 

highest classification ability of AC samples (100%). In Test-C, S1 again gave the 

highest percentage of correct classification; 93% for LC-related VOCs and 85% for 

GC-related VOCs, resulting in 92% accuracy.  

 

Validation of the sensors in a clinical study 

To validate the performance of the SiNW FETs under lab conditions using simulants 

of breathprint-related VOCs, clinical trials were carried out with the same sensors 

(Experimental Methods section); the design of the clinical study is shown in Figure 4. 

Briefly, breath samples were collected from 374 volunteers belonging to 4 groups: 

control subjects not suffering from any of the conditions tested (n=129), LC patients 

(n=149), GC patients (n=40) and AC patients (n=56). Cancer patients were also 

divided into 2 groups according to the staging of the cancer: early (stages 1 and 2) 

and advanced (stages 3 and 4). Additional information was also collected from the 

volunteers, including age, gender, smoking status, etc., shown in Figure 4b. Clinical 

studies provides 3 main advantages over the simulated breathprint studies, because 

they can precisely determine: (i) the signature of all VOCs of the disease breathprint 

on the SiNW FET sensor; (ii) correlation between the sensor’s sensitivity and 

specificity of the disease breathprint to its existence in a population of patients; and 

(iii) the necessary feedback that accounts for confounding factors, such patients’ 

diet, metabolic state, genetics, etc. 

For the clinical study, 2 kinds analysis were carried out: ANN analysis and 

discriminant function analysis (DFA). As mentioned earlier, ANNs are a machine-

learning method inspired by biological neural networks (i.e. the human nervous 

system). It is based on a set of functions connecting the input (sensor features in this 

case) with the output (classification of samples to a specific disease). On the other 

hand, DFA is a linear supervised pattern recognition method that effectively reduces 

the multidimensional experimental data, in which the classes to be discriminated are 

defined, before carrying out the analysis. More details on these approaches and their 

implementation in the clinical study can be found in the Experimental Methods 
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section. Using one or both of these approaches, the aim was to distinguish between 

breathprints of patients belonging to the 4 study groups (Figure 4).  
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(Y
:N
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LC 

Stages I and II 34 70±11 23:12 4:31 

Stages III and IV 110 63±11 61:48 24:85 

Unknown stage 5 64±15 2:3 2:3 

Total 149 65±11 86:63 30:119 

GC 

Stages I and II 12 58±13 6:6 01:11 

Stages III and IV 24 63±9 18:6 10:14 

Unknown stage 4 57±20 4:0 4:0 

Total 40 60±10 28:12 15:25 

AC Total 56 71±11 35:21 
9:29 

(18 unknown) 

Control Total 129 65±9 51:78 
22: 105 

(2 unknown) 

 

Figure 4. (a) Division of subjects into the groups. The 374 subjects who provided breath 

samples were separated into the following groups: healthy control volunteers (n=129), LC 

patients (n=149), GC (n=40) patients and AC patients (n=56). Cancer patients were further 

separated into2 groups according to the disease stage: Early and advanced. (b) Full clinical 

details including age, gender, smoking status and as r classification into one of the groups 

given in (a).   

  

(a) 

(b) 
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Figure 5. Sensitivity (red; a, d, g, j, m, p), specificity (blue; b, e, h, k, n, q) and accuracy 

(green; c, f, i, l, o, r) for binary comparisons between the response of S1-S6 to breath 

samples of volunteers from all groups: LC, GC, AC and healthy control. Classification was 

obtained by ANN analysis (each row corresponds to a different sensor- top row (a, b, c) 

corresponds to S1, the second (d, e, f) to S2, etc.).  In this classification, all stages of a 

disease were considered as one group (without staging). Numbers in white are the values, 

e.g. the value in the red box relating GC and control is the sensitivity of their comparison; the 
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value in the blue box is the specificity and in the green box is the accuracy.  NOTE: In 

comparing any of the groups with the "control" group, the latter was clearly considered the 

"negative" group, while the others were considered the "positive" groups. In comparing one of 

the cancer groups (LC or GC) to AC, former was considered the "positive" and AC the 

"negative" group. Finally, in comparing the 2 types of cancer, LC was taken as the "positive" 

group, and GC the "negative" group. The values of the comparisons are reviewed in 

Supporting Information Table S3. 

 

Figure 5 presents the sensitivity, specificity and accuracy values as 

determined by ANN analysis for binary comparisons between breathprint of 

volunteers from all groups. Most sensors had an acceptable ability to classify the 

different diseases, distinguishing them from the control samples. S1, S3 and S5 have 

the highest ability of to classify correctly breathprints. In trying to separate the LC 

from the control group, S1 was the most suitable sensor, with sensitivity, specificity 

and accuracy all >80% (sensitivity 87%, specificity 82% and accuracy 84%). In trying 

to separate GC patients from the control group, S3 had greater sensitivity than S1, 

sensitivity 87%, specificity 98%, and accuracy 95%.  Regarding AC, when the goal 

was to rule in a subject (meaning the patient was most likely sick and the test being 

used as confirmation), the sensor of choice was S1 (specificity 81%). When the goal 

was to rule out a patient, the sensor of choice was S5 (sensitivity 75%). Regarding 

the separation of LC patients from AC patients (cancer vs. non-cancer), S1 

discriminated best overall (sensitivity 92%; specificity 80%; and overall accuracy 

89%) - making it an excellent sensor for ruling out diagnostic decision.  Examining 

the discrimination between GC and AC, most sensors showed noteworthy results 

(accuracy >80%). Nevertheless, S5 gave the best results, with all 3 statistical 

parameters >91%, with an especially high sensitivity of 98%. Comparing GC and LC 

patients, S1 gave the best results, offering extremely high values of sensitivity, 

specificity and accuracy (97, 90, and 96%, respectively). Looking at the separation 

ability of all the sensors in the case of AC vs. control, the performance of the sensors 

was rather low across the board. This could have been to only one VOC (pentane) 

characterizing these diseases (asthma and COPD; cf. Table 2) rather than a pattern 

of VOC, as in the other diseases. Adsorption of a combination of VOCs on the 

surface of the Si NW sensor led to a higher signal-to-noise ratio. 

The performance of our devices under real-world conditions has several 

advantages over the current gold standard test. For example, the National Lung 

Screening Trial found that CT scans were highly sensitive in detecting lung cancer in 

smokers compared with chest x-rays, but they were not very specific in ruling out 
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malignancy.52 Sensitivity was 94% and specificity 73% for lung cancer detection with 

CT compared with 74% and 91% with chest x-rays in the first round of screening of 

high-risk smokers and former smokers included in the trial.52 This combination led to 

substantially more positives in the CT group (27 vs. 9%), nearly all of which prompted 

follow-up diagnostic procedures.52 In comparison, the diagnostic performance of S1 

provided a benefit in being more cost efficient, practical, and efficacious. In another 

example, upper endoscopy with a full  biopsy is the gold standard for diagnosing and 

screening gastric cancer and the related precancerous lesions.53 However, this is not 

a feasible screening approach outside Asia and the cost-effectiveness in other this 

parts of the world has not been assessed. The cost-effectiveness of our sensors 

would thus be more affordable and give greater compliance for an at-risk population. 

On the other hand, an acceptable non-invasive test with high diagnostic 

performances is lacking, since the best available test – detection of pepsinogens in 

blood – fails to reach the expected accuracy levels – it could be missing in the 

majority of cancer cases.53 Whilst in population-based screening settings, the 

sensitivity of pepsinogen tests is 67-85% and the specificity 76-87% for the detection 

of atrophy, the sensitivity of gastric cancer detection is only 37-62%.53 In comparison 

to these values, S3, for example, is the frontrunner for clinical use as population-

based diagnostic or screening tool.   

To further validate the analysis, the same binary comparisons were carried by 

discriminant function analysis (DFA). The data were similar to the ANN results, with 

S1 being the most adequate sensor for disease classification in most cases, coupled 

with S3 and S4 for the remaining classifications (LC vs. control and LC vs. AC).  

Results of the DFA analysis are given in Supporting Information, Figure S1 and 

Table S4. It is worthy to point out that looking at the DFA results (Figure S1), we get 

a different picture than received in using ANN. In the case of DFA, it is S3 that has 

the best results for discriminating between GC and the other two diseases, resulting 

in an accuracy of 95%. When comparing GC with the control group, we get an 

accuracy of 93%, which is very high, but S4 showed better results (accuracy of 94%) 

due to a higher sensitivity.  When studying the differentiation of LC from the control 

group, we can see that a combination of S3 and S4 should be used, as S3 has a high 

value of specificity (87%), and S4 has a high sensitivity value (90%). Therefore, S3 

should be used as a ruling in tool, while S4 would be used for ruling out. Separating 

the cancerous lung conditions from the non-cancerous lung conditions (AC), S4 is 

the most suitable sensor as it has extremely high values of sensitivity, specificity and 

accuracy (89% sensitivity, 75% specificity, and 86% accuracy). The last comparison 

to be made is the AC group and the control group. In this case, we can see low 
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sensitivity values all across the board, similarly to the values received when using 

ANN. Despite that fact, we still have satisfactory accuracy values, due to the high 

specificity. The most suitable sensor to be used in this case is either S3 or S4, as 

they both exhibited the highest specificity and accuracy values (91% and 78% 

accordingly). 

Following the very successful classification of the breathprints in the clinical 

study, we used DFA to classify breath samples collected from cancer patients 

according to the stage of the disease. For this comparison, DFA was preferred to 

ANN because the latter does not provide reliable results with small size 

populations.54 The best results were achieved in the DFA model built by using 

features extracted from S4 for both LC and GC staging (Table 4). During the 

development of the staging models, early stages were considered to be the positive 

group and the advanced stages negative, which means that the sensitivity indicates 

detection at the early stage, whereas the specificity is related to advanced stage 

detection. Classification o the results in the staging analysis by DFA are shown in 

Figure 6. In interpreting this data, DFA classification gave an accuracy of 81% for LC 

staging and 87% for GC staging. In LC staging, the sensitivity value was low (34.5%), 

most likely due to the difference in the size of the groups (n=34 for early stage 

patients and n=110 for the advanced stage). Indeed, big differences in the group size 

leads to the result being biased towards the larger group, leading to a lack of 

sensitivity.55 Despite low sensitivity, the specificity achieved by S4 was very high 

(95%), being the highest accuracy value. Regarding the GC staging results, S4 

showed an equally high ability in identifying both early and advanced stages of the 

disease (86.5% of the samples were correctly classified; 84.6% of the early stage; 

and 87.5% of the advanced stage). The AUC values of the classification achieved by 

S4 were calculated as 0.68 for LC staging and 0.87 for GC staging. ROC curves 

developed for the separation of each stage from the negative samples can be found 

in Supporting Information, Figure S2. Clear differences were seen between each set 

of ROC curves (early vs. negative compared to advanced vs. negative) and the 

different diseases.  
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Figure 6. Box plot of the first canonical variable (CV1) values in the staging of (a) LC and (b) 

GC, as calculated using the S4 DFA model. The box represents 95% confidence interval of 

CV values; error bars represent the standard deviation. The central lines represent Youden's 

cut-point. "Early" stages refer to stages 1 and 2 of the disease (localized tumors), and 

"advanced" are stages 3 and 4 (metastasized tumors). Receiver operating characteristic 

(ROC) curves (c&d) are also presented. The P-values of these discriminations were 0.0017 

for (c) LC and (d) 0.033 for GC (d).  
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Table 4: Summary of sensitivity, specificity and accuracy values achieved from DFA analysis for the staging of lung cancer (LC) and gastric cancer (GC) 
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Summary and Conclusions: 

Molecularly-modified SiNW FETs linked with pattern recognition methods and/or 

machine learning have successfully demonstrated the detection and classification of 

several disease breathprints from lung cancer, gastric cancer, asthma and Chronic 

Obstructive Pulmonary Disease patients, both under lab and clinical conditions. 

SiNW FET coated with trichloro(phenethyl)silane (TPS) (S1) and heptanoyl chloride 

(S3) could detect VOCs linked with the breathprint of the diseases and distinguish 

one from another. These sensors could separate early stages of cancer from 

advanced stages, allowing not only the detection of the disease, but estimation of its 

progress. This information can supply clinicians with valuable and useful information 

in diagnosis and treatment planning without the necessity of causing patients 

discomfort or pain, preventing time delay and reducing the financial cost incurred by 

the clinic/hospital. S1 and the others giving satisfying performances (e.g., S5) could 

serve as translational tools from fundamental research to point-of-care because the 

sensors are significantly smaller, easier-to-use, and less expensive than other 

sensing approaches. They could be used as point-of-care and wearable diagnostic 

devices. But this pilot study does not allow us to draw far-reaching conclusions. A 

multi-center clinical trial with a considerably increased sample size, using Si NW FET 

sensors that enable in-situ sampling and analysis, is required to confirm the 

breathprints. We believe the reported SiNW FET sensor can be modified for selective 

VOC recognition and concentration prediction in other cancer or disease states. 
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Experimental Methods 

 

Growth of the SiNWs 

P-type silicon nanowires (SiNWs) were grown following the vapor liquid solid (VLS) 

principle using a cold-wall chemical vapor deposition (CVD) reactor. During the 30 

min CVD process under a total pressure of 2 mbar, the flow rates of SiH2, B2H6 (100 

ppm in H2), and Ar were kept constant at 4, 1, and 10 sccm, respectively, i.e. in a B 

to Si ratio of 1:20,000. Growth was catalyzed by commercially available Au colloids 

(British Biocell Int.) of 30 nm diameter. Growth substrate temperature was ~500°C. 

The resulting SiNWs had an average diameter of 40±8nm and average length of 

8.5±1.5 µm.  

 

Deposition of the SiNWs array 

The as-grown SiNWs were first immersed in a KI/I2/H2O solution (mass ratio 4:1:40) 

for 1 min to remove the gold catalyst used in the growing process, and any possible 

gold contaminants remaining on the surface of the SiNW. The Si NWs were etched 

using buffered hydrofluoric acid for 10 sec. Following this, the SiNWs were dispersed 

in ethanol using ultra-sonication for 5 sec, and were later deposited on a highly-

doped (0.001 Ω·cm resistivity) P-type Silicon (100) substrate with 300 nm thermal 

oxide and a Ti/Au (10/200 nm) bottom gate electrode. Deposition was based on a 

spray-coating procedure,56 which started with the deposition of the substrate on a 

hotplate set at 75°C. A SiNW suspension was applied with a spray gun (PRONA 

R2F) at a carrier gas pressure of 40 psi, and a tilt angle of (5º±2º) to the substrate. 

The spray-coating process resulted in well-aligned nanowire arrays (density ~ 1 NW/ 

100 µm2).       

 

Fabrication of SiNW FETs 

The substrate coated with SiNWs was cleaned by successive immersions in acetone, 

methanol, and isopropanol, followed by 5 sec rinsing in buffered HF. The top source 

and drain electrodes (20 pairs of 20 nm Ti/ 160 nm Au interdigitated electrodes, 

length 1300 µm, width 2 µm, spacing 2 µm) were deposited by a photolithography 

(Karl Suss MA6 Mask aligner) and lift-off process on top of the SiNWs. Surface 

characterization of the fabricated used dark-field light microscopy to determine the 

density of SiNWs on the device, which were then observed in a scanning electron 

microscope (SEM) to assure proper contact between the SiNWs and the electrodes. 
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Surface modification of the SiNW FETs 

Surface modification of the SiNW FETs was carried as described before.43 Briefly, 

following surface activation achieved by 30 sec of plasma treatment, the SiNW FET 

surfaces were modified with various molecules (listed in Table 1). SiNW FETs were 

modified using a single-step silane modification (SSM), a 2-step silane-chloride 

modification (TSCM), or a 2-step silane-monomer modification (TSMM). Devices 

modified using the SSM approach were: (i) immersed in a silane/chloroform 

(silane/ethanol in case of APTES) solution (2 mM; 10 mL) for 45 min in room 

temperature, and then (ii) successively rinsed with chloroform, acetone, ethanol, 

isopropanol (ethanol, acetone, ethanol and isopropanol in case of APTES) and 

drying by N2 flow. The silane molecules prepared by this SSM approach and used in 

this study were trichloro(3,3,3-trifluoropropyl)silane (CF3CH2CH2SiCl3; TTPS), 

trichloro(phenethyl)silane (C6H5CH2SiCl3; TPS), 3-aminopropyl-triethoxysilane 

( C9H23NO3Si; APTES) and 3-bromopropyl trichlorosilane (C3H6BrCl3Si; BPTS). SiNW 

FETs modified using the TSCM approach were: (i) immersed in 3-aminopropyl-

triethoxysilane (APTES)/dehydrated ethanol (10 mM, 20 mL) for 1 h, (ii) rinsed with 

ethanol, acetone, isopropanol and dried by N2 flow, (iii) immersed in a solution of 

acylchloride in chloroform (10 mM) with 10 µL of triethylamine for 17 h, and finally, 

(iv) successively rinsed with chloroform, acetone, ethanol, and isopropanol before 

being dried by N2 flow. The molecular modification prepared by the TSCM approach 

was heptanoyl chloride (C7H13ClO). SiNW FETs modified using TSMM were: (i) 

immersed in trichloro(3,3,3-trifluoropropyl)silane (CF3CH2CH2SiCl3; TTPS)/ 

chloroform (2 mM, 10 mL) for 1 h, (ii) successively rinsed with chloroform, acetone, 

ethanol and isopropanol, before being dried by N2 flow, (iii) drop-casted with a 

monomer solution in tetrahydrofuran (THF) (1 mM, 2 µL) and kept in a vacuum oven 

overnight (55ºC), and (iv) rinsed with THF, acetone, ethanol and isopropanol before 

drying in a N2 flow. The molecular modification prepared by the TSMM approach was 

anthracene (C14H10). 

 

Breath sample collection 

Exhaled alveolar breath samples from 374 volunteers were collected. The volunteers 

were divided into 4 groups: 149 volunteers with lung cancer; 40 with gastric cancer; 

56 volunteers with non-cancerous lung diseases (asthma, COPD or both); and 129 

volunteers who were negative for all these diseases. These samples were collected 

in 4 locations: (i) Riga East University Hospital, Riga, Latvia; (ii) Cancer Research 

Center, University of Liverpool, Liverpool, UK; (iii) Thoracic Cancer Research and 

Detection Center, Sheba Medical Center, Tel-Hashomer, Israel; and (iv) Baptist 
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Cancer Institute, Jacksonville, Florida, USA. A summary of the clinical data is 

presented (Figure 4b).  

In each location, the samples were collected in the same hospital room. 

Patients were asked to fast, and withhold smoking and alcohol consumption for at 

least 2 h before sampling. The sorbent tubes were stored at 4ºC until transported to 

Laboratory of Nanomaterial Based Devices (Technion – Israel Institute of 

Technology, Haifa, Israel) for analysis. The duration between sample collection and 

analysis was <3 months (NOTE: breath VOCs can preserved in these sorbent tubes 

up to 6 months without change in their composition). The breath samples were 

collected following a previously described protocol .14,57 To reduce the effect of 

ambient contamination, a lung washout procedure was used. According to the 

protocol, the patient took regular, unexerted breaths for 3 min through a mouthpiece 

with a filter cartridge on the inspiratory port (Eco Medics, Duerten, Switzerland), 

thereby greatly reducing the concentration of ambient VOCs in the inspired air. 

NOTE: The subjects were asked to breathe normally throughout the entire procedure 

to avoid hyperventilation. Following lung washout, the subjects were asked to inhale 

normally once more through the filter and exhale normally through the mouthpiece 

into a separate exhalation port against 10-15 cm H2O pressure (ensuring the closure 

of the vellum to exclude contamination through nasal entrainment). During 

exhalation, the respiratory dead space air is first exhaled, the alveolar air coming 

thereafter. The dead-space air was automatically filled into a designated bag at the 

beginning of the exhalation and was later removed. The alveolar breath from the tidal 

end was filled into breath collection bags (China: TedlarR bags, Keika Ventures, LLC; 

Latvia: Mylar bags, Quintron, Milwaukee, WI, USA). The breath collection method 

applied is a single-step process; the volunteer does not have to take care of 

exchanging the dead space bag with the collection bag. Following the collection 

procedures, the breath samples were transferred to ORBOTM 402 Tenax sorption 

tubes (specially treated; 35/60 mesh; 100/50 mg; from Sigma-Aldrich, USA) by 

pumping each sample through a sorbent tube. We have confirmed that the VOCs in 

the breath of lung cancer patients and other lung conditions can be trapped and 

stores in the ORBOTM 402 Tenax® TA sorption tubes. 

 

Breath analysis with the SiNW FET sensors 

A manual thermal desorption (TD) system was used to transfer the VOCs trapped in 

the disposable sorbent tubes. Each tube was heated at 190°C for 8 min under a 

constant N2 (99.999% purity) flow at 60 ml/min to release the trapped breath VOCs 

into the bag. A pulse of the content of the bags was delivered into a stainless steel 
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test chamber containing the SiNW FET sensors described in Table 1. A Keithley 

2636A system sourcemeter and a Keithley 3706 system switch/MultiMeter were used 

to measure the Ids-Vgs (back sweep from +40 to -40V; in steps of 200 mV and 

constant Vds of 2V) as a function of time. For each sample, the baseline responses of 

the sensors were recorded, first for 10 min in vacuum (30 mTorr), followed by 10 min 

exposure of the breath sample, and 10 min during the recovery of the sensors. To 

detect malfunctions and/or slight drifts of their baseline conditions, the sensors were 

calibrated daily by exposure to known concentrations of three calibration compounds, 

including 23.8 ppm isopropyl alcohol, 6.3 ppm trimethylbenzene, and 1.2 ppm 2-

ethylhexanol before recording their resistance changes. Sensing features were read 

out and extracted from the time-dependent response of each sensor that related to 

voltage threshold (Vth), hole mobility (µh), and source-drain current (Isd) at various 

back gate voltage (Vgs) features. Breath patterns were obtained from the collective 

response of the sensors by applying discriminant factor analysis (DFA) and artificial 

neural networks (ANNs).  

 

 

Artificial Neural Networks (ANNs) 

ANNs is a machine-learning method inspired by neural networks in the human 

nervous system. It is based on a set of functions connecting the input (sensor 

features in this case) with the output (classification of samples to a specific disease). 

This relationship is achieved by optimizing certain parameters - connection weights, 

and amount of neurons (calculation centers) - to achieve the best classification from 

the inputs available. To reach the final mathematical binary classifying models to 

distinguish between the 4 groups of participants (LC, GC, Asthma/COPD, and 

negative to all), a 2-phase calculation process was used. The same steps were 

carried out for every available database (one per sensor (6) and possible binary 

classifier (6); a total of 36 models). Initially, a feature selection (FS) procedure was 

used to determine the sensing features with the greatest discriminative power to 

identify correctly the samples within a particular dataset. FS calculation was based 

on the Relief-F algorithm, which is a filter FS method. It operates by locating the 

nearest neighbors of a sample in its same class and other classes, giving priority to 

those features that distinguish better the nearest neighbors from different classes.58 

FS leads to the location of the best suited variables (sensing features in this case) to 

fulfil a second modeling phase, which leads to a reduced computational load and 

improved performance of further models.59 The second part of the calculation is the 

modeling phase; using the features given by the FS test as independent variables, a 
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set of 36 multilayer perceptrons (MLPs), which are the most employed type of neural 

network, were designed and optimized. Based on non-linear interpolation for the 

calculations, MLPs are supervised algorithms, or in other words, tools that require 

target data (labelled data) to be trained properly.60 In this case, the samples for every 

binary classifier were either tagged with a zero or a one depending on the group they 

belonged to. These labels become the dependent variable of each MLP classifier. 

MLPs, as their name suggests, are layered algorithms, possessing 3 kinds of layers 

(input, hidden and output). The input layer is formed by nodes that are only in charge 

of introducing the independent variables of the model (the sensing features selected 

during the FS phase). On the other hand, the hidden and output layers are formed by 

neurons, which are in charge of the calculations of the system. The number of 

neurons in the output layer are equivalent to the amount of dependent variables in 

the system (one in this case, as all the models are binary classifiers), whereas the 

hidden neuron number (HNN) (vide infra) and hidden layer amount must be correctly 

optimized (due to the size of the databases, the amount of hidden layers was set to 

one in all cases to avoid over-fitting).48 Once the number of units (nodes and 

neurons) in each layeror network topology has been defined, the training process of 

the MLP can begin. The goal of this process is to optimize the weights that are 

contained within the model, there being as many weights as connections between 

units in neighboring layers (node-hidden neurons and hidden neurons-output 

neurons). The correct optimization of the weights is vital for a MLP to operate 

correctly, and this process is carried out during a series of training cycles or epochs. 

These cycles modify the values of the weights, with the goal set to lower the error of 

the estimation for a training dataset (in our case, to increase the correct classification 

ratio). This error can potentially reach zero if no precautions are followed, leading to 

an over-fit model. For this reason, the total database is initially divided into training 

and verification datasets, where the first is used to modify the weights, and the latter 

to verify that the MLP can perform well with samples that are not involved in this 

process. When the error for the verification dataset rises during 6 straight epochs, the 

training process is stopped, and the model is optimized as well as being not over-fit 

towards the training samples.61 Besides the weights, there are other parameters that 

have to be correctly selected or optimized to reach a fully operational MLP. They are 

the HNN, the training and transfer functions, and a set of network parameters 

(Marquardt adjustment parameter (Lc), decrease factor for Lc (Lcd), and increase 

factor for Lc (Lci)), as follows. First, optimizing the HNN is crucial, as an excessive 

amount will most likely create over-fit models, and a low one will not allow the MLP to 

reach its maximum calculating potential; it has been optimized heuristically during 
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this research.62 Second, the training function is in charge of the calculations that 

modify the weights. The one chosen here was the Levenberg-Marquardt (trainLM) 

function as it is the quickest algorithm for moderate-sized MLPs and has a memory 

reduction feature where the training dataset is large.62 Third, the transfer function is 

in charge of introducing non-linearity in the calculations, as well as limiting the range 

of the values of the responses given by each neuron. The selected option was the 

sigmoid function, which limits the values between zero and one.54 Finally, the Lc 

parameter is analogous to the learning coefficient in classic back-propagation 

algorith;63 its value decreases and increases with Lcd and Lci, respectively, until the 

modifications of Lc create a worse statistical performance.  

 

Discriminant Factor Analysis (DFA) 

DFA is a linear, supervised pattern recognition method that effectively reduces the 

multidimensional experimental data, in which the classes to be discriminated are 

defined before the analysis is performed. First, DFA was used for the selection of the 

sensors with the most relevant organic functionality out of a repertoire of 20, which 

was done by filtering out non-contributing sensors. DFA determines the linear 

combinations of the input variables (features being extracted from each sensor), so 

the variance in each class is minimized and that between classes maximized. The 

DFA output variables (i.e. canonical variables - CV) are achieved in mutually 

orthogonal dimensions; the first CV is the most powerful discriminating dimension. 

Leave-one-out cross-validation was conducted in calculating the classification 

success in terms of sensitivity, specificity and accuracy calculated as follows: 

 

����������� =

�


��
�
     (1) 

����������� =

�


��
�
     (2) 

�������� =

��
�


����
        (3) 

 

Where TP stands for true positive, namely all positive samples correctly classified as 

positive; TN (true negative) - negative samples correctly classified as such; FP (false 

positive) - the negative sample incorrectly classified as positive; FN (false negative) -

positive samples incorrectly classified as negative; and "total" is the total number of 

samples. Given k, the model was computed using k-1 training vectors. All 

possibilities of leave-one-sample-out were considered, and the classification 
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accuracy was estimated as the averaged performance over the k tests. Pattern 

recognition and data classification used MATLAB® (The MathWorks). 
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