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Targeting B-cell receptor signalling in leukaemia and lymphoma- 
how and why? 

 

1. Introduction  
 
B-lymphocytes are dependent on B-cell receptor (BCR) signalling for the constant 
maintenance of their physiological function, and in many B-cell malignancies this signalling 
pathway is prone to aberrant activation.  This understanding has led to an ever increasing 
interest in the signalling networks activated following ligation of the BCR in both normal and 
malignant cells, and has been critical in establishing an array of small molecule inhibitors 
targeting BCR-induced signalling. By dissecting how different malignancies signal through 
BCR, researchers are contributing to the design of more customised therapeutics which 
have greater efficacy and lower toxicity than previous therapies.  This allows clinicians 
access to an array of approaches to best treat patients whose malignancies have BCR 
signalling as a driver of pathogenesis. This review brings together old and new basic 
research on the pathways activated downstream of the BCR, and reports on how these 
pathways contribute to both B-cell homeostasis and neoplasia. We also report on how our 
understanding of BCR signalling has revealed drug targets both proximal and distal to the 
BCR that have been successfully exploited therapeutically, especially with respect to 
particular malignancies. 

 
2. BCR signalling in normal B-cells  

 
The importance of BCR signalling 
B-cell development and maturation is dependent on a diverse range of cellular responses 
relayed by antigen-independent (tonic) and antigen-dependent activation of the BCR1-4.  
This begins at the very earliest stages of B cell development where tonic signals through the 
pre-BCR combined with IL-7R activation function together to drive the proliferation and 
survival of pre-B cells in the bone marrow 5.  Expression of functional BCR helps distinguish 
immature B-cells from pre-B cells during subsequent differentiation, and strong engagement 
of BCR at this stage enables negative selection (auto deletion) of self-reactive B-cell clones 6-

8.  Immature (naïve) B-cells that survive this selection then egress from the bone marrow, 
and are able to receive environmental cues in the peripheral lymphoid tissues to 
differentiate into their various mature B-cell subsets9.  During this period, and in the 
absence of antigen encounter, it is thought that tonic BCR signals maintain the survival of B-
cells as they recirculate in the blood and follicular regions of the lymphoid tissues2,10 
because experiments have shown that failure to express BCR on peripheral immature and 
mature B cells results in their death10. Differentiation of naïve B cells does not occur without 
engagement of the BCR by antigen and concomitant stimulation of cytokine and co-
stimulatory receptors within lymphoid tissues. Here, it is the strength of BCR signalling that 
determines B cell fate, deciding whether B cells differentiate to follicular B cells, marginal 
zone B cells or are deleted through neglect11,12.  
 
Proximal BCR signalling 
The BCR is comprised of a membrane anchored ligand binding unit formed by 
immunoglobulin (Ig), and a signalling unit consisting of a heterodimer of Igα (CD79a) and Igβ 



(CD79b) 13-15.  Antigen binds to hypervariable regions present on the Ig component of the 
BCR causing receptor clustering and juxtapositioning into areas rich in signalling 
components16,17. Figure 1 illustrates the signalling networks activated following BCR 
stimulation.  Upon antigen binding, two conserved tyrosine residues within the immuno-
receptor tyrosine-based activation motifs (ITAMS) of CD79 become phosphorylated by Src-
family kinases (SFK) such as Lyn (Figure 1A)18,19.  Phosphorylated ITAMS act as docking sites 
for SH2 domains present in Syk, leading to its phosphorylation and subsequent activation 
(Figure 1B)20,21.  SFK can also phosphorylate tyrosine residues outside the ITAM motifs of 
CD79 as well as tyrosine residues within the co-receptor protein CD19 (Figure 1A). Adaptor 
proteins such as BLNK, LAB and Nck are recruited to these extra-ITAM phosphotyrosine 
motifs in CD79 (Figure 1B)22-24.  Active Nck recruits B-cell adapter for PI3K (BCAP) which 
becomes phosphorylated by Syk and attracts PI3Kδ via its p85α regulatory domain (Figure 
1C)25,26. Additionally, the SFK-phosphorylated tyrosines within CD19 are additional binding 

sites for p85α and activation of PI3K (Figure 1C)27-29.  However, it is suggested that PI3K can 
be activated independently of BCR engagement because the introduction of exogenous PI3K 
has been shown to rescue BCR negative cells from apoptosis30,31.  A proposed mechanism 
for this rescue is the recruitment of PI3K to unphosphorylated motifs present on CD79a by 
the GTPase TC2132.  Whatever the mechanism of activation, PI3Kδ converts PIP2 to PIP3 on 
the plasma membrane, and, in doing so, generates a binding site for the pleckstrin 
homology (PH) domain of a collection of proteins normally residing in the cytosol of resting 
B-cells.  Btk is one such protein, that additionally binds BLNK and becomes phosphorylated 
by Syk33, exposing an autophosphorylation site within Btk that culminates in its full 
activation (Figure 1C/D)34.  PLCγ2 is also recruited to the plasma membrane via its PH 
domain and BLNK (Figure 1C/D), and is sequentially activated through phosphorylation by 
Btk and Syk35.  Similarly, the Rac GTP-exchange factor Vav is also attracted to the BCR 
signalosome where it can be phosphorylated and activated by Syk (Figure 1C/E)36-38.  Finally, 
PIP3 also attracts the kinases PDK1 and Akt to the plasma membrane (Figure 1C). Once 
recruited, PDK1 phosphorylates Akt on T308 to increase the kinase activity of the latter. 
Stabilization of Akt kinase activity then occurs when it is phosphorylated on S473 by 
mTORC2 through a mechanism involving Akt-mediated phosphorylation of SIN139.  
 
Distal BCR signalling 
The proximal BCR signalling response quickly transcends to activate numerous signalling 
pathways summarised in Figure 1D.  Active PLCγ2 is able to hydrolyse PIP2 to generate two 
second messengers, IP3 and DAG.  IP3 induces the release of Ca2+ from intracellular stores in 
the endoplasmic reticulum (ER) and, together with DAG, this leads to the activation of 
PKCβ40.  PKCβ is then able to mediate the stimulation of multiple downstream signalling 
pathways.  For example, PKCβ together with DAG and Sos can generate active Ras (GTP-
Ras), leading to activation of the cRaf-MEK-ERK pathway41-43.  PKCβ can also phosphorylate 
CARMA1 (CARD11)44 to initiate the recruitment of MALT1 and Bcl-10, which forms the CBM 
complex45,46.  This complex activates TAK1, a kinase that can catalyse the activation of both 
NFκB and JNK47. TAK1 activates NFκB by initially phosphorylating IKKβ47, which in turn 
phosphorylates IκBα, flagging it for ubiquitination and degradation by the proteasome48. 
This alleviates its inhibition of NFκB and allows it to translocate to the nucleus.  Calmodulin 
(CaM) detects increased Ca2+ mobilisation from intracellular stores and activates the S/T 
phosphatase calcineurin (CN). CN dephosphorylates regulatory regions within NFAT causing 



a conformational change that exposes its nuclear localisation sequence and results in its 
activation49.  
 
The BCR signal can also be relayed to downstream signalling pathways independently of 
calcium release from the ER.  As mentioned previously, generation of PIP3 by activation of 
PI3Kδ causes the recruitment of Vav and generation of active GTP-loaded Rac1 and Rac2 
(Figure 1E). These small G-proteins can facilitate F-actin reorganisation as well as activation 
of p38MAPK and JNK 24,50,51.  Active Akt plays an important role in stimulating the mTORC1 
pathway and in deactivating GSK3 and FoxO to facilitate increased cell growth and survival 
(Figure 1E)52-54.  Collectively, these pathways are responsible for the control of a whole host 
of cellular functions such as; survival, proliferation, oxidative stress response, differentiation 
and DNA damage repair. 
 
Negative regulation of BCR signalling 
BCR signalling is highly regulated by a complex network of phosphatases, regulatory 
receptors and negative feedback signals in order to prevent its inappropriate activation.  A 
primary example of this is how the SFK Lyn mediates the BCR signalling response.  The 
protein tyrosine phosphatases (PTP) CD45 and CD148 dephosphorylate Y508 on the C-
terminus of Lyn causing a conformational change that allows for its autophosphorylation 
and activation55,56.  Then, depending on the context of the BCR signal, active Lyn can 
moderate the BCR signal by phosphorylating immuno-receptor tyrosine-based inhibitory 
motifs (ITIM) present on the regulatory receptors CD5, CD22, CD32 and CD7257-62.  
Phosphorylated ITIMs recruit phosphatases such as SHP-1, SHIP-1, SHIP-2, PTP-PEST, PTPN2, 
PTPROt, PTEN and PTPN22 which act on proximal targets to downregulate the BCR signalling 
response.  Lyn controls its own inactivation by recruiting the phosphatase PTPN22, which 
forms a complex with the C-terminal Src kinase (Csk)63.  Active Lyn binds and phosphorylates 
the Csk binding protein (Cbp) on Y314 and this serves to recruit Csk.  PTPN22 then 
dephosphorylates the activating tyrosine residue on Lyn and allows Csk access to 
phosphorylate Lyn on Y508, resulting in the restoration of its closed inactive 
conformation64,65.  Additionally, PTPN22 can regulate the stability of SFK and SYK by 
activating the E3-ubiquitin ligase c-Cbl, which ubiquitinylates these proteins and marks them 
for degradation66-68.  Interestingly, SFK and Syk can recruit SOCS-1 which seems to augment 
their polyubiquitination and degradation by the proteasome65,69.  However, the role of c-Cbl 
appears more complex than mere regulation of protein stability because it is reported to 
downregulate the BCR signal by binding to BLNK and preventing its association with PLCγ270.   
 
Other inhibitory receptors worth mentioning are those regulated by CD22 and CD32. Upon 
phosphorylation of their ITIMs by Lyn, PTEN and SHIP-1/2 respectively remove the 3’ and 5’ 
phosphate of PIP3 and attenuate signalling downstream of PI3K71-73.  This regulatory 
pathway is activated by prolonged exposure to autoantigens and forms the basis of auto-
reactive B-cell elimination74. Lastly, the phosphatase SHP-1 has been reported to 
downregulate the BCR signal by dephosphorylating targets such as SFK, ITAMs, ZAP70, SYK, 
BLNK and LAB75.   
 
Further regulation of the BCR signal is provided by negative feedback mechanisms that are 
independent of phosphatase activity.  Following its activation, Btk can become 

phosphorylated on S180 by PKCβ activated by Btk-catalyzed stimulation of PLC2. This 



disrupts the interaction of the PH domain of Btk with PIP3 and removes Btk from the plasma 
membrane76.  Furthermore, a recent report has demonstrated that Akt can also 
phosphorylate Btk on S51 and T495 which leads to its sequestration and degradation77.  
Another more distal example of negative feedback inhibition of BCR signalling is found in 
the regulation of NFκB by the CBM complex.  It is reported that TAK1 can induce both 
kinase-independent  and –dependent degradation of Bcl-10 by respectively coordinating the 
binding of E3 ubiquitin ligases and activating JNK78.  
 
This meticulous regulation of the BCR allows it to constantly maintain its initiation, 
amplification, and termination under normal conditions.  However, alteration in these 
pathways has the potential to transform B cells into an array of malignant diseases.   
 
 

3. BCR signalling in malignant B-cells  
 
BCR signalling drives B-cell malignancies  
It is widely accepted that signals emanating from the BCR play an important role in the 
initiation and progression of many B-cell malignancies.  For example, gene expression 
profiling of chronic lymphocytic leukaemia cells (CLL) isolated from lymphatic tissues found 
that the BCR pathway was active in these cells to a greater degree than what is found in 
circulating CLL cells79.  Furthermore, CLL cells use a restricted repertoire of IGHV genes, with 
many patients expressing virtually identical BCRs, known as sterotyped BCRs80-83.  Similarly, 
mantle cell lymphoma (MCL) cells also express sterotyped BCR84,85, and display constitutive 
activation of BCR signalling components such as the PI3K pathway86,87.  Other examples 
include diffuse large B-cell lymphoma (DLBCL)88, follicular lymphoma (FL)89, hairy cell 
leukaemia (HCL)90,91, Burkitts lymphoma (BL)92, Waldenström’s macroglobulinemia (WM)93, 
marginal zone lymphoma (MZL)94 and acute lymphoblastic leukaemia (ALL)95 cells which 
have all been shown to display some sort of defect in BCR signalling.  However, the 
malignant cells in each of these diseases display distinct alterations in the BCR signalling 
pathway, reflecting defects originating from tonic/autonomous and/or chronic engagement 
of the BCR.  What appears constant in many B-cell lymphomas is that IgM is the typical 
isotype of their BCR, probably due to the bias of this particular configuration of BCR towards 
stimulating survival and proliferation of B cells96.  Below we will summarise some of the 
major aberrantly activated BCR signalling pathways found in different leukaemia and 
lymphomas, and highlight their importance in the initiation, survival and expansion of these 
malignant cells.         
 
Chronic lymphocytic leukaemia (CLL) 
CLL is a debilitating disease characterised by the gradual accumulation of mature B-cells that 
are resistant to apoptosis.  The disease provides an excellent example of the prominent role 
BCR signalling plays in the pathogenesis of B-cell malignancies (Figure 1A).  This role was 
determined from early studies of BCR structure in CLL cells which showed the genes coding 
for variable (antigen binding) regions of BCR heavy chain maintained germline sequences in 
approximately half of patients diagnosed with this disease. These patients with so-called 
unmutated CLL (UM-CLL) have disease which has less favourable prognosis than patients 
where these genes have been somatically hypermutated, so called mutated CLL (M-CLL)97.  
Other studies showed that BCRs on CLL cells from different patients could be virtually 



identical with respect to IgVH genes and sequences, suggesting a common antigen or 
feature of the BCR that is involved in the pathology of this disease82.  Common antigens 
targeted by BCR on CLL cells are reported to include epitopes associated with apoptosis and 
oxidation98, yeast/fungi cell wall components99, myosin100 and vimentin101, and BCR on CLL 
cells from UM-CLL patients are both polyreactive and responsive to BCR stimulation. In 
keeping with their ability to strongly respond to BCR engagement, UM-CLL cells generally 
have high expression and/or activation levels of many of the components of the BCR 
signalling pathway such as Syk102, Lyn, Btk, PLCγ2, PI3Kδ, GAB1, PTPN22103, PKCβ and NFκB. 
Furthermore, UM-CLL cells also generally express ZAP70104-106 and conflicting reports argue 
on one hand that this kinase mediates the phosphorylation of ITAM motifs and subsequent 
recruitment of Syk107, while others have shown that kinase dead ZAP70 can still enhance the 
BCR signalling response by acting as a scaffold protein108,109.  Work from this Department 
has demonstrated that another kinase called Lck displays heterogeneous expression in CLL 
cells and is able to augment the BCR signalling response110.  An important feature of BCR 
signalling in CLL cells that distinguishes it from other B cell malignancies is that it fails to 
activate the JNK pathway111, however, why this is the case requires further investigation. 
Direct engagement of the BCR is not the only way in which this receptor contributes to 
disease pathogenesis in CLL. Some BCR heavy chain structures are said to be represented 
stereotypically on CLL cells, and one study has demonstrated that particular regions, namely 
the FR2 and HCDR3, can interact to allow autonomous BCR signalling, particularly in CLL cells 
from UM-CLL patients, irrespective of antigen stimulation112.  

In contrast to UM-CLL, CLL cells from patients with M-CLL express low surface IgM and show 
higher basal levels of Ca2+ and ERK activation consistent with constitutive low level 
stimulation of BCR113 resulting in induction of cell anergy114,115.  Targeting either the ERK or 
the NF-AT pathway with specific inhibitors is reported to reduce the survival of anergic CLL 
cells, suggesting that BCR anergy contributes to clonal maintenance in M-CLL anergy114.   

Taken together, these findings in both UM- and M-CLL demonstrate that BCR signalling 
contributes to proliferation and survival of the malignant clone in CLL.  However, the way in 
which BCR signalling is stimulated, be it through active engagement or through 
tonic/chronic/autonomous signalling may have impact on disease progression. CLL cells 
circulate between the peripheral blood (PB) and proliferation centres. Expansion of the 
malignant clone depends upon its ability to remain within proliferation centres such as the  
lymph node where there is a microenvironment rich in proliferation and survival signals113.  
BCR engagement on CLL cells induces increased adhesion116,117 and supressed expression of 
the receptor for sphingosine 1-phosphate118, both which lead to increased lymph node 
residency. This role of BCR in keeping CLL cells within lymph nodes has recently been 

exploited therapeutically where drugs targeting Btk (ibrutinib) and PI3K (idelalisib) induce 
lymphocytosis whilst reducing both lymphadenopathy and splenomegaly119,120. 
 
Diffuse large B-cell lymphoma (DLBCL) 
BCR signalling in a subset of DLBCL known as activated B-cell like (ABC)-DLBCL shows traits 
of active BCR signalling, and gene expression analysis revealed that a large amount of these 
cells display increased levels of BCR signalling components121.  Furthermore, studies using 
internal reflection fluorescence (TIRF) microscopy found that the BCRs on ABC-DLBCL cells 
form clusters on the cell surface with proteins containing phosphotyrosine localising 
underneath88,122.  Other studies investigating the mechanism of cell survival discovered that 



these cells depend on anti-apoptotic signals provided by the NF-κB pathway123, found to be 
constitutively active in some cases of ABC-DLBCL owing to mutations in CARMA1124 (Figure 
1D) and loss-of-function mutations in negative regulators of NF-κB125.  However, malignant 
cells in the majority of ABC-DLBC contain wild type CARMA1 but still require this protein to 
maintain viability126.  In these cases knockdown of BCR signalling units CD79a/b or any of its 
proximal signalling components (BLNK, Syk, Btk, PLCγ2, PI3K or PKCβ) induces apoptosis88.  
In particular, the malignant clones from approximately 20% of ABC-DLBCL cases bear 
mutations within the ITAM motifs of CD79a/b (Figure 1A) leading to reduced receptor 
endocytosis and increased surface expression of the BCR88.  These cells have an enhanced 
BCR signalling response and are able to induce a greater and more prolonged activation of 
Akt. In particular, CD79b mutants are more resistant to moderation of the BCR signal by Lyn 
and consequently this may generate an oncogenic addiction to BCR-induced NF-κB 
activation88,127.  Another protein that is frequently mutated in ABC-DLBCL is the adapter 
protein MYD88128 which is responsible for coupling toll-like receptors (TLR) to the NF-κB 
pathway.  An L265P mutation in MYD88 was shown to augment autocrine secretion of the 
cytokines IL-6 and IL-10 resulting in increased ABC-DLBCL survival128.  The relevance of such 
mutations to BCR-induced survival signals was highlighted when one group knocked down 
MYD88 in concert with CD79a/b, and found that this synergised to induce ABC-DLBCL cell 
killing128,129.  Interestingly, this same mutation occurs in approximately 3% of CLL patients130, 
and MYD88 has recently been shown to work in concert with the BCR of ZAP70 positive CLL 
cells to stimulate cell survival and proliferation131.   

 
Burkitt’s lymphoma (BL) 
BL is an aggressive malignancy derived from germinal centre B-cells.  A distinctive 
characteristic of this disease is a chromosomal translocation whereby the proto-oncogene 
MYC is linked to the heavy chain of BCR132.  However, this alone is insufficient to cause BL, 
and studies in mice suggest that MYC works with active PI3K to generate the Burkett’s 
lymphoma phenotype133.  In contrast to the chronically active BCR signal displayed in ABC-
DLBCL, BL cells are resistant to BTK and CARMA1 knock down, but remain sensitive to a 
reduction in CD79a and Syk expression127,132.  BCR ligation on BL cells induces activation of 
the PI3K pathway, and inhibition of this activation either by directly targeting PI3K or by 
targeting its downstream target mTORC1 kills these cells132.  Tonic BCR signals are also 
present, and are the result of mutations within the transcription factor TCF3 (or E2A) or its 
negative regulator ID3132.  TCF3 normally regulates the expression of the BCR and represses 
the levels of the phosphatase SHiP1. Thus, mutant forms found in BL lead to increased BCR 
expression and activation of the PI3K pathway.         
 
Follicular lymphoma (FL) 
FL cells are malignant germinal centre B-cells admixed with non-malignant cells such as T-
cells, follicular dentritic cells (FDC), macrophages, fibroblasts and endothelial cells134,135.  A 
hallmark of this disease is a t(14:18)(q32:q21) translocation resulting in an overexpression of 
Bcl-2 and resistance to apoptosis136.  However, these cells also display high basal levels of 
active Syk, and resistance to apoptosis is at least partially mediated by PI3K activation137,138.  
It is clear that BCR plays a role in FL disease pathology139,140,  autoreactivity is reported to be 
a feature of some FL clones141 and a more recent report has suggested BCR signals can be 
initiated within malignant cells by interaction of mannosyl residues on surface-expressed 



BCR with  lectins expressed on stromal cells in the tumour microenvironment (Figure 
1A)142,143.  Such antigen-independent signalling then drives expansion of the malignant 
clone. However, this is not the whole story because there also exist subclones that are 
unresponsive to BCR crosslinking due to elevated phosphatase activity142. Further 
investigation is required to understand the signalling mechanisms present in these latter 
clones, and how they contribute to disease.  
                  
Mantle cell lymphoma (MCL) 
The malignant clone in MCL, like that in CLL, expresses a restricted repertoire of BCR genes, 
and it is thought that BCR signalling plays an important role in the survival of MCL cells and 
progression of disease (Figure 1A)144.  A recent report found that BTK was constitutively 
activated in these cells and BCR crosslinking resulted in sustained activation of Syk.  These 
kinases facilitated BCR-induced survival by mediating the secretion of autocrine factors and 
inducing adhesion to human bone marrow stromal cells (HMSCs) 145.  Like in CLL, drugs 
targeting the BCR pathway such as ibrutinib and idelalisib have shown remarkable efficacy 
also in the treatment of MCL146.        

 
4. Targeting BCR signalling pathways 

 
Proximal BCR signalling pathways 
 
Lyn inhibitors 
Lyn is found overexpressed and constitutively active in many B cell malignancies where it 
contributes to high basal levels of tyrosine phosphorylated proteins. In CLL, this SFK is 
thought to contribute to malignant cell survival because experiments using PP2 and SU6656 
[compounds which inhibit Lyn (Figure 1A)] induce apoptosis of CLL cells147. The prosurvival 
role of Lyn may be mediated by reported ability to deactivate procaspase-8 through 
phosphorylation-induced dimerization148, or by downregulating the tumour suppressor 
activity of PP2A149.  Another study has suggested that Lyn plays an important role in CLL 
progression and lymphoid organ infiltration by malignant cells because of its ability to 
phosphorylate HS1 (hematopoietic cell-specific Lyn substrate-1) and regulate cytoskeletal 
functionality150.  However, any conclusions drawn from these studies should be approached 
with caution because the drugs used to inhibit Lyn (PP2, SU6656 and dasatinib) also affect a 
broad range of SFKs when used at the concentrations reported147,151. Attempts to address 
the potential role of Lyn in CLL cells have used geldanamycin to disrupt Lyn’s association 
with HSP90. Although such treatment results in downregulation of Lyn expression and the 
induction of CLL cell apoptosis, mechanisms independent of Lyn may be inducing apoptosis 
because HSP90 regulates the stability of other proteins that may be important to the 
survival of CLL cells152. Nevertheless, a new study by Kim et al demonstrated that Lyn could 
be a promising target for treatment of bortezomib-resistant mantle cell lymphoma (BTZ-
resistant MCL). In this study, treatment of these resistant cells with dasatinib caused 
inhibition of proliferation likely by preventing CD19 binding with Lyn and the p85 regulatory 
subunit of PI3K153. Similar observations were made when Lyn was depleted with siRNA, and 
therapeutic potential is strongly suggested by xenograft studies showing that tumour size in 
the mice injected with BTZ-resistant MCL cells can be significantly reduced by dasatinib 
treatment153. In humans there is at least one case report showing that a CLL patient with co-
existing chronic myeloid leukaemia could be successfully treated with dasatinib154, 



suggesting that general targeting of SFKs may be an effective approach. In this light, specific 
inhibition of Lyn may be a controversial target in the therapy of B cell malignancies155,156 
because of its role as a positive and negative regulator of BCR signalling 157,158 through its 
ability to phosphorylate both ITAMs and ITIMs 155. Specific inhibition of Lyn may block 
negative feedback of BCR signalling and allow strong signals, perhaps mediated by other 
SFKs, to take precedence.  
 
Lck inhibitors 
An example of a SFK mediating BCR signalling in B cell malignancies is Lck. This SFK is 
classically expressed in T cells where it plays an important role in proximal antigen receptor 
(TCR) signalling. However, this kinase is also present in B1 B-lymphocytes and to participate 
in BCR signalling159. In CLL cells our work has shown that Lck is an important mediator of BCR 
signalling (Figure 1A), treatment of CLL cells with either a specific Lck inhibitor or Lck-specific 
siRNA resulted in inhibition of BCR-induced phosphorylation of IKK, ERK and Akt,  and a 
reduction in BCR-mediated survival110. This same study also noted that constitutive 
activation of Lyn was not affected by the inhibitor compound used, indicating that Lck could 
be a potential target for treatment of CLL because of its proximal role in initiating BCR 
signalling. Work in this lab as well as in others  has shown that CLL cells display 
heterogeneous Lck expression 160,161, and it is suggested that Lck induces CLL resistance to 
glucocorticoid-induced apoptosis 162.  Although the level of Lck expression dictates the 
strength of BCR signalling, it is yet unclear how this relates to disease outcome. 

 
Syk inhibitors: 
Syk plays an important role in both autoimmune diseases and haematological malignancies 
163. Initial small molecule inhibitors targeting Syk were designed for the treatment of 
inflammatory diseases 164; however, pre-clinical studies suggested that Syk could also be a 
promising target for treatment of B cell malignancies 102,165-167. For example, Syk has been 
shown to be activated in 44% of DLBCL patient samples and responsible for regulating 
pathological BCR signalling 168, making Syk a valid potential target for the treatment of 
DLBCL. Syk was also shown to be constitutively active in peripheral B cells from a large 
number of CLL patients, and inhibition of this kinase in resulted in the induction of apoptosis 
through a mechanism involving downregulation of Mcl-1 protein levels102. 
 
Fostamatinib is an orally available pro-drug of the active drug R406, and is a relatively 
selective Syk inhibitor 169. Treatment of CLL cells with fostamatinib resulted in a reduction in 
cell migration, adhesion and a moderate induction of apoptosis, achieved by an inhibition of 
both BCR and integrin signalling. 102,165,170. In-vivo studies in CLL and non-Hodgkin lymphoma 
mouse models supported the therapeutic potential of Syk inhibition in B cell malignancies 
167,171. In the clinic, 55% of CLL patients treated with fostamatinib achieved partial response 
compared to 22% of DLBCL, 11% of MCL and 10% in FL patients 172. 
 
Cerdulatinib is a dual Syk/JAK kinase inhibitor that showed activity in both ABC- and GCB- 
types of DLBCL. This compound induced apoptosis in DLBCL as well as G1/S cell cycle arrest 
173. There are more selective Syk inhibitors currently under devolvement, namely 
entospletinib, PRT318 and P505-15. These compounds have shown encouraging results in 
pre-clinical studies in CLL 174and in DLBCL 168. 
 



BTK inhibitors 
BTK is a non-receptor protein tyrosine kinase that belongs to TEC family kinases and plays a 
crucial role in BCR signalling 175. Loss of function mutations within BTK result in X-linked 
agammaglobulinemia, a disorder characterised by the absence of mature B lymphocytes and 
immunodeficiency through lack of antibodies176. BTK is an important mediator of BCR-

induced calcium flux, NF-B activation and B-cell proliferation, making it a central player in B 
cell physiology175. With respect to B cell malignancies, BTK knockdown studies in ABC-DLBCL 
cell lines have demonstrated this kinase is essential for tumour growth and cell survival88. 
Signalling through BTK is also essential for the survival and proliferation of the malignant B 
cells in Waldenström Macroglobulinemia (WM), a lymphoplasmacytic lymphoma, where 
mutation of MYD88 leads to induction of these signals177. Furthermore, BTK plays a key role 
in the malignant behaviour of CLL and MCL cells where chronic antigen-stimulation of the 
BCR facilitates disease progression144,178,179. Taken collectively, these studies have been used 
to justify targeting BTK as a valid therapeutic option to treat B-cell malignancies180. 
 
Ibrutinib, a first-in-class inhibitor of BTK, is an orally available small molecule that covalently 
binds to Cys-481 and irreversibly blocks the kinase activity of BTK (Figure 1D). The effect of 
this blockade is observable also in CLL cells isolated from patients being administered this 
compound, these cells exhibit reduced levels of PLCγ and ERK phosphorylation, of 

expression of genes induced by BCR and NF-B pathways181. Studies of in-vitro models that 
resemble the tumour microenvironment and of in-vivo xenografts have shown that ibrutinib 
inhibits cell proliferation, survival and migration of CLL cells182,183. Ibrutinib has pleiotropic 
inhibitory effects allowing it to attenuate signalling induced by the BCR, CD40, BAFF, TLR 
and chemokine receptors. This indicates that the therapeutic effect of ibrutinib is likely due 
to regulation of microenvironmental influences rather than to direct induction of apoptosis. 
Ibrutinib is also shown to inhibit secretion of the chemokines CCL3 and CCL4 from CLL cells, 
and reduced serum levels of these chemokines is observed in CLL patients treated with this 
agent116,182,183. An interesting feature of most CLL and MCL patients treated with ibrutinib is 
that they show transient lymphocytosis due to egress of malignant cells from the protective 
microenvironment in the lymph nodes119,184-186, and this is likely due to inhibition of 

chemokine- and BCR-induced integrin 41-mediated adhesion116,117,187,188. 

Clinical trials in relapse or refractory CLL patients have demonstrated high frequency of 
durable remission even in patients with high risk CLL (e.g. mutated TP53, del17p and del11q) 
189. Ibrutinib has been approved by the United States Food and Drug Administration (FDA) 
for the treatment of relapsed or refractory MCL and CLL184 and for WM190. However, 
resistance to ibrutinib in MCL and CLL has been described. One of the mechanisms of 
ibrutinib resistance is cysteine-to-serine mutation at C481 in the binding site of BTK191,192 as 

well as gain-of-function mutations within PLC2193. Many other reversible and irreversible 
BTK inhibitors are still under development to overcome such resistance to improve 
selectivity and tolerability180. Moreover, combination studies are ongoing in order to 
achieve better and more durable responses to ibrutinib190.       
 
PI3K inhibitors 
PI3K plays an important role in mediating signalling through the BCR, adhesion molecules 
and chemokine receptors and is therefore key to B cell survival, migration and 
proliferation194. There are four catalytic isoforms of PI3K: p110α, p110β, p110γ and p110δ. 



With respect to B cells, the δ isoform is particularly important because PI3Kδ deletion or 
mutation in mice results in lack of B1 lymphocytes, lower numbers of mature B cells and 

impaired antibody production195. Importantly, PI3K expression is limited to lymphocytes 
and particular subsets of myeloid lineage cells such as mast cells and neutrophils, and this 
makes compounds that specifically target this isoform particularly attractive because the 
profile of toxicities will be less than what could be expected from pan PI3K inhibitors or 

inhibitors which target the more ubiquitously epressed  and  isoforms of this protein. In 
CLL, PI3Kδ has been shown to be constitutively active in the malignant cells196, and its 
inhibition reduces malignant cell viability making targeting of this PI3K isoform using small 
molecular inhibitors a potential treatment approach197. Idelalisib (formerly GS-1101 or CAL-
101) is a highly selective inhibitor of PI3Kδ197 which has an efficacy that has allowed fast-
track approval for the treatment of relapsed and refractory CLL in the U.S.A. (Figure 1C).198 
Idelalisib is reported to inhibit the prosurvival effect of BCR stimulation in CLL cells199, and its 
cytotoxic effect is dose- and time-dependent being mediated by induction of the caspase 
pathway regardless of p53 or IgHV mutation status. Idelalisib treatment also leads to 
blocking several microenvironmental signals such as CD40L, TNFα, BAFF, ET1, fibronectin 
adhesion and nurse-like and stromal cell contact199-201, likely by also affecting cells such as 
NK and T cells which produce cytokines known to promote CLL cells survival and 
proliferation such as TNF-α, CD40L, IL-6 and interferon-γ200,202,203. Clinically, CLL patients 
treated with Idelalisib exhibit lymphocytosis due to redistribution of CLL cells from lymphoid 
tissues to peripheral blood204,205. This redistribution may be caused by reduction in PI3K-
mediated cell adhesion and migration120,199, or by re-expression of the receptor for 
sphingosine-1 phosphate and induction of lymphocyte egress from lymph 
nodes/proliferation centres as has been recently suggested118. In terms of adverse drug 
reactions idelalisib has been linked to a characteristic set including, most notably, 
diarrhoea/colitis, increased liver transaminases, skin rash and pneumonitis. Very little is 
currently known about the biological basis of these adverse drug reactions because they 
affect only a subset of patients. Thus, more research is needed so that patients at risk of 
developing these adverse drug reactions can be identified, and methodologies to prevent 
them introduced.  

 
Future perspectives 
BCR pathway inhibitors have had remarkable success in the treatment of B-cell 
malignancies, particularly for patients displaying resistance to conventional 
chemotherapeutic agents. What is more, these small molecule inhibitors offer a less toxic 
alternative to conventional chemotherapy and only minor side effects are reported with 
their use. However, long term treatment with these molecules may prove more toxic than 
previously thought. For example, United States prescribing information for idelalisib 
contains a black box risk for serious/fatal diarrhoea198,206. Moreover, drug resistance of the 
type observed with the usage of ibrutinib is also a problem191-193. To combat the problems 

associated with toxicity, new generation drugs against PI3K, such as duvalisib, and BTK, 
such as acalabrutinib, are either in development or have been introduced into the 
clinic207,208. Furthermore, new targets can be developed within this pathway, and our work 
has suggested Lck as one target for the treatment of CLL110. E3 ubiquitin ligases are also 
potential targets, recent research has begun to reveal roles for these proteins in B 
lymphomagenesis209-211. Clearly, investigation into BCR signalling and compounds which 



inhibit this pathway requires ongoing investigation, and it is likely that any inhibitors used 
will be employed within combinatorial therapeutic approaches in order to increase their 
efficacy.  
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Figure Legend 
 
Figure 1 Signalling pathway of the B cell receptor, its role in B cell malignancies and 
targets of inhibition. Schematic of the BCR signalling pathway.  A.) Antigen engagement 
initiates receptor clustering and facilitates Lyn-medated phosphorylation of tyrosines 
within CD79 and CD19. In CLL, the SFK Lck mediates phosphorylation of CD79. B.) Syk 
binds to phospho-tyrosine residues within the ITAM of CD79 and is activated. Adaptor 
proteins such as BLNK, Lab, NCK, BCAP and Grb2 associate with phospho-tyrosines 
outside the ITAM on CD79. Proteins such as BLNK and BCAP are substrates of Syk. C.) 

Phospho-tyrosine residues within BCAP and CD19 attract the regulatory subunit of PI3K 
leading to the activation of catalytic p110. PI(4,5)P2 is converted to PI(3,4,5)P3 which 

attracts PH domain containing proteins such as BTK, PLC2, Akt and Vav to the plasma 
membrane. D.) Phospho-tyrosine residues within BLNK act as a scaffold for membrane-

associated BTK and PLC2, facilitating activation of the former to phosphorated and 

activate the latter. This catalyzes distal signal pathway activation leading to NFB, JNK 
and ERK activation. E.) Further distal signals include activation of Vav leading to 
cytoskeletal rearrangement, and of Akt leading to activation of mTORC1 and inhibition 
of FoxO. 
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