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Abstract—LCL filters have been widely used for grid-connected 

inverters. However, the problem that how time delay affects the 
stability of digitally controlled grid-connected inverters with LCL 
filters has not been fully studied. In this paper, a systematic study 
is carried out on the relationship between the time delay and 
stability of single-loop controlled grid-connected inverters that 
employ inverter current feedback (ICF) or grid current feedback 
(GCF). The ranges of time delay for system stability are analyzed 
and deduced in the continuous s-domain and discrete z-domain. It 
is shown that in the optimal range, the existence of time delay 
weakens the stability of the ICF loop, whereas a proper time delay 
is required for the GCF loop. The present work explains, for the 
first time, why different conclusions on the stability of ICF loop 
and GCF loop have been drawn in previous papers. To improve 
system stability, a linear predictor based time delay reduction 
method is proposed for ICF, while a time delay addition method is 
used for GCF. A controller design method is then presented that 
guarantees adequate stability margins. The delay-dependent 
stability study is verified by simulation and experiment.   
 

Index Terms—Digital control, grid-connected inverter, LCL 
filter, stability, time delay. 
 

I. INTRODUCTION 

RID-CONNECTED inverters form an important interface 
between distributed power generation systems and the 

power grid. LCL filters have been commonly adopted to 
mitigate switching harmonics generated by the inverters. 
Compared with L filters, LCL filters have better attenuating 
ability and allow the use of low inductance inductors, resulting 
in a cost-effective solution [1]. However the inherent resonance 
of LCL filters has the tendency to destabilize the inverter 
systems [2], [3]. Different passive and active damping methods 
have been proposed to improve system stability [3]-[5]. The 
passive damping strategy increases the power loss. The active 
damping methods, multi-loop or filter based, are complex in the 
realization and design of the controller [5]-[8]. 
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Simple but effective single-loop current control methods 

without additional damping have been proposed and researched 
for the LCL-filtered grid-connected inverters, employing 
inverter current feedback (ICF) or grid current feedback (GCF) 
[2], [9]-[19]. It has been proved that both the ICF loop and GCF 
loop can be made stable because of their inherent damping 
characteristics [10], [14], [15].  

However, the stability of the ICF and GCF loops has not 
been fully studied so far, especially when the time delay is 
taken into account. The time delay roots from the time for 
analog-to-digital conversion, computation, and pulse-width- 
modulation (PWM) generation [4], [9], [20].  

Much work has been devoted to the choice of the feedback 
current and different conclusions on the stability of ICF loop 
and GCF loop have been drawn, leading to much confusion. 
Without considering any time delay, Tang et al. [10] found that 
the ICF loop is stable due to its inherent damping 
characteristics, while the GCF loop is unstable. Similar 
findings were also demonstrated in [11] and [12] where the grid 
current is indirectly controlled by the inverter current. Active 
damping methods are needed if the grid current is to be 
controlled directly [21], [22]. Considering time delay, Zhang et 
al. [9] and Bierhoff et al. [23] found that the ICF is still more 
advantageous than the GCF. Again, damping methods are 
necessary if the grid current is to be controlled directly [24], 
[25]. On the other hand, Dannehl et al. [2] found that GCF is 
superior to ICF based on stability evaluation using root loci. 
Similar conclusions were also drawn in [13]-[15] which 
showed that the GCF loop can maintain stability without any 
additional damping method.  

Many publications have been devoted to the identification of 
the factors that influence the stability of the single-loop control 
systems. Dannehl et al. [2], [26] indicated that the stability is 
closely related to the ratio of sampling frequency to the LCL 
resonance frequency, but the nature of this relationship is not 
known. Yin et al. [15] presented the damping characteristic of 
the time delay in the GCF loop, and Park et al. [16] found that 
the GCF loop can be stable if the resonance frequency is 
smaller than 1 / 6 of the sampling frequency. However only the 
GCF with a delay of 1.5Ts (Ts is the sampling period) is studied. 
Rui et al. [17] implied that the GCF loop is stable when the time 
delay is between 0.53Ts and 1.33Ts, but this range is only valid 
for the controller parameters used by the authors. Zou et al. [18] 
proposed a method to obtain the stable ranges of time delay for 
ICF and GCF loops. However the method is not based on 
precise derivation, and the deduced stable ranges, which are 
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different to the result in [17], are only for specified LCL and 
controller parameters.  

In this paper, a thorough theoretical study is carried out on 
the relationship between the time delay and stability of 
single-loop controlled grid-connected inverters with LCL filters. 
It is found that the time delay is a key factor that affects the 
system stability. The main contributions of this paper are 
summarized below. 

Firstly, the stable ranges of the time delay (the ranges of the 
time delay within which the system can be made stable) are 
deduced in the continuous s-domain as well as the discrete 
z-domain, applicable for any LCL parameters. The present 
study explains why different conclusions on the stability of the 
single-loop control systems are drawn in previous papers, i.e., 
the time delay in these cases falls into different ranges. 
Furthermore, it can be deduced that the stable ranges of time 
delay for the loop with capacitor current feedback are same as 
those of the ICF loop. Therefore the study can also facilitate the 
analysis of the active damping methods which employ an inner 
ICF or capacitor current feedback loop.  

Secondly, to improve the stability of the single-loop control 
systems, time delay compensation methods are proposed. For 
ICF, a linear predictor based time delay reduction is used [27], 
[28]. For GCF, a proper time delay is added. By employing the 
proposed time delay compensators, the allowed sampling 
frequency ranges can be increased while still maintaining 
system stability.  

Thirdly, a simple PI tuning method without simplification is 
proposed. To design the controller, the LCL filter is often 
simplified as an L filter [16], [19], [29]; this approach however 
is not accurate enough since the LCL resonance frequency 
impacts stability margins significantly. By using the proposed 
design method, adequate stability margins can be guaranteed.    

This paper is organized as follows. Section II presents the 
single-loop controlled three-phase grid-connected inverter 
system and an analysis of the relationship between the time 
delay and system stability in the continuous s-domain. Section 
III provides the derivation of the stable ranges of time delay in 
the discrete z-domain. Section IV is devoted to the optimal 
range of the time delay and time delay compensators. A PI 
controller design method is proposed in Section V. Simulation 
and experimental results are presented in Section VI to verify 

the delay-dependent stability. Conclusions are finally drawn in 
Section VII.   

II. SINGLE-LOOP CONTROLLED THREE-PHASE 

GRID-CONNECTED INVERTERS WITH LCL FILTERS 

A. System Description 

The circuit diagram of a three-phase grid-connected inverter 
with LCL filters is shown in Fig. 1(a), where the inverter is 
supplied with a constant DC voltage Vdc. Its equivalent 
single-phase circuit is shown in Fig. 1(b), where vi is the 
inverter voltage and vg the grid voltage. The inverter side 
inductor Li, grid side inductor Lg, and capacitor C are the 
components of the LCL filter. The parasitic resistance 
associated with the inductors is neglected to represent the worst 
case [10], [16].  

The inverter current ii or grid current ig can be sensed as the 
feedback variable for a single-loop current control system. The 
transfer functions from the inverter voltage to the inverter 
current and to the grid current are given as (1) and (2) 
respectively, with 1 /r gL Cω = and ( ) /res i g i gL L L L Cω = + . 
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B. Time Delay in the Control Loop 

To acquire the average value of a current in a switching 
period and to avoid switching noises, the synchronous sampling 
method is commonly adopted. The currents are sampled at the 
beginning or the middle of a switching period [30], [31].  

Taking the symmetric-on-time modulator as an example, the 
digital control process is shown in Fig. 2. A current is sampled 
when the PWM counter reaches the peak value, resulting in a 
sampled quantity i. Td1 represents the time for analog-to-digital 
conversion. With a digital controller, the duty-ratio d (the 
shadow compare register value) is calculated, and Td2 is the 
time for computation. In a digital signal processor (DSP), d is 
generally updated to the compare register (with a value of d*, 
equal to d) when the counter reaches zero and/or the period 
value, leading to a duty-ratio update delay Td3. The total 
processing delay is expressed in terms of Ts as Td1 + Td2 + Td3 = 
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Fig. 1.  A three-phase grid-connected inverter with LCL filters. (a) Power 
circuit.  (b) Equivalent single-phase circuit. 
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Fig. 2.  Time delays in the digital control of a grid-connected inverter system.
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λTs. Normally, λTs is not larger than one sampling period Ts, and 
its typical values in real operation are 0.5Ts and Ts [9], [30]. In 
addition to the processing delay, there is a delay Td4 due to the 
PWM, and equivalently Td4 = 0.5Ts [27]. Therefore the total 
time delay in the control loop is Td = Td1 + Td2 + Td3 + Td4 = (λ + 
0.5)Ts [20]. In the following analysis to deduce the stable ranges 
of time delay, λ is assumed to be a random value. 

C. Analysis of the Delay-Dependent Stability in Continuous 
s-Domain 

The block diagrams of the single-loop controlled grid- 
connected inverters are shown in Fig. 3. The total time delay is 
expressed as Gd(s) = e–sTd , and kPWM  = Vdc / 2 is the gain of the 
PWM. Gc(s) is the controller, and a PI is used: 

( ) (1 )i
c p

k
G s k

s
= + .                            (3)   

The loop gains of the ICF and GCF are ( ) ( )i PWM cT s k G s=
( ) ( )

i id i vG s G s and ( ) ( ) ( ) ( )
g ig PWM c d i vT s k G s G s G s= respectively. 

The stability analysis is carried out using the Nyquist stability 
criterion. In the open-loop Bode diagram, only the frequency 
ranges with magnitudes above 0 dB are considered. For the 
phase plot in these ranges, a ± (2k + 1)π crossing in the direction 
of phase rising is defined as a positive crossing, while a 
crossing in the direction of phase falling is defined as a negative 
crossing. The numbers of the positive and negative crossings 
are denoted as N+ and N– respectively [32]. According to the 
Nyquist stability criterion, the number of the open-loop 
unstable poles P must equal 2(N+ – N–) to ensure system 
stability, i.e., P = 2(N+ – N–). As can be seen from (1), (2), and 
(3), P = 0, hence N+ – N– = 0 is required for both of the ICF and 
GCF systems.  
1) Inverter Current Feedback 

The magnitude (in decibels) and phase of Ti(s) with Gc(s) = 
kp (the integral term kpki / s can be designed to have a negligible 
influence on system stability [11]) are given in (4) and (5) 
respectively. 

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

20lg ( ) 20lg
( )

20lg[ ], ( )
( )

, ( )

          20lg[ ], ( )
( )

, ( )

20lg[ ], (
( )

dj T r
i s j p PWM

i res

r
p PWM r

i res

r

r
p PWM r res

i res

res

r
p PWM

i res

T s k k e
j L

k k
L

k k
L

k k
L

ω
ω

ω ω
ω ω ω

ω ω ω ω
ω ω ω

ω ω
ω ω ω ω ω

ω ω ω
ω ω

ω ω ω ω
ω ω ω

−
=

− +
=

− +

−
<

−
−∞ =

−
= < <

−
+∞ =

−
>

−
)res















    (4)      

2 2

2 2
( )

( )

π
, ( )

2
π

                 , ( )
2
π

, ( )
2

dj T r
i s j p PWM

i res

d r

d r res

d res

T s k k e
j L

T

T

T

ω
ω

ω ω
ω ω ω

ω ω ω

ω ω ω ω

ω ω ω

−
=

− +
∠ = ∠

− +

− − <

= − < <

− − >

          (5) 

The Bode diagrams of Ti(s) with several different time delays 
are shown in Fig. 4. The magnitude at fr (= ωr / 2π) is definitely 
below 0 dB although there is a +180° jump in the phase, hence 
N+ = 0. N– = 0 is thus required for system stability. Using a 
sufficiently small kp, the magnitude of Ti(s) can be set below 0 
dB to avoid negative crossing, except at the resonance 
frequency fres (= ωres / 2π) where the magnitude is positive 
infinite and there is a fall of 180° in the phase. Therefore, 
assuming kp is adjustable, the system can be made stable only if 
the phase at fres does not cross over ± (2k + 1)π. Otherwise there 
will be a negative crossing at fres whatever kp is, i.e., N– ≠ 0 and 
thus the system is unstable. Without any time delay, the phase 
at fres falls from 90° to –90° and no negative crossing is 
generated, so the system is stable, in agreement with the 
findings in [10].With a finite time delay, the phase lag increases. 
To avoid any ± (2k + 1)π crossing at fres, it can be derived from 
(5) that the time delay should fall into one of the following 
ranges: 
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Fig. 3.  The s-domain block diagrams of the single-loop controlled grid-connected inverters. (a) ICF. (b) GCF. 
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Fig. 4.  Bode diagrams of the ICF loop gain with different time delays. 
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Fig. 5.  Bode diagrams of the GCF loop gain with different time delays. 
  

2) Grid Current Feedback 
The magnitude (in decibels) and phase of Tg(s) with Gc(s) = 

kp are given as (7) and (8) respectively. 
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The Bode diagrams of Tg(s) with different time delays are 
shown in Fig. 5. Similar to the ICF loop, the GCF loop can be 
made stable if there is no negative crossing at fres, i.e., the phase 
at fres does not cross over ± (2k + 1)π. Without any time delay, 
the phase at fres falls from –90° to –270° and a negative crossing 
exists, the system is thus unstable. To avoid any potential 
negative crossing at fres, it can be deduced from (8) that the time 
delay should be in the following ranges: 

(4 1)π (4 3)π
, ( 0,1, 2,...)

2 2d
res res

k k
T k

ω ω
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which indicates that a proper time delay is necessary for the 
stability of GCF loop. 
 

III. ANALYSIS OF THE DELAY-DEPENDENT STABILITY IN 

DISCRETE Z-DOMAIN 

In this section, the delay-dependent stability of the 
single-loop controlled grid-connected inverters with LCL filters 
is studied in the discrete z-domain. The proportional gain kp is 
assumed to be adjustable. Then the stable ranges of the time 
delay for ICF and GCF loops are deduced, based on the 

requirement that when the time delay is in the stable ranges all 
discrete closed-loop poles should be inside the unit circle if an 
infinitely small kp is used. On the other hand, if the time delay is 
outside the stable ranges, there will be unstable closed-loop 
poles outside the unit circle whatever kp is.  

A. Discrete Models 

To obtain the discrete models, the processing delay and 
PWM are analyzed separately. The processing delay is 
expressed as e–sλTs. The PWM is usually modeled as a 
zero-order-hold (ZOH) [33], that is 
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A more precise PWM model has been proposed in [9] and [30] 
and is expressed as 
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The frequency domain models of (10) and (11) are denoted as  
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respectively. It can be seen that the time delays of these two 
PWM models are identical (0.5Ts), and their magnitude gains 
are almost same because a small Ts is commonly used. 
Therefore the ZOH model (10) is adequate for the discrete 
analysis [33]. 

The block diagrams of the single-loop digitally controlled 
grid-connected inverters are shown in Fig. 6, where GPWM(s) is 
given in (10), and Gc(z) is the discrete equivalent of Gc(s) [30]. 
To obtain the closed-loop discrete transfer functions of the two 
control systems, the discrete transfer function from d(z) to ii(z) 
and ig(z) should be obtained first. Therefore z-transform is used 
to obtain the discrete transfer functions of the paths which 
contain the processing delay, PWM, and the plant transfer 
functions ( )

i ii vG s and ( )
g ii vG s followed by ideal samplers. For a 

plant transfer function G(s), the discrete transfer function is 
expressed as [9], [30] 
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where ℓ is an integer, 0 ≤ m < 1, and λ = ℓ– m. 
( )

{ }ssmTG s
Z e
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(14) can be obtained using the following property [33]: 
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where pi (i = 1, 2, …, n) are the poles of G(s) / s and Res denotes 
the residue. 

Substituting ( )
i ii vG s and ( )

g ii vG s for G(s) in (14) and (15), the 

discrete transfer functions from d(z) to ii(z) and ig(z) are 
obtained as (16) and (17) respectively. 
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Therefore, the closed-loop transfer functions of the control 
loops with ICF and GCF are given as (18) and (19) 
respectively. 
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A discrete closed-loop is stable if all the poles are inside the 
unit circle. From (16) and (17) it can be seen that the ICF and 
GCF have the same open-loop poles, and three are on the unit 
circle (z1 = 1, z2,3 = cos ωresTs ± j sin ωresTs). Thus with Gc(z) = kp, 
for a possible stable operation, i.e. the time delay being in the 
stable ranges, all the closed-loop poles should be inside the unit 
circle when an infinitely small kp is used. On the other hand, if 

the time delay is outside the stable ranges, there will be unstable 
closed-loop poles outside the unit circle whatever kp is.  

The w-transform z = (w + 1) / (w – 1) is used to map the area 
inside the unit circle in the z-plane into the left half-plane (LHP) 
of the w-plane, such that the Routh’s stability criterion can be 
used [32]. The stable ranges of the time delay can be derived 
based on the requirement that the roots of Di(w) = 1 + kpGi(w) = 
0 and Dg(w) = 1 + kpGg(w) = 0 should be in the LHP when an 
infinitely small kp is used. An exemplary derivation for GCF 
with the case of 0 < λ ≤ 1, i.e., ℓ = 1 and 0 ≤ m < 1, is provided 
in the Appendix. The stable ranges of GCF with other cases of λ 
can also be derived using the same method, as well as those of 
the ICF. 

B. Inverter Current Feedback 

Using the method in the Appendix, the general requirement 
for the stability of the ICF loop can be obtained as 
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deduced in the s-domain. However for controllability, fres 
should be smaller than half the sampling frequency (fs / 2, the 
Nyquist frequency), i.e., ωresTs < π [32], [34]. Considering this 
restriction, the stable ranges of the time delay are obtained as 
(21), shown at the bottom of this page. 

It is interesting from (21) that for a given Ts, the system can 
be stabilized by modifying the value of λ, and vice versa. 
Moreover, there are many optional ranges for λ and Ts. Taking λ 
= 3 for example, the available values of k are 0 and 1; therefore 
the resultant condition is Ts ∈ (0, π / 7ωres) ∪ (3π / 7ωres, 5π / 

7ωres). The root loci of the closed-loop system with Ts in 
different ranges are shown in Fig. 7, which demonstrate that 
there are at least two unstable poles outsider the unit circle if the 
condition is not met.  

C. Grid Current Feedback  

Using the method in the Appendix, the following stable 
condition can be obtained for the GCF loop:  
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Fig. 6.  Block diagrams of the single-loop digitally controlled grid-connected 
inverters. (a) ICF. (b) GCF. 
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which results in
(4 1)π 1 (4 3)π

( )  ( 0,1, 2,
2 2 2s

res res

k k
T kλ

ω ω
+ +< + < =  

...) , the same as (9) that was derived in the s-domain. Also 

considering the restriction ωresTs < π, the stable ranges of the 
time delay are yielded as (23), shown at the bottom of the 
former page. 

Like ICF, the GCF loop can also be stabilized by adjusting 
the value of λ or Ts. For example, for the case of λ = 3, the 
available values of k are 0 and 1, thus the stable ranges of Ts are 
(π / 7ωres, 3π / 7ωres) ∪ (5π / 7ωres, π / ωres). The root loci of the 
closed-loop system with Ts in different ranges are shown in Fig. 
8. As seen if Ts is outside the stable ranges, there are at least two 
unstable poles whatever the proportional gain kp is. 

It can be seen from (6) and (9), (21) and (23) that the stable 
ranges of the time delay for ICF and GCF are complementary. 
It means that with a given time delay, only one of them can be 
made stable if no time delay compensator is applied.  

IV. OPTIMAL RANGE OF TIME DELAY AND COMPENSATORS 

In this section the optimal range of the time delay is 
discussed and identified, to achieve the maximum bandwidth 
and ensure adequate stability margins. It is found that in the 
optimal range, the existence of time delay degrades the stability 
of the ICF loop, whereas a proper time delay is needed for the 
GCF loop. To improve stability, a linear predictor based time 
delay reduction method is proposed for ICF, while a proper 
time delay can be added for GCF. 

A. Reasonable Time Delay Range 

The stable ranges (21) and (23) indicate that there are many 
available ranges for the time delay. However, for a large k, the 

phase lag due to the time delay is significant. Small controller 
gains have to be used to guarantee stability, leading to a low 
bandwidth. From (21) and (23), it can be seen that k = 0 is the 
case for achieving the highest bandwidth. The reasonable time 
delay ranges of ICF and GCF are thus given as (24) and (25) 
respectively. 

1 π
( ) , ( 0)

2 2s
res

Tλ λ
ω

+ < ≥                          (24) 

π 1 1 π
( ) ( ) , (0 1)

2 2 2

π 1 3π
( ) , ( 1)

2 2 2

s
res res

s
res res

T

T

λ λ λ
ω ω

λ λ
ω ω

 < + < + < ≤

 < + < >


       (25) 

From (24) it can be seen that an increase in time delay 
degrades the stability of the ICF loop. However for the GCF, 
(25) indicates that a proper time delay is required for the 
stability of the GCF loop, and that in the scale of 0 < λ ≤ 1, λ = 1 
is the best option to get the largest available range of the 
sampling period Ts.   

For a given λ, requirements (24) and (25) can also be used to 
calculate the stable range of fs. Taking λ = 0.5 and λ = 1 for 
example, the ranges of fs are given in Table I. Note that the 
requirement of GCF for λ = 1 is in agreement with the findings 
in [16].  
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 Fig. 7.  Root loci of the ICF loop when λ = 3 and with Ts in different ranges. (a) Ts ∈ (0, π / 7ωres). (b) Ts ∈ (π / 7ωres, 3π / 7ωres).  (c) Ts ∈ (3π / 7ωres,  5π / 7ωres).  (d)
Ts ∈ (5π / 7ωres, π / ωres).   
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Fig. 8.  Root loci of the GCF loop when λ = 3 and with Ts in different ranges. (a) Ts ∈ (0, π / 7ωres). (b) Ts ∈ (π / 7ωres, 3π / 7ωres).  (c) Ts ∈ (3π / 7ωres, 5π / 7ωres).  (d)
Ts ∈ (5π / 7ωres, π / ωres).   

TABLE I 
STABLE AND OPTIMAL RANGES OF THE SAMPLING FREQUENCY 

 
method λ stable range optimal range 

ICF 
0.5 fs > 4fres  fs > 6fres 
1 fs > 6fres fs > 9fres 

GCF 
0.5 2fres < fs < 4fres 2fres < fs < 3fres 
1 2fres < fs < 6fres 9fres / 4 < fs < 9fres / 2
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B. Optimal Time Delay Range 

A system can be made stable when the time delay falls into 
the stable ranges. However, the possible stable operation is not 
enough, adequate stability margins including phase margin 
(PM) and gain margin (GM) should also be considered. 

For the ICF, when the time delay is within the stable range 
(24), the Bode diagram of the loop gain is shown in Fig. 9. 
There are three crossover frequencies: ωi1, ωi2, and ωi3 (ωi1 < ωr, 
ωr < ωi2 < ωres, ωi3 > ωres). It is apparent that the PM of iφ at ωi3 

is the smallest one. For a predetermined PM of φ (φ < π / 2), to 
ensure a possibility for iφ  φ, the phase lag of the time delay at 

ωres should be smaller than π / 2 – φ, that is  
1 π / 2

( )
2 s

res

T
ϕλ

ω
−+ < .                            (26) 

For the GCF, based on (25), the Bode diagram of the loop 
gain is shown in Fig. 10. There are also three crossover 
frequencies: ωg1, ωg2, and ωg3. 1gφ can be modified to be larger 

than φ by adjusting kp. To make it possible for 2gφ  ≥ φ and 3gφ ≥  φ, the following optimal range of the time delay can be 
obtained: 

π / 2 1 1 π
( ) ( ) , ( 1 )

2 2 π π

π / 2 1 3π / 2
( ) , ( 1 )

2 π

s
res res

s
res res

T

T

ϕ ϕλ λ λ
ω ω

ϕλ λ

ϕ

ϕ ϕ
ω ω

+ < + < + < ≤ −
 + − < + < > −


  (27)  

To sum up, to make it is possible for PM to be larger than φ, 
the time delay of the ICF and GCF must fall into the optimal 
range (26) and (27) respectively. For a given λ, the optimal 
range of fs can also be deduced. Taking φ = π /6 (30°) for 
instance, the optimal range of fs for λ = 0.5 and λ = 1 are also 
summarized in Table I.  

C. Time Delay Compensators 

1) Time Delay Reduction for ICF  
As stated previously, the time delay weakens the stability of 

the ICF loop. Therefore, time delay reduction methods should 
be adopted if (26) is not met. Numerous compensators have 
been proposed, such as the state observers [24] and shifting of 
sampling constants [32], [33]. However, the state observers are 
sensitive to the parameter variations, and the shifting of the 
sampling constants is limited by aliasing and switching noises 
[32]. A linear predictor (LP) as described in [27] is adopted in 

the present work due to its effectiveness and ease of realization. 
Its discrete transfer function is given as 

1 13 1
( ) 1 ( )

2 2
d d

LP
s s

T T
G z z z

T T
λ λ− −= + − = + − + .         (28) 

The compensated block diagram is shown in Fig. 11, where 
the LP is in the feedback loop [20]. Taking λ = 1 for example, 
Table I indicates that fs = 6fres is the critical sampling frequency. 
However, with the adoption of the linear predictor, the phase 
margin is increased significantly as shown in Fig. 12, thus the 
stability is improved. 

Using the previous procedure, it can be deduced that the 
stable ranges of time delay for the loop with capacitor current 
feedback, which is usually adopted as an inner active damping 
loop [26], are the same as those of the ICF loop. This is why 
time delay reduction methods are employed to eliminate the 
non-minimum phase behavior of the inner loop, thus to 
improve the overall system stability [25], [32]. Therefore, the 
present work can also facilitate the analysis of the active 
damping methods with an inner loop using the capacitor current 
feedback or ICF [3]. 
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Fig. 9.  Bode diagram of the ICF loop gain with time delay in the optimal range.
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Fig. 10.  Bode diagram of the GCF loop gain with time delay in the optimal
range. 
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Fig. 11.  Block diagram of the ICF loop with a linear predictor. 
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2) A Proper Time Delay Added for GCF 
For a given fs > 2fres, if (27) is not fulfilled, λ should generally 

be increased properly. The available range of λ can be yielded 
as 

1 1 3 1
( ) ( )
4 2π 2 4 2π 2

s s

res res

f f

f f

ϕ ϕλ+ − < < − − .            (29) 

The corresponding compensated block diagram is shown in 
Fig. 13, where a delay z–n is added so that the processing time 
delay fulfills (29). In the real operation, λ is an integer multiple 
of 0.5 [9], this should be considered when using (29).  

Taking λ = 0.5, fs = 6fres for example, Table I and the root loci 
in Fig. 14 indicate an unstable system. According to (29), the 
optimal range for φ = 30° is 1.5 < λ < 3.5. The root loci of the 
system with a compromise value λ = 2.5 (n = 2) are shown in 
Fig. 14. It can be seen that the system can be stabilized by 
adding a proper time delay. 

D. Discussion on the Choice of the Feedback Current 

Confusions exist in conclusions and findings relevant to the 
stability of the single-loop control systems from different 
previous work. The analysis in the present work is able to 
clarify the confusions and provide a unified explanation. 

Without considering any time delay, the ICF loop can be 
made stable while the GCF loop can never be stabilized without 
other measures. This is why the inverter current was chosen as 
the control variable in [10]-[12], [35]. The GCF has only been 
used with additional active damping methods [3], [6], [7], [22]. 

In previous papers, the total time delay is predominantly 
considered to be Td = 1.5Ts (λ = 1). In this case, as indicated in 
Table I, the ICF loop can be made stable when fs > 6fres, while 
the requirement for GCF is 2fres < fs < 6fres. In [9], fres = 1756.5 
Hz and fs = 20000 Hz gives fs / fres = 11.3863, then it was found 
the ICF is superior to the GCF. Similar results were also given 
in [23] (fres = 726.44 Hz and fs = 5000 Hz, fs / fres = 6.8829) and 
[24] (fres = 1136.8 Hz and fs = 10000Hz, fs / fres = 8.7966), which 
showed that the active damping is required if the grid current is 
to be controlled directly [25].  

On the other hand, in [2], fres = 1224.1 Hz and fs ∈ (3500 Hz, 
7000 Hz) thus fs / fres ∈ (2.8592, 5.7185), then it concluded that 
the GCF loop is stable whereas the ICF loop is unstable. Similar 
conclusions were also drawn in [14] (fres = 2219.3 Hz and fs = 
8000 Hz, fs / fres = 3.6047) and [15] (fres ∈ (2905.8 Hz, 5058.3 Hz) 
and fs = 16000 Hz, fs / fres ∈ (3.1631, 5.5062)) by using the grid 
current as the feedback variable.  

From aforementioned analyses, the choice of the feedback 
current should be made based on the LCL parameters. For a low 
LCL resonance frequency, it is better to choose the inverter 
current to obtain a large stable range of the sampling frequency. 
For a high LCL resonance frequency, the grid current can be 
used to avoid a too high sampling frequency. In some cases, 
both of these two currents can be adopted with the proposed 
time delay compensators applied. 

Finally, the robustness of the single-loop control systems 
against the grid inductance variation is discussed. The addition 
of a grid inductance is equivalent to an increase in Lg, hence 
leading to a lower ωres ( ( ) /res i g i gL L L L Cω = + ). For the ICF, 

it can be seen from (24) and (26) that the available time delay 
range is increased. The ICF is therefore robust to the grid 
inductance variation. For the GCF, (25) and (27) indicate that 
the decreased ωres shifts the available time delay range. The 
previous time delay in the system would not be covered by the 
shifted stable range. Therefore, the GCF is susceptible to the 
grid inductance variation.    

 

V. DESIGN OF THE CONTROLLER 

Now that a single-loop control system can be stabilized if the 
time delay is in the stable ranges, and the optimal range makes 
it is possible for the PM to be larger than a predetermined value, 
the PI controller has to be designed to guarantee adequate 
stability margins. 

The design of PI controller for an LCL-filtered inverter is 
usually implemented by simplifying the LCL as an L filter [6], 
[16], [19]. However from previous analysis, the LCL resonance 
affects the stability margins significantly, this approximation is 
thus not accurate enough. In this section, a simple tuning 
procedure is proposed. This method is also suitable for the 
proportional resonant (PR) controller. 

A. Inverter Current Feedback 

Firstly, the proportional gain kp is discussed. There are three 
main values, kp1 to achieve a PM of φ, kp2 to ensure a GM of 3 
dB [35], and the maximum value kpmax to ensure stability.  

For a predetermined PM of φ, according to (5) the crossover 
frequency ωi3 in Fig. 9 can be yielded as 

3 3

π 1 π 2
π ( )

2 2 (2 1)i s i
s

T
T

ϕϕ λ ω ω
λ

−= − − +  =
+

.         (30) 

kp1 is then set to achieve unity loop gain at ωi3, according to (4) 
the following is obtained 

2 2
3 3

1 2 2
3

( )

( )
i i i res

p
PWM i r

L
k

k

ω ω ω
ω ω

−
=

−
.                         (31)  

The frequency ωm at which the phase of the open-loop 
transfer function crosses over –180° is given as 
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Fig. 13.  Block diagram of the GCF loop with an addition of time delay. 
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Fig. 14.  Root loci of the GCF loop when fs = 6fres, with λ = 0.5 (solid lines) and
λ = 2.5 (dotted lines). 
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1 π
( )

2 2 2(2 1)
s

m s mT
ωλ ω ω
λ

+ =  =
+

,              (32) 

where ωs = 2πfs. kpmax is then set to achieve unity at ωm, given as 
2 2 2

max 2 3 2

[ 4(2 1) ]

[2(2 1) 8(2 1) ]
s i s res

p
PWM s r

L
k

k

ω ω λ ω
λ ω λ ω

− +
=

+ − +
.           (33) 

kp2 to ensure a GM of 3 dB is therefore expressed as 
2 2 2

2 2 3 2

[ 4(2 1) ]2

2 [2(2 1) 8(2 1) ]
s i s res

p
PWM s r

L
k

k

ω ω λ ω
λ ω λ ω

− +
=

+ − +
.        (34) 

As a result, kp is chosen to be the smaller one of kp1 and kp2. 
Finally the integral gain ki can be tuned to make a small 

phase contribution at ωres / 2, given as [10], [29] 

20
res

ik
ω

= .                                    (35) 

If a LP (28) is applied to enhance the stability, the parameters 
should be modified. The magnitude and phase of the loop gain 
becomes |Ti(z)|=|kPWMGc(z)GLP(z)Gi(z)| and Ti(z)= kPWM 
Gc(z)GLP(z)Gi(z) respectively. The magnitude and phase of the 
LP are 

2 28 16 10 (8 16 6) cos
( ) ,

2
(2 3)sin

( ) arctan π.
(2 3) cos (2 1)

s
LP

s
LP s

s

T
G

T
T

T

λ λ λ λ ω
ω

λ ωθ ω ω
λ ω λ

 + + − + +
 =



+ = − + + − +

 (36) 

Therefore following the same tuning procedure above, kp1 and 
kp2 can be calculated as 

2 2
3 3

1 2 2
3 3

2 2

2 2 2
3

( )

( ) ( )

( )2
,

2 ( ) ( )

i i i res
p

PWM i r LP i

m i m res
p

PWM m r LP i

L
k

k G

L
k

k G

ω ω ω
ω ω ω

ω ω ω
ω ω ω

 −
= −


− = −

            (37) 

where ωi3 and ωm are modified as 

3
3

π 2 2 ( ) π 2 ( )
,

(2 1) (2 1)
LP i LP m

i m
s sT T

θ ω ωω ω
λ λ

ϕ θ− + +
= =

+ +
.      (38) 

The integral gain ki is still given by (35). 

B. Grid Current Feedback 

On the basis of (27), to achieve a PM of φ, the crossover 
frequencies ωg1, ωg2, and ωg3 are obtained from (8) as 

1 2 3

π 2 π 2 3π 2
, ,

(2 1) (2 1) (2 1)g g g
s s sT T T

ω ω ωϕ ϕ ϕ
λ λ λ

− + −= = =
+ + +

.    (39) 

The corresponding proportional gains are then derived from (7) 
as 

2 2
1 1

1 2

2 2
2 2

2 2

2 2
3 3

3 2

( )
,

( )
,

( )
.

g i res g
p

PWM r

g i res g
p

PWM r

g i g res
p

PWM r

L
k

k

L
k

k

L
k

k

ω ω ω
ω

ω ω ω
ω

ω ω ω
ω
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 − =

 − =


                     (40) 

The frequency ωm at which the phase of the open-loop 
transfer function crosses over –180° is the same as (32). The 
maximum value kpmax, and kp4 to give a GM of 3dB are then 
written as 

2 2 2

max 3 2

2 2 2

4 2 3

[4(2 1) ]
,

8 (2 1)

2 [4(2 1) ]
.

16 (2 1)

s i res s
p

PWM r

s i res s
p

PWM r

L
k

k

L
k

k

ω λ ω ω
λ ω

ω λ ω ω
ω λ

 + −
= +


+ − = +

             (41) 

Then kp is chosen to be the smallest value among kp1, kp2, kp3, 
and kp4.  

Finally, the integral gain ki is tuned to have a small influence 
on the phase at ωg1: 

1 π 2

10 10(2 1)
g

i
s

k
T

ω
λ

ϕ−= =
+

.                        (42) 

VI. RESULTS 

Simulations and experiments were implemented to verify the 
delay-dependent stability of the single-loop controlled 
grid-connected inverters with LCL filters. Parameters of the 
circuits are given in Table II. The control is implemented in the 
synchronous dq frame, thus decoupling terms are used [19]. 
The transient response as the amplitude of the grid current 
stepping from 1 A to 4 A is examined to evaluate the system 
stability. Therefore it is achieved by stepping the reference d 
current from 1 A to 4 A. For GCF, the reference q current is set 
to 0. For ICF, as the grid current is indirectly controlled, the 
reference q current is set to ωnCvg instead of 0 to achieve unity 
power factor [10].   

A.  Simulation Results 

Simulations in MATLAB/PLECS were used to verify the 
stable ranges of the time delay obtained in Section II and III. 
Taking fs = 6fres for example, ωresTs < π is fulfilled, therefore the 
stable ranges (6) and (21) of the ICF are identical, as well as the 
stable ranges (9) and (23) of the GCF. 

The reference d current steps from 1 A to 4 A at 0.02 s. For 
ICF, the transient responses when Td < π / 2ωres (k = 0), 3π / 2ωres 

< Td < 5π / 2ωres (k = 1), and 7π / 2ωres < Td < 9π / 2ωres (k = 2) are 
shown in Fig. 15, the lags in the responses are due to the time 
delay in the forward-loop. It can be seen that when the time 
delay is within these ranges, the ICF loop can be made stable. 
The instabilities when Td is outside the stable ranges are also 
shown in Fig. 15, where the range of Td changes at 0.08 s. For k 
≥ 3 in (6), although not shown here, the loop can also be made 
stable. However, as can be seen from Fig. 15, for a larger k, a 
slower transient response is produced because of the lower 
bandwidth.  

For GCF, the stable transient responses when π / 2ωres < Td < 
3π / 2ωres (k = 0), 5π / 2ωres < Td < 7π / 2ωres (k = 1), and 9π / 2ωres 

TABLE II 
PARAMETERS OF THE CIRCUITS 

 
Symbol Quantity Value 

Vdc DC input voltage amplitude 450 V 
vg Single-phase grid voltage amplitude 155 V 
Li Inverter side inductor 4.4 mH 
Lg Grid side inductor 2.2 mH 
C Capacitor of LCL filter 10 μF 
ωr Resonance angular frequency of Lg and C 6742 rad/s 
ωres Resonance angular frequency 8257.2 rad/s
fres Resonance frequency 1314.2 Hz 
ωn Fundamental angular frequency 2π·50 rad/s
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< Td < 11π / 2ωres (k = 2) and the unstable responses when Td is 
outside the stable ranges are shown in Fig. 16. For k ≥ 3 in (9), 
the GCF loop can also be stabilized with well-designed 
controller parameters. If the time delay is not within the stable 
ranges, the system can never be stabilized with any controller 
gain. 

These simulated results verify the stable ranges of time delay 
derived in Section II and III.  

B. Experimental Results 

Experiments were conducted on a three-phase grid- 
connected inverter prototype shown in Fig. 17. The prototype 
comprises a Semikron power processing device (contains a 
three-phase IGBT inverter), a DSP control board 
(TMS320F28335), a three-phase LCL circuit, several circuit 
breakers, and an isolated 1:2 step-up transformer connected to 
the power grid. The prototype has a hardware protection circuit 
based on Altera PLD MAX 3000A and a complete software 
protection design. In case that any error signal (IGBT switching 
fault or TI DSP failure) occurs or an overcurrent is detected, the 
protection will disable the PWM outputs and trigger the 
operation of circuit breakers, then the system is disconnected 
from the power grid and stops working. 

Because in the real operation the normal values of λ are 0.5 
and 1, experiments are implemented to verify the stable range 
of fs in Table I, and to validate the time delay compensators and 
PI design method. The uniformly sampled symmetric-on-time 
triangle PWM is applied. Samplings are conducted when the 
PWM counter reaches the period value. λ = 0.5 is achieved by 
updating the duty ratio to the compare register when the counter 
reaches zero, while λ = 1 is realized by updating the compare 
register when the counter reaches the period value [9]. 

The parasitic resistance of the inductors improves system 
stability, but it does not affect the evaluation of the stable 
ranges, because if the time delay is outsider the stable ranges 
the system would be unstable with even a small kp.  For the 
cases with time delay in the optimal range, controller 
parameters are designed using the method in Section V. For 
other cases, comprised parameters are used to validate the 
stable ranges. 
1) Inverter Current Feedback 

Fig. 18 shows the one-phase grid voltage and grid current. As 
can be seen the grid current is synchronized with the grid 
voltage when it is controlled indirectly by the inverter current.  

For λ = 0.5, as shown in Table I fs = 4fres is the critical value, 
below which the system is unable to be stabilized. When fs = 
6fres, the transient response is shown in Fig. 19, which indicates 
the stable operation. When fs = 4fres, the system is marginally 
stable, as presented in Fig. 20 where the steady-state oscillation 
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Fig. 15.  Simulated transient responses of ICF when Td is in different ranges. (a) Td < π / 2ωres, π / 2ωres < Td < 3π / 2ωres.  (b) 3π / 2ωres < Td < 5π / 2ωres, 5π / 2ωres < Td

< 7π / 2ωres (c) 7π / 2ωres < Td < 9π / 2ωres, 9π / 2ωres < Td < 11π / 2ωres. 
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Fig. 16.  Simulated transient responses of GCF when Td is in different ranges. (a) π / 2ωres < Td < 3π / 2ωres, 3π / 2ωres < Td < 5π / 2ωres. (b) 5π / 2ωres < Td < 7π / 2ωres,
7π / 2ωres < Td < 9π / 2ωres. (c) 9π / 2ωres < Td < 11π / 2ωres, 11π / 2ωres < Td < 13π / 2ωres. 
 

 
Fig. 17.  A three-phase LCL-filtered grid-connected inverter system used in the
experimental verification of the delay-dependent stability. 
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appears. Although not shown here, when fs < 4fres the system is 
more likely to be unstable. However, if a linear predictor is used 
when fs = 4fres, the transient response is shown in Fig. 21. It can 
be seen that the linear predictor stabilizes the system, thus the 
stable range of the sampling frequency is increased. 

For λ = 1, fs > 6fres is required for stability. When fs = 6fres, the 
transient response is shown in Fig. 22, the current ripples imply 
the weak stability. Compared with the case of λ = 0.5, the 
increase in the time delay degrades the stability of the ICF 
system. However, with the adoption of the linear predictor, the 
system is stabilized, as shown in Fig. 23. When fs = 10fres, the 
response in Fig. 24 indicates a stable system.  

These experimental results verify the stable ranges of the 
sampling frequency deduced previously from the stable ranges 
of time delay. The stability improvement due to the linear 
predictor has also been verified. 

2) Grid Current Feedback 
For λ = 0.5, 2fres < fs < 4fres is required for stability. When fs = 

4fres, the transient response shown in Fig. 25 indicates the 
critical stability. The system is unstable when fs > 4fres 

irrespective of the controller parameters. To improve the 
stability when a high sampling frequency is used, a proper time 
delay is added. Taking fs = 6fres for example, by adding a delay 
of 2Ts, the system is stabilized, as shown in Fig. 26. 
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: [2A / div]gi

 
Fig. 18.  Experimental single-phase grid voltage 
and grid current of ICF with λ = 0.5, fs = 7fres. 
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Fig. 21.  Experimental transient response of ICF
with λ = 0.5, fs = 4fres, with linear predictor. 
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Fig. 24.  Experimental transient response of ICF
with λ = 1, fs = 10fres. 
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Fig. 27.  Experimental transient response of GCF
with λ = 1, fs = 4fres. 
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Fig. 19.  Experimental transient response of ICF
with λ = 0.5, fs = 6fres. 
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Fig. 22.  Experimental transient response of ICF
with λ = 1, fs = 6fres. 
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Fig. 25.  Experimental transient response of GCF
with λ = 0.5, fs = 4fres. 
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Fig. 28.  Experimental transient response of GCF
with λ = 1, fs = 6fres. 
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Fig. 20.  Experimental transient response of ICF
with λ = 0.5, fs = 4fres. 
 

: [2A / div]gi

Time :[5ms / div]

Fig. 23.  Experimental transient response of ICF
with λ = 1, fs = 6fres, with linear predictor. 
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Fig. 26.  Experimental transient response of GCF
with λ = 0.5, fs = 6fres, a delay of 2Ts added. 
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Fig. 29.  Experimental transient response of GCF
with λ = 1, fs = 7fres, a delay of 2Ts added. 
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For λ = 1, 2fres < fs < 6fres is the stable range. When fs = 4fres 
the transient response in Fig. 27 shows a stable operation. 
Compared with that of λ = 0.5, it is obvious that the time delay 
improves the stability and increases the stable range of the 
sampling frequency. The transient response when fs = 6fres is 
shown in Fig. 28. In this case the system is obvious unstable, 
and circuit breaks are opened due to the overcurrent. To 
enhance the stability, a proper time delay should be added. 
Taking fs = 7fres for instance, an additional delay of 2Ts is also 
used. The transient response is given in Fig. 29, which shows 
the improvement on stability due to the time delay addition. 

The above results validate the stable ranges of sampling 
frequency in Table I which are deduced from the study of time 
delay requirements. It is also verified that the stability of the 
GCF system can be enhanced by using the delay addition 
method when a high sampling frequency is used.  

VII. CONCLUSION 

A systematic study of the relationship between the time 
delay and stability of single-loop controlled grid-connected 
inverters with LCL filters has been carried out. The stable 
ranges of time delay for the inverter current feedback loop and 
grid current feedback loop are obtained, in the continuous 
s-domain and also the discrete z-domain. The optimal range of 
the time delay is also discussed. To improve system stability, a 
linear predictor based time delay reduction method is proposed 
for the inverter current feedback, whereas a proper time delay is 
added for the grid current feedback. The available sampling 
frequency ranges are therefore increased. Furthermore, a 
simple PI controller design method has been presented, by 
which adequate stability margins can be guaranteed. 
Simulation and experimental results have validated the study of 
the delay-dependent stability. This study has, for the first time, 
explained why different conclusions on the stability of the 
single-loop control systems were drawn in different previous 
studies. Furthermore, the procedure can be extended to analyze 
the influence of time delay on the stability of LCL-filtered 
grid-connected inverters controlled by other methods including 
active damping. 

APPENDIX 

This is a derivation example of the stable ranges of time 
delay in the discrete z-domain.   

For the GCF, Gg(z) in (17) can be written as 
3 2

3 2
( )

( ) ( 1)
PWM

g
i g res

k z a z b zc d
G z

L L z z z e zeω
+ + +=

+ − + − ,         (A.1) 

with a = mθ – sin mθ, b = (1 – m)θ – sin (1 – m)θ + 2 sin mθ – 
2mθ cos θ, c = mθ – 2(1 – m)θ cos θ – sin mθ + 2 sin(1 – m)θ, d 
= (1 – m)θ – sin (1 – m)θ, e = 2 cos θ + 1, and θ = ωresTs (θ < π). 
With Gc(s) = kp, the denominator of the closed-loop transfer 
function (19) is denoted as  

3 2 1 3 2( )D z z z e z e z z Ka z Kb zKc Kd+ + += − + − + + + +    (A.2) 

where K = 
kpkPWM

(Li+Lg)ωres
.  

Taking ℓ = 1 and 0 ≤ m < 1, i.e., 0 < λ (λ = ℓ – m) ≤1 for 
example, in this case D(z) = z4 + (Ka – e)z3 + (Kb + e)z2 + (Kc – 
1)z + Kd. Using the w-transform z = (w + 1) / (w – 1), D(w) can 
be expressed as 

4 3 2

1
4

1

( ) ( )
( 1)

w
z

w

Aw Bw Cw Dw E
D w D z

w
+=
−

+ + + += =
−

,    (A.3) 

with A = K(a + b + c + d), B = 2(3 + Ka – Kc – 2Kd – e), C = 2(3 
– Kb + 3Kd – e), D = 2(1 – Ka + Kc – 2Kd + e), E = 2 – Ka + Kb 
– Kc + Kd + 2e. Defining e1 = 1 + e = 2(1 + cos θ), e2 = 3 – e = 
2(1 – cos θ), K1 = K(a – c – 2d), K2 = K(–b + 3d), K3 = K(–a + c 
– 2d), and K4 = K(–a + b – c + d), we have: 

 
2 2 1 2 2

1 3 1 4

, 2( ), 2( ),

2( ), 2 .

A K e B e K C e K
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θ= = + = +
= + = +

          (A.4) 

Note that 0 < θ < π, e1 > 0 and e2 > 0 are obtained, hence A > 0, 
B > 0, C > 0, D > 0, and E > 0. 

To ensure system stability, all of the roots of the 
characteristic equation Aw4 + Bw3 + Cw2 + Dw + E = 0 should 
be in the LPH, this can be evaluated using the Routh’s stability 
criterion. The Routh array of Aw4 + Bw3 + Cw2 + Dw + E = 0 is 
given as: 

w4: A C E 

w3: B D  

w2:
BC AD

B

−
 E  

w1:
2B E

D
BC AD

−
−

   

w0: E   
A > 0, B > 0, and E > 0 have been satisfied. To ensure stability 
BC – AD > 0 and BCD – AD2 – B2E > 0 are also required, i.e., 
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         (A.5) 

Note that K1, K2, K3, and K4 all contain a factor of K, the first 
inequality can be fulfilled using an infinitely small K (i.e., by 
setting an infinitely small kp). The second inequality can be 
simplified to (A.6) below when an infinitely small K is used so 
that the second-order and third-order terms for K can be 
eliminated. 

2
3 4 2 2 1 1 1(2 ) 2( )K K e K K e K eθ− + − >                (A.6) 

Eliminating K in (A.6) gives 
2( 3 5 )(3 ) 2( 5 )(1 ) (1 )a b c d e a b c d e eθ− − + − − + − − + + + > + , 

(A.7) 
which can be converted to  
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T T
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               (A.8) 

Finally, because ωresTs < π and in this GCF example 0 < λ ≤1, 
the following stable range of time delay is obtained 

π 1 1 π
( ) ( ) , (0 1)

2 2 2s
res res

Tλ λ λ
ω ω
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