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Abstract:

Two of the biggest challenges in medicine today are the need to detect diseases in a
non-invasive manner, and to differentiate between patients using a single diagnostic
tool. The current study targets these two challenges by developing a molecularly-
modified Silicon Nanowire Field Effect Transistors (SiINW FETs) and showing its use
in the detection and classification of many disease breathprints (lung cancer, gastric
cancer, asthma and Chronic Obstructive Pulmonary Disease). The fabricated SiNW
FETs are characterized and optimized based on a training set that correlated their
sensitivity and selectivity towards volatile organic compounds (VOCs) linked with
diseased states. The best sensors obtained in the training set are then examined
under real-world clinical conditions, using breath samples from 374 subjects.
Analysis of the clinical samples showed that the optimized SINW FETs can detect
and discriminate between almost all binary comparisons of the diseases under
examination with >80% accuracy. Overall, this approach has the potential to support
detection of many diseases in a direct positive way, which can reassure patients and

prevent numerous negative investigations.
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Physicians are always challenged by the need to give the correct diagnosis as early
in the onset of a disease is possible, whether the disease-related symptoms are
absent or not evident." Symptoms are not always characteristic of one particular
disease; overlap of symptoms is common in, for example, lung diseases.” Patients
with different respiratory diseases, such as malignant or benign tumors, or
substantially less severe diseases, may have similar symptoms, e.g. cough, chest
pain, difficulty to breathe, etc. These symptoms may be characteristic of lung cancer
(LC), pneumonia, asthma, and chronic obstructive pulmonary disease (COPD)."?
Therefore, it is of particular clinical importance to find a diagnostic tool capable of
distinguishing between these diseases. A diagnostic tool that involves no needle,
surgery and/or active materials and/or radioactive exposure would have a benefit.

A highly promising approach that could meet the aforementioned need is
based on the detection and classification of the disease breathprint, viz. the chemical
profiles of highly- and semi-VOCs in exhaled breath linked with disease.*"® The
rationale behind this approach relies on the fact that VOCs generated by cellular
metabolic pathways during a specific disease circulate in the blood stream and
diffuse into exhaled breath, which is easily sampled.*'®'" In certain instances,
analysis of breathprints offers several potential advantages, such as: (a) breath
samples are non-invasive and easy to obtain; (b) breath contains less complicated
mixtures than either serum or urine; and (c) breath testing has the potential for direct
and real-time diagnosis and monitoring.>"%’

Several mass-spectrometry and spectroscopy studies have shown that the
breathprint of a specific disease differs from that of healthy controls.?>?® Some of the
investigated VOCs are present in different concentrations in the breath of patients
with a specific disease than in the breath of controls.??® Spectrometry and
spectroscopy techniques are powerful tools for detecting VOC of breathprints.
However, to date, these techniques has been impeded by the need for expensive
equipment, high levels of expertise to operate such instruments, the speed required
for sampling and analysis, and the need for pre-concentration techniques.?**"*° For
breathprint testing to become a clinical reality, several advances in the sensor
development are needed. Chemical sensor matrices, based on nanomaterials, are
more likely to become clinical and laboratory diagnostic tools, because they are
significantly smaller, easier-to-use, and less expensive.'®*°*" An ideal chemical
sensor for breathprint analysis should be sensitive at very low VOC concentrations in
the presence of water vapor because headspace of clinical samples is fully
humidified. Furthermore, it should respond rapidly and differently to small changes in

concentration, and provide a consistent output specific to a given exposure.'®%%%!
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When not in contact with the analyte, the sensor should return to its baseline state
rapidly, or be simple and inexpensive so that one could manufacture large numbers
of disposable units.

We have developed Silicon Nanowire Field Effect Transistors (SiNW FETs)***
as the sensing matrices for the detection and discrimination between disease
breathprints. As representative diseases, we chose gastric cancer (GC), lung cancer
(LC), asthma and Chronic Obstructive Pulmonary Disease (COPD). NOTE: For this
study, the asthma and COPD are considered as a control group for LC, and is
abbreviated as “AC” henceforth. These diseases cover both the direct and quasi-
direct track to the breath.*'® Indeed, GC-related VOCs might reach the breath directly
through the esophagus or from the lung alveoli. While LC- and AC-related VOCs
reach the breath either by release directly into the airways or by diffusion in alveoli.
The SiNW FETs are characterized and optimized based on a training set that
correlated their sensitivity and selectivity towards the VOCs linked with the disease
states under examination. The best sensors obtained in the training set are examined
under real-world clinical conditions, using breath samples from 374 subjects. The
high sensitivity, low-power consumption, fast-response times, and the compatibility
with conventional silicon technology and readout circuitry, have the potential to get
SiINW FETs to give us simple signal transductions of disease breathprints, as well as

being amenable to miniaturization and scalability.*>*°

Results and Discussion

Preparation of molecularly-modified SINW FETs

The study consisted of 3 phases (Figure 1a). In the first, FETs based on well-aligned
array of SiNWs (density ~ 1 NW/ 100 um?; 408 nm in diameter; and 8.5+1.5 pym in
length) were fabricated and characterized. Each SiNW FET was coated with different
molecular modification (Table 1). The aim of the molecular modification was to
passivate the surface states on the SINW and optimize the interaction of VOCs with
the SiNWs. Four SINW FETs were coated with molecules having mostly non-polar
(functional) side-groups (S1-S3 & S5) to improve their interaction with the non-polar
VOCs in the breathprint. Two SiINW FETs were coated with molecules having mostly
polar side groups (S4 & S6) to improve their interaction with the polar VOCs found in
the breathprint.
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Figure 1. Schematic representation of the experimental procedure divided into: (a) surface
modification of the SINW FET sensors (SSM: single-step modification; TSM: 2-step

modification); (b) exposure of sensors to breathprint simulants, representative VOCs

recognized as potential biomarkers of each disease; and (c) exposure to real breath samples
of patients suffering from known diseases, compared with healthy control volunteers. (d)

Representation of the artificial neural networks (ANN)**°'

analysis method, where the sensing
features are the inputs of the model, and the sample classification label is the output. ANNs
are machine-learning algorithms that use a set of input vectors (sensing features in Figure
1b) to determine weighted parameters and mathematical functions, and to classify the

samples (the sample classification label is the output).
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Table 1: List of the molecular modifications used to coat the SiINWs - to optimize the
interaction of the SINW FETs with the breathprint-related VOCs

Sensor # Modification Structure

Trichloro phenethyl silane

ci
S1 $i—ci
(TPS) G

Trichloro trifluoro propyl silane

(TTPS) e
. cl
S3 Heptanoyl Chloride /\/\/\Iol/
s4 3-Aminopropyl triethoxysilane \/O\SI/\/\NH2
(APTES) /9 O\

S5 Anthracene OOO

Bromopropyl trichlorosilane
(BPTS) Br\/\/&\m

S6

Testing the sensors exposed to simulants of disease breathprints

In the second phase of the study, the molecularly-modified SINW FET sensors were
exposed to a number of VOCs presumed as breathprint biomarkers for the chosen
diseases: GC, LC and AC (Table 2). The presumed VOCs linked with GC conditions
via breathprint are: 2-propenenitrile, furfural, 6-methyl-5-hepten-2-one."?' The
presumed VOC linked with AC conditions by breathprint is pentane.®' The presumed
VOCs linked with LC conditions by breathprint are: heptane, decane, 2-
methylpentane, 2-ethyl-1-hexanol, propanal, pentanal and acetone.’’ Each SiNW
FET was exposed to 4 concentrations of each VOC, and each exposure was
repeated 3 times. In each exposure to VOC, the source-drain current (/ys) vs. back
gate voltage (Vgs) characteristic curve was obtained by sweeping the gate voltage
between +40V and -40V (Figure 2a). For the sake of reference, I4-Vys curves were

obtained in vacuum before and after exposure to the VOC (Figure 2a).
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Table 2: List of the representative VOCs linked with gastric cancer (GC), asthma & COPD
(AC), or lung cancer (LC) from breathprint showing significant statistical differences (p<0.05 in
previous clinical studies). The VOC concentrations exposed to the molecularly-modified SINW
FETs, as well as the transition from concentration in p./p, terms (p, is the partial pressure of

the VOC and p, is the vapor pressure of the VOC) to parts per billion units (ppb), are

presented.
Concentratio
P, Concentrations
Disease vVOC ns tested
(mmHg) tested (ppb)
(Pa/po)
2-Propenenitril 83 0.001-0.008 100-870
- Furfural 2 0.001-0.008 2.6-21
6-Methyl-5-heptene-2-
0.8 0.001-0.008 0.98-7.9
one
AC Pentane 6.2 0.001-0.008 8-65
Heptane 40 0.001-0.008 50-420
Decane 15 0.001-0.008 2-15
2-Methylpentane 350.3 0.001-0.008 460-3680
LC 2-Ethyl-1-hexanol 0.23 0.001-0.008 0.29-2.36
Propanal 258 0.0005-0.004 170-1360
Pentanal 26 0.001-0.008 34-273
Acetone 230 0.001-0.008 300-2420
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Figure 2. (a) Characteristic /4-Vgy curve of SINW FET modified with heptanoyl chloride (S3) in
vacuum (black line) and on exposure to 2-propenenitrile at a concentration of p./p,=0.001 (red
line). Curves are presented in both linear (solid line) and logarithmic (dashed line) scales.
Sensing response of: (b) Vi, (¢) us and (d) lss @ Vs = -30V on exposure to 2-propenenitrile at
a concentration of p/p,=0.001. “Vac” stands for “vacuum” and “Exp” stands for exposure. (e)
3 repetitive response cycles of Igs @ Vg = -30V exposed to 2-propenenitrile (pa/po=0.001)

condition for evaluating the repeatability of the sensing signals.

In most instances, exposing the SINW FETs to VOCs resulted in a change in
the I4-Vys curves. Figure 2a presents the characteristic /,-Vgs curve of a SINW FET
modified with heptanoyl chloride (S3) under vacuum (black lines) and under
exposure to p./py;=0.001 of 2-propenenitrile (red lines). The FET curve changes on
exposure to 2-propenenitrile. Closer examination of the curves shows that several
FET features are changed on exposure, which include the voltage threshold (Vi,; the
voltage under which the charge transfer regime changes from depletion to

accumulation), the charge carrier (hole) mobility (un; the velocity of the charge
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carriers moving under the influence of the electrical field), and the l;s @ different Vg
values. The extraction and calculation of these features is described in the
Experimental Methods section. As these features change with exposure, their values
(which can be monitored and recorded during the experiment) may be informative.
For example, the Vi, values decrease on exposure to 2-propenenitrile from -27 to
-29.5V (Figure 2b) at the time the u, values increase from 125 to 140 cm?/V-s
(Figure 2c), and the Iys @ Vy=-30V values decrease slightly from 120 to 80 pA
(Figure 2d). In the representative example (Figure 2e), repeated exposure cycles on
the same sensor are usually characterized by a relatively stable baseline and an
almost repeatable sensing features from cycle to cycle (3% variance).

The detection limit of the sensors to each VOC as well as the concentrations
found in breath can be found in the Supporting Information (Table S1). The detection
limit of each sensor is different and depends on the VOC'’s structure. In this context, it
is important to clarify that the SiINW FET sensors do not obey the lock-and-key
sensing approach.’®*" Instead, they have affinity to multiple VOCs and, therefore, the
sensing signal on exposure to a mixture of VOCs (e.g., a breath sample) reflects the
fingerprint of all the VOCs in it. Under these circumstances, different molecular
modifications of the SiINW change the affinity balance between the different VOCs
found in a specific mixture. Therefore, even if the detection limit of specific SINW FET
to a certain VOC is higher than its concentration in the breath, the SINW FET can still
detect the change in breath sample composition, as the overall change (sum) of VOC
changes in the breath due to disease state is in the range of a few to 10s of ppm.
These SiNW FETs have a very wide dynamic range between their limit of detection
(Table 1) up to thousands of ppm, when a thin film of condensed liquid begins to
develop on the surface of the sensors.

The ability to separate disease-related VOCs by a single sensor stems from
their ability to respond simultaneously to different VOCs, each of which induces a
different effect on the FET features due to one or a combination of the following
scenarios: (i) charge-charge interactions between the functional group of the
modified SiNW, which changes the charge density on the surface of the SiNW,
resulting in a change to Vi, u, or the currents in the linear region; (ii) addition of polar
or polarizable molecules on the surface of the SiNW, which changes the electrical
field on the surface, resulting in a change to the value of the subthreshold currents
and other features, similarly to molecular gating phenomena previously reported;*®
(iii) passivation of the surface states by the VOCs.**%

Investigation of the change in the entire /4-Vys, mainly the depletion and

accumulation features, could help significantly an increase in the number of multiple
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sensing features. These features operate as “virtual sensors”, viz. a set of
independent sensing signals extracted from the electrical measurements of the
device, and can be monitored separately as if they are individual sensors. This
behavior leads to a decrease in the number of sensors needed for classification, and
thus simplifies the system in terms of its supporting circuitry and infrastructure. To
avoid unnecessary computation, a process of feature selection was applied by
choosing only features with a signal-to-noise ratio >3 and by choosing only features
that represent physical phenomena in the device.

Following the initial feature selection, artificial neural network (ANN) analysis
was applied. Its purpose was to test the ability of the sensors to correlate VOCs with
the disease to which they should relate, and to assess which sensor would be more
suitable for disease diagnosis. ANN was applied on the basis of 36 samples for GC
simulation, 12 samples for AC simulation, and 84 samples for LC simulation.
Separation of GC-related VOCs from AC biomarkers was called “Test-A”; separation
of LC-related VOCs from AC-related VOCs was Test-B”; and separation between
LC- and GC-related VOCs was “Test-C”. In Test-A and Test-B, the cancer group
was considered the "positive" group, whereas AC was considered the "negative"
group. In Test-C, LC was considered the "positive" group and GC was considered
"negative". The success in classification of the ANN analysis in each test is
presented in Figure 3.

e 100
</ Sensitivity
§ Specificity 95.0
=1 Accuracy

o 90.
0| Sensitivity 0
"qtn'; Specificity 85.0
| Accuracy .
g Sensitivity '
&| Specificity 76.0
1 Accuracy 0.0

S1 82 83 S84 S5 S6

Figure 3. Classification results of sensing signals obtained from the molecularly-modified
SiNW FETs upon exposure to a simulated VOC-related breathprint of the diseases. The color
bar indicates the percentage of correct classification of samples comparing VOC of GC vs AC
(Test-A); LC vs AC (Test-B); and LC vs GC (Test-C).
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The ANN model calculated values of sensitivity, specificity and accuracy of
each comparison, the method being found in the Experimental Methods section.
Results from the vast majority of the sensors (Figure 3), and in most comparisons,
were satisfactory (>80% accuracy). Besides this accuracy for the classification, a few
important findings were recorded. In Test-A, most sensors correctly classified 100%
of the cases, irrespective of the vapor pressure values of the VOCs. In Test-B, S4
had a similar classification ability to S2 and S3 for LC (~100% accuracy) and gave
slightly better classification than S1, S5 and S6. On the other hand, S1 showed the
highest classification ability of AC samples (100%). In Test-C, S1 again gave the
highest percentage of correct classification; 93% for LC-related VOCs and 85% for
GC-related VOCs, resulting in 92% accuracy.

Validation of the sensors in a clinical study

To validate the performance of the SINW FETs under lab conditions using simulants
of breathprint-related VOCs, clinical trials were carried out with the same sensors
(Experimental Methods section); the design of the clinical study is shown in Figure 4.
Briefly, breath samples were collected from 374 volunteers belonging to 4 groups:
control subjects not suffering from any of the conditions tested (n=129), LC patients
(n=149), GC patients (n=40) and AC patients (n=56). Cancer patients were also
divided into 2 groups according to the staging of the cancer: early (stages 1 and 2)
and advanced (stages 3 and 4). Additional information was also collected from the
volunteers, including age, gender, smoking status, efc., shown in Figure 4b. Clinical
studies provides 3 main advantages over the simulated breathprint studies, because
they can precisely determine: (i) the signature of all VOCs of the disease breathprint
on the SiINW FET sensor; (ii) correlation between the sensor’s sensitivity and
specificity of the disease breathprint to its existence in a population of patients; and
(iii) the necessary feedback that accounts for confounding factors, such patients’
diet, metabolic state, genetics, efc.

For the clinical study, 2 kinds analysis were carried out: ANN analysis and
discriminant function analysis (DFA). As mentioned earlier, ANNs are a machine-
learning method inspired by biological neural networks (i.e. the human nervous
system). It is based on a set of functions connecting the input (sensor features in this
case) with the output (classification of samples to a specific disease). On the other
hand, DFA is a linear supervised pattern recognition method that effectively reduces
the multidimensional experimental data, in which the classes to be discriminated are
defined, before carrying out the analysis. More details on these approaches and their
implementation in the clinical study can be found in the Experimental Methods
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section. Using one or both of these approaches, the aim was to distinguish between

breathprints of patients belonging to the 4 study groups (Figure 4).

(a) Subjects
(n=374)
[ I : | ]
Control LC GC AC
(n=129) (n=149) (n=40) (n=56)
|| Early || | Early
(n=35) (n=12)
| | Advanced || | Advanced
(n=109) (n=24)
| | Unknown || [ Unknown
(n=5) (n=4)
« £ 3
(b) o » = - >
8§ 5 | = |S & <
o o I c - O
€ €t ) o = X
3 S < o - o
Z 35 £
> »
Stages | and Il 34 7011 23:12 4:31
Lc Stages lll and IV 110 63111 61:48 24:85
Unknown stage 5 64115 2:3 2:3
Total 149 65+11 86:63 30:119
Stages | and Il 12 58+13 6:6 01:11
. Stages lll and IV 24 6319 18:6 10:14
Unknown stage 4 57120 4:0 4:0
Total 40 60+10 | 28:12 15:25
9:29
AC Total 56 71+11 35:21
(18 unknown)
22: 105
Control Total 129 6519 51:78
(2 unknown)

Figure 4. (a) Division of subjects into the groups. The 374 subjects who provided breath
samples were separated into the following groups: healthy control volunteers (n=129), LC
patients (n=149), GC (n=40) patients and AC patients (n=56). Cancer patients were further
separated into2 groups according to the disease stage: Early and advanced. (b) Full clinical
details including age, gender, smoking status and as r classification into one of the groups

given in (a).
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Figure 5. Sensitivity (red; a, d, g, j, m, p), specificity (blue; b, e,

(green; c, f, i, I, o, r) for binary comparisons between the response of S1-S6 to breath
samples of volunteers from all groups: LC, GC, AC and healthy control. Classification was

obtained by ANN analysis (each row corresponds to a different sensor- top row (a, b, c)

disease were considered as one group (without staging). Numbers in white are the values,
e.g. the value in the red box relating GC and control is the sensitivity of their comparison; the
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value in the blue box is the specificity and in the green box is the accuracy. NOTE: In
comparing any of the groups with the "control" group, the latter was clearly considered the
"negative" group, while the others were considered the "positive" groups. In comparing one of
the cancer groups (LC or GC) to AC, former was considered the "positive" and AC the
"negative" group. Finally, in comparing the 2 types of cancer, LC was taken as the "positive"
group, and GC the "negative" group. The values of the comparisons are reviewed in

Supporting Information Table S3.

Figure 5 presents the sensitivity, specificity and accuracy values as
determined by ANN analysis for binary comparisons between breathprint of
volunteers from all groups. Most sensors had an acceptable ability to classify the
different diseases, distinguishing them from the control samples. S1, S3 and S5 have
the highest ability of to classify correctly breathprints. In trying to separate the LC
from the control group, S1 was the most suitable sensor, with sensitivity, specificity
and accuracy all >80% (sensitivity 87%, specificity 82% and accuracy 84%). In trying
to separate GC patients from the control group, S3 had greater sensitivity than S1,
sensitivity 87%, specificity 98%, and accuracy 95%. Regarding AC, when the goal
was to rule in a subject (meaning the patient was most likely sick and the test being
used as confirmation), the sensor of choice was S1 (specificity 81%). When the goal
was to rule out a patient, the sensor of choice was S5 (sensitivity 75%). Regarding
the separation of LC patients from AC patients (cancer vs. non-cancer), S1
discriminated best overall (sensitivity 92%; specificity 80%; and overall accuracy
89%) - making it an excellent sensor for ruling out diagnostic decision. Examining
the discrimination between GC and AC, most sensors showed noteworthy results
(accuracy >80%). Nevertheless, S5 gave the best results, with all 3 statistical
parameters >91%, with an especially high sensitivity of 98%. Comparing GC and LC
patients, S1 gave the best results, offering extremely high values of sensitivity,
specificity and accuracy (97, 90, and 96%, respectively). Looking at the separation
ability of all the sensors in the case of AC vs. control, the performance of the sensors
was rather low across the board. This could have been to only one VOC (pentane)
characterizing these diseases (asthma and COPD; cf. Table 2) rather than a pattern
of VOC, as in the other diseases. Adsorption of a combination of VOCs on the
surface of the Si NW sensor led to a higher signal-to-noise ratio.

The performance of our devices under real-world conditions has several
advantages over the current gold standard test. For example, the National Lung
Screening Trial found that CT scans were highly sensitive in detecting lung cancer in
smokers compared with chest x-rays, but they were not very specific in ruling out
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malignancy.®? Sensitivity was 94% and specificity 73% for lung cancer detection with
CT compared with 74% and 91% with chest x-rays in the first round of screening of
high-risk smokers and former smokers included in the trial.*> This combination led to
substantially more positives in the CT group (27 vs. 9%), nearly all of which prompted
follow-up diagnostic procedures.® In comparison, the diagnostic performance of S1
provided a benefit in being more cost efficient, practical, and efficacious. In another
example, upper endoscopy with a full biopsy is the gold standard for diagnosing and
screening gastric cancer and the related precancerous lesions.”® However, this is not
a feasible screening approach outside Asia and the cost-effectiveness in other this
parts of the world has not been assessed. The cost-effectiveness of our sensors
would thus be more affordable and give greater compliance for an at-risk population.
On the other hand, an acceptable non-invasive test with high diagnostic
performances is lacking, since the best available test — detection of pepsinogens in
blood — fails to reach the expected accuracy levels — it could be missing in the
majority of cancer cases.®®> Whilst in population-based screening settings, the
sensitivity of pepsinogen tests is 67-85% and the specificity 76-87% for the detection
of atrophy, the sensitivity of gastric cancer detection is only 37-62%.%* In comparison
to these values, S3, for example, is the frontrunner for clinical use as population-
based diagnostic or screening tool.

To further validate the analysis, the same binary comparisons were carried by
discriminant function analysis (DFA). The data were similar to the ANN results, with
S1 being the most adequate sensor for disease classification in most cases, coupled
with S3 and S4 for the remaining classifications (LC vs. control and LC vs. AC).
Results of the DFA analysis are given in Supporting Information, Figure $1 and
Table S4. It is worthy to point out that looking at the DFA results (Figure S1), we get
a different picture than received in using ANN. In the case of DFA, it is S3 that has
the best results for discriminating between GC and the other two diseases, resulting
in an accuracy of 95%. When comparing GC with the control group, we get an
accuracy of 93%, which is very high, but S4 showed better results (accuracy of 94%)
due to a higher sensitivity. When studying the differentiation of LC from the control
group, we can see that a combination of S3 and S4 should be used, as S3 has a high
value of specificity (87%), and S4 has a high sensitivity value (90%). Therefore, S3
should be used as a ruling in tool, while S4 would be used for ruling out. Separating
the cancerous lung conditions from the non-cancerous lung conditions (AC), S4 is
the most suitable sensor as it has extremely high values of sensitivity, specificity and
accuracy (89% sensitivity, 75% specificity, and 86% accuracy). The last comparison
to be made is the AC group and the control group. In this case, we can see low
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sensitivity values all across the board, similarly to the values received when using
ANN. Despite that fact, we still have satisfactory accuracy values, due to the high
specificity. The most suitable sensor to be used in this case is either S3 or S4, as
they both exhibited the highest specificity and accuracy values (91% and 78%
accordingly).

Following the very successful classification of the breathprints in the clinical
study, we used DFA to classify breath samples collected from cancer patients
according to the stage of the disease. For this comparison, DFA was preferred to
ANN because the latter does not provide reliable results with small size
populations.>* The best results were achieved in the DFA model built by using
features extracted from S4 for both LC and GC staging (Table 4). During the
development of the staging models, early stages were considered to be the positive
group and the advanced stages negative, which means that the sensitivity indicates
detection at the early stage, whereas the specificity is related to advanced stage
detection. Classification o the results in the staging analysis by DFA are shown in
Figure 6. In interpreting this data, DFA classification gave an accuracy of 81% for LC
staging and 87% for GC staging. In LC staging, the sensitivity value was low (34.5%),
most likely due to the difference in the size of the groups (n=34 for early stage
patients and n=110 for the advanced stage). Indeed, big differences in the group size
leads to the result being biased towards the larger group, leading to a lack of
sensitivity.”> Despite low sensitivity, the specificity achieved by S4 was very high
(95%), being the highest accuracy value. Regarding the GC staging results, S4
showed an equally high ability in identifying both early and advanced stages of the
disease (86.5% of the samples were correctly classified; 84.6% of the early stage;
and 87.5% of the advanced stage). The AUC values of the classification achieved by
S4 were calculated as 0.68 for LC staging and 0.87 for GC staging. ROC curves
developed for the separation of each stage from the negative samples can be found
in Supporting Information, Figure S2. Clear differences were seen between each set
of ROC curves (early vs. negative compared to advanced vs. negative) and the

different diseases.
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Figure 6. Box plot of the first canonical variable (CV1) values in the staging of (a) LC and (b)
GC, as calculated using the S4 DFA model. The box represents 95% confidence interval of
CV values; error bars represent the standard deviation. The central lines represent Youden's
cut-point. "Early" stages refer to stages 1 and 2 of the disease (localized tumors), and
"advanced" are stages 3 and 4 (metastasized tumors). Receiver operating characteristic
(ROC) curves (c&d) are also presented. The P-values of these discriminations were 0.0017
for (c) LC and (d) 0.033 for GC (d).
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Table 4: Summary of sensitivity, specificity and accuracy values achieved from DFA analysis for the staging of lung cancer (LC) and gastric cancer (GC)
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Summary and Conclusions:

Molecularly-modified SiINW FETs linked with pattern recognition methods and/or
machine learning have successfully demonstrated the detection and classification of
several disease breathprints from lung cancer, gastric cancer, asthma and Chronic
Obstructive Pulmonary Disease patients, both under lab and clinical conditions.
SiINW FET coated with trichloro(phenethyl)silane (TPS) (S1) and heptanoyl chloride
(S3) could detect VOCs linked with the breathprint of the diseases and distinguish
one from another. These sensors could separate early stages of cancer from
advanced stages, allowing not only the detection of the disease, but estimation of its
progress. This information can supply clinicians with valuable and useful information
in diagnosis and treatment planning without the necessity of causing patients
discomfort or pain, preventing time delay and reducing the financial cost incurred by
the clinic/hospital. S1 and the others giving satisfying performances (e.g., S5) could
serve as translational tools from fundamental research to point-of-care because the
sensors are significantly smaller, easier-to-use, and less expensive than other
sensing approaches. They could be used as point-of-care and wearable diagnostic
devices. But this pilot study does not allow us to draw far-reaching conclusions. A
multi-center clinical trial with a considerably increased sample size, using Si NW FET
sensors that enable in-sifu sampling and analysis, is required to confirm the
breathprints. We believe the reported SINW FET sensor can be modified for selective
VOC recognition and concentration prediction in other cancer or disease states.
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Experimental Methods

Growth of the SiNWs

P-type silicon nanowires (SiNWs) were grown following the vapor liquid solid (VLS)
principle using a cold-wall chemical vapor deposition (CVD) reactor. During the 30
min CVD process under a total pressure of 2 mbar, the flow rates of SiH,, B,Hg (100
ppm in Hy), and Ar were kept constant at 4, 1, and 10 sccm, respectively, i.e. in a B
to Si ratio of 1:20,000. Growth was catalyzed by commercially available Au colloids
(British Biocell Int.) of 30 nm diameter. Growth substrate temperature was ~500°C.
The resulting SiNWs had an average diameter of 40+8nm and average length of
8.5+1.5 ym.

Deposition of the SiNWs array

The as-grown SiNWs were first immersed in a Kl/l,/H,O solution (mass ratio 4:1:40)
for 1 min to remove the gold catalyst used in the growing process, and any possible
gold contaminants remaining on the surface of the SINW. The Si NWs were etched
using buffered hydrofluoric acid for 10 sec. Following this, the SiNWs were dispersed
in ethanol using ultra-sonication for 5 sec, and were later deposited on a highly-
doped (0.001 Q-cm resistivity) P-type Silicon (100) substrate with 300 nm thermal
oxide and a Ti/Au (10/200 nm) bottom gate electrode. Deposition was based on a
spray-coating procedure,®® which started with the deposition of the substrate on a
hotplate set at 75°C. A SINW suspension was applied with a spray gun (PRONA
R2F) at a carrier gas pressure of 40 psi, and a tilt angle of (5°£2°) to the substrate.
The spray-coating process resulted in well-aligned nanowire arrays (density ~ 1 NW/
100 um?).

Fabrication of SiNW FETs

The substrate coated with SINWs was cleaned by successive immersions in acetone,
methanol, and isopropanol, followed by 5 sec rinsing in buffered HF. The top source
and drain electrodes (20 pairs of 20 nm Ti/ 160 nm Au interdigitated electrodes,
length 1300 ym, width 2 ym, spacing 2 ym) were deposited by a photolithography
(Karl Suss MA6 Mask aligner) and lift-off process on top of the SiNWSs. Surface
characterization of the fabricated used dark-field light microscopy to determine the
density of SiNWs on the device, which were then observed in a scanning electron

microscope (SEM) to assure proper contact between the SiNWs and the electrodes.
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Surface modification of the SINW FETs

Surface modification of the SINW FETs was carried as described before.*® Briefly,
following surface activation achieved by 30 sec of plasma treatment, the SiINW FET
surfaces were modified with various molecules (listed in Table 1). SINW FETs were
modified using a single-step silane modification (SSM), a 2-step silane-chloride
modification (TSCM), or a 2-step silane-monomer modification (TSMM). Devices
modified using the SSM approach were: (i) immersed in a silane/chloroform
(silane/ethanol in case of APTES) solution (2 mM; 10 mL) for 45 min in room
temperature, and then (ii) successively rinsed with chloroform, acetone, ethanol,
isopropanol (ethanol, acetone, ethanol and isopropanol in case of APTES) and
drying by N, flow. The silane molecules prepared by this SSM approach and used in
this study were trichloro(3,3,3-trifluoropropyl)silane (CF;CH,CH,SIiCl;; TTPS),
trichloro(phenethyl)silane  (C¢HsCH,SiCl;; TPS), 3-aminopropyl-triethoxysilane
( CoH23NO;3Si; APTES) and 3-bromopropyl trichlorosilane (C3HeBrCl;Si; BPTS). SiNW
FETs modified using the TSCM approach were: (i) immersed in 3-aminopropyl-
triethoxysilane (APTES)/dehydrated ethanol (10 mM, 20 mL) for 1 h, (ii) rinsed with
ethanol, acetone, isopropanol and dried by N, flow, (iii) immersed in a solution of
acylchloride in chloroform (10 mM) with 10 uL of triethylamine for 17 h, and finally,
(iv) successively rinsed with chloroform, acetone, ethanol, and isopropanol before
being dried by N, flow. The molecular modification prepared by the TSCM approach
was heptanoyl chloride (C;H;3CIO). SINW FETs modified using TSMM were: (i)
immersed in trichloro(3,3,3-trifluoropropyl)silane  (CF;CH,CH,SiCl;; TTPS)/
chloroform (2 mM, 10 mL) for 1 h, (ii) successively rinsed with chloroform, acetone,
ethanol and isopropanol, before being dried by N, flow, (iii) drop-casted with a
monomer solution in tetrahydrofuran (THF) (1 mM, 2 pL) and kept in a vacuum oven
overnight (55°C), and (iv) rinsed with THF, acetone, ethanol and isopropanol before
drying in a N, flow. The molecular modification prepared by the TSMM approach was

anthracene (C14H1o).

Breath sample collection

Exhaled alveolar breath samples from 374 volunteers were collected. The volunteers
were divided into 4 groups: 149 volunteers with lung cancer; 40 with gastric cancer;
56 volunteers with non-cancerous lung diseases (asthma, COPD or both); and 129
volunteers who were negative for all these diseases. These samples were collected
in 4 locations: (i) Riga East University Hospital, Riga, Latvia; (ii) Cancer Research
Center, University of Liverpool, Liverpool,