
ESCAPING ENDPOINTS EXPLODE

NADA ALHABIB AND LASSE REMPE-GILLEN

Abstract. In 1988, Mayer proved the remarkable fact that ∞ is an explosion point
for the set E(fa) of endpoints of the Julia set of fa : C→ C; ez + a with a < −1. That
is, the set E(fa) is totally separated (in particular, it does not have any nontrivial
connected subsets), but E(fa)∪{∞} is connected. Answering a question of Schleicher,

we extend this result to the set Ẽ(fa) of escaping endpoints in the sense of Schleicher
and Zimmer, for any parameter a ∈ C for which the singular value a belongs to an
attracting or parabolic basin, has a finite orbit, or escapes to infinity under iteration
(as well as many other classes of parameters).

Furthermore, we extend one direction of the theorem to much greater generality, by
proving that the set Ẽ(f)∪ {∞} is connected for any transcendental entire function f
of finite order with bounded singular set. We also discuss corresponding results for all
endpoints in the case of exponential maps; in order to do so, we establish a version of
Thurston’s no wandering triangles theorem for exponential maps.

1. Introduction

A point x0 is called an explosion point of a metric space X if X is connected but
X \ {x0} is totally separated. The latter means that, for any a, b ∈ X \ {x0}, there are
open sets Ua, Ub ⊂ X such that a ∈ Ua, b ∈ Ub, Ua ∪ Ub = X and Ua ∩ Ub = {x0}. If X
is connected but X \ {x0} is totally disconnected, then x0 is called a dispersion point of
X.

In this article, we will typically consider the case of X = A∪{∞}, where A ⊂ C, and
∞ is an explosion/dispersion point of X. In a slight abuse of terminology, we shall then
also say that ∞ is an explosion/dispersion point for A.

Clearly every explosion point is also a dispersion point, but the converse is not true.
Indeed, in 1921, Knaster and Kuratowski first gave an example of a space having a dis-
persion point, now known as the Knaster-Kuratowski fan [KK21, Exemple α, §5]. This
fan does not have an explosion point; note that in particular this gives an example of a
space that is totally disconnected but not totally separated. Wilder [Wil27] constructed
the first example of a space having an explosion point shortly afterwards, in 1923. An-
other famous example of a space having an explosion point, which is of key importance
for this paper, is the set of endpoints of the Lelek fan (see Section 2), constructed by
Lelek [Lel61, §9] in 1961. It is tempting to think of such spaces as “pathological”.
However, Mayer [May90] showed that explosion points occur very naturally within the
iteration of transcendental entire functions.
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To explain his result, recall that the Julia set J(f) of a transcendental entire function f
consists of the points at which the family (fn)∞n=1 of the iterates of f is not equicontinuous
with respect to the spherical metric (in other words, this is where the function behaves
“chaotically”). Its complement F (f) ..= C \ J(f) is called the Fatou set. The iteration
of transcendental entire functions has enjoyed significant interest recently. The family
of quadratic polynomials z 7→ z2 + c, which gives rise to the famous Mandelbrot set, has
been studied intensively as a prototype of polynomial and rational dynamics. Similarly,
complex exponential maps

(1.1) fa : C→ C; z 7→ ez + a,

form the simplest space of transcendental entire functions. (Compare [BDH+00, RS08a]
for a discussion of connections between the two families.) Hence there is considerable
interest in understanding the fine structure of the Julia sets of the functions fa.

In the case where a ∈ (−∞,−1), it is known [DK84, Theorem on p. 50] that J(fa)
consists of uncountably many curves, each connecting a finite endpoint to infinity. It
is easy to see that this set E(fa) of endpoints is totally separated; Mayer proved that
E(fa) ∪ {∞} is connected, and hence has ∞ as an explosion point. In fact, by work of
Aarts and Oversteegen [AO93], J(fa)∪{∞} is homeomorphic to the Lelek fan for these
parameters.

For general a ∈ C, the Julia set no longer has such a simple structure. Nonetheless,
there is still a natural notion of “rays” or “hairs”, generalising the curves mentioned
above. While some of these may no longer land at finite endpoints [DJ02, Rem07],
Schleicher and Zimmer [SZ03a] have shown that there is always a set Ẽ(fa) of escaping
endpoints, which moreover has a certain universal combinatorial structure that is inde-
pendent of the parameter a, making it a natural object for dynamical considerations.
For the purpose of this introduction, we define the relevant concepts as follows; see
Section 4, and in particular Corollary 4.5, for further discussion.

1.1. Definition (Types of escaping points).
The set of escaping points of fa is denoted by

I(fa) ..= {z ∈ C : fna (z)→∞}.

We say that a point z0 ∈ C is on a hair if there exists an arc γ : [−1, 1] → I(fa) such
that γ(0) = z0.

We say that a point z0 ∈ C is an endpoint if z0 is not on a hair and there is an arc
γ : [0, 1]→ C such that γ(0) = z0 and γ(t) ∈ I(fa) for all t > 0. The set of all endpoints
is denoted by E(fa), while Ẽ(fa) ..= E(fa)∩ I(fa) denotes the set of escaping endpoints.

With this terminology, Schleicher (personal communication) asked whether Mayer’s
phenomenon can be extended to the set of escaping endpoints for all exponential maps.

1.2. Question (Schleicher).
Let a ∈ C. Is ∞ an explosion point for Ẽ(fa)?

In this article, we provide a positive answer to this question for a large class of pa-
rameters a.
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1.3. Theorem (Escaping endpoints explode).
Let a ∈ C, and suppose that the singular value a of the map fa satisfies one of the
following conditions.

(a) a belongs to the Fatou set;
(b) a is on a hair;
(c) a is an endpoint.

Then ∞ is an explosion point for Ẽ(fa).

Remark. The hypotheses of the theorem are quite natural and general, and have ap-
peared previously in the study of exponential maps [Rem07, Rem11]. They are known
to hold, in particular, whenever fa has an attracting or parabolic orbit and when the sin-
gular value a escapes to infinity [SZ03a], is preperiodic [SZ03b] or nonrecurrent [BL14].
It is likely that there are some parameters a ∈ C for which the hypotheses fail; compare
Section 8. However, the hypotheses can be weakened to a condition that, conjecturally,
holds whenever fa does not have an irrationally indifferent periodic point; see Theo-
rem 8.1.

By definition, the proof of Theorem 1.3 requires two steps: On the one hand, we must
show that Ẽ(fa) ∪ {∞} is connected, and on the other that Ẽ(fa) is totally separated.
It turns out that the first can be carried out in complete generality.

1.4. Theorem (Escaping endpoints connect to infinity).
The set Ẽ(fa) ∪ {∞} is connected for all a ∈ C.

Remark. Our proof shows that Ẽ(fa) can be replaced by the set Ẽ(fa) ∩ A(fa) of all
endpoints belonging to the fast escaping set ; see Remark 4.6. (The set A(fa) consists of
all points that escape to infinity “as fast as possible”, and has played an important role
in recent results of transcendental dynamics; compare [RS12].)

We remark that this result is new even for a ∈ (−∞,−1). Indeed, our strategy of
proof is to establish the theorem first in this setting, using a topological model intro-
duced in [Rem06b], and then infer the general case using a conjugacy result also proved
in [Rem06b].

In the opposite direction, under the hypotheses of Theorem 1.3, we are able to employ
combinatorial techniques to conclude that Ẽ(fa) is indeed totally separated. Without
such hypotheses, the answer to Question 1.2 turns out to depend on extremely difficult
problems concerning the possible accumulation behaviour of rays in the dynamical plane.
For example, it is widely believed that a path-connected component of the escaping set of
an exponential map cannot be dense in the plane [Rem03, Question 7.1.33]. (The nature
of the path-connected components of I(fa) is well-known: each such component – with
the exception, in certain well-understood cases, of countably many additional curves –
is one of the afore-mentioned dynamics rays. See [FRS08, Corollary 4.3].) However, the
corresponding question (whether an external ray can ever accumulate on the whole Julia
set) remains open, as far as we are aware, even for quadratic polynomials. The following
result shows that Question 1.2 is at least as difficult.
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1.5. Theorem (Separating escaping endpoints is hard).
Suppose that, for some parameter a ∈ C, the set I(fa) has a path-connected component
that is dense in the Julia set. Then Ẽ(fa) is connected.

However, as we discuss in Section 8, it appears quite likely that the answer to Ques-
tion 1.2 is always positive.

1.6. Conjecture (Escaping endpoints always explode).
Let a ∈ C. Then Ẽ(fa) is totally separated (and hence ∞ is an explosion point of
Ẽ(fa) ∪ {∞}.)

The set of all endpoints. The set E(fa) ⊃ Ẽ(fa) of all endpoints of an exponential
map fa is a less universal object than that of escaping endpoints, since its structure
may vary considerably with the parameter a. Nonetheless, one can ask the analogue of
Question 1.2 for this set. The set Ẽ(fa) of escaping endpoints is completely invariant
under fa, and hence dense in the Julia set. Thus, by Theorem 1.4, the set E(fa)∪ {∞}
contains a dense connected subset for all a ∈ C, and is therefore connected. In the
opposite direction, we are able to prove the following. (See Section 6 for the definition
of the kneading sequence).

1.7. Theorem (Endpoints disperse).
Let a ∈ C, and suppose that the singular value a of the function fa satisfies one of the
following conditions.

(a) a belongs to the Fatou set;
(b) a is an endpoint or on a hair, and its kneading sequence is non-periodic.

Then ∞ is a dispersion point for E(fa); in the case of (a), ∞ is also an explosion point.

The proof of Theorem 1.7 requires a more detailed combinatorial analysis than that
of Theorem 1.3. In particular, we establish a combinatorial version of Thurston’s no
wandering triangles theorem for exponential maps (Theorem 6.13). The following con-
sequence of the latter result may be of independent interest.

1.8. Theorem (No wandering triods).
Let fa be an exponential map. Suppose that z0 is an endpoint of fa that is accessible
from I(fa) in at least three different ways; that is, there are three arcs in I(fa) ∪ {z0}
that contain z0 and are otherwise pairwise disjoint.

Then z0 is eventually periodic.

More general functions. In this article, we focus primarily on the family of exponen-
tial maps. However, there is a large class of transcendental entire functions for which
the existence of rays, in analogy to the exponential family, was established in [RRRS11]
(and, independently, in [Bar07] for a more restrictive class of maps). It makes sense to
ask about the properties of the set of escaping endpoints in this context also. In this
direction, we shall prove the following extension of Theorem 1.4. (Recall that an entire
function has finite order if log log |f(z)| = O(log |z|) as z → ∞, and that the set S(f)
of singular values is the closure of the set of critical and asymptotic values of f . For
further background, we refer e.g. to [BJR12].)
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1.9. Theorem (Escaping endpoints of functions with rays).
Let f be a finite-order entire function with bounded singular value set S(f), a finite
composition of such functions, or more generally a function satisfying a “uniform head-
start condition” in the sense of [RRRS11]. Then the set Ẽ(f) ∪ {∞} is connected.

If, additionally, f is hyperbolic – that is, every singular value s ∈ S(f) belongs to the
basin of an attracting periodic orbit – then ∞ is an explosion point for Ẽ(f).

Idea of the proofs. Establishing Theorem 1.3 for the case of a ∈ (−∞,−1) is the
key step in our arguments. We shall do so using an explicit topological model for the
dynamics of such fa on its Julia set, introduced in [Rem06b]. We review its definition
and properties in Section 3. and then prove Theorem 1.4 in this case by showing that
J(fa) contains an invariant subset A such that A ∪ {∞} is homeomorphic to the Lelek
fan, and such that every endpoint of A is an escaping endpoint of fa.

We are able to transfer this result to the dynamical plane of any exponential map using
a general conjugacy result from [Rem06b] (Theorem 4.1). To show that Ẽ(fa) is totally
separated in the cases covered by Theorem 1.3, we review and apply combinatorial
methods for exponential maps in Section 6. Theorem 1.7 is also proved there, using
similar arguments but requiring the no wandering triangles theorem. Finally, we consider
the case of more general entire functions in Section 7 and discuss further questions,
including Conjecture 1.6, in Section 8.

Basic notation. As usual, C denotes the complex plane; its one-point compactification
is the Riemann sphere Ĉ ..= C ∪ {∞}. The set of integer sequences s = s0s1s2 . . . is
denoted by ZN0 ; if s0 . . . sn−1 is a finite sequence of integer, then its periodic extension
is denoted (s0 . . . sn−1)

∞ ∈ ZN0 .
Throughout the article (with the exception of Section 7), we consider the family

(fa)a∈C of exponential maps defined by (1.1). This family is also often parameterised as
(w 7→ λew)λ∈C\{0}; the two families are conjugate via the translation z = w + a, with
λ = ea. Our choice of parameterisation gives a slightly more convenient asymptotic
description of dynamic rays (see the remarks on notation in [RS09, p. 108], and also
the discussion in Section 2.3 of [Rem03]), but as we shall not require this additional
information, the choice is primarily a matter of taste.

Acknowledgements. We thank Anna Benini, Bob Devaney, Alexandre DeZotti, Vasi-
liki Evdoridou, Dierk Schleicher and Stephen Worsley for interesting discussions. We
are also very grateful to the referee for many thoughtful comments that have helped us
to improve the presentation of the paper.

2. Lelek fans, straight brushes and Cantor bouquets

We begin by formally introducing the topological notions central to this paper (see
e.g. [SS95, Section 4]).

2.1. Definition (Separation).
Let X be a topological space, and let x0 ∈ X.

(a) Two points a, b ∈ X are separated (in X) if there is an open and closed subset
U ⊂ X with a ∈ U and b /∈ U .
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(b) The space X is called totally separated if any two points are separated in X.
(c) The space X is called totally disconnected if it contains no nontrivial connected

subset.
(d) If X is connected and X \{x0} is totally separated, then x0 is called an explosion

point of X.
(e) IfX is connected andX\{x0} is totally disconnected, then x0 is called a dispersion

point of X.

The following – a version of the well-known fact that the continuous image of a
connected space is connected – is immediate from the definitions.

2.2. Observation (Preimages of separated points are separated).
Let f : X → Y be a continuous map between topological spaces, and let a, b ∈ X. If f(a)
and f(b) are separated in Y , then a and b are separated in X.

Proof. If U is open and closed in Y with f(a) ∈ U and f(b) /∈ U , then f−1(U) is open
and closed in X with a ∈ f−1(U) and b /∈ f−1(U). �

The sets we are usually interested in are subsets of the plane. Here the notion of
separation takes the following, particularly simple, form. (See e.g. [Rem11, Lemma 3.1].)

2.3. Lemma (Separation in the plane).
Let X ⊂ C, and let x, y ∈ X. Then x and y are separated in X if and only if there is
a closed and connected set ∆ ⊂ C \ X such that x and y belong to different connected
components of C \∆.

The Lelek fan. As mentioned in the introduction, the Lelek fan will play an important
role in our discussions. It can be defined as follows.

2.4. Definition (Lelek fans).
Let X be a continuum, i.e. a compact, connected metric space. Then X is a fan (with
top x0 ∈ X) if the following conditions are satisfied:

(a) X is hereditarily unicoherent ; that is, if A,B ⊂ X are subcontinua of X, then
A ∩B is connected.

(b) X is arcwise connected. Hence, by (a), X is uniquely arcwise connected, and we
use [x, y] to denote the arc connecting x, y ∈ X.

(c) x0 is the only ramification point of X (that is, a common endpoint of at least
three different arcs that are otherwise pairwise disjoint).

If x ∈ X is an endpoint of every arc containing it, then x is called an endpoint of X;
the set of all endpoints is denoted E(X).

A fan X with top x0 is called smooth if, for any sequence yn converging to a point y,
the arcs [x0, yn] converge to [x0, y] in the Hausdorff metric.

A smooth fan such that the endpoints of X are dense in X is called a Lelek fan.

In [Lel61, §9], Lelek gave an example of a fan X with the above properties, and showed
that E(X) ∪ {x0} has x0 as an explosion point. Our terminology above is justified by
the fact, proved independently in [Cha89, Corollary on p. 33] and in [BO90], that any
smooth fan with a dense set of endpoints is homeomorphic to that constructed by Lelek:
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2.5. Proposition (Lelek fans and explosion points).
(a) Any two Lelek fans are homeomorphic.
(b) If X is a Lelek fan and x0 is the top of X, then x0 is an explosion point for

E(X) ∪ {x0}.

Straight brushes and Cantor Bouquets. We will encounter a variety of Lelek fans
that are embedded in the Riemann sphere (with top ∞). However, there are several
inequivalent embeddings of the Lelek fan, corresponding to the fact that some of the
“hairs” (connected components of the complement of the top) might be approximated
on by other hairs only from one side. In order to identify a preferred embedding, where
this does not occur, Aarts and Oversteegen introduced the following terminology. (We
remark that the concepts in this subsection are required only for the proof of Theo-
rem 1.5.)

2.6. Definition (Straight brush [AO93, Definition 1.2]).
A straight brush B is a subset of {(y, α) ∈ R2 : y ≥ 0 and α /∈ Q} with the following
properties.

Hairiness: For every α ∈ R, there is a tα ∈ [0,∞] such that (t, α) ∈ B if and only if
t ≥ tα.

Density: The set of α with tα <∞ is dense in R. Furthermore, for every such α, there
exist sequences (βn) and (γn) such that βn ↗ α and γn ↘ α, and such that
tβn , tγn → tα.

Compact sections: B is a closed subset of R2.

If B is a straight brush, then clearly its one-point compactification B∪{∞} is a smooth
fan. Furthermore, since B is closed, the function α 7→ tα is lower semicontinuous, and it
follows easily that the set of endpoints is dense in B (compare [AO93, Corollary 2.5]).
Hence B ∪ {∞} is a Lelek fan.

2.7. Definition (Cantor Bouquet [BJR12, Definition 1.1]).
A closed set A ⊂ C is called a Cantor bouquet if it is ambiently homeomorphic to a
straight brush B; i.e., if there is a homeomorphism ϕ : C→ R2 such that ϕ(A) = B.

Remark. The term “Cantor bouquet” has been used informally since the 1980s; in par-
ticular, Devaney and Tangerman [DT86, p. 491] give a definition of Cantor bouquets
that differs from the one above. Definition 2.7 first appears in [Dev99, Definition 3.3].
(We note that, in [Dev99], the homeomorphism is not required to be ambient, but this
appears to have been an oversight.)

The following characterisation of Cantor Bouquets, in the spirit of Definition 2.4, will
be useful, although strictly speaking we shall not require it.

2.8. Theorem (Characterisation of Cantor bouquets).
A closed set A ⊂ C is a Cantor bouquet if and only if

(a) A ∪ {∞} is a Lelek fan with top ∞, and
(b) if x ∈ A is accessible from C\A, then x is an endpoint of A. (Equivalently, every

hair of A is accumulated on by other hairs from both sides.)
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Moreover, if ϕ is any homeomorphism between Cantor bouquets that preserves the
cyclic order of hairs at ∞, then ϕ extends to an orientation-preserving homeomorphism
C→ C.

Remark. To explain the hypothesis of the final statement, observe that any family of
pairwise disjoint arcs in C, each having one finite endpoint and another endpoint at
infinity, induces a natural cyclic order. By this we mean that there is a consistent
notion of whether three such arcs γ1, γ2, γ3 are ordered in positive or negative orientation.
Indeed, if γ1 and γ2 are such arcs, then for sufficiently large R the set C\(DR(0)∪γ1∪γ2)
has precisely two unbounded connected components, one that lies between γ1 and γ2 (in
positive orientation) and one that lies between γ2 and γ1. If γ3 tends to infinity in the
latter, then the triple is ordered in positive orientation. It is easy to see that this does
indeed define a cyclic order.

In our applications, all curves will have real parts tending to +∞, and in this case the
cyclic order can be upgraded to a linear order, referred to as the vertical order. (The
curve γ1 is below γ2 if γ1, γ2, α are ordered in positive orientation, where α is a horizontal
line segment tending to −∞.

Sketch of proof. Let us call a closed set A ⊂ C a candidate bouquet if it satisfies (a)
and (b). Note that any Cantor bouquet is a candidate bouquet.

Now let A be a candidate bouquet; as explained above, there is a natural cyclic order
on the set H of hairs of A. Let H̃ be the order-completion of this cyclic order. The
elements of H̃ \H are in one-to-one correspondence with the set of homotopy classes of
curves to infinity in C\A, and, using (b), the set H̃ is easily seen to be order-isomorphic
to a circle.

We can now compactify the plane to a space C̃ = C∪ H̃ in such a way that each hair
h of A ends at the corresponding point h ∈ H ⊂ C̃. The space C̃ is homeomorphic to
the closed unit disc, and under this correspondence the set A ∪ H̃ becomes a one-sided
hairy circle in the sense of [AO93, Definition 4.7] (essentially, a circle with a collection
of hairs densely attached on one side).

By [AO93, Theorem 4.8], any two one-sided hairy circles X and Y are homeomorphic,
and any such homeomorphism extends to a homeomorphism of the sphere. Observe that
any homeomorphism must map the base circle of X to that of Y .

Applying this result to the above compactifications of two candidate bouquets A and
B, we see that A and B are ambiently homeomorphic. Furthermore, any homeomor-
phism that preserves the cyclic order of the hairs will extend to a homeomorphism of
their compactifications, and hence also to an orientation-preserving homeomorphism of
the plane. �

Remark. Alternatively, the proof of Proposition 2.5 (as given in [BO90]) can be modified
to show that, for any two sets satisfying (a) and (b), there is a homeomorphism that
preserves the cyclic order of hairs. The first part of the theorem thus follows from the
second, which in turn can be proved in the same way as [AO93, Theorem 4.1].
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3. A topological model for exponential maps

In [AO93, §1], it was shown that J(fa) is a Cantor Bouquet for a ∈ (−∞,−1). The
straight brush constructed there was defined in dependence on the parameter a, and is
hence not easy to analyse directly. Instead, we use a similar construction from [Rem06b],
which has the advantage that the brush arises in a straightforward way from an abstract
dynamical system F , defined without referring to a specific exponential map. As a
result, the resulting dynamics is easy to analyse, and furthermore can be connected to
the dynamical plane of the exponential map fa for any a ∈ C. We now review the
necessary definitions, and then prove the analog of Theorem 1.3 for this model function.

For the remainder of the article, a sequence s = s0s1s2 · · · ∈ ZN0 of integers shall be
called an (infinite) external address. Our model lives in the space R × ZN0 (with the
product topology). If x = (t, s), we write T (x) ..= t and addr(x) ..= s =.. s0(x)s1(x) . . .
for the projection maps to the first and second coordinates. We also fix the function
F : [0,∞) → [0,∞); t 7→ et − 1, which serves as a model for exponential growth1. We
frequently use elementary properties of the function F that can be verified via high-
school calculus; in particular,

F (x+ δ) ≥ F (x) + F (δ) ≥ F (x) + δ and(3.1)

F−n(x)→ 0 (n→∞)(3.2)

for all x, δ ≥ 0.

3.1. Definition (A topological model for exponential dynamics [Rem06b]).
Define

F : [0,∞)× ZN0 → R× ZN0 ; (t, s) 7→ (F (t)− 2π|s1|, σ(s)),

where σ denotes the shift map on one-sided infinite sequences. We set

J(F) ..= {x ∈ [0,∞)× ZN0 : T (Fn(x)) ≥ 0 for all n ≥ 0} and

I(F) ..= {x ∈ J(F) : T (Fn(x))→∞}.

We also denote the one-point compactification of J(F) by Ĵ(F) ..= J(F) ∪ {∞}.
Let s ∈ ZN0 . If there is x ∈ J(F) with addr(x) = s, then s is called exponentially

bounded. We define

ts ..=

{
min{t ≥ 0: (t, s) ∈ J(F)} if s is exponentially bounded

∞ otherwise.

If s is exponentially bounded, then (s, ts) is called an endpoint of J(F); if additionally
(s, ts) ∈ I(F), then it is called an escaping endpoint, and s is called fast. We write E(F)

and Ẽ(F) for the sets of endpoints and escaping endpoints, respectively.

Remark 1. In [Rem06b], J(F) was denoted X̄, while I(F) was denoted X. We prefer to
use the above notation in analogy to exponential maps. Furthermore, external addresses
were indexed beginning with index 1 (following the convention established in [SZ03a]).

1For many purposes, it would be slightly more convenient to use the function 2F instead of F in the
definitions. All the basic properties of the construction would remain unchanged under this modification,
but 2F has the advantage of being uniformly expanding. However, since this does not result in any real
simplifications for our purposes, we shall retain the definition as made in [Rem06b].
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However, it seens more natural to begin with index 0, so, when comparing this paper
with the relevant results in [Rem06b], all indices should be shifted by 1.

We refer to [Rem06b, §3] for further discussion of the motivation behind these defi-
nitions. It is proved in [Rem06b, §9] that F|J(F) is topologically conjugate to the map
fa on its Julia set, for every a ∈ (−∞,−1). In particular, as a consequence of [AO93],

we see that Ĵ(F) is a Lelek fan. In fact, we can say more if we consider Ĵ(F ) as being
embedded in R2 as follows.

3.2. Observation (Embedding in R2).
It is well-known that ZN0 (with respect to lexicographic order) is order-isomorphic to the
set R \Q of all irrational numbers. Hence there is an order-preserving homeomorphism
α : ZN0 → R \ Q (compare [AO93, §1.1] or [Dev99, §3.2]). In the following, we shall
hence identify ZN0 with the set of irrational numbers; thus J(F) can be thought of as a
subset of R2, via the embedding (t, s) 7→ (t, α(s)). For ease of terminology, will usually
not distinguish between J(F) and its image under this embedding.

3.3. Theorem (The model is a straight brush).

J(F) is a straight brush. Hence Ĵ(F) is a Lelek fan and ∞ is an explosion point for
E(F).

Proof. This is essentially proved in [AO93, Section 1.6], although the brush there is
defined slightly differently. For this reason, we sketch how to prove the result directly.
The fact that J(F) is closed in R2, as well as “hairiness”, follows immediately from
the definition of F and J(F); see [Rem06b, Observation 3.1]. (Observe that, for any
t ≥ 0, the set of addresses with ts ≤ t form a compact subset of ZN0 .) It is easy to
see that ts < ∞ for any bounded sequence s (see Lemma 3.8 below), and hence the
set of addresses with ts < ∞ is dense. Finally, given x ∈ J(F), it is easy to construct
sequences that converge to x from both above and below; this is also a consequence of
Theorem 3.10 (b) below (take Q = 0). �

Our main goal for the remainder of this section is to prove the following.

3.4. Theorem (Escaping endpoints of F explode).
The point ∞ is an explosion point for Ẽ(F).

Theorem 3.4 implies Theorem 1.3 in the case where a ∈ (−∞,−1). Moreover, for
every exponential map fa, there is a correspondence between points in I(F) and the set
of escaping points of fa (see Theorem 4.1 below), and hence the results proved in this
section also aid us in establishing Theorem 1.3 in general.

The key idea is to identify suitable subsets of Ĵ(F) that are still Lelek fans, but which
have the property that each of their endpoints belongs to Ẽ(F).

3.5. Definition (Sub-fans of Ĵ(F)).
Let s0 ∈ ZN0 be arbitrary. We define

Xs0(F) ..= {x ∈ J(F) : |sn(x)| ≥ |s0n| for all n ≥ 0}

and X̂s0(F) ..= Xs0(F) ∪ {∞}.
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3.6. Theorem (Sub-fans are Lelek fans).

If s0 is exponentially bounded, then X̂s0(F) is a Lelek fan. If, additionally, s0 is fast,

then every endpoint of X̂s0(F) belongs to Ẽ(F).

The final claim in the theorem follows immediately from the following simple fact.

3.7. Observation (Larger entries mean larger potentials).
Let s0, s ∈ ZN0 such that |sj| ≥ |s0j | for all j ≥ 1. Then ts ≥ ts0. In particular, if s0 is
fast, then so is s.

Proof. By definition of F , T (Fn(ts, s
0)) ≥ T (Fn(ts, s)) ≥ 0 for all n. Hence ts ≥ ts0 , as

claimed. In particular, if s0 is fast, then tσn(s) ≥ tσn(s0) →∞, and s is fast also. �

In order to prove the first part of Theorem 3.6, we shall require some control over the
minimal potentials ts, as provided by the following fact [Rem06b, Lemma 7.1], whose
proof we include for the reader’s convenience.

3.8. Lemma (Bounds for minimal potentials).
Let s ∈ ZN0, and define

(3.3) t∗s
..= sup

n≥1
F−n(2π|sn|).

Then t∗s ≤ ts ≤ t∗s + 1. In particular, s is exponentially bounded if and only if t∗s < ∞,
and fast if and only if t∗σn(s) →∞.

Proof. The fact that t∗s ≤ ts follows immediately from the observation that

T
(
F
(
F−1(2π|sn|), σn−1(s)

))
= 0

for n ≥ 1, and hence F−n(2π|sn|) ≤ ts. On the other hand, it is easy to see that
(t∗s + 1, s) ∈ J(F), and hence t∗s + 1 ≥ ts, using the fact that F (t + 1) ≥ 2F (t) + 1 for
all t ≥ 0. �

We also use the following elementary fact about contraction under pullbacks of F .

3.9. Observation (Backwards shrinking).
Let x, y ∈ J(F) and n ∈ N, and suppose that |sj(x)| = |sj(y)| for j = 1, . . . , n and that
δ ..= T (Fn(y))− T (Fn(x)) > 0. Then

T (x) ≤ T (y) ≤ T (x) + F−n(δ).

Proof. This is immediate from (3.1) and the definition of F . �

Proof of Theorem 3.6. Since projection to the second coordinate is continuous with re-
spect to the product topology, the set Xs0(F) is closed in J(F). Since X̂s0(F) is clearly
connected as a union of intervals all of which have a common endpoint, it follows that
X̂s0(F) is a continuum. As Ĵ(F) is a Lelek fan, we see that X̂s0(F) is a smooth fan with
top∞. (Any nontrivial subcontinuum of a smooth fan is either an arc or a smooth fan.)

To conclude that X̂s0(F) is a Lelek fan, it remains to show that endpoints are dense in
Xs0(F). Let x = (t, s) ∈ Xs0(F), and write Fn(x) =.. (tn, σ

n(s)). We define a sequence
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(sj)∞j=1 of addresses by

sjn
..=

{
sn if n 6= j + 1;⌈
F (tj)

2π

⌉
if n = j + 1.

By Definition of F and J(F), we have

F (tj) = 2π|sj+1|+ tj+1 ≥ 2π|sj+1|,
and hence |sjn| ≥ |sn| ≥ |s0n| for all j ≥ 1 and n ≥ 0. So xj ..= (tsj , s

j) ∈ Xs0(F) for all
j. Furthermore, by Lemma 3.8 and (3.1),

tj ≤ F−1(2π|sjj+1|) ≤ t∗σj(sj) ≤ max(t∗σj(s), F
−1(2π|sjj+1|))

≤ max(tσj(s), tj + 2π) = tj + 2π.

By Observation 3.9, Lemma 3.8 and (3.2),

|t− tsj | ≤ F−j
(
|tj − tσj(sj)|

)
≤ F−j(2π + 1)→ 0

as j →∞. Since sj → s by definition, we see that xj → x, as desired.
As already noted, the final claim of the theorem follows from Observation 3.7. �

Proof of Theorem 3.4. Consider the projection map E(F) → ZN0 to the second coor-
dinate. This map is continuous, and injective by the definition of E(F). Since ZN0 is
totally separated, it follows that E(F) and Ẽ(F) ⊂ E(F) are totally separated.

On the other hand, for any s0 ∈ ZN0 , let E(Xs0(F)) denote the set of endpoints

of Xs0(F). By Theorem 3.6, X̂s0(F) is a Lelek fan, and hence E(Xs0(F)) ∪ {∞} is
connected by Proposition 2.5 and the definition of explosion points. Furthermore, by
Theorem 3.6, E(Xs0(F)) ⊂ Ẽ(F) when s is fast, and hence

Ẽ(F) ∪∞ =
⋃
s0 fast

(
E(Xs0(F)) ∪ {∞}

)
is connected, as desired. �

In order to deduce Theorem 1.4, we shall need a slightly stronger version of Theo-
rem 3.4, which applies also to the set of points that remain far enough to the right under
iteration of F .

3.10. Theorem (Escaping endpoints in other sub-fans).
Let Q ≥ 0, and define

J≥Q(F) ..= {x ∈ J(F) : T (F j(x)) ≥ Q for all j ≥ 0}.
Then J≥Q(F) is a straight brush (using the embedding from Observation 3.2), and hence
J≥Q(F) ∪ {∞} is a Lelek fan. Furthermore:

(a) If s0 ∈ ZN0 is such that (ts0 , s
0) ∈ J≥Q(F), then Xs0(F) ⊂ J≥Q(F).

(b) The set Ẽ≥Q(F) ..= Ẽ(F) ∩ J≥Q(F) ⊂ E(J≥Q(F)) is dense in J≥Q(F). More
precisely, for every x0 ∈ J≥Q(F), there are sequences (xj+)∞j=1 and (xj−)∞j=1 in

Ẽ≥Q(F) such that addr(xj−) < addr(x0) < addr(xj+) for all j (with respect to
lexicographical order) and such that xj+, xj− → x0.

(c) ∞ is an explosion point for Ẽ≥Q(F).
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Remark. For Q > 0, the Cantor bouquet J≥Q(F) will have some endpoints that are
escaping points of F , but are not endpoints of J(F). (Indeed, (Q, (0)∞) is an example
of such a point.) In other words, Ẽ≥Q(F) ( E(J≥Q(F)) ∩ I(F).

Proof. Note that J≥Q(F) is closed in J(F) by definition, proving the “compact sec-
tions” condition in Definition 2.6. “Hairiness” is also immediate from the definition.
Furthermore, let s ∈ ZN0 be exponentially bounded. Then (ts + Q, s) ∈ J≥Q(F), and if
(t, s) ∈ J≥Q(F), clearly (t′, s) ∈ J≥Q(F) for all t′ > t. This implies the first part of the
“density” condition for straight brushes. Thus it remains to establish the second part
of this condition (that for any given hair, there are sequences of hairs approximating it
from above and below). This follows from (b), which we establish below. So J≥Q(F) is
indeed a straight brush.

To prove claim (a), suppose that x0 = (ts0 , s
0) ∈ J≥Q(F), and let x ∈ Xs0(F). Then

we can apply Observation 3.7 to s0 and s ..= addr(x), and all their iterates. Thus

T (Fn(x)) ≥ tσn(s) ≥ tσn(s0) = T (Fn(x0)) ≥ Q

for all n, as claimed.
Now let us prove (b), which follows similarly as density of endpoints in the proof of

Theorem 3.6. More precisely, let x = (t, s) ∈ J≥Q(F); we may assume without loss of
generality that x /∈ E(F). (Otherwise, apply the result to a sequence of values with the
same address as x and tending to x, and diagonalise.) In particular,

(3.4) tn ..= T (Fn(x)) ≥ F n(δ)

by (3.1), where δ ..= t− ts > 0.
We define addresses sj+ and sj− by

sj±n
..=

{
sn if n ≤ j;

±
⌈
F (tn−1)

2π

⌉
if n ≥ j + 1.

Then each address sj± is fast by 3.4. Furthermore,

2π|sj±n | ≥ F (tn−1) > F (tσn−1(s)) ≥ 2π|sn|
for all j ≥ 1 and n ≥ j + 1, and hence sj− < s < sj+.

Finally,
tσn(sj±) ≥ F−1(2π|sj±n+1|) ≥ tn ≥ Q

for n ≥ j, and by Observation 3.9 also

tσn(sj±) ≥ tn ≥ Q

for n = 1, . . . , j − 1. Thus xj± ..= (tsj± , s
j±) ∈ Ẽ≥Q(F). The fact that xj± → x0 as

j →∞ follows as in Theorem 3.6, and the proof of (b) is complete.
Finally, (c) follows from (a) and (b) precisely as in the proof of Theorem 3.4 above. �

4. Review of exponential dynamics and proof of Theorem 1.4

We now review some key results concerning the dynamics of exponential maps. The
following theorem [Rem06b, Theorems 4.2 and 4.3] shows that, for any a ∈ C and
sufficiently large Q > 0, the set J≥Q(F) considered in the previous section captures the
essential features of the escaping dynamics of fa.
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4.1. Theorem (Conjugacy between F and exponential maps).
Let a ∈ C, and consider the exponential map fa : C → C; fa(z) = ez + a. If Q is
sufficiently large, then there exists a closed forward-invariant set K ⊂ J(fa) and a
homeomorphism g : J≥Q(F)→ K with the following properties.

(a) g is a conjugacy between F and f ; i.e. g ◦ F = fa ◦ g.
(b) Re g(x)→ +∞ as T (x)→∞.
(c) The map g preserves vertical ordering. That is, if s1, s2 ∈ ZN0 are exponentially

bounded addresses such that s1 < s2 with respect to lexicographical ordering, then
the curve t 7→ g(t, s1) tends to infinity below the curve g(t, s2).

(d) There is a number R > 0 with the following property: if z ∈ C such that
Re fna (z) ≥ R for all n ≥ 0, then z ∈ K.

Remark. Part (c) is not stated in [Rem06b, Theorems 4.2 and 4.3], but follows from the
construction, as discussed on p. 1962 of the same paper.

4.2. Corollary (Cantor Bouquets in Julia sets).
The map g in Theorem 4.1 extends to a homeomorphism R2 → C (where we consider
J≥Q(F) ⊂ J(F) embedded in R2 as in Observation 3.2). In particular, the set K =
g(J≥Q(F)) ⊂ J(f) is a Cantor bouquet.

Proof. By Theorem 3.10 and part (c) of Theorem 4.1, the set K satisfies all the require-
ments of Theorem 2.8, and the claim follows.

(We remark that, in this case, the compactification discussed in the proof of Theo-
rem 2.8 is well-known: it is obtained by adding to C all external addresses at infinity,
together with the countable set of “intermediate external addresses” (see Definition 6.7
below). This space has the property that g(t, s)→ s as t→∞, for every exponentially
bounded address s; compare [Rem07, Remark on p.357], and also [BJR12, §5] for the
same result in a more general setting. The compactification is known to be homeomor-
phic to the closed unit disc, and hence we can obtain the result directly from [AO93,
Theorem 4.8] using this compactification, without requiring the more general Theo-
rem 2.8.) �

In order to complete the proof of Theorem 1.4, we shall require two further ingredients.
The first concerns pullbacks of unbounded sets under entire functions.

4.3. Lemma (Pullbacks).
Let f : C → C be any non-constant entire function, and let A ⊂ C be a set such that
A ∪ {∞} is connected. Then f−1(A) ∪ {∞} is connected.

Proof. We prove the contrapositive. Suppose that A ⊂ C is such that f−1(A) ∪ {∞}
is disconnected. Then there is a nonempty bounded relatively open and closed subset
X ⊂ f−1(A). Since f is an open mapping, f(X) is open in A. Furthermore, the closure
X (in C) is compact, and hence f(X) is bounded and relatively closed in A by continuity
of f . Thus A ∪ {∞} is disconnected, as required. �

The second ingredient concerns escaping endpoints: To prove Theorem 1.4, we need
to know that the image of an escaping endpoint for F under the conjugacy g is also an
escaping endpoint for the exponential map fa. With the usual definition of rays and
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endpoints for fa, as introduced in [SZ03a], this would be immediate. For our Defini-
tion 1.1 – which is easier to state, but less natural – this is less obvious, but it was shown
in [FRS08] that the two notions coincide (compare [FRS08, Remark 4.4]). In particular,
the following is shown there.

4.4. Theorem (Path-connected components of the escaping set).
Let a ∈ C be arbitrary, and suppose that γ : [0, 1] → I(fa) is a continuous curve in the
escaping set I(fa). Then for all R > 0 there exists n ≥ 0 such that Re(fn(γ(t))) ≥ R
for all t ∈ [0, 1].

Proof. While this is not stated explicitly in this form in [FRS08], it is a direct consequence
of Theorem 4.2 given there, applied to the setting of Corollary 4.3 in the same paper. �

4.5. Corollary (Characterisation of rays and endpoints).
Let a ∈ C be arbitrary, and let g and K be as in Theorem 4.1. Let z ∈ I(fa), and let
n ≥ 0 be sufficiently large such that fna (z) ∈ K. Then either

(a) g−1(fna (z)) ∈ Ẽ(F), and z is an escaping endpoint of fa in the sense of Defini-
tion 1.1; or

(b) g−1(fna (z)) ∈ I(F) \ Ẽ(F), and z is on a hair in the sense of Definition 1.1.

Proof. First observe that, by property (b) of Theorem 4.1, the map g maps (non-)esca-
ping points of fa to (non-)escaping points of F . Hence either x ..= g−1(fna (z)) ∈ Ẽ(F)
or x ∈ I(F)\ Ẽ(F). Observe also that, since the set of escaping endpoints is completely
invariant under F , which of the two alternatives holds is independent of the choice of n.

If x is a non-endpoint for J(F), then – by increasing the number n if necessary – we
may assume that x is also a non-endpoint for J≥Q(F), where Q is as in Theorem 4.1.
It is then immediate that fna (z) is on a hair, and by applying a local inverse of f−na , we
obtain an arc in I(f) containing z as an interior point, as required.

If x ∈ Ẽ(F), then we see analogously that z is accessible from the escaping set I(fa).
Hence it only remains to prove that, if γ ⊂ I(fa) is an arc, then γ cannot contain x in
its interior. This follows from Theorem 4.4 (again, increasing n if necessary). �

Proof of Theorem 1.4. Let g, K and Q be as in Theorem 4.1, and define

A ..= g(Ẽ(F) ∩ J≥Q(F)) ⊂ Ẽ(fa)

(where the last inclusion follows from Corollary 4.5). Then A is forward-invariant under
fa, and ∞ is an explosion point for A ∪ {∞} by Theorem 3.10. The increasing union⋃

n≥0

(f−n(A) ∪ {∞})

is dense in Ẽ(fa) ∪ {∞}, since the backward orbit of any point other than the omitted
value a is dense in the Julia set (by Montel’s theorem). It is also connected by Lemma 4.3;
the theorem follows. �

4.6. Remark (Fast escaping points).
Let s ∈ ZN0 be an exponentially bounded address such that the entries of s grow in an
iterated exponential fashion; e.g. s0 = m, for some m ∈ N, and sk+1

..= 2sk . If m is
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large enough, then by Theorem 3.10 we can replace J≥Q(F) by Xs(F) ⊂ J≥Q(F) in the
proof of Theorem 1.4. Furthermore, in this case all points of g(Xs(F)) belong to the
fast escaping set A(fa) discussed after the statement of Theorem 1.4. This shows that
the set of fast escaping endpoints, together with infinity, is also connected.

5. Dense path-connected components

We now prove Theorem 1.5, in the following more general form.

5.1. Theorem (Accumulation points).
Let a ∈ C. Let C be a path-connected component of I(fa), and suppose that z0, z1 ∈
Ẽ(fa) ∪ (C \ I(f)) both belong to the closure C. Then z0 and z1 are not separated in
{z0, z1} ∪ Ẽ(fa).

The idea of the proof is as follows. If z1 and z2 were separated, then by Lemma 2.3,
they could be separated by a closed subset of the plane, which by definition does not
contain any escaping endpoints. However, this set would have to intersect C, which
itself essentially sits within a Cantor bouquet (obtained as preimages of the set K from
Theorem 4.1). We thus obtain a contradiction to Theorem 3.4. To make this precise,
we notice the following simple fact.

5.2. Proposition (Accessing Cantor Bouquets).
Let X ⊂ C be a Cantor bouquet, and let E ⊂ X be a dense subset of X such that
E ∪ {∞} is connected.

Suppose that ∆ 6⊂ X is a closed connected subset of C with ∆ ∩ E = ∅. Then every
connected component I of ∆ ∩X is either unbounded or contains an endpoint of X.

Proof. Clearly it is enough to prove this in the case where X ⊂ R2 is a straight brush. In
this case, let us prove the contrapositive. Suppose that I is bounded and does not contain
an endpoint of X; we will show that E ∪ {∞} is disconnected. Then I = [τ1, τ2]× {α}
for some α ∈ R \ Q and tα < τ1 ≤ τ2. Choose T1 ∈ (tα, τ1) and T2 > τ2 such that
(T1, α), (T2, α) /∈ ∆.

Consider the segment J ..= [T1, T2] × {α}, and let δ > 0 be sufficiently small to
ensure that (Tj, β) /∈ ∆ whenever j = 1, 2 and |α− β| ≤ δ. Let β+

n ↘ α and β−n ↗ α be
sequences of rational numbers converging to α from above and below such that |βσn−α| ≤
δ for all n and σ ∈ {+,−}. Then the line segments J±n

..= [T1, T2] × {β±n } converge
to J from above and below and are disjoint from X. Consider the open rectangles
Rn ⊂ R2 bounded by J+

n and J−n together with the vertical line segments connecting
their endpoints.

Fix some point y ∈ ∆ \ X; then ∂Rn1 separates y from I for sufficiently large n1.
Let K1 be the closure of the connected component of K ∩ Rn1 that contains I. Then,
by the boundary bumping theorem [Nad92, Theorem 5.6], there is σ ∈ {+,−} such
that K1 intersects Jσn1

. Now let n2 > n1, and consider the “sub-rectangle” Rσ
n1,n2

of Rn

whose horizontal sides are Jσn1
and Jσn2

. By another application of the boundary bumping

theorem, there is a compact connected subset K2 ⊂ K1 ∩Rσ
n1,n2

that connects these two
horizontal sides.
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If n2 is sufficiently large, then we can pick points a1, a2 ∈ X ∩Rσ
n1,n2

that are near the
two vertical sides; by density of E we can furthermore assume that a1, a2 ∈ E. Then K2

separates a1 and a2 in Rσ.
Now let M < 0, and consider the set Γ obtained as the union of K2, [M,T2]× {βσn1

},
[M,T2]× {βσn2

} and the vertical interval connecting the left endpoints of the latter two
segments. The two horizontal intervals in Γ and its left vertical side are disjoint from
X, while K2 ⊂ K is disjoint from E by assumption. So Γ ∩ E = ∅. Moreover, clearly
Γ also separates a1 from a2 in C (this follows, for example, from Janiszewski’s theorem
[Pom75, p. 31]). This proves that E is disconnected, as required. �

Proof of Theorem 5.1. Let us suppose, by contradiction, that z0 and z1 are separated
in {z0, z1} ∪ Ẽ(fa). Then there exists a closed connected set ∆ ⊂ C such that z0 and
z1 belong to different complementary components of C \ ∆ and ∆ ∩ Ẽ(fa) = ∅. Let δ

be sufficiently small that B(zj, δ) ∩ ∆ = ∅ for j = 0, 1. By assumption, there exists a
continuous curve γ : [0, 1] → I(fa) with |γ(0) − z0| < δ and |γ(1) − z1| < δ. It follows
that γ([0, 1]) ∩∆ 6= ∅; let ζ0 be a member of this intersection.

By Theorem 4.4, there exists a number n such that γn ..= fn(γ([0, 1])) ⊂ K, where
K is the Cantor Bouquet from Theorem 4.1. In particular, γn is an arc. If Vn is a
sufficiently small neighbourhood of γn, then we can find a branch ϕn of f−na on Vn that
takes γn to γ and extends continuously to ∂Vn. Set V ..= ϕn(Vn).

Let ∆0 be the connected component of ∆∩V containing ζ0; by the boundary bumping
theorem, we have ∆0∩∂V 6= ∅. Now we can apply Proposition 5.2 to the Cantor Bouquet
K, the set E ..= Ẽ(f)∩K (which has the desired properties by Theorem 3.10), and the
continuum ∆n

..= fn(∆0). Note that ∆n 6⊂ K since ∆1 6⊂ γn.
By construction, ∆n ∩ E = ∅, but the connected component of ∆n ∩ X containing

fn(z0) belongs to the interior of the arc γn, and hence is bounded and contains no
endpoint of K. This is a contradiction. �

6. Maps with accessible singular values

The key point about the hypotheses in Theorem 1.3 is that the singular value a can
be connected to ∞, by a curve γ that either belongs to the Fatou set (if a ∈ F (fa)), or
is a piece of a “dynamic ray” in the escaping set (see below). The preimage of γ, which
contains no endpoints, then cuts the complex plane into countably many strips, and we
can study symbolic dynamics by considering the “itineraries” of different points with
respect to this partition.

6.1. Definition (Itineraries).
Let f : C → C be a continuous function, and let Γ ⊂ C be a closed set. We say that
z ∈ C has an itinerary with respect to Γ if fn(z) /∈ Γ for all n ≥ 0. In this case, the
itinerary of z is defined to be the sequence of connected components of C \ Γ visited by
fn(z), for n ≥ 0.

In particular, two such points z and w have the same itinerary if fn(z) and fn(w)
belong to a common connected component of C\Γ for all n; otherwise, they have different
itineraries.
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When two points have different itineraries, they can clearly be separated within the
set of endpoints:

6.2. Observation (Separation from itineraries).
Let f : C → C be a continuous function, and let Γ ⊂ C be a closed set. Suppose that
z, w ∈ C have different itineraries with respect to Γ. Then z and w are separated in

C \
⋃
n≥0

f−n(Γ).

Proof. Let n0 ≥ 0 be such that fn0(z) and fn0(w) belong to different connected compo-
nents of C \Γ. Since Γ is closed, the two points are also separated in C \Γ. Then z and
w are separated in C \ f−n0(Γ) by Observation 2.2. �

Dynamic rays of exponential maps. A full description of the escaping set of an
arbitrary exponential map in terms of dynamic rays was first given in [SZ03a]. We shall
now review their definition and basic properties.

6.3. Definition (Dynamic rays).
Let fa be an exponential map. A dynamic ray of fa is a maximal injective continuous
curve g : (0,∞)→ I(fa) such that

(a) limt→∞Re fna (g(t)) =∞ uniformly in n, and
(b) for all t0 > 0, limn→∞Re fna (g(t)) =∞ uniformly for t ≥ t0.

If additionally z0 ..= limt→0 g(t) is defined, then we say that g lands at z0.

We shall use the following basic properties of dynamic rays.

6.4. Theorem (Properties of dynamic rays).
Let fa be an exponential map, and let g be the map from Theorem 4.1.

(a) For every exponentially bounded external address s ∈ ZN0, there is a unique (up
to reparameterisation) dynamic ray gs such that addr(g−1(gs(t))) = s for all
sufficiently large t. Conversely, if g is a dynamic ray of fa, then g = gs for some
s (again up to reparameterisation).

(b) The vertical order of dynamic rays (for t→∞) coincides with the lexicographical
ordering of their external addresses.

(c) If z ∈ I(f) is on a hair, then either z is on a unique dynamic ray, or there is
n0 ≥ 1 such that fn(z) is on a unique dynamic ray containing the singular value
a.

(d) If z is an endpoint of fa, then either z is the landing point of a dynamic ray
(which is unique if additionally z ∈ I(f)), or there is n0 ≥ 1 such that fn0(z) is
the landing point of the unique dynamic ray containing the singular value a.

Proof. These are well-known properties of dynamic rays (compare [SZ03a] or [Rem06b]),
and follow easily from Theorem 4.1 and Corollary 4.5. �

Curves at the singular value. We now study exponential functions satisfying the
assumptions of Theorem 1.3. For every such map fa, we can find a natural curve
connecting the singular value to ∞, whose preimages give rise to a natural dynamical
partition of the Julia set. The study of these partitions, and of the resulting itineraries,
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is well-developed. Here we shall present the basic facts we require and refer e.g. to
[SZ03b, RS08b, Rem07] for further background.

Let us first consider the case where a /∈ F (fa). Then Theorem 6.4 immediately implies
the following.

6.5. Corollary (Rays landing at singular values).
Suppose that fa is an exponential map for which a is either an endpoint or on a hair.
Then there is an exponentially bounded address s such that either gs lands at a, or such
that a ∈ gs.

Now consider the case where the singular value belongs to the Fatou set. The following
is well-known, and follows from the fact that a is the unique singular value of fa, and
that exponential maps have no wandering domains.

6.6. Observation (Singular values in the Fatou set).
Let fa be an exponential map. Then a ∈ F (fa) if and only if fa has an attracting or
parabolic cycle. In this case, there is a unique cycle of periodic components of the Fatou
set, and a belongs to one of the components of this cycle.

If the component U of F (fa) containing the singular value has period n, we can connect
a and fna (a) by an arc γ0 in U . Let γ be the component of f−na (γ0) containing a; then γ
is a curve connecting a to∞ in U . In order to associate symbolic dynamics to the curve
γ, we should “fill in the gaps” within ZN0 with finite sequences called “intermediate
external addresses”; compare [Sch03, §3] or [RS08b, §2].

6.7. Definition (Intermediate external addresses).
An intermediate external address (of length n ≥ 1) is a finite sequence

s = s0s1s2 . . . sn−2∞,

where sj ∈ Z for j < n− 2 and sn−2 ∈ Z + 1/2. The union of ZN0 (the space of infinite

external addresses) and the set of all intermediate external addresses is denoted S; we
also write S ..= S \ {∞}.

Let fa be an exponential map and let γ ⊂ C \ I(fa) be a curve connecting some finite
endpoint to infinity. Then we say that addr(γ) = s ∈ S if, for any exponentially bounded
addresses r1, r2, the three curves gr1

(
[1,∞)

)
, γ and gr2

(
[1,∞)

)
are ordered in positive

orientation with respect to cyclic order at infinity if and only if r1 < s < r2 with respect
to the cyclic order on S.

Remark 1. At first, the notion of a curve having address s may seem to depend on the
parameterisation of dynamic rays. However, this is not the case, since using different
“tails” of the same ray will result in the same cyclic order; the interval [1,∞) is used
merely for convenient notation.

Remark 2. Since the cyclic order on S is order-complete (in fact, the space is isomorphic
to the circle), addr(γ) is defined for every curve γ as in Definition 6.7. Observe that,
if addr(γ) 6= ∞, then Re z → +∞ along γ. In particular, f(γ) is then also a curve to
infinity, and addr(fa(γ)) = σ(addr(γ)).
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Now let us return to our case of an exponential map fa having an attracting or
parabolic orbit, and the curve γ defined above. Clearly we have addr(fn−1a (γ)) = ∞,
and hence addr(γ) is an intermediate external address of length n.

Itineraries and escaping endpoints. For the remainder of the section, we fix an
exponential map fa satisfying the hypotheses of Theorem 1.3, the curve γ connecting a
to∞ constructed above, and the associated address s ∈ S. That is, if a is an endpoint or
on a hair, then γ is the piece of gs beginning at a, where gs is the ray from Corollary 6.5.
If a ∈ F (fa), then γ and s = addr(γ) are as defined above. In particular, in either
case γ contains no endpoints, except possibly a itself, and s is either intermediate or
exponentially bounded.

Remark. In the case where a belongs to an invariant component of the Fatou set, the
construction above leads to a curve γ having real parts tending to −∞, and hence having
address s = ∞. This choice, while correct, would require us to introduce some tedious
notation for special cases below. Instead, we simply note that we can always replace γ
by a piece of its preimage, extended to connect to the singular value; this curve will then
have an address in S. (We remark that the case where s = ∞ is trivial, anyway, since
here no two rays can share the same itinerary; in fact, it is well-known that the Julia set
is then a Cantor bouquet.) In the following, we will hence always suppose that s 6=∞.

Now f−1a (γ) consists of countably many curves from −∞ to +∞, which cut the plane
into countably many strips, and we can study itineraries with respect to Γ = f−1(γ) (in
the sense of Definition 6.1) in purely combinatorial terms.

6.8. Definition (Combinatorial itinerary).
Let s ∈ S, and let r ∈ ZN0 be an address with σn(r) 6= s for all n ≥ 1. We define the
(combinatorial) itinerary itins(r) = m ∈ ZN0 by the condition

(6.1) mjs < σj(r) < (mj + 1)s

for j ≥ 0.
We also define the kneading sequence K(s) ..= itins(s). Observe that, in the case where

s is an intermediate external address of length n, or periodic of period n, only the first
n− 1 entries u0, . . . , un−2 of the kneading sequence can be defined according to (6.1); in
this case we set K(s) ..= u0 . . . un−2∗.

Remark. Compare [RS08b, §3] for a further discussion of combinatorial itineraries and
kneading sequences. There, itineraries are also defined for intermediate external ad-
dresses, and iterated preimages of the address s. In particular, for simplicity, our defini-
tion of the kneading sequence for periodic s is slightly different from – and less accurate
than – that given in [RS08b]; in particular, for our purposes periodic addresses do not
have periodic kneading sequences.

Clearly, by Observation 6.2, if two exponentially bounded addresses as above have
different combinatorial itineraries, then the corresponding two rays and their landing
points are separated by

⋃
n≥1 f

−n
a (γ) ⊂ I(fa) \E(fa). Hence we can prove results about

the separation of endpoints by studying the properties of sets of addresses sharing the
same itinerary. The following simple observation shows that the itineraries of such
addresses must satisfy certain restrictions in terms of the kneading sequence.
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6.9. Lemma (Addresses sharing an itinerary [Rem07, Lemma 2.3]).
Let s ∈ S, and suppose that r1 6= r2 are two addresses, neither an iterated preimage of
s, with m ..= itins(r

1) = itins(r
2). Then σk(r1) 6= σk(r2) for all k ≥ 0.

Furthermore, let j ≥ 1 with r1j−1 6= r2j−2. Then, for all k ≥ 0, mj+k = u` for some
` ≤ k, where u := K(s).

Remark. In the case where s is intermediate or periodic, the final statement implies, in
particular, that mj+k agrees with one of the finitely many integer entries of u.

The following will allow us to complete the proof of Theorem 1.3.

6.10. Proposition (Addresses sharing an itinerary are slow).
Let s ∈ S be either intermediate or exponentially bounded. If r1 6= r2 are such that the
itineraries itins(r

1) and itins(r
2) are defined and coincide, then r1 and r2 are slow.

Proof. By the first part of Lemma 6.9, the addresses r1 and r2 differ at infinitely many
indices. Furthermore, if s is exponentially bounded, we have t ..= ts < ∞, and by
Lemma 3.8, 2π|sn| ≤ F n(t∗s) ≤ F n(ts) for all n ≥ 0. On the other hand, if s is interme-
diate of length K, then it contains only finitely many entries, and we can choose t such
that 2π|sn| ≤ F n(t) for n ≤ K − 2.

Let N ≥ 1 be such that r1N−1 6= r2N−1. Then, by Lemma 6.9, we have

2π|rjn| ≤ 2π( max
k≤n−N

(|sk|+ 1) ≤ F n−N(t+ 2π)

for all n ≥ N and j = 1, 2. Hence t∗σN (rj) ≤ t + 2π. Since N can be chosen arbitrarily

large, we see that r1 and r2 are slow, as claimed. �

Proof of Theorem 1.3. By Theorem 1.4, it remains to show that Ẽ(fa) is totally sepa-
rated for all a ∈ C satisfying the hypotheses of the theorem.

So let z, w ∈ Ẽ(fa) with z 6= w. By Observation 6.2, it is enough to show that
zn ..= fna (z) and wn ..= fna (w) are separated by f−1a (γ) for some n ≥ 0. (Here γ is the
curve connecting the singular value to ∞, as above.)

If zn+1 = wn+1 for some (minimal) n ≥ 0, then zn and wn differ by a non-zero integer
multiple of 2πi, and are hence separated by f−1(γ), as desired.

So suppose that zn 6= wn for all n. By Theorem 6.4 (d), there is n ≥ 0 such that zn
and wn are landing points of two dynamic rays grz and grw , at fast external addresses. If
n is large enough, then neither rz nor rw is mapped to the address s of γ under itation
of the shift map.

By Proposition 6.10, we have itins(r
z) 6= itins(r

w). If j is the first index at which the
two itineraries differ, then gσj(rz) and gσj(rw), and hence zn+j and wn+j, are separated by
f−1(γ), and the proof is complete. �

Itineraries and arbitrary endpoints. In order to also prove Theorem 1.7 in the case
where a /∈ F (fa), we shall use the following combinatorial statement, which concerns
addresses sharing an itinerary in general.

6.11. Proposition (Number of addresses sharing a common itinerary).
Let s ∈ S and let m ∈ ZN0. Let R denote the set of external addresses whose itinerary
with respect to s is defined and agrees with m.
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If m is periodic or pre-periodic, and σj(m) 6= K(s) for all sufficiently large j ≥ 0,
then R is a finite set of periodic or pre-periodic addresses (all having the same period
and pre-period). If m is not eventually periodic, then #R ≤ 2.

Remark 1. The hypothesis of the proposition is necessary. Indeed, suppose that K(s)
is periodic; recall that for us this implies that s itself is not a periodic address. If
σj(m) = K(s) for some j ≥ 0, then the set R consists of uncountably many addresses.
(The reader may think, by way of illustration, of the case of an exponential map with a
Siegel disc. Although it is not known whether there are such maps for which the singular
value is the landing point of a ray, this is conjectured to be true at least for certain
rotation numbers; compare [Rem07]. In this case, we may think of R as representing
the addresses of those dynamic rays that accumulate on the boundary of the Siegel disc.)

Remark 2. In the periodic case, more can be said than is stated in the proposition. For
example, the addresses in R belong to at most two periodic cycles; if #R > 2, then they
belong to a single cycle; see [Sch03, Lemma 5.2].

Proof. First suppose that m is eventually periodic. We may assume that m is periodic;
otherwise, we apply the proposition to a periodic iterate of m under the shift, and obtain
the result for m by pulling back corresponding to the finitely many first entries of m.

In the periodic case, the claim follows directly from [RS08b, Lemma 3.8], with one
exception. This exception concerns the case where s is periodic, say of period n, with
kneading sequence K(s) = u0u1 . . . un−2∗, and where σj(m) = (u0u1 . . . un−2mn+j−1)

∞

for some j ≥ 0, where mn+j−1 ∈ {sn−1, sn−1−1}. In these circumstances, the hypotheses
of our proposition are satisfied, but [RS08b, Lemma 3.8] does not apply.

We claim that, under the above assumptions, R consists of periodic or pre-periodic
addresses, of period n. (However, it may be that R = ∅, which is impossible in the case
covered by [RS08b, Lemma 3.8].) Indeed, assume without loss of generality that j = 0,
and let p be the period of the itinerary m. Then p divides n; say n = p · q. We consider
the set R′ obtained by adding to R the orbit of s under σp.

Claim. The set R′ is mapped bijectively to itself under σp, and σp preserves the cyclic
ordering of addresses in R′.

Proof. We first prove that the claims hold for R. Recall that all addresses in R have
itinerary m, which is an infinite sequence of integers (in particular, no address in R is on
the backward orbit of s). For every j ≥ 0, all addresses of σj(R) belong to the interval
(mjs, (mj + 1)s), and the shift map is injective on each such interval and preserves the
cyclic ordering. Furthermore, if r ∈ R, then there is a unique preimage of r under σp

whose itinerary begins with m0m1 . . .mp−1, and which hence also belongs to R. (Here
we use the fact that s is periodic, and that hence r – whose itinerary is an infinite
sequence of integers by assumption – is not on the orbit of s under the shift map.)

Now σn is clearly also bijective on R′. The reasoning that it preserves the circular
ordering is the same as above – here σp−1(R′) also includes one exactly one of the two
boundary addresses of (mjs, (mj + 1)s), but this does not affect the argument. 4

Let ñ be the minimal period of a periodic address r in R′ (so ñ is a multiple of m and
divides n). Then σñ maps R′ to itself, preserving the cyclic ordering and fixing r. Let
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t ∈ R′; then, in the cyclic order, either

r ≤ t ≤ σñ(t) ≤ σ2ñ(t) ≤ σ3ñ(t) ≤ · · · ≤ r, or

r ≥ t ≥ σñ(t) ≥ σ2ñ(t) ≥ σ3ñ(t) ≥ · · · ≥ r.

So σjñ(t) is an eventually monotone, and hence convergent, sequence in ZN0 . But this
is possible only if t is itself periodic of period at most ñ. Hence all addresses in R are
periodic of period ñ = n, as claimed. Furthermore, the set of sequences of period n in
R is clearly finite: for any t ∈ R, we have tj ∈ {mj,mj − 1} for all j, so there are at
most 2n. such addresses. (In fact, as alluded to in Remark 2 above, there are far fewer:
either #R = 0 or #R = 1; we do not require this fact).

The case where m is not eventually periodic is Thurston’s no wandering triangles
theorem, adapted to our context. See e.g. [Sch07b, Theorem 3.3] for a proof in the case
of unicritical polynomials. We are not aware of a published proof for exponential maps,
and hence provide the argument in Theorem 6.13 below. �

No wandering triangles. Let us begin by introducing some notation.

6.12. Definition (Wandering gaps).
Two sets A,B ⊂ S are called unlinked if A is completely contained in one of the intervals
of S\B (and vice versa). Let A ⊂ S, and consider the set obtained by shifting the initial
entries of all addresses in A by the same integer m ∈ Z. This set is called a translate of
A, and denoted m+ A.

A wandering gap (for the one-sided shift σ on ZN0) is a set A ⊂ ZN0 with #σn(A) ≥ 3
for all n ≥ 0 such that the sets σn1(A) and σn2(A) are disjoint and unlinked for all
non-negative n1 6= n2. If #A = 3, then A is also called a wandering triangle.

A wandering gap is of exponential combinatorial type if the sets σn1(A) + m1 and
σn2(a) + m2 are disjoint and unlinked whenever (n1,m1) 6= (n2,m2) (where n1, n2 ≥ 0
and m1,m2 ∈ Z).

The condition of “exponential combinatorial type” is motivated precisely by the dy-
namics and combinatorics of exponential maps as discussed above; see also Observa-
tion 6.14. Assuming this condition, we can now prove the absence of wandering gaps.
(In general, wandering gaps do exist for the shift map on any number n ≥ 3 of sym-
bols [BO04], and by the same reasoning they exist also for the shift on infinitely many
symbols.)

6.13. Theorem (No wandering triangles).
There are no wandering gaps of exponential combinatorial type.

Proof. Since every wandering gap contains a wandering triangle, it is enough to prove
the absence of wandering triangles of exponential combinatorial type; hence the name
of the theorem. So suppose, by contradiction, that there is such a wandering triangle T ,
and define Tn ..= σn(T ) for n ≥ 0. Let T denote the set of all Tn and their translates;
recall that, by assumption, the elements of T are pairwise disjoint and pairwise unlinked.
For ease of notation, we also write r+m for the translate of an address r by m; that is,

r +m = (r0 +m)r1r2r3 . . . .



24 NADA ALHABIB AND LASSE REMPE-GILLEN

Observation 1. If T ∈ T and r1, r2 ∈ T , then r2 < r1 + 1.
In particular, σ|T preserves the cyclic ordering of addresses, and any two addresses in

T differ by at most 1 from each other in every entry.

Proof. The first claim is immediate from the fact that T is unliked with its translates,
and implies the second claim (since σ preserves cyclical order when restricted to the
interval between an address and its translate by 1). The final statement follows from
the first, applied to σn(T ) for all n ≥ 0. 4

For two addresses r1, r2, let us write N(r1, r2) for the index of the first entry in which
these two addresses differ. For any triangle T ∈ T , also write N(T ) for the largest value
of N(r1, r2) for two different r1, r2 ∈ T .

Observation 2. If T ∈ T is a triangle, then there is t ∈ T such that N(t, r) < N(T ) for
the other addresses r ∈ T \ {t}.

Proof. Let T = {r1, r2, t}, where N(r1, r2) = N ..= N(T ). By Observation 1, at position
N , there are only two possible choices for the entry of each address in T . In particular, t
does not differ from one of the two other addresses, say r1, at position N . By definition
of N(T ), we must have N(t, r1) < N . Since r1 and r2 agree up to entry N − 1, we also
have N(t, r1) = N(t, r2). 4

Observation 3. There are n2 > n1 > 0 such that N1
..= N(Tn1) ≥ N(Tn1−1) and N2

..=
N(Tn2) ≥ N(Tn1).

Proof. This is trivial if N(Tn) is unbounded as n → ∞. Otherwise, there are infinitely
many n for which

N1
..= N(Tn) = lim sup

k→∞
N(Tk),

and we choose two of these that are sufficiently large to ensure that N(Tn) ≤ N1 for all
n ≥ n1 − 1. (Note that, in this case, N1 = N2.) 4

Let n1 and n2 be as in Observation 3; we may assume furthermore that n2 > n1 is
chosen to be minimal. Let T̃1 and T̃2 be translates of Tn1−1 and Tn2−1, chosen to contain
an address having initial entry 0, but no address with initial entry −1. (This is possible
by Observation 1.) In particular, σ(T̃j) = Tnj

for j = 1, 2, and

(6.2) N(T̃2) = N(Tn2−1) ≤ N1

by minimality of n2.

Observation 4. For j = 1, 2, the triangle T̃j contains two addresses rj,0 and rj,1 such that

rj,`0 = ` for ` = 0, 1, and such that N(rj,1, rj,0 + 1) = N(rj,0, rj,1 − 1) = Nj + 1.

Furthermore, the third address t ∈ T̃j differs from one of these two addresses at
position 0, and from the other in an entry at a position ≤ Nj.

Proof. If two addresses t0 6= t1 differ first in the N -th entry, and have t00 = t10, then their
images under the shift map clearly differ first in the (N − 1)-th entry, and thus

N(σ(t0), σ(t1)) = N(t0, t1)− 1.



ESCAPING ENDPOINTS EXPLODE 25

Now let t1 < t0 be the two addresses in Tnj
with N(t1, t0) = N(Tnj

), and let rj,1 and

rj,0 be their preimages in T̃j. Then

N(rj,1, rj,0) ≤ N(T̃j) ≤ N(Tnj
) = N(t1, t0),

and hence rj,1 and rj,0 differ in their initial entry.
It follows that rj,` begins with the entry ` for ` = 0, 1, and that the two addresses

agree in the next Nj entries, proving the first claim.
The second claim follows from Observation 2 in a similar manner. 4

We can now reach the desired contradiction. Indeed, by Observation 1, the two
triangles T̃1 and T̃2 are unlinked. Since N2 ≥ N1, it follows from Observation 4 that T̃2
cannot belong to one of the bounded intervals of ZN0 \ T̃1, and thus T̃2 is contained in
the union of the two intervals (r1,1− 1, r1,0) and (r1,1, r1,0 + 1). In particular, there must
be two addresses in T̃2 that belong to the same of these two intervals, and hence agree
in the first N1 + 1 entries. So N(T̃2) > N1, which contradicts (6.2). �

Remark. The above proof follows similar ideas as the usual proof of the wandering tri-
angles theorem in the polynomial case, with one notable exception. The first step in
the latter proof is usually to observe that the smallest side in the iterates of a wander-
ing triangle must become arbitrarily small (in our terminology, this would mean that
N(Tn) → ∞ as n → ∞). In the polynomial case, this follows from an area argument
[Sch07b, Lemma 2.11] which completely breaks down in the infinite-symbol case. This
forces us to argue more carefully, observing that Observation 3 holds and is sufficient to
conclude the proof, even if N(Tn) remained bounded. It is not clear whether this consid-
eration is an artifact of the proof or a genuinely new phenomenon in the transcendental
case. That is, for families of transcendental entire functions where wandering triangles
do exist, do we always have N(Tn)→∞?

The following observation links the notions of gaps, and Theorem 6.13, with itineraries
of exponential maps.

6.14. Observation (Sets with different itineraries are unlinked).
Let s ∈ S, and let A,B ⊂ S be such that all addresses in A share the same itinerary uA,
and all addresses in B share the same itinerary uB (with respect to s), but uA 6= uB.
Then A and B are unlinked.

In particular, if #A ≥ 3, then uA is periodic.

Remark. The final statement completes the proof of Proposition 6.11.

Proof. The first claim is trivial when the initial entries of the two itineraries differ (by
definition of itineraries). Furthermore, the shift map, when restricted to any of the
intervals used in the definition of itineraries, preserves the circular order of external
addresses. The fact that the two sets are unlinked hence follows by induction.

The second claim follows from the first, together with the No Wandering Triangles
theorem. Indeed, by the definition of itineraries, σn(A) is disjoint from its translates
for all n ≥ 0. If uA was aperiodic but #A ≥ 3, then A would be a wandering gap,
contradicting Theorem 6.13. �
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Proof of Theorem 1.8. Suppose, by contradiction, that z0 is as in Theorem 1.8, but that
z0 is not eventually periodic. By Theorem 6.4 (and since fna is locally injective near
z0), there is n ≥ 0 such that fn(z0) is the landing point of at least three dynamic rays,
at addresses r1, r2, r3. These three addresses form a wandering triangle T . Since the
three rays associated to any translate of any iterate of T also land together (due to the
periodicity of the exponential map), the triangle is of exponential combinatorial type.
This contradicts Theorem 6.13. �

Attracting and parabolic examples. Recall that Theorem 1.7 claims that, if fa is
an exponential map such that a ∈ F (fa), then E(fa) is totally separated. This is a
consequence of the following result.

6.15. Proposition (Attracting and periodic parameters).
Suppose that fa is an exponential map with an attracting or parabolic periodic orbit.
Then there exists a curve γ ⊂ F (fa) in the Fatou set such that no two endpoints of fa
have the same itinerary with respect to f−1(γ).

Proof. This follows from the fact that, under the given hypotheses, all dynamic rays of
fa land, and two dynamic rays land at the same point if and only if they have the same
itinerary with respect to f−1(γ), where γ is certain curve connecting the singular value
to ∞, constructed precisely as described above. (Note that, in the case where fa has
an invariant Fatou component, we must now use a curve γ tending to −∞ and having
addr(γ) = ∞. It is then clear that any two dynamic rays at different addresses have
different itineraries with respect to f−1(γ), and hence the claim is trivial in this case, as
mentioned above.)

In the case where fa has an attracting periodic orbit, the above claims are proved in
[Rem06b, Proposition 9.2] as a consequence of the stronger Theorem 9.1 in the same
paper. It is also remarked at the end of [Rem06b, Section 9] that these results remain
true for parabolic parameters, although the details are not given.

We note that the proof of our proposition in the parabolic (and also in the attracting)
case can be achieved with considerably less effort than the results of [Rem06b, Section 9].
Indeed, by Lemma 6.9, the claim is trivial for endpoints of rays at unbounded exter-
nal addresses. Furthermore, for eventually periodic addresses (and hence for periodic
itineraries, by Proposition 6.11), the claim is proved in [SZ03b, Proposition 4.5].

So let gr1 and gr2 be two rays at bounded addresses, sharing the same (bounded)
itinerary m which is not eventually periodic. (Note that, in particular, σj(m) is distinct
from the itinerary of the parabolic orbit of fa, for all j ≥ 0.) We must show that, if
both rays land, they land at the same point in C.

It follows from a simple hyperbolic contraction argument (similar to that in the proof
of [Rem06b, Proposition 9.2]) that, for any bounded itinerary which does not eventually
agree with that of the parabolic orbit, there is a unique point z0 with a bounded orbit
which has this itinerary. Furthermore, any other point with the same itinerary must
tend to infinity under iteration. Because the landing points of gr1 and gr2 cannot be
escaping (only rays at fast addresses land at escaping points), it follows that both rays
land at z0. This completes the proof. �
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Proof of Theorem 1.7. If fa is an exponential map with a ∈ F (fa), then (as mentioned
above), fa has an attracting or parabolic periodic orbit. It follows from Proposition 6.15,
together with Observation 6.2, that E(fa) is totally separated.

On the other hand, suppose that fa is an exponential map such that the singular value
a is an endpoint or on a hair, and let γ ⊂ gs be the curve connecting a to ∞, as above.
Assume furthermore (as in the hypothesis of the theorem) that the kneading sequence
K(s) is not periodic; we must show that E(fa) is totally disconnected.

So let X be a connected component of E(fa). Then all points of X share the same
itinerary m with respect to f−1a (γ). By passing to a forward iterate, we may assume
that σj(m) 6= K(s) for all j ≥ 0. In particular, each z ∈ X is the landing point of
some dynamic ray gr, where itins(r) = m. By Proposition 6.11, the set of possible such
addresses is finite, and hence X is finite. Since X is connected, it follows that it consists
of a single point, as desired. �

7. Beyond the exponential family

In order to prove Theorem 1.9, we use similar ideas as in the proof of Theorem 1.4,
together with the results of [RRRS11] and [BJR12], which establish the existence of
Cantor bouquets in the Julia sets of the functions under consideration. The difference
between the general case and that of exponential maps is that we do not have such
explicit information about the position and behaviour of rays as we did through our
model F . In particular, there may not be an analogue of the characterisation of “fast”
addresses in terms of a simple growth condition. This means that, for some escaping
endpoints, our argument would no longer yield a corresponding brush where all endpoints
are escaping (i.e., there is no analog of Observation 3.7). Furthermore, we do not have as
precise control over the positions of endpoints as we utilised in the proof of Theorem 3.4.

However, both concerns are easily taken care of by using more general arguments: We
do not need to find a sub-brush for every fast address, but it is enough to exhibit one
Lelek fan with the desired properties. Similarly, we can use softer arguments to establish
the density of endpoints. In the following, we shall use the terminology of [BJR12], and
refer to that paper for further details and background.

7.1. Remark (Escaping endpoints).
Let f satisfy the hypotheses of Theorem 1.9. Then there is again a natural notion of
“escaping endpoints”: These are those points z0 ∈ I(f) with the following property. Let
n0 ≥ 0 be any number that is sufficiently large to ensure that the external address of
fn0(z0) is defined in the sense of [RRRS11]. If z 6= fn0(z0) is an escaping point with the
same external address, then |fn(z)| > |fn+n0(z0)| for all sufficiently large n.

If no critical point of f has an escaping orbit, then it is plausible that, again, no
escaping endpoint belongs to the interior of an arc in the escaping set, and hence that
there is an analogue of Definition 1.1 that yields the same notion. However, if f has an
escaping critical point that is mapped to an escaping endpoint, then we can combine
two preimage branches of a curve in I(f) that join at the critical point, and the two
definitions no longer coincide.

Proof of Theorem 1.9. Let f satisfy the hypotheses of the theorem, and fix a sufficiently
large number Q > 0 (see below). Since the set S(f) of singular values of f is bounded,
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we can assume without loss of generality that S(f) ⊂ D ∩ f(D). Set W ..= C \ D, and
let T be a component of f−1(W ). Then f : T → W is a universal covering map. In
particular, it follows that there is a sequence (Tm)∞m=0 of pairwise disjoint components
of f−1(T ) such that

(i) f : Tm → T is a conformal isomorphism for each m.
(ii) infz∈Tm |z| > Q for all m, and infz∈Tm |z| → ∞ as m→∞.
(iii) For any ζ ∈

⋃∞
j=0 Tj and any m ≥ 0, set ζm ..= (f|Tm)−1(ζ). Then there is a

constant C > 0, independent of ζ and m, such that

|ζm − ζm+1| ≤ C · |ζm|.
(The final point follows from the fact that the tracts can be chosen such that ζm and
ζm+1 have bounded hyperbolic distance from each other in T ; compare the “Claim” in
the proof of [Rem09, Lemma 5.1].)

Consider the set

X ..= {z ∈ C : fk(z) ∈
∞⋃
m=k

Tm for all k ≥ 0} ⊂ I(f).

Given a sequence s ∈ N0
N0 with sk ≥ k for all k, we also define

Xs
..= {z ∈ X : fk(z) ∈ Tsk for all k ≥ 0}.

It follows from the definitions that Xs ∪ {∞} is a compact, connected set. Note that
Xs ⊂ X ⊂ I(f) ⊂ J(f) (where the final inclusion is [EL92, Theorem 1]. Furthermore,
Xs is either empty or an arc connecting a finite endpoint e(s) to infinity, and e(s) is an
escaping endpoint in the sense of Remark 7.1 [RRRS11]. In particular, if z ∈ Xs, then
|fn(z)| ≥ |fn(e(s))| for all sufficiently large n.

If Q > 0 was sufficiently large, then by [BJR12, Theorem 1.6], there is a Cantor
Bouquet X0 ⊂ J(f) containing all points whose orbits contain only points of modulus
at least Q. Hence X ⊂ X0, and X ∪ {∞} is a smooth fan with top ∞.

Claim. If Q was chosen sufficiently large, then X ∪ {∞} is a Lelek fan.

Proof. We only need to prove that endpoints are dense. First observe that, by the
definitions, f(X) ⊂ X. Furthermore, if z ∈ X, then z is an endpoint of X if and only if
f(z) is.

Let z ∈ Xs for some address s as above, and let n ≥ 0 be sufficiently large. Let
ζ ..= e(σn+1(s)) = fn+1(e(s)). Then |fn(z)| ≥ |ζsn| = fn(e(s)), provided that n was
chosen sufficiently large. By (iii), there is thus some mn ≥ sn such that

(7.1) |ζmn| ≤ |fn(z)| ≤ C · |ζmn|.
Define an address sn by

snk
..=

{
sk if k 6= n

mn otherwise.

It follows from [EL92, Lemma 1] that

|f ′(z)| · |z|
|f(z)|

→ ∞
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as |f(z)| → ∞; i.e., f is strongly expanding with respect to the cylindrical metric |dz|/|z|
when |f(z)| is large. The cylindrical distance between ζmn and fn(z) remains bounded
as n→∞ by (7.1). This implies that e(sn)→ z, as desired. 4

In particular, the set A of endpoints of X has the property that A∪{∞} is connected.
The first part of the theorem follows using Lemma 4.3, in the same manner as in the
proof of Theorem 1.7.

Suppose f is hyperbolic, and let |λ| be sufficiently small. Then the function fλ ..= λf
is hyperbolic with connected Fatou set; see [Rem09, §5, p. 261]. As both maps are
hyperbolic, it follows from [Rem09, Theorem 1.4] that the escaping set I(f) is home-
omorphic to the escaping set I(fλ), and that f and fλ are conjugate on these sets.
Furthermore, the conjugacy maps escaping endpoints of f to escaping endpoints of fλ.
(Indeed, hyperbolic functions have no escaping critical points. Hence, as discussed in
Remark 7.1, escaping endpoints can be defined in terms of the topology of the set of all
escaping points, and hence any homeomorphism between two escaping sets of hyperbolic
functions must map escaping endpoints again to escaping endpoints. Alternatively, the
claim can be deduced directly from the proof of [Rem09, Theorem 1.4].) On the other
hand, the Julia set of fλ is a Cantor Bouquet by [BJR12, Theorem 1.5], and hence its
set of endpoints is totally separated.

(We remark that Theorems 1.5 and 1.6 of [BJR12], which we used in this proof, were
stated only for functions that can be written as the composition of finite-order functions
with bounded singular sets. However, by Corollaries 6.3 and 7.5 of the same paper, they
hold more generally when f – or, more precisely, one of the logarithmic transforms of
f – satisfies a uniform head-start condition in the sense of [RRRS11].) �

7.2. Remark (Escaping endpoints in the strong sense).
We remark that Theorem 1.9 likely still holds if an “endpoint” is defined analogously to
Definition 1.1; to avoid confusion, let us refer to these as escaping endpoints in the strong
sense. Let Ã be obtained from the set A constructed in the proof above by removing
the grand orbits of all critical points.

It is easy to see that removing a countable set from the set of endpoints of a Lelek
fan does not affect its explosion point property. (If X is a straight brush, and (αn)∞n=1 is
a sequence of irrational numbers, then choose small intervals In with rational endpoints
around each αn. If we remove all those points from X whose height belongs to one
of the In, the result (if nonempty) will still be a Cantor bouquet, and hence its set of
endpoints has the explosion point property. By taking the union of the endpoints of
these bouquets for all possible choices of In, we obtain all endpoints apart from those
at heights αn, as desired.) Hence Ã∪ {∞} is also connected. Suppose furthermore that
no “slow” ray – i.e. one on which the iterates do not escape to infinity uniformly – can
land at an escaping endpoint. (It seems plausible that this is always true, but we are
not aware of a proof; the argument for exponential maps relies on global periodicity and
breaks down in general.) Then, as alluded to in Remark 7.1, every point that eventually
maps to Ã will be an escaping endpoint in the strong sense. Hence the set of all escaping
endpoints in the strong sense, together with infinity, is also connected.
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7.3. Remark.
The result in [Rem09, Theorem 1.4] has been extended to a large class of “strongly sub-
hyperbolic” entire functions by Mihaljević-Brandt [MB12], and hence∞ is an explosion
point for Ẽ(f) also for these functions. It seems likely that similar combinatorial tech-
niques as those used in Section 6 can be extended to entire functions as in Theorem 1.9,
assuming that the set of singular values is finite, and that singular values satisfy similar
accessibility conditions from the escaping set. In particular, we believe that ∞ is an
explosion point for Ẽ(f) whenever f is geometrically finite in the sense of [MB10]; see
also [MB09, Chapter 5] for a discussion of itineraries for geometrically finite functions.
However, we shall not pursue this question here.

On the other hand, in general the set of all endpoints will not be totally separated, or
even disconnected. Indeed, for the map f(z) = π sin(z), every point in R is an endpoint
[Sch07a]. It is easy to see that the union of iterated preimages of R is a connected set
that is dense in the plane, and hence E(f) is connected.

Finally, we note also that Theorem 1.5, as stated, does not extend to the functions
covered by Theorem 1.9. Indeed, the escaping set of the function z 7→ (cosh(z))2 has
a dense path-connected component not containing any endpoints. This component is
obtained by taking all iterated preimages of the real axis; see [RS12, pp. 804–805].
On the other hand (since the real axis contains no endpoints) the set of endpoints is
disconnected, and indeed it seems likely that it is totally separated. The reason that the
proof of Theorem 1.5 breaks down here is that, for maps with escaping critical points, it
is no longer true that the escaping set locally contains the structure of a Cantor bouquet.

8. Do escaping endpoints explode in general?

In this section, we discuss evidence for Conjecture 1.6. Let us begin by noting that it
appears unlikely that the hypotheses of Theorem 1.3 hold for all a ∈ C. Indeed, suppose
that f is a quadratic polynomial having a Cremer point (i.e., a non-linearisable periodic
point of multiplier e2πiα, with α ∈ R irrational). Then Kiwi [Kiw00, Corollary 1.2] has
proved that the critical point of f is not accessible from the basin of infinity. It seems
likely that, likewise, for an exponential map fa with a Cremer point, the singular value
a is never the endpoint of a dynamic ray. Similarly, Perez-Marco [PM94] proved (ac-
cording to Kiwi) the existence of infinitely renormalisable quadratic polynomials with
inaccessible critical points; here all periodic cycles are repelling. Again, it is plausible
that such examples exist for exponential maps also. Let us show how we can strengthen
Theorem 1.3 to cover the latter case. To do so, we rely on similar ideas as before, but
utilise a more detailed understanding of exponential combinatorics to remove the con-
dition that the singular value is an endpoint or on a hair. We shall from now on assume
familiarity with deeper results concerning the combinatorial structure of exponential
parameter space, as established in [Rem06a, RS08b, RS08a, RS09].

8.1. Theorem (More escaping endpoints explode).
Let a ∈ C be a parameter such that fa does not have an irrationally indifferent periodic
orbit, and such that all repelling periodic points of fa are landing points of periodic
dynamic rays. Then ∞ is an explosion point for Ẽ(fa).
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Sketch of proof. If a ∈ F (fa), then the result is covered by Theorem 1.3. So we may
assume that a ∈ J(fa). Likewise, Theorem 1.3 also applies when a is an escaping point
of fa (as then a is either on a hair or an escaping endpoint), so we may assume a /∈ I(fa).

Even without knowing that there is a ray landing at a, we can still associate one or
more external addresses s, and a kneading sequence K(s), to a as follows. In [RS08a],

the notion of the extended fibre Y̆ of such a parameter was defined. This set Y̆ is a closed
subset of parameter space containing a finite (and non-zero) number of parameter rays,
with associated exponentially bounded external addresses [RS08a, Lemma 17]. All of
these addresses share the same kneading sequence, which it hence makes sense to refer
to as the kneading sequence K(a) of the parameter a. (See [RS08b, Appendix A].) The
theory of internal addresses allows us to translate the kneading sequence into information
about the position of a in parameter space, and vice versa. In particular, the kneading
sequence of a parameter a is periodic if and only if there is a hyperbolic component
U in parameter space (i.e., an open connected region in which all parameters have an
attracting periodic orbit) such that a cannot be separated from U by a pair of periodic
parameter rays landing at a common point. As discussed in [Rem06a, Theorem 4], for
any such parameter, there is a cycle of periodic points that are not landing points of
periodic dynamic rays. Hence the assumption that all periodic points of fa are repelling,
and that each of these is the landing point of a periodic ray, implies that the kneading
sequence K(a) is aperiodic.

Now let S be the finite set of exponentially bounded addresses associated to a as
above; let us assume first for simplicity that #S ≤ 2. In “nice” cases, we would expect
the dynamical ray gs of fa, for s ∈ S, to land at the singular value a, but as discussed
above this does not hold in general. However, the construction of fibers ensures that
gs cannot be separated from a in a certain sense. More precisely, if two periodic or
preperiodic dynamical rays land at a common point, let us call their union together
with the landing point a “dynamical separation line”. The singular value a cannot be
separated from gs, for s ∈ S, by such a separation line.

Claim. Any dynamic ray gs, where s is exponentially bounded and s /∈ S, can be sep-
arated from a by a dynamical separation line. Moreover, the addresses of the rays in
these separation lines are uniformly exponentially bounded (independently of s).

Proof. Let S = {s−, s+}, with s− ≤ s+. Then the characteristic addresses (rj−, rj+)j≥1
of the hyperbolic components appearing in the internal address of a (see [RS08b]) satisfy

rj− < r(j+1)− < s− ≤ s+ < r(j+1)+ < rj+

for all j, with rj− → s− and rj+ → s+. (Observe that we use the fact that the knead-
ing sequence is aperiodic, and hence the internal address is infinite.) Furthermore, the
rays at addresses rj− and rj+ have a common periodic landing point, and hence the
corresponding separation line separates a from gs for all s /∈ [s−, s+]. Moreover, by the
internal address algorithm, the kneading sequences of the addresses rj± are all expo-
nentially bounded with the same bound as K(a), and hence the addresses involved are
uniformly exponentially bounded. In particular, if s− = s+, then the claim is proved.

If s− < s+, so that #S = 2, we claim that there is also a sequence of preperiodic
separation lines with associated external addresses {r̃j−, r̃j+} ⊂ (s−, s+), converging to
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{s−, s+} from the inside. It is possible to deduce this using the methods of [RS08b].
Instead, we notice that, in this case, the addresses in S must be bounded [RS08b,
Theorem A.3], and hence the claim reduces to the corresponding statement for unicritical
polynomials, using the same reduction as in the proof of [RS08b, Theorem A.3]. But in
this setting, the claim is well-known: For a unicritical polynomial without nonrepelling
cycles, the minor leaf of the corresponding lamination is approximated on from both
sides by periodic or pre-periodic leaves. 4

Observe that a separation line does not contain any escaping endpoints. Now suppose
that t1 and t2 are exponentially bounded addresses whose itineraries (with respect to
s ∈ S) are defined and do not coincide. Then it follows that gt1 and gt2 can be separated
by a separation line. Indeed, suppose first that the initial itinerary entries differ, and
consider a separation line γ that, separates both gσ(t1) from a. Then the component
of f−1a (C \ γ) containing gt1 can contain only rays whose initial itinerary entry agrees
with that of t1. This implies that t1 and t2 are indeed separated. The case where the
itineraries of t1 and t2 first differ in the n-th entry, for n > 0, follows inductively by taking
pullbacks. Given that any two endpoints have different itineraries by Proposition 6.10,
it follows again that the set of escaping endpoints is totally separated.

If #S ≥ 3, the proof proceeds analogously, using separation lines lying in each of
the complementary intervals of S. Alternatively, note that in this case the addresses in
S are eventually periodic [RS08b, Theorem A.3], and it follows from [Ben11] that the
singular value a is preperiodic. In this case, it is known that a is an endpoint [SZ03b,
Theorem 4.3], and hence the result follows from Theorem 1.3. �

Conjecturally, every repelling periodic point of an exponential map with non-escaping
singular value is the landing point of a periodic dynamic ray. Hence Theorem 8.1 provides
strong evidence that Conjecture 1.6 is valid at least for all exponential maps without
Cremer points or Siegel discs.

Also, if fa has a Siegel disc whose boundary contains the singular value a, then
conjecturally the singular value a is an endpoint. If this is the case, then the claim
in Conjecture 1.6 holds for such parameters by Theorem 1.3. However, when fa has a
Cremer point (or, indeed, a Siegel disc whose boundary does not contain the singular
value), then in view of the results discussed above it is likely that a is not an endpoint.

More recent results on quadratic polynomials with Cremer fixed points (and Siegel
discs) suggest that Conjecture 1.6 is true in these cases also. Indeed, for a large class of
such maps, Shishikura has announced the existence of an arc in the Julia set connecting
the fixed point and the critical point, and although the general case is out of reach, this
is now widely believed to be true in general. For exponential maps with an irrationally
indifferent orbit, it seems likely that there is similarly an arc of non-escaping points
connecting the singular value to this orbit. We could then join this arc with one of its
preimages to obtain a curve connecting the singular value to ∞, and apply the results
of Section 6.

Finally, let us briefly remark that our results for the set of escaping endpoints (and
all endpoints) leave open similar questions for the case of non-escaping endpoints, even
for the case of ez − a with a > 1. Evdoridou [Evd15] has recently announced a result
that implies that the set of non-escaping points of the Fatou function z 7→ z + 1 + e−z
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(whose Julia set is a Cantor bouquet), together with ∞, is totally disconnected. The
proof can be adopted to show also that the set of non-escaping endpoints – and even
the set of all endpoints not belonging to the fast escaping set A(f) – of an exponential
map with Cantor bouquet Julia set has the same property. This shows that our results
are optimal in a certain sense.
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