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ABSTRACT: The poor regioselectivity of the [4+2] cycloaddition of 3-azetidinones with 

internal alkynes bearing two alkyl substituents via nickel-catalyzed carbon-carbon activation 

is addressed using 1,3-enynes as substrates. The judicious choice of substitution on the 

enyne enables complementary access to each regioisomer of 3-hydroxy-4,5-alkyl-

substituted pyridines, which are important building blocks in medicinal chemistry 

endeavors. 

Alkynes are prominent and versatile building blocks for the synthesis of heterocycles by 

transition-metal-catalyzed cycloadditions.1 However, poor regioselectivity is often observed 

in these reactions for internal alkynes bearing two alkyl substituents that are not 

electronically or sterically strongly biased.2 The nickel-catalyzed [4+2] cycloaddition of N-Ts-

3-azetidinone 1 (Ts = para-tolylsulfonyl) and alkyne 2 is a typical example illustrating the lack 

of selectivity when the steric differentiation between the substituents on the alkyne moiety 

is limited, and an almost equimolar mixture of the regioisomers of dihydropyridinone 3 was 

thus obtained (Scheme 1).3 Initial attempts to improve the regioselectivity by varying the 

ligand remained unsuccessful whilst the conversion to the desired product decreased. 

Moreover, the regioisomers could not be separated by simple column chromatography. 

We therefore decided to explore an alternative strategy consisting in using the inexpensive 

ligand PPh3 and 1,3-enynes as surrogates of alkynes that would otherwise be substituted 

with two sterically similar alkyl chains R1 and R2 (Scheme 2). The enhanced regioselectivity 

of the insertion of 1,3-enynes as compared to internal alkynes bearing two alkyl substituents 

was previously demonstrated for this reaction albeit with only one example,3a,b but we 

assumed that this preliminary observation could be generalized to other enynes on the basis 

of theoretical4 and experimental5 studies conducted on the related nickel-catalyzed 
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reductive coupling of 1,3-enynes with aldehydes. In a sequence inspired by the work 

previously reported by Fagnou and co-workers for the synthesis of 2,3-aliphatic-substituted 

pyrroles and indoles,6 we envisioned that the judicious choice of substitution on the 1,3-

enyne would enable complementary access to each of the two regioisomers of 3-hydroxy-

4,5-alkyl-substituted pyridines, after simple hydrogenation and aromatization steps (Scheme 

2).7 Pyridines that have a hydroxyl group in position 3 and two different alkyl groups in 

positions 4 and 5 are found in compounds that display important biological and 

pharmaceutical properties and are desirable building blocks in medicinal chemistry 

endeavors.8 The strategy presented herein offers a valuable alternative to previous 

approaches to this specific pyridine motif9 and to metal-catalyzed intermolecular reactions 

of alkynes that afford other pyridine substitution patterns.10 

As expected, all 1,3-enynes 4a–4h underwent the nickel-catalyzed [4+2] cycloaddition with 

good regioselectivity (Table 1, entries 1–8), and the major regioisomer of 5 could be isolated 

easily in most cases, except for 5b, which explains the moderate yield for this specific 

example, as opposed to the range of good yields observed for 5a and 5c–5h (67–77%). 

Although the origin of this effect is not known to us, the average yields of duplicate 

experiments were consistently higher in some cases (entries 1–5) when the loading of PPh3 

was increased from 20 to 30 mol % (see supporting information). Moreover, the directing 

power of the carbon-carbon double bond of the 1,3-enyne motifs was slightly greater for 

1,4-disubstituted enynes (entries  2, 4, and 6–8) than for 2,4-disubsituted (entry 3) or 

trisubstituted enynes (entries 1 and 5). Nevertheless, this directing effect persisted even 

with two substituents of similar size on the carbon-carbon triple bond. Thus, we observed a 

78:22 regioselectivity for 1,3-enynes 4i and 4j and the major regioisomer could be isolated 

in 65% and 64% yield, respectively (Scheme 3). The reaction of a mixture of tri- and 

tetrasubstituted enynes 4k led to 5k in lower yield but with good regioselectivity, an 

outcome likely influenced by the steric properties of 4k. The substitution of the alkyl group 

had very limited effect on the regioselectivity (Table 1, entries 2, 4, 6 and 8). 

The conversion of dihydropyridinones 5a–5h into pyridines 6a–6h was effected in two steps 

by hydrogenation of the carbon-carbon double bond followed by cleavage of the para-

tolylsulfonyl group and concomitant aromatization using DBU9b (Table 1). Thus, the judicious 

choice of 1,3-enynes 4a–4h enabled a rapid three-step access to each of the two 

regioisomers of 3-hydroxy-4,5-aliphatic-substituted pyridines 6a/6b, 6c/6d, 6e/6f, and 

6g/6h. It was possible to conduct the deprotection/aromatization of compounds 5 prior to 

hydrogenation, but the resulting pyridines were not suitable substrates for hydrogenation 

and compounds 6 were thus not obtained. 

In addition, we also explored an alternative protocol whereby the active Ni catalyst was 

generated in situ from air-stable pre-catalyst NiBr2(PPh3)2 and Zn. Although initial 

investigations with 1,3-enyne 4l were promising, the major regioisomer 5l being isolated in 

67% yield (eq 1), yields were in general lower from enynes 4a–4f when compared to the 
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method relying on Ni(cod)2/PPh3 and the regioselectivity was slightly decreased (Table 2). 

During the preparation of this manuscript, a report disclosed that the combination of 

NiBr2(PPh3)2 and Zn in MeCN enabled the [4+2] cycloaddition of alkynes and protected 

azetidin-3-ones.11 However, using this solvent in the case of 4l led to incomplete conversion 

and 5l was isolated in 14% yield (84:16 regioselectivity). A slightly improved result was 

obtained by replacing the protective group in 1 with a tert-butoxycarbamoyl group (27%; 

90:10 regioselectivity). 

Initially, the cycloaddition of terminal 1,3-enyne 7 with 1 led to a very sluggish reaction and 

only very low yields of dihydropyridinone 8 (Table 3, entry 1). It was crucial to use 

commercially available N-Boc-3-azetidinone 9 (Boc = tert-butoxycarbamoyl) instead of N-Ts-

3-azetidinone 1 and to use dioxane as solvent (Entries 2–4) in order to obtain compound 10 

in good yield. Increasing the reaction temperature was not beneficial (Entry 5). Importantly, 

only one regioisomer of 10 was observed. Similarly to 5a–5h, compound 10 could be 

conveniently converted into 3-hydroxy-pyridine 11 in few steps (eq 2). A single purification 

by column chromatography was necessary at the end of this sequence and compound 11 

was isolated in 57% yield. 

As previously demonstrated by our group and others, α-substituted 3-azetidinones are good 

substrates for the [4+2] Ni-catalyzed cycloadditions with alkynes.3 This remains true for 1,3-

enynes, as illustrated with 12 (Scheme 4), which is derived from racemic phenylalanine. The 

reaction of 4l with 12 was slower than with non-substituted 1 but 13 was easily separated 

from its regioisomer in 64% yield (91:9 regioselectivity). Then, 13 could be rapidly converted 

into 14 in good yield after hydrogenation followed by cleavage of the para-tolylsulfonyl 

group and concomitant aromatization using NaHCO3 in a mixture of ethanol and water as 

alternative to DBU. 

Although it would in principle be possible to access analogues of 14 from various α-

substituted 3-azetidinones, it is more judicious to postpone the functionalization 3-hydroxy-

4,5-alkyl-substituted pyridines at a later stage of the sequence. For example, 

dihydropyridinone 5l was obtained in good yield after treating a mixture of 1 and 4l with 5 

mol% of catalyst and separation of the regioisomers (Scheme 5). Then, hydrogenation and 

cleavage of the para-tolylsulfonyl group with concomitant aromatization gave 15 in 71% 

over two steps. At this stage, a Mannich reaction with either morpholine or pyrrolidine 

afforded 2-aminomethyl pyridine derivatives 16 and 17 in excellent yields.12 Alternatively, 

15 could be converted into 18, which led to furo[b]pyridine derivative 19 after a 

Sonogashira cross-coupling.13 

In conclusion, we have demonstrated that 1,3-enynes are convenient surrogates of internal 

alkynes bearing two alkyl substituents in their nickel-catalyzed [4+2] cycloaddition with 3-

azetidinones. Thus, the judicious choice of 1,3-enyne pairs enables a facile and 
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complementary access to each of the two regioisomers of 3-hydroxy-4,5-alkyl-substituted 

pyridines, after simple hydrogenation and aromatization steps. 
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Scheme 1. Poor regioselectivity in the nickel-catalyzed [4+2] cycloaddition of N-Ts-3-
azetidinone and 4-methyl-pent-2-ynea 

 

a The reactions were carried out with 1 (0.22 mmol) and 2 (0.24 mmol). b Conversion 

determined by 1H NMR. c Determined by 1H NMR of the crude mixture. d Used as 1 M 

solution in THF. e Made in situ by premixing 1,3-bis(2,4,6-trimethylphenyl)-imidazolium 

chloride (20 mol %) and tBuOK (20 mol %). f Extensive decomposition of 1 was observed and 

3 was not formed. 
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Scheme 2. Strategy for the regioselective synthesis of 3-hydroxy-4,5-bisalkyl pyridines 
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Table 1. Regioselective synthesis of 3-hydroxy-4,5-alkyl-substituted pyridines using 1,3-

enynes as alkynes surrogatesa 

 

a All reactions were carried out with 1 (0.22 mmol), 4 (0.24 mmol), Ni(cod)2 (0.022 mmol), 

and PPh3 (0.044 mmol) except otherwise noted. b Yield of the isolated major regioisomer 

only, average of two experiments. c 30 mol % PPh3. d From 1H NMR of the crude mixture. e 

Yield of isolated 6 after two steps. f Hydrogenation was performed in a flask immersed in a 

sonication bath for 5 h. g Hydrogenation for 7.5 h. h Hydrogenation for 5 h. 
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Scheme 3. Reactions of enynes 4i, 4j and 4ka 

 

a Same reaction conditions as table 1 (entries 1–5). 
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Table 2. Cycloaddition of N-Ts-3-azetidinone with 1,3-enynes 4a–4f catalyzed by 

NiBr2(PPh3)2/Zna 

product yield(%)b ratio of regioisomersc 

5a 66 85:15 

5b 31 91:9 

5c 51 85:15 

5d 59 91:9 

5e 69 87:13 

5f 50 91:9 

a Reaction conditions as in eq 1. b Yield of the isolated major regioisomer. c From 1H NMR of 

the crude mixture. 

  



Organic Letters 2016, 18, 1756–1759 (doi: 10.1021/acs.orglett.6b00451) 

 

Table 3. Nickel-catalyzed cycloaddition of 3-azetidinones with a terminal 1,3-enynea 

 

entry 1 or 9 solvent temp (ºC) t (h) yield (%)b  

1 1 toluene 60 144 7 

2 9 toluene 60 40 40 

3 9 THF 60 40 35 

4 9 dioxane 60 16 58c 

5 9 dioxane 70 16 41 

a All reactions were carried out with 1 or 9 (0.22 mmol), 7 (0.24 mmol), Ni(cod)2 (0.022 

mmol), and PPh3 (0.066 mmol). b Yield of isolated 8 (entry 1) or 10 (entries 2–5). c Average of 

two experiments. 
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Scheme 4. Reactions of N-Ts-2-benzyl-3-azetidinone 12 

 

a Yield of isolated major regioisomer only, average of two experiments. b Yield of isolated 

product after two steps. 
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Scheme 5. Further functionalization of 3-hydroxy-4-ethyl-5-isopropylpyridine 15 

 

a Yield of isolated major regioisomer only. b Ratio of regioisomer in the crude reaction 

mixture. 


