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Abstract

This paper proposes a perturbation estimation based coordinated adaptive

passive control (PECAPC) of generators excitation system and thyristor-

controlled series compensator (TCSC) devices for complex, uncertain and

interconnected multimachine power systems. Discussion begins with the

PECAPC design, in which the combinatorial effect of system uncertain-

ties, unmodelled dynamics and external disturbances is aggregated into a

perturbation term, and estimated online by a perturbation observer (PO).

PECAPC aims to achieve a coordinated adaptive control between the exci-

tation controller (EC) and TCSC controller based on the nonlinearly func-
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tional estimate of the perturbation. In this control scheme an explicit control

Lyapunov function (CLF) and the strict assumption of linearly parametric

uncertainties made on power system structures can be avoided. A decen-

tralized stabilizing EC for each generator is firstly designed. Then a TCSC

controller is developed to passivize the whole system, which improves sys-

tem damping through reshaping the distributed energies in power systems.

Case studies are carried out on a single machine infinite bus (SMIB) and a

three-machine power system, respectively. Simulation results show that the

PECAPC-based EC and TCSC controller can coordinate each other to im-

prove the power system stability, finally a hardware-in-the-loop (HIL) test is

carried out to verify its implementation feasibility.

Keywords: Coordinated adaptive passive control, perturbation estimation,

energy shaping, multimachine power systems.

1. Introduction

Power system stability is becoming a crucial issue as the size and com-

plexity of power systems increase [1]. Conventional linear control methods

have been widely used, however, they cannot maintain consistent control

performance as power systems are highly nonlinear, which operate under a

wide range of operating conditions and various disturbances [2]. Synchronous

2



generator excitation control is one of the most popular methods to enhance

the power system stability. Many nonlinear control approaches have been

used for the excitation controller (EC), such as adaptive H∞ control [3], L-2

disturbance attenuation control [4], nonlinear adaptive control [5], adaptive

dynamic programming [6], and optimal predictive control [7]. On the other

hand, proper controllers of flexible AC transmission systems (FACTS) can

also improve the power system stability. Many studies have been undertaken

on the development of nonlinear controllers for thyristor controlled series

compensation (TCSC) [8], static variable compensator (SVC) [9], and static

synchronous compensator (STATCOM) [10]. However, uncoordinated EC

and FACTS controller may deteriorate each other or even lead to instability

under large disturbances [1].

To resolve the above issues, many nonlinear coordinated control approaches

of excitation systems and FACTS devices have been applied to achieve an op-

timal performance of the whole system, such as optimal-variable-aim strate-

gies [11], global control [12], and zero dynamics method [13]. However,

these methods require accurate system models in the controller design pro-

cess, which are difficult to guarantee their reliable performances when imple-

mented in a real multimachine system. Hence several adaptive and robust
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coordinated control methods are investigated in [14, 15, 16]. However, their

design is complicated and cancels possible beneficial nonlinearities. Besides,

the optimal control performance may not be obtained as the physical prop-

erty of a power system is ignored.

Passivity provides a physical insight for the analysis and design of non-

linear systems, which decomposes a complex nonlinear system into simpler

subsystems that, upon interconnection, and adds up their local energies to

determine the full system’s behavior. The action of a controller connected to

the dynamical system may also be regarded, in terms of energy, as another

separate dynamical system. Thus the control problem can then be treated as

finding an interconnection pattern between the controller and the dynamical

system. This ‘energy shaping’ approach is the essence of passive control (PC),

which takes into account the energy of the system and gives a clear physical

meaning, such that the changes of the overall storage function can take a de-

sired form [17, 21]. It is well known that the nature of a power system is to

produce, transmit and consume energy, and the power flow into the network

must be greater than or equal to the rate of change of the energy stored in

the network [18]. Coordinated passive control (CPC) [19, 20] is an extended

passivity-based method [22, 23], which requires an accurate system model.
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Therefore, coordinated adaptive passive control (CAPC) has been developed

for the control of generators and TCSCs by [24, 25]. However, it is based on

the linearly parametric adaption, which updating law can only deal with an

uncertain damping coefficient and a nonlinear TCSC unmodelled dynamics

satisfying a linear growth condition. These assumptions restrict its appli-

cation in real multimachine system operations as the modelling uncertainty

consists of the inertial constant, time constant, general unmodelled TCSC

dynamics and inter-area oscillation. Moreover, an explicit control Lyapunov

function (CLF) needs to be constructed which is difficult in multimachine

systems.

Perturbation observer (PO) has been proposed to estimate the lumped

uncertainty not considered in the nominal plant model, based on an extended

state space model [26, 27, 5, 29, 30], such as sliding-mode control with pertur-

bation estimation (SMCPE) which uses a sliding-mode perturbation observer

(SMPO) to reduce the conservativeness of the sliding-mode control (SMC)

[26], active disturbance rejection controller (ADRC) which designs nonlinear

disturbance observers [27], and a high-gain perturbation observer (HGPO)

or SMPO as an extended-order linear observer [5, 29, 30]. This paper adopts

the HGPO as it provides convenience of stability analysis of closed-loop sys-
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tem, as the SMPO [26] may suffer the discontinuity of high-speed switching

and the nonlinear observer [27] is too complex for stability analysis.

Main contributions of this paper are highlighted as follows:

• A perturbation estimation based coordinated adaptive passive control

(PECAPC) scheme has been proposed, via designing a PO to achieve a func-

tional estimation and compensation. It can partially releases the dependence

of system model in the passive control (PC) and handle time-varying un-

known dynamic, while conventional adaptive passive control (APC) [24, 25]

can only estimate the linearly parametric uncertainties.

• The design of PECAPC is relatively simpler than that of the APC as

it only requires the range of control Lyapunov function (CLF), while APC

requires an explicit CLF which is difficult to find in complex nonlinear sys-

tems.

• The proposed PECAPC scheme is applied for both single machine in-

finite bus (SMIB) and multimachine power systems, without requiring the

accurate model of a large-scale power system, in which APC cannot be ap-

plied due to the unavailability of accurate model.

• The effectiveness of the proposed controller is verified by simulation and

hardware-in-the-loop (HIL) tests.
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Analysis begins with decomposing the original power system into sev-

eral subsystems, in which the TCSC reactance and its modulated input are

chosen as the system output and input, respectively, such that the relative

degree is one. A decentralized stabilizing EC for each generator is designed

at first, the uncertain parameters and unmodelled dynamics of generator are

lumped into a perturbation which is estimated and compensated by a high-

gain state and perturbation observer (HGSPO). Then a coordinated TCSC

controller is developed via passivation to ensure the whole system stability,

the uncertain TCSC parameters and general unmodelled TCSC dynamics

are aggregated into another perturbation, which is estimated and compen-

sated by a HGPO. Two case studies are undertaken on a single machine

infinite bus (SMIB) and a three-machine system to evaluate the effectiveness

of PECAPC, respectively. Simulation and HIL test results are provided to

verify the effectiveness of the proposed approach.
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2. Power Plant Model

2.1. A Single Machine Infinite Bus System with a TCSC Device

A SMIB system with a TCSC device is shown in Fig. A.1, of which the

system dynamics is described as [24]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ̇ = ω − ω0

ω̇ = −D
H
(ω − ω0) +

ω0

H

(
Pm − E′

qVs sin δ

X′
dΣ+Xtcsc

)

Ė ′
q =

(Xd−X′
d)(Vs cos δ−E′

q)

Td0(X
′
dΣ+Xtcsc)

− 1
Td0
E ′

q +
Kc

Td0
ufd

Ẋtcsc = − 1
Tc
(Xtcsc −Xtcsc0) +

KT

Tc
uc + ζtcsc

(1)

where δ and ω denote the angle and relative speed of the generator rotor,

respectively; H the inertia constant; Pm the constant mechanical power on

the generator shaft; D the damping coefficient; E ′
q and Vs the inner generator

voltage and infinite bus voltage; Td0 the d-axis transient short-circuit time

constant; Tc the time constant of TCSC; X ′
dΣ = Xt + X ′

d +
1
2
(XL1 + XL2);

Xt the transformer reactance; X ′
d the d-axis generator transient reactance;

XL1 and XL2 the transmission line reactance; Xtcsc the TCSC reactance and

Xtcsc0 the initial TCSC reactance; Kc the gain of excitation amplifier; ufd the

excitation voltage; KT the gain of TCSC regulator; uc the TCSC modulated

input; and ζtcsc the unmodelled TCSC dynamics.
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2.2. A Multimachine System with a TCSC Device

A multimachine system with n machines and a TCSC device, where the

nth machine is the reference machine, is described by [5]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ̇i = ωi − ω0

ω̇i =
ω0

2Hi

(
Pmi − Di

ω0
(ωi − ω0)− Pei

)

Ė ′
qi =

1
Td0i

(ufdi − Eqi), i = 1, 2, · · · , n,

Ẋtcsc = − 1
Tc
(Xtcsc −Xtcsc0) +

KT

Tc
uc + ζtcsc

(2)

with

Eqi = E ′
qi + (xdi − x′di)Idi

Pei = E ′
qiIqi + E ′2

qiGii

Idi = −
n∑

j=1,j �=i

E ′
qjYij cos(δi − δj)

Iqi = −
n∑

j=1,j �=i

E ′
qjYij sin(δi − δj)

where subscript i denotes the variables of the ith machine; δi the relative rotor

angle; ωi the generator rotor speed; Eqi and E ′
qi the voltage and transient

voltage on the q-axis; Pmi the constant mechanical power input; Pei the

electrical power output; Hi the rotor inertia; Td0i the d-axis transient short-
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circuit time constant; Idi and Iqi the d-axis and q-axis generator current; Yij

the equivalent admittance between the ith and jth nodes, which is modified

as Y ′
ij = 1/(1/Yij +Xtcsc) when a TCSC is equipped between the ith and jth

nodes; and Gii the equivalent self conductance of the ith machine.

3. Perturbation Estimation based Coordinated Adaptive Passive

Control

Consider a two input system in formal form of passive system as follows

[19, 21]:

ż = Az +B(a(z, y) + b(z, y)u2 + ξ) (3)

ẏ = α(z, y) + β1(z, y)u1 + β2(z, y)u2 + ζ (4)

where y ∈ R is the output and the relative degree from u1 to y is one, which

is the basic form in CPC design. z ∈ R
n−1 is the state vector of the internal

dynamics; a(z, y) : Rn−1 × R → R and b(z, y) : R
n−1 × R → R are C∞

unknown smooth functions, ξ ∈ R and ζ ∈ R are modelling uncertainties.

α(z, y), β1(z, y) and β2(z, y) are all unknown functions defined on R
n−1 ×R.
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Matrices A and B are

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0

...
...

0 0 0 · · · 1

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n−1)×(n−1)

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n−1)×1

The zero dynamics of system (3) is assumed to be stabilizable by u2 and

written as

ż = Az +B(a(z, 0) + b(z, 0)u2 + ξ) (5)

3.1. Design of HGSPO and HGPO [5]

The perturbation of system (5) is defined as

Ψ1(·) = a(z, 0) + (b(z, 0)− b10)u2 + ξ (6)

Define a fictitious state to represent the system perturbation, that is, zn =

Ψ1(·). Then extend the original (n−1)th-order system (5) into the following
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nth-order system

że = A1ze +B1u2 +B2Ψ̇1(·) (7)

where ze = [z1, z2, · · · , zn−1, zn]
T. B1 = [0, 0, . . . , b10, 0]

T ∈ R
n and B2 =

[0, 0, . . . , 1]T ∈ R
n. Matrix A1 is

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · · · · 0

0 0 1 · · · 0

...
...

0 0 0 · · · 1

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n×n

Throughout this paper, x̃ = x− x̂ refers to the estimation error of x whereas

x̂ represents the estimate of x. A nth-order HGSPO is used for the extended

nth-order system (7) as

˙̂ze = A1ẑe +B1u2 +H(z1 − ẑ1) (8)

where H = [α1/ε, α2/ε
2, · · · , αn−1/ε

n−1, αn/ε
n]T is the observer gain with

0 < ε < 1.
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The estimation errors of HGSPO (8) is calculated as

˙̃ze = A1z̃e +B2Ψ̇1(·)−H(z1 − ẑ1)

The design procedure of HGSPO can be summarized as following steps:

Step 1: Define the perturbation for system (5) as Eq. (6);

Step 2: Define a fictitious state to represent the perturbation as zn = Ψ1(·);

Step 3: Extend the original (n-1)th-order system (5) into the extended nth-

order system (7);

Step 4: Design a nth-order HGSPO (8) to estimate state z and perturbation

Ψ1(·) for the extended nth-order system (7);

Step 5: Choose αi = C i
nλ

i such that the pole of HGSPO (8) can be placed at

−λ, where i = 1, 2, · · · , n and λ > 0.

Similarly, the perturbation of system (4) is defined as

Ψ2(·) = α(z, y) + β2(z, y)u2 + (β1(z, y)− b20)u1 + ζ (9)

Define a fictitious state to represent the system perturbation, that is, y2 =
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Ψ2(·). Then extend the original first-order system (4) into the following

second-order system ⎧⎪⎪⎨
⎪⎪⎩

ẏ = y2 + b20u1

ẏ2 = Ψ̇2(·)
(10)

A second-order HGPO is used for system (10) as

⎧⎪⎪⎨
⎪⎪⎩

˙̂y = Ψ̂2 +
α′
1

ε′ (y − ŷ) + b20u1

˙̂
Ψ2(·) = α′

2

ε′2 (y − ŷ)

(11)

where 0 < ε′ < 1.

Define the scaled estimation errors of HGPO (11) as η′1 = ỹ/ε′, η′2 = Ψ̃2(·),

and η′ = [η′1, η
′
2]

T, gives

ε′η̇′ = A′
1η

′ + ε′B′
1Ψ̇2(·) (12)

with

A′
1 =

⎡
⎢⎢⎣

−α′
1 1

−α′
2 0

⎤
⎥⎥⎦ , B′

1 =

⎡
⎢⎢⎣

0

1

⎤
⎥⎥⎦

where α′
1 and α′

2 are chosen such that A′
1 is a Hurwitz matrix.

The design procedure of HGPO is similar to that of HGSPO. Normally
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the pole of HGSPO (8) and HGPO (11) is chosen to be 10 times larger than

the dominant pole of the equivalent linear system of (5) and (4), respectively,

which can ensure a fast estimation of perturbation Ψ1(·) and Ψ2(·). Note that

one only needs the measurement of state z1 and input u2 for the design of

HGSPO (8), and the measurement of output y and input u1 for the design of

HGPO (11). The effectiveness of the PO has been discussed in our previous

work [5, 29, 30].

Remark 1. It should be mentioned that during the design procedure, ε and

ε′ used in HGSPO (8) and HGPO (11) are required to be some relatively

small positive constants only, and the performance of HGSPO and HGPO is

not very sensitive to the observer gains, which are determined based on the

upper bound of the derivative of perturbation.

3.2. Design of stabilizing controller u2 and coordinated controller u1

Based on the standard CPC design procedure [19], the stabilizing con-

troller u2 is designed first as follows:

u2 = γ(ẑe) =
1

b10
(−Kẑ − ẑn) (13)
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which renders system (3) into

ż = Az +B(a(z, y) + b(z, y)γ(ẑe) + ξ) = q̃(z) + p̃(z, y)y

with

q̃(z) = Az +B(a(z, 0) + b(z, 0)γ(ẑe) + ξ) (14)

and

p̃(z, y) = B(a(z, y)− a(z, 0) + (b(z, y)− b(z, 0))γ(ẑe))y
−1 (15)

where q̃(z) represents the zero dynamics, p̃(z, y) denotes the difference be-

tween the original system and zero dynamics, which will be cancelled later

by u1. K = [k1, k2, · · · , kn−1] is the control gain which makes matrix A−BK

Hurwitzian, such that the following condition can be satisfied

Ẇ =
∂W (z)

∂zT
q̃(z) +

∂W

∂ηT
η̇ ≤ −α(‖z‖) (16)

where α is a class-K function, and η = [z̃1/ε
n−1, z̃2/ε

n−2, · · · , z̃n] ∈ R
n.
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The proof of inequality (16) is given in [5].

The structure of stabilizing controller (13) is illustrated in Fig. A.2.

The nominal plant is disturbed by the perturbation Ψ1(·), the stabilizing

controller u2 can be separated as u2 = b−1
10 (us1 + us2), where us1 = −Kẑ is

the state feedback and choose ki = C i
n−1ξ

i to place the pole of the equivalent

linear system of (5) at −ξ, where i = 1, ..., n − 1 and ξ > 0; and us2 = −ẑn

compensates the combinatorial effect of parameter uncertainties, external

disturbances and unmodelled dynamics.

The coordinated controller u1 is designed as

⎧⎪⎪⎨
⎪⎪⎩

u1 = b−1
20

(
−Ψ̂2(·)− k′y − ∂W

∂zT
p̃(z, y) + ν

)

ν = −φ(y)
(17)

where ν is the additional input, φ is any smooth function such that φ(0) = 0

and yφ(y) > 0 for all y �= 0. k′ > 1 is the feedback control gain.

The structure of coordinated controller (17) is illustrated in Fig. A.3.

The nominal plant is disturbed by the perturbation Ψ2(·), the coordinated

controller u1 can be separated as u1 = b−1
20 (uc1 + uc2 + uc3 + uc4), where

uc1 = −Ψ̂2(·) is the dynamical perturbation compensation; uc2 = −k′y

places the pole of the equivalent linear system of (4) at −k′, where k′ > 0;
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uc3 = ∂W
∂zT

p̃(y, z) coordinates the two controllers by cancelling the difference

between the original system and zero dynamics represented by p̃(y, z); and

uc4 = ν constructs a passive system by introducing an additional input in

the form of a sector-nonlinearity φ(y).

Remark 2. Note that ∂W (z)
∂zT

p̃(z, y) = ∂W (z)
∂zn−1

p̃n−1(z, y) as p̃i(z, y) = 0, i =

1, 2, · · · , n − 2, which can be interpreted as the distributed energies in a

complex system and needs to be reshaped. One can choose ∂W (z)
∂zT

p̃(z, y) =

czn−1p̃n−1(z, y) regardless of the system order, where c is called the coordi-

nation coefficient.

Remark 3. For the closed-loop system (18), control gain k′ should be de-

signed to suppress the perturbation estimation error Ψ̃2(·). Compared to the

approach without perturbation compensation, in which k′ should be chosen

to suppress the perturbation Ψ2(·). As Ψ2(·) is normally larger than Ψ̃2(·),

a smaller k′ could be resulted in due to the compensation of perturbation by

PECAPC.

To this end, PECAPC design for systems (3) and (4) can be summarized

as:

Step 1: Obtain zero dynamics (5) of system (3) by setting y = 0

18



Step 2: Extend system (5) into system (7), and design HGSPO (8) to obtain

estimates ẑ and ẑn

Step 3: Design stabilizing controller (13)

Step 4: Extend system (4) into system (10), and design HGPO (11) to obtain

the estimate Ψ̂2(·)

Step 5: Design coordinated controller (17)

3.3. Closed-loop system stability

The proof of stability of the closed-loop system with control stabilizing

controller u2 and coordinated controller u1 is given in the following Theorem

1.

Theorem 1. Consider systems (3) and (4), with controllers (13) and (17),

and let assumptions A1 and A2 hold; then ∃ε∗1, ε∗1 > 0 such that, ∀ε′, 0 <

ε′ < ε∗1, then the closed-loop system is passive and its origin is stable.

The following assumptions are made on systems (7) and (10).

A1. b10 and b20 are chosen to satisfy:

0 < |b(z, 0)/b10 − 1| ≤ θ1, 0 < |β1(z, y)/b20 − 1| ≤ θ2
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where θ1 < 1 and θ2 < 1 are positive constants.

A2. The perturbation Ψk(·) and its derivative Ψ̇k(·) are Lipschitz in their

arguments and bounded over the domain of interest and are globally bounded

in (z, y):

|Ψk(z, y, u)| ≤ γ1, |Ψ̇k(z, y, u)| ≤ γ2

where γ1 and γ2 are positive constants. In addition, Ψk(0, 0, 0) = 0, Ψ̇k(0, 0, 0) =

0, k = 1, 2. It guarantees that the origin is an equilibrium point of the open-

loop system.

Proof. The closed-loop system (4) using controller (17) is

⎧⎪⎪⎨
⎪⎪⎩

ẏ = η′2 − k′y − ∂W (z)
∂zT

p̃(z, y) + ν

ε′η̇′ = A′
1η

′ + ε′B′
1Ψ̇2(·)

(18)

Define a Lyapunov function V (η′) = η′TP1η
′, where P1 is the positive definite

solution of the Lyapunov equation P1A
′
1 + A′T

1 P1 = −I. For closed-loop

systems (3) and (4) by controllers (13) and (17), we choose a storage function
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as

H(z, η, y, η′) = W (z, η) +
1

2
y2 + βV (η′) (19)

where β > 0. Moreover, assuming

‖Ψ̇2(·)‖ ≤ L1‖y‖+ L2‖η′‖

where L1 and L2 are Lipschitz constants.

By differentiating H(z, η, y, η′) along the trajectory of system (18) and

condition (16), it yields

Ḣ =
∂W

∂zT
(q̃(z) + p̃(z, y)y) +

∂W

∂ηT
η̇ + y

(
η′2 − k′y − ∂W

∂zT
p̃(z, y) + ν

)

+ β
∂V

∂η′T

(
A′

1η
′

ε′
+B′

1Ψ̇2(·)
)

≤ −α(‖z‖) + yν − ‖y‖2 − β

ε′
‖η′‖2 + 2βL2‖P1‖‖η′‖2 + (1 + 2βL1‖P1‖)‖y‖‖η′‖

≤ −α(‖z‖) + yν − ‖y‖2 − β

ε′
‖η′‖2 + 2βL2‖P1‖‖η′‖2 + (1 + 2βL1‖P1‖)

×
(
1

ε0
‖y‖2 + ε0‖η′‖2

)

≤ −α(‖z‖) + yν − 1

2
‖y‖2 − β

2ε′
‖η′‖2 − b1‖y‖2 − b2‖η′‖2
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where

b1 =
1

2
− 2

ε0

(
1

2
+ βL1‖P1‖

)
, b2 =

β

2ε′
− 2β(ε0L1 + L2)‖P1‖ − ε0

with ε0 > 0. One can choose β small enough and ε0 ≥ ε∗0 = 2 + 4βL1‖P1‖

such that b1 > 0, then choose ε∗1 = β/(ε∗20 + 4βL2‖P1‖), ∀ε′, ε′ ≤ ε∗1, and

choose the additional input ν = −φ(y), where φ(y) is a sector-nonlinearity

satisfying yφ(y) > 0. It can be shown that

Ḣ ≤ −α(‖z‖)−min(1/2, β/2ε′)(‖y‖2 + ‖η′‖2) + yν ≤ −α(‖z‖)− α1(‖y‖) + yν

≤ yν ≤ −yφ(y) ≤ 0

where α1 is a class-K function. One can conclude that the closed-loop system

is passive and its origin is stable. �

Proposition 1. PECAPC can be easily extended into multi-input systems.

If there existsm subsystems for system (3) withm control inputs u2j, the vec-

tor variables of states and estimation errors for each subsystem are denoted

as z∗j and η∗j , j = 1, 2, · · · , m, respectively. Controller (13) using HGSPO

(8) can decouple each subsystem by rendering their interactions into a per-
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turbation. Hence u2j can stabilize the jth subsystem, which results in an

equivalent CLF W (z∗, η∗) = W1 +W2 + · · · +Wm, and condition (16) be-

comes

Ẇ =
m∑
j=1

(
∂W

∂z∗Tj
q̃j(z

∗
j ) +

∂W

∂η∗Tj
η̇∗j

)
≤

m∑
j=1

αj(‖z∗j ‖)

Remark 4. Denote (z0, y0) ∈ Γo and z′0 ∈ Γz as the equilibrium point of

systems (3) and (5), respectively, where Γo and Γz are their stability re-

gion, which are unequal during transient process. However, with a proper

coordination coefficient c, passive controller (17) will exponentially drive

limt→∞(z0, y0) = z′0 and limt→∞ Γo = Γz as limt→∞ y = 0.

Remark 5. Compared to the CAPC [24, 25] which usually estimates the

linearly parametric uncertainties, the PECAPC can be regarded as a non-

linearly functional estimation method, as it can estimate the combinatorial

effect of fast time-varying unknown parameters, unknown nonlinear dynamics

and external disturbances. If there does not exist uncertainties and external

disturbances, and if the accurate system model is available, such a controller

provides the same performance as the exact passive controller. Otherwise,

such a controller performs much better than the exact passive controller.
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The use of PO leads to less concern over the measurement and identification

of the fast time-varying unknown parameters, unknown nonlinear dynamics

and external disturbances. This tends to require less control efforts as the

perturbation has already included all of this information.

4. PECAPC Design of Excitation and TCSC

Controllers (13) and (17) will be applied for both SMIB system (1) and

multimachine system (2).

4.1. Controller Design for a Single Machine Infinite Bus System

For SMIB system (1), we chose y = Xtcsc −Xtcsc0, u1 = uc and u2 = ufd.

By setting y = 0, the zero dynamics of system (1) is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ̇ = ω − ω0

ω̇ = −D
H
(ω − ω0) +

ω0

H

(
Pm − E′

qVs sin δ

X′
dΣ+Xtcsc0

)

Ė ′
q =

(Xd−X′
d)(Vs cos δ−E′

q)

Td0(X
′
dΣ+Xtcsc0)

− 1
Td0
E ′

q +
Kc

Td0
ufd

(20)

Choose z1 = δ − δ0 for system (20), where δ0 is the initial generator ro-

tor angle. Differentiating z1 until the excitation control input ufd appears
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explicitly, the system perturbation Ψ1(·) is obtained as

Ψ1(·) = −D
H

[
−D
H
(ω − ω0) +

ω0

H

(
Pm − E ′

qVs sin δ

X ′
dΣ +Xtcsc0

)]
− ω0Vs
H(X ′

dΣ +Xtcsc0)

×
[
E ′

q(ω − ω0) cos δ +
sin δ

Td0

(
(Xd −X ′

d)(Vs cos δ − E ′
q)

(X ′
dΣ +Xtcsc0)

− E ′
q

)]

− ω0Vs sin δ

H(X ′
dΣ +Xtcsc0)

× Kc

Td0
ufd − b10ufd (21)

Defining a fictitious state as z4 = Ψ1(·), and the extended state variable is

denoted as ze = [z1, z2, z3, z4]
T, the fourth-order state equation is

że = A1ze +B1ufd +B2Ψ̇1(·) (22)

where

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

b10

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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A fourth-order HGSPO (8) is given as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂z1 = ẑ2 +
α1

ε
(z1 − ẑ1)

˙̂z2 = ẑ3 +
α2

ε2
(z1 − ẑ1)

˙̂z3 = Ψ̂1(·) + α3

ε3
(z1 − ẑ1) + b10ufd

˙̂
Ψ1(·) = α4

ε4
(z1 − ẑ1)

(23)

Extending the TCSC dynamics, it yields

⎧⎪⎪⎨
⎪⎪⎩

ẏ = Ψtcsc(·) + b20uc

ẏ2 = Ψ̇tcsc(·)
(24)

where

Ψtcsc(·) = − 1

Tc
y +

KT

Tc
uc − b20uc + ζtcsc (25)

A second-order HGPO (11) is used to obtain Ψ̂tcsc(·) as

⎧⎪⎪⎨
⎪⎪⎩

˙̂y = Ψ̂tcsc(·) + α′
1

ε
(y − ŷ) + b20uc

˙̂
Ψtcsc(·) = α′

2

ε2
(y − ŷ)

(26)
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For system (1), one can obtain p̃(z, y) from (21) according to (15) as

p̃(z, y) =
ω0Vs
H

[ 1

XΔ

(−DE ′
q sin δ

H
+ E ′

q(ω − ω0) cos δ +
sin δ

Td0
× (−E ′

q +Kcufd)
)

+
X ′

Δ

X2
Δ

(Xd −X ′
d)(Vs cos δ − E ′

q) sin δ

Td0

]
(27)

where XΔ = (X ′
dΣ+Xtcsc0+y)(X

′
dΣ+Xtcsc0) and X

′
Δ = (2X ′

dΣ+2Xtcsc0+y).

The PECAPC-based EC and TCSC controller are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ufd = 1
b10

(−Ψ̂1(·)− k1ẑ3 − k2ẑ2 − k3ẑ1)

uc =
1
b20

(−Ψ̂tcsc(·)− cẑ3p̃(z, y)− k′y + ν)

ν = −βy

(28)

A known p̃(z, y) is a fundamental assumption in coordinated passive control

design [19], which contains the system states and parameters and needs to be

cancelled for passivation. In real power system operations, the damping coef-

ficient D is small compared to the system inertia H thus |DE ′
q sin δ/H| ≈ 0,

and |X′
Δ

X2
Δ
(Xd−X ′

d)(Vs cos δ−E ′
q)| � |−E ′

q+Kcufd| during the transient pro-

cess due to the large excitation control input ufd, thus one can approximate

p̃(z, y) by ignoring the relatively small components. Denoting p̃∗(z, y) as its
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approximation, it gives

p̃∗(z, y) =
ω0Vs
HXΔ

(
E ′

q(ω − ω0) cos δ +
sin δ

Td0
(−E ′

q +Kcufd)
)

(29)

To this end, we replace p̃(z, y) by its approximation p̃∗(z, y), controller (28)

becomes ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ufd =
1
b10

(−Ψ̂1(·)− k1ẑ3 − k2ẑ2 − k3ẑ1)

u∗c =
1
b20

(−Ψ̂tcsc(·)− cẑ3p̃
∗(z, y)− k′y + ν)

ν = −βy

(30)

Based on assumption A1, constants b10 and b20 must satisfy following in-

equalities when the generator operates within its normal region:

b10 < −ω0VsKc sin δ/[2HTd0(X
′
dΣ +Xtcsc0)]

b20 > KT/(2Tc)

During the most severe disturbance, the electric power will reduce from its

initial value to around zero within a short period of time, Δ. Thus the

boundary values of the estimated system states can be obtained as |ẑ3| ≤

ω0Pm/H , |Ψ̂1(·)| ≤ ω0Pm/(HΔ), and | ˆ̇Ψ1(·)| ≤ ω0Pm/(HΔ2), respectively.
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4.2. Controller Design for a Multimachine System

For multimachine system (2), we choose y = Xtcsc −Xtcsc0, u1 = uc and

u2i = ufdi. Setting y = 0 in the equivalent admittance matrix Y , the zero

dynamics can be obtained. Choose zi1 = δi − δi0, i = 1, 2, . . . , n, where

δi0 is the initial rotor angle of the ith generator. Differentiating zi1 until the

excitation control input ufdi appears explicitly, the system perturbation Ψi(·)

is obtained as

Ψi(·) = − ω0

2Hi

[Di

ω0

dωi

dt
+ E ′

qi

dIqi
dt

+
Iqi + 2GiiE

′
qi

Td0i
(−E ′

qi − (xdi − x′di)Idi)
]

− ω0(Iqi + 2GiiE
′
qi)

2HiTd0i
ufdi − b10iufdi (31)

Defining a fictitious state as zi4 = Ψi(·), and the extended state variable is

denoted as zie = [zi1, zi2, zi3, zi4]
T, the fourth-order state equation is

żie = Ai1zie +Bi1ufdi +Bi2Ψ̇i(·) (32)
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where

Ai1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bi1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

b10i

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bi2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A fourth-order HGSPO (8) is used for the ith generator as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂zi1 = ẑi2 +
αi1

ε
(zi1 − ẑi1)

˙̂zi2 = ẑi3 +
αi2

ε2
(zi1 − ẑi1)

˙̂zi3 = Ψ̂i(·) + αi3

ε3
(zi1 − ẑi1) + b10iufdi

˙̂
Ψi(·) = αi4

ε4
(zi1 − ẑi1)

(33)

Let us consider the equivalent two-machine subsystem involving the TCSC

device and denote them as the jth and kth machine, namely, the TCSC device

is installed between the jth and kth machine. Furthermore, each machine

denoted by the ith machine is equipped with its own EC. The extended

TCSC dynamics is the same as system (24), and the same HGPO (26) is

used to obtain Ψ̂tcsc(·).
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The PECAPC-based EC and TCSC controller for system (2) is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ufdi =
1

b10i
(−Ψ̂i(·)− ki1ẑi3 − ki2ẑi2 − ki3ẑi1)

uc =
1
b20

(−Ψ̂tcsc(·)− cj ẑj3p̃j(z, y)− ckẑk3p̃k(z, y) + ν)

ν = −βy, i = 1, 2, · · · , n

(34)

where p̃j(z, y) and p̃k(z, y) are calculated from (31) according to (15), in which

TCSC device is installed between the jth and kth machine. Thus one chooses

i = j and i = k in (31) to calculate p̃j(z, y) and p̃k(z, y), respectively, using

the values given in Appendix A. Similarly, in real power system operations,

|DjE
′
qjE

′
qk sin δjk/(2Hj)| ≈ 0 as damping coefficient Dj � Hj, |2Gjj

Td0j
(xdj −

x′dj)| � |ωjk| as the self conductance Gjj is much smaller than time constant

Td0j . Moreover |(xdk−x′dk )(
∑n

i=1,i �=k,j E
′
qiYki cos δki+

X∗′
Δ

X∗
Δ
E ′

qj cos δjk)| � |ufdk−

E ′
qk| and |(xdj − x′dj )(

∑n
i=1,i �=j,kE

′
qiYji cos δji +

X∗′
Δ

X∗
Δ
E ′

qk cos δkj)| � |ufdj −E ′
qj|

during the transient process due to the large excitation control inputs ufdk

and ufdj , thus one can approximate p̃j(z, y) and p̃k(z, y) by ignoring the

relatively small components. Denoting their approximation as p̃∗j (z, y) and

31



p̃∗j(z, y), respectively, gives

p̃∗j (z, y) =
ω0X

∗
Δ

2Hj

(E ′
qk

Td0j
(ufdj −E ′

qj ) sin δjk +
E ′

qj

Td0k
(ufdk −E ′

qk ) sin δjk

+ E ′
qjE

′
qkωjk cos δjk

)

p̃∗k(z, y) =
ω0X

∗
Δ

2Hk

( E ′
qj

Td0k
(ufdk −E ′

qk ) sin δkj +
E ′

qk

Td0j
(ufdj −E ′

qj ) sin δkj

+ E ′
qkE

′
qjωkj cos δkj

)

As a result, one can replace p̃j(z, y) and p̃k(z, y) by their approximation

p̃∗j(z, y) and p̃
∗
k(z, y), respectively. Controller (34) becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ufdi =
1

b10i
(−Ψ̂i(·)− ki1ẑi3 − ki2ẑi2 − ki3ẑi1)

u∗c =
1
b20

(−Ψ̂tcsc(·)− cj ẑj3p̃
∗
j (z, y)− ckẑk3p̃

∗
k(z, y) + ν)

ν = −βy, i = 1, 2, · · · , n

(35)

Similar to the SMIB case, constants b10i and b20 are chosen to be:

b10i < −ω0(Iqi + 2GiiE
′
qi)/(2HiTd0i)

b20 > KT/(2Tc)
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Moreover, estimates of state and perturbation are bounded as |ẑi3| ≤ ω0Pmi/(2Hi),

|Ψ̂i(·)| ≤ ω0Pmi/(2HiΔ), and | ˆ̇Ψi(·)| ≤ ω0Pmi/(2HiΔ
2).

To this end, a decentralized EC can be obtained for the ith machine as

only the measurement of its rotor angle δi is required, which can effectively

handle the modelling uncertainties. The TCSC controller measures the rotor

angles δj and δk, excitation control inputs ufdj and ufdk , transient voltages

E ′
qj and E ′

qj . The nominal values of time constant Td0j and Td0k , inertial

constants Hj and Hk of the jth and kth machine, and transmission line

reactance Xjk are used for coordination. Note that the difference between the

nominal values and the real values of the system parameters are aggregated

into the perturbation, which is estimated by PO.

5. Simulation Results

5.1. Evaluation on a Single Machine Infinite Bus System

A proportional-integral-derivative (PID) based TCSC controller and au-

tomatic voltage regulator equipped with lead-lag (LL) based PSS (PID+LL),

CAPC used in [24], and PECAPC are compared. The system parameters and

initial operating conditions are given in Appendix A. Through trial-and-error,

we put the system poles to the left half plane to ensure the system stability
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and dynamical performance. PECAPC parameters are chosen as: k1 = 9,

k2 = 27, k3 = 27 so as to place the poles of the linear system at ξ = −3;

b10 = −15, b20 = 100, k′ = 5, β = 15, c = 0.001; α1 = 160, α2 = 9.6 × 103,

α3 = 2.56 × 105 and α4 = 2.56 × 106 so as to place all the poles of the

HGSPO at λ = −40; α′
1 = 30 and α′

2 = 225 so as to place all the poles of

the HGPO at λ′ = −15, ε = 0.1 and Δ = 0.05 s. The system variables are

used in the per unit (p.u.) system. In the power systems analysis field of

electrical engineering, per unit system is the expression of system quantities

as fractions of a defined base unit quantity, which means the values have

been normalized [1]. In this paper, assume the independent base values are

active power Pbase=1.0 p.u. and voltage Vbase=1.0 p.u..

A three-phase short circuit fault occurs at t = 1.0 s and cleared at t = 1.1

s, where |ufd| ≤ 7 p.u., and |Xtcsc| ≤ 0.1 p.u. such that a maximum 20% com-

pensation ratio is implemented. Figure A.4 shows system responses with the

EC alone, coordinated EC and TCSC controller (28) and its approximated

controller (30), respectively. From which the effectiveness of coordination is

verified as an extra system damping is injected, and the excitation control

cost is reduced. Moreover, the approximation is valid as it can capture the

main feature of the exact coordination, hence the approximated controllers
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will be used for the rest of the studies.

System responses under the nominal model is illustrated by Fig. A.5. It is

found that PECAPC can effectively stabilize the system. Figure A.6 presents

system responses under a nonlinear unmodled TCSC dynamics ζtcsc =

10 sin(Xtcsc − Xtcsc0), which is the same unmodelled TCSC dynamics used

in [24] for the purpose of their control performance evaluation. However,

PECAPC does not require the model error to satisfy this linear growth con-

dition required by CAPC [24]. In fact, a general unmodelled TCSC dynamics

can be estimated online by PO. PID+LL control performance degrades dra-

matically as it is not robust to the TCSC modelling uncertainty. In contrast,

both CAPC and PECAPC can maintain a consistent control performance as

this uncertainty is considered during control design.

The low frequency inter-area oscillation has been well defined in the power

system research, which is caused by the dynamic interactions, in a low fre-

quency, between multiple groups of generators. It results in a degrade of

power system stability and must be suppressed. A typical inter-area oscilla-

tion Vs = 1+0.1 sin(5t) is chosen to an corresponding oscillation frequency of

(2.5/π) Hz. System responses are given in Fig. A.7, the control performance

of both PID+LL and CAPC degrades due to the external disturbance. In

35



contrast, PECAPC can effectively attenuate the inter-area oscillation.

5.2. Evaluation on a Three-Machine System

The PID+LL, CPC, where the real value of the states and perturba-

tion is used in the controllers, and PECAPC (35) are then evaluated on a

three-machine nine-bus system as shown in Fig. A.8, where a TCSC device

is equipped between bus #7 and bus #8. The system parameters, initial

operating conditions and PID+LL parameters are all given in Appendix A.

PECAPC parameters are b10i = −30, ki1 = 15, ki2 = 75, ki3 = 125 so as to

place the poles of the linear system at ξ = −5; b20 = 20, k′ = 10, β = 1 and

c2 = c3 = 0.25; αi1 = 200, αi2 = 1.5×104, αi3 = 5×105 and αi4 = 6.25×106

so as to place all the poles of the HGSPO at λ = −40; α′
1 = 60 and α′

2 = 900

so as to place all the poles of the HGPO at λ′ = −30, ε = 0.1 and Δ = 0.05

s.

A three-phase short circuit occurs on one transmission line between bus

#4 and bus #5 marked as point ′×′ at t = 0.5 s, the faulty transmission line

is switched off at t = 0.6 s, and switched on again at t = 1.1 s when the fault

is cleared, where |ufdi| ≤ 7 p.u., and |Xtcsc| ≤ 0.2 p.u. such that a maximum

20% compensation ratio is implemented. Each generator is equipped with

an EC.
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System responses under operation type I are given by Fig. A.9, which

shows PECAPC can achieve as satisfactory control performance as that of

CPC when an accurate system model is completely known, their tiny dif-

ference is caused by the estimation error. The observer performance during

the fault is also monitored, the estimation errors of HGSPO1 and HGPO are

given in Fig. A.10 and Fig. A.11, respectively, which show the observers

can provide accurate estimates of system states with a fast tracking rate.

However, there exists relatively larger errors in the estimate of perturbation

at the instant of t = 0.5 s, t = 0.6 s, and t = 1.1 s, this is due to the

discontinuity in the equivalent admittance Y12 caused by the disconnection

and reconnection of the transmission line 4-5(2) at the instant when the fault

occurs.

A 50% increase of the generator inertia Hi, time constant Td0i and TCSC

time constant Tc used in controller (35) has been tested to evaluate the effect

of parameter uncertainties on the dynamic response of the proposed control

scheme with and without the PO. Fig. A.12 shows that the control per-

formance degrades dramatically in the presence of parameter uncertainties

without the PO, in contrast the same control performance can be achieved

with the PO shown by Fig. A.13. This is because the parameter uncer-
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tainties of the generator inertia Hi and time constant Td0i are included in

perturbation Ψi(·) (31), which is estimated by HGSPO (33) and compensated

by controller (35). While the parameter uncertainties of the TCSC time con-

stant Tc are included in perturbation Ψtcsc(·) (25), which is estimated by

HGPO (26) and compensated by controller (35).

The robustness of PID+LL, CPC and PECAPC has been evaluated by

reducing the inertia constant Hi, time constant Td0i of all generators and

TCSC time constant Tc by 30% from their nominal values. System responses

are provided in Fig. A.14, in which a big difference in CPC has been iden-

tified, with and without accurate parameters. By contrast, PID+LL and

PECAPC remain satisfactory control performance as their design does not

require accurate system parameters.

In order to test the general effectiveness of PECAPC, Figure A.15 presents

system responses obtained with operation Type II and the above parameter

uncertainties. In this case a larger active power is transmitted, and the

system suffers more severe oscillation when the fault occurs. One can find

PID+LL control performance degrades dramatically as its control parame-

ters are based on local system linearization. On the other hand, a severe

oscillation in CPC can be seen due to the system parameter uncertainty. In
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contrast, PECAPC can maintain consistent control performance and provide

significant robustness.

6. Hardware-in-the-loop Test

A HIL test has been undertaken based on dSPACE systems to verify the

implementation feasibility of PECAPC. The configuration and experiment

platform of HIL test are shown in Fig. A.17 and Fig. A.18, respectively.

The EC and the TCSC controller are implemented on one dSPACE platform

(DS1104 board) with a sampling frequency fc = 1 kHz, and the SMIB system

is simulated on another dSPACE platform (DS1006 board) with a sampling

frequency fs = 10 kHz. The measurements of the rotor angle δ, rotor speed ω,

inner generator voltage E ′
q, infinite bus voltage Vs and TCSC reactance Xtcsc

are obtained from the real-time simulation of SMIB system on the DS1006

board, which are sent to two controllers implemented on the DS1104 board

for calculating the control outputs, i.e., excitation voltage ufd and TCSC

modulated input uc, respectively.

The disturbance is set up as: A 0.1 s three-phase short circuit fault

occurs at 1.9 s. The total experiment time is 60 s and only the result of the

first 8 s is presented for a clear illustration of the transient responses. The
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following three tests are carried out: Test 1: Same observer parameters used

in the previous simulation, which poles λ = 40, λ′ = 15 with b10 = −15 and

b20 = 100; Test 2: Reduced observer poles λ = 15, λ′ = 15 with b10 = −150

and b20 = 200; and Test 3: Further reduced observer poles λ = 5, λ′ = 5

with b10 = −150 and b20 = 200.

It has been found from Test 1 that an unexpected high-frequency os-

cillation occurs in ufd and Xtcsc, which does not appear in the simulation.

This is due to the large observer poles result in high gains, which lead to

highly sensitive observer dynamics to the measurement disturbances. Hence

reduced observer poles are chosen in Test 2. Fig. A.19 shows that the rotor

angle and speed can be effectively stabilized, but a consistent high-frequency

oscillation still exists in both ufd and Xtcsc. Through the trial-and-error it

finds that an observer pole in the range of 3-10 can avoid the high-frequency

oscillation but with almost similar transient responses, therefore the observer

poles are further reduced in Test 3. The system transient responses obtained

in simulation and HIL test are given by Fig. A.20, one can find that the

high-frequency oscillation disappears and the rotor angle and speed are still

effectively stabilized.

The difference of the obtained results between the simulation and HIL test
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is possibly caused by the following two reasons: (a) There exists measurement

disturbances in the HIL test which are not considered in the simulation, a

filter could be used to remove the measurement disturbances and improve the

control performance; and (b) The discretization of the HIL test and sampling

holding may introduce an additional amount of error compared to continuous

control used in the simulation.

7. Discussion

It is necessary to study the computational cost of PECAPC as the high

performance systems often have high computational cost. As the PECAPC

needs to calculate a fourth-order HGSPO (23) and a second-order HGPO

(26) together with a nonlinear function (29), it has the highest computational

cost. The computational cost of CAPC is higher than that of CPC, as CAPC

requires to solving an additional second-order parameter estimator (A.1).

For CPC and PID+LL, it’s difficult to compare the computational cost as

CPC has to calculate three complex functions (21), (25) and (29), while

PID+LL has to calculate a first-order integral used in PID, and a second-

order lead-lag plus a first-order washout loop used in LL. For the multi-

machine systems, the computational cost of CPC, CAPC (nonlinear functions
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(21), (25) and (29) become more complex) and PECAPC (nonlinear function

(29) becomes more complex) will be higher than that of the SMIB system,

while the computational cost of PID+LL does not change. As the PECAPC

is a decentralized controller, it can be easily extended into multimachine

systems as each generator will be equipped with an individual EC, and the

TCSC controller is separately implemented in the TCSC device.

Finally, the majority of studies related to power system control and op-

eration is so far based on the simulation. The paper is concerned with the

investigation of a new control method, for which it is difficult to undertake a

physical experiment for the multi-machine power system due to its significant

scale and complexity.

8. Conclusion

In this paper, a novel PECAPC has been proposed for synchronous gen-

erators and TCSC devices to improve the power system stability. It is able to

fully exploit the physical properties of power systems through reshaping the

distributed energies, and handle system uncertainties, unmodelled dynam-

ics and external disturbances via perturbation estimation. The simulation

results show that PECAPC can improve system damping and provide con-

42



sistent control performances under various operating conditions compared

with conventional PID+LL, as the system nonlinearity is globally removed.

Moreover, PECAPC has a simple structure as it needs only one coordina-

tion coefficient for each generator without an explicit CLF, thus it can be

applied in complex and interconnected multimachine systems. Finally, com-

pared with the accurate system model based CPC, greater robustness can be

provided by PECAPC.
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Appendix A. Controller Structures and System Parameters

The p̃j(z, y) and p̃k(z, y) used in controller (34) are

p̃j(z, y) =
ω0

2Hj

[(−DjE
′
qjE

′
qk sin δjk

2Hj

+ E ′
qjE

′
qkωjk cos δjk +

E ′
qk

Td0j
× (ufdj − E ′

qj ) sin δjk

+
2E ′

qk

Td0j
GjjE

′
qj (xdj − x′dj ) cos δjk + E ′

qj ×
sin δjk
Td0k

(
ufdk −E ′

qk + (xdk − x′dk )

×
n∑

i=1,i �=k,j

E ′
qiYki cos δki

)
+
E ′

qk sin δjk

Td0j
(xdj − x′dj )

n∑
i=1,i �=k,j

E ′
qiYji cos δji

)
X∗

Δ +X∗′
Δ

×
(E ′2

qj sin(2δjk)

2Td0k
(xdk − x′dk) +

E ′2
qk sin(2δjk)

2Td0j
(xdj − x′dj )

)]

p̃k(z, y) =
ω0

2Hk

[(−DkE
′
qkE

′
qj sin δkj

2Hk
+ E ′

qkE
′
qjωkj cos δkj +

E ′
qj

Td0k
× (ufdk − E ′

qk) sin δkj

+
2E ′

qj

Td0k
GkkE

′
qk(xdk − x′dk ) cos δkj + E ′

qk ×
sin δkj
Td0j

(
ufdj − E ′

qj + (xdj − x′dj )

×
n∑

i=1,i �=j,k

E ′
qiYji cos δji

)
+
E ′

qj sin δkj

Td0k
(xdk − x′dk )

n∑
i=1,i �=j,k

E ′
qiYki cos δki

)
X∗

Δ +X∗′
Δ

×
(E ′2

qk sin(2δkj)

2Td0j
(xdj − x′dj ) +

E ′2
qj sin(2δkj)

2Td0k
(xdk − x′dk)

)]

where Xjk = Y −1
jk , X∗

Δ = 1/[(Xjk + y +Xtcsc0)Xjk], and X
∗′
Δ = (y +Xtcsc0 +

2Xjk)/[(Xjk + y +Xtcsc0)Xjk]
2. The CAPC based EC and TCSC controller
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used in [24] is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ufd =
Td0

Kc

{
z2

ω0Vs sin δ
H(X′

dΣ+Xtcsc0)
− (Xd−X′

d)(Vs cos δ−E′
q)

Td0(X
′
dΣ+Xtcsc0)

+
E′

q

Td0
− c3z3 − x2(x

∗
3 + E ′

q0) cot δ +
H(X′

dΣ+Xtcsc0)

ω0Vs sin δ
×

[
x2(1 + c1c2 +

˙̂
θ) + (c1 + c2 + θ̂)(ω0

H
Pm + θ̂x2−

ω0E′
qVs sin δ

H(X′
dΣ+Xtcsc0)

)
]}

uc =
Tc

KT

(−ω0E′
qVs sin δ

HXΔ
z2 +

(Xd−X′
d)(Vs cos δ−E′

q)

Td0XΔ
z3

−ψ̂y + ν
)

˙̂
θ = γ

(
z2 − z3

H(X′
dΣ+Xtcsc0)(θ̂+c1+c2)

ω0Vs sin δ

)
x2

˙̂
ψ = ρy2

ν = −βy

(A.1)

where x1 = δ − δ0, x2 = ω − ω0, x3 = E ′
q − E ′

q0, x
∗
2 = −c1x1, z2 = x2 − x∗2,

z3 = x3−x∗3, x∗3 = [H(X ′
dΣ+Xtcsc0)/(ω0Vs sin δ)][x1+(ω0/H)Pm+(θ̂+c1)x2+

c2z2]− E ′
q0.
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Table A.1: SMIB system parameters (in p.u.)

Vt = 0.9669 H = 7 D = 0.5 Pm = 0.9
Xt = 0.127 XL1 = 0.173 XL2 = 0.3122 Xd = 1.863
X ′

d = 0.257 Td0 = 6.9 Tc = 0.06 KT = 20
Kc = 1 Vs = 1.0 δ0 = 0.5892 ω0 = 100π
Xtcsc0 = 0

Table A.2: Three-machine system generator parameters (in p.u.)

Parameters G1 G2 G3

xd 1.86 1.67 1.75
x′d 0.335 0.306 0.342
Td0 6.9 6.9 6.9
H 5.25 4.5 4
D 2.5 2.5 2.5

Table A.3: Three-machine system transmission line parameters (in p.u.)

Line No. Impedance

5-7 0.405
4-5(1) 0.23
4-5(2) 0.23
4-6 0.205
6-9 0.185
7-8 0.325
8-9 0.255

PL1 = 3.45 PL2 = 2.55
PL3 = 1.5

52



Table A.4: Three-machine system operation Type I

Generator P (p.u.) Q(p.u.) V (p.u.)∠θ(deg.)
G1 0.5821 0.9124 1.1295∠0.0
G2 0.3577 0.8036 1.034∠8.9
G3 0.1486 0.3040 1.1372∠ − 7.9

Table A.5: Three-machine system operation Type II

Generator P (p.u.) Q(p.u.) V (p.u.)∠θ(deg.)
G1 0.5356 0.7052 1.1488∠0.0
G2 0.6132 0.8533 1.1171∠17.8
G3 0.1103 0.2965 1.1524∠ − 11.9

Table A.6: SMIB system PID+LL parameters (in p.u.)

TR = 0.01 Kpss = 40 Tw = 10 T1 = 0.3
T2 = 0.1 T3 = 0.3 T4 = 0.1 KI = −1
KD = −0.1 Ke = 25 KP = −1

Table A.7: Three-machine system PID+LL parameters (in p.u.)

TR = 0.01 Kpss = 30 Tw = 10 T1 = 0.2
T2 = 0.1 T3 = 0.3 T4 = 0.1 KI = −5
KD = −0.5 Ke = 100 KP = −10
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Figure A.1: The SMIB system equipped with a TCSC device.
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Figure A.2: The structure of stabilizing controller u2.
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Figure A.5: System responses under the nominal model in the SMIB system.
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Figure A.6: System responses under an unmodelled TCSC dynamics ζtcsc = 10 sin(Xtcsc−
Xtcsc0) in the SMIB system.
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Figure A.7: System responses under an inter-area oscillation Vs = 1 + 0.1 sin(5t) in the
SMIB system.

Figure A.8: The three-machine system equipped with a TCSC device.
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Figure A.9: System responses under operation Type I and the nominal model in the
three-machine system.
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Figure A.10: Estimation errors of HGSPO1 for G1.
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Figure A.11: Estimation errors of HGPO for TCSC.
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Figure A.12: The effect of a 50% parameter increases on the dynamic response of proposed
controller without perturbation observer in the three-machine system.
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Figure A.13: The effect of a 50% parameter increases on the dynamic response of proposed
controller with perturbation observer in the three-machine system.
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Figure A.14: System responses under operation Type I and the parameter uncertainties
in the three-machine system.
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Figure A.15: System responses under operation Type II and the parameter uncertainties
in the three-machine system.
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Figure A.16: The conventional PID+LL controller structure.
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Figure A.17: The configuration of the hardware-in-the-loop test.
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Figure A.18: The experiment platform of the hardware-in-the-loop test.

65



0 2 4 6 8
0

20

40

60

80

Time (sec)

Ro
to

r a
ng

le
 δ 

(d
eg

)
 

 

Simulation
HIL

0 2 4 6 8
0.98

0.99

1

1.01

1.02

Time (sec)

Ro
to

r s
p

ee
d

 ω
 (p

.u
.)

 

 

Simulation
HIL

0 2 4 6 8
−10

−5

0

5

10

Time (sec)

Ex
ci

ta
ti

on
 v

ol
ta

g
e 

u fd
 (p

.u
.)

 

 

Simulation
HIL

0 2 4 6 8

−0.1

−0.05

0

0.05

0.1

0.15

Time (sec)

TC
SC

 re
ac

ta
nc

e 
X

tc
sc

 (p
.u

.)

 

 

Simulation
HIL

Figure A.19: PECAPC performances obtained in the hardware-in-the-loop test with large
observer poles λ = λ′ = 15.
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Figure A.20: PECAPC performances obtained in the hardware-in-the-loop test with
proper observer poles λ = λ′ = 5.
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