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Nonlinear Maximum Power Point Tracking Control
and Modal Analysis of DFIG Based Wind Turbine

B. Yang, L. Jiang, Member, IEEE, L. Wang, Q. H. Wu, Fellow, IEEE

Abstract—The doubly fed induction generator based wind
turbine (DFIG-WT) has strong nonlinearities originated from
the aerodynamics of wind turbine and the coupled dynamic
of the DFIG and can operate under a time-varying and wide
operation region. Based on the detailed model of DFIG-WT,
a feedback linearization controller is designed in this paper to
achieve the maximize the captured wind energy in the variable
speed operation range, by which fully decoupled control of the
external dynamics is achieved and the stability of remained
internal dynamics is analyzed in the sense of Lyapunov. More-
over, modal analysis is employed to verify the consistent dy-
namic under different operation conditions and low-voltage ride-
through (LVRT) capability provided by the proposed nonlinear
controller. Simulation study verifies that more accurate tracking
and superior LVRT capability can be achieved in comparison
with conventional vector control (VC).

Index Terms—DFIG-WT, nonlinear control, modal analysis,
MPPT, internal dynamics stability, low-voltage ride-through

I. INTRODUCTION

Nowadays doubly-fed induction generator based wind tur-
bines (DFIG-WTs) have been one popular wind power gen-
eration system and widely installed in industry due to their
merits of high energy conversion efficiency from variable
speed operation and relative low-cost of power electronic
converter [1]. The performance of DFIG-WTs fully depends
upon control systems applied on turbine side and generator
side which are generally designed via a cascade structure way
including a fast inner-loop for power control of the DFIG
and a slow outer-loop for speed control of the drive-train
of DFIG-WT. Wind turbine also utilizes pitch angle control
to adjust the output power for wind speed above the rated
speed. Below the rated wind speed, one of the crucial control
task is to maximize the captured wind energy via variable
speed operation, which requires the DFIG-WT must be fully
controllable and operated at an optimal rotor speed according
to time-varying wind speed, simultaneously minimizing the
driven-train mechanical load [2].

In the past decade, modeling and control of DFIG-WT have
attracted extensive research efforts [3]. Among those results,
vector control (VC) with proportional-integral (PI) loops is
the most used control algorithm for the power regulation of
the DFIG, due to the capability of decoupling control of
active/reactive power and simple structure [4]. This approach
is generally derived based on two basic assumptions, namely
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the constant stator flux or stator voltage, and negligible stator
resistance [5]–[7]. However, the stator flux and stator voltage
is no longer constant under grid faults or load variations.
Moreover, the presence of small stator resistance will result
in a poorly damped dynamics of stator flux. On the other
hand, the dynamic of of VC relies on the fine tuning of
gains of proportional-integral (PI) controllers. Although the
suitable range can be found via the observation of each
mode loci using modal analysis [8], unsuitable control gains
may result in Hopf bifurcation [9]. Their optimal parameters
can be determined by other methods such as particle swarm
optimization [10]. However, the optimal parameters obtained
merely corresponded to one specific operation point, while
cannot provide global consistent performance as the operation
points of DFIG-WT varies with the wind power inputs.

In fact, the DFIG-WT has strong nonlinearities originated from
the aerodynamics of wind turbine and the coupled dynamic
of the DFIG and operates under a time-varying and wide
operation region according to turbulent wind power inputs. To
tackle this issue, nonlinear control methodologies have been
applied, such as a wind speed estimator based nonlinear static
and dynamic state feedback controller for variable speed wind
turbine [11], a sliding mode controller for power extraction and
regulation under model uncertainties [12], a nonlinear back-
stepping approach for achieving optimal reference tracking
and globally asymptotically stable in the context of Lyapunov
theory [13], and feedback linearization control (FLC) [14]–
[16]. FLC compensates system nonlinearities through exact
linearization and controlling of the equivalent linear system so
as to provide a global optimal control performance across the
whole operation region. A FLC approach was systematically
developed in [14] for high-performance control of AC/DC
PWM converters, and a decentralized nonlinear controller is
designed in the transient stability control of power systems
based on a third-order DFIG-WT model [15]. In order to
reject the effect of the external disturbances, [16] proposes a
feedback linearization controller equipped with a disturbance
observer for the estimation of parameter uncertainties.

As a consequence, those assumptions of the VC are removed
as all system dynamics are considered and the tuning load of
control gains are reduced. Moreover, controller is designed in
an integrated way comparing with the cascade-structure of the
VC. To achieve the fully linearization, some work ignored the
stator dynamic and used third-order system model. Neverthe-
less, due to this model simplification, the stator dynamics were
ignored, and the system transient dynamics was lost.
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Fig. 1. The configuration of the grid connected DFIG-WT.

However, when the system relative degree is less than system
order the internal dynamics will emerge, which stability is
unclear during the FLC design. In fact numerous examples
have shown that the unstable internal dynamics can lead to
the unbounded output [17], therefore it must be analyzed
particularly.

Since the system nonlinearity is fully removed by FLC a
global optimal control can be achieved. This paper designs a
feedback linearization controller based on the detailed DFIG-
WT model to achieve MPPT, therefore the stator dynamics
is included and the internal dynamics is proven to be stable
in the sense of Lyapunov. We use both the modal analysis
and simulation study to show the system LVRT capacity and
parameter robustness, which provides a new perspective to
these issues.

The remaining of the paper is organized as follows. Section
II is devoted to the basic development of DFIG-WT model.
Section III presents the nonlinear control design of rotor side
converter (RSC), which is further divided into two parts, i.e.,
imposing the desired external dynamics of the model on the
one hand, and the analysis of the internal dynamics stability on
the other. In Section IV both the modal analysis and simulation
study are carried out to verify the effectiveness of our proposed
approach. Finally, Section V completes the paper and reports
the most meaningful conclusions extracted.

II. DYNAMIC MODEL OF DFIG-WT
A schematic diagram of DFIG-WT is shown in Fig. 1. The

wind turbine is connected to the induction generator through a
mechanical shaft system. And the stator is directly connected
to grid while rotor is fed through a back-to-back converter.

A. Wind turbine aerodynamic model
The aerodynamic model of a wind turbine can be charac-

terized by the energy conversion coefficient Cp(λ, β), which
is a function of both tip-speed-ratio λ and blade pitch angle
β, in which λ is defined by

λ =
wmR

vwind
(1)

where R is the blade radius, ωm is the wind turbine rotational
speed and vwind is the wind speed. Based on the wind turbine
characteristics, a generic equation used to model Cp(λ, β) is
[8]

Cp(λ, β) = c1

(
c2
λi

− c3β − c4

)
e
− c5

λi + c6λ (2)

with
1

λi
=

1

λ+ 0.08β
− 0.035

β3 + 1
(3)

The coefficients c1 to c6 are: c1=0.5176, c2=116, c3=0.4, c4=5,
c5=21 and c6=0.0068 [20].

The mechanical power that wind turbine extracts from the
wind is calculated as

Pm =
1

2
ρπR2Cp(λ, β)v

3
wind (4)

where ρ is the air density. We consider the wind turbine
operates in the sub-rated speed range hence its pitch control
is deactivated such that β ≡ 0.

B. Generator model

The induction generator used is a single-cage wound ro-
tor induction machine. The dynamics of the system can be
modeled by a set of differential algebraic equations in per
unit on machine base. We define e′qs = (Lm/Lrr)wsψdr,
e′ds = −(Lm/Lrr)wsψqr, L′

s = Lss − L2
m/Lrr, Tr = Lrr/Rr,

R1 = Rs + R2 and R2 = (Lm/Lrr)
2Rr. After some

substitutions and rearrangements the generator dynamics are
described as followed [8]:

diqs
dt

=
ωb

L′
s

(
−R1iqs + ωsL

′
sids +

ωr

ωs
e′qs −

1

Trωs
e′ds

− vqs +
Lm

Lrr
vqr

)
(5)

dids
dt

=
ωb

L′
s

(
− ωsL

′
siqs −R1ids +

1

Trωs
e′qs +

ωr

ωs
e′ds

− vds +
Lm

Lrr
vdr

)
(6)

de′qs
dt

=ωbωs

[
R2ids −

1

Trωs
e′qs +

(
1− ωr

ωs

)
e′ds

− Lm

Lrr
vdr

]
(7)

de′ds
dt

=ωbωs

[
−R2iqs −

(
1− ωr

ωs

)
e′qs −

1

Trωs
e′ds

+
Lm

Lrr
vqr

]
(8)

where ψdr and ψqr are the direct (d) and quadrature (q) axis
rotor flux linkages; Rs and Rr are the stator and rotor resis-
tances; Lss and Lrr are the stator and rotor self-inductances;
Lm is the mutual inductance; ωb is the electrical base speed;
ωs is the synchronous angle speed; Tr is the rotor circuit time
constant; e′ds and e′qs are the d and q axis voltages behind the
transient; ids and iqs are the d and q axis stator currents; vds
and vqs are the d and q axis stator terminal voltages, aligning
the q-axis with stator voltage and the d-axis leading the q-
axis, vds becomes zero and vqs equals to the magnitude of
the terminal voltage; vdr and vqr are the d and q axis rotor
voltages, respectively.

The electromagnetic torque Te produced by the generator is
obtained as

Te = (e′qs/ωs)iqs + (e′ds/ωs)ids (9)
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C. Drive train model

The drive train comprises turbine, gearbox, shafts and other
mechanical components. The shaft system can be represented
either by a two-mass or single lumped-mass model [18]. In the
two-mass model, separate masses are used to describe the low-
speed turbine and the high-speed generator, and the connecting
resilient shaft is modeled as a spring and a damper [11]. As the
mechanical mode is of less interest in our nonlinear controller
design the lumped-mass model is chosen here.

dωm

dt
=

1

2Hm
(Tm − Te −Dωm) (10)

where Hm is the lumped inertia constant, the rotational speed
ωm is equal to the rotor speed ωr in the lumped-mass model,
D represents the damping of the lumped system, Tm is the
mechanical torque given as Tm = Pm/wm and Te is calculated
from (9).

In order to harvest the maximum amount of energy from
the wind, the wind turbine must be regulated at a specific
rotational speed to maintain its tip-speed-ratio λ as close as
possible to its optimal value λopt. This can be achieved by
the adjustment of rotor speed controller such that Cp(λ, β)
remains at the Cp max(λ, β) point [21].

III. FLC OF DFIG-WT
Feedback linearization is a typical approach in nonlinear

control theory. The idea is to transform a nonlinear system
dynamics into an equivalent (fully or partly) linear one through
a change of state variables and a suitable nonlinear control
input, so that linear control techniques can be then applied to
the nonlinear system [17].

A. Multiple Input Multiple Output (MIMO) feedback lin-
earization

We consider a standard affine MIMO system in a neighbor-
hood around an operation point x0 of the form{

ẋ = f(x) + g(x)u
y = h(x)

(11)

where x ∈ Rn is the state vector, u ∈ Rm is the control input
vector, y ∈ Rm is the output vector, f(x), g(x) and h(x)
are the smooth and continuous vector fields. The input-output
linearisation of a MIMO system is obtained via differentiating
the output yi of the system until the input uj appears, assuming
that ri is the smallest integer such that at least one of the inputs
explicitly appears in y(ri)i

y
(ri)
i = Lri

f hi +
m∑
j=1

LgjL
ri−1
f hiuj (12)

where y
(ri)
i denotes the ith-order derivative of yi, if

LgjL
ri−1
f hi(x) ̸= 0 for at least one j. Repeating the above

procedure for each output yi gives
y
(r1)
1
...

y
(rm)
m

 =

 Lr1
f h1
...

Lrm
f hm

+B(x)

 u1
...
um

 (13)

B(x) =

 Lg1L
r1−1
f h1 · · · LgmL

r1−1
f h1

...
...

...
Lg1L

rm−1
f hm · · · LgmL

rm−1
f hm

 (14)

Here B(x) is the m×m control gain matrix. Ω is defined as
the intersection of the Ωi. If the partial ”relative degrees” ri
are all well defined, then Ω is itself a finite neighborhood of
x0. Furthermore, if B(x) is invertible the physical control law
of the MIMO nonlinear system can be derived as

u = B(x)−1


 −Lr1

f h1
...

−Lrm
f hm

+

 v1
...
vm


 (15)

where vi is the new input of the system. Now the equivalent
linear dynamics become

y
(ri)
i = vi (16)

Since the input vi only affects the output yi this is a decoupled
control law, and the invertible matrix B(x) is called the
decoupled matrix of the system. The transformed system is
now said to have relative degree (r1, . . . , rm) at x0, and we
define the scalar r = r1+ . . .+ rm as the total relative degree
of the system at x0.

B. Nonlinear MPPT control

We choose the rotor speed ωr and stator reactive power Qs

as the outputs {
y1 = ωr

y2 = Qs

(17)

and define the tracking error e = [e1 e2]
T as{

e1 = ωr − ωr ref

e2 = Qs −Qs ref

(18)

where ωr ref = λoptvwind/R and Qs ref ≡ 0. Then we
differentiate the tracking error until control input vdr and vqr
explicitly appeared, hence the input-output feedback lineariza-
tion of (18) becomes[

ë1
ė2

]
=

[
ϕ1 − ω̈r ref

ϕ2 − Q̇s ref

]
+B

[
vdr
vqr

]
(19)

where

ϕ1 = Ṫm

2Hm
− 1

2Hm

{
wb

[
(1− ωr

ωs
)
(
e′dsiqs − e′qsids

)
− 1

ωsTr(
e′qsiqs + e′dsids

) ]
+ ωb

ωsL′
s

[
ωr

ωs

(
e′2ds + e′2qs

)
+ωsL

′
s(e

′
qsids − e′dsiqs)−R1(e

′
qsiqs + e′dsids)

−e′qsvqs − e′dsvds

]}
(20)

ϕ2 = ωb

L′
s

(
ωsL

′
siqs +R1ids − 1

ωsTr
e′qs − ωr

ωs
e′ds

)
vqs

+ωb

L′
s

(
−R1iqs + ωsL

′
sids +

ωr

ωs
e′qs − 1

ωsTr
e′ds − vqs

)
vds
(21)

and

B =

[
ωbLm

−2HmLrr

(
e′ds
ωsL′

s
− iqs

)
ωbLm

−2HmLrr

(
e′qs
ωsL′

s
+ ids

)
−ωbLm

L′
sLrr

vqs
ωbLm

L′
sLrr

vds

]
(22)
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where B is the control gain matrix. As det(B) =

− ω2
bL

2
mvqs

2HmL′
sL

2
rr

( e′qs
ωsLs

+ ids
)
̸= 0, it is invertible and the trans-

formed system is linearizable over the whole operation range.

The time derivative of Tm in (20) is

Ṫm =
∂Tm
∂ωr

× dωr

dt
+

∂Tm
∂vwind

× dvwind

dt
(23)

with

∂Tm
∂ωr

=
1

2
ρAv3wind

{
c1e

−c5(
vwind
Rωr

−0.035)
[c2c5v2wind

R2ω4
r

− (2c2 + 0.035c2c5 + c4c5)vwind

Rω3
r

+
0.035c2 + c4

ω2
r

]}
(24)

and

∂Tm
∂vwind

=
1

2
ρAv2wind

{
c1e

−c5(
vwind
Rωr

−0.035)
[
− c2c5v

2
wind

R2ω3
r

+
(4c2 + 0.035c2c5 + c4c5)vwind

Rω2
r

− 0.105c2 + 3c4
ωr

]
− 2c6R

vwind

}
(25)

where dωr

dt is the acceleration rate of rotor speed and dvwind

dt
is the wind variation rate, respectively.

Let v = [v1 v2]
T be the new control input of the linearized

system [
ë1
ė2

]
=

[
v1
v2

]
= −

[
α1e1 + α2ė1

α3e2

]
(26)

where α1, α2, α3 are the control gains. After choosing the
appropriate gains αi to make the above system be Hurwitz, i.e.,
all of its eigenvalues have negative real parts, the asymptotic
error convergence would be ensured. To this end, we derive
the nonlinear control law as[

vdr
vqr

]
= B−1

[
−ϕ1 + ω̈r ref + v1
−ϕ2 + Q̇s ref + v2

]
(27)

And the tracking error dynamics are

ë1 + α1ė1 + α2e1 = 0
ė2 + α3e2 = 0

(28)

From (27) one can find that the feedback linearization con-
troller has an integrated structure. In essence it regulates the
voltage injection of RSC to maintain the rotor speed ωr and
reactive power Qs to track their reference values.

C. The stability of internal dynamics

The internal dynamics of (19) correspond to n − r, here
n = 5 is the order of the original system and r = 3 is the total
relative degree respectively. The stability of internal dynamics
can be analyzed by the zero-dynamic method in [17]. We set
the tracking errors equal to zero e1 = e2 = ė1 = 0, namely

Qs = Qs ref , ωr = ωr ref and ω̇r = ω̇r ref . Substitute these
values into (5)-(10) it yields

ė′qs =− ω3
sωbL

′
s(Tm ref − 2Hmω̇r ref)

e′qs
+ ωsωbe

′
ds

ė′ds =
ω2
sωb(Tm ref − 2Hmω̇r ref)

e′qs

[ω3
sL

′2
s (Tm ref − 2Hmω̇r ref)

e′2qs

− ωsL
′
se

′
ds

e′qs
+R1 −R2

]
+ ωsωb(vqs − e′qs) (29)

where

Tm ref =
ρπR3Cp maxv

2
wind

2λopt
(30)

with

ω̇r ref =
λopt
R

v̇wind (31)

We construct a Lyapunov function V for (29) as

V =
1

2
e′2qs +

1

2
e′2ds (32)

Differentiating V along with the time obtains

V̇ =e′qsė
′
qs + e′dsė

′
ds = ω2

sωb(Tm ref − 2Hmω̇r ref)
[
− ωsL

′
s

+
ω3
sL

′2
s (Tm ref − 2Hmω̇r ref)e

′
ds

e′3qs
− ωsL

′
se

′2
ds

e′2qs

+
(R1 −R2)e

′
ds

e′qs

]
+ ωsωbvqse

′
ds (33)

The stability of (29) can then be determined by the sign of
V̇ . We focus on the variable speed range vwind = 8 − 12
m/s, and the bounds of each variable are: e′qs ∈ [1.002, 1.005]
p.u., e′ds ∈ [0.045, 0.098] p.u. and Tm ref ∈ [0.443, 0.996] p.u..
Assuming the wind variation rate is bounded as |v̇wind| ≤ 1
m/s it becomes

V̇ ≤ V̇max =ω2
sωb(Tm ref max − 2Hmω̇r ref min)

[
− ωsL

′
s+

ω3
sL

′2
s (Tm ref max − 2Hmω̇r ref min)e

′
ds max

e′3qs min

−

ωsL
′
se

′2
ds min

e′2qs max

+
(R1 −R2)e

′
ds max

e′qs min

]
+ ωsωbvse

′
ds max = −22.80 < 0 (34)

Therefore (29) is asymptotically stable as V̇ < 0, and the
stability of the linearized system (19) can be guaranteed.

IV. MODAL ANALYSIS AND SIMULATION STUDY

We use both modal analysis and simulation study to verify
the effectiveness of FLC. A 5 MW DFIG-WT is employed
and the parameters can be found in the Appendix.

Modal analysis provides the system mode loci hence the sys-
tem response under different operation condition can be stud-
ied. One can select sufficient operation points over the whole
operation range, while the closed-loop system is linearized
at each given operation point to form the Jacobian matrix.
Table I gives the system modes under the nominal operation
point (vwind = 12 m/s, vs = 1.0 p.u.). The λ1,2, λ3,4 and
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λ5 are the current, voltage and mechanical mode respectively.
λi = σi ± jωi, where the stability is determined by the
sign of σi, and ωi is the natural frequency of oscillations.
The original system (5)-(10) has been transformed into the
equivalent linear system (19) and the internal dynamics (29).
The former corresponds to the current and mechanical mode
of (iqs, ids ωr), and the latter corresponds to the voltage mode
of (e′qs, e

′
ds). It is worth to note that λ1,2 are fully decoupled

without imaginary part in FLC, although the close location
of λ3,4 to the imaginary axis decreases the stability margin,
their stability is guaranteed by (34), and more damping can
be provided in λ5.

A. Maximum power point tracking (MPPT) performance

Simulation study for an increase in wind speed from 8
m/s and 12 m/s is showed in Fig. 2(a). The rotor speed and
conversion coefficient are given in Fig. 2(b)-(c). It shows that
more accurate tracking and faster restoration of conversion
coefficient can be achieved by FLC against VC over the whole
operation range.

The corresponding system mode loci is presented in Fig. 3.
One can find that iqs, e′qs and e′ds modes of FLC only vary
slightly such that the operation performance is maintained as
wind speed changes, and the ids mode is invariant regardless of
the operation condition, which demonstrates a fully decoupled
reactive power regulation from rotor speed control, and more
damping can be provided as the ωr mode locates further from
imaginary axis. In fact, the dramatic modes variation of VC
is attributed to the system nonlinearity, which has been fully
removed by FLC thus a global optimal control performance
over the variable speed range can be achieved.

In order to verify the results of modal analysis, simulation
study is carried out to illustrate the system responses in Fig.
4. Because the control inputs (rotor voltage vqr and vdr) may
exceed the admissible capacity of RSC at some operation
point, their values must be limited. Here vdr and vqr are
scaled proportionally as: if vr =

√
v2dr + v2qr > vr max, then

we set vdr lim = vdrvr max/vr and vqr lim = vqrvr max/vr,
respectively.

During the wind variation the net power output Pa = Pm −
Pe > 0 must be satisfied to produce an accelerating torque
as wind speed increases, however, due to the mechanical
constraint Pm could not adjust immediately hence a temporary
drop in Pe has to be compromised. It shows from Fig. 4 that
a smoother active power tracking and fully decoupled reactive
power regulation can be achieved by FLC with less control
cost.

B. Low-voltage ride-through (LVRT) capability

With the unprecedented increasing integration of wind gen-
erators into grid, it is required the DFIG-WT to be capable of
LVRT when the voltage is temporarily reduced due to a fault
or load change in the grid, or even addresses the generator to
stay operational and not disconnect from the grid during and
after the voltage dip.
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Fig. 2. MPPT performance, dotted line: reference value, dashed line: VC,
solid line: FLC.

TABLE I
SYSTEM MODE UNDER NOMINAL OPERATION POINT

poles system modes VC FLC
λ1 iqs −2.33 + j25.42 −16.2
λ2 ids −2.33− j25.42 −8
λ3 e′qs −11.20 + j310 −1.85 + j314.8
λ4 e′ds −11.20− j310 −1.85− j314.8
λ5 ωr −0.27 −1.07

The system loci of vs = 0.2− 1.0 p.u. is showed in Fig. 5, a
dramatic variation of VC system modes can be found, while
FLC system modes are insensitive to the voltage dip thus its
LVRT capability is enhanced. A 625 ms voltage dip to 0.2
p.u. and restores to 0.9 p.u. is simulated in Fig. 6 with a total
fault time of 3 s. In VC the significant variation of active
power might cause the activation of the protective devices to
disconnect the generator from the grid, the external reactive
power compensation is required for the purpose of reactive
power regulation as well. In contrast FLC can eliminate the
effect of grid fault smoothly and rapidly, therefore improve
the system LVRT capacity.

C. Fully decoupled control

The decoupled control of VC is derived from the assumption
of constant stator flux or stator voltage, this is no longer true
when fault occurs in the grid, however FLC can achieve the
fully decoupled control as no such assumption is made. The
system responses with a simultaneous 30% voltage dip and
1 m/s wind speed decrease from the nominal operation point
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Fig. 3. System mode loci with vwind = 8− 12 m/s, ×: VC, ◦: FLC.

is showed in Fig. 7. It shows that the performance of active
power control in VC degrades during fault, while FLC can
effectively control the active power and regulate the reactive
power as its reference value.

D. System robustness with parameter uncertainty

It is important to mention that the effect of system sensitivity
to parameter uncertainty may be particularly severe when the
linearizing transformation is poorly conditioned. Since the
accurate system parameter is not accessible in practice, it can
have strong adverse effects on FLC performance which does
not guarantee robustness in theory.

To address this issue Fig. 8 illustrates the system mode loci
as the stator resistance varies 2.0Rs nom ≥ Rs ≥ Rs nom,
which is a common result from generator heating. Note that the
stability margin of iqs mode and internal dynamics decreases
dramatically, hence its control performance will degrade as
stator resistance varied. However, none of the system parame-
ter is used in VC design it is robust to parameter uncertainty.
Fig. 9 shows the simulation results with Rs = 1.0Rs nom,
Rs = 1.5Rs nom and Rs = 2.0Rs nom respectively, it shows
the feedback linearization controller provides incorrect control
input and can no longer drive the active and reactive power to
their reference value, consequently it is vulnerable in terms of
parameter uncertainties.
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v q
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p
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Fig. 4. System responses in MPPT, dashed line: VC, solid line: FLC.

V. CONCLUSION

We have designed a feedback linearization controller to
achieve MPPT in this paper, which fully removes the system
nonlinearity to obtain a global optimal control. Based on the
detailed DFIG-WT the stator dynamics is taken into account
hence system transient dynamics is included. The original
system is transformed into the external and internal dynamics
respectively, desired control goal is achieved by imposing the
it on the external dynamics via exact input-output linearization,
meanwhile the asymptotic stability of the internal dynamics is
proved in the context of Lyapunov.

Modal analysis shows that each mode of FLC varies slightly
under different operation conditions, thus the global optimal
control is obtained. Furthermore, the LVRT capacity of system
is also significantly enhanced as the nonlinearity has been
removed. As none of the model assumption is made fully
decoupled control is achieved. However, the effectiveness of
the approach requires accurate model which is difficult to
acquire in practice, simulation studies show the control per-
formance degrades dramatically in the face of stator resistance
uncertainties. Considerable more work in future, hopefully,
will be done in designing the nonlinear robust and adaptive
controllers to resolve this issue.

APPENDIX

System parameters [8]:
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Fig. 6. System responses in LVRT, dashed line: VC, solid line: FLC.
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Fig. 7. System responses with simultaneous 30% voltage dip and 1m/s wind
speed decrease from the nominal point, dashed line: VC, solid line: FLC.
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Fig. 9. System response with parameter uncertainty, dotted line: Rs =
1.0Rs nom, dashed line: Rs = 1.5Rs nom, solid line: Rs = 2.0Rs nom.

ωb = 100π rad/s, ωs = 1.0 p.u., ωr base = 1.29, vs nom = 1.0
p.u..

DFIG parameters:

Prated = 5 MW, Rs = 0.005 p.u., Rr = 1.1Rs, Lm = 4.0
p.u., Lss = 1.01Lm, Lrr = 1.005Lss.

Wind turbine parameters:

ρ = 1.225 Kg/m3, R = 58.59 m2, vwind nom = 12 m/s,
λopt = 6.325, Hm = 4.4 s, D = 0 p.u..
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