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Abstract:	CIP2A	in	CML	
Chronic	myeloid	leukaemia	(CML)	is	a	myeloproliferative	disorder	arising	in	a	
haematopoietic	stem	cell	(HSC)	and	defined	by	the	presence	of	BCR-ABL1,	a	
deregulated	tyrosine	kinase	that	drives	numerous	oncogenic	signalling	
pathways.		Current	CML	therapies	are	tyrosine	kinase	inhibitors	(TKIs)	that	
target	the	constitutive	action	of	BCR-ABL1.		However,	resistance	to	TKIs	
remains	a	concern	for	a	substantial	proportion	of	CML	patients	and	thus	
investigating	the	mechanisms	underlying	poor	clinical	response	is	of	great	
importance.			
	

The	tumour	suppressor	protein	phosphatase	2A	(PP2A)	plays	a	crucial	role	in	
the	inhibition	of	several	critical	oncogenic	signalling	pathways.		Consequently,	
reports	of	aberrant	PP2A	activity	in	human	malignancies	are	abundant.		
Cancerous	inhibitor	of	PP2A	(CIP2A)	is	an	endogenous	inhibitor	of	PP2A	that	is	
overexpressed	in	a	plethora	of	tumours;	CIP2A	inhibits	the	dephosphorylation	
of	the	oncogenic	transcription	factor	c-Myc	by	PP2A.			

	
In	CML,	it	was	shown	that	high	CIP2A	protein	expression	at	diagnosis	was	
predictive	of	progression	into	blast	crisis	in	imatinib-treated	CML.		This	thesis	
aimed	to	determine	if	CIP2A	retained	its	potential	prognostic	indicator	status	in	
CML	treated	with	dasatinib	or	nilotinib.		The	molecular	pathogenesis	of	the	
CIP2A/PP2A	pathway	within	CML	and	the	central	role	played	by	CIP2A	is	also	
investigated.			

	

Molecular	interactions	of	proteins	have	been	known	to	greatly	differ	between	
transcript	variants	of	the	same	gene.		No	CIP2A	transcript	variant	has	ever	been	
reported.		This	thesis	aimed	to	identify	two	CIP2A	transcript	variants	previously	
undescribed	in	vivo,	and	analyse	their	differing	expressions	within	a	CML	
population.			

	
Aberrant	epigenetic	regulation	is	an	expanding	area	of	interest;	many	genes	
have	their	expression	altered	via	deregulated	methylation,	transcription	factor	
binding	and	micro	RNAs.		This	thesis	focussed	on	the	methylation	of	the	CIP2A	
promoter	in	CML	of	varying	disease	phase	and	clinical	outcome.			

	
In	summary,	this	thesis	provides	novel	information	about	CIP2A	in	response	to	
CML	treatment,	CIP2A	protein	interactions,	CIP2A	gene	variations	and	
epigenetic	regulation.		With	more	knowledge	of	this	oncoprotein,	its	oncogenic	
mechanisms	may	in	the	future	be	specifically	targeted	and	overcome.			
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Publications	and	presentations	of	data	from	this	thesis	are	as	follows:		
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• ‘Second	generation	tyrosine	kinase	inhibitors	prevent	disease	progression	in	

high-risk	(high	CIP2A)	chronic	myeloid	leukaemia	patients’	

o Leukemia,	29(7):	1514-1523	(13	March	2015)	

	

Presentations	

• Poster	presentation:	‘The	high	rate	of	blast	crisis	in	imatinib	treated	

chronic	myeloid	leukaemia	with	high	CIP2A	levels	is	nullified	by	first	line	

dasatinib	or	nilotinib.’	

o European	Haematology	Association	(EHA)	Annual	Scientific	Meeting	

! Amsterdam,	2012	
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Chapter	1:	Introduction	

1.1.	CML:	From	Past	to	Present	

In	1845,	the	earliest	report	of	chronic	myeloid	leukaemia	(CML)	was	described	

by	Dr	Hughes	Bennett	in	his	paper	titled	“Case	of	hypertrophy	of	the	spleen	and	

liver	in	which	death	took	place	from	suppuration	of	the	blood”(Bennet,	1845).		

Just	5	weeks	later,	Rudolf	Virchow,	another	leading	scientist	of	the	time,	also	

published	a	case	of	CML;	he	described	the	blood	as	“Weisses	Blut”	due	to	the	

abnormally	high	number	of	white	blood	cells	he	witnessed(Virchow,	1845).		At	

the	time,	the	disease	was	widely	called	‘leucocythaemia’,	a	term	coined	by	

Bennett,	meaning	literally	‘white	cell	blood’(Bennett,	1852).		(Geary,	2000;	

Kampen,	2012;	Piller,	2001)	

	

Two	years	after	his	original	CML	publishing,	Virchow	documented	4	out	of	a	

further	9	leukaemic	cases	that	(along	with	the	original	patients	described	by	

both	himself	and	Bennett)	also	had	distinct	splenomegaly	and	granular	

appearance	of	the	blood	cells(Virchow,	1847).		In	identifying	that	his	leukaemic	

patients	had	either	granular	or	non-granular	white	blood	cells,	Virchow	was	the	

first	to	categorise	two	forms	of	chronic	leukaemia	depending	on	the	tissue	of	

origin;	splenic	and	lymphatic(Virchow,	1849,	1856).			

	

Another	great	pioneer	in	CML	was	Ernst	Neumann.		In	1868,	Neumann	noted	

the	abnormal	“dirty	green-yellow”	colour	of	the	marrow	of	a	deceased	
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leukaemia	patient	during	an	autopsy	and	2	years	later	published	his	theory	that	

the	bone	marrow	was	the	site	of	blood	cell	production(Neumann,	1870).		In	

1878,	after	extensive	studies	into	the	cell	types	within	the	marrow,	he	added	

“myelogenous”	leukaemia	as	an	additional	classification	to	Virchow’s	splenic	

and	lymphatic(Neumann,	1869,	1878).			

	

It	is	important	to	note	that	the	discoveries	discussed	thus	far	predate	cellular	

staining.		The	development	of	a	triacid	stain	in	1879	by	Paul	Ehrlich	meant	that	

interior	structures	(such	as	the	nucleus	and	cytoplasm)	of	blood	cells	could	be	

clearly	seen	and	thus	the	distinction	of	different	blood	cells	began.			Neumann’s	

myelogenous	form	of	leukaemia	was	now	seen	to	closely	resemble	the	splenic	

form	described	20	years	earlier	by	Virchow;	lymphoid	and	myelogenous	

became	the	widely	used	terms	and	were	the	two	firmly	established	forms	of	

chronic	leukaemia.			

	

A	major	step	forward	in	understanding	CML	biology	came	in	1960	when	Peter	

Nowell	and	David	Hungerford	observed	the	abnormally	small	chromosome	22	

of	two	CML	patients;	they	named	the	altered	chromosome	the	“Philadelphia	

chromosome”(Nowell	&	Hungerford,	1960).		The	astonishing	detection	of	the	

Philadelphia	chromosome	was	in	fact	the	first	chromosomal	abnormality	to	be	

associated	with	any	malignant	disease.		Originally	it	was	believed	that	a	partial	

chromosome	deletion	was	the	cause	of	the	shortened	chromosome	22,	but	

thirteen	years	after	the	original	observation	Janet	Rowley	demonstrated	that	it	

had	in	fact	translocated	onto	the	long	arm	of	chromosome	9	and	that	this	is	
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accompanied	by	a	reciprocal	translocation	of	9q	to	22	(Figure	1.2)(J.	D.	Rowley,	

1973).		This	was	the	first	description	of	a	balanced	translocation	in	any	human	

cancer	(though	interestingly	its	publication	date	is	somewhat	after	the	report	of	

the	t(15;17)(q22;q12)	balanced	translocation	in	acute	promyelocytic	leukaemia	

(APML)	by	the	same	group(J.	Rowley	et	al.,	1977)).			

	

The	next	25	years	saw	the	identification	of	the	genes	involved	in	the	

translocation	(ABL1	and	BCR)	and	the	tyrosine	kinase	they	encoded	(BCR-

ABL1).		The	detection	of	the	BCR-ABL1	fusion	oncogene	and	the	potential	

therapeutic	target	of	its	subsequent	protein	were	critical	discoveries	in	CML	

and	have	underpinned	the	revolution	in	the	way	in	which	the	disease	is	now	

treated.			
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1.2.	Early	CML	Treatment	

In	the	years	following	Bennett’s	first	reported	case	of	CML	there	were	a	variety	

of	treatments	used	to	attempt	to	treat	the	disease	though	most	only	acted	to	

alleviate	some	of	the	patient’s	symptoms	(such	as	fever,	anaemia	and	pain).		The	

first	widely	used	CML	therapy	was	low	dose-arsenic,	an	idea	inspired	by	the	use	

of	Fowler’s	Solution	(1%	arsenic	sulphide)	in	the	19thcentury	for	the	treatment	

of	fevers	and	headaches.		Interestingly,	the	first	report	of	its	use	in	CML	may	

have	been	by	Arthur	Conan	Doyle	(famed	for	Sherlock	Holmes	and	other	

fiction);	the	article	in	the	Lancet	has	his	name	misspelt(Cowan	Doyle,	1882).		

Arsenic	produced	not	only	improvements	in	spleen	size,	leucocyte	count	and	

anaemia	but	also	patients’	spirits	lifted	when	treated	with	arsenic	and	

improvement	could	last	for	a	period	of	some	months.			

	

Arsenic	treatment	was	well	established	in	CML	until	1903	when	it	was	replaced	

by	radiotherapy	following	the	development	of	the	x-ray	8	years	before.		The	

apparent	return	to	health	of	patients	that	occasionally	lasted	more	than	12	

months	meant	that	‘remission’	of	CML	(though	it	was	not	at	the	time	called	this)	

was	first	considered	as	a	potential	possibility.		Nitrogen	mustards	(derivatives	

of	First	World	War	mustard	gas)	and	(in	1953)	busulphan	were	amongst	those	

that	followed,	the	latter	of	which	had	more	success	in	treating	CML.		Superior	

results	of	busulphan	compared	to	radiotherapy	meant	it	became	the	main	CML	

treatment	for	the	next	35	years,	until	its	replacement	by	hydroxyurea	and	later,	

interferon-α	(IFN-α)	from	1983.			
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In	1970,	eradication	of	Philadelphia	positive	cells	in	CML	was	first	reported	in	

Seattle,	following	haematopoietic	stem	cell	transplantation	(HSCT).		HSCT	was	

in	fact	first	performed	on	5	patients	suffering	from	irradiation	poisoning	in	

1959	by	Georges	Mathé(Baccarani	et	al.,	2006),	who	followed	this	with	an	

announcement	in	1963	that	he	had	cured	a	leukaemic	patient	using	this	

technique(Mathe,	Amiel,	Schwarzenberg,	Cattan,	&	Schneider,	1963).		With	

regards	to	CML	treatment,	allogeneic	HSCT	was	originally	limited	to	younger	

patients	with	suitable	matching	donors.		Thus	this	was	not	an	option	for	a	large	

proportion	of	CML	patients.			

	

Nowadays,	HSCT	remains	a	legitimate	treatment	option	due	to	the	difficulty	of	

treating	patients	who	have	progressed	past	the	stable	chronic	phase	of	the	

disease;	the	effectiveness	of	modern-day	tyrosine	kinase	inhibitors	(TKIs)	

significantly	drops	for	patients	beginning	treatment	in	advanced	phases	of	the	

disease;	just	11%	and	8%	of	patients	achieve	a	complete	cytogenetic	response	

(CCR)	after	beginning	imatinib	treatment	in	accelerated	and	blastic	phases	

respectively(Sawyers	et	al.,	2002;	Talpaz	et	al.,	2002).		HSCT	is	now	reserved	for	

those	with	little	alternative	options	available	and	remains	the	only	curative	

therapy	for	CML	patients.			

	

In	the	early	1980s	IFN-α	was	used	as	a	treatment	for	CML	and	for	the	first	time	

CCR	and	long-term	survival	were	seen	in	a	small	subset	of	patients(Group,	

1997);	the	correlation	between	CCR	and	extended	survival	highlighted	the	

importance	of	this	milestone	in	patient	outcome(H.	M.	Kantarjian	et	al.,	2003;	H.	
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M.	Kantarjian	et	al.,	1995).		Until	the	introduction	of	the	TKI	imatinib	in	the	late	

1990s	(Section	1.8.1),	IFN-α	(sometimes	in	combination	with	cytarabine)	

remained	the	standard	treatment	for	CML,	unless	the	patient	was	young	and	

had	a	suitable	available	donor	for	allogeneic	HSCT.				
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1.3.	CML	Epidemiology	

CML	is	rare	in	children,	though	it	accounts	for	around	15%	of	all	leukaemias	in	

adults.		Despite	this	high	percentage,	the	mortality	rate	has	been	significantly	

decreased	(<2-3%	in	the	first	year)	since	the	development	of	imatinib	and	other	

TKIs.		The	annual	incidence	of	CML	is	approximately	0.6-2	cases	per	100	000	

worldwide,	with	around	600	patients	newly	diagnosed	in	the	UK	each	year.		The	

chance	of	CML	occurring	increases	with	age(McNally,	Rowland,	Roman,	&	

Cartwright,	1997),	thus	it	is	possible	that	these	figures	have	been	on	the	rise	as	

average	life	expectancy	increases(Rohrbacher	&	Hasford,	2009).		The	median	

age	of	diagnosis	is	generally	reported	as	45-55,	though	in	some	trials	this	is	

higher.		CML	occurs	more	commonly	in	men	than	women	(though	it	is	not	

understood	why)	with	the	ratio	of	men	to	women	varying	between	1.3:1	and	

1.8:1(McNally	et	al.,	1997;	Phekoo,	Richards,	Moller,	&	Schey,	2006).		It	is	

important	to	remember	that	these	figures	come	from	countries	where	

diagnostic	techniques	are	readily	available	and	thus	reliable	statistics	can	be	

taken.		It	is	possible	that	results	would	alter	or	other	variations	may	be	masked	

by	a	lack	of	data	from	certain	areas.				

	

The	only	known	risk	factor	that	predisposes	individuals	to	CML	is	ionising	

radiation,	such	as	therapeutic	irradiation	used	unwisely	in	the	1950s.		There	

was	also	an	increase	in	newly	diagnosed	CML	cases	roughly	8	years	after	the	

atomic	bombing	incidents	of	Hiroshima	and	Nagasaki(Ichimaru,	Tomonaga,	

Amenomori,	&	Matsuo,	1991).		No	inherited,	geographical,	viral	or	chemical	

factors	have	been	shown	to	correlate	with	CML.	
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1.4.	Clinical	Features	of	CML	

Many	CML	patients	are	asymptomatic	at	diagnosis;	it	is	apparent	in	blood	

samples	taken	for	other	reasons.		If	symptoms	are	indeed	present	these	can	

include	fever,	night	sweats,	weight	loss,	symptoms	of	anaemia	or	

abdominal/shoulder	pain	due	to	splenomegaly.			

	

1.4.1.	Diagnosis	

Upon	medical	suspicion	of	CML	three	diagnostic	tests	are	typically	taken:	a	full	

blood	count,	a	bone	marrow	aspirate	for	morphology	and	metaphase	

karyotyping	and	molecular	analysis	for	BCR-ABL1	(Section	1.6.3).		Choice	of	

treatment,	determination	of	disease	phase	and	risk	stratifications	(which	also	

require	assessment	of	splenomegaly)	are	dependent	upon	these	results	as	well	

as	the	ability	to	monitor	response	in	comparison	to	baseline	data.		The	majority	

of	patients	present	in	chronic	phase,	and	thus	have	a	low	or	absent	peripheral	

blood	blast	count,	though	immature	myeloid	cells	such	as	myelocytes	and	

promyelocytes	are	present.(M.	W.	Deininger,	2008a)	

	

1.4.2.	Monitoring	Patient	Response	to	Treatment	

Following	diagnosis,	the	examination	of	peripheral	blood	samples	and/or	bone	

marrow	karyotyping	are	key	in	monitoring	patient	response	to	their	given	

treatment	protocol.		Blood	samples	are	analysed	using	quantitative	real	time	

reverse	transcriptase	polymerase	chain	reaction	(qRT-PCR)	(Section	2.9.3)	for	

BCR-ABL1	transcript	levels.		At	diagnosis,	a	ratio	of	BCR-ABL1	to	total	ABL1	(or	
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other	control	gene)	of	30%	or	more	is	typically	seen;	this	ratio	falls	on	

successful	treatment	(Section	1.7.1).			

	

Kinase	domain	mutations	(Section	1.9.1)	are	a	common	mechanism	of	imatinib	

resistance	and	imatinib	plasma	trough	levels	have	been	shown	to	be	an	

indicator	of	depth	of	response,	thus	both	are	considered	in	patient	care(M.	W.	

Deininger,	2008a).			
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1.5.	CML	Pathogenesis	

CML	is	classically	described	as	a	triphasic	disease,	beginning	in	an	indolent	

chronic	phase	(CP).		Untreated	CP	has	a	variable	duration	(usually	3-5	years)	

and	sees	the	accumulation	of	neutrophils	and	their	immature	precursors	in	the	

blood,	bone	marrow	and	extramedullary	sites(Nowell	&	Hungerford,	1960).		An	

accelerated	phase	(AP)	can	then,	but	not	always,	precede	the	final	phase,	blast	

crisis	(BC).		Table	1.1	defines	the	three	phases	of	CML,	according	to	2013	

European	Leukaemia	Net	(ELN)	guidelines.			

	

Table	1.1.	Criteria	for	Classification	of	CML	Phase	by	ELN	2013	

	 CHRONIC	PHASE	

(CP)	

ACCELERATED	PHASE	

(AP)	

BLAST	CRISIS	(BC)	

EL
N
	G
U
ID
EL
IN
E	
CR
IT
ER
IA
	

Blasts	<15%	or	

Blasts	+	

promyelocytes	

<30%	

Basophils	<20%	

Blasts	15-29%	or	

Blasts	+	promyelocytes	

>30%	

Basophils	≥20%	

Persistent	

thrombocytopenia	

(<100	x	109/L)	

unrelated	to	therapy	

Clonal	chromosomal	

abnormalities	in	Ph+	

cells	

Blasts	≥30%	

Extramedullary	

blast	cell	

proliferation	

(excepting	spleen	

and	liver)	
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The	precise	mechanism	of	progression	from	CP	through	to	BC	is	unknown,	

though	additional	chromosomal	mutations	(e.g.	additional	Ph+	chromosome	

copies	and	p53	mutations(J.	D.	Rowley,	1973;	Stuppia	et	al.,	1977))	are	often	

seen.		The	mass	expansion	of	myeloid	precursors	(>30%	blasts	seen	in	the	

peripheral	blood)	is	also	a	feature	of	BC,	with	little	treatment	options	and	a	

reduction	in	life	expectancy	to	less	than	3	months	without	treatment(Shet,	

Jahagirdar,	&	Verfaillie,	2002).			
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1.6.	Molecular	Pathogenesis	of	CML	

CML	is	driven	by	a	fusion	oncogene	BCR-ABL1	encoding	a	constitutively	active	

tyrosine	kinase.		Before	delving	into	the	mechanisms	of	action	of	this	protein,	

we	must	understand	the	molecular	structure	and	thus	must	discuss	the	genes	

involved	in	this	fusion;	BCR	and	ABL1.	

	

1.6.1.	Normal	BCR	

The	understanding	of	normal	breakpoint	cluster	region	(BCR)	protein	is	fairly	

limited	in	comparison	to	its	fusion	partner	c-ABL1	and	their	resultant	oncogene.		

It	is	known	to	have	serine/threonine	kinase	activity	and	span	1271	amino	

acids(Zhao,	Ghaffari,	Lodish,	Malashkevich,	&	Kim,	2002).		The	main	structural	

importance	of	BCR	is	the	coiled	coil	domain	(BCR30-65),	which	is	involved	in	the	

dimerisation	with	the	3’	sequences	of	ABL1.				

	

BCR	consists	of	23	exons,	of	which	up	to	19	are	conserved	in	BCR-ABL1.		

Variation	in	BCR-ABL1	protein	size	is	dependent	upon	the	breakpoint	location	

along	the	BCR	gene;	210kDa	is	the	most	common	length	in	CML.		(Helgason,	

Karvela,	&	Holyoake,	2011)	

	

1.6.2.	Normal	ABL1	

The	discovery	of	v-ABL1	(retroviral-ABL1)	from	the	Abelson	leukaemia	virus	

preceded	that	of	c-ABL1,	though	when	linked	to	BCR-ABL1	protein	in	CML,	the	
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importance	of	this	proto-oncogene	was	widely	noted(Abelson	&	Rabstein,	

1970).		c-ABL1	(cellular	Abl1)	is	a	145kDa	non-receptor	tyrosine	kinase	with	a	

range	of	implicated	functions;	these	include	cell	migration,	growth	and	survival	

amongst	other	things(Hantschel	&	Superti-Furga,	2004).		In	addition	to	CML,	c-

ABL1	has	been	implicated	in	a	variety	of	other	haematological	malignancies	

including	acute	myeloid	leukaemia	(AML),	myeloproliferative	neoplasms	(MPN)	

and	both	B-	and	T-cell	acute	lymphoblastic	leukaemia	(ALL)	via	its	fusion	with	

other	genes.		(De	Braekeleer	et	al.,	2011)	

	

Figure	1.1.	Structure	of	c-Abl1	and	the	oncogene	BCR-ABL1.		c-Abl1	contains	

both	actin-	and	DNA-binding	domains,	a	proline	rich	region	(PR),	SH3,	SH2	and	

kinase	domains	and	a	myristoylation	modification	signal	(M).		In	BCR-ABL1,	no	

myristoylation	modification	signal	is	present,	since	BCR	is	fused	to	the	N-

terminal	of	c-Abl1.		Adapted	from	De	Braekeleer	et	al,	EJH	2011(De	Braekeleer	

et	al.,	2011).	

	

	

The	structure	of	c-ABL1	plays	much	of	a	role	in	its	own	regulation.		Of	the	three	

sarcoma	(SRC)	homology	domains,	Src	homology	domain	1	(SH1)	carries	the	

kinase	function	of	c-ABL1.		This	produces	positive	signals	for	the	array	of	

pathways	c-ABL1	is	involved	in,	yet	intramolecular	folding,	which	occurs	via	the	

binding	of	SH3	to	a	single	proline	residue	between	SH2	and	the	kinase	domain,	

KINASE DNA ACTINPRSH3 SH2M

BCR KINASE DNA ACTINPRSH3 SH2

c-Abl

BCR-ABL
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causes	the	autoinhibition	of	c-ABL1	kinase	activity(Brasher,	Roumiantsev,	&	

Van	Etten,	2001).		In	CML	however,	this	self-regulation	is	disrupted	by	the	

fusion	of	BCR	coiled-coil	domain	with	the	N-terminus	of	c-ABL1,	thus	the	kinase	

activity	of	this	new	protein	runs	unchecked.		Interestingly,	SH2	and	SH3	are	also	

responsible	for	protein-protein	interactions.(De	Braekeleer	et	al.,	2011;	M.	W.	N.	

Deininger,	Goldman,	&	Melo,	2000)	
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1.6.3.	BCR-ABL1	

The	presence	of	BCR-ABL1	is	the	hallmark	of	CML	and	a	subset	of	ALL	patients.		

This	occurs	when	the	ABL1	gene	from	chromosome	9	is	translocated	to	BCR	on	

chromosome	22,	where	oncogenic	fusion	occurs.		This	encodes	the	oncoprotein	

BCR-ABL1.		In	CML,	it	is	the	resultant	constitutively	active	ABL1	kinase	activity	

of	this	protein	that	drives	the	leukaemia.		Mechanisms	of	BCR-ABL1	mediated	

cell	transformation	include	altered	adhesion,	activation	of	signalling	cascades	

(e.g.	mitogen-activated	protein	kinase	(MAPK)	and	protein	phosphatase	2A	

(PP2A)	pathways)	and	diminished	apoptosis	(Section	1.10).(Quintás-Cardama	

&	Cortes,	2009;	Ellen	Weisberg,	Manley,	Cowan-Jacob,	Hochhaus,	&	Griffin,	

2007)	

	

Figure	1.2.	The	Philadelphia	chromosome,	created	via	the	reciprocal	

translocation	of	chromosomes	9	and	22	at	points	q34	and	q11	

respectively.Adapted	from	The	Molecular	Oncology	Report,	2007(Armand,	

2007).	
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1.6.3.1.	BCR-ABL1	Transcript	Types	

Different	BCR-ABL1	transcripts	of	varying	lengths	have	been	identified	in	both	

CML	and	ALL.		These	occur	due	to	alternative	breakpoint	sites	within	both	BCR	

and	ABL1.		Rare	variants	such	as	e13a3(L.-G.	Liu	et	al.,	2003),	e14a3(Burmeister	

&	Reinhardt,	2008),	e6a2(Dupont,	Jourdan,	&	Chiesa,	2000;	Hochhaus	et	al.,	

1996;	Schultheis,	Wang,	Clark,	&	Melo,	2003),	e8a2(Branford,	Rudzki,	&	Hughes,	

2000;	Park	et	al.,	2008)	and	e18a2(Wada	et	al.,	1995)	have	been	only	

occasionally	described	and	thus	here	only	the	main	isoforms	reported	will	be	

discussed	at	length,	namely	e1a2,	e13a2,	e14a2	and	e19a2.		(M.	W.	N.	Deininger	

et	al.,	2000;	Weerkamp	et	al.,	2009)	

	

Three	ABL1	break	point	locations	upstream	of	exon	2	are	shown	on	Figure	1.3;	

the	more	common	location	is	between	alternative	exons	1a	and	1b.		Regardless	

of	which	breakpoint	location	(because	of	alternative	splicing),	all	of	these	

isoforms	give	rise	to	a	BCR-ABL1	gene	with	BCR	fusion	at	ABL1	exon2.			

	

Three	BCR	regions	are	identified;	major,	minor	and	more	recently,	micro	(M-

BCR,	m-BCR	and	µ-BCR,	respectively).		M-BCR	encompasses	exons	12-16,	with	2	

breakpoint	sites;	downstream	of	exon	13	which	gives	rise	to	an	e13a2	

transcript,	and	downstream	of	exon	14	resulting	in	an	e14a2	transcript;	both	

encode	a	210kDa	protein.		The	m-BCR	breakpoint	site	occurs	upstream	of	exon	

2	and	is	responsible	for	e1a2	(190kDa).		The	final	BCR-ABL1	transcript	shown	is	

e19a2(Haškovec	et	al.,	1998),	encoding	a	230kDa	protein,	resulting	from	a	µ-

BCR	breakpoint.		(M.	W.	N.	Deininger	et	al.,	2000;	Weerkamp	et	al.,	2009)	
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Figure	1.3.Main	BCR-ABL1	fusion	genes.		The	different	BCR-ABL1	transcripts	

shown	are	formed	from	alternative	breakpoint	sites	of	BCR;	2	sites	within	M-

BCR,	1	in	m-BCR	and	1	in	µ-BCR.		These	result	in	4	different	isoforms	of	BCR-

ABL1,	of	3	varying	lengths.	

	

	

In	CML,	the	most	common	BCR-ABL1	transcripts	are	e13a2	and	e14a2,	though	in	

2-3%	of	cases	patients	have	isoform	e1a2(Melo,	1996).		Conversely,	in	

Philadelphia-positive	ALL	the	most	common	form	of	BCR-ABL1	is	e1a2	with	

only	a	third	of	patients	having	splice	forms	resulting	from	the	M-BCR.		The	

rarest	form,	e19a2	has	been	mostly	identified	in	patients	suffering	from	chronic	

neutrophilic	leukaemia.		(Advani	&	Pendergast,	2002;	Kwong	&	Cheng,	1993;	

Pane	et	al.,	1996)	 	

1a 1b

Exons	a2-11

e23e1

Exons	e12-20

e2 e13 e14 e19

M-BCRm-BCR µ-BCR

ABL

BCR

e1 A2-11

e1-13

e1-14

e1-19

A2-11

A2-11

A2-11

e1a2		(p190)

e13a2		(p210)

e14a2		(p210)

e19a2		(p230)

BCR-ABL1



32	|	P a g e 	

	

1.7.	CML	Treatment	

Following	the	original	discovery	of	CML	almost	170	years	ago,	several	advances	

were	made	in	its	treatment	that	palliated	the	symptoms	of	the	disease,	but	

made	little	difference	to	its	natural	history.		This	changed	in	the	early	1980s	

with	the	introduction	of	IFN-α,	which	prolonged	median	survival	but	was	not	

curative.		More	recently,	unlike	previous	treatments	that	were	non-specific,	

TKIs	target	the	driving	force	of	CML;	BCR-ABL1.		TKI	treatment	mechanisms,	

resistance	and	clinical	trial	data	are	described	in	this	section.			

	

Figure	1.4.		Relationship	between	leukaemic	cell	count,	BCR-ABL1	

transcript	level	and	CML	patient	response.		Adapted	from	Baccarani	M	et	al	

Blood	2006(Baccarani	et	al.,	2006).	

	

Molecularly	Undetectable	
Leukaemia	(MR4)

Complete	Cytogenetic	Response	(CCR)
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1.7.1.	Definitions	of	Response	

Certain	clinical	‘milestones’	are	used	in	CML	to	describe	the	level	of	treatment	

response	that	a	patient	achieves	(Figure	1.4).		These	are	dependent	upon	BCR-

ABL1	transcript	ratio	and	the	number	of	leukaemic	cells	present	within	the	

blood.			

	

The	International	Scale	

It	should	be	noted	here,	that	the	International	Scale	(IS)	is	used	to	standardise	

the	quantitative	measurements	of	BCR-ABL1	transcript	across	different	

laboratories(Timothy	Hughes	et	al.,	2006).		As	each	laboratory	can	differ	in	their	

choice	of	regents	and	protocols,	variation	can	occur	due	to	numerous	factors;	

different	RNA	preparation,	laboratory	instruments,	enzymes,	standard	curve	

materials	etc.		The	IS	is	therefore	used	to	eliminate	this	variation	and	is	

imperative	in	facilitating	collaborative,	interlaboratory	studies.			

	

The	IS	was	developed	in	2005	and	utilises	the	International	Randomized	Study	

of	Interferon	vs	STI571	(IRIS)	trial	to	determine	fixed	baseline	and	MMR	

values(T.	Hughes	et	al.,	2003).			Each	laboratory	is	given	its	own	individual	

conversion	factor	based	on	the	IS	and	this	conversion	is	then	applied	to	their	

study	results,	rendering	all	laboratory	studies	standardised	to	the	IS	and	thus	

more	easily	comparable.			
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1.7.1.1.	Definitions	of	Molecular	Response	

Complete	Haematologic	Response	(CHR):	Normalisation	of	the	blood	(WBCs	

<10	x	109/L,	platelet	count	<450	x	109/L,	<5%	basophils	and	no	immature	

granulocytes)	and	resolution	of	splenomegaly.			

	

Complete	Cytogenetic	Response	(CCR):		No	Philadelphia	positive	metaphases	

amongst	at	least	20	marrow	metaphases.		Several	studies	have	shown	that	

cytogenetically	defined	CCR	is	equivalent	to	aBCR-ABL1/ABL1	ratio	of	≤	1%.	

	

Major	Molecular	Response	(MMR):	BCR-ABL1/ABL1	ratio	of	≤	0.1%.	

	

Molecularly	Remission	at	the	4-log	level	(MR4):		No	detectable	BCR-ABL1	

transcripts	in	two	consecutive	blood	samples	of	adequate	sensitivity	(>104),	or	

a	log	4	reduction	in	BCR-ABL1/ABL1	transcript	ratio	(≤	0.01%).		N.B.	This	was	

formerly	described	by	some	as	‘complete	molecular	response’.			
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1.7.1.2.	Definitions	of	Clinical	Response	

The	time	taken	to	achieve	CHR,	CCR,	MMR	and	MR4	is	also	important	in	

monitoring	CML	patients;	several	clinical	studies	have	shown	that	patients	who	

achieve	a	response	earlier	are	less	likely	to	relapse	and	more	likely	to	maintain	

their	response.		Therefore,	patients	have	been	categorised	by	the	European	

Leukaemia	Net	(ELN)	according	to	both	the	depth	and	rate	of	their	response	to	

first	line	treatment.		Response	definitions	vary	depending	on	duration	of	

treatment;	3,	6	or	12	months	and	then	at	any	time	after.		All	response	

definitions	used	within	this	thesis	are	according	to	2013	ELN	guidelines.		

(Baccarani	et	al.,	2013)	

	

Optimal	response:	

- At	3	months:	BCR-ABL1/ABL1	ratio	≤	10%	and/or	Ph+	≤	35%.			

- At	6	months:	BCR-ABL1/ABL1	ratio	≤	1%	and/or	Ph+	0%.			

- At	12	months:	BCR-ABL1/ABL1	ratio	≤	0.1%.			

- Any	time	after:	BCR-ABL1/ABL1	ratio	≤	0.1%.			

N.B.		In	such	patients	there	is	no	indication	that	an	alternative	treatment	may	

improve	survival.	

	

Warning/Suboptimal	response:	

- At	3	months:	BCR-ABL1/ABL1	ratio	>	10%	and/or	Ph+	≤	36-95%.			

- At	6	months:	BCR-ABL1/ABL1	ratio	1-10%	and/or	Ph+	1-35%.			

- At	12	months:	BCR-ABL1/ABL1	ratio	of	>	0.1-1%.			

- Any	time	after:	CCA/Ph-.	
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N.B.		In	such	patients,	there	is	a	possible	substantial	long-term	benefit	to	the	

patient	from	continuing	current	treatment	but	less	chance	of	achieving	an	

optimal	response.		Patients	may	be	considered	for	possible	alternative	therapy.			

	

Treatment	Failure:	

- At	3	months:	no	CHR	and/or	Ph+	>95%.			

- At	6	months:	BCR-ABL1/ABL1	ratio	>	10%	and/or	Ph+	>35%.			

- At	12	months:	BCR-ABL1/ABL1	ratio	>1%	and/or	Ph+	>0.			

- Any	time	after:	loss	of	CHR,	loss	of	CCR,	loss	of	MMR	(confirmed	in	2	consecutive	

tests)	development	of	additional	chromosomal	mutations	or	CCA/Ph+.			

N.B.		In	such	patients	a	positive	patient	outcome	is	highly	unlikely	and	the	

patient	should	be	transferred	onto	an	alternative	therapy	where	possible.			

	 	



37	|	P a g e 	

	

1.7.2.	Definitions	of	Survival	

Long-term	treatment	efficacies	of	large	cohorts	of	CML	patients	are	analysed	

according	to	overall,	progression	free	and	event	free	survival.		The	definitions	of	

death,	progression	and	events	that	are	used	in	the	analysis	of	each	of	these	

response	groups	are	variable,	but	most	studies	use	the	following	definitions	of	

events	for	each	of	these	parameters:	

	

Overall	Survival	(OS):		Death	by	any	cause	(CML	or	non-CML	related).	

	

Progression	Free	Survival	(PFS):		Death	due	to	any	cause,	or	progression	into	

accelerated	or	blast	phase.			

	

Event	Free	Survival	(EFS):		Death	by	any	cause	(CML	or	non-CML	related),	

progression	into	accelerated	or	blast	phase,	a	loss	of	complete	haematologic	or	

cytogenetic	response.		Some,	but	not	all,	studies	also	include	a	failure	to	achieve	

a	CCR	by	12	months.	
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1.7.3.	Definitions	of	TKI	Resistance	and	Failure	

Unfortunately,	some	patients	can	be	resistant	to	certain	(or	in	extreme	cases	all	

current)	TKIs	and	may	need	to	switch	to	a	different	treatment.		Changes	in	

treatment	plan	may	also	be	due	to	adverse	reactions	to	a	drug	that	interfere	

with	or	jeopardise	a	patient’s	life.		Resistance	and	intolerance	definitions	are	as	

follows:	

	

Primary	Resistance:		No	treatment	efficacy	from	the	onset	of	TKI	therapy.		

This	can	also	be	referred	to	as	intrinsic	resistance.			

	

Secondary	Resistance:		Loss	of	an	initial	response	to	TKI	treatment.			This	can	

also	be	referred	to	as	acquired	resistance	and	is	considered	a	relapse.			

	

TKI	intolerance:		Side	effects	to	TKI	treatment	that	lead	to	a	switch	in	

treatment,	in	spite	of	a	low	BCR-ABL1	percentage.	

	

	

In	CML	research,	the	definition	of	treatment	failure	can	vary	slightly	from	study	

to	study.		In	this	thesis	treatment	failure	is	defined	as	any	of	the	following:	death	

by	CML;	progression	to	advanced	phases	of	CML;	a	change	of	treatment	due	to	

high	BCR-ABL1	percentage	(i.e.	primary/secondary	resistance)	or	a	change	of	

treatment	due	to	TKI	intolerance	(i.e.	undesirable	side	effects).			
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1.8.	Targeting	BCR-ABL1	–	The	TKI	Era	

TKIs	are	now	the	standard	therapy	for	CML,	following	the	original	development	

of	imatinib	and	the	subsequent	introduction	of	the	second	generation	TKIs	(2G	

TKIs)	dasatinib	and	nilotinib.		All	three	of	these	drugs	are	now	approved	for	

frontline	CML	treatment	and	are	based	on	the	same	mechanistic	idea	–	blocking	

the	kinase	activity	of	BCR-ABL1	by	drug	binding	within	the	catalytic	site.		

Nilotinib	(structurally	based	upon	imatinib)	and	dasatinib	(a	more	multi-

targeted	TKI)	were	developed	following	the	realisation	of	imatinib	resistance	

and	the	additional	2G	TKI	bosutinib	has	also	shown	promise.		Controversy	has	

recently	surrounded	the	youngest	of	the	TKIs,	ponatinib,	whose	adverse	events	

have	unfortunately	dampened	the	original	excitement	of	its	efficacy	against	the	

BCR-ABL1	kinase	domain	(KD)	mutation	T315I.		Mechanisms	of	action,	clinical	

trial	data	and	resistance	of	these	TKIs	are	discussed	forthwith.			

	

Figure	1.5.		Chemical	structures	of	imatinib	(Novartis),	dasatinib	(Bristol-

Myers	Squibb),	nilotinib	(Novartis),	bosutinib	(Pfizer)	and	ponatinib	

(Ariad).Figure	taken	from	Santos,	FP	et	al,	2011(Santos,	Kantarjian,	Quintás-

Cardama,	&	Cortes,	2011).	
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1.8.1.	Imatinib	

CML	therapy	was	revolutionised	by	the	arrival	of	imatinib	(STI-

571/Gleevec/Glivec),	a	site-specific	treatment	designed	to	target	the	tyrosine	

kinase	activity	of	BCR-ABL1.		This	ATP-competitive	molecule	binds	to	the	

inactive	form	of	BCR-ABL1	and	blocks	further	substrate	phosphorylation	by	the	

deregulated	tyrosine	kinase(Hassan,	Sharma,	&	Warmuth,	2010).		Early	studies	

showed	imatinib	also	inhibited	platelet-derived	growth	factor	receptor	α/β	

(PDGFRα/β),	inhibited	proliferation	and	induced	apoptosis	in	BCR-ABL1-

positive	cells(B.J	Druker	et	al.,	1996).			

	

Figure	1.6.		Imatinib:	mechanism	of	action.		In	active	CML,	ATP	binds	to	the	

catalytic	site	of	BCR-ABL1.		BCR-ABL1	transfers	a	phosphate	group	from	ATP	

(subsequently	releasing	ADP)	to	a	tyrosine	residue	on	its	substrate,	leading	to	

increased	leukaemic	activity.		In	the	presence	of	imatinib,	ATP	binding	and	

therefore	further	downstream	tyrosine	kinase	activity	is	inhibited.	
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1.8.1.1.	Phase	I	and	II	Imatinib	Clinical	Trials	

The	imatinib	Phase	I	trial	recruited	83	patients	with	IFN-α-resistant	(70	

patients)	or	intolerant	(13	patients)	CML	and	showed	extremely	promising	

results;	53/54	patients	given	≥300mg/day	achieved	CHR,	typically	within	4	

weeks	and	13%	of	these	achieved	a	CCR	within	approximately	12	weeks.		(Brian	

J.	Druker	et	al.,	2001)	

	

Phase	II	clinical	trials	were	conducted	on	3	separate	cohorts	of	patients;	CP-

CML,	AP-CML	and	BC-CML	(532,	235	and	260	patients	respectively).		CHR	and	

CCR	rates	of	88%	and	30%	were	observed	in	CP-CML.		A	haematological	

response	rate	of	63%	(CHR	28%)	and	26%	was	observed	in	AP-CML	and	BC-

CML	respectively	with	a	median	duration	of	approximately	5-6	months.		These	

incredible	responses	to	imatinib	in	early	phase	studies	saw	its	accelerated	Food	

and	Drug	Administration	(FDA)	approval	in	May	2001.		(Cohen	et	al.,	2002)	

	

1.8.1.2.	Late	Phase	and	Ongoing	Imatinib	Clinical	Trials	

In	June	2000	the	phase	III	trial	IRIS	(International	Randomized	Study	of	

Interferon	versus	STI571)	was	initiated	for	patients	with	newly	diagnosed	CP-

CML.		The	purpose	of	the	study	was	to	investigate	the	potentially	superior	

efficacy	of	imatinib	to	IFN-α	(in	combination	with	low-dose	cytarabine)	in	

treatment	naïve	CML	patients.		Early	results	showed	a	dramatic	difference	in	

response	rates	of	the	two	drugs;	95.3%	compared	to	55.5%	CHR,	and	73.8%	

compared	to	8.5%	CCR	(imatinib	vs	IFN-α	respectively)(O'Brien	et	al.,	2003).		
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These	superior	results	yielded	by	imatinib	led	to	the	majority	of	patients	being	

switched	from	IFN-α	(crossovers	by	31st	January	2002:	318/553	IFN-α	to	

imatinib,	compared	to	11/553	imatinib	to	IFN-α).		IRIS	has	thus	become	a	long-

term	study	of	imatinib.		(T.	P.	Hughes	et	al.,	2010;	O'Brien	et	al.,	2003)	

	

The	most	up	to	date	IRIS	trial	data	published	are	a	7	year	patient	follow-up.		The	

study	shows	a	CCR	and	MMR	rate	of	82%	and	87%	respectively	in	imatinib	

treated	patients.		However,	17%	of	those	who	achieved	a	CCR	failed	to	maintain	

it.		Only	6%	of	patients	progressed	in	the	first	36	months.		This	international	

trial	also	publishes	data	highlighting	the	importance	of	early	molecular	

responses	in	long-term	patient	survival;	100%	of	patients	who	had	achieved	an	

MMR	by	18	months	remained	progression-free	at	7	years	and	the	frequency	of	

an	event	also	decreased	dramatically	over	time.		(T.	P.	Hughes	et	al.,	2010;	

O'Brien	et	al.,	2003)	

	

However,	it	is	important	to	remember	the	strict	limitations	of	patient	criteria	in	

clinical	trials	and	thus	other	results	may	vary.		Lucas	et	al	investigated	the	

reproducibility	of	the	IRIS	trial	within	a	general	population	of	84	newly	

diagnosed	CP-CML	patients;	68	received	imatinib	400mg/day	as	first	line	

treatment.		In	the	first	12	months,	1	patient	lost	a	CHR,	2	were	intolerant	and	3	

progressed	into	AP/BC.		The	remaining	62	patients	were	assessed	and	showed	a	

12	month	CCR	rate	of	41%;	of	the	patients	who	did	not	achieve	a	CCR	at	this	

time,	5	had	progressed	or	lost	a	CHR.		The	overall	CCR	rates	of	assessable	
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patients	at	12,	18	and	24	months	follow-up	were	41%,	49%	and	51%	

respectively.		(C.	Lucas	et	al.,	2008)	

	

The	differences	in	the	data	presented	by	Novartis	and	Lucas	et	al	suggest	care	

should	be	taken	when	extrapolating	clinical	trial	data	to	assess	a	non-biased	

general	population	of	patients.			
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1.8.2.	Dasatinib	

Dasatinib	was	the	first	of	the	2G	TKIs	to	be	approved	for	imatinib-resistant	CML	

and	is	now	also	approved	for	frontline	therapy	at	a	standard	dose	of	

100mg/day	in	CP-CML	or	140mg/day	(or	70mg	twice	daily)	in	AP-CML	and	BC-

CML.		In	vitro	inhibition	of	wild	type	BCR-ABL1	by	dasatinib	was	shown	to	be	

325-fold	greater	than	with	imatinib.		Additionally,	dasatinib	has	shown	

excellent	efficacy	against	almost	all	BCR-ABL1	mutations	of	imatinib-resistant	

CML,	with	the	exception	of	point	mutation	T315I(Thomas	O'Hare	et	al.,	2005)	

	

Dasatinib	is	structurally	unrelated	to	imatinib	as	it	was	originally	developed	to	

target	SRC	family	kinases	(SFKs).		During	initial	testing	it	was	discovered	to	also	

have	extreme	potency	in	BCR-ABL1	inhibition(J.	Das	et	al.,	2006).		This	dual	

SFK/ABL1	inhibitor	has	a	variety	of	molecular	targets	and	is	the	only	first	line	

TKI	to	bind	both	active	and	inactive	forms	of	BCR-ABL1(Tokarski	et	al.,	2006).			

	

1.8.2.1.	Phase	I	and	II	Dasatinib	Clinical	Trials	

The	dasatinib	phase	I	dose	escalation	study	included	84	patients	(40,	11,	23	and	

10	in	CP,	AP,	BC	and	Ph+	ALL,	respectively)	resistant	or	intolerant	to	imatinib,	

assigned	to	a	dose	of	15-240mg	per	day,	administered	once	or	twice	daily.		Of	

those	patients	in	CP,	AP	and	BC	a	CHR/CCR	was	observed	in	92/35,	45/18	and	

35/26%	of	patients,	respectively.		In	addition,	dasatinib	proved	effective	against	

all	ABL1	tyrosine	KD	mutations,	with	the	exception	of	T315I.		A	twice-daily	dose	

of	70mg	was	sufficient	for	constant	BCR-ABL1	inhibition.			(Talpaz	et	al.,	2006)	
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Four	different	phase	II	dasatinib	studies	were	launched	following	the	success	of	

the	phase	I	trial.		The	trials,	known	as	START	studies	(SRC-ABL1	Tyrosine	

Kinase	Inhibition	Activity	Research	Trial),	were	split	according	to	CML	phase;	

chronic	(START-C),	accelerated	(START-A),	myeloid	blast	crisis	(START-B)	and	

lymphoid	blast	crisis	(START-L).		In	these	four	trials	START-C,	START-A,	

START-B	and	START-L,	a	CHR/CCR	was	achieved	in	90/49,	45/32,	27/27	and	

29/46%	of	patients	respectively.		(Santos	et	al.,	2011)	

	

1.8.2.2.	Late	Phase	and	Ongoing	Dasatinib	Clinical	Trials	

The	phase	III	DASISION	(Dasatinib	Versus	Imatinib	Study	In	Treatment-naïve	

CML)	trial	recruited	CP-CML	patients	who	were	randomly	assigned	to	receive	

either	imatinib	(400mg	once	daily)	or	dasatinib	(100mg	once	daily).		The	

results	are	summarised	in	Table	1.2.		(E.	Jabbour	et	al.,	2014)	

	

Table	1.2.		DASISION	Study:	3	year	follow-up.	

	 IMATINIB	(400mg	

once	daily)	

DASATINIB	(100mg	

once	daily)	

Patients	(n)	 258	 258	

OS	(%)	 99	 98	

PFS	(%)	 93	 93	

MMR	(%)	 55	 69	

MR4.5	(%)	 12	 22	

Progression	to	AP/BC	(%)	 7	 7	
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1.8.3.	Nilotinib	

Contrary	to	dasatinib,	nilotinib	is	structurally	similar	to	imatinib,	with	slight	

chemical	modifications	designed	to	bind	more	tightly	to	the	BCR-ABL1	protein.		

This	more	topological	fit	allows	greater	efficacy	over	BCR-ABL1	KD	mutations	

and	also	gives	a	potency	20-fold	more	than	that	of	imatinib(E	Weisberg	et	al.,	

2006).		Nilotinib	binds	to	inactive	BCR-ABL1	and	is	only	completely	ineffective	

against	the	T315I	mutation;	against	all	other	mutations	nilotinib	shows	some	

activity(M.	W.	Deininger,	2008b).		Compared	to	imatinib,	the	specificity	of	

nilotinib	for	BCR-ABL1	is	increased;	imatinib	activity	favours	c-KIT	and	PDGFR	

over	BCR-ABL,	yet	the	reverse	is	seen	in	nilotinib.		It	is	also	the	most	lipophilic	

TKI,	which	can	prove	favourable	in	drug	transport.		(M.	W.	Deininger,	2008b)	

	

1.8.3.1.	Phase	I	and	II	Nilotinib	Clinical	Trials	

A	phase	I	dose	escalation	study	included	119	imatinib-resistant	Ph+	CML/ALL	

patients;	17/56/33	in	CP-/AP-/BC	respectively.		Increasing	doses	of	nilotinib	

were	given;	50-1200mg	once	daily	or	400/600mg	twice	daily.		A	CHR/CCR	was	

achieved	by	65/35,	46/14	and	6/6%	of	the	CP,	AP	and	BC	patients,	respectively.		

Impressively,	9	AP	and	8	BC	patients	had	their	CML	return	to	CP	following	

nilotinib	treatment.		Nilotinib	also	showed	activity	against	all	BCR-ABL1	

mutations,	except	T315I.		(H.	Kantarjian	et	al.,	2006;	Santos	et	al.,	2011)	

	

In	phase	II	trials,	imatinib	resistant/intolerant	patients	were	split	according	to	

clinical	phase	(CP,	AP	and	BC	and	Ph+	ALL).		In	CP,	AP	and	BC	groups,	CHR/CCR	
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was	achieved	in	76/44,	30/19	and	25/0%	respectively,	showing	promising	

results	for	nilotinib	as	a	salvage	therapy	for	imatinib	failure.		(Giles	et	al.,	2008;	

H.	M.	Kantarjian	et	al.,	2011;	P	le	Coutre	et	al.,	2012;	Santos	et	al.,	2011)	

	

1.8.3.2.	Late	Phase	and	Ongoing	Nilotinib	Clinical	Trials	

The	ENESTnd	(Evaluating	Nilotinib	Efficacy	and	Safety	in	Clinical	Trials	Newly	

Diagnosed	Patients)	trial	is	a	phase	III	comparison	study	of	imatinib	and	

nilotinib	in	treatment	naïve	CP-CML.		Patients	were	randomly	assigned	to	

receive	imatinib	(400mg	once	daily),	or	nilotinib	(300mg/400mg	twice	daily).		

Three	year	follow-up	is	summarised	in	Table	1.3.		(Larson	et	al.,	2012)	

	

Table	1.3.		ENESTnd	Study:	3	year	follow-up.	

	 IMATINIB	

(400mg	

once	daily)	

NILOTINIB	

(300mg	

twice	daily)	

NILOTINIB	

(400mg	

twice	daily)	

Patients	(n)	 283	 282	 281	

OS	(%)a	 95.2	 98.1	 98.5	

PFS	(%)b	 94.7	 96.9	 98.3	

EFS	(%)b	 93.1	 95.3	 97.4	

MMR	(%)b	 53	 73	 70	

MR4	(%)b	 26	 50	 44	

Progression	to	AP/BC	(%)b	 95.2	 99.3	 98.7	

a	Overall	Survival	including	only	CML	related	deaths.	

b	Percentages	are	estimated	by	Kaplan–Meier	analysis.			
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1.8.4.	Other	Current	Treatments	in	CML	

1.8.4.1.	Bosutinib	

Similarly	to	dasatinib,	bosutinib	is	a	dual	SRC/ABL1	kinase	inhibitor	with	

greater	activity	against	BCR-ABL1	compared	to	imatinib.		However,	its	efficacy	

against	PDGFRβ	and	c-KIT	is	much	lower;	IC50	370nM	and	6000nM	for	PDGFRβ	

and	c-KIT	respectively.					

	

In	phase	I/II	studies,	bosutinib	was	shown	to	be	effective	in	CP-CML	patients	

with	imatinib	resistance(Jorge	E.	Cortes	et	al.,	2012)	and	also	in	patients	who	

had	subsequently	failed	dasatinib	and/or	nilotinib(Khoury	et	al.,	2012).		In	

imatinib	resistant	and	multiple	TKI	resistant	CML,	a	CHR/CCR	was	achieved	by	

86/41	and	73/24%	of	patients,	with	an	optimal	dose	of	500mg	once	daily.		

Bosutinib	also	showed	inhibitory	activity	against	all	BCR-ABL1	mutations,	

except	T315I.			

	

The	phase	III	BELA	study	(Bosutinib	Efficacy	and	Safety	in	Newly	Diagnosed	

Chronic	Myeloid	Leukaemia)	compared	the	efficacy	of	imatinib	(400mg	once	

daily)	and	bosutinib	(500mg	once	daily)	in	502	treatment	naïve	CP-CML	

patients.		The	percentage	of	patients	achieving	a	CCR	within	12	months	was	

similar	for	both	imatinib	(68%)	and	bosutinib	(70%),	but	a	higher	percentage	of	

bosutinib	patients	achieved	an	MMR	at	the	time	compared	to	imatinib	(41%	

and	27%,	respectively).		Unfortunately,	a	high	number	of	patients	randomly	

assigned	to	receive	bosutinib	had	a	treatment	discontinuation	due	to	side	
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effects;	19%	of	bosutinib	patients	compared	to	6%	of	imatinib	patients.		The	

most	severe	side	effect	with	bosutinib	was	grade	3/4	diarrhoea,	which	was	

reported	in	68%	of	patients.		As	this	undesirable	adverse	effect	is	not	commonly	

seen	with	the	other	2G	TKIs,	this	explains	clinicians’	reduced	inclination	to	

prescribe	bosutinib	to	patients	when	dasatinib	and	nilotinib	are	readily	

available.		(Jorge	E.	Cortes	et	al.,	2011)	

	

1.8.4.2.	Ponatinib	

Despite	the	availability	of	three	clinically	approved	TKIs,	the	development	of	

the	T315I	‘gatekeeper’	mutation	of	BCR-ABL1	has	until	recently	been	without	a	

solution;	ponatinib	has	been	specifically	designed	to	tackle	this	problem.		The	

threonine	to	isoleucine	single	point	mutation	of	T315I	causes	the	disruption	of	

the	hydrogen	bond	usually	made	between	the	TKI	and	BCR-ABL1	at	T315.		

Additionally,	the	bulky	nature	of	the	isoleucine	side	chain	can	cause	difficulties	

in	TKI	binding.		Unlike	all	other	currently	available	TKIs,	ponatinib	does	not	

form	a	hydrogen	bond	at	T315	and	also	has	a	long	and	flexible	structure	that	

can	avoid	the	isoleucine	side	chain,	thus	ponatinib	is	the	only	TKI	to	have	shown	

efficacy	against	T315I.		(T	O'Hare	et	al.,	2009;	Santos	et	al.,	2011)	

	

Phase	I	ponatinib	trials	observed	a	CHR	in	95%	and	CCR	in	53%	of	CP-CML	

patients.		Moreover,	of	the	9	patients	positive	for	T315I,	100%	achieved	a	CHR	

and	89%	a	CCR.		During	the	phase	II	PACE	(Ponatinib	Ph-positive	acute	

lymphoblastic	leukaemia	[ALL]	and	CML	Evaluation)	trial,	the	percentage	of	CP,	
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AP	and	BC	CML	patients	who	achieved	a	CCR	were	46,	24	and	18%	respectively.		

Impressively,	of	the	CP,	AP	and	BC	patients	with	T315I,	a	CCR	was	observed	in	

66,	33	and	21%.		(J.E.	Cortes	et	al.,	2013)	

	

Unfortunately,	following	the	recognition	of	a	high	number	of	serious	

cardiovascular/peripheral	arterial	events	in	the	PACE	trial	and	phase	III	EPIC	

trial	(which	compared	ponatinib	and	imatinib	in	newly	diagnosed	CP-CML),	

ponatinib	was	put	under	a	partial	temporary	hold	and	EPIC	was	closed.		

However,	due	to	the	lack	of	any	other	treatment	options	for	T315I	positive	CML	

patients,	ponatinib	remains	approved	in	such	cases	where	all	other	options	are	

exhausted.			
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1.9.	Mechanisms	of	TKI	Resistance	

The	7	year	IRIS	study	follow-up	suggests	more	than	1	in	every	3	CML	patients	

will	need	alternative	treatment	beyond	imatinib	at	some	point	during	their	

disease,	with	other	studies	suggesting	this	may	be	even	higher	in	the	general	

population.		IRIS	concludes	a	41%	resistance	to	first	line	imatinib	therapy;	18%	

primary	resistance,	17%	secondary	resistance	and	6%	progression.		Resistance	

to	2G	TKIs	is	an	additional	problem	that	is	arising	and	often	is	based	upon	the	

promptness	of	clinical	intervention	following	imatinib	resistance.		It	follows	

therefore	that	finding	a	method	of	identifying	which	TKIs	are	the	optimal	

treatment	for	an	individual	patient	at	diagnosis	would	be	of	immense	benefit	to	

CML	clinical	outcome.			

	

Additionally,	increasing	chances	of	TKI	resistance	correlate	with	the	phase	of	

CML,	progression	rate	and	time	to	achieve	an	initial	response.		Therefore,	

understanding	the	mechanisms	of	this	resistance	is	imperative	if	we	wish	to	

improve	CML	survival	rates.		The	various,	well	documented	mechanisms	of	TKI	

resistance	in	CML	are	separated	into	two	distinct	categories;	BCR-ABL1	

dependent	and	independent.			
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1.9.1.	BCR-ABL1	Dependent	Resistance	

BCR-ABL1	Overexpression:		BCR-ABL1	gene	amplification	and	subsequent	

elevated	protein	levels	are	seen	in	a	small	proportion	of	imatinib-resistant	

patients.		The	duplication	of	BCR-ABL1	has	been	reported	in	both	resistant	cell	

lines(Philipp	le	Coutre	et	al.,	2000;	Ellen	Weisberg	&	Griffin,	2000)	and	CML	

patients(Gorre	et	al.,	2001).		This	mechanism	of	imatinib	resistance	can	be	

occasionally	overcome	by	increasing	concentrations	of	imatinib(Hochhaus	&	La	

Rosee,	2004),	though	is	most	frequently	observed	at	progression	to	advanced	

disease.			

	

Excess	Active	BCR-ABL1:		Conventional	thought	is	that	BCR-ABL1	exists	in	

equilibrium	of	both	its	inactive	and	active	states.		Imatinib	and	nilotinib	bind	

only	to	the	inactive	form	of	BCR-ABL1.		In	its	inactive	conformation,	the	SH3	

autoregulation	(Section	1.6.2)	remains	intact;	this	is	displaced	when	Tyr421	

and	subsequently	Tyr242	of	c-ABL1	(Tyr1127	of	BCR-ABL1)	are	

phosphorylated	and	a	conformational	change	occurs.		An	excess	of	the	active	

form	of	BCR-ABL1	(i.e.	SH3	mutation	or	increased	BCR-ABL1	phosphorylation)	

may	therefore	be	attributed	to	some	imatinib	(and	nilotinib)	resistance.		(Walz	

&	Sattler,	2006)	

	

BCR-ABL1	Mutations:		KD	mutations	are	the	most	common	cause	of	secondary	

resistance	in	CML	as	they	can	alter	the	BCR-ABL1	active	site	so	as	to	inhibit	TKI	

binding.		This	mutation	will	therefore	confer	an	advantage	to	the	cells,	which	

are	then	selected	within	the	leukaemic	cell	population	and	thus	a	TKI-resistant	
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subclone	is	formed.		Many	mutations	have	been	identified,	some	more	common	

than	others	that	affect	TKI	activity	against	BCR-ABL1.		T315I	is	the	only	BCR-

ABL1	mutation	that	confers	a	resistance	to	all	three	clinically	approved	first	line	

TKIs	at	a	clinically	achievable	concentration.		All	other	KD	mutations	have	a	TKI	

that	has	some	efficacy	against	them.		(Fava,	Kantarjian,	&	Cortes,	2012)	

	

1.9.2.	BCR-ABL1	Independent	Resistance	

TKI	Influx/Efflux	Variances:		Transport	of	TKIs	into	and	out	of	the	cell	is	

essential	for	its	ability	to	function.		As	imatinib	is	highly	lipophobic,	its	transport	

across	the	cell	membrane	is	dependent	upon	transmembrane	proteins,	thus	the	

expression	of	such	vehicles	are	of	great	interest	within	imatinib	resistance	

research.		The	main	imatinib	influx	transporter	is	human	organic	cation	

transporter	(hOCT1),	which	actively	transports	imatinib	across	the	cell	

membrane	and	into	the	cell.		High	pre-treatment	hOCT1	expression	levels	

correlate	with	a	greater	overall	survival	and	PFS	when	compared	to	low	

hOCT1(L	Wang	et	al.,	2008).		Additionally,	the	M420del	single	nucleotide	

polymorphism	(SNP)	of	hOCT1	leads	to	a	greater	risk	of	imatinib	failure,	further	

highlighting	the	importance	of	high	levels	of	an	intact	hOCT1	transporter	in	

imatinib	treatment(Athina	Giannoudis	et	al.,	2013).			Dasatinib	and	nilotinib	are	

favourable	alternative	therapies	for	these	low	hOCT1	patients,	as	their	influx	is	

hOCT1-independent(Davies	et	al.,	2009;	Athina	Giannoudis	et	al.,	2008).		

Furthermore,	efflux	transporters	in	the	ATP-binding	cassette	(ABC)	family	(e.g.	

MDR1)	act	to	reduce	intracellular	imatinib	concentration	by	transporting	it	back	

out	into	the	surrounding	plasma.		Imatinib	is	a	substrate	for	the	ABCC3	
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transporter	and	elevated	expression	of	ABCC3	(MRP3)	correlated	with	imatinib	

failure.		(A		Giannoudis	et	al.,	2014)	

	

Pharmacokinetics:		Differences	in	patient	drug	metabolism	can	impact	

treatment	effectiveness.		Varying	levels	of	metabolising	enzymes	and/or	

inhibiting	proteins	such	as	α1-acid	glycoprotein	(AGP)	that	can	reduce	

intracellular	imatinib	concentrations,	have	been	shown	to	correlate	with	

imatinib	resistance.		(Gambacorti-Passerini	et	al.,	2000)	

	

Compliance:		Poor	patient	adherence	to	TKIs	has	been	reported	in	a	number	of	

studies.		One	UK	study	in	Hammersmith	Hospital	evaluated	the	drug	compliance	

of	87	CML	patients	receiving	imatinib	for	a	median	of	5	years,	using	a	

computerised	pill	bottle	that	recorded	each	opening	of	the	bottle;	26%	of	

patients	were	≤90%	compliant(Marin	et	al.,	2010).		The	ADAGIO	(Adherence	

Assessment	with	Glivec:	Indicators	and	Outcomes)	study	used	pill	counting	and	

found	only	14.2%	of	patients	to	have	taken	their	medication	as	prescribed;	71%	

took	less	than	indicated	and	14.8%	took	more(Noens	et	al.,	2009).		Both	of	these	

studies	shown	strong	correlations	between	imatinib	adherence	and	patient	

responses;	a	CCR	was	achieved	in	patients	taking	90-93%	of	their	prescription,	

while	only	a	partial	CR	by	those	taking	74-77%	of	their	imatinib(Noens	et	al.,	

2009).		Additionally,	the	probability	of	achieving	an	MMR	was	only	28%	in	

patients	with	a	compliance	of	<90%,	compared	to	95%	probability	in	patients	

taking	>90%	of	their	prescribed	dose(Marin	et	al.,	2010).		It	is	clear	from	this	

that	patient	compliance	is	a	critical	determinant	of	disease	response	and	though	
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other	mechanisms	of	resistance	may	arise,	TKI	adherence	should	be	taken	into	

careful	consideration.		(E.	J.	Jabbour,	Kantarjian,	Eliasson,	Megan	Cornelison,	&	

Marin,	2012)	

	

Activation	of	BCR-ABL1	Independent	Signalling	Pathways:		Alternative	

activation	of	signalling	pathways	that	are	downstream	of	BCR-ABL1	may	

alleviate	the	dependence	upon	BCR-ABL1	and	thus	confer	resistance	to	TKIs	

that	specifically	target	BCR-ABL1	activity.		A	variety	of	these	have	been	

reported,	though	this	thesis	focuses	on	the	CIP2A/PP2A	pathway,	which	will	be	

discussed	in	Section	1.15.			

	

1.9.3.	TKI	Toxicity	

TKI	toxicity	is	tightly	linked	with	intolerance.		Different	TKIs	have	been	shown	

to	cause	different	side	effects,	which	can	result	in	the	patient	having	to	switch	

their	course	of	treatment.		Though	it	varies	between	trials,	intolerance	is	

generally	defined	as	any	nonhaematological	toxicity	with	a	severity	grade	of	3	

or	higher,	or	can	also	include	prolonged	grade	2	effects.		Some	adverse	effects	

may	not	necessarily	have	an	impact	on	whether	or	not	the	patient	is	able	to	

continue	TKI	treatment,	but	may	impact	upon	their	quality	of	life	and	thus	

alternative	therapies	are	considered.			

	

Grade	3/4	neutropenia	and	anaemia	are	more	common	in	imatinib	treated	

patients	than	those	treated	with	dasatinib(J.	Cortes,	Jones,	&	Kantarjian,	
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2010)or	nilotinib(Saglio	et	al.,	2010),	as	well	as	nausea	and	vomiting.		However,	

for	dasatinib,	the	rates	of	pleural	effusion	are	higher	than	in	patients	treated	

with	other	TKIs	and	can	cause	discontinuation	of	treatment	in	some	patients.		

As	already	described,	bosutinib	has	a	high	incidence	of	severe	diarrhoea	that	

causes	many	patients	to	switch	TKI	treatment,	and	ponatinib	patients	have	a	

high	level	of	severe	cardiovascular	complications	compared	to	all	other	TKIs.			 	
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1.10.	BCR-ABL1	Signalling	Pathways	

The	central	role	of	BCR-ABL1	in	CML	is	seen	by	its	wide	variety	of	interacting	

proteins.		Its	activation	of	oncogenic	signalling	pathways	enhances	CML	

progression	via	genomic	instability,	increased	proliferation	and	haematopoietic	

stem	cell	(HSC)	renewal	and	inhibition	of	apoptosis(Cilloni	&	Saglio,	2012;	

McCubrey	et	al.,	2008;	Sinclair,	Latif,	&	Holyoake,	2013).		Signalling	cascades	

include	(amongst	others)	the	phosphatidylinositol-3-kinase	(PI3K)/protein	

kinase	B	(AKT/PKB)	pathway(Kharas	&	Fruman,	2005),	MAPK	

pathways(McCubrey	et	al.,	2007),	janus-activated	kinase	2	(JAK2)/signal	

transducer	and	activator	of	transcription	5A	(STAT5)	pathway(Steelman	et	al.,	

2000)	and	the	CIP2A/PP2A	pathway(C.	M.	Lucas	et	al.,	2011).		In	this	thesis	I	

focus	on	the	CIP2A/PP2A	pathway	(Section	1.15).			

	

Figure	1.7.		The	main	BCR-ABL1	signalling	pathways	in	CML	pathogenesis.	
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1.11.	PP2A	Overview	

Cell	signalling	networks	throughout	the	body	rely	heavily	upon	post-

translational	modifications	to	switch	on/off	regulatory	molecules	and	maintain	

correct	functionality.		Reversible	phosphorylation	is	one	such	mechanism	that	is	

responsible	for	the	regulation	of	a	diverse	range	of	intracellular	processes;	

protein	phosphatases	work	in	opposition	to	protein	kinases,	dephosphorylating	

molecules	to	regulate	their	activity.			

	

One	specific	phosphatase	–	protein	phosphatase	2A	(PP2A)	–	accounts	for	over	

90%	of	the	serine/threonine	phosphatase	activity	within	the	cell.		PP2A	acts	to	

dephosphorylate	proteins	to	inhibit	oncogenic	activity;	it	is	involved	in	

proliferation,	survival,	gene	regulation,	cytoskeletal	organisation	and	protein	

synthesis.		With	such	a	wide	variety	of	cellular	implications	it	is	no	shock	that	

PP2A	inhibition	has	been	implicated	in	several	pathological	conditions;	cancer	

and	Alzheimer’s	Disease	are	amongst	the	most	studied,	with	PP2A	often	found	

to	be	underexpressed,	inactivated	or	mutated.		(H.	Kantarjian	et	al.,	2010;	Saglio	

et	al.,	2010)	

	

Regulation	of	PP2A’s	cellular	activity	is	a	key	point	in	ongoing	research.		Its	vast	

array	of	molecular	targets	in	various	subcellular	components,	as	well	as	the	

many	naturally	occurring	PP2A	inhibitors	(e.g.	okadaic	acid),	highlight	its	

importance	in	normal	cellular	homeostasis.		Investigating	PP2A	and/or	its	

various	subunits	as	a	therapeutic	target	may	be	of	clinical	benefit.		It	is	
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therefore	important	to	thoroughly	understand	the	mechanisms	of	interaction	

this	holoenzyme	has	with	other	cellular	proteins	and	the	way	in	which	this	can	

be	disrupted	in	malignant	cells.			
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1.11.1.	PP2A:	Protein	Structure	

Cellular	PP2A	exists	in	one	of	two	forms:	a	core	heterodimer	consisting	of	a	

structural	subunit	(A)	and	a	catalytic	subunit	(C),	or	a	heterotrimeric	complex	

which	also	involves	one	of	a	wider	variety	of	regulatory	subunits	(B).		It	is	the	

association	of	this	variable	B	subunit	(along	with	other	post-translational	

modifications)	that	determines	the	subcellular	localisation	of	the	trimeric	

complex	and	gives	PP2A	its	distinct	substrate	specificity	that	is	crucial	for	its	

regulatory	role	within	the	cell.		(Ruediger,	Ruiz,	&	Walter,	2011;	Slupe,	Merrill,	

&	Strack,	2011)	

	

Figure	1.8.		Assembly	of	PP2A	heterotrimeric	protein,	including	various	B	

subunit	families	and	isoforms.	
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1.11.1.1.	Structural	Subunit	(A)	

The	structural	subunit	plays	a	scaffold	role	in	the	assembly	of	the	PP2A	complex	

and	can	be	in	either	α	or	β	form	(the	α	form	being	more	prevalent).		This	65kDa	

protein	contains	15	HEAT	repeats	that	form	a	horseshoe	shape	due	their	almost	

parallel	stacking;	repeats	11-15	are	the	recognition	site	for	C	and	mutations	

within	this	site	have	been	shown	to	block	AC	interaction.		The	association	of	the	

B	subunit	occurs	at	HEAT	repeats	1-10.		(Sablina	&	Hahn,	2007)	

	

1.11.1.2.	Catalytic	Subunit	(C)	

The	C	subunit	(also	with	an	α/β	form;	α	expression	is	10-fold	higher	in	humans)	

is	typically	36kDa	and	is	the	main	target	of	post-translational	modifications	

within	the	core	heterodimer.		The	most	recognised	of	these	modifications	are	

phosphorylation	of	tyrosine	307	and	threonine	304	which	are	associated	with	

PP2A	inactivation,	and	leucine	309	methylation,	which	has	been	shown	to	affect	

the	binding	of	certain	B	subunits.		(Seshacharyulu,	Pandey,	Datta,	&	Batra,	

2013)	

	

1.11.1.3.	Regulatory	Subunits	(B)	

In	this	ever-expanding	subunit	category	there	are	currently	four	reported	B	

subunit	families;	B,	B’,	B’’	and	B’’’.		The	association	of	these	with	the	core	dimer	

is	tightly	regulated	and	gives	PP2A	its	selective	targeting(Slupe	et	al.,	2011).			

Each	of	these	families	contains	up	to	five	different	reported	isoforms,	some	with	

different	splice	variants;	there	is	great	inter-family	conservation	though	little	
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similarity	across	families.		The	known	B	subunit	families	can	be	seen	in	Figure	

1.8.		(Seshacharyulu	et	al.,	2013)	

	

1.11.1.4.	Inactive	PP2A	Holoenzyme	Structures	

Of	interest,	several	catalytically	inactive	PP2A	complexes	have	been	reported;	

two	such	complexes	are	C	subunit/α4	(IGBP1)	and	C	subunit/A	subunit/PP2A	

Methyl	Esterase	1	(PME-1).		Numerous	tumours	show	increased	expression	of	

both	α4	and	PME-1,	suggesting	a	bias	towards	the	formation	of	inactive	PP2A	

heterotrimers	over	the	active	tumour	suppressor	complexes.		(Haesen,	Sents,	

Lemaire,	Hoorne,	&	Janssens,	2014)	
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1.11.2	PP2A	Regulation	and	Modification	

The	differing	B	subunits,	when	combined	with	α	and	β	isoforms	of	the	structural	

and	catalytic	subunits,	are	thought	to	give	rise	to	approximately	70	variations	of	

the	PP2A	holoenzyme,	thus	highlighting	the	extraordinary	substrate	specificity	

of	PP2A	that	is	possible.		Regulation	of	PP2A	activity	within	the	cell	relies	

heavily	on	the	proportions	of	specific	PP2A	heterotrimers	formed.			

	

PP2A	expression	is	tightly	regulated	at	the	translational	level	via	auto-

phosphorylation	in	order	to	maintain	constitutive	tumour	suppressor	activity.		

Additionally,	its	catalytic	activity	is	modified	by	leucine	(L)	methylation	and	

tyrosine	(Y)	and	threonine	(T)	phosphorylation.			Methylation	at	L309	favours	

specific	holoenzyme	assembly,	while	phosphorylation	at	Y307	and	T304	

inactivates	PP2A.			
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1.11.3.	PP2A	Inhibition	in	Human	Malignancies	

The	vast	implications	of	PP2A	inhibition	in	cancer	progression	and	cell	

transformation	have	been	widely	reported.		Indeed,	several	studies	have	found	

that	activation	of	the	rat	sarcoma	(RAS)	oncoprotein	is	not	sufficient	for	the	

transformation	of	cells	unless	accompanied	by	the	suppression	of	PP2A	

activity(Junttila	et	al.,	2007).		Deregulated	signalling	cascades	involving	PP2A	

inhibition	are	seen	in	many	cancers;	blocking	PP2A	holoenzyme	assembly,	

phosphorylation	and	thereby	inactivation	of	PP2A,	and	even	the	‘shielding’	of	

proteins	from	PP2A	binding	and	subsequent	dephosphorylation	are	just	some	

of	the	main	mechanisms	of	inhibiting	PP2A’s	tumour	suppressor	activity.			

	

Papers	reporting	genetic	alterations	that	consequently	lead	to	impaired	PP2A	

activity	are	also	in	abundance	in	cancer	research(Colella	et	al.,	2001;	Van	Hoof	

&	Goris,	2004).		Many	of	these	refer	to	the	impaired	binding	of	mutated	forms	of	

PP2A-Aα/β	to	certain	PP2A-B	subunits,	and	thus	an	inability	to	form	necessary	

PP2A	multimeric	complexes(Colella	et	al.,	2001).		Alteration	of	the	A	subunit	has	

also	resulted	in	downstream	signalling	alterations,	such	as	increased	AKT(Chen,	

Arroyo,	Timmons,	Possemato,	&	Hahn,	2005).			

	

CML:		With	regards	to	PP2A	in	CML,	its	activity	is	significantly	diminished	at	

diagnosis	in	MNCs	and	also	in	HSCs.		This	has	been	shown	via	two	mechanisms;	

BCR-ABL1-induced	SET	(Section	1.12)(AK	Samanta,	SN	Chakraborty,	Y	Wang,	

&	H	Kantarjian,	2009;	P	Neviani	et	al.,	2013;	Paolo	Neviani	et	al.,	2005;	Perrotti	
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&	Neviani,	2006)	expression	and	overexpression	of	CIP2A	(Section	1.14)(C.	M.	

Lucas	et	al.,	2011).		Along	with	the	influence	of	c-Myc	(Section	1.13),	these	

PP2A	inhibitors	cause	the	increased	phosphorylation	and	subsequent	

deactivation	of	PP2A.		It	is	imperative	to	understand	these	PP2A	inhibitors	and	

their	mechanisms	of	action	if	advances	are	to	be	made	in	the	treatment	of	CML	

and	other	malignancies.			
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1.12.	SET	

SET	nuclear	proto-oncogene	(SET)	is	a	well-established	endogenous	inhibitor	of	

PP2A	that	is	known	to	be	involved	in	a	variety	of	human	malignancies(Li,	

Makkinje,	&	Damuni,	1996).		Three	specific	mechanisms	of	PP2A	inhibition	by	

SET	have	been	reported;	overexpression	of	SET,	altered	SET	phosphorylation	

and	altered	endogenous	ceramide	(SET	inhibitor)	expression.		Structural	

information	of	SET/PP2A	binding	has	not	been	widely	reported,	though	a	

region	(residues	36-124)	located	close	to	the	SET	N-terminal	is	critical	for	PP2A	

inhibitory	function.			

	

CML:		In	CML,	SET	is	overexpressed	during	blast	crisis	and	directly	correlates	

with	a	loss	of	PP2A	activity.		Additionally,	SET	knock	down	restores	PP2A	

activity	by	decreasing	the	levels	of	the	inactive	pY307-PP2A(Paolo	Neviani	et	

al.,	2005),	indicating	a	causal	role	of	PP2A	inhibition	by	SET	in	CML	BC.		

Interestingly,	this	PP2A	inhibition	by	SET	occurs	only	during	BC	and	not	during	

CP	CML.			

	

Other	kinase	signalling	pathways	such	as	MAPK	and	AKT	were	downregulated	

upon	the	decrease	of	SET,	suggesting	that	BCR-ABL1-induced	SET	expression	is	

one	way	of	the	leukaemic	cell	overcoming	inhibition	of	other	pathways.		

Stabilisation	of	SET	by	SET	binding	protein	(SETBP1)	is	also	reported	to	aid	the	

inhibition	of	PP2A(Piazza	et	al.,	2013),	and	JAK2	inhibition	has	been	shown	to	
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cause	a	decrease	in	the	expression	of	SET	and	subsequent	PP2A	activity(AK	

Samanta	et	al.,	2009).			

	

Importantly,	SET	expression	is	inhibited	by	imatinib,	leading	to	the	restoration	

of	PP2A	activity(Perrotti	&	Neviani,	2006).			
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1.13.	c-Myc	Overview	

One	of	the	most	studied	proto-oncogenes	is	c-Myc.		It	is	involved	in	such	a	

diverse	array	of	cellular	functions,	including	proliferation,	cell	cycle	regulation	

and	metabolism,	that	its	overexpression	in	a	vast	number	of	cancers	is	no	

surprise.		It	is	estimated	that	15%	of	human	genes	have	c-Myc	binding	sites	and	

thus	the	possibility	to	be	affected	by	this	pleiotropic	transcription	factor.		

(Fernandez	et	al.,	2003;	Zirong	Li	et	al.,	2003)	

	

The	over	expression	of	c-Myc	is	seen	in	so	many	different	cancer	types	it	has	

been	questioned	whether	c-Myc	itself	is	the	driving	force	behind	the	

malignancies	or	if	it	is	merely	a	consequence.			It	is	overexpressed	in	

approximately	70%	of	cancers	including	Burkitt’s	lymphoma,	prostate	and	

breast	cancer,	to	name	but	a	few.			

	

CML:		In	CML,	c-Myc	is	reported	to	be	overexpressed	at	transformation	to	blast	

crisis.		Additionally,	in	CP	samples	of	patients	destined	to	progress	to	BC,	

protein	expression	of	both	total	c-Myc	and	its	phosphorylated	stabilised	form	c-

Myc	pS62	are	elevated.		The	overexpression	and	stabilisation	of	c-Myc,	

increased	CIP2A	protein	expression	and	increased	BCR-ABL1	tyrosine	kinase	

activity	are	all	associated;	these	effects	lead	to	a	greater	inhibition	of	PP2A	

activity.					
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1.13.1.	c-Myc	Post-Translational	Regulation	

Post-translational	modification	of	c-Myc	is	responsible	for	both	its	stabilisation	

and	degradation;	phosphorylation	sites	at	serine	(S)	62	and	threonine	(T)	58	

are	involved	in	these	mechanisms	(Figure	1.9).		The	S62	phosphorylation	of	c-

Myc	by	extracellular-regulated	kinase	1,2	(ERK)(Sears	et	al.,	2000)	stabilises	the	

c-Myc	protein	and	has	also	been	reported	to	play	a	role	in	determining	its	target	

genes(Benassi	et	al.,	2006).		However,	this	also	primes	c-Myc	for	subsequent	

phosphorylation	at	T58	by	glycogen	synthase	kinase	3	beta	(GSK-3β)	and	

targeting	c-Myc	for	proteasomal	degradation(Gregory,	Qi,	&	Hann,	2003).			

	

When	phosphorylated	at	both	residues,	PIN-1	isomerises	c-Myc,	causing	a	

conformational	change	that	allows	PP2A	to	recognise	and	dephosphorylate	c-

Myc	pS62(Yeh	et	al.,	2004).		Polyubiquitination	of	c-Myc	pT58	then	allows	

proteasomal	degradation	of	c-Myc.			

	

It	is	interesting	to	note	the	upstream	role	of	RAS	that	can	regulate	the	activity	of	

ERK	and	GSK-3β;	RAS	activates	ERK	and	inhibits	GSK-3β,	thus	the	balance	of	c-

Myc	is	in	favour	of	its	more	stabilised	form,	c-Myc	pS62.		As	discussed	in	

Section	1.14.2,	the	direct	association	of	CIP2A	with	c-Myc	also	acts	to	inhibit	

PP2A’s	dephosphorylation	of	c-Myc	pS62	and	thereby	protect	endogenous	c-

Myc	from	degradation.		(Junttila	&	Westermarck,	2008)	
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Figure	1.9.		Normal	mechanism	of	c-Myc	degradation.		c-Myc	

phosphorylation	at	serine	62	by	ERK	stabilises	c-Myc.		Subsequent	threonine	58	

phosphorylation	by	GSK-3β	and	isomerisation	by	PIN-1	prime	c-Myc	for	

proteasomal	degradation,	following	c-Myc	pS62	dephosphorylation	by	PP2A.		

Poly-ubiquitination	of	c-Myc	leads	to	its	degradation(Junttila	&	Westermarck,	

2008).	
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1.14.	CIP2A	Overview	

CIP2Agene	overexpression	and	increased	cellular	protein	levels	are	reported	in	

a	variety	of	human	malignancies	and	are	shown	to	correlate	with	poor	

prognosis	and	aggressiveness	of	disease.		In	breast	cancer,	CIP2A	not	only	

correlated	with	an	unfavourable	patient	outcome	and	tumour	size	and	

histological	grade,	but	with	proliferation	markers	and	p53,	BRCA1	and	BRCA2	

mutations(Come	et	al.,	2009;	Yu,	Liu,	Dong,	&	Jin,	2013).		To	date,	a	prognostic	

role	for	CIP2A	has	been	published	in:	breast(Come	et	al.,	2009),	

gastrointestinal(Teng	et	al.,	2012;	Wiegering	et	al.,	2013),	melanoma(Shi,	Ding,	

Ju,	Wu,	&	Cao,	2014),	lung(Dong	et	al.,	2011;	Xu,	Xu,	Huang,	Zhang,	&	Zhang,	

2012),	osteosarcoma(Zhai,	Cong,	Han,	&	Tu,	2013),	pancreatic(Lei	Wang	et	al.,	

2013),	astrocytoma(Fuxin,	Weimin,	Weixian,	Jinyang,	&	Wenbin,	2013),	

hepatocellular(He,	Wu,	Li,	Cao,	&	Liu,	2012;	Yua	et	al.,	2013),	

ovarian(Bockelman,	Lassus,	et	al.,	2011;	Fang,	Li,	Wang,	&	Zhang,	2012),	

bladder(L.	P.	Huang	et	al.,	2012;	Xue	et	al.,	2012),	renal(Ren	et	al.,	2011),	

tongue(Bockelman,	Hagstrom,	et	al.,	2011),	head	and	neck	cancers(Basile	&	

Czerninski,	2010),	prostate(Vaarala,	Väisänen,	&	Ristimäki,	2010)	and	

cervical(J.	Liu	et	al.,	2011)	solid	tumours.		Importantly,	it	has	been	firmly	

established	in	numerous	malignancies	that	unlike	CIP2A	positive	tumour	cells,	

their	tumour-adjacent	normal	tissues	do	not	overexpress	CIP2A.		(Huang,	

Adelson,	Mordechai,	&	Trama,	2011;	J.	Liu	et	al.,	2011;	X.	Liu	et	al.,	2014;	Ma	et	

al.,	2011;	Qu	et	al.,	2012;	Zhai	et	al.,	2013)	
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In	haematological	malignancies,	CIP2A	has	also	been	shown	to	be	a	biomarker	

of	poor	prognosis	and	an	indicator	of	adverse	responses	to	treatment;	in	AML,	

CIP2A	overexpression	is	reported	in	newly	diagnosed	and	relapsed	patients.	(J.	

Wang	et	al.,	2011)	

	

CML:		The	first	publishing	of	CIP2A	in	CML	showed	it	to	be	a	possible	prognostic	

indicator	for	blast	crisis	in	imatinib-treated	CML.		The	study	showed	diagnostic	

CIP2A	protein	levels	to	be	significantly	higher	in	patients	destined	to	progress	

into	blast	crisis	compared	to	those	who	do	not,	irrespective	of	whether	they	

respond	to	imatinib	treatment.		The	actuarial	probability	of	progression	into	

blast	crisis	after	2	years	was	shown	to	be	100%	in	patients	who	present	with	

high	CIP2A	protein	levels	(MFI>7),	compared	to	those	with	low	CIP2A	levels	

who	remained	progression-free	after	30	months.		This	implies	that	CIP2A	not	

only	may	be	a	possible	biomarker	for	CML,	but	also	a	potential	therapeutic	

target.		(C.	M.	Lucas	et	al.,	2011)	

	

However,	this	study	involved	only	patients	treated	with	imatinib	as	first	line	

therapy	and	currently	no	published	works	have	shown	this	in	patients	treated	

with	a	second	or	third	(2G/3G)	generation	TKI.		This	is	a	major	gap	in	our	

knowledge	as	drug	development	moves	forward	with	3G	TKIs	in	clinical	trials	

and	prescribing	2G	therapies	becoming	more	common	practice.			
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1.14.1.	CIP2A	Structure	

1.14.1.1.	Predicted	Protein	Structure	of	CIP2A	

Nothing	is	known	of	the	tertiary	structure	of	the	CIP2A	protein	by	primary	

experimentation;	however	it	is	possible	to	make	predictions	from	the	known	

905	amino	acid	sequence.		This	proto-oncogene	is	predicted	by	computer	

programs	to	include	a	transmembrane	and	coiled	coil	domain(Coenen	et	al.,	

2010).		It	has	two	known	phosphorylation	sites	(threonine	761	and	serine	904)	

and	is	localised	within	the	cytoplasm	or	perinuclear	region.			

	

Figure	1.10.		CIP2A	predicted	protein	structure.		Taken	from	

www.atlasgeneticsoncology.com.	

	

	

	



74	|	P a g e 	

	

1.14.1.2.	Structure	of	the	CIP2A	Gene	

The	CIP2A	gene	(also	known	as	KIAA1524)	is	located	at	3q13.13,	consists	of	21	

exons	and	is	well	conserved	across	various	mammals.		Though	much	is	known	

of	the	expression	levels	of	the	CIP2A	gene,	little	is	known	of	its	different	splice	

variants.		To	date,	six	alternative	CIP2A	transcripts	have	been	reported	and	are	

shown	in	Table	1.4.		(Data	taken	from	Ensembl	gene	database)	There	are	

currently	no	publications	that	specify	a	certain	CIP2A	transcript	expression	in	

relation	to	any	malignancy.			

	

Table	1.4.		Alternative	splice	variants	of	CIP2A.	

	 LENGTH	(bp)	 LENGTH	(aa)	 BIOTYPE	

1	(CIP2A-1a)*	 4075	 905	 Protein	Coding	

2	(CIP2A-1b)*	 3877	 746	 Protein	Coding	

3	 2764	 121	 Nonsense-mediated	decay	

4	 654	 48	 Nonsense-mediated	decay	

5	 2014	 -	 Processed	Transcript	

6	 11	 -	 Retained	intron	

*Transcript	variant	investigated	in	Chapter	6.			
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1.14.2.	CIP2A	Protein	Interactions	

The	functional	activity	of	CIP2A	was	first	published	in	July	2007	as	an	

endogenous	oncoprotein	acting	to	inhibit	the	tumour	suppressor	activity	of	

PP2A	towards	phosphorylated	(serine	62)	c-Myc.		Also	described	was	an	

interaction	between	CIP2A	and	the	oncogenic	transcription	factor,	c-Myc	and	

also	with	PP2A.		As	CIP2A’s	direct	interaction	with	PP2A	is	via	the	A	subunit,	it	

is	important	to	consider	the	possibility	that	this	may	impact	on	the	ability	of	

PP2A	to	form	the	necessary	PP2A	trimers	in	certain	malignancies	and	may	be	

one	method	of	CIP2A	function.		Additionally,	CIP2A	and	RAS	together	were	

shown	to	induce	malignant	cell	transformation.		(Junttila	et	al.,	2007)	

	

MYC:	Several	human	malignancies	have	reported	on	the	relationship	between	

CIP2A	and	c-Myc,	with	recent	findings	suggesting	a	positive	feedback	between	

the	two	oncoproteins(Khanna	et	al.,	2009).		Overexpression	of	CIP2A	

encourages	c-Myc	phosphorylation	at	serine	62,	leading	to	enhanced	c-Myc	

oncogenic	activity	and	facilitating	disease	progression.			In	malignant	cells,	the	

direct	interaction	of	CIP2A	with	c-Myc	pS62	shields	c-Myc	from	the	

dephosphorylation	by	PP2A	that	is	essential	for	c-Myc	turnover	within	normal	

cells.		(Junttila	&	Westermarck,	2008)	
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Figure	1.11.		CIP2A-mediated	stabilisation	of	c-Myc.		In	normal	cells,	

dephosphorylation	of	c-Myc	pS62	by	PP2A	facilitates	c-Myc	degradation.		In	

malignant	cells,	CIP2A	binds	to	c-Myc,	shielding	the	phosphorylated	serine	from	

PP2A-mediated	c-Myc	degradation(Junttila	&	Westermarck,	2008).	

	

	

The	action	of	CIP2A	upon	c-Myc	appears	to	be	post-translational	and	may	

explain	why	in	many	tumours,	c-Myc	mRNA	expression	is	low	though	the	

protein	levels	are	elevated.			
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E2F1:		Like	c-Myc,	E2F1	is	an	oncogenic	transcription	factor,	shown	to	be	

overexpressed	in	various	cancers.		Its	activation	can	be	regulated	by	

phosphorylation	at	serine	364,	which	has	been	shown	to	be	a	target	for	PP2A.		

Strong	evidence	suggests	the	effects	of	CIP2A	on	E2F1	are	mediated	through	

PP2A	inhibition.		Increasing	CIP2A	levels	rescued	E2F1	pS364	expression	via	

the	inhibition	of	PP2A	serine/threonine	phosphatase	activity.		Interestingly,	a	

specific	PP2A	holoenzyme	assembly	may	be	involved	in	E2F1	phosphorylation;	

B55αinhibition	caused	increased	levels	of	E2F1	pS364,	yet	inhibition	of	B56β	

caused	no	such	effect.		This	may	suggest	that	CIP2A	can	interact	with	and	inhibit	

specific	PP2A	holoenzymes	depending	upon	their	subunit	make-up,	in	order	to	

cause	different	effects	within	a	cell,	and	is	an	interesting	area	for	future	

research.		Additionally,	a	positive	feedback	loop	between	E2F1	and	CIP2A	has	

been	recently	established;	stable	expression	of	CIP2A	prevented	

downregulation	of	E2F1	protein,	as	well	as	E2F1	binding	to	the	CIP2A	promoter.		

(Khanna,	Pimanda,	&	Westermarck,	2013;	Laine	et	al.,	2013)	
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1.14.3.	CIP2A:	Genetic	and	Epigenetic	Regulation	

CIP2A	Transcription	Factors:		As	already	discussed,	E2F1	can	induce	the	

expression	of	CIP2A.		The	involvement	of	other	oncogenic	transcription	factors	

in	CIP2A	induction	is	also	emerging.		JNK2	has	recently	been	reported	to	act	via	

the	transcription	factor	ATF2	to	regulate	CIP2A	transcription.		(Mathiasen	et	al.,	

2012;	Yongxun	Zhao	et	al.,	2014)	

	

Increased	kinase	activity	of	the	MEK/ERK1	MAPK	pathway	has	been	reported	in	

many	cancers.		The	ETS1	and	ELK1	transcription	factors	are	a	target	of	this	

signalling	pathway.		ETS1	has	recently	been	shown	to	be	the	transcription	

factor	responsible	for	mediating	the	EGFR-MEK	dependent	regulation	of	CIP2A	

expression.		An	additional	study	in	female	urogenital	cancers	identified	the	

cooperative	roles	of	ETS1	and	ELK1	in	promoting	CIP2A	transcription.		

However,	in	gastric	and	prostate	cancers,	ETS1	alone	can	regulate	CIP2A	

expression,	suggesting	that	the	transcriptional	regulation	of	CIP2A	may	vary	

between	malignancies	and	any	future	treatments	developed	to	target	CIP2A	

transcription	factors	should	take	this	into	careful	consideration.		(Khanna	et	al.,	

2011;	Pallai,	Bhaskar,	Sodi,	&	Rice,	2012)	

	

CIP2A	Methylation:		The	first	functional	analysis	of	the	CIP2A	promoter	region	

was	recently	reported.		Interestingly,	a	large	CpG	island	was	identified	within	

this	region	that	is	conserved	in	several	other	species.		In	this	study,	gastric	

(AGS)	and	cervical	(HELA)	cancer	cell	lines,	along	with	normal	cells,	were	

analysed	for	any	methylation	within	this	GC	rich	area.		No	methylation	was	
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reported,	however	this	is	a	very	limited	study	and	no	methylation	analysis	of	

CIP2A	has	been	undertaken	in	any	other	cancer	cells.		As	CIP2A	expression	has	

been	found	to	vary	between	patients	in	numerous	cancer	types,	and	

methylation	has	been	reported	to	cause	gene	silencing,	this	area	may	be	of	

interest	in	other	malignancies	and	certainly	warrants	further	investigation.		

(Khanna	et	al.,	2011)	
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1.15.	The	CIP2A/PP2A	Pathway	in	CML	

The	inhibition	of	PP2A’s	phosphatase	activity	towards	c-Myc	pS62	by	CIP2A	has	

been	reported	in	a	variety	of	cancers	since	its	discovery	in	2007(Junttila	et	al.,	

2007).		CIP2A	overexpression	in	many	diseases	has	been	correlated	with	

impaired	PP2A	activity	and	the	oncogenic	activity	of	CIP2A	has	been	proved	

necessary	in	cell	transformation.		CIP2Adirectly	interacts	with	c-Myc	

pS62(Junttila	&	Westermarck,	2008),	preventing	PP2A/c-Myc	binding	and	

subsequent	dephosphorylation	of	c-Myc	pS62.		This	allows	c-Myc	to	remain	

stabilised	and	evade	proteolytic	degradation.			

	

The	involvement	of	the	CIP2A/PP2A	pathway	in	CML	was	reported	by	Lucas	et	

al(C.	M.	Lucas	et	al.,	2011)and	showed	an	overexpression	of	CIP2A	protein	to	be	

indicative	of	disease	progression	in	imatinib-treated	CML.		In	line	with	other	

literature,	high	CIP2A	levels	correlated	with	high	levels	of	inactive	PP2A	and	c-

Myc	pS62.		PP2A	inhibition	via	JAK2/SET	has	also	been	reported	in	CML,	more	

specifically	the	BCR-ABL1	dependent	induction	of	SET	overexpression.		Figure	

1.12	shows	the	CIP2A/PP2A	pathway	as	it	has	been	currently	reported	in	CML.			

	

This	thesis	focuses	on	the	relationships	between	CIP2A,	PP2A	and	c-Myc	in	CML	

and	the	effects	of	TKIs	on	these	within	the	CIP2A/PP2A	pathway.			
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Figure	1.12.		The	CIP2A/PP2A	Pathway	in	CML(C.	M.	Lucas	et	al.,	2011).	
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Thesis	Aims	
This	thesis	was	inspired	by	the	previous	work	of	Dr	Lucas	on	CIP2A’s	

involvement	within	imatinib-treated	CML.		Her	investigations	identified	CIP2A	

as	a	potential	biomarker	of	blast	crisis	in	patients	treated	with	imatinib.			

However	CIP2A	involvement	in	CML	treated	with	second	and	third	generation	

TKIs	is	not	known;	will	a	patient	with	a	high	basal	level	of	CIP2A	protein	still	

progress	to	blast	crisis	if	they	were	treated	with	a	second	generation	TKI	from	

initial	diagnosis?		This	initial	question	led	to	a	more	in	depth	investigation	of	

CIP2A’s	role	within	the	CIP2A/PP2A	pathway	as	well	as	studying	its	genetic	

variants	and	epigenetic	regulation.		My	aims	were	as	follows:		

	

1. CIP2A	protein	in	CML:	

a. Chapter	3:Biomarker	status	of	CIP2A:	

i. First	I	aimed	to	classify	my	patient	cohorts	according	to	

high/low	CIP2A	protein	level	at	diagnosis,	using	flow	

cytometry.	

ii. Correlations	between	basal	CIP2A	protein	and	clinical	

outcomes	were	investigated	and	compared	to	previous	work	

on	imatinib-treated	CML.		The	aim	was	to	study	the	potential	

biomarker	role	of	CIP2A	in	second	generation	TKI	treated	

CML.	

b. Chapter	4:Comparative	effects	of	TKIs	on	the	CIP2A/PP2A	pathway:	

i. Using	patient	follow-up	samples,	I	investigated	the	effects	of	

long-term	in	vivo	TKI	therapy	on	various	parts	of	the	

CIP2A/PP2A	pathway.	

ii. After	designing	a	short-term	in	vitro	TKI	culture,	I	investigated	

short-term	effects	of	treatments	upon	various	parts	of	the	
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CIP2A/PP2A	pathway.		Comparisons	could	then	be	made	of	

the	different	TKIs	and	their	effectiveness	in	targeting	the	

oncogenic	proteins	within	the	pathway.	

c. Chapter	5:Effects	of	direct	CIP2A	and	PP2A	manipulation:	

i. This	section	of	work	aimed	to	manipulate	the	CIP2A/PP2A	

pathway	by	directly	targeting	CIP2A	using	siRNA	and	CIP2A	

transient	transfection.		Changes	in	pathway	proteins’	

expressions	were	examined	following	these	manipulations.		

PP2A	was	also	deliberately	increased/decreased	and	the	

effects	monitored.			

	

2. Chapter	6:	CIP2A	transcript	variants:	

a. First	I	aimed	to	identify,	using	scientific	literature,	the	potential	

presence	of	different	CIP2A	isoforms	and	design	primers	to	target	

(via	qRT-PCR)	any	protein	coding	transcript	variants.			

b. Next	the	aim	was	to	investigate	whether	all	isoforms	are	present	in	

CML,	using	BCR-ABL1	positive	cell	lines	and	CML	patient	samples.			

c. Finally,	correlation	between	high/low	CIP2A	protein	and	the	

transcript	variant	were	examined,	as	well	as	any	link	between	CIP2A	

transcript	variants	and	clinical	outcome.			

	

3. Chapter	7:	Epigenetic	regulation	of	CIP2A:	

a. I	aimed	to	identify	any	areas	of	potential	methylation	within	the	

CIP2A	promoter	region,	design	primers	to	span	these	areas	and	use	

PCR	pyrosequencing	to	measure	the	presence	or	absence	of	

methylation	in	this	promoter	area.		From	this,	suggestions	could	be	

made	of	CIP2A	epigenetic	regulation	via	methylation	in	CML.	
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Chapter	2:		Materials	and	Methods	

2.1.	Patient	Samples	Declaration	

All	CML	patients	included	in	this	research	were	18	or	older	at	diagnosis	and	

were	BCR-ABL1	positive	by	metaphase	cytogenetic	analysis.		Minimum	patient	

follow-up	was	12	months.		Healthy	volunteers	were	all	fit	and	well	at	the	time	of	

donation	and	were	21	or	more	years	of	age.		Each	patient	and	healthy	volunteer	

within	this	study	was	given	a	unique	patient	number	(UPN)	by	which	he/she	is	

identified.		Each	section	of	work	includes	specific	information	of	the	samples	

used.		A	comprehensive	table	of	all	patient	samples	used	in	this	thesis	can	be	

found	in	the	Appendix.			

	

This	work	was	approved	by	the	Liverpool	Central	Committee	of	the	UK	National	

Research	Ethics	Service.		All	healthy	volunteer	and	patient	samples	included	in	

this	study	were	given	with	informed	consent	in	accordance	with	the	declaration	

of	Helsinki.			
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2.2.	Introduction	

General	methods	used	throughout	this	work	are	cell	culture,	flow	cytometry,	

western	blotting,	enzyme-linked	immunosorbence	assay	(ELISA),	white	blood	

cell	(WBC)	separation,	RNA	extraction,	cDNA	synthesis,	manual	polymerase	

chain	reaction	(PCR),	quantitative	reverse	transcriptase	PCR	(qRT-PCR),	PCR	

pyrosequencing,	cell	transfection	and	confocal	microscopy.		Cell	lines,	normal	

peripheral	blood	mononuclear	cells	(PBMCs)	and	patient	samples	were	used.			
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2.3.	Sample	Collection	and	Preparation	

2.3.1	Total	leukocytes	for	RNA	Extraction	

To	prepare	patient	and	normal	healthy	volunteer	blood	cells	for	RNA	extraction,	

approximately	6ml	of	venous	blood	was	mixed	with	40ml	of	red	cell	lysis	buffer	

(0.1M	ammonium	chloride,	10mM	sodium	bicarbonate	and	1.3mM	

ethylenediaminetetraacetic	acid	(EDTA)	(Sigma-Aldrich,	Gillingham,	Dorset,	

UK))	and	incubated	for	5	minutes	at	room	temperature.		Samples	were	then	

centrifuged	at	770	x	g	for	5	minutes,	washed	in	phosphate	buffered	saline	(PBS)	

and	centrifuged	for	a	further	5	minutes.		Finally	the	pellet	was	reconstituted	in	

600µl	of	RNeasy	Lysis	Buffer	(RLT)	buffer	(Qiagen,	Manchester,	Lancashire,	UK)	

supplemented	with	1%	β-mercaptoethanol	(Sigma-Aldrich)	and	stored	at	either	

-20°C	short	term	or	-80°C	long-term.			

	

2.3.2	MNC	preparation	for	Protein	Analysis	

MNC	were	prepared	from	approximately	25ml	of	peripheral	blood	collected	

into	EDTA	and	layered	onto	10ml	of	lymphoprep	(Axis-Shield,	Cambridge,	

Cambridgeshire,	UK).		MNC	were	separated	by	density-dependent	

centrifugation	and	resuspended	in	4°C	Roswell	Park	Memorial	Institute	1640	

(RPMI-1640)	containing	10%	dimethyl	sulphoxide	(DMSO)	(Sigma-Aldrich)	and	

10%	foetal	calf	serum	(FCS:	BioSera,	Uckfield,	East	Sussex,	UK).		Cells	were	

cryopreserved	in	liquid	nitrogen	until	required.		Freshly	extracted	MNC	from	

normal	healthy	volunteers	were	prepared	and	used	immediately.			
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2.4.	Cell	Culture	

2.4.1.	Maintenance	of	Cell	Lines	

BCR-ABL1	positive	cell	lines	used	in	this	study	were	K562,	KCL22	and	LAMA84	

(donated	by	Prof	Junia	Melo,	LRF	Leukaemia	Unit,	Hammersmith	Hospital,	

London,	UK).		The	BCR-ABL1	negative	cell	lines	HL60	(promyelocytic	

leukaemia-derived)	and	AGS	(gastric	adenocarcinoma-derived)	were	also	used.		

All	cell	lines	were	maintained	with	standard	‘culture	medium’	of	RPMI-1640	

supplemented	with	1%	L-glutamine,	1%	Penicillin/streptomycin	(Invitrogen,	

Paisley,	Renfrewshire,	UK)	and	10%	foetal	calf	serum,	with	the	exception	of	the	

adherent	AGS	cell	line	for	which	Dulbecco's	Modified	Eagle	Medium	(DMEM:	

Sigma-Aldrich)	supplemented	with	1%	L-glutamine,	1%	

penicillin/streptomycin,	10%	foetal	calf	serum	and	2%	non-essential	amino	

acid	solution	(Sigma-Aldrich)	was	used.			

	

Cell	lines	were	suspended	in	standard	culture	medium	at	an	approximate	

starting	density	of	3x105	cells	per	ml	and	re-seeded	in	fresh	media	every	3/4	

days.		Cells	were	resuspended	in	fresh	culture	medium	24	hours	prior	to	any	

experimental	use	to	ensure	optimal	exponential	growth.		Standard	tissue	

culture	conditions	were	observed	(37˚C,	5%	CO2	in	air,	100%	humidity).			

	

For	the	AGS	cell	line,	trypsin	EDTA	was	used	to	lift	adherent	cells	from	their	

surface	when	they	reached	100%	confluence	or	following	a	24	hour	in	vitro	
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culture.		Non-adherent	cells	were	maintained	at	2	x	106	per	ml	and	HL60	cells	at	

a	maximum	of	1	x	106	per	ml.			

	

Additionally,	genomic	DNA	from	U937	(leukaemic	monocyte	lymphoma-

derived),	HEK293	(human	embryonic	kidney-derived)	and	KYO-1	cell	lines	

were	used	for	methylation	analysis	(Chapter	7).		These	samples	were	given	by	

Dr	Lakis	Liloglou,	Molecular	and	Clinical	Cancer	Medicine,	University	of	

Liverpool.			

	

2.4.2.	Patient	Cells	

When	required,	patient	samples	were	retrieved	from	liquid	nitrogen	

cryopreservation	and	thawed	rapidly	at	37°C	with	agitation.		Cells	were	then	

diluted	dropwise	over	30	minutes	in	pre-warmed	(37°C)	RPMI-1640	

supplemented	thawing	medium	(RPMI-1640/10%	Heparin	Sodium	(1,000	

IU/ml	from	Wockhardt	UK	Ltd,	Wrexham,	Wrexham	County	Borough,	UK))	to	

dilute	the	DMSO.		Cells	were	then	washed	and	resuspended	in	standard	culture	

medium	and	left	to	recover	at	2	x	106	cells	per	ml	at	37°C	for	24	hours.			

	

2.4.3.	In	vitro	Cultures	

This	work	used	both	cell	lines	and	patient	samples	for	in	vitro	studies.		Cells	

were	seeded	into	6-well	tissue	culture	plates	(Becton	Dickinson	(BD)	

Biosciences,	Oxford,	Oxfordshire,	UK),	in	standard	culture	medium	at	2	x	106	
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cells	per	ml	at	37°C	for	24	hours	with	relevant	treatments	(Table	2.1).		For	

patient	samples,	this	was	following	a	24	hour	recovery.		Cell	lines	had	been	re-

seeded	in	fresh	culture	medium	24	hours	prior	to	in	vitro	treatments.			

	

Protein	levels	were	subsequently	analysed	using	a	variety	of	methods;	flow	

cytometry	(Section	2.5),	western	blotting	(Section	2.6)	and	ELISA	(Section	

2.7).			

	

Table	2.1.	Drug	concentrations	used	for	in	vitro	cultures.	

Drug	/	

Reagent	

Final	

Concentration	
Manufacturing	Company	

Imatinib	 5µM	 Novartis	(Basel,	Switzerland)	

Dasatinib	 150nM	 Bristol-Myers	Squibb	(New	York,	NY	USA)	

Nilotinib	 5µM	 Novartis	

Ponatinib	 130nM	 ARIAD	(Cambridge,	MA,	USA)	

FTY720	 2.5µM	 Millipore	(Billerica,	MA,	USA)	

Forskolin	 40µM	 Sigma-Aldrich	

Okadaic	Acid	 6nM	 Sigma-Aldrich	
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2.5.	Flow	Cytometry	

The	cell	lines	used	had	been	through	a	minimum	of	5	passages	prior	to	use;	

each	passage	entailed	the	cells	being	washed	in	PBS	and	replacing	used	medium	

with	fresh	following	a	3-4	day	growth	period.		Patient	samples	had	been	thawed	

and	left	to	recover	(Section	2.4.2).		A	minimum	of	5	x	105	cells	were	used	per	

flow	cytometry	tube.					

	

2.5.1.	Protein	Staining	and	Flow	Cytometry	Analysis	

Cells	were	washed	in	PBS,	resuspended	in	500µl	of	2%	paraformaldehyde	(Van	

Waters	and	Rogers	(VWR),	Radnor,	Pennsylvania,	USA)	and	fixed	for	10	minutes	

at	37°C.		Then	cells	were	centrifuged	for	3	minutes	at	500	x	g	and	the	

supernatant	discarded.		The	cells	were	then	incubated	on	ice	in	500µl	of	90%	

methanol	for	30	minutes	to	permeabilise	the	membranes.		Cells	were	washed	in	

a	PBS	buffer	containing	0.5%	bovine	serum	albumin	(BSA),	resuspended	in	25µl	

of	PBS/BSA	buffer	and	incubated	with	the	primary	antibody	(Table	2.2)	at	

room	temperature	with	rocking	for	1	hour.		Cells	were	washed	in	PBS/BSA	

buffer	and	resuspended	in	50µl	of	the	appropriate	conjugated	secondary	

antibody	(Table	2.2)	at	a	concentration	of	20µg/ml.		Finally,	cells	were	

incubated	for	30	minutes	at	room	temperature	in	the	dark	with	rocking	and	

washed	in	PBS/BSA	buffer.	Analysis	used	a	FACSCalibur	machine	(BD	

Biosciences)	with	CellQuest	Pro	3.3	software.			
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To	analyse	the	protein	level	of	a	sample,	events	were	gated	on	the	live	cell	

population,	determined	by	forward	and	side	scatter	light	properties.		Antibody	

fluorescence	was	measured	for	cells	falling	within	this	gate.		Protein	level	was	

defined	as	the	geometric	mean	fluorescence	intensity	(MFI)	of	the	protein,	

minus	the	control	sample	MFI.			
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Table	2.2.Antibody	concentrations	used	in	flow	cytometry.	

Primary	Antibody	
Final	

Concentration	
Control	
Antibody	

Secondary	
Antibody	

CIP2A	(Santa	Cruz	
Biotechnology	(SCBT),	

Dallas,	TX,	USA)	
16µg/ml	 Mouse	IgG1	

Alexa	Fluor	488	
Mouse	

PP2A	(Millipore)	 100µg/ml	 Mouse	IgG1	
Alexa	Fluor	488	

Mouse	

pY307-PP2A	(Abcam,	
Cambridge,	

Cambridgeshire,	UK)	
9µg/ml	 Rabbit	IgG	

Alexa	Fluor	488	
Rabbit	

SET	(I2PP2A)	(SCBT)	 20µg/ml	 Rabbit	IgG	 Alexa	Fluor	488	
Rabbit	

SETBP1	(SCBT)	 20µg/ml	 Rabbit	IgG	 Alexa	Fluor	488	
Rabbit	

JAK2	(SCBT)	 20µg/ml	 Rabbit	IgG	 Alexa	Fluor	488	
Rabbit	

CrKL	(SCBT)	 10µg/ml	 Rabbit	IgG	
Alexa	Fluor	488	

Rabbit	

pY207-CrKL	(Cell	
Signalling	Technology	

(CST),	Danvers,	MA,	USA)	
10µg/ml	 Rabbit	IgG	

Alexa	Fluor	488	
Rabbit	

c-Myc	(CST)	 20µg/ml	 Rabbit	IgG	 Alexa	Fluor	488	
Rabbit	

c-Myc	pS62	(Abcam)	 10µg/ml	 Rabbit	IgG	 Alexa	Fluor	488	
Rabbit	

	

Mouse	IgG1	(BD	Biosciences;	#349040)	

Rabbit	IgG	(Research	&	Development	(R&D)	Systems,	Abingdon,	Oxfordshire,	

UK;	AB-105-C)	

Alexa	Fluor	488	Goat	Anti-Mouse	IgG	(H+L)	(Life	Technologies,	Paisley,	

Renfrewshire,	UK;	A-11001)	

Alexa	Fluor	488	Goat	Anti-Rabbit	IgG	(H+L)	(Life	Technologies;	A-11001)		
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2.5.2.	CD34+	Staining	of	Patient	Samples	

For	diagnostic	patient	samples,	the	protein	expression	of	CD34+	expressing	

cells	was	also	analysed.		A	CD34+	conjugated	antibody	(BD	Biosciences)	was	

used.		Standard	flow	cytometry	protocol	was	followed	and	the	CD34+	antibody	

added	to	the	cell	suspension	at	the	same	point	as	the	secondary	antibodies	

previously	described.		The	CD34+	antibody	was	added	at	a	concentration	of	

0.1mg/ml.			

	

To	analyse	the	protein	expression	of	the	CD34+	expressing	cells,	a	gating	

method	was	used.		For	example,	the	CD34+	cell	population	was	gated.		CIP2A	

expression	of	this	gated	cell	population	was	analysed	as	previously	described,	

therefore	giving	the	CIP2A	expression	in	CD34+	cells.			

	

2.5.3.	Cell	Viability	by	Propidium	Iodide	Staining	

Prior	to	beginning	each	flow	cytometry	experiment,	50µl	(approximately	2	x	

105	cells)	were	taken	from	each	sample	and	placed	in	a	flow	cytometry	tube.		To	

these,	50µl	of	propidium	iodide	(PI)	was	added	and	tubes	incubated	on	ice	for	

30	minutes.			

	

During	analysis,	the	percentage	of	PI	positive	cells	was	measured;	PI	positive	

cells	were	classified	as	dead	cells	and	the	PI	negative	as	alive.		Cell	death	was	

analysed	using	flow	cytometry	(FACSCalibur,	BD	Biosciences)	and	CellQuest	Pro	

3.3	software	for	data	analysis.			
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2.6.	Western	Blotting	

2.6.1.	Lysate	Preparation	

A	total	of	1	x	107	cells	were	first	washed	in	PBS,	then	resuspended	in	100µl	of	

Radioimmunoprecipitation	assay	(RIPA)	buffer	(25mM	NaPO4	(pH7.5),	25mM	

NaF,	25mM	β-glycerol	phosphate,	100mM	NaCl,	5mM	ethylene	glycol	tetraacetic	

acid	(EGTA),	0.5%	deoxycholate,	0.5%	Igepal,	0.1%	sodium	dodecyl	sulphate	

(SDS),	0.01%	sodium	azide)	containing	phosphatase	and	protease	inhibitors	

(Roche,	Basel,	Switzerland).		Cells	were	sonicated	five	times	(30	seconds	on/30	

seconds	off),	spun	for	5	minutes	at	4°C	at	500	x	g	and	the	supernatant	collected	

for	subsequent	protein	determination.			

	

2.6.2.	Protein	Concentration	Determination	

Protein	determination	was	performed	according	to	manufacturer’s	

recommendations	(Bio-Rad,	Hemel	Hempstead,	Hertfordshire,	UK)	and	protein	

standards	(Table	2.3)	were	made	using	a	10µg/ml	BSA	stock	and	RIPA	buffer	

described	in	Section	2.6.1.					

	

The	Bio-Rad	manufacturer’s	kit	comprised	several	lettered	reagents.		A	working	

reagent	(A*)	was	prepared	by	adding	20µl	of	reagent	S	to	each	1ml	of	reagent	A.		

25µl	of	A*	was	then	added	to	each	well	of	a	96	well	flat-bottomed	plate,	

followed	by	5µl	of	standard	or	sample	in	the	appropriate	wells.		200µl	of	

reagent	B	was	then	added,	the	plate	incubated	for	15	minutes	and	then	read	on	
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a	spectrophotometer	at	630nM.		The	protein	concentration	of	each	lysate	was	

then	determined	from	a	standard	curve.			

	

Table	2.3.	Concentration	of	Protein	Standards	

Final	Concentration	(µg/ml)	 BSA	Stock	(10µg/ml)	 RIPA	Buffer	

0	 (1000µl	ddH2O)	 	

0.5	 50µl	 950µl	

1	 100µl	 900µl	

1.5	 150µl	 850µl	

2	 200µl	 800µl	

2.5	 250µl	 750µl	

3	 300µl	 700µl	

	

2.6.3.	Gel	Electrophoresis	

Prior	to	loading,	samples	were	diluted	to	20µg/ml	in	double	strength	SDS	buffer	

(DSSB)	and	heated	at	95°C	for	5	minutes.		A	12%	polyacrylamide	gel	(4ml	

resolving	gel	buffer,	8ml	acrylamide,	4ml	H2O,	75µl	of	10%	ammonium	

persulphate	(APS),	15µl	tetramethylethylenediamine	(TEMED;	Sigma-Aldrich))	

was	assembled	between	two	glass	plates	and	left	until	polymerisation	occurred	

(gel	has	set).		A	5%	polyacrylamide	stacking	gel	was	then	assembled	on	top	

(1.5ml	stacking	buffer,	1ml	acrylamide,	3.5ml	H2O,	50µl	of	10%	APS,	15µl	

TEMED),	with	a	10-well	comb	used	to	create	sample	wells.		Protein	samples	

were	loaded	alongside	a	pre-stained	protein	ladder	(Bio-Rad),	and	then	the	

samples	were	run	at	35mA	per	gel	for	approximately	90	minutes.			
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2.6.4.	PVDF	Membrane	Transfer	

A	polyvinylidene	difluoride	(PVDF)	membrane	(GE	Healthcare,	Little	Chalfont,	

Buckinghamshire,	UK)	was	first	soaked	in	100%	methanol	for	5	minutes.		The	

polyacrylamide	gel	was	carefully	removed	from	between	the	glass	plates	and	

the	stacking	gel	section	cut	away	and	discarded.		A	transfer	cassette	was	

assembled	according	to	manufacturer	guidelines	(Bio-Rad)	as	shown	in	Figure	

2.1.		The	cassette	was	placed	in	a	transfer	tank	alongside	an	ice	pack	and	

submerged	in	transfer	buffer	(Tris	25mM,	Glycine	0.2M	(SCBT,	USA).		This	

transfer	was	performed	at	400mA	for	60	minutes.		After	the	transfer	was	

complete	the	protein	ladder	was	marked	on	the	membrane	with	a	pencil.			

	

Figure	2.1.		Assembly	of	Western	Blot	Cassette.	
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2.6.5.	Membrane	Blocking	and	Antibody	Incubation	

The	membrane	was	blocked	in	3%	enhanced	chemiluminescence	(ECL)	prime	

blocking	milk	(GE	Healthcare)	in	Tris-buffered	saline-Tween20	(TBS-T)	(Tris	

20mM,	NaCl	150mM,	Tween20	(0.1%),	pH7.5)	for	60	minutes	at	room	

temperature	with	rocking.		The	antibodies	were	added	directly	to	the	milk	in	

the	appropriate	concentration	and	incubated	at	room	temperature	with	rocking	

overnight.		Following	this,	the	membrane	was	then	washed	in	TBS-T	every	15	

minutes	for	an	hour,	at	room	temperature	with	rocking.		Appropriate	secondary	

antibodies	(0.4µg/ml	in	3%	ECL	Prime	blocking	milk	in	TBS-T)	were	then	added	

and	left	for	30-60	minutes.		Another	hour	of	washing	with	TBS-T	followed,	

before	the	membrane	was	ready	for	analysis.		Antibody	concentrations	are	

shown	in	Table	2.4.			

	

ECL	advance	(GE	Healthcare)	was	applied	to	the	membrane	for	1	minute,	before	

membrane	exposure	and	band	visualisation	using	UNITEC	Alliance	2.7	software.					

	

2.6.6.	Membrane	Stripping	and	Re-probing	

To	strip	the	antibodies	from	the	membrane,	it	was	first	washed	in	TBS-T	every	

15	minutes	for	an	hour.		The	membrane	was	then	incubated	for	10	minutes	in	a	

55°C	water	bath	in	a	sealed	film	bag,	with	10ml	of	stripping	buffer	(1M	Tris,	2%	

SDS)	containing	70µl	β-mercaptoethanol.		The	membrane	was	then	washed	

every	10	minutes	in	TBS-T	for	30	minutes,	ready	to	re-probe.		To	re-probe	the	
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membrane,	blocking	and	antibody	incubation	was	as	previously	described,	

though	primary	antibody	incubation	need	only	be	for	1-2	hours.			

	

Table	2.4.	Antibody	Concentrations	used	in	Western	Blotting.	

Primary	Antibody	 Final	Concentration	 Secondary	Antibody	

CIP2A	(SCBT)	 80ng/ml	 Mouse	IgG	

PP2A	(Millipore,	USA)	 0.3µg/ml	 Mouse	IgG	

pY307-PP2A	(Abcam)	 40ng/ml	 Rabbit	IgG	

SET	(I2PP2A)	(SCBT)	 80ng/ml	 Rabbit	IgG	

SETBP1	(SCBT)	 80ng/ml	 Rabbit	IgG	

JAK2	(SCBT)	 80ng/ml	 Rabbit	IgG	

pY207-CrKL	(CST)	 40ng/ml	 Rabbit	IgG	

c-Myc	(CST)	 120ng/ml	 Rabbit	IgG	

c-Myc	pS62	(Abcam)	 120ng/ml	 Rabbit	IgG	

	

Anti-mouse	IgG,	HRP-linked	Antibody	(CST;	#7076)	

Anti-rabbit	IgG,	HRP-linked	Antibody	(CST;	#7074)	 	
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2.7.	ELISA	

Patient	samples	were	thawed	as	described	(Section	2.4.2)	and	left	to	recover	

overnight.		Lysates	were	prepared	as	described	(Section	2.6.1),	but	lysed	in	

PP2A	Lysis	Buffer	8	(50mM	HEPES,	0.10.1mM	EGTA,	0.1mM	EDTA	120mM	

NaCl,	0.5%	nonyl	phenoxypolyethoxylethanol	(NP-40),	25µg/ml	leupeptin	

(Sigma-Aldrich),	25µg/ml	pepstatin	(Sigma-Aldrich),	2µg/ml	aprotinin	(Sigma-

Aldrich)	(1ul	44	per	100ul),	1mM	PMSF)	at	100µl	buffer	per	1	x	107	cells.		

Following	protein	determination	(2.5.2),	cell	lysates	were	diluted;	20µg	of	

protein	in	100µl	of	carbonate-bicarbonate	coating	buffer	(Sigma-Aldrich).			

100µl	of	sample	was	added	to	a	96	well	ELISA	plate	(Microplate	Immulon	4HBX	

96	well	flat	bottom	polystyrene	irradiated	clear	DIS-950-090L)	and	incubated	

at	4°C	overnight	with	rocking.		Each	sample	was	performed	in	triplicate	and	a	

mean	taken	of	the	three	results.					

	

The	plate	was	next	washed	four	times	with	200µl	of	TBS-T	and	then	200µl	

blocking	buffer	(5%	BSA	and	1%	rabbit	serum	(Sigma-Aldrich)	in	TBS-T)	added	

and	incubated	for	2	hours	at	room	temperature,	with	rocking.		Following	a	

further	four	washes	in	200µl	of	TBS-T,	100µl	of	either	c-Myc	or	c-Myc	pS62	

antibodies	(40ng/ml,	100ng/ml	respectively)	in	5%	BSA	and	1%	rabbit	serum	

in	TBS-T	was	added.		In	addition,	control	wells	contained	100μl	(1:500)	rabbit	

anti–glyceraldehyde	3-phosphate	dehydrogenase	(GAPDH)	in	5%	BSA	in	TBS-T.		

The	plate	was	then	incubated	for	3	hours	at	room	temperature	with	rocking.			
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A	further	four	washes	in	200µl	TBS-T	followed	and	the	plate	was	then	

incubated	at	room	temperature	for	one	hour	(with	rocking)	with	100μl	

(1:1000)	anti-rabbit	IgG–horseradish	in	5%	BSA	in	TBS-T.		The	plate	was	again	

washed	and	100µl	of	tetramethylbenzidine	added	for	a	20	minute	incubation	at	

room	temperature	with	rocking,	in	the	dark.		Finally,	50µl	of	2M	HCl	was	added	

to	stop	the	reaction	and	the	absorbance	read	at	450nm	immediately.			

	 	



101	|	P a g e 	

	

2.8.	Confocal	Microscopy	

Samples	for	confocal	microscopy	analysis	were	first	prepared	as	discussed	in	

Section	2.4.		Approximately	2	x	106	cells	per	ml	were	used	per	sample	slide.			

	

Slide	preparation:		Slides	were	submerged	in	10%	Poly-L	Lysine	(Sigma-

Aldrich)	for	5-10	minutes,	then	allowed	to	dry	at	37°C	for	60	minutes.		An	area	

of	approximately	3cm2	was	marked	on	the	slide	using	a	hydrophobic	liquid	

blocker	pen	and	allowed	to	dry	for	30	minutes	at	37°C.		The	slides	were	then	

ready	for	cells	to	be	added.			

	

Cell	preparation:		Cells	were	spun	at	500	x	g	for	3	minutes,	washed	in	PBS	and	

resuspended	in	4%	paraformaldehyde	for	15	minutes	at	room	temperature.		

Following	another	wash	in	PBS,	cells	were	permeabilised	with	0.2%	Triton-X-

100	(Sigma-Aldrich)	for	5	minutes	at	room	temperature	and	washed	in	PBS.		

Cells	were	then	blocked	for	30	minutes	at	room	temperature	in	150µl	of	PBS	

with	10%	BSA	and	0.1%	sodium	azide.		Next,	the	cells	were	stained	with	

primary	antibodies	(Table	2.5)	in	blocking	buffer	for	60	minutes	at	room	

temperature,	washed	in	PBS	and	stained	with	secondary	antibodies	(20µg/ml	in	

PBS)	for	30	minutes	at	room	temperature.		Again,	cells	were	washed	in	PBS	then	

incubated	for	15	minutes	at	room	temperature	with	the	nuclear	stain	TO-PRO-3	

(Life	Technologies)	at	a	concentration	of	3.3µg/ml.		After	a	final	wash	in	PBS,	

cells	were	resuspended	in	100µl	of	PBS	and	mounted	on	the	appropriate	slide.			
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Slides	were	left	at	4°C	in	the	dark	overnight	to	allow	cells	to	adhere	to	the	slide	

surface.		10µl	of	CyGel	(BioStatus	Limited,	Shepshed,	Leicestershire,	UK)	was	

pipetted	onto	a	cover	slip,	which	was	pressed	firmly	onto	the	cell	slide	ready	to	

be	analysed.			

	

Table	2.5.	Antibody	Concentrations	used	in	Confocal	Microscopy.	

Primary	Antibody	 Final	Concentration	 Secondary	Antibody	

CIP2A	(SCBT)	 1µg/ml	 Alexa	Fluor	488	Mouse	

PP2A	(Millipore)	 100µg/ml	 Alexa	Fluor	488	Mouse	

pY307-PP2A	(Abcam)	 11.2µg/ml	 Alexa	Fluor	488	Rabbit	

c-Myc	(CST)	 2µg/ml	 Alexa	Fluor	488	Rabbit	

c-Myc	pS62	(Abcam)	 100µg/ml	 Alexa	Fluor	488	Rabbit	

	

Alexa	Fluor	488	Goat	Anti-Mouse	IgG	(H+L)	(Life	Technologies;	A-11001)	

Alexa	Fluor	488	Goat	Anti-Rabbit	IgG	(H+L)	(Life	Technologies;	A-11001)		
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2.9.	Polymerase	Chain	Reaction	(PCR)	

In	this	thesis,	3	PCR	methods	were	used;	quantitative	real-time	PCR	(qRT-PCR),	

standard	manual	PCR	and	Pre-pyrosequencing	manual	PCR.			

	

Sample	preparation	for	qRT-PCR	and	standard	manual	PCR	was	the	same:	total	

leukocytes	previously	separated	(Section	2.3.1)	were	used	for	RNA	extraction	

and	cDNA	synthesis.		In	Chapter	4,	patient	mRNA	samples	were	analysed	by	

qRT-PCR,	using	pre-designed	TaqMan	real	time	PCR	assays.			

	

Table	2.6.	Pre-Designed	Taqman	Real-Time	Assay	Primers	used	for	PCR	

Assay	Primers	 Product	Code	 Company	

CIP2A	 Hs00405413_m1	 Life	Technologies	

PP2A	(catalytic	subunit)	 Hs00427259_m1	 Life	Technologies	

c-Myc	 Hs00153408_m1	 Life	Technologies	

SET	 Hs00853870_g1	 Life	Technologies	

JAK2	 Hs01078136_m1	 Life	Technologies	

GAPDH	 Hs99999905_m1	 Life	Technologies	

	

Chapter	6	also	uses	qRT-PCR	to	analyse	patient	samples,	though	assays	used	

were	purposefully	designed	to	identify	two	different	CIP2A	variants.		

Additionally,	Chapter	6	uses	standard	manual	PCR	to	detect	the	

presence/absence	of	these	CIP2A	variants	in	CML	cell	lines.			



104	|	P a g e 	

	

Sample	preparation	for	pre-pyrosequencing	manual	PCR	differed	from	other	

PCR	methods:	genomic	DNA	was	used	following	a	bisulphite	conversion.		This	

PCR	method	was	used	to	indicate	the	suitable	amplification	of	the	product	to	be	

analysed	by	pyrosequencing,	for	potential	methylation	(Chapter	7).			

	

CIP2A	primers	were	designed	using	PyroMark	Assay	Design	2.0	for	the	

detection	of	a	long	(CIP2A-1a)	and	short	(CIP2A-1b)	transcript;	Chapter	6	

discusses	the	design	and	results	of	these	primers.		CIP2A	methylation	primers	

were	also	designed;	Chapter	7	discusses	the	design	and	results	of	these.			

	

Table	2.7.		Primer	Sequences	for	CIP2A	transcript	variants	and	CIP2A	

Methylation	

Target	 Assay	Primer	 Primer	Sequence	

	

CIP2A-1a	

	

CIP2A-1a	Forward	primer	 ACTCCACTGCCTGCTTGA	

CIP2A-1a	Reverse	primer	 TGTCCAGAAATTACCTCCAAGT	

CIP2A-1b	probe	 CGCAAAAGCTGAGTGGCGTTC	

	

CIP2A-1b	

	

CIP2A-1b	Forward	primer	 TCCTCCCTCAAAGTAATTTCTG	

CIP2A-1b	Reverse	primer	 TGGGGTCTTCAAGTAGCTCTA	

CIP2A-1b	probe	 CAAGGCAACTCAAGCATTCACT

TGTTA	

CIP2A	

methylation	

	

CIP2A	meth-Forward	

(biotinylated)	

TTTAGGGTGTTTAGGGATT	

CIP2A	meth-Reverse	 CACAATAAAATCCATTACACC	

CIP2A	meth-Sequence	 CACAATAAAATCCATTA	
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2.9.1.	RNA	Extraction	

RNA	extraction	was	performed	according	to	the	RNeasy	mini	kit	(Qiagen)	and	

RNase-Free	DNase	Set.		Prepared	samples	(Section	2.3.1)	were	transferred	to	a	

QIA	shredder	column	within	a	2ml	collection	tube,	centrifuged	at	14000	x	g	for	

2	minutes	and	600µl	of	ethanol	(70%)	added	to	the	flow	through.		The	sample	

was	mixed	well	and	spun	in	a	mini	spin	column	within	a	2ml	collection	tube	at	

14000	x	g,	for	5	minutes.		The	flow	through	was	discarded,	700µl	of	RNeasy	

Wash	buffer	(RW1)	added	and	incubated	for	5	minutes	at	room	temperature,	

centrifuged	at	14000	x	g	for	5	minutes	and	the	flow	through	again	discarded.		

The	spin	column	(within	a	new	2ml	collection	tube)	was	twice	washed	with	

500µl	RNeasy	Wash	buffer	2	(RPE),	spun	for	15	seconds	at	14000	x	g	and	40µl	

of	RNA/DNA	free	water	added	to	the	spin	tube	membrane.		This	was	incubated	

for	5	minutes	at	room	temperature,	centrifuged	for	2	minutes	at	14000	x	g	and	

the	eluted	RNA	was	either	immediately	converted	to	cDNA	or	gDNA,	or	stored	

long	term	at	-70°C.			

	

2.9.2.	cDNA	synthesis	

RNA	(28µL)	was	aliquoted	into	DNase/RNase	free	tubes	and	incubated	at	70°C	

for	10	minutes	with	2µl	(500ng/µl)	of	random	hexamers	(Promega,	

Southampton,	Hampshire,	UK).		Tubes	were	immediately	cooled	on	ice	for	3	

minutes.		A	reaction	mix	containing	16µl	of	5	x	reaction	buffer	(RT	buffer),	8µl	

of	0.1M	DL-dithiothreitol	(DTT),	and	4µl	of	10mM	deoxyribonucleotide	

triphosphate	(dNTP)	was	added	to	the	samples	and	tubes	were	incubated	at	
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25°C	for	5	minutes.		Superscript	II	reverse	transcriptase	kit	(200µg/µl)	

(Invitrogen)	was	added	and	tubes	incubated	sequentially,	at	25°C	for	10	

minutes,	42°C	for	60	minutes	then	finally	70°C	for	15	minutes	to	stop	the	

reaction.		The	acquired	cDNA	could	be	used	immediately,	or	stored	long-term	at	

-20°C.			 	
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2.9.3.	Quantitative	Real-Time	PCR	

Pre-designed	TaqMan	real	time	PCR	assays	were	used	in	a	96	well	assay	plate.	

Each	assay	consisted	of	a	forward	and	reverse	primer	at	a	final	concentration	of	

900nM	and	a	6-FAM	dye-labelled	TaqMan	MGB	probe	at	a	final	concentration	of	

250nM.			

	

The	amount	of	cDNA	was	determined	using	the	Nanodrop2000;	100ng	of	cDNA	

was	used	per	20ul	reaction	consisting	of	20x	TaqMan	gene	expression	assay	and	

2x	TaqMan	gene	expression	master	mix	(pre-made,	Life	Technologies).		Each	

sample	was	run	in	triplicate.		After	loading	the	reaction	mixture,	the	plate	was	

sealed	with	appropriate	cover	and	spun	briefly	to	ensure	all	of	the	samples	

were	at	the	bottom	of	their	well.		The	real	time	PCR	amplifications	were	

undertaken	using	an	ABI	Prism	7900HT	system	(ThermoFisher	Scientific,	

Altrincham,	Cheshire,	UK)	with	the	following	conditions	as	specified	by	the	

manufacturer:	50°C	for	2min,	10min	at	95°C	followed	by	40	cycles	of	

denaturation	at	95°C	for	15secs	and	annealing/extension	at	60°C	for	1min.			

	

The	relative	expression	level	of	a	particular	gene	of	a	given	sample	was	

calculated	by	the	comparative	Ct	method(Livak	&	Schmittgen,	2001).		The	

comparative	Ct	method	uses	the	2-ΔΔCt	formula	to	achieve	results	for	relative	

quantification,	where	ΔΔCt	is	the	normalised	signal	level	in	a	sample	relative	to	

the	normalised	signal	level	in	the	calibrator	sample.		In	this	study	a	pool	of	

cDNA	from	7	normal	individuals	was	used	as	calibrator	and	all	the	samples	

were	normalised	to	GAPDH	endogenous	control.			
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2.9.4.	Manual	PCR	

Forward	and	reverse	primers	(Table	2.7)	were	diluted	in	ddH2O	to	give	a	

primer	mix	containing	4μM	concentration	of	each.		Into	each	necessary	well	of	a	

96	well	PCR	plate	was	added:	10μl	expression	mix	(Life	technologies),	1μl	

primer	mix	and	4μl	ddH2O.		cDNA	from	samples	and	controls	(5µl)	was	added	in	

triplicate,	the	plate	sealed	tightly	with	a	film	cover	and	placed	in	the	PCR	block.			

	

After	optimisation	of	a	range	of	temperatures,	PCR	conditions	were	set	as:		

• 95°C	–	5	min	

• 40	cycles;	

o 95°C	–	15	sec	(denaturation	of	double	stranded	DNA)	

o 56°C	–	20	sec	(annealing	of	primers)	

o 60°C	–	45	sec	(extension	by	DNA	polymerase)	

• 72°C	–	10	min	

	

The	plate	was	then	left	at	4-8°C	until	the	samples	were	run	on	a	2%	agarose	gel	

(agarose	and	Safeview	Nucleic	Acid	Stain	(Novel	Biological	Solutions	(NBS),	

Huntingdon,	Cambridgeshire,	UK)	in	135ml	TBE	(0.1M	Tris/0.1M	Borate/2mM	

EDTA)).		Agarose	and	TBE	were	heated	in	a	microwave	and	mixed	until	the	

agarose	was	completely	dissolved,	then	the	nucleic	stain	added.		The	gel	was	

poured	into	a	mould	with	a	comb	and	left	to	set	for	30-60	minutes	at	room	

temperature.		The	gel	was	placed	in	a	running	tank,	submerged	in	TBE	and	the	

amplified	samples	(diluted	1:1	in	running	buffer	(Life	Technologies))	loaded	

alongside	a	50bp	ladder.		Finally	the	gel	was	run	for	approximately	30	minutes	

at	100V	and	photographed.				 	



109	|	P a g e 	

	

2.10.	PCR	Pyrosequencing	(Methylation	Analysis)	

For	this	method,	genomic	DNA	was	used.		This	was	available	within	the	lab	and	

had	been	previously	extracted	according	to	the	Qiagen	DNA	extraction	kit	

protocol.			

	

2.10.1.	Bisulphite	Conversion	

Only	samples	with	the	optimum	DNA	concentration	of	200-500ng/µl	were	used	

for	the	methylation	analysis.		For	the	bisulphite	conversion	the	EZ	DNA	

Methylation-Gold	Kit	(Zymo	Research,	Irvine,	California,	USA)	was	used.		The	

method	described	is	for	the	conversion	of	10	samples.		N.B.		Solutions	described	

in	this	method	are	not	detailed	within	the	manufacturer’s	protocol	and	are	

therefore	merely	named	as	the	company	states	in	their	protocol.			

	

First,	the	CT	Conversion	Reagent	was	prepared	by	adding	900µl	ddH2O,	300µl	

M-Dilution	Buffer	and	50µl	M-Dissolving	Buffer.		Then	the	M-Wash	Buffer	was	

prepared	by	adding	24ml	of	100%	ethanol	per	6ml	of	M-Wash	Buffer	

concentrate.		The	CT	Conversion	Reagent	(130µl)	was	added	to	20µl	of	DNA	

sample	in	a	PCR	tube,	the	tubes	sealed,	spun	briefly	and	then	placed	into	a	

thermal	cycler.		The	following	steps	were	then	performed:	

• 98°C	–	10	min	

• 64°C	–	150	min	

	

The	samples	could	then	be	stored	overnight	if	necessary	at	4-8°C.			
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The	samples	were	then	transferred	to	a	Zymo-Spin	IC	Column	inside	a	

Collection	Tube,	along	with	600µl	of	M-Binding	Buffer	and	centrifuged	at	10000	

x	g	for	30	seconds	and	the	flow-through	discarded.		Samples	were	then	washed	

with	100µl	M-Wash	Buffer	and	the	flow-through	again	discarded.		200µl	of	M-

Desulphonation	Buffer	was	added	to	each	column	and	incubated	at	room	

temperature	for	15-20	minutes	before	being	spun	and	the	flow-through	

discarded.		Next,	the	samples	were	washed	twice	with	M-Wash	Buffer	and	then	

Zymo-Spin	IC	Columns	transferred	into	1.5ml	microcentrifuge	tubes.		Pre-

warmed	M-Elution	buffer	(30µl)	was	added	directly	to	the	column	membrane	

and	centrifuged	to	elute	the	newly	bisulphite	converted	DNA.			

	

Samples	could	be	immediately	analysed	(via	pre-pyrosequencing	manual	PCR	

(Section	2.10.2),	and	then	run	through	the	pyrosequencer	for	methylation	

analysis	(Section	1.10.3))	or	stored	long	term	at	-20°C.			
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2.10.2.	Pre-Pyrosequencing	PCR	

Forward	and	reverse	primers	(Table	2.7)	were	diluted	in	ddH2O	and	mixed	to	

give	a	150nM	forward	primer	(5’-Biotinylated)	and	300nM	reverse	primer	

concentration.		Into	each	necessary	well	of	a	96	well	PCR	plate	was	added:	

19.5μl	ddH2O,	3μl	buffer,	1.25μl	dNTPs,	1.25μl	primer	mix,	1.2μl	MgCl2	and	

0.15μl	Hot-Start	Taq	DNA	polymerase	(New	England	Biolabs	(NEB),	Hitchin,	

Hertfordshire,	UK).		cDNA	(4µl)	from	each	sample	and	control	was	then	added	

in	triplicate,	the	plate	sealed	and	placed	in	the	PCR	block.									

	

After	optimisation	with	a	range	of	temperatures,	PCR	conditions	were	set	as:	

• 95°C	–	5	min	

• 20	cycles	

o 94°C	–	20	sec	(denaturation	of	DNA)	

o 54°C	–	40	sec	(annealing	of	primers)	

o 72°C	–	30	sec	(extension	by	DNA	polymerase)	

• 20	cycles	

o 94°C	–	30	sec	(denaturation	of	DNA)	

o 54°C	–	30	sec	(annealing	of	primers)	

o 72°C	–	35	sec	(extension	by	DNA	polymerase)	

• 72°C	–	15	min	

	

Again,	the	plate	could	be	left	at	4-8°C	overnight	if	necessary,	before	the	samples	

were	run	on	a	2%	agarose	gel	(Section	2.9.4)	and	analysed	to	ensure	the	

product	was	suitably	amplified	prior	to	methylation	analysis	on	the	

pyrosequencer.			
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2.10.3.	Methylation	Analysis	

Following	manual	PCR	analysis	to	check	adequate	DNA	amplification,	

approximately	25µl	of	sample	was	loaded	into	a	round-bottomed	96	well	plate	

and	mixed	with	75µl	of	binding	premix	(50µl	binding	buffer,	2µl	streptavidin	

sepharose	beads,	25µl	ddH2O	per	sample).		The	plate	was	then	sealed	and	

mixed	with	constant	agitation	for	a	minimum	of	10	minutes	to	allow	the	

amplified	DNA	sequence	to	bind	to	the	beads.		Annealing	mix	was	then	

prepared,	consisting	of	43.5µl	annealing	buffer	and	1.5µl	of	sequence	primer	

(10µM)	per	sample	and	transferred	to	a	soft,	flat-bottomed	96	well	plate.			

	

The	bench-top	pyrosequencer	unit	was	washed	in	ddH2O	and	placed	in	the	96	

well	plate	containing	the	samples.		It	was	then	used	to	agitate	the	solution	

within	each	well	to	ensure	the	beads	were	suspended,	before	the	unit	was	

switched	on	and	the	solution	‘sucked	up’,	leaving	the	beads	stuck	to	the	prongs.		

This	was	repeated	first	in	70%	ethanol	to	wash,	then	in	0.2M	NaOH	to	ensure	

the	sequences	were	single	stranded	and	finally,	sodium	acetate	to	neutralise.		

Lastly	the	samples	were	transferred	to	the	96	well	plate	containing	the	

prepared	annealing	mix	and	incubated	at	80°C	for	2	minutes.			

	

The	samples	were	then	ready	to	be	placed	in	the	PSQ	96MA	Qiagen	

pyrosequencer	machine.		The	assay	sequence	was	entered	into	the	software,	the	

reagent	cartridge	filled	with	appropriate	amounts	of	substrate,	enzyme	and	

nucleotides	(A/C/T/G)	according	to	machine	guidelines,	and	the	sequence	

analysed	for	methylation	sites	within	the	sequence.			 	
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2.11.	Gene	Silencing	(siRNA)	

siRNA	was	performed	using	Cell	Line	Nucleofector(TM)	Kit	V	(Lonza/Amaxa	

Biosystems,	Basel,	Switzerland).		For	each	reaction,	1	x	106	cells	were	used.		

Firstly,	the	kit	reagents	were	prepared;	CIP2A	siRNA	(SCBT)	and	scrambled	

control	siRNA	(SCBT)	were	diluted	in	RNase-free	water	to	10µM.			

	

Cells	were	washed	3	times	in	PBS	and	resuspended	in	100µl	of	nucleofector	

solution	in	a	1.5ml	Eppendorf.		The	siRNAs	were	added	to	their	appropriate	

Eppendorf	containing	cells	at	a	concentration	of	100nM	and	the	cells	

transferred	to	an	Amaxa	cuvette.		Electroporesis	was	used	and	finally	the	cells	

were	immediately	transferred	to	500µl	of	pre-warmed	supplemented	RPMI-

1640	medium	(1%	L-glutamine,	1%	penicillin/streptomycin,	10%	foetal	calf	

serum).		Cells	were	then	incubated	for	72	hours	at	37°C	before	analysis.			

	

Table	2.8.	siRNA	used	

siRNA	 Catalogue	Number	 Company	

CIP2A	 sc-77964	 SCBT	

Scrambled	Control	 sc-37007	 SCBT	
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2.12.	Gene	Transfection	

2.12.1.	Bacterial	Transformation	

One	50µl	vial	of	One	Shot	cells	(Life	Technologies)	were	thawed	on	ice	and	1µl	

of	plasmid	added	directly	to	the	vial.		These	were	mixed	by	gently	tapping	the	

vial	before	30	minutes	incubation	on	ice.		Next,	the	competent	cells	were	

incubated	for	exactly	30	seconds	in	a	42°C	water	bath	and	immediately	placed	

on	ice.		Pre-warmed	super	optimal	broth	with	catabolite	repression	(SOC)	

medium	(250µl)	(Sigma-Aldrich)	was	added	using	sterile	technique	and	the	vial	

secured	with	tape	in	a	microcentrifuge	(the	vial	was	well	aerated	and	placed	at	

an	angle).		Shaking	was	applied	for	1	hour	at	37°C,	before	50µl	of	cells	were	

spread	on	a	pre-warmed	lysogeny	broth	(LB)	agar	plate	(Sigma-Aldrich)	

containing	100µg/ml	ampicillin	and	incubated	overnight	at	37°C.			

	

2.12.2.	Maxiprep	

For	this,	an	EndoFree	Plasmid	Maxi	Kit	(Qiagen)	was	used.		N.B.		Details	of	

buffers	used	in	this	protocol	are	not	given	by	the	manufacturer	and	thus	are	

merely	named	as	the	company	does	within	its	guidelines.			

	

A	single	colony	was	picked	and	incubated	at	37°C	with	shaking	at	for	8	hours	in	

5ml	of	LB	medium	(100µg/ml	ampicillin).		This	culture	was	then	diluted	1/500	

with	fresh	LB	medium	and	incubated	in	the	same	conditions	for	a	further	12-16	

hours.		Bacterial	cells	were	isolated	via	a	centrifugation	at	6000	x	g	for	15	
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minutes	at	4°C	and	the	pellet	resuspended	in	10ml	of	buffer	P1	and	10ml	P2	in	a	

sealed	tube.		The	bacteria	were	vigorously	mixed	and	incubated	for	5	minutes	at	

room	temperature.		Next,	10ml	of	chilled	Buffer	P3	was	added,	vigorously	mixed	

and	then	the	mixture	transferred	to	a	QIA	filter	Cartridge	and	incubated	at	room	

temperature	for	10	minutes	before	filtering	the	lysate	into	a	fresh	50ml	tube.		

Buffer	ER	(2.5ml)	was	added	to	the	filtered	substrate	and	mixed	by	inversion	

and	incubated	for	30	minutes	on	ice.			

	

A	Qiagen-tip	500	was	equilibrated	using	10ml	of	Buffer	QBT	and	the	lysate	

added.		Finally,	the	tip	was	washed	twice	with	30ml	of	Buffer	QC	and	the	DNA	

eluted	with	15ml	of	Buffer	QN.		To	precipitate	the	DNA,	10.5ml	of	room	

temperature	isopropanol	was	added	to	the	eluted	DNA,	mixed	and	centrifuged	

at	15000	x	g	for	30	minutes	at	4°C.		The	DNA	pellet	was	washed	with	endotoxin	

free	70%	ethanol	at	room	temperature	and	centrifuged	at	15000	x	g	for	10	

minutes.		Finally,	the	DNA	pellet	was	allowed	to	air-dry	and	then	dissolved	in	

endotoxin-free	Buffer	TE.		The	concentration	of	the	plasmid	was	determined	

using	a	NanoDrop	system	before	use.			
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2.12.3.	Cell	Transfection	

Transfection	was	performed	using	the	Cell	Line	Nucleofector(TM)	Kit	V	

(Lonza/Amaxa	Biosystems,	Switzerland).		For	each	reaction	2	x	106	cells	were	

used.		Kit	reagents	were	prepared	before	use.		The	plasmids	used	were	

purchased	ready-made	from	Origene	(Rockville,	MD,	USA)	and	are	discussed	

more	thoroughly	in	Chapter	5.		Cells	were	washed	3	times	in	PBS	and	

resuspended	in	100µl	room-temp	nucleofector	solution.		CIP2A-GFP	tagged	and	

GFP	plasmids	(5µg/ml)	were	added	to	the	appropriate	Eppendorf.		Cells	were	

transferred	to	an	Amaxa	cuvette	and	electroporation	used.		Cells	were	then	

immediately	transferred	to	500µl	of	pre-warmed	supplemented	RPMI-1640	

culture	medium.		Cells	were	incubated	for	48	hours	at	37°C	before	analysis.			

	

Figure	2.2.	Design	of	the	CIP2A-GFP	tagged	Transfection	Plasmid;	A	

Schematic	of	the	Cloning	Sites.	
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Chapter	3:	CIP2A	as	a	CML	
Biomarker	

3.1.	Introduction	

The	dawn	of	the	imatinib	era	revolutionised	CML	treatment	and	improved	

clinical	outcome	dramatically,	though	resistance	to	this	drug	is	still	a	major	

concern	in	almost	50%	of	patients(C.	M.	Lucas	et	al.,	2011).		Second	(dasatinib	

and	nilotinib)	and	third	(ponatinib)	generation	TKIs	have	been	developed	in	an	

effort	to	provide	alternative	treatment	options	for	patients	resistant	or	

intolerant	to	imatinib.		The	ability	to	recognise	at	diagnosis	which	patients	will	

fail	to	achieve	and	maintain	a	response	on	imatinib,	yet	fare	better	on	the	

newer,	more	potent	TKIs	would	be	of	immense	value	to	CML	treatment.					

	

CIP2A	has	recently	emerged	as	a	biomarker	for	poor	prognosis	in	many	

cancers(Bockelman,	Lassus,	et	al.,	2011;	Dong	et	al.,	2011;	He	et	al.,	2012;	P.	

Huang	et	al.,	2012;	Khanna	et	al.,	2009;	Ren	et	al.,	2011;	Teng	et	al.,	2012;	

Vaarala	et	al.,	2010;	Xue	et	al.,	2012;	Yu	et	al.,	2013);	in	CML,	high	CIP2A	protein	

levels	predict	blast	crisis	in	imatinib	treated	patients(C.	M.	Lucas	et	al.,	2011).		

However,	its	prognostic	role	in	CML	treated	with	second	and	third	generation	

TKIs	is	entirely	unknown.		With	the	increasing	use	of	these	newer	TKIs	

clinically,	there	is	a	need	for	information	on	their	effects	on	the	molecular	

mechanisms	of	CML.			
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3.2.	Aims	

This	thesis	focuses	on	the	component	parts	of	the	CIP2A/PP2A	pathway.		Here	I	

begin	by	investigating	the	role	of	CIP2A	as	a	CML	biomarker	in	patients	treated	

with	2G	TKIs.		This	chapter	examines	the	correlation	between	CIP2A	protein	

expression	and	clinical	outcome	of	CML	treated	with	a	2G	TKI	compared	to	

imatinib.				

	

3.3.	Methods	

In	this	chapter	69	treatment-naive	CP-CML	patient	PBMC	samples	were	

analysed	using	flow	cytometry	(Section	2.5).		Clinical	characteristics	of	patients	

within	this	cohort	are	shown	in	the	Appendix.		Two	statistical	analysis	methods	

were	used	within	this	chapter:	receiver	operating	characteristics	(ROC)	to	

distinguish	between	high	and	low	CIP2A	cohorts	(Section	3.4.1)	and	Mann-

Whitney	tests	to	perform	comparative	analysis	between	patient	cohorts	

(Section	3.4.3).			
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3.4.	Results	

3.4.1.	Determining	High/Low	CIP2A	Protein	Levels	

This	work	was	inspired	by	data	published	previously	in	our	lab	by	Lucas	et	al(C.	

M.	Lucas	et	al.,	2011)	.		The	identification	of	CIP2A	protein	as	a	potential	

biomarker	for	blast	crisis	in	imatinib	treated	CML	was	of	scientific	value	that	

has	since	been	supported	by	many	publications	in	various	other	malignancies.		

Lucas’	data	identified	a	clear	difference	in	CIP2A	protein	level	at	diagnosis	

between	those	CML	patients	destined	to	progress	to	blast	crisis	and	those	who	

were	not.		This	was	the	first	identification	of	CIP2A	as	an	early	indicator	of	blast	

crisis	in	CML	and	is	shown	in	Figure	3.1	(Figure	3B	in	(C.	M.	Lucas	et	al.,	

2011)).			

	

Throughout	this	work	patients	are	stratified	according	to	diagnostic	CIP2A	

protein	level;	high	or	low,	as	measured	by	flow	cytometry	(mean	fluorescence	

intensity	(MFI))	and	described	in	Section	2.5.		The	range	was	0-52,	the	median	

was	2.85and	the	mean	was	6.5.		From	the	original	publication	it	is	clear	no	

overlap	occurs	between	diagnostic	cohorts	of	interest;	a	cut-off	of	MFI	=	6-8	

could	be	used	to	separate	these.		Using	receiver	operating	characteristics	(ROC)	

curve	analysis(Hajian-Tilaki,	2013)	for	the	prediction	of	BC	based	on	basal	

CIP2A	protein,	a	cut-off	value	of	7.3	was	determined;	high	(MFI>7.3)	or	low	

(MFI<7.3).	
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Figure	3.1.		Determining	High/Low	CIP2A	Protein	by	flow	cytometry.		Data	

taken	from	Lucas	et	al(C.	M.	Lucas	et	al.,	2011).		The	previous	publication	

measured	the	CIP2A	protein	level	of	36	patients,	using	flow	cytometry;	all	

samples	shown	were	treatment-naïve	CP-CML	of	known	clinical	outcome.		

Patients	were	stratified	according	to	future	clinical	outcome;	CCR,	no	CCR	and	

subsequent	BC	at	any	time.		These	were	the	standard	clinical	outcomes	used	at	

the	time	of	publication;	CCR	and	BC	were	as	described	in	Section	1.7.1	and	1.5,	

respectively.		The	‘no	CCR’	response	was	defined	as	patients	who	had	achieved	

CHR	but	not	CCR	by	12	months,	but	had	not	progressed.			

The	red	line	indicates	MFI	=	7.3,	the	chosen	boundary	for	determining	high/low	

CIP2A	protein	in	diagnostic	CML	patient	samples,	as	described	in	the	text.		The	

mean	CIP2A	protein	level	of	10	normal	healthy	volunteers	is	shown;	0.4	(range,	

0.17-0.63).			

	

A.

Normal	=	0.4
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3.4.2.	Measuring	CIP2A	Protein	Levels	

The	flow	cytometry	method	was	previously	optimised	within	our	lab	to	

measure	CIP2A	in	both	patient	samples	and	cell	lines;	methods	used	in	this	

thesis	were	as	described	by	Lucas	et	al(C.	M.	Lucas	et	al.,	2011)in	previous	

publications.		The	ability	to	use	flow	cytometry	even	on	samples	with	minimal	

amounts	of	cells	means	it	is	an	extremely	advantageous	technique	for	this	work.			

	

The	initial	step	was	to	measure	the	levels	of	diagnostic	CIP2A	protein	in	CML	

patients	of	known	clinical	outcome.		Patients	were	then	split	into	the	two	

cohorts	(high/low	CIP2A	level)	for	comparative	analysis.			

	

Figure	3.2	shows	representative	flow	cytometry	plots	for	a	high	and	low	CIP2A	

patient.		The	top	dot	plots	for	each	sample	show	the	cell	clouds;	live	(right)	

clouds	are	gated	as	shown.		The	CIP2A	and	IgG	control	antibodies	used	

fluoresce	on	the	FL3	wavelength,	thus	the	gated	cells	were	then	analysed	to	

identify	the	level	of	CIP2A	(or	control)	present	in	each	sample.		The	CIP2A	value	

for	each	sample	was	then	calculated	manually	(CIP2A	(geometric	mean)	MFI	

minus	control	sample	(geometric	mean)	MFI).			
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Figure	3.2.	Representative	Flow	Cytometry	Plots	of	CML	Patients.		A.	

Representative	low	CIP2A	patient;	UPN	001.		B.	Representative	high	CIP2A	

patient;	UPN	031.		Plots	(i)	and	(ii)	show	cell	clouds;	live	cells	are	gated.		Plot	

(iii)	represents	the	level	of	CIP2A	present	in	the	sample	cells.		Plot	(iv)	is	a	

statistical	table	analysing	the	data	from	(iii);	the	geometric	mean	CIP2A	level	is	

used	for	sample	analysis.				

	

	

(i) (ii)

(iii)

A.		Low	CIP2A	patient	example	

(iv)
FL3-H

(i) (ii)

(iii)

(iv)

B.		High	CIP2A	patient	example	

FL3-H
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3.4.3.	Clinical	Relevance	of	CIP2A	in	CML	Patients	

The	CIP2A	protein	levels	of	28	CP-CML	patients	treated	with	either	dasatinib	or	

nilotinib	as	a	first	line	therapy	were	analysed	by	flow	cytometry	and	compared	

to	41	CP-CML	patients	treated	with	imatinib	as	a	first	line	therapy.		Thirty	one	

of	these	41	imatinib	recipients	were	originally	reported	by	Lucas	et	al;	I	have	

added	a	further	10	and	updated	the	follow-up	on	all	41.		The	28	recipients	of	2G	

TKIs	have	not	been	previously	reported.		Patients	used	were	UPN001-069	as	

detailed	in	the	Appendix,	which	also	gives	the	CIP2A	level	(high/low)	for	each	

patient,	calculated	as	shown	previously.		Clinical	characteristics	for	all	69	

patients	are	summarised	below	in	Table	3.1.					

	

Table	3.1.	Summary	of	clinical	characteristics.	

	 Total	 Imatinib	treated	 2G	TKI	treated	

No.	of	patients	 69	 41	 28	

Average	age	(range)	 50	(19-75)	 48	(19-74)	 54	(24-75)	

Sex	M/F	 34/35	 23/18	 11/17	

HIGH	CIP2A	 22	 12	 10	

LOW	CIP2A	 47	 29	 18	

	

It	should	be	noted	that	the	high	rate	of	blast	crisis	patients	within	my	samples	is	

due	to	deliberate	selection.		It	is	therefore	not	possible	from	these	data	to	

comment	on	the	incidence	of	high	CIP2A	in	a	general	CML	population.					
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Figure	3.3	shows	the	overall	survival	(OS),	progression	free	survival	(PFS)	and	

event	free	survival	(EFS),	stratified	according	to	diagnostic	CIP2A	level.			

	

Imatinib	recipients	with	low	CIP2A	level	and	2G	TKI	recipients	irrespective	of	

CIP2A	level	had	excellent	OS	(Figure	3.3	A)	and	PFS	(Figure	3.3	B);	100%	and	

96%	(27/28)	of	patients	(respectively)	were	alive	and	progression	free	with	a	

maximum	follow-up	of	36	months.		In	sharp	contrast,	imatinib	recipients	with	

high	diagnostic	CIP2A	had	poor	OS,	because	of	progression	to	blast	crisis;	in	

fact,	only	2	such	patients	have	not	progressed,	and	these	were	switched	to	a	2G	

TKI	at	approximately	18	and	23	months	respectively,	because	of	poor	molecular	

response	on	imatinib.			

	

EFS	(Figure	3.3	C),	which	includes	switching	TKI	for	whatever	reason	as	an	

event,	even	if	still	in	CP,	also	shows	a	similar	significantly	inferior	outcome	for	

imatinib	recipients	with	high	diagnostic	CIP2A	level.			
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Figure	3.3	Overall	survival,	progression	free	survival	and	event	free	

survival	of	chronic	phase	CML	patients;	stratified	according	to	diagnostic	

CIP2A	protein	level.	

All	patients	are	either	imatinib	treated	or	2G	TKI	(dasatinib	or	nilotinib)	

treated.			
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The	rates	of	cytogenetic	and	molecular	response	were	then	investigated	to	

determine	if	CIP2A	played	a	role	in	determining	the	depth	of	patient	response	

to	treatment	and	the	time	taken	to	achieve	it.		The	time	taken	to	achieve	three	

clinical	milestones	was	assessed;	complete	cytogenetic	response	(CCR),	major	

molecular	response	(MMR)	and	molecular	response	at	the	4-log	level	(MR4)	as	

defined	in	Section	1.7.1	and	illustrated	in	Figure	1.4.			

	

Imatinib	recipients	with	a	low	CIP2A	level	and	2G	TKI	recipients	irrespective	of	

CIP2A	level	had	excellent	rates	of	CCR	and	MMR;	approximately	80%	of	all	

three	of	these	cohorts	had	achieved	CCR	(Figure	3.4	A)	and	MMR	(Figure	3.4	

B)	by	24	months.		Imatinib	recipients	with	a	high	CIP2A	level	showed	a	striking	

dissimilarity	to	these	results;	no	patient	in	this	cohort	had	achieved	a	CCR	or	

MMR,	with	a	maximum	follow-up	of	57	months.			

	

The	deeper	response	of	MR4	was	also	examined	(Figure	3.4	C).		MR4	was	not	

achieved	by	any	imatinib	recipients	with	high	CIP2A	level.		The	time	taken	to	

achieve	MR4	was	more	rapid	in	2G	TKI	recipients	irrespective	of	CIP2A	level,	

compared	to	imatinib	recipients	with	low	CIP2A.		2G	TKI	recipients	irrespective	

of	CIP2A	level	had	a	good	rate	of	MR4;	approximately	50%	had	achieved	MR4	

by	24	months	and	this	had	risen	to	80%	by	30	months.		Imatinib	recipients	with	

low	CIP2A	level	had	a	lesser	proportion	of	patients	achieving	MR4	and	a	slower	

rate	of	response;	only	by	40	months	had	50%	of	patients	achieved	MR4	and	by	

24	months	only	20%	had	achieved	this	response.			
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Figure	3.4	Time	to	achieve	CCR,	MMR	and	MMR4	of	chronic	phase	CML	

patients;	stratified	according	to	diagnostic	CIP2A	protein	level.	

All	patients	are	either	imatinib	treated	or	2G	TKI	(dasatinib	and	nilotinib)	

treated.			
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3.5	Discussion	

With	modern	medicine	rapidly	becoming	more	personalised	in	terms	of	patient	

treatment,	it	is	necessary	to	acquire	as	much	scientific	information	as	possible	

about	the	variety	of	treatment	options	available	for	each	specific	disorder.		

Armed	with	this	knowledge,	medical	professionals	will	have	the	best	possible	

chance	of	managing	individual	clinical	idiosyncrasies	and	preventing	disease	

progression.			

	

In	CML,	clinicians	have	a	range	of	extremely	effective	therapies	at	their	disposal.		

The	introduction	of	imatinib	as	first-line	therapy	revolutionised	CML	treatment	

and	patient	prognosis	improved	dramatically.		However,	imatinib	is	not	curative	

and	resistance	and	failure	remain	a	regular	occurrence	in	at	least	one	third	of	

patients(Francis	et	al.,	2013).			

	

At	the	time	of	starting	this	work,	both	nilotinib	and	dasatinib	were	newly	

approved	for	treatment-naïve	CP-CML	(FDA	approval	in	June	and	October	2010,	

respectively).		However,	it	remained	unclear	how	to	distinguish	the	patients	

who	would	most	benefit	from	the	use	of	these	2G	TKIs	as	first-	line	therapy.		It	is	

plausible	that	clinical	decisions	about	these	CML	treatment	plans	could	benefit	

from	monitoring	clinical	biomarkers	in	individual	patients.			

	

CIP2A	had	been	previously	investigated	within	our	department	and	shown	to	

be	a	biomarker	for	progression	to	blast	crisis	in	imatinib-treated	CML,	with	
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100%	actuarial	probability(C.	M.	Lucas	et	al.,	2011).		It	was	not	known	however,	

whether	this	observation	would	hold	true	for	dasatinib-	and	nilotinib-treated	

CML.			

	

All	patient	samples	investigated	here	are	taken	from	newly	diagnosed	and	

treatment-naïve	CP-CML.		This	study	focussed	on	the	effects	of	TKIs	on	long-

term	clinical	outcome,	dependent	upon	their	diagnostic	CIP2A	protein	level.			

	

Results	from	this	chapter	show	a	clear	difference	in	the	clinical	outcomes	of	

patients	treated	with	imatinib	compared	with	2G	TKIs.		All	patients	who	

received	dasatinib	or	nilotinib	as	their	initial	therapy	survived,	with	the	

exception	of	one	CML-unrelated	death.		Additionally,	none	of	these	patients	

progressed	to	blast	crisis	and	approximately	80%	remained	event-free	at	the	

time	of	their	latest	clinical	follow-up.		This	was	true	for	both	high	and	low	CIP2A	

patient	cohorts.		With	regards	to	imatinib-treated	CML,	all	but	two	patients	

(who	were	switched	to	a	2G	TKI)	with	high	CIP2A	protein	at	diagnosis	had	

progressed	to	blast	crisis	within	two	years	and	80%	had	died;	none	of	the	low	

CIP2A	cohort	had	progressed	at	latest	follow-up.		As	the	poor	results	seen	in	

high	CIP2A	imatinib-treated	CML	are	not	mirrored	by	2G	TKI-treated	CML,	it	

can	be	stated	that	the	blast	crisis	biomarker	status	of	CIP2A	is	not	upheld	in	

patients	treated	with	dasatinib	or	nilotinib.		The	fact	that	patients	have	a	

positive	response	to	2G	TKIs,	regardless	of	initial	CIP2A	level,	indicates	a	

superior	effect	of	dasatinib	and	nilotinib	over	imatinib	when	combatting	the	

oncogenic	effects	of	CIP2A.			
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To	further	evaluate	the	different	clinical	outcomes	achieved	on	2G	TKIs	in	

comparison	to	their	first	generation	predecessor,	the	depth	of	molecular	

response	and	the	time	taken	to	achieve	them	were	evaluated.		Independent	

studies	have	suggested	that	patients	with	suboptimal	or	no	response	to	

treatment	within	the	first	3-6	months	have	less	favourable	long-term	outcomes	

than	those	achieving	a	rapid	response	to	treatment(Savona	&	Saglio,	2013).		

Importantly,	studies	also	show	that	patients	treated	second	line	with	dasatinib	

or	nilotinib	following	imatinib	therapy	were	less	likely	to	achieve	a	CCR	and	

more	likely	to	progress	had	they	a	suboptimal	or	failure	response	to	imatinib,	

when	compared	to	those	with	better	than	suboptimal	responses(Savona	&	

Saglio,	2013).		These	studies	suggest	that	in	improving	the	proportion	of	early	

clinical	responses	in	CML,	we	may	decrease	the	AP/BC	progression	rate	and	

thus	improve	CML	prognosis.		Identifying	the	correct	TKI	for	each	patient	to	

achieve	an	early	response	is	therefore	paramount.			

	

These	data	again	show	no	differences	between	high/low	CIP2A	patient	cohorts	

in	the	time	taken	to	achieve	a	CCR,	MMR	or	MR4	if	patients	were	treated	with	

dasatinib	or	nilotinib.		The	majority	of	these	patients	(>80%)	achieve	a	CCR	by	

24	months	and	approximately	80%	will	have	achieved	the	deepest	response	of	

MR4	by	30	months.		Though	low	CIP2A	imatinib-treated	patients	had	similar	

results	in	the	time	taken	to	achieve	a	CCR	and	MMR,	there	was	a	trend	

suggesting	a	delay	in	the	time	taken	to	achieve	an	MR4	in	comparison	to	

patients	treated	with	newer	TKIs.		However,	approximately	70%	of	low	CIP2A	

patients	will	have	achieved	an	MR4.0	if	treated	for	5	years	with	imatinib.		In	
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stark	contrast,	no	patient	treated	with	imatinib	achieved	a	CCR	or	deeper	

molecular	response	if	they	had	a	high	CIP2A	level	at	diagnosis.		The	poor	overall	

survival	and	progression	to	blast	crisis	shown	earlier	are	therefore	not	due	to	a	

loss	of	response,	but	a	failure	of	imatinib	to	manage	the	CML	from	initial	

diagnosis.			

	

The	initial	observation	of	this	chapter	suggests	a	benefit	in	measuring	

diagnostic	CIP2A	protein	of	CML	patients	to	use	as	an	indicator	of	suitable	TKI	

treatment;	patients	with	high	CIP2A	should	not	be	prescribed	imatinib	as	a	first	

line	therapy,	but	offered	dasatinib	or	nilotinib	as	an	alternative	treatment.		This	

novel	identification	of	the	2G	TKI’s	effectiveness	in	the	face	of	high	CIP2A	

expression	may	be	of	importance	in	avoiding	poor	clinical	outcomes	due	to	a	

delay	in	prescribing	a	suitable	therapy;	patient	prognosis	is	more	favourable	if	

an	appropriate	treatment	is	prescribed	earlier(Savona	&	Saglio,	2013).		

Therefore,	this	finding	may	suggest	CIP2A	level	as	an	immediate	indicator	of	the	

most	effective	treatment	plan.			

	

In	this	chapter,	the	more	rapid	deeper	molecular	responses	to	2G	TKIs	in	

comparison	to	imatinib	indicate	a	significant	role	of	CIP2A	within	CML.		The	

different	TKI	mechanisms	of	action	that	may	lead	to	the	apparent	dampening	of	

the	CIP2A	oncogene’s	effects	warrants	further	investigation.		In	understanding	

the	nature	of	CIP2A’s	role	in	CML	and	the	way	in	which	it	is	targeted	by	the	

various	TKIs,	future	CML	treatment	may	be	more	suited	to	an	individual	

patient’s	need,	thus	improving	the	overall	prognosis	of	CML.			
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Chapter	4:	Effects	of	Second	and	
Third	Generation	TKIs	on	the	

CIP2A/PP2A	Pathway	

4.1.	Introduction	

The	finding	of	the	previous	chapter,	showing	superior	clinical	outcomes	

achieved	by	2G	TKI	treated	patients,	was	an	interesting	observation	requiring	

further	investigation.		The	clinical	data	suggest	an	action	by	dasatinib	and	

nilotinib	that	overcomes	the	high	levels	of	CIP2A.		This	action	is	not	mirrored	by	

imatinib	and	led	to	the	further	consideration	of	how	these	TKIs	impart	their	

desired	effects.			

	

Figure	4.1.	A	Proposed	Model	for	the	Action	of	CIP2A	in	CML	cells.		Figure	

taken	from	Lucas	et	al(C.	M.	Lucas	et	al.,	2011).		An	inhibitory	action	of	imatinib	

is	also	indicated.			
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CIP2A	works	alongside	c-Myc	to	inhibit	the	tumour	suppressor	activity	of	PP2A,	

and	thus	allows	the	continued	action	of	BCR-ABL1.		This	part	of	the	illustrated	

pathway	had	before	been	shown	to	be	unaffected	by	imatinib	treatment;	

imatinib’s	inhibitory	activity	was	shown	to	be	via	the	JAK2/SET	part	of	this	

molecular	signalling	cascade.			

	

4.2.	Aims	

Though	Lucas	et	al(C.	M.	Lucas	et	al.,	2011)identified	CIP2A	in	CML	as	able	to	

avoid	inhibition	by	imatinib	(Figure	4.1),	this	work	did	not	take	into	

consideration	the	newer	TKIs	that	are	now	more	readily	available.		No	study	has	

examined	the	effects	of	dasatinib,	nilotinib	or	ponatinib	specifically	on	the	

CIP2A/PP2A	pathway	that	is	prominent	in	CML.		This	work	therefore	aimed	to	

investigate	the	CIP2A/PP2A	pathway	following	newer	treatments,	both	in	long-

term	settings	by	looking	at	patient	follow-up	samples,	and	using	short-term	in	

vitro	TKI	cultures.		More	specifically	it	aimed	to:	

	

• Investigate	the	effects	of	long-term	in	vivo	TKI	therapy	on	the	CIP2A/PP2A	

pathway	

• Investigate	the	effects	of	short-term	in	vitro	TKI	treatments	on	the	

CIP2A/PP2A	pathway	

• Compare	the	effects	of	imatinib	to	2G	and	3G	TKIs	on	the	CIP2A/PP2A	

pathway	and	consider	any	differences	as	a	possible	reason	for	more	

favourable	outcomes	for	CML	patients	treated	with	the	latter	TKIs.	
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4.3.	Methods	

In	this	chapter,	cell	lines	and	diagnostic	and	12	month	follow-up	patient	PBMC	

samples	were	analysed	using	standard	cell	culture	(Section	2.4),	in	vitro	TKI	

cultures	(Section	2.4.3),	flow	cytometry	(Section	2.5),	qRT-PCR	(Section	

2.9.3),	and	ELISA	(Section	2.7).		Clinical	characteristics	of	patients	used	for	

long-term	2G	TKI	in	vivo	studies	are	shown	in	the	Appendix	(UPN001-069)	and	

those	used	for	short-term	2G	and	3G	TKI	in	vitro	studies	shown	in	Table	4.1.		

Clinical	characteristics	of	ponatinib	patients	are	shown	in	Table	4.2.		Student	t-

tests	were	used	for	statistical	analysis.			
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4.4.	Results	

4.4.1.	Effects	of	long-term	immunotherapy	with	2G	TKIs	on	the	

CIP2A/PP2A	pathway	

The	clinical	significance	of	CIP2A	shown	thus	far	led	me	to	investigate	the	rest	

of	the	CIP2A/PP2A	pathway	(Figure	4.1)	for	any	altering	levels	between	

diagnosis	and	12	months	follow-up,	as	well	as	any	variations	between	

treatment	cohorts.		The	patients	analysed	were	the	same	as	in	the	previous	

chapter	and	are	shown	in	the	Appendix.			

	

As	previous	lab	work	(C.	M.	Lucas	et	al.,	2011)had	shown	the	significance	of	

CIP2A	in	CML	to	be	at	the	protein	level,	patient	MNC	samples	were	initially	

analysed.		As	described	(Section	3.4.1),	patients	were	split	according	to	

diagnostic	levels	of	CIP2A	protein	from	MNCs	(Figure	4.2	A;	p=0.001).		A	

significant	increase	in	CIP2A	level	following	12	months	of	treatment	can	be	seen	

in	the	low	CIP2A	cohort	of	patients	(p=0.001).		No	significant	change	in	CIP2A	

protein	level	is	seen	in	the	high	CIP2A	cohort.		

	

Diagnostic	levels	of	the	other	proteins	examined	appear	to	follow	a	similar	

trend;	low	CIP2A	patients	also	have	low	levels	of	PP2A,	inactive	PP2A	(assessed	

by	Tyrosine	307	phosphorylation	(pY307-PP2A)),	SET	and	JAK2,	while	high	

CIP2A	patients	have	higher	levels	of	these	proteins,	though	this	does	not	reach	

statistical	significance	(Figure	4.2	B-E).		Interestingly,	JAK2	levels	increase	
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significantly	after	12	months	of	TKI	treatment	in	the	low	CIP2A	cohort	(Figure	

4.2	E;	p=0.011).			

	

Figure	4.2.	Protein	levels	from	MNCs	of	2G	TKI	CML	patients;	stratified	

according	to	diagnostic	CIP2A	protein	level.		28	patients	were	analysed	at	

diagnosis	and	after	12	months	of	2G	TKI	therapy;	11	high	CIP2A	and	17	low	

CIP2A.	
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In	addition	to	the	MNC	protein	levels,	the	more	primitive	CD34+	cell	population	

was	also	investigated.		In	post-treatment	CML	blood	samples,	the	majority	of	the	

leukaemic	cell	population	has	been	replaced	by	normal	circulating	blood	cells;	

therefore	only	diagnostic	CD34+	levels	were	measured.			

	

As	in	the	MNC	samples,	the	CD34+	cells	from	high	CIP2A	patients	also	had	

significantly	higher	CIP2A	protein	in	their	early	progenitor	cells	(Figure	4.3	A;	

p=0.035).		Again	similar	to	the	MNC	data,	the	high	CIP2A	patient	cohort	also	had	

a	trend	for	higher	levels	of	all	proteins	compared	to	the	low	CIP2A	patients;	

PP2A,	pY307-PP2A,	SET	and	JAK2	(Figure.	4.3	B-E).			

	

As	expected,	all	protein	levels	were	considerably	higher	in	the	CD34+	cells	

compared	to	the	MFI	values	of	the	MNCs.			

	

Levels	of	c-Myc	and	c-Myc	pS62	protein	in	both	MNC	and	CD34+	cells	were	also	

measured	by	flow	cytometry	in	these	patient	samples	(Figures	4.2	F-G	and	4.3	

F-G).		Little	of	either	protein	was	identified	and	no	significant	difference	could	

be	seen	between	cohorts.		However,	published	work	had	used	the	ELISA	

method	for	measuring	this	protein(C.	M.	Lucas	et	al.,	2011).		Unfortunately,	due	

to	the	large	amount	of	cells	necessary	for	ELISAs	and	the	limited	amount	of	

precious	patient	samples	available,	this	work	could	not	be	repeated	for	these	

patients.		Any	further	c-Myc	and	c-Myc	pS62	measurement	was	performed	by	
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the	ELISA	technique	as	described	by	Lucas	et	al(C.	M.	Lucas	et	al.,	2011),	in	

samples	with	an	abundance	of	cells	available.			

	

Figure	4.3.	Protein	levels	from	CD34+	cells	of	2G	TKI	patients;	stratified	

according	to	diagnostic	CIP2A	protein	level.		Diagnostic	samples	of	28	

patients	were	analysed;	11	high	CIP2A	and	17	low	CIP2A.				

	

p=0.035

A. CIP2A

G. c-Myc S62F. c-Myc

E. JAK2D. SET
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Gene	expression	was	also	examined	in	these	patient	samples	to	identify	any	

changes	that	may	have	occurred	at	the	transcriptional	level	following	long-term	

in	vivo	dasatinib	and	nilotinib	treatment.		Figure	4.4	shows	mRNA	levels	for	the	

same	patients	as	in	Figures	4.2	and	4.3,	again	stratified	according	to	diagnostic	

CIP2A	MNC	protein	levels.			

	

In	accordance	with	published	data(C.	M.	Lucas	et	al.,	2011)CIP2A	mRNA	levels	

did	not	alter	between	high/low	CIP2A	cohorts	at	diagnosis	(Figure	4.4	A)	

(though	interestingly,	a	trend	is	seen	for	an	inverse	relationship).		A	small	

difference	can	be	observed	after	12	months	of	therapy;	low	CIP2A	patients’	

levels	decrease	at	12	months	follow-up	whereas	high	CIP2A	patients’	levels	

increase,	however	this	trend	is	not	statistically	significant.		Figures	4.4	B-D	

show	similar	results;	low	CIP2A	patients’	levels	of	PP2A,	SET	and	JAK2	all	

decrease	significantly	following	12	months	dasatinib/nilotinib	treatment	

(p=0.009,	p=0.027,	p<0.0001,	respectively);	the	same	trend	is	seen	in	the	high	

CIP2A	patients	(Figure	4.4	B;	p=0.015,	Figure	4.4	D;	p=0.004,	no	statistical	

significance	in	SET	level	decrease).				

	

All	patients	have	elevated	c-Myc	levels	at	diagnosis	compared	to	their	follow-up	

levels,	as	would	be	expected	in	light	of	the	published	literature.		However,	the	

high	CIP2A	patient	cohort	also	had	significantly	higher	c-Myc	mRNA	when	

compared	to	the	low	CIP2A	cohort	at	diagnosis.		In	both	cohorts,	c-Myc	mRNA	

expression	decreased	following	12	months	of	dasatinib/nilotinib	treatment	
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(Figure	4.4	E;	p=0.015	high	CIP2A,	no	statistical	significance	in	low	CIP2A	

cohort	c-Myc	level	decrease).			

	

Figure	4.4.	mRNA	levels	of	2G	TKI	CML	patients;	stratified	according	to	

diagnostic	CIP2A	protein	level.		28	patients	were	analysed	at	diagnosis	and	12	

months	follow-up;	11	high	CIP2A	and	17	low	CIP2A.		
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4.4.2.	Effects	of	short-term	2G	TKI	treatment	on	the	CIP2A/PP2A	

pathway	

Long-term	analysis	of	MNC,	CD34+	cells	and	mRNA	expression	of	CML	patients	

has	thus	far	not	given	an	explanation	for	the	exciting	observations	shown	in	

Chapter	3.		The	clinical	results	suggested	a	mechanism	of	overcoming	the	

negative	effects	of	the	CIP2A	oncogene	using	dasatinib	or	nilotinib.		As	this	

explanation	had	not	arisen,	it	was	theorised	that	the	initial	methodology	may	be	

the	cause.			

	

Comparing	diagnostic	and	12	month	patient	follow-up	samples	has	its	

limitations	due	to	the	largely	different	populations	of	cells	they	contain.		

Following	long-term	TKI	treatment	the	majority	of	CML	patients	(especially	

those	remaining	in	CP)	have	a	low	leukaemic	cell	population	within	their	blood;	

the	majority	of	the	initial	leukaemic	cells	have	been	replaced	by	their	normal	

counterparts.		It	is	therefore	prudent	to	investigate	the	effects	of	the	different	

TKIs	on	the	proteins	afore-mentioned,	in	a	short-term	culture.		Exploring	the	

effects	of	imatinib,	dasatinib	and	nilotinib	upon	treatment	naïve	CML	samples	

may	lead	to	a	better	understanding	of	the	way	in	which	these	drugs	act	on	the	

CIP2A/PP2A	pathway	at	the	molecular	level.			

	

	 	



142	|	P a g e 	

	

Due	to	limited	availability	of	patient	samples	and	reagents,	this	work	was	

performed	in	a	smaller	subset	of	patients.		Thirteen	CP-CML	patient	samples	

were	suitable	for	this	in	vitro	TKI	culture;	a	large	cell	count	was	necessary,	

which	was	not	met	in	many	samples.		Table	4.1	describes	the	characteristics	of	

those	patients	investigated.			

	

Table	4.1.	Patient	characteristics	table	for	samples	studied	by	in	vitro	TKI	

UPN	 M/F	 AGE	AT	

DIAGNOSIS	

CIP2A	LEVEL		

(Low=0,	High=1)	

070	 F	 73	 Low	

071	 F	 54	 Low	

072	 F	 68	 Low	

073	 M	 69	 Low	

074	 M	 55	 Low	

075	 M	 54	 Low	

076	 M	 34	 Low	

077	 F	 35	 High	

078	 F	 27	 High	

079	 F	 62	 High	

080	 F	 52	 High	

081	 M	 29	 High	

082	 M	 69	 High	
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Diagnostic	cell	samples	were	cultured	for	24	hours	with	5µM	imatinib,	150nM	

dasatinib	and	5µM	nilotinib	and	CIP2A/PP2A	pathway	proteins	measured	to	

scrutinise	the	changes	post-treatment.		The	untreated	CP-CML	CIP2A	levels	

were	used	to	separate	samples	into	high/low	CIP2A	cohorts	as	before	and	the	

results	shown	in	Figure	4.5.			

	

As	with	previous	publications,	the	percentage	of	phosphorylated	CrKL	was	used	

as	a	measure	of	BCR-ABL1	activity,	as	CrKL	is	directly	phosphorylated	by	BCR-

ABL1.		As	expected,	all	three	TKIs	inhibited	BCR-ABL1	activity	(Figure	4.5	B(i)	

and	B(ii)),	regardless	of	CIP2A	level.		However,	this	was	not	the	case	with	their	

effects	on	CIP2A.		In	the	low	CIP2A	patient	cohort,	CIP2A	level	remained	

unaltered	following	all	TKI	treatment	(Figure	4.5	A(ii)).		Interestingly	however,	

in	the	high	CIP2A	patient	samples,	only	2G	TKIs	caused	a	significant	decrease	in	

CIP2A	protein	level	(Figure	4.5	A(i);	p=0.012	(dasatinib),	p=0.005	(nilotinib));	

no	significant	drop	is	seen	in	cells	treated	with	imatinib.			

	

This	trend	is	mirrored	in	inactive	PP2A	levels	(Figure	4.5	F(i);	p=0.039	

(dasatinib),	p=0.042	(nilotinib)).		A	similar	trend	is	shown	in	both	c-Myc	

(Figure	4.5	C)	and	c-Myc	pS62	(Figure	4.5	D)	samples	following	treatment,	

though	imatinib	(p=0.009,	p=0.001),	dasatinib	(p<0.001,	p=001)	and	nilotinib	

(p<0.001,	p=0.001)	all	significantly	decrease	the	levels	of	these	proteins.		Of	

note,	in	the	low	CIP2A	patient	cohort	no	change	is	observed	in	pY307-PP2A,	c-

Myc	and	c-Myc	S62	following	TKI	treatment	and	no	pattern	in	SET	protein	level	

is	seen	in	either	patient	cohort.			
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Figure	4.5.	Protein	levels	of	treatment	naïve	CP-CML	patients	following	24	

hour	in	vitro	TKI	culture;	stratified	according	to	diagnostic	CIP2A	protein	

level.		(i)	6	high	CIP2A	and	(ii)	7	low	CIP2A	patients	were	investigated.			
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4.4.2.1.	Results	Summary:	short-term	2G	TKI	treatment	

Second	generation	TKIs	have	a	superior	effect	on	overcoming	high	CIP2A	levels,	

in	comparison	to	imatinib	treatment.		All	three	TKIs	significantly	decrease	BCR-

ABL1	activity	irrespective	of	basal	CIP2A	level.		In	stark	contrast,	high	CIP2A	

levels	are	only	significantly	decreased	by	dasatinib	and	nilotinib,	and	not	by	

imatinib,	therefore	the	ability	of	2G	TKIs	to	overcome	CIP2A	may	be	a	

mechanism	for	the	superior	clinical	outcomes	of	2G	TKI-treated	CML	that	is	

discussed	in	Chapter	3.			 	
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4.4.3.	Ponatinib	Treatment	in	CML	

The	third	generation	TKI	ponatinib	was	originally	hailed	as	a	wonder-drug	of	

CML	after	it	was	specifically	designed	to	overcome	the	thus	far	untreatable	

T315I	‘gatekeeper’	mutation.		Its	long	and	flexible	design	allows	it	to	fit	into	the	

active	site	of	BCR-ABL1,	despite	the	awkward	structural	changes	the	tyrosine	

kinase	molecule	undergoes	following	the	T315I	mutation.			

	

Early	clinical	results	were	extremely	promising,	with	almost	90%	of	T315I	

patients	achieving	a	CCR(T	O'Hare	et	al.,	2009)	and	ponatinib	was	pushed	

forwards	into	phase	III	patient	trials.		Unfortunately,	a	number	of	serious	

cardiovascular	complications	occurred,	causing	the	phase	III	trial	of	first	line	

ponatinib	to	be	permanently	halted	in	October	2013.			

	

This	study	gained	preliminary	results	prior	to	the	unsuccessful	turn	of	events	

causing	the	trial	to	be	halted(Lipton	et	al.,	2015).		Though	ponatinib	is	now	

available	for	those	patients	who	have	exhausted	all	other	treatment	options,	

this	thesis	did	not	examine	the	effects	of	in	vivo	ponatinib	on	CIP2A	and	its	

related	proteins.		First	line	ponatinib	patient	samples	are	not	available	(all	

Liverpool	patients	in	the	first	line	ponatinib	trial	actually	received	imatinib)	and	

those	local	patients	who	received	second,	third	or	fourth	line	ponatinib	have	too	

diverse	clinical	histories.			
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Here,	the	immediate	molecular	effects	of	ponatinib	on	the	CIP2A/PP2A	pathway	

are	investigated	in	treatment-naïve	CML	samples	and	a	small	study	of	six	

patients	treated	with	ponatinib	following	other	TKI	failures	are	individually	

analysed.			 	
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4.4.3.1.	Optimisation	of	ponatinib	in	vitro	

The	appropriate	dose	and	incubation	time	of	ponatinib	had	not	yet	been	

optimised	for	studies	of	this	nature,	thus	it	was	necessary	to	begin	by	

identifying	such	parameters.		K562	and	KCL22	cell	lines	were	treated	with	

varying	levels	of	ponatinib,	with	the	current	clinical	Cmax	of	130nM	used	as	an	

initial	guide.		Levels	of	pCrKL/CrKL	(analysed	by	flow	cytometry)	were	used	as	

an	indicator	of	ponatinib	efficacy	in	inhibiting	BCR-ABL1	activity	(n=3).			

	

Figure	4.6.	Dose	Optimisation	of	Ponatinib.		A.	Cell	viability	and	B.	

pCrKL/CrKL	ratio	were	analysed	using	flow	cytometry	in	(i)	K562	(high	CIP2A)	

and	(ii)	KCL22	(low	CIP2A)	cell	lines.			
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It	was	necessary	to	also	identify	the	optimal	incubation	period	for	ponatinib	

treatment	in	this	in	vitro	TKI	study	and	thus	a	time	course	assay	was	conducted.		

Again	using	K562	and	KCL22	cell	lines,	cells	were	cultured	for	4,	24	and	48	

hours	with	the	clinically	achievable	concentration	of	130nM.		Cell	viability	and	

pCrKL/CrKL	ratio	were	analysed	using	flow	cytometry	and	the	experiment	

performed	in	triplicate.			

	

Figure	4.7.	Optimisation	of	ponatinib	treatment	incubation	period.		A.	Cell	

viability	and	B.	pCrKL/CrKL	ratio	were	analysed	using	flow	cytometry	in	(i)	

K562	(high	CIP2A)	and	(ii)	KCL22	(low	CIP2A)	cell	lines	following	a	variety	of	

treatment	incubation	lengths;	0,	4,	24	and	48	hours.			
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Figures	4.6	and	4.7	show	ponatinib	having	little	effect	on	cell	viability,	yet	

causing	a	clear	decrease	in	BCR-ABL1	activity,	as	expected.		A	significant	

reduction	in	pCrKL/CrKL	protein	is	seen	in	both	cell	types	with	100nM	

ponatinib,	but	the	largest	decrease	is	seen	at	the	clinically	relevant	

concentration;	130nM.		This	clinical	concentration	was	chosen	for	future	

investigations	as	it	induced	the	larger	decrease	in	pCrKL/CrKL	and	also	to	allow	

for	the	data	to	be	more	easily	comparable	to	ponatinib	concentrations	

achievable	in	vivo.			

	

With	regards	to	the	length	of	incubation	time,	little	effect	is	seen	after	only	4	

hours	of	ponatinib	treatment,	yet	both	cell	lines	display	clear	reductions	in	

pCrKL/CrKL	levels	from	24	hours	onwards.		However,	elevated	levels	of	cell	

death	were	observed	in	the	K562	cell	line	after	a	48	hour	incubation	period.		

First	and	second	generation	TKI	studies	within	the	department	have	used	a	24	

hour	treatment	incubation;	this,	coupled	with	the	reduced	cell	viability	at	48	

hours,	led	to	the	conclusion	that	24	hours	incubation	with	130nM	ponatinib	

were	the	optimal	conditions	for	in	vitro	TKI	study.			
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4.4.3.2.	Effects	of	Short-term	Ponatinib	Treatment	on	the	CIP2A/PP2A	

Pathway	

An	in	vitro	TKI	ponatinib	culture	was	performed	in	both	cell	lines	(Figure	4.8)	

and	patient	samples	(Figure	4.9).		Both	CIP2A	high	(K562)	and	CIP2A	low	

(KCL22)	cell	lines	were	treated.		The	thirteen	treatment-naïve	CP-CML	patient	

samples	shown	previously	(Table	4.1)	were	also	used	for	this	ponatinib	study.		

Samples	were	cultured	for	24	hours	with	130nM	ponatinib	and	CIP2A/PP2A	

pathway	proteins	were	analysed	by	flow	cytometry.			

	

The	results	of	the	ponatinib	in	vitro	TKI	assays	showed	strong	inhibition	of	the	

CIP2A/PP2A	pathway,	following	the	trends	seen	in	2G	TKI	in	vitro	assays,	yet	to	

an	even	greater	extent.			

	

The	effectiveness	of	ponatinib’s	inhibition	of	BCR-ABL1	activity	can	be	seen	in	

the	significant	decrease	of	pCrKL/CrKL	following	TKI	treatment;	K562,	KCL22	

and	high	and	low	CIP2A	patients	all	show	a	significant	drop	(Figure	4.8	B(i),	

p=0.014;	Figure	4.8	B(ii),	p=0.035;	Figure	4.9	B(i),	p=0.007;	Figure	4.9	B(ii),	

p=0.001;	respectively).			

	

Levels	of	c-Myc	and	its	stabilised	form	c-Myc	pS62	are	also	decreased	by	

ponatinib	treatment.		The	K562	cells	have	a	higher	basal	level	of	total	c-Myc	(as	

expected	due	to	a	greater	level	of	CIP2A	and	according	to	previously	published	

work)	and	c-Myc	pS62	(Figure	4.8	C(i)	and	D(i))	and	both	decrease	
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significantly	following	exposure	to	130nM	ponatinib	(p=0.080	and	p=0.010,	

respectively).		The	lower	CIP2A	cell	line,	KCL22,	shows	a	slight	fall	in	c-Myc	and	

c-Myc	pS62,	though	neither	result	is	statistically	significant	(Figure	4.8	C(ii)	

and	D(ii)).		CML	patient	samples	show	similar	results	to	those	observed	in	cell	

lines,	however	both	c-Myc	and	c-Myc	pS62	show	significantly	decreased	levels	

in	both	high	and	low	CIP2A	patient	cohorts	(Figure	4.9	C(i),	p=0.002,	Figure	

4.9	D(i),	p=0.012,	Figure	4.9	C(ii),	p=0.006,	Figure	4.9	D(ii),	p=004;	

respectively).			

	

Interestingly,	the	effects	of	ponatinib	on	CIP2A	level	differ	between	cell	lines	

and	patient	samples.		In	cell	lines,	ponatinib	reduces	the	level	of	CIP2A	

regardless	of	the	original	level	(Figure	4.8	A(i)	and	(ii)).		However,	in	low	

CIP2A	patients,	the	levels	of	CIP2A	are	not	decreased	any	further	than	their	

average	level	of	approximately	MFI=2,	following	ponatinib	exposure.		Patients	

with	high	CIP2A	see	their	levels	drop	to	approximately	MFI=2	upon	ponatinib	

treatment.		In	both	cell	lines	and	patient	samples,	though	CIP2A	levels	may	

decrease,	the	levels	tend	to	remain	around	MFI=1-2	at	their	minimum.		The	fact	

that	CIP2A	is	not	entirely	extinguished	following	treatment	with	this	extremely	

potent	TKI	suggest	a	baseline	level	of	CIP2A	may	be	necessary	for	an	alternative	

physiological	function	within	the	leukaemic	cell.			

	

Additionally,	inactive	PP2A	decreases	following	ponatinib	treatment;	the	trend	

is	apparent	in	all	cell	lines	and	cohorts,	though	only	K562	cells	and	high	CIP2A	

patients	show	a	statistically	significant	decrease	(Figure	4.8	F(i),	p=0.021;	
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Figure	4.9	F(i),	p=0.026).		SET	levels	are	unaffected	by	ponatinib	treatment	in	

patient	samples	(Figure	4.9	G(i)	and	(ii)),	though	a	significant	drop	can	be	seen	

in	KCL22	SET	level	following	ponatinib	treatment	(Figure	4.8	G(ii)).			

	

Figure	4.8.	Ponatinib	in	vitro	TKI	culture;	observed	effects	in	(i)	K562	and	

(ii)	KCL22	cells.		Protein	levels	were	measured	by	(A,	B,	E-G)	flow	cytometry	or	

(C,	D)	ELISA	following	24	hour	incubation	with	130nM	ponatinib	and	in	

untreated	controls	(n=3).		A.	CIP2A,	B.	pCrKL/CrKL,	C.	c-Myc,	D.	c-Myc	pS62,	E.	

PP2A,	F.	pY307-PP2A,	G.	SET.			
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Figure	4.9.	Ponatinib	in	vitro	TKI	culture;	observed	effects	in	treatment-

naïve	CP-CML	samples.		Protein	levels	were	measured	by	(A,	B,	E-G)	flow	

cytometry	or	(C,	D)	ELISA	following	24	hour	incubation	with	130nMponatinib.		

Patients	were	stratified	according	to	diagnostic	CIP2A	protein	level;	(i)	high	

(n=6)	or	(ii)	low	(n=7).		A.	CIP2A,	B.	pCrKL/CrKL,	C.	c-Myc,	D.	c-Myc	pS62,	E.	

PP2A,	F.	pY307-PP2A,	G.	SET.			
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4.4.3.2.1.	Results	Summary:	short-term	ponatinib	treatment	

Similarly	to	2G	TKIs,	ponatinib	significantly	decreases	BCR-ABL1	activity	

irrespective	of	basal	CIP2A	protein;	this	decrease	is	apparent	in	both	CML	cell	

lines	and	treatment	naïve	CP-CML.		Ponatinib	also	overcomes	high	CIP2A,	

leading	to	its	decrease,	along	with	other	of	the	CIP2A/PP2A	pathway	proteins.		

Interestingly,	ponatinib	is	the	only	TKI	that	affects	this	pathway	in	low	CIP2A	

expressing	cells,	suggesting	a	more	potent	inhibition	of	CIP2A	that	is	effective	

even	at	lower	levels.			 	
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4.4.3.3.	Long-term	Ponatinib	Treatment	

The	ponatinib	trial	PACE	recruited	CML	patients	that	had	failed	previous	

treatments,	including	second	generation	TKIs.		The	CIP2A	levels	of	six	enrolled	

patients	were	measured.		These	data	were	collected	from	patient	samples	taken	

at	trial	entry	point	and	thus	are	ponatinib-naïve	samples.		Unfortunately,	no	

follow-up	samples	were	available	for	comparison.		Here,	the	clinical	outcomes	

of	the	six	patients	are	discussed	and	their	patient	information	summarised	in	

Table	4.2.			

	

Table	4.2.		Patient	characteristics	of	ponatinib-treated	CML.	

UPN	 SEX	

(M/F)	

AGE	 GENETIC	

MUTATION	

(Y/N)	

CIP2A	

LEVEL	

(H/L)	

CLINICAL	

OUTCOME/TIME	

(months)	

083	 F	 63	 Y	(abl1	KD)	 Low	 CCR	/	19	

084	 F	 74	 N	 High	 CCR	/	2	

085	 M	 76	 Y	(abl1	KD)	 High	 NO	RESPONSE	

086	 M	 61	 Y	(T315I)	 Low	 NO	RESPONSE	

087	 F	 69	 Y	(abl1	KD)	 Low	 DIED	/	6	

088	 M	 60	 N	 High	 DIED	/	1	
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Six	CML	patients	that	had	failed	to	respond	to	previous	TKIs	and	thus	were	

prescribed	ponatinib	were	studied.		Two	achieved	a	CCR,	two	died	and	two	had	

achieved	no	response.		All	patients	were	over	60	years	of	age.		Of	these	patients,	

three	had	a	high	CIP2A	level	and	three	had	a	low	CIP2A	level	at	the	time	of	

beginning	ponatinib	treatment	(diagnostic	samples	were	unavailable	for	

analysis).			

	

High	CIP2A	patients	

UPN084:		This	patient	had	a	high	CIP2A	level	(MFI=17.75)	at	the	start	of	

ponatinib	treatment,	but	achieved	a	CCR	after	only	two	months	on	ponatinib.		It	

can	be	hypothesised	that	the	high	levels	of	CIP2A	were	depleted	by	ponatinib,	

as	in	the	in	vitro	TKI	assay,	supporting	Figure	4.9.					

UPN085:		This	patient	had	the	highest	CIP2A	level	(MFI=90.32)	and	aBCR-ABL1	

KD	mutation.		At	the	time	of	treatment	discontinuation	after	18	months	of	

therapy,	no	response	had	been	achieved	though	no	disease	progression	had	

been	recorded.		It	is	prudent	to	highlight,	however,	that	patient	UPN083	took	

longer	than	this	to	achieve	CCR.			

UPN088:		This	patient	had	a	high	CIP2A	level	(MFI=27.39),	but	no	BCR-ABL1KD	

mutation.		As	this	patient	died	after	only	a	single	month	of	ponatinib	it	is	

possible	that	this	patient	had	progressed	too	far	for	ponatinib	to	be	effective.			

	

	 	



159	|	P a g e 	

	

Low	CIP2A	patients	

UPN083:		This	patient	had	developed	a	BCR-ABL1	KD	mutation	by	

commencement	of	ponatinib,	yet	achieved	CCR	after	19	months.			

UPN086:		This	patient	was	positive	for	the	T315I	mutation.		The	patient	had	a	

low	CIP2A	level,	though	regardless	of	this,	T315I	renders	imatinib	and	all	2G	

TKI	treatments	unsuccessful	and	the	patient	would	only	have	minimal	

treatment	options;	including	ponatinib	if	available.		The	patient	did	not	achieve	

a	response	on	ponatinib,	but	actually	only	received	ponatinib	for	a	period	of	two	

months.		It	is	possible	that	a	response	may	have	been	reached	if	ponatinib	had	

continued.					

UPN087:		This	patient	had	a	low	CIP2A	level.		She	also	had	a	BCR-ABL1	KD	

mutation,	which	can	affect	the	efficacy	of	TKI	treatment.		Additionally,	the	time	

taken	to	swap	to	ponatinib	therapy	may	have	been	too	long	to	rescue	the	

disease	and	halt	its	advancement.			

	

Though	various	assumptions	can	be	made	when	analysing	individual	cases,	

these	six	patients	are	so	varied	in	their	clinical	outcomes,	their	treatment	

histories	and	their	length	of	treatment	exposure	and	are	therefore	impossible	to	

analyse	collectively.		Analysis	of	a	larger	cohort	would	be	necessary	to	

thoroughly	investigate	the	implications	of	the	CIP2A/PP2A	pathway	in	

ponatinib-treated	CML	long	term.			 	
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4.5.	Discussion	

Due	to	the	impressive	results	of	the	IRIS	trial	and	the	‘expanded	access’	follow-

up	studies,	many	CML	patients	are	initially	treated	with	imatinib,	though	

resistance	still	persists	in	at	least	one	third	of	patients(Francis	et	al.,	2013;	C.	

Lucas	et	al.,	2008).		This	resistance	is	often	attributed	to	a	variety	of	BCR-ABL1	

mutations,	against	which	imatinib	is	not	effective.		Newer	TKIs,	including	

dasatinib,	nilotinib	and	ponatinib	were	designed	to	combat	these	mutations	in	

addition	to	being	more	potent	BCR-ABL1	inhibitors.			

	

The	second	generation	TKI	trials	DASISION	and	ENESTnd	showed	superior	

response	rates	of	dasatinib	and	nilotinib	over	imatinib	as	a	first	line	therapy;	

MMR	rates	at	2	years	follow-up	were	64/46%	(dasatinib/imatinib)	and	

71/67/44%	(nilotinib	300mg/nilotinib	400mg/imatinib)	respectively(H.	M.	

Kantarjian	et	al.,	2011;	H.	M.	Kantarjian	et	al.,	2012).		However,	there	is	still	no	

direct	indication	that	the	poor	prognosis	of	patients	given	second	generation	

TKIs	after	imatinib	failure	can	be	rescued	by	these	newer	treatments.		

Therefore,	it	becomes	imperative,	to	identify	whether	a	patient	should	be	

prescribed	the	newer	TKIs	initially	to	avoid	these	circumstances.			

	

This	chapter	builds	on	the	observation	in	Chapter	3,	of	a	superior	clinical	

response	in	high	CIP2A	patients	treated	initially	with	dasatinib	or	nilotinib	in	

comparison	to	imatinib.			
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The	initial	experimental	design	did	not	take	into	account	the	varying	cell	

populations	within	a	patient	sample	at	different	points	throughout	treatment.		

Untreated	CML	will	have	an	abundance	of	malignant	cells	circulating	within	the	

peripheral	blood.		However,	the	effectiveness	of	TKIs	in	targeting	the	circulating	

leukaemic	cell	populations	and	reducing	the	tumour	burden,	leads	to	the	

malignant	cells	being	depleted	and	replaced	by	their	normal	counterparts.		

Thus,	in	comparing	diagnostic	and	long	term	follow-up	samples	it	is	impossible	

to	quantify	the	differences	in	oncogenic	protein	levels	that	are	abnormal	in	only	

the	leukaemic	cell	populations	(Figures	4.2-4.4).		Therefore,	a	short-term	in	

vitro	TKI	assay	was	designed	that	investigated	the	effects	of	imatinib,	dasatinib	

and	nilotinib	on	molecular	levels	of	the	CIP2A/PP2A	pathway	proteins	in	

diagnostic	patient	samples	(Figure	4.5).			

	

The	main	finding	of	this	chapter	is	shown	in	Figure	4.5	A(i);	2G	TKIs	but	not	

imatinib	will	suppress	CIP2A	protein	expression,	despite	all	three	TKIs	having	

broadly	equivalent	effects	on	BCR-ABL1	activity	(assessed	by	pCrKL/CrKL).		

Similar	basal	levels	of	BCR-ABL1	activity	can	be	seen	in	both	cohorts,	regardless	

of	CIP2A	protein	level	and	a	significant	reduction	in	kinase	activity,	irrespective	

of	TKI	treatment	type	(Figure	4.5	B(i)	and	(ii)).		However,	additional	effects	of	

dasatinib	and	nilotinib	upon	other	parts	of	the	CIP2A/PP2A	pathway	that	are	

not	apparent	in	imatinib	treated	cells	can	also	be	seen	in	Figure	4.5.		Total	c-

Myc	and	stabilised	c-Myc	pS62	are	both	decreased	by	all	three	TKIs	in	high	

CIP2A	cohorts	(Figure	4.5	C(i)	and	D(i)),	but	only	2G	TKI	treatment	causes	the	

levels	of	inactive	PP2A	(pY307-PP2A)	to	fall	in	these	patients	(Figure	4.5	F(i)).		
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This	chapter	strongly	suggests	that	the	reason	for	superior	response	rates	seen	

in	dasatinib/nilotinib	treated	CML	(Chapter	3)	is	due	to	additional	molecular	

targeting	of	the	CIP2A/PP2A	pathway.		Figure	4.5	suggests	that	nilotinib	and	

dasatinib,	but	not	imatinib,	also	target	CIP2A,	causing	CIP2A	protein	levels	to	

decrease.		This	in	turn	alleviates	the	inhibitory	action	of	CIP2A	over	PP2A,	and	

thus	inactive	PP2A	levels	also	fall.		However,	it	is	important	to	note	that	

dasatinib	and	nilotinib	may	act	either	directly	or	indirectly	upon	CIP2A	to	

produce	the	results	seen	in	this	chapter	and	that	other	proteins	not	investigated	

in	this	thesis	may	also	be	involved.				
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The	latter	part	of	this	chapter	looked	briefly	at	the	3G	TKI	ponatinib	and	its	

effects	upon	the	CIP2A/PP2A	pathway.			

	

Despite	the	availability	of	several	licenced	TKIs,	treatment	resistance	in	CML	

remains	a	problem.		A	delayed	response	to	TKI	treatment	can	increase	the	risk	

of	transformation	to	accelerated	phase	or	blast	crisis;	increase	probability	of	a	

later	loss	of	response	and	the	risk	of	developing	further	genetic	mutations.		

Emerging	evidence	is	supporting	this	thesis’s	biological	data	that	initial	

treatment	with	more	potent	(2G	and	3G)	TKIs	may	improve	long	term	CML	

outcomes(H.	Kantarjian	et	al.,	2010;	H.	M.	Kantarjian	et	al.,	2011;	H.	M.	

Kantarjian	et	al.,	2012;	Saglio	et	al.,	2010;	Savona	&	Saglio,	2013).		Newer	TKIs	

have	a	broader	spectrum	of	molecular	targets	and	greater	mutational	coverage,	

therefore	the	likelihood	of	emerging	resistance	and	subsequent	disease	

progression	is	significantly	lowered.		However,	of	the	newer	TKIs,	ponatinib	is	

the	only	treatment	that	has	shown	efficacy	against	all	mutations,	including	the	

‘gatekeeper’	mutation,	T315I.			

	

Treatment	of	cell	lines	and	patient	cells	(Figure	4.8	B	and	Figure	4.9	B)	with	

ponatinib	showed	a	subsequent	depletion	of	pCrKL/CrKL.		This	decrease	in	

BCR-ABL1	activity	following	ponatinib	exposure	was	mirrored	by	a	significant	

decrease	of	CIP2A,	c-Myc,	c-Myc	pS62	and	pY307-PP2A	in	high	CIP2A	

expressing	cells.			Though	these	data	are	similar	to	the	2G	TKI	experiments,	it	is	

interesting	to	note	that	low	CIP2A	levels	are	further	diminished	with	ponatinib	

treatment,	which	was	not	observed	with	dasatinib	or	nilotinib.				
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The	ponatinib-induced	reduction	in	CIP2A	was	observed	in	both	cell	lines	and	

patient	samples.		CIP2A	is	known	to	stabilise	c-Myc	by	maintaining	its	

phosphorylated	form,	and	also	prevents	the	de-phosphorylation	of	PP2A,	at	its	

Y307	residue,	thus	deactivating	it.		As	a	result,	the	visible	reduction	in	pY307-

PP2A	seen	in	high	CIP2A	expressing	cells,	coincides	with	the	significant	

decrease	in	CIP2A	and	c-Myc	pS62	protein	levels.		However,	again	caution	must	

be	used	in	interpreting	the	results	of	this	experiment	as	the	TKI-induced	

decrease	of	CIP2A	levels	may	be	either	direct	or	indirect	and	cannot	be	fully	

deciphered	here.				

	

The	observed	reduction	in	CIP2A	levels	is	very	promising	when	considered	

clinically.		Ponatinib	is	already	proving	effective	in	the	combat	of	BCR-ABL1,	

T315I	and	other	BCR-ABL1	mutants;	these	results	would	tentatively	indicate	its	

potential	use	as	an	additional	treatment	option	for	patients	deemed	to	have	

high	diagnostic	CIP2A	protein	levels.		However,	clinical	trials	had	a	significant	

proportion	of	patients	with	serious	cardiovascular	events.		Though	these	

preliminary	results	indicate	a	positive	molecular	effect	upon	the	CIP2A/PP2A	

pathway,	the	risks	associated	with	prescribing	this	drug	may	far	out-weigh	the	

potential	benefits	except	in	advanced	disease	or	possibly	late	chronic	phase	

refractory	to	all	other	TKIs.		While	those	patients	with	the	T315I	mutation	have	

no	other	TKI	options	at	the	moment,	it	would	be	wise	to	limit	the	use	of	

ponatinib	in	other	circumstances.			
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Chapter	5:		Manipulating	the	
CIP2A/PP2A	Pathway	

5.1.	Introduction	

All	tyrosine	kinase	inhibitors	are	shown	to	successfully	inhibit	BCR-ABL1	

activity	in	both	CML	cell	lines	and	patient	samples,	yet	their	actions	upon	the	

CIP2A/PP2A	pathway	differ.		This	thesis	has	so	far	shown	an	inhibition	of	CIP2A	

and	reactivation	of	PP2A	by	dasatinib,	nilotinib	and	ponatinib	that	is	not	

mirrored	by	imatinib	treatment.			

	

Manipulation	of	the	CIP2A/PP2A	pathway	may	lead	to	a	better	understanding	

of	CML	molecular	pathophysiology.		Observing	any	potential	knock-on	effects	to	

genetic	and	post-translational	alterations	may	even	add	to	a	better	

comprehension	of	how	or	where	to	target	this	pathway	with	future	therapies.			

	

5.2.	Aims	

Previous	chapters	have	looked	at	the	effects	of	TKIs	upon	the	CIP2A/PP2A	

pathway.		This	chapter	focuses	on	the	manipulation	of	this	pathway	by	specific	

alteration	of	the	level	of	CIP2A	within	BCR-ABL1-positive	cells.		Additionally,	

experiments	to	inhibit	and	reactivate	PP2A	were	carried	out.		The	more	specific	

aims	of	this	chapter	were	to:	
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• Use	siRNA	to	knock	down	CIP2A	levels	in	high	and	low	CIP2A	cell	lines	and	

observe	the	effects	upon	proteins	within	the	CIP2A/PP2A	pathway	

• Optimise	CIP2A	transient	transfection	in	low	and	high	CIP2A	cell	lines	

• Investigate	the	effects	of	successful	CIP2A	transfection	upon	proteins	within	

the	CIP2A/PP2A	pathway	

• To	inhibit/activate	PP2A	and	observe	the	effects	upon	proteins	within	the	

CIP2A/PP2A	pathway	

	

5.3.	Methods	

In	this	chapter,	K562	(high	CIP2A)	and	KCL22	(low	CIP2A)	cell	lines	were	

analysed	using	standard	cell	culture	(Section	2.4),	in	vitro	TKI	cultures	

(Section	2.4.3),	flow	cytometry	(Section	2.5),	qRT-PCR	(Section	2.9.3),	ELISA	

(Section	2.7),	confocal	microscopy	(Section	2.8),	siRNA	(Section	2.11)	and	

gene	transfection	(Section	2.12).		Student	t-tests	were	used	for	statistical	

analysis.			
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5.4.	Results	

It	is	known	that	varying	levels	of	CIP2A	expression	are	found	in	many	cancers;	

these	differing	CIP2A	levels	correspond	with	changes	in	PP2A	activity.		In	work	

shown	thus	far,	CIP2A	levels	show	an	inverse	correlation	with	the	level	of	PP2A	

activity.		To	investigate	this	relationship	further,	the	expression	of	CIP2A	was	

directly	targeted	to	be	decreased	using	siRNA	or	increased	by	transient	

transfection.			

	

5.4.1.	siRNA	of	CIP2A	

CIP2A	knock	down	experiments	were	performed	to	show	the	effects	of	

decreasing	CIP2A	on	proteins	within	the	CIP2A/PP2A	pathway.		The	knock	

down	of	CIP2A	was	successful	in	both	high	and	low	CIP2A	cell	lines	(Figure	5.1	

A(i);	p<0.005	and	(ii);	p=0.005).			Following	this,	BCR-ABL1	activity,	measured	

by	pCrKL/CrKL	ratio,	decreased	significantly	(Figure	5.1	B(i);	p=040	and	(ii);	

p=0.042)	suggesting	a	feedback	mechanism	between	CIP2A	and	BCR-ABL1.		

Additionally,	depleting	CIP2A	via	siRNA	led	to	the	decrease	of	both	c-Myc	

(Figure	5.1	C(i);	p=0.014	and	(ii);	p=0.033)	and	its	stabilised	phosphorylated	

form,	c-Myc	pS62	(Figure	5.1	D(i);	p=0.009	and	(ii);	p=0.006).		SET	protein	

decreased	in	both	high	and	low	CIP2A	cell	lines,	though	neither	fall	in	SET	

protein	was	significant	(Figure	5.1	G(i)	and	(ii)).			

	

The	level	of	inactive	PP2A,	measured	by	its	phosphorylation	at	tyrosine	307,	

decreased	significantly	(Figure	5.1	F(i);	p=0.039	and	(ii);	p=0.043)	following	
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CIP2A	knock	down,	though	total	PP2A	protein	did	not	alter	(Figure	5.1	E(i)	and	

(ii)).		This	shows	an	increase	in	the	proportion	of	active	PP2A	within	the	cells	

following	a	fall	in	CIP2A	level.			

	

Figure	5.1.		Effects	of	CIP2A	siRNA	upon	the	CIP2A/PP2A	pathway,	shown	

in	BCR-ABL1	positive	cell	lines.			Two	BCR-ABL1	positive	cell	lines	of	differing	

basal	CIP2A	protein	concentrations	were	used;	(i)	K562	(high	CIP2A)	and	(ii)	

KCL22	(low	CIP2A).		For	each	protein	analysed,	the	control	siRNA	and	CIP2A	

siRNA	results	are	shown.		A.	CIP2A,	B.	pCrKL/CrKL,	C.		c-Myc,	D.		c-Myc	pS62,	E.		

PP2A,	F.		pY307-PP2A,	G.		SET.	
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5.4.2.	Transient	Transfection	of	CIP2A	

Next,	the	effects	of	directly	increasing	CIP2A	protein	levels	were	investigated	

using	transient	transfection	of	CIP2A	into	the	BCR-ABL1	positive	cell	lines	K562	

and	KCL22.		The	pCMV6-AC-GFP	vector	used	included	a	GFP-tagged	CIP2A	gene	

to	more	easily	observe	the	increased	expression	of	CIP2A.		Figure	5.2	shows	

the	design	of	this	6.6kb	plasmid,	designed	and	bought	from	Origene	(Section	

2.12.3).			A	mock	transfection	plasmid,	tagged	only	with	GFP	was	used	as	a	

control	throughout	this	work.		This	was	available	within	our	lab,	given	by	Dr	

John	Allen,	Department	of	Molecular	and	Clinical	Pharmacology,	University	of	

Liverpool.			

	

Figure	5.2.		Design	of	GFP-tagged	CIP2A	plasmid.		The	vector	was	designed	

for	rapid	expression	of	bright	fluorescence	in	mammalian	cells,	with	a	C-

terminal	GFP	tag.		The	image	highlights	the	location	of	the	inserted	CIP2A	gene	

within	the	vector	and	the	restriction	enzymes	(Sgf	I	and	Mlu	I)	used	to	create	it.			

	

CIP2A



171	|	P a g e 	

	

5.4.2.1.	Analysing	CIP2A	Transient	Transfection	

Analysis	of	the	transient	transfection	was	performed	using	flow	cytometry	and	

cell	microscopy	to	confirm	a	positive	transfection.		As	the	CIP2A	plasmid	

included	a	GFP	tag,	fluorescence	at	this	wavelength	corresponded	to	positive	

expression	of	the	transfected	CIP2A.			

	

Transfection	Efficiency	

To	analyse	the	efficiency	of	each	transfection,	the	difference	in	GFP	fluorescence	

(FL1)	of	a	transfected	and	untransfected	sample	was	measured.		The	percentage	

of	cells	from	within	the	transfected	sample	that	express	more	GFP	than	the	

untransfected	cells,	gives	the	transfection	efficiency	(i.e.	‘CIP2A	%	gated’	in	

Figures	5.4	and	5.5).			

	

Intracellular	Protein	Expression	

Measuring	the	levels	of	intracellular	protein	expression	in	transiently	

transfected	cells	proved	more	complex.		Figure	5.3	shows	an	example	of	

intracellular	protein	analysis	in	K562	cells.		Firstly,	samples	were	gated	to	

include	only	live	cells	(Figure	5.3	A(i),	B(i)	and	C(i)).		These	live	cells	were	

then	gated	according	to	their	GFP	fluorescence	on	FL-1	(Figure	5.3	A(ii),	B(ii)	

and	C(ii)).		This	gate	was	set	according	to	the	untransfected	cells;	untransfected	

cells	would	not	express	GFP.		Therefore,	when	using	this	gate	for	GFP	and	GFP-

CIP2A	transfected	cells,	this	gate	should	encompass	purely	the	transfected	K562	

cells	within	the	sample.			
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Finally,	the	intracellular	protein	concentration	(i.e.	CIP2A,	PP2A	etc.)	of	the	GFP	

positive	(gated)	cells	was	analysed	on	FL-2	as	previously	described	according	to	

the	geometric	mean.		Of	note,	the	number	of	events	(cells)	detected	in	each	

sample	was	taken	into	consideration;	any	sample	with	less	than	50	gated	cells	

(vi)	was	disregarded.				

	

Figure	5.3.		An	example	of	protein	level	analysis	of	transiently	transfected	

BCR-ABL1	positive	cells.		Protein	levels	were	analysed	by	flow	cytometry.		

This	example	shows	CIP2A	protein	level	analysis	of	K562	cells	following	the	

transient	transfection	of	CIP2A.		For	each	sample,	A.	untransfected,	B.	mock	

transfected	and	C.	CIP2A	transfected	cells	were	analysed.		10000	events	were	

measured	per	sample.	

For	A-C,	(i)	Events	measured;	live	cells	are	gated,	(ii)	GFP	fluorescence	of	live	

cells;	high	GFP	fluorescing	cells	are	gated,	(iii)	CIP2A	protein	of	GFP	fluorescing	

cells,	(iv)	logarithmic	plot	of	panel	(iii).		Sample	statistics	are	also	shown	(v).					

	

(i) (ii)

(iv)

(iii)

(v)

A.		CIP2A	protein	of	Untransfected K562	cells	
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5.4.2.2.	Optimising	CIP2A	Transient	Transfection	

To	optimise	the	transient	transfection	of	CIP2A,	the	concentration	of	CIP2A	

plasmid	used	was	varied	and	analysed	to	see	which	gave	optimum	transfection	

efficiency.		Additionally,	both	low	(KCL22)	and	high	(K562)	CIP2A-expressing	

cell	lines	were	used.			

	

Initially,	2µg/ml	of	CIP2A	plasmid	was	transfected	into	both	cell	lines	and	

analysed	using	flow	cytometry	after	a	24	hour	incubation	(Figure	5.4).		A	

transfection	efficiency	of	only	31.88%	in	K562	cells	was	measured,	which	was	

not	sufficient	integration	of	the	plasmid	to	use	for	further	work.		An	increase	to	

5µg/ml	was	next	chosen	(Figure	5.5),	which	yielded	a	much	more	efficient	

73.03%	in	the	K562	cell	line.		Though	a	high	efficiency	of	71.04%	was	seen	in	

KCL22	cells	at	2µg/ml,	this	increased	to	82.56%	with	a	5µg/ml	plasmid	

concentration	and	thus	this	higher	concentration	was	used	for	further	work.		Of	

note,	the	CIP2A	transfection	efficiency	was	also	analysed	using	microscopy	to	

ensure	5µg/ml	was	sufficient	(Figure	5.5	B	and	C).				
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Figure	5.4.		Optimisation	of	CIP2A	Transient	Transfection;	initial	

transfection.		Transfection	efficiency	analysis	of	KCL22	and	K562	cells	using	an	

initial	CIP2A	plasmid	concentration	of	2µg/ml.		Analysis	was	performed	using	

flow	cytometry.		Two	BCR-ABL1	positive	cell	lines	of	varying	initial	CIP2A	

protein	concentrations	were	transfected;	(i)	KCL22	(low	CIP2A)	and	(ii)	K562	

(high	CIP2A).			
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Figure	5.5.		Amended	CIP2A	Transient	Transfection.		Transfection	efficiency	

analysis	of	KCL22	and	K562	cells	using	the	higher	concentration	of	5µg/ml.		

Two	BCR-ABL1	positive	cell	lines	of	varying	initial	CIP2A	protein	

concentrations	were	transfected;	(i)	KCL22	(low	CIP2A)	and	(ii)	K562	(high	

CIP2A).		Transfection	efficiency	was	confirmed	using	both	flow	cytometry	(A)	

and	microscopy	(B	and	C).		Microscopy	magnification:	1cm:	200µm.	
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5.4.2.3.	CIP2A	Transient	Transfection	Results	

Following	the	successful	transient	transfection	of	CIP2A	into	KCL22	and	K562	

cells,	flow	cytometry	was	used	to	analyse	the	effects	on	other	CIP2A/PP2A	

pathway	proteins.			

	

The	CIP2A	protein	level	is	shown	to	increase	following	successful	transient	

transfection	in	both	K562	and	KCL22	cells	(Figure	5.6	A(i);	p=0.002	and	(ii);	

p=0.029).	Subsequent	increases	in	stabilised	c-Myc	pS62	protein	(Figure	5.6	

D(i);	p=0.017	and	(ii);	p=0.020)	are	also	apparent.		BCR-ABL1	activity	(Figure	

5.6	B(i)	and	(ii);	p=0.001)	and	pY307-PP2A	(Figure	5.6	F(i)	and	(ii);	p=0.037)	

also	increase	in	both	K562	and	KCL22	cells,	though	a	significant	rise	is	only	

observed	in	the	low	CIP2A	cell	line.				

	

No	significant	change	is	observed	in	total	c-Myc	(Figure	5.6	C),	PP2A	(Figure	

5.6	E)	or	SET	(Figure	5.6	G)	levels	following	the	rise	in	CIP2A.			
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Figure	5.6.	Protein	Levels	of	BCR-ABL1	positive	cells	transiently	

transfected	with	CIP2A.		Two	BCR-ABL1	positive	cell	lines	of	varying	initial	

CIP2A	protein	concentrations	were	transfected;	(i)	KCL22	(low	CIP2A)	and	(ii)	

K562	(high	CIP2A).		For	each	protein	analysed,	untransfected,	GFP-transfected	

and	CIP2A-GFP	transfected	results	are	shown.		A.	CIP2A,	B.	pCrKL/CrKL,	C.		c-

Myc,	D.		c-Myc	pS62,	E.		PP2A,	F.		pY307-PP2A,	G.		SET.			
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5.4.3.	Manipulation	of	PP2A	

It	has	been	suggested	that	a	feedback	mechanism	may	occur	upon	BCR-ABL1	by	

PP2A.		The	data	shown	in	Chapter	4	suggest	an	additional	role	of	2G	TKIs	in	

suppressing	CIP2A	that	is	not	seen	with	imatinib,	despite	a	similar	decrease	in	

BCR-ABL1	activity	following	both	imatinib	and	2G	TKI	treatment.		Whether	this	

2G	TKI-specific	effect	on	CIP2A	is	direct	or	indirect	is	not	known.		It	was	

hypothesised	that	the	more	potent	inhibition	of	PP2A	(Figure	3.6	E-F)	may	play	

a	role	in	the	results	that	had	been	uncovered.			

	

K562	cells	were	treated	for	24	hours	with	PP2A	activators	FTY720	and	

forskolin,	and	also	by	the	PP2A	inhibitor	okadaic	acid.		Protein	levels	were	

subsequently	analysed	by	FACS,	and	the	results	are	shown	in	Figure	5.7.				

Forskolin	and	FTY720	treatment	not	only	increased	PP2A	levels,	but	showed	an	

extreme	drop	in	the	levels	of	CIP2A.		Conversely,	okadaic	acid	treatment	led	to	

an	increase	in	BCR-ABL1	activity,	CIP2A	levels	and	c-Myc	stabilisation.			
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Figure	5.7.		Effects	of	PP2A	Activation/Inhibition	on	the	CIP2A/PP2A	

Pathway.	K562	cells	were	treated	with	forskolin,	FTY720	and	okadaic	acid	for	

24	hours	and	then	protein	levels	analysed	using	flow	cytometry.			
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5.5.	Discussion	

Understanding	the	molecular	pathophysiology	of	CML	is	key	to	developing	

more	effective	ways	of	treating	this	disease	in	the	future.		In	Chapters	3	and	4	I	

showed	a	variation	in	TKI	effectiveness	of	targeting	CIP2A.		Unravelling	the	

complex	relationships	between	the	components	of	the	CIP2A/PP2A	pathway	

may	help	us	understand	the	reason	behind	these	different	effects.			

	

Accordingly,	CIP2A	was	directly	targeted	via	siRNA	and	transient	transfection,	

in	order	to	observe	the	consequences	of	decreasing	or	elevating	CIP2A.		

Decreasing	CIP2A	by	siRNA	caused	a	significant	decrease	in	c-Myc,	the	stable	c-

Myc	pS62	and	inactive	PP2A	protein.		On	the	other	hand,	CIP2A	elevation	by	

transfection	leads	to	increased	levels	of	these	proteins.		These	data	are	in	

support	of	the	published	role	of	CIP2A;	CIP2A	inhibits	the	tumour	suppressor	

activity	of	PP2A	upon	c-Myc(Junttila	et	al.,	2007;	Khanna	et	al.,	2013).		They	also	

show	that	by	removing	this	inhibition	upon	PP2A	activity	via	CIP2A	siRNA,	the	

effects	are	reversed	and	PP2A	inhibitory	action	upon	c-Myc	is	restored.			

	

Interestingly,	specifically	altering	the	expression	of	CIP2A	also	influences	the	

level	of	BCR-ABL1	activity,	as	measured	the	by	pCrKL/CrKL	ratio.		When	CIP2A	

is	knocked	down	by	siRNA,	BCR-ABL1	activity	also	falls,	and	increasing	the	

CIP2A	level	leads	to	a	rise	in	BCR-ABL1	activity.		In	Chapter	4	it	was	shown	that	

although	imatinib	inhibits	BCR-ABL1	activity,	it	does	not	have	a	significant	

effect	upon	CIP2A	level,	which	it	is	assumed	continues	to	function	
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independently	of	BCR-ABL1.		The	data	in	this	chapter	are	compatible	with	the	

view	that	a	feedback	mechanism	may	exist	with	CIP2A	acting	either	directly	or	

indirectly	through	PP2A,	upon	BCR-ABL1(C.	M.	Lucas	et	al.,	2011;	Juandong	

Wang	et	al.,	2014).			

	

To	add	to	my	information	on	this	complex	pathway,	the	PP2A	activators	

FTY720	and	forskolin	and	the	PP2A	inhibitor	okadaic	acid	were	used	to	treat	

K562	cells.		Inhibition	of	PP2A	activity	increased	CIP2A,	stable	c-Myc	pS62	and	

BCR-ABL1	activity,	and	the	inverse	was	apparent	when	treated	with	forskolin	

and	FTY720.		Though	these	data	support	the	various	findings	of	this	pathway	

and	suggest	yet	another	feedback	mechanism,	this	time	involving	PP2A	and	

BCR-ABL1,	it	is	not	entirely	known	how	the	PP2A	activators	work	upon	their	

target.		Without	ensuring	the	direct	targeting	of	PP2A,	it	cannot	be	clear	

whether	forskolin	or	FTY720	are	causing	these	results	via	off	target	effects,	

perhaps	upon	CIP2A	or	BCR-ABL1	themselves.			

	

Chapters	3,	4	and	5	highlight	the	importance	of	CIP2A	in	the	pathogenesis	of	

CML.		The	initial	promising	observations	of	its	use	as	a	potential	CML	biomarker	

led	to	investigating	its	complex	involvement	within	the	CIP2A/PP2A	pathway	

that	is	shown	in	this	chapter.		As	I	have	shown	that	altering	the	levels	of	CIP2A	

consequently	increases/decreases	BCR-ABL1	activity,	targeting	CIP2A	itself	in	

future	CML	therapies	may	be	an	interesting	avenue	to	pursue.		Excitingly,	the	

combination	of	a	purposefully	designed	CIP2A	inhibitor	used	alongside	a	TKI	



185	|	P a g e 	

	

may	lead	to	an	even	greater	inhibition	of	BCR-ABL1	and	an	improvement	in	

clinical	outcome,	especially	in	CML	patients	partially	refractory	to	TKIs.			
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Chapter	6:	CIP2A	Transcripts	

6.1	Introduction	

Splice	variants	of	numerous	genes	have	been	shown	to	play	different	roles	and	

have	altered	interacting	partners.		A	single	gene	can	encode	many	different	

protein	isoforms,	the	expressions	of	which	are	tightly	regulated	by	cells	via	

different	promoters	and	alternative	splicing.		In	cancers,	isoform	expressions	

can	vary	to	favour	disease	progression	and	treatment	resistance.		One	well-

studied	example	of	this	is	the	aberrant	expression	of	human	p53	isoforms,	

which	actively	favours	cancer	formation(Surget,	Khoury,	&	Bourdon,	2013).			

	

Alternative	gene	isoforms	may	have	implications	in	CML	progression	and	TKI	

resistance.		With	regards	to	the	CIP2A	oncogene,	previous	investigations	into	its	

role	within	CML	have	thus	far	focussed	on	protein	expression	and	the	

involvement	of	this	protein	in	post-translational	modifications(C.	M.	Lucas	et	al.,	

2011).		However,	regulation	occurring	at	a	transcriptional	level	is	yet	to	be	

explored	in	this	malignancy.			

	

This	chapter	presents	novel	information	on	the	relative	expression	of	two	CIP2A	

transcripts	previously	unreported	in	any	malignancy.					
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CIP2A	is	so	far	reported	to	have	six	different	isoforms,	of	which	only	two	are	

protein	coding.		No	CIP2A	splice	variant	has	been	investigated	in	any	

malignancy	and	thus	the	potential	variation	between	patient	expression	and	

isoform	involvement	in	treatment	resistance	is	still	entirely	unknown.			

	

Figure	6.1.		Reported	CIP2A	isoforms.		Data	taken	from	ensemble	gene	

database.			

	

Key	
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6.2.	Chapter	Aims	

This	chapter	focuses	on	two	reported	CIP2A	variants,	aiming	to	investigate	their	

possible	presence	and	subsequent	expression	levels	in	CML.		The	main	aims	

were	to:			

	

• Design	primers	to	target	two	protein	coding	CIP2A	variants.	

• Investigate	whether	these	CIP2A	transcripts	are	present	in	BCR-ABL1	

positive	cell	lines.			

• Investigate	whether	these	CIP2A	transcripts	are	present,	and	at	what	levels,	

in	CML	patient	samples	taken	at	varying	stages	of	the	disease	and	of	

differing	clinical	outcomes.			

	

6.3.	Methods	

In	this	chapter	cell	lines	and	patient	and	normal	healthy	volunteer	PBMC	

samples	were	analysed	using	standard	cell	culture	(Section	2.4),	cell	viability	

by	PI	(Section	2.5.3),	RNA	extraction	(Section	2.9.1),	cDNA	synthesis	(Section	

2.9.2),	manual	PCR	(Section	2.9.4),	qRT-PCR	(Section	2.9.3)	and	western	

blotting	(Section	2.6).		Clinical	characteristics	of	patients	used	within	this	

chapter	are	shown	in	Table	6.1.		Student	t-tests	were	used	for	statistical	

analysis.			
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6.4.	Results	

6.4.1.	Designing	CIP2A	transcript	primers	

An	initial	search	into	the	possible	CIP2A	variants(Database)	identified	two	

protein	coding	isoforms.		The	first	isoform	is	the	full	length	transcript,	which	

spans	905	amino	acids	and	the	second	a	shorter	isoform	of	only	746	amino	

acids.		Full	length	CIP2A	encompasses	21	exons	in	total.		The	shorter	transcript	

has	an	alternative	promoter	situated	within	the	intron	between	exons	1	and	2	

as	opposed	to	the	‘normal’	promoter	site	before	exon	1.		For	clarity,	the	‘normal’	

exon	1	of	the	longer	variant	will	be	referred	to	as	exon	1a	and	the	alternative	

promoter	of	the	shorter	variant	referred	to	as	exon	1b.		Similarly,	the	long	and	

short	isoforms	are	named	CIP2A-1a	and	CIP2A-1b,	respectively.		Using	the	

‘PyroMark	Assay	Design	2.0’	software,	optimal	primer	sites	were	identified	to	

distinguish	between	CIP2A-1a	and	CIP2A-1b	(Figure	6.2).		(N.B.	To	confirm	

primer	specificity	the	PCR	products	were	sequenced,	results	checked	using	a	

BLAST	search	and	confirmed	to	be	identifying	CIP2A-1a	and	CIP2A-1b.)					

	

Figure	6.2.		Summary	of	CIP2A-1a	and	CIP2A-1b	primer	positions.		The	

CIP2A-1a	reverse	primer	spans	the	exon1a/exon2	boundary;	this	does	not	exist	

within	CIP2A-1b.		The	CIP2A-1b	forward	primer	spans	the	exon1b/exon2	

boundary;	this	does	not	exist	within	CIP2A-1a.		Therefore,	the	primer	sets	

specifically	target	their	respective	CIP2A	variants.			

	 	

21a

1b 2

3

3

CIP2A-1a:

CIP2A-1b:
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In	addition	to	the	alternative	promoter	of	CIP2A-1b,	this	truncated	variant’s	

start	site	(ATG)	is	situated	further	downstream	within	exon	5,	while	the	CIP2A-

1a	start	site	is	within	exon	1a.			

	

Figure	6.3.		Comparison	of	CIP2A-1a	and	CIP2A-1b	gene	sequences.		Three	

separate	sections	are	shown:	exon	1a,	exon	1b	and	exon	5.		Primers	and	probes	

are	also	highlighted.				

	

	 	

CIP2A-1a

CIP2A-1b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

CIP2A-1a         177 ...............AAAAAAAGCGCGGCGAAAGCTAAAGGCCGGCGCACGCTGGGCGGTGGTGGTCCCTAAGCCGGGCCGCGGCCGGTGCA    269 
CIP2A-1b         177 ...............-----------------------------------------------------------------------------    269 
 
CIP2A-1a         270 ATGGACTCCACTGCCTGCTTGAAGTCCTTGCTCCTGACTGTCAGTCAGTACAAAGCCGTGAAGTCAGAGGCGAACGCCACTCAGCTTTTGCG    362 
CIP2A-1b         270 --------------------------------------------------------------------------------------------    362 
 
CIP2A-1a         363 GGCACTTGGAG.................................................................................    455 
CIP2A-1b         363 -----------.................................................................................    455 
 
 
CIP2A-1a        3881 ...............CCTTAACTTCTGAGCTCACCTATTGTCTTTGGGAAGAAGCAGAAGGAATAATCCCATAACTACCCTCTGGGCTTCAT   3959 
CIP2A-1b        3881 ...............CCTTAACTTCTGAGCTCACCTATTGTCTTTGGGAAGAAGCAGAAGGAATAATCCCATAACTACCCTCTGGGCTTCAT   3959 
 
CIP2A-1a        3960 TTTTCATTCTCCTCCCTCAAA...................................................GTAATTTCTGGACAGAAACT   4052 
CIP2A-1b        3960 TTTTCATTCTCCTCCCTCAAA...................................................GTAATTTCTGGACAGAAACT   4052 
 
CIP2A-1a        4053 CACACGACTATTTACATCAAATCAGATATTAACAAGTGAATGCTTGAGTTGCCTTGTAGAGCTACTTGAAGACCCCAACATAAGTGCTTCAC   4145 
CIP2A-1b        4053 CACACGACTATTTACATCAAATCAGATATTAACAAGTGAATGCTTGAGTTGCCTTGTAGAGCTACTTGAAGACCCCAACATAAGTGCTTCAC   4145 
  
CIP2A-1a        4146 TGATCTTAAGTATTATCGGTTTGCTGTCTCAACTAG........................................................   4238 
CIP2A-1b        4146 TGATCTTAAGTATTATCGGTTTGCTGTCTCAACTAG........................................................   4238 
 
 
CIP2A-1a        8118 ...............TCAATCTTCTGAAGATGAGTTAAAAATGCCTTGTCTAGGATTATTGGCAAATCTTTGTCGGCACAATCTTTCTGTTC   8210 
CIP2A-1b        8118 ...............TCAATCTTCTGAAGATGAGTTAAAAATGCCTTGTCTAGGATTATTGGCAAATCTTTGTCGGCACAATCTTTCTGTTC   8210 
 
CIP2A-1a        8211 AAACGCACATAAAGACATTG........................................................................   8210 
CIP2A-1b        8211 AAACGCACATAAAGACATTG........................................................................   8210 	

Key: 
 
INTRON 
EXON (TRANSLATED SEQUENCE) 
PROMOTOR 
PRIMER 
PROBE	

CIP2A-1a

CIP2A-1b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
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6.4.2.	Optimisation	of	CIP2A-1a	and	CIP2A-1b	PCR	Conditions	

To	ensure	the	optimum	PCR	conditions	for	the	primers	so	as	to	accurately	

detect	the	two	CIP2A	isoforms,	a	variety	of	conditions	were	optimised	including	

primer	mix	ratios,	PCR	running	conditions	and	annealing	temperatures	(Figure	

6.4).		Both	high	(K562)	and	low	CIP2A	(KCL22	and	LAMA84)	cell	lines	were	

used	in	addition	to	a	negative	control	(no	cDNA).				

	

The	primer	mix	was	as	follows:	

• 4µl	ddH2O	

• 1µ	primer	mix	(4µM	forward	and	reverse	primer)	

• 1µl	expression	mastermix	

• 5µl	cDNA	sample	

	

The	PCR	running	conditions	were	as	follows:	

• 95°C	–	5	minutes	

• 40	cycles	of:	

o 95°C	–	15	seconds	

o 53-58°C	–	20	seconds	

o 60°C	–	45	seconds	

• 72°C	–	10	minutes	

• 6°C	–	until	used		
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Figure	6.4.		Optimisation	of	PCR	conditions	for	CIP2A-1a	and	CIP2A-1b	

Primers.		A.	CIP2A-1a	primer	optimisation.		B.	CIP2A-1b	primer	optimisation.		A	

range	of	temperatures	were	used;	53-58°C.		Optimisation	was	performed	in	

three	BCR-ABL1	positive	cell	lines;	K562,	KCL22	and	LAMA84	and	included	a	

negative	control.					

	

	

The	annealing	temperature	of	56°C	was	chosen	following	the	optimisation.		This	

also	confirmed	the	presence	of	both	CIP2A	transcripts	in	all	BCR-ABL1	positive	

cell	lines,	giving	a	positive	indication	of	the	possible	presence	of	both	in	CML	

patients.			
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6.4.3.	Quantification	of	CIP2A-1a	and	CIP2A-1b	Isoforms	in	CML	

CIP2A	primers	used	previously	within	this	thesis	and	within	our	lab	identify	

both	of	the	CIP2A	isoforms	studied	here,	if	not	more	as	yet	undiscovered	

variants.		In	work	done	here	and	by	others	in	our	lab,	no	statistically	significant	

correlations	were	shown	between	mRNA	levels	of	CIP2A	and	clinical	outcome	in	

CML	patients,	despite	the	strong	differences	seen	at	the	protein	level(C.	M.	

Lucas	et	al.,	2011)In	contrast,	publications	of	other	malignancies	have	shown	

strong	correlations	between	high	CIP2A	mRNA	and	aggressiveness	of	the	

tumour(Come	et	al.,	2009;	Dong	et	al.,	2011;	He	et	al.,	2012;	X.	Liu	et	al.,	2014;	

Ren	et	al.,	2011;	Teng	et	al.,	2012).		It	was	hypothesised	that	the	presence	of	

these	two	separate	CIP2A	isoforms	in	varying	ratios	may	give	rise	to	the	

seeming	lack	of	correlation	between	gene	and	protein	expression	in	CML.			

	

Additionally,	there	was	the	possibility	of	alternative	isoforms	being	expressed	

by	different	cohorts	of	patients.		The	potential	for	a	patient	with	a	poorer	

outcome	to	be	expressing	a	variant	more	readily	translated	into	protein	and/or	

stabilised	at	the	protein	level	was	an	exciting	theory	to	be	explored.			

	

Here,	the	diagnostic	levels	of	CIP2A-1a	and	CIP2A-1b	mRNA	were	analysed	in	28	

CML	samples	by	qRT-PCR;	17	of	low	CIP2A	protein	level	and	11	of	high	CIP2A	

protein.		The	levels	of	both	variants	were	assessed	according	to	patient	CIP2A	

protein	levels	and	correlated	with	patient	outcome.		Table	6.1	summarises	the	

patient	samples	used.			
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Table	6.1.	Characteristics	of	patients	studied	for	their	CIP2A	transcript	

variants.		Clinical	grading	is	in	accordance	with	the	ELN	guidelines,	as	

explained	in	Section	1.7.1.		The	CIP2A	protein	level	is	as	categorised	as	low	or	

high,	using	the	methodology	of	Chapters	3	and	4,	as	explained	in	Section	3.4.1.			

UPN	 SEX	 High/Low	CIP2A	

Protein	Level	

Clinical	Outcome	

025	 M	 LOW	 Optimal	

065	 M	 LOW	 Optimal	

011	 F	 LOW	 Optimal	

012	 F	 LOW	 Optimal	

066	 M	 LOW	 Optimal	

001	 F	 LOW	 Optimal	

028	 M	 LOW	 Failure	

062	 F	 LOW	 Optimal	

007	 F	 LOW	 Optimal	

018	 M	 LOW	 Sub-Optimal	

017	 M	 LOW	 Optimal	

051	 M	 LOW	 Optimal	

061	 F	 LOW	 Optimal	

014	 F	 LOW	 Optimal	

045	 F	 LOW	 Optimal	

029	 M	 LOW	 Optimal	

043	 F	 LOW	 Sub-Optimal	

059	 M	 HIGH	 Optimal	

068	 F	 HIGH	 Optimal	
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053	 F	 HIGH	 Optimal	

031	 F	 HIGH	 Sub-Optimal	

056	 F	 HIGH	 Optimal	

055	 F	 HIGH	 Optimal	

032	 F	 HIGH	 Failure	

041	 M	 HIGH	 Optimal	

033	 M	 HIGH	 Blast	Crisis	

057	 M	 HIGH	 Optimal	

058	 M	 HIGH	 Optimal	
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Similarly	to	the	three	BCR-ABL1	cell	lines	tested	(Figure	6.4),	both	of	the	CIP2A	

isoforms	appear	to	be	present	in	CML	patient	samples,	as	shown	in	Figure	6.5.		

Though	the	mRNA	levels	indicated	here	appear	relatively	low,	this	is	consistent	

with	results	from	previous	chapters	when	using	alternative	primers	that	would	

identify	both	isoforms	without	discriminating	between	the	two.			

	

CIP2A-1b	mRNA	levels	do	not	differ	between	patients	with	high	or	low	CIP2A	

protein	at	diagnosis;	no	significant	difference	is	observed	between	the	two	

cohorts	(Figure	6.5	B;	p=0.8141	not	shown).		However,	when	comparing	the	

expression	of	CIP2A-1a	between	high	and	low	CIP2A	protein	cohorts,	a	

significant	inverse	relationship	is	observed;	patients	with	low	CIP2A	protein	

have	significantly	higher	levels	of	CIP2A-1a	mRNA	than	patients	with	high	

CIP2A	protein	(Figure	6.5	A;	p=0.0035).			

	

This	interesting	observation	may	be	due	to	alternative	levels	of	stability	

between	CIP2A-1a	and	CIP2A-1b,	with	one	isoform	being	degraded	more	readily	

than	the	other	and/or	a	failure	for	one	isoform	to	be	translated	into	CIP2A	

protein.		In	order	to	investigate	this,	the	half-life	of	these	two	isoforms	was	

analysed.			
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Figure	6.5.		Patient	mRNA	levels	of	A.	CIP2A-1a	and	B.	CIP2A-1b,	as	

assessed	by	qRT-PCR.		A	total	of	28	patient	diagnostic	samples	were	analysed;	

17	with	low	CIP2A	protein	and	11	with	high	CIP2A	protein	levels.			
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6.4.4.	CIP2A	Isoform	Stability	

Cycloheximide	exerts	its	protein	synthesis	inhibition	via	the	blockage	of	the	

translocation	step,	thus	halting	the	conversion	of	mRNA	into	its	corresponding	

protein.		The	rapid	and	(if	desired)	reversible	effects	of	this	compound	make	it	

of	excellent	use	in	in	vitro	studies.		Figure	6.6	shows	the	effects	of	10µg/ml	

cycloheximide	treatment	on	the	level	of	CIP2A	present	in	K562	cells.			

	

Figure	6.6	B	shows	cell	viability	across	a	period	of	96	hours,	with	and	without	

cycloheximide	treatment;	cell	viability	has	dropped	to	approximately	60%	in	

this	time,	regardless	of	treatment	and	shows	that	any	alterations	seen	in	protein	

or	gene	levels	are	not	due	to	cell	death.				

	

In	accordance	with	the	literature(Tseng	et	al.,	2012),	CIP2A	half-life	is	here	

shown	to	be	around	60	hours,	as	a	sharp	drop	in	CIP2A	protein	is	seen	at	this	

time	point	in	the	treated	cells,	yet	not	in	the	untreated	control.		Interestingly,	

cycloheximide	treatment	has	different	effects	on	the	CIP2A-1a	and	CIP2A-1b	

mRNA	levels;	treatment	causes	no	alteration	in	the	shorter	isoform,	CIP2A-1b	

(Figure	6.6	D)	yet	causes	a	sharp	rise	in	the	mRNA	expression	of	the	full	length	

variant,	CIP2A-1a	(Figure	6.6	C).			
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Figure	6.6.		Half-life	of	CIP2A	Protein	and	CIP2A-1a/1b	Isoform	mRNA	in	

K562	cells.		A.	CIP2A	protein	levels	measured	by	flow	cytometry	(n=3)	

following	treatment	with	10µg/ml	cycloheximide.		B.	Cell	viability	of	untreated	

and	cycloheximide	(10µg/ml)	treated	K562	cells.		C.	CIP2A-1a	mRNA	levels	

following	cycloheximide	treatment	(10µg/ml).		D.	CIP2A-1b	mRNA	levels	

following	cycloheximide	treatment	(10µg/ml).			
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As	no	compensatory	effect	was	seen	in	the	already	low	levels	of	CIP2A-1b,	

following	the	suppression	of	protein	synthesis,	it	may	follow	that	this	truncated	

gene	is	not	in	fact	translated	into	protein.		Figure	6.7	shows	the	identification	of	

CIP2A	protein	in	K562	and	KCL22	cells,	using	two	alternative	CIP2A	antibodies	

(SCBT:	1;	CIP2A	(4A9-1A2),	2;	CIP2A	(HL1925)).		As	both	antibodies	give	a	

single,	clear	band	appearing	at	90kDa,	it	appears	that	the	smaller	CIP2A	variant,	

CIP2A-1b,	is	not	detectable	at	the	protein	level	in	CML.		As	it	is	present	at	the	

mRNA	level,	this	suggests	an	inability	for	the	truncated	protein	to	be	properly	

translated	or	an	instability	at	the	gene	level	that	leads	to	rapid	degradation	of	

the	mRNA	before	it	can	be	translated.		Though	this	appears	to	be	the	case	in	

CML-positive	cells,	it	is	important	to	stress	that	CIP2A	behaviour,	translation	

and	stability	may	vary	from	malignancy	to	malignancy	and	should	be	an	area	for	

further	investigation	in	a	wide	array	of	tumours	in	future.			

	

Figure	6.7.	CIP2A	protein	expression.		A.		Western	blot	of	CIP2A	in	K562	

(high	CIP2A)	and	KCL22	(low	CIP2A)	cells,	using	antibody	1.		B.		Western	blot	of	

CIP2A	in	K562	(high	CIP2A)	and	KCL22	(low	CIP2A)	cells,	using	antibody	2.	
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6.5.	Discussion	

Previous	work	in	this	thesis	showed	an	interesting	observation;	similar	CIP2A	

mRNA	levels	across	all	CML	patients,	regardless	of	high/low	CIP2A	protein	

levels.		This	chapter	focussed	on	the	possibility	that	varying	ratios	of	CIP2A	

isoforms	may	exist	between	patients.		It	was	hypothesised	that	the	segregation	

of	CML	patients	into	high/low	CIP2A	protein	may	in	fact	correlate	with	either	a	

specific	CIP2A	isoform	or	the	ratio	of	these	isoforms	to	one	another.			

	

Throughout	cancer	literature,	transcript	variants	have	been	shown	to	play	a	

role	in	the	development	and	progression	of	the	malignancy(Adamia,	Pilarski,	

Bar-Natan,	Stone,	&	Griffin,	2013;	Dehm,	2013;	Naro	&	Sette,	2013;	Pagliarini,	

Naro,	&	Sette,	2015).		Alternative	genetic	isoforms	can	have	drastically	different	

roles	within	the	cell;	deregulated	isoform	expression	has	been	shown	to	favour	

the	expansion	of	several	malignancies.			

	

As	a	relatively	new	oncogene	of	interest,	little	is	reported	of	alternative	CIP2A	

isoforms.		Genetic	analysis	using	the	‘ensemble’	database	identified	six	different	

CIP2A	isoforms	at	the	time	of	starting	this	work;	of	these	only	two	were	

reported	to	be	protein	coding.		This	chapter	showed	the	design	of	two	sets	of	

CIP2A	primers	specifically	targeting	these	CIP2A	variants.		Here	it	is	shown	that	

both	the	short	(CIP2A-1b)	and	long	(CIP2A-1a)	isoforms	are	present	in	three	

different	BCR-ABL1	positive	cell	lines	and	also	in	treatment-naïve	CML	patients	

(Figures	6.4	and	6.5).		This	is	the	first	reported	identification	of	a	specific	
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CIP2A	isoform	in	any	malignancy,	and	thus	represents	novel	information	about	

this	oncogene.			

	

When	stratified	according	to	CIP2A	protein	levels	it	is	apparent	that	an	inverse	

correlation	occurs	between	CIP2A-1a	mRNA	and	CIP2A	protein	(Figure	6.4	A).		

Additionally,	following	cycloheximide	treatment	CIP2A-1a	mRNA	expression	

was	upregulated,	suggesting	a	compensation	mechanism	by	the	cell	as	CIP2A	

protein	synthesis	is	compromised.		The	fact	that	high	CIP2A	protein	correlates	

with	low	CIP2A-1a	mRNA	and	vice	versa,	hints	at	a	difference	in	the	level	of	

CIP2A	protein	stability	between	the	patient	cohorts.		If	the	cell	compensates	

when	CIP2A	protein	levels	are	compromised,	one	could	hypothesise	that	this	is	

occurring	in	the	low	CIP2A	patients,	leading	to	an	increased	level	of	CIP2A-1a	

mRNA	due	to	a	possible	instability	and/or	degradation	of	the	CIP2A	protein.		A	

greater	protein	stability	and/or	lack	of	CIP2A	degradation	may	therefore	

explain	the	apparent	lower	CIP2A-1a	mRNA	expression.			

	

Interestingly,	CIP2A-1b	expression	was	consistently	low	amongst	all	patients	

and	did	not	alter	at	all	following	cycloheximide	treatment.		This	evidence	

suggests	that	while	CIP2A-1b	mRNA	may	indeed	be	present	in	patient	samples	it	

is	not	a	vital	CIP2A	variant	to	the	malignant	cell.		The	lack	of	a	CIP2A	band	

present	at	74kDa	further	supports	this	theory	and	may	even	suggest	that	CIP2A-

1b	fails	to	be	translated	into	protein,	though	this	is	not	confirmed;	it	is	possible	

that	structural	alterations	in	CIP2A-1b	prevent	antibody	binding	and	thereby	its	

detection	by	western	blot.		Nothing	is	known	of	CIP2A	crystallography	structure	
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by	direct	observation	at	present	and	hopefully	future	studies	will	shed	more	

light	on	this	area	of	interest.					

	

This	chapter	suggests	a	need	to	consider	alternative	isoforms	of	CIP2A	in	future	

research.		The	apparent	similarity	of	all	patient	CIP2A	mRNA	levels	in	earlier	

chapters	and	previously	published	data(C.	M.	Lucas	et	al.,	2011)	did	not	

examine	isoform	specificity.		Using	primers	that	identify	all	CIP2A	variants	may	

mask	a	difference	between	CIP2A-1a	levels	in	different	CML	patient	cohorts.		

Identifying	this	difference	in	CIP2A-1a	mRNA	level	and	the	important	inverse	

correlation	between	this	isoform	and	its	protein	counterpart	asks	many	

questions	of	CIP2A	regulation	and	stability.		Unfortunately,	time	constraints	did	

not	allow	for	further	work	in	this	area,	though	future	work	to	investigate	CIP2A	

stability	and	its	impact	on	the	CIP2A/PP2A	pathway	in	CML	will	be	of	great	

interest.			
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Chapter	7:	Epigenetic	Regulation	of	
CIP2A	

7.1	Introduction	

Epigenetic	regulation	is	defined	as	“heritable	changes	in	gene	activity	and	

expression	that	occur	without	alteration	in	gene	sequence”	(Aaron,	Goldberg,	

Allis,	&	Bernstein,	2007;	Bird,	2007)and	is	generally	understood	to	encompass	

DNA	methylation,	histone	modifications	and	miRNAs.		Aberrant	epigenetic	

regulation	of	genes	involved	in	CML	is	one	possible	underlying	mechanism	of	

disease	pathogenesis	and	treatment	resistance.		This	chapter	focuses	

specifically	on	DNA	methylation	of	the	CIP2A	gene	promoter.			

	

The	methylation	of	CpG	islands	has	been	reported	to	play	a	vital	role	in	both	

solid	tumours	and	haematological	malignancies(Constanze	&	Cockerill,	2011).		

In	CML,	the	methylation	of	a	number	of	genes	has	been	reported	to	vary	

between	disease	phase	and	some	to	show	clinical	correlations	with	patient	

response	to	treatment(Dunwell	et	al.,	2010).		Most	notable	is	the	potential	

significance	of	ABL1	methylation	in	CML.		ABL1	promoter	methylation	was	

reported	in	CP-CML	bone	marrow	at	diagnosis	yet	no	methylation	was	observed	

in	normal	bone	marrow.		ABL1	methylation	has	therefore	been	suggested	as	a	

possible	early	indicator	of	CML	in	bone	marrow(Sun	et	al.,	2001).		(Polakova,	

Koblihova,	&	Stopka,	2013)	
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The	fast-expanding	investigative	area	of	gene	methylation	highlights	the	

importance	of	this	method	of	regulation.		Though	many	studies	are	beginning	to	

focus	on	this	area	within	cancer	research,	the	field	is	still	somewhat	limited.		

With	regards	to	CIP2A,	very	little	is	known	of	its	methylation.		When	analysing	a	

1.8kb	region	downstream	of	the	predicted	CIP2A	start	site,	Khanna	et	al	(2011)	

discovered	a	highly	conserved	CpG	island	within	the	gene	promoter	(Figure	

7.1).		(Khanna	et	al.,	2011)	

	

Figure	7.1.		Bioinformatic	analysis	of	the	CIP2A	promoter	methylation	

status.		Data	are	taken	from	Khanna	et	al(Khanna	et	al.,	2011).		A.	Identification	

of	putative	CpG	Island	from	−150	bp	to	+400	bp	(blue	shaded	area)	on	the	

CIP2A	promoter	using	MethPrimer	software.		B.	Sequencing	results	of	the	

extracted	genomic	DNA	from	normal	human	blood.		CpG	sites	are	represented	

by	black	rectangular	blocks	and	all	are	shown	to	be	unmethylated.			

	

	

Khanna	et	al	reported	no	methylation	of	this	region	in	normal	human	blood	

samples	or	cultured	fibroblasts,	AGS	and	HELA	cell	lines(Khanna	et	al.,	2011).		

However,	the	methylation	of	CIP2A	in	non-adherent	cell	lines,	specifically	BCR-

ABL1	positive,	has	never	been	investigated.		Additionally,	CIP2A	methylation	in	

any	cancerous	patient	samples	has	not	been	reported.			

A.

B.
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7.2.	Chapter	Aims	

This	chapter	investigates	the	possible	methylation	of	CIP2A	as	a	means	for	its	

genetic	regulation	in	CML.		The	main	aims	were	to:			

	

• Design	primers	to	target	the	CpG	island	of	the	CIP2A	promoter.			

• Investigate	the	presence	of	CIP2A	methylation	in	normal	samples.	

• Investigate	the	presence	of	CIP2A	methylation	in	both	BCR-ABL1	positive	

and	negative	cell	lines.			

• Investigate	the	presence	of	CIP2A	methylation	in	CML	patient	samples	taken	

from	patients	at	varying	stages	of	the	disease	and	of	differing	clinical	

outcomes.					

	

7.3.	Methods	

In	this	chapter	cell	lines	and	patient	and	normal	healthy	volunteer	genomic	

DNA	samples	were	analysed	using	manual	PCR	(Section	2.9.4),	bisulphite	

conversion	(Section	2.10.1)	and	PCR	pyrosequencing	(Section	2.10)	to	detect	

CIP2A	methylation.				Clinical	characteristics	of	patients	used	in	this	chapter	are	

shown	in	Table	7.1.			
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7.4.	Results	

7.4.1.	An	Overview	of	the	Pyrosequencing	Method	

The	recently	identified	CpG	island	located	at	the	CIP2A-1a	promoter	represents	

an	interesting	area	to	investigate.		To	detect	the	presence	of	any	methylation	

within	the	CpG	island,	the	pyrosequencing	technique	was	used.		The	basic	

principle	of	pyrosequencing	is	founded	on	the	application	of	DNA	polymerase	to	

sequence	a	complementary	strand	of	DNA	to	the	strand	designed	by	the	

investigator.		The	initial	step	in	the	pyrosequencing	methodology	is	to	design	

primers	that	encompass	the	desired	GC	rich	area	to	be	explored.		Following	this,	

the	genomic	DNA	of	the	chosen	samples	undergoes	a	bisulphite	conversion	

(Figure	7.2).		Methylation	refers	to	the	addition	of	a	methyl	group	to	the	

carbon-5	position	of	the	cytosine	within	a	CpG	(CG/GC)	di-nucleotide.		During	

the	bisulphite	conversion,	the	bisulphite	ion	acts	to	preferentially	deaminate	

unmethylated	cytosines,	thereby	converting	them	to	uracil	residues.		For	

methylated	cytosines	this	does	not	occur.		Therefore,	any	remaining	cytosines	

detected	are	sites	of	methylation.		(Darst,	Pardo,	Ai,	Brown,	&	Kladde,	2010)	
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Figure	7.2.		Basic	Principle	of	Bisulphite	Conversion.	

	

	

The	final	step	in	measuring	the	methylation	of	a	gene	within	a	sample	is	to	run	

the	converted	samples	through	the	pyrosequencing	machinery.		During	

pyrosequencing,	it	is	the	dispensation	of	a	single	type	of	nucleotide	at	a	time	

and	in	a	predetermined	order,	that	is	key.		This	predetermined	order	is	

complementary	to	the	amplified	strand	of	DNA	for	which	the	possible	sites	of	

methylation	are	to	be	analysed.		With	each	set	of	nucleotide	released	there	are	

two	possibilities:	either	it	is	incorporated	into	the	DNA	strand	by	DNA	

polymerase	and	via	a	chain	of	reactions,	causes	light	to	be	emitted	

quantitatively	and	recorded	by	the	pyrograph,	or;	it	does	not	match	the	

complementary	strand,	is	not	incorporated	into	the	DNA,	no	chain	of	reactions	

occurs	and	therefore	no	light	is	emitted.			

Pyrosequencing
(using	sequencing	

primers)

Bisulfite treatment	
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With	regards	to	detecting	methylation,	any	pyrograph	peak	representative	of	a	

present	cytosine	shows	there	is	methylation	at	this	residue	within	the	sample.		

Figure	7.3	gives	an	explanation	of	how	to	aptly	analyse	example	pyrographs.			

	

Figure	7.3.		Analysing	a	Methylation	Pyrograph.	B.	A	pyrograph	of	a	tumour	

sample.		A.	An	example	of	all	pyrosequencing	steps.		

For	each	pyrograph:	the	x	axis	represents	the	dispensation	order	and	the	y	axis	

the	relative	luminescence.		Blue/grey	areas	indicate	polymorphisms	between	

T/C	generated	by	bisulphite	treatment;	methylation	at	a	dinucleotide	is	

calculated	by	the	ratio	of	T/C	and	shown	as	a	percentage	above.		(N.B.	yellow	

areas	(not	shown)	indicate	positions	of	internal	controls	of	conversion	at	non-

CpG	sites.)		Blue/yellow	percentages	indicate	acceptable	analysis;	red	boxes	

indicate	a	problem	and	manual	verification	of	the	sequence	may	be	necessary.			
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7.4.2.	Designing	Methylation	Primers	

Using	the	‘PyroMark	Assay	Design	2.0’	software,	methylation	primers	were	

designed	as	shown	in	Figure	7.4.		The	primers	were	designed	to	span	the	

promoter	and	large	portion	of	exon	1a.		They	encompass	11	possible	

methylation	sites	of	the	CpG	island.			

	

Figure	7.4.		Design	of	the	CIP2A	methylation	primers.		Forward	and	reverse	

primers	are	shown	as	blue	arrows	and	the	pyrosequencing	primer	as	a	red	

arrow.		Red	vertical	lines	represent	the	encompassed	sites	of	possible	

methylation	to	be	investigated.			

	

	

Though	a	lesser	CpG	island	is	also	present	further	downstream,	it	is	not	

proximal	to	any	exon	or	promoter	site,	making	it	unlikely	to	be	of	interest	in	

this	particular	case.	 	

1a 1b

CpG island CpG island

3.5K
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7.4.3.	Bisulphite	Conversion	of	Pyrosequencing	Samples	

Successful	bisulphite	conversion	was	performed	on	a	total	of	50	samples.		These	

included	four	control	samples;	a	0%	methylated	control	and	three	positive	

controls	(10%,	20%	and	95%	methylated).		These	are	DNA	taken	from	the	

white	blood	cells	of	healthy	individuals	that	had	previously	been	in	vitro	

methylated	using	Sssl	methylase	(NEB)	as	per	supplier	protocol.		The	

methylated	DNA	was	subsequently	diluted	with	unmethylated	WBC	DNA	to	

result	in	the	desired	dilution	standards.		Four	BCR-ABL1	positive	cell	lines	

(K562	(high	CIP2A),	KCL22	(low	CIP2A),	LAMA84	and	KYO-1)	and	two	BCR-

ABL1	negative	cell	lines	(HEK293	and	U937)	were	also	used.		Additionally,	8	

normal	healthy	volunteer	samples	and	32	CML	patient	samples	were	analysed.		

Of	the	CML	patients	all	except	two	were	diagnostic	samples;	two	samples	were	

taken	from	patients	in	blast	crisis.		The	diagnostic	samples	were	categorised	

according	to	future	patient	response	to	treatment	(optimal,	sub-optimal,	failure	

or	blast	crisis).		Table	7.1	summarises	all	samples	that	underwent	successful	

bisulphite	conversion	and	subsequent	pyrosequencing	analysis.			

	

	 	



212	|	P a g e 	

	

Table	7.1.		Information	of	samples	converted	for	Methylation	Analysis.	

METHYLATION	

SAMPLE	

NUMBER	

UPN	 Sample	Type	 SEX	 Time	of	

Sample	

Clinical	

Outcome	

1	 N/A	 Normal	 F	 N/A	 N/A	

2	 N/A	 Normal	 F	 N/A	 N/A	

3	 N/A	 Normal	 F	 N/A	 N/A	

4	 N/A	 Normal	 F	 N/A	 N/A	

5	 N/A	 Normal	 M	 N/A	 N/A	

6	 N/A	 Normal	 M	 N/A	 N/A	

7	 N/A	 Normal	 M	 N/A	 N/A	

8	 N/A	 Normal	 M	 N/A	 N/A	

9	
N/A	 Cell	line	

(K562)	

N/A	 N/A	 N/A	

10	
N/A	 Cell	line	

(KCL22)	

N/A	 N/A	 N/A	

11	
N/A	 Cell	line	

(LAMA84)	

N/A	 N/A	 N/A	

12	
N/A	 Cell	line	

(U937)	

N/A	 N/A	 N/A	

13	
N/A	 Cell	line	

(HEK293)	

N/A	 N/A	 N/A	

14	
N/A	 Cell	line	

(KY01)	

N/A	 N/A	 N/A	

15	 022	 Patient	 M	 Diagnosis	 Optimal	
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16	 001	 Patient	 F	 Diagnosis	 Optimal	

17	 003	 Patient	 F	 Diagnosis	 Optimal	

18	 006	 Patient	 F	 Diagnosis	 Optimal	

19	 024	 Patient	 M	 Diagnosis	 Optimal	

20	 021	 Patient	 M	 Diagnosis	 Optimal	

21	 012	 Patient	 F	 Diagnosis	 Optimal	

22	 020	 Patient	 M	 Diagnosis	 Optimal	

23	 013	 Patient	 F	 Diagnosis	 Optimal	

24	 009	 Patient	 F	 Diagnosis	 Optimal	

25	
043	 Patient	 F	 Diagnosis	 Sub-

Optimal	

26	
018	 Patient	 M	 Diagnosis	 Sub-

Optimal	

27	
031	 Patient	 F	 Diagnosis	 Sub-

Optimal	

28	
089	 Patient	 M	 Diagnosis	 Sub-

Optimal	

29	
090	 Patient	 M	 Diagnosis	 Sub-

Optimal	

30	
091	 Patient	 M	 Diagnosis	 Sub-

Optimal	

31	 032	 Patient	 F	 Diagnosis	 Failure	

32	 092	 Patient	 F	 Diagnosis	 Failure	

33	 093	 Patient	 F	 Diagnosis	 Failure	

34	 094	 Patient	 F	 Diagnosis	 Failure	

35	 095	 Patient	 M	 Diagnosis	 Failure	
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36	 096	 Patient	 M	 Diagnosis	 Failure	

37	 097	 Patient	 M	 Diagnosis	 Failure	

38	 098	 Patient	 M	 Diagnosis	 Failure	

39	 099	 Patient	 M	 Diagnosis	 Failure	

40	 100	 Patient	 M	 Diagnosis	 Failure	

41	 030	 Patient	 F	 Diagnosis	 Blast	Crisis	

42	 101	 Patient	 F	 In	BC	 Blast	Crisis	

43	 033	 Patient	 M	 Diagnosis	 Blast	Crisis	

44	 034	 Patient	 M	 Diagnosis	 Blast	Crisis	

45	 035	 Patient	 M	 Diagnosis	 Blast	Crisis	

46	 102	 Patient	 M	 In	BC	 Blast	Crisis	

(47)	

	 Negative	

Control	

(0%	

methylated)	

	 	 	

(48)	

	 Positive	

Control	(10%	

methylated)	

	 	 	

(49)	

	 Positive	

Control	(40%	

methylated)	

	 	 	

(50)	

	 Positive	

Control	(95%	

methylated)	
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7.4.4.	Optimisation	of	the	Pyrosequencing	Technique	

One	limiting	factor	of	the	pyrosequencing	method	is	the	quality	of	the	DNA	

sample.		It	is	therefore	imperative	to	optimise	the	appropriate	amplification	of	

DNA	during	the	PCR	reaction	to	validate	the	successful	bisulphite	conversion	

and	ensure	an	adequate	sample	for	pyrosequencing	analysis.		Figure	7.5	shows	

the	optimisation	of	the	annealing	temperature	for	the	original	PCR	conditions.			

	

The	original	primer	mix	was	as	follows:	

• 16.875µl	ddH2O	

• 2.5µl	buffer	

• 1µl	dNTPs	(5mM)	

• 0.5µl	MgCl2	(25mM)	

• 1µ	primer	mix	(150nM	forward	(biotinylated)	primer,	300nM	reverse	

primer)	

• 0.125µl	Hot	start	Plus	Taqman	(Qiagen,	UK)	

• 3µl	sample	

	

The	original	PCR	running	conditions	were	as	follows:	

• 95°C	–	5	minutes	

• 40	cycles	of:	

o 94°C	–	30	seconds	

o 48-57°C	–	30	seconds	

o 72°C	–	30	seconds	

• 72°C	–	10	minutes	

• 6°C	–	until	used	
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As	is	visible	from	Figure	7.5	A,	the	initial	annealing	temperatures	were	too	low	

and	did	not	give	a	clear	single	band	as	is	optimal.		Higher	temperatures	were	

then	used	(Figure	7.5	B)	and	the	clearest	strong	single	band	appeared	at	54°C.			

These	conditions	were	then	used	for	the	bisulphite-converted	samples	

previously	mentioned	(Table	7.1).			

	

Figure	7.5.		Optimisation	of	Pre-Pyrosequencing	PCR.		Known	positive	

methylation	samples	(1%	and	40%)	were	used.		A.	Temperatures	48-52°C;	no	

clear	single	bands.		B.	Temperatures	53-57°C.		Optimum	temperature	was	54°C;	

this	shows	the	strongest	single	PCR	band.			

	

	

A.	

B.	 53	 54	 55	 56	 57	 53	 54	 55	 56	 57	
-ve	

control	
-ve	

control	
-ve	

control	

1%	Methylated	 40%	Methylated	

48	 49	 50	 51	 52	

1%		 1%		 1%		 1%		 1%		40%		 40%		 40%		 40%		 40%		
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Figure	7.6	shows	the	results	of	the	initial	pre-pyrosequencing	PCR	of	the	

samples,	using	the	original	conditions.		Samples	6,	13,	23	and	24	were	not	used	

in	the	pyrosequencing	analysis	that	followed,	as	they	were	not	adequately	

amplified	during	the	PCR.		The	bands	for	all	samples	are	not	strong	and	

indicated	that	the	PCR	amplification	was	not	optimal.		This	was	confirmed	by	

the	subsequent	pyrosequencing	analysis	(Figure	7.7),	which	shows	

representative	results	of	the	initial	pyrosequencing	analysis.		All	samples	

appeared	to	have	extremely	low	peaks,	indicating	the	sample	quality	was	not	

good	enough	for	pyrosequencing	analysis.		(Quality	control	checks	performed	

by	the	software	also	highlight	this	by	the	red	percentage	boxes	apparent	in	most	

samples.)		Figure	7.7	D	shows	a	sample	that	completely	failed;	the	result	shows	

only	background	noise.		Some	samples	gave	low	methylation	levels	at	certain	

positions.		However,	the	low	sample	peaks	make	this	hard	to	interpret;	

‘methylation’	peaks	may	just	be	background	noise	or	some	methylation	may	be	

hidden	by	background	noise.			

	

This	experiment	needed	repeating,	with	amended	PCR	conditions	to	increase	

amplification	and	quality	of	the	sample	and	produce	valid	and	interpretable	

results.			
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Figure	7.6.		Initial	Pre-Pyrosequencing	Results.		A-D.	Electrophoresis	gels	of	

samples	(Table	7.1)	following	bisulphite	conversion.			

	

	 	

1	 2	 3	 4	 5	 7	 8	 9	
Meth	control	

(49)	

11	 12	 14	 15	 16	 17	 19	 20	

A.	

B.	
Meth	control	

(49)	

21	 22	 23	 24	 25	 26	 27	 28	

Meth	control	

36	 37	 38	 39	 40	 41	 42	 43	

31	29	 32	30	 35	 (47)	33	 34	 (48)	 (48)	

44	 46	45	

Meth	control	

(47)	 (48)	 (48)	

C.	

D.	
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Figure	7.7.		Representative	Results	of	Initial	Pyrosequencing	Analysis.		A.	

Normal	healthy	volunteer.		B.	Failure	patient	(diagnosis).		C.	Negative	control	

(0%	methylated).		D.	Positive	control	(95%	methylated).		All	samples	showed	

inadequate	analysis.			

	

	 	

A.		Sample	5	

B.		Sample	36	

C.	Sample	(47)	

D.		Sample	(50)	
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The	following	are	the	amended	conditions	for	the	PCR	amplification.		These	

changes	gave	valid	results	and	were	deemed	the	optimal	conditions	for	the	

pyrosequencing	analysis.			

	

The	amended	primer	mix	was	as	follows:	

• 19.15µl	ddH2O	

• 3µl	buffer	

• 1.2µl	MgCl2	(25mM)	

• 1.25µl	dNTPs	(5mM)	

• 1.25µ	primer	mix	(150nM	forward	(biotinylated)	primer,	300nM	reverse	

primer)	

• 0.15µl	Hot	start	Plus	Taqman	(Qiagen,	UK)	

• 4µl	sample	

	

The	amended	PCR	running	conditions	were	as	follows:	

• 95°C	–	5	minutes	

• 20	cycles:	

o 94°C	–	20	seconds	

o 54°C	–	40	seconds	

o 72°C	–	30	seconds	

• 20	cycles:	

o 94°C	–	30	seconds	

o 54°C	–	30	seconds	

o 72°C	–	35	seconds	

• 72°C	–	15	minutes	

• 6°C	–	until	used		
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7.4.5.	Pyrosequencing	Analysis	of	CIP2A	Methylation	

Using	the	amended	conditions,	all	bisulphite-converted	samples	were	amplified	

by	PCR	(Figure	7.8).		The	bands	are	stronger	than	in	the	previous	sample	run	

(Figure	7.6),	indicating	superior	amplification	results.		Peak	heights	for	this	

pyrosequencing	run	(Figure	7.9)	were	much	greater	than	previously,	verifying	

the	quality	of	the	sample	product	following	bisulphite	conversion	and	PCR	

amplification.		The	yellow	areas	that	are	indicative	of	internal	controls	at	non-

CpG	sites	are	all	clear	of	any	peaks,	further	confirming	the	bisulphite	conversion	

reactions	were	successful.		All	three	positive	methylated	controls	gave	correct	

methylation	levels	(approximately	10%,	20%	and	95%)	and	importantly,	the	

negative	control	sample	had	no	methylation	present.			

	

Figure	7.8.		Amended	Method	Pre-Pyrosequencing	Results.		A-B.	

Electrophoresis	gels	of	samples	(Table	7.1)	following	bisulphite	conversion.			

	

1	 2	 3	 4	 5	 6	 7	 8	 11	9	 12	10	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 25	23	 24	

26	 27	 28	 29	 30	 31	 32	 33	 36	34	 37	35	 38	 39	 40	 41	 42	 43	 44	 45	 46	(47)	 (50)	(48)	(49)	
Meth	control	

A.	

B.	
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Figure	7.9.		Representative	Results	of	Pyrosequencing	Analysis.			A.	

Negative	control;	B.C.D.	Positive	controls	(10%,	20%,	95%	methylated);	E.	K562	

(BCR-ABL1	positive,	high	CIP2A);	F.	KCL22	(BCR-ABL1	positive,	low	CIP2A);	G.	

U937	(BCR-ABL1	negative);	H.I.J.K.	Diagnostic	patient	samples	(Optimal,	Sub-

optimal,	Failure,	Blast	Crisis);	L.	Blast	Crisis	patient	(in	blast	crisis).			

	

A.		Sample	(47)	–	nega1ve	control	0%	methylated	

B.		Sample	(48)	–	posi2ve	control	10%	methylated	

C.		Sample	(49)	–	posi2ve	control	40%	methylated	
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D.		Sample	(50)	–	posi2ve	control	95%	methylated	

E.		Sample	9	–	K562	

F.		Sample	10	–	KCL22	

G.		Sample	12	–	U937	
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H.		Sample	19	–	Op.mal	in	CP	

I.		Sample	26	–	Sub-Op1mal	in	CP	

J.		Sample	31	–	Failure	in	CP	
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7.4.6.	Results	Summary	

In	this	CpG	island	of	CIP2A,	no	methylation	was	detected	in	any	of	the	six	cell	

lines,	eight	normal	healthy	volunteers	or	32	patient	samples	within	this	

experiment.		Three	positive	controls,	including	one	high	methylated	control	

sample,	showed	methylation;	this	verifies	the	pyrosequencing	technique	used	

here.		This	indicates	that	the	CIP2A	gene	is	not	methylated	in	human	white	cells,	

irrespective	of	the	presence	of	CML.						 	

K.		Sample	41	–	BC	in	CP	

L.		Sample	46	–	BC	in	BC	
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7.5.	Discussion	

CpG	island	methylation	has	been	shown	to	be	deregulated	in	both	solid	tumours	

and	haematological	malignancies.		It	is	known	that	the	hypermethylation	of	

tumour	suppressor	genes	and	hypomethylation	of	a	number	of	oncogenes	plays	

an	important	role	in	haematological	malignancies(Constanze	&	Cockerill,	2011).		

As	stated,	the	hypomethylation	of	oncogenes	has	been	shown	in	certain	

malignancies;	e.g.	c-Ha-ras	is	hypomethylated	in	colonic	adenocarcinomas(P.	M.	

Das	&	Singal,	2004;	Feinberg	&	Cogelstein,	1983)In	CML,	a	variety	of	genes	have	

been	shown	to	have	an	increased	level	of	methylation	that	correlates	with	

disease	progression	into	advanced	(AP/BC)	stages	of	the	malignancy;	these	

include	calcitonin(Nelkin,	Przepiorka,	Burke,	Thomas,	&	Baylin,	1991),	HIC1(J.-

P.	J.	Issa,	Zehnbauer,	Kaufmann,	Biel,	&	Baylin,	1997)ER(J.-P.	J.	Issa	et	al.,	1996)	

and	Abl1(Asimakopoulos,	Shteper,	Fibach,	et	al.,	1999;	Asimakopoulos,	Shteper,	

Krichevsky,	et	al.,	1999).		Interestingly,	the	significance	of	Abl1	promoter	(Pa)	

methylation	is	highly	disputed	in	CML	research,	with	reported	levels	of	CP-CML	

methylation	varying	from	26%(Ben-Yehuda	et	al.,	1997)	to	81%(Jelinek	et	al.,	

2011).		However,	as	stated	earlier,	high	levels	of	Pa	methylation	in	CML	bone	

marrow	(BM)	samples	(both	in	CP	and	at	diagnosis)	compared	to	a	complete	

absence	of	methylation	in	normal	BM,	suggest	the	possibility	of	Pa	methylation	

as	an	early	indicator	of	CML(Sun	et	al.,	2001).		(Boultwood	&	Wainscoat,	2007)	

	

This	chapter	aimed	to	investigate	the	potential	variation	in	methylation	levels	of	

the	CIP2A	promoter.		However,	gene	methylation	of	the	CIP2A	oncogene	in	

clinical	samples	is	as	yet	completely	unknown	in	any	malignancy,	thus	this	
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chapter	represents	entirely	novel	information	on	CIP2A	epigenetics.		Despite	

the	growing	level	of	interest	in	CIP2A,	only	one	paper	has	touched	on	the	

potential	implications	of	its	methylation(Khanna	et	al.,	2011).		In	this	paper	they	

identified	the	CpG	island	of	interest	and	measured	the	levels	of	CIP2A	

methylation	in	four	normal	blood	samples	and	two	adherent	cancer	cell	lines	

(AGS	and	HeLa).		Though	they	saw	no	methylation,	this	body	of	work	

investigated	very	few	samples,	with	no	non-adherent	cell	lines	or	patient	

samples	included	in	their	study.		Given	the	apparent	differences	in	the	identified	

levels	of	Abl1	methylation	reported	by	different	groups(Ben-Yehuda	et	al.,	1997;	

J.	Issa	et	al.,	1999;	Jelinek	et	al.,	2011;	Nguyen	et	al.,	2000),	investigating	CIP2A	

methylation	in	a	larger	cohort	that	included	a	variety	of	samples	is	necessary.			

	

In	this	study	the	methylation	of	the	CpG	island	located	at	the	CIP2A	promoter	

was	measured	in	a	total	of	50	samples;	these	included	one	negative	and	three	

positive	controls,	four	BCR-ABL1	positive	and	two	BCR-ABL1	negative	cell	lines,	

eight	normal	peripheral	blood	samples,	and	32	diagnostic	samples	of	CML	

patients	with	known	clinical	outcomes.		The	validation	of	the	pyrosequencing	

technique	is	clearly	seen	by	the	positive	and	negative	controls.			

	

For	every	cell	line,	CML	patient	sample	and	normal	PBMC	sample,	the	bisulphite	

treatment	of	genomic	DNA	converted	all	cytosines	to	thymidines,	indicating	a	

completely	negative	methylation	result	at	every	CG	dinucleotide	investigated.		

This	confirms	that	the	variation	in	CIP2A	expression	between	cancerous	and	

non-cancerous	samples	is	not	due	to	its	promoter	methylation/de-methylation,	
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nor	is	the	variation	in	CIP2A	expression	between	patient	cohorts.		Additionally,	

this	work	validates	the	initial	work	by	Khanna	et	al(Khanna	et	al.,	2011)	as	the	

normal	human	blood	samples	within	this	thesis	are	also	negative	for	CIP2A	

methylation.			

	

This	work	clearly	shows	that	the	CIP2A	oncogene	is	not	regulated	by	

methylation;	however	other	epigenetic	mechanisms	cannot	be	ruled	out.		As	yet,	

there	is	no	information	on	acetylation	of	CIP2A,	however	a	small	number	of	

papers	have	shown	potential	links	between	miRNAs	and	this	gene’s	oncogenic	

activity(Jung	et	al.,	2013).		This	will	hopefully	be	a	fruitful	area	of	future	

research	into	CIP2A.		Additionally,	the	effects	of	PP2Ac	methylation	have	been	

highlighted	in	some	publications(Jackson	&	Pallas,	2012;	Seshacharyulu	et	al.,	

2013;	Stanevich	et	al.,	2014)Though	this	chapter	may	have	ruled	out	the	

regulation	of	CIP2A	by	its	direct	methylation,	the	possibility	of	CIP2A	

involvement	in	promoting	PP2Ac	methylation	(and	thereby	its	repression)	is	a	

very	interesting	prospect	for	expanding	our	knowledge	of	the	CIP2A/PP2A	

pathway	in	haematological	malignancies.			
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Chapter	8:	Conclusions	
With	the	future	of	modern	medicine	likely	to	become	more	personalised,	it	is	

imperative	that	we	know	as	much	as	possible	about	the	treatment	options	at	

our	disposal.		In	CML,	treatment	options	have	long	favoured	imatinib,	the	gold-

standard	tyrosine	kinase	treatment	since	its	approval	in	2001.		The	discovery	of	

this	TKI	treatment	accelerated	CML	therapy	and	drastically	improved	CML	

survival.		However,	imatinib	is	not	a	curative	therapy	and	resistance	or	failure	

still	occurs	in	at	least	one	third	of	CML	patients.			

	

When	this	work	began,	dasatinib	and	nilotinib	were	newly	approved	as	first	line	

CML	treatment	and	though	clinicians	now	had	a	range	of	therapies	at	their	

disposal,	it	remained	unclear	how	to	distinguish	an	individual’s	best	course	of	

treatment.		Understanding	the	complex	pathophysiology	of	CML	and	identifying	

useful	clinical	biomarkers	to	monitor	could	help	distinguish	which	patients	

would	benefit	most	from	2G	TKIs	as	first	line	treatment.			

	

Knowledge	and	interest	around	the	CIP2A	oncogene	has	rapidly	grown	since	it	

was	discovered	as	an	interacting	partner	for	PP2A	in	2002	and	later	as	a	potent	

oncogenic	inhibitor	of	this	tumour	suppressor(Junttila	et	al.,	2007).		Its	

overexpression	in	a	wide	array	of	tumour	types	means	its	involvement	in	

malignancies	is	likely	crucial	for	tumour	development	and	disease	progression.			
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Overexpression	of	CIP2A	protein	in	CP-CML	and	its	use	as	a	potential	biomarker	

of	blast	crisis	in	imatinib	treated	CML	was	an	intriguing	previous	observation(C.	

M.	Lucas	et	al.,	2011).		The	present	work	extends	this	by	separating	treatment	

naïve	CP-CML	into	high/low	CIP2A	cohorts	and	observed	a	stark	difference	in	

clinical	outcomes	that	was	dependent	upon	future	CML	therapy.		Survival	and	

progression	rates	for	all	low	CIP2A	patients,	irrespective	of	TKI	treatment	and	

high	CIP2A	patients	treated	with	2G	TKIs,	were	excellent.		However	high	CIP2A	

patients	treated	with	imatinib	had	poor	OS,	PFS	and	EFS.		Additionally,	none	of	

this	poor	outcome	cohort	achieved	a	CCR	or	better	–	a	stark	contrast	to	all	other	

cohorts.			

	

The	inferior	results	of	imatinib	treatment	upon	high	CIP2A	are	not	seen	in	

patients	treated	with	2G	TKIs,	therefore	CIP2A’s	potential	biomarker	status	was	

not	upheld	in	2G	TKI	treated	CML.		This	indicated	that	dasatinib	and	nilotinib	

have	an	additional	effect	of	suppressing	the	oncogenic	activity	of	CIP2A	in	

patients	that	would	otherwise	have	fared	poorly	on	imatinib.		Chapter	4	

investigated	this	more	thoroughly	and	showed	a	superior	suppression	of	CIP2A	

protein	level	by	dasatinib	and	nilotinib	over	imatinib.		This,	however,	cannot	be	

conclusively	stated	to	be	a	direct	molecular	targeting	of	CIP2A.			

	

This	work	then	looked	more	closely	at	the	molecular	workings	of	the	

CIP2A/PP2A	pathway	(Chapter	5)	and	suggests	complex	feedback	mechanisms	

between	CIP2A,	PP2A,	BCR-ABL1	and	c-Myc.		Decreasing	CIP2A	level	via	siRNA	
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or	increasing	via	transient	transfection	had	a	causal	effect	on	c-Myc	total	level	

and	stability,	PP2A	phosphatase	activity	and	BCR-ABL1	tyrosine	kinase	activity.				

Though	this	work	shows	CIP2A	levels	to	inversely	correlate	with	PP2A	activity,	

as	measured	by	tyrosine	307	phosphorylation,	the	direct	interactions	between	

these	two	molecules	are	not	shown.		The	many	PP2A	holoenzymes	that	can	be	

formed	from	the	three	subunits	that	make	up	this	trimeric	protein	are	varied	in	

their	subcellular	localisations	and	binding	partners(Haesen	et	al.,	2014;	

Seshacharyulu	et	al.,	2013).		It	is	possible	that	CIP2A	targets	the	effects	of	

multiple	PP2A	molecules	that	vary	between	tumours.		It	is	also	possible	that	the	

binding	of	CIP2A	to	PP2A	is	disrupted	by	dasatinib	and	nilotinib	and	not	by	

imatinib,	hence	the	superior	results.		Individual	patients	may	express	varying	

proportions	of	PP2A	complexes,	some	of	which	are	unaffected	by	CIP2A,	which	

remains	at	low	levels.		Investigating	the	different	PP2A	subunits	and	their	

interactions	with	CIP2A	and	c-Myc	within	a	CML	population	would	be	an	

extremely	interesting	area	of	research.		Unfortunately	due	to	time	restrictions	

and	the	vast	amount	of	research	this	would	entail,	I	was	unable	to	take	this	idea	

further.			

	

The	relationship	between	CIP2A	and	c-Myc	is	also	complex.		CIP2A	is	reported	

to	be	localised	to	the	cytoplasmic	or	perinuclear	region	across	a	range	of	

malignancies,	yet	c-Myc	is	mainly	nuclear.		Thus,	the	direct	association	of	these	

two	proteins	or	the	way	in	which	they	interact	to	give	the	correlating	results	

shown	in	this	thesis	seems	unclear.		A	recent	study	described	a	novel	form	of	c-

Myc	that	is	phosphorylated	by	c-Abl1	directly,	at	tyrosine	74(Lobo	et	al.,	2013).		
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c-Myc	pY74	is	otherwise	not	described	within	the	literature.		It	was	reported	to	

amount	to	only	a	small	fraction	of	the	total	cellular	myc,	though	in	CML	cell	lines	

its	ablation	correlated	directly	with	a	decrease	in	BCR-ABL1	activity;	K562	cells	

were	treated	with	imatinib;	this	showed	no	decrease	in	total	c-Myc	which	was	

nuclear,	though	c-Myc	pY74	decreased	statistically.		Additionally,	c-Myc	pY74	

was	not	present	in	the	BCR-ABL1	negative	cell	line	HL60.		It	is	possible	that	the	

newly	described	c-Myc	pY74	may	be	the	CIP2A-interacting	form	within	the	

cytoplasm.		The	colocalisation	of	CIP2A	and	c-Myc	pY74	and	the	effects	of	2G	

TKIs	upon	this	tyrosine	phosphorylation	was	not	investigated	and	may	be	an	

area	of	future	interest	in	CML.			

	

CIP2A	is	overexpressed	in	solid	tumours,	but	not	in	normal	adjacent	cells	and	is	

more	highly	expressed	in	more	aggressive	tumours.		Though	CIP2A	protein	was	

stratified	according	to	high/low	levels	in	our	CML	patients,	it	had	not	previously	

been	investigated	as	to	why	this	varying	level	was	observed.		Many	genes	

express	different	isoforms	that	can	have	stark	alterations	in	translation,	

stability	and	protein-protein	interactions(Surget	et	al.,	2013).		It	was	

hypothesised	that	high/low	CIP2A	protein	levels	were	due	to	different	

expressions	of	CIP2A	isoforms	in	CML	patients.		I	showed	the	presence	of	both	

long	and	truncated	CIP2A	transcripts	in	BCR-ABL1	positive	cells.		Interestingly,	

the	shorter	gene	transcript	was	not	detectable	at	the	protein	level,	suggesting	a	

defect	in	its	protein	translation	or	a	rapid	degradation	that	makes	for	its	

difficult	detection	at	the	protein	level.		Also,	an	inverse	correlation	between	the	

full	length	CIP2A	mRNA	and	CIP2A	protein	level	was	observed,	suggesting	a	
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compensation	mechanism	of	the	cell	to	produce	more	CIP2A	when	the	level	is	

minimal.		It	would	be	interesting	to	observe	the	proteasomal	degradation	of	

CIP2A	in	high/low	CIP2A	expressing	cells	as	a	more	effective	or	rapid	

ubiquitination	process	may	be	responsible	for	the	lower	levels	of	CIP2A	protein	

in	patients	with	a	more	favourable	clinical	outcome.			

	

Finally,	the	possibility	of	epigenetic	regulation	as	an	explanation	for	differing	

CIP2A	levels	was	considered.		Unregulated	methylation	of	genes	has	been	

shown	to	play	a	role	in	cell	transformation	and	disease	progression	in	a	variety	

of	malignancies(Constanze	&	Cockerill,	2011;	Khanna	et	al.,	2011).		Though	this	

work	had	a	stable	technique	for	the	detection	of	methylation,	the	CIP2A	

promoter	was	found	to	be	unmethylated	at	the	CpG	island	investigated.		All	

residues	included	were	unmethylated	in	both	BCR-ABL1	positive	and	negative	

cells	at	all	stages	of	the	disease	investigated	and	suggests	this	type	of	epigenetic	

regulation	of	CIP2A	is	not	of	importance	in	CML.			
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8.1.	Summary	

In	summarising	the	aims	of	this	work	it	can	be	concluded	that	the	suppression	

or	overexpression	of	CIP2A	is	causal	in	defining	c-Myc	stability,	BCR-ABL1	

tyrosine	kinase	activity	and	PP2A	inactivity	and	the	suppression	of	CIP2A	in	

conjunction	with	TKI	therapy	would	be	a	promising	future	of	CML	treatment.		

Different	CIP2A	transcript	variants	are	present	in	BCR-ABL1	positive	cells.		The	

presence/absence	of	detectable	CIP2A	protein	for	each	transcript	variant	may	

be	due	to	differing	stabilities	and/or	protein	translation	success.		It	is	possible	

that	more	CIP2A	isoforms	will	be	discovered	in	the	future	and	these	should	be	

investigated	in	relation	to	protein	expression	in	CML.		The	CIP2A	promoter	is	

not	methylated	in	my	samples,	irrespective	of	whether	or	not	they	are	BCR-

ABL1	positive	and	suggests	this	is	not	a	mechanism	of	CIP2A	regulation.			

	

But	the	most	critically	relevant	finding	is	that	the	potential	biomarker	status	of	

CIP2A	is	not	upheld	in	2G	TKI	treated	CML	and	that	this	is	due	to	the	superior	

suppression	of	CIP2A	by	dasatinib	and	nilotinib	in	comparison	to	imatinib	

treatment.		This	has	the	valuable	implication	that	CIP2A	assessment	could	be	

part	of	the	diagnostic	work-up	of	newly	diagnosed	CML,	and	that	patients	with	

high	levels	should	receive	a	2G	TKI	in	preference	to	imatinib,	whereas	patients	

with	low	levels	could	safely	receive	either	imatinib	or	a	2G	TKI.		However,	

caution	is	needed	in	extrapolating	the	present	data	as	they	derive	from	only	69	

patients	who	were	selected	for	cases	with	poor	outcome.		Validation	of	the	

present	findings	in	an	independent	un-selected	series	is	necessary.			
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Appendix	
Patient	Characteristics	Table	of	all	patients	used	within	this	thesis:	
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001	 59	 F	 IM	 ALIVE	 N/81.53	 N/81.53	 OPTIMAL	 LOW	

002	 62	 F	 IM	 ALIVE	 N/24.85	 Y/24.85	 OPTIMAL	 LOW	

003	 35	 F	 IM	 ALIVE	 N/103.1	 Y/22.13	 OPTIMAL	 LOW	

004	 49	 F	 IM	 ALIVE	 N/41.92	 Y/45.3	 OPTIMAL	 LOW	

005	 54	 F	 IM	 ALIVE	 N/18.58	 Y/18.58	 OPTIMAL	 LOW	

006	 30	 F	 IM	 ALIVE	 N/84.99	 N/84.99	 OPTIMAL	 LOW	

007	 18	 F	 IM	 ALIVE	 N/76.01	 Y/22.39	 OPTIMAL	 LOW	

008	 68	 F	 IM	 ALIVE	 N/50.6	 N/50.6	 OPTIMAL	 LOW	

009	 55	 F	 IM	 ALIVE	 N/66.94	 N/66.94	 OPTIMAL	 LOW	

010	 23	 F	 IM	 ALIVE	 N/29.88	 Y/18.61	 OPTIMAL	 LOW	

011	 43	 F	 IM	 ALIVE	 N/34.98	 Y/34.98	 OPTIMAL	 LOW	

012	 45	 F	 IM	 ALIVE	 N/54.08	 N/54.08	 OPTIMAL	 LOW	
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013	 67	 F	 IM	 ALIVE	 N/34.95	 N/34.95	 OPTIMAL	 LOW	

014	 40	 F	 IM	 ALIVE	 N/17.62	 N/17.95	 OPTIMAL	 LOW	

015	 70	 F	 IM	 ALIVE	 N/11.54	 N/14.27	 OPTIMAL	 LOW	

016	 73	 M	 IM	 DEAD	 N/92.98	 N/92.98	 N/A	 LOW	

017	 59	 M	 IM	 ALIVE	 N/86.5	 N/86.5	 OPTIMAL	 LOW	

018	 47	 M	 IM	 ALIVE	 N/14.3	 Y/17.29	 SUB-

OPTIMAL	

LOW	

019	 55	 M	 IM	 ALIVE	 N/86.37	 N/86.37	 OPTIMAL	 LOW	

020	 48	 M	 IM	 ALIVE	 N/82.09	 N/82.09	 OPTIMAL	 LOW	

021	 48	 M	 IM	 ALIVE	 N/24.92	 N/24.92	 OPTIMAL	 LOW	

022	 39	 M	 IM	 ALIVE	 N/42.12	 Y/25.78	 OPTIMAL	 LOW	

023	 72	 M	 IM	 ALIVE	 N/69.27	 N/69.27	 OPTIMAL	 LOW	

024	 47	 M	 IM	 ALIVE	 N/66.44	 Y/16.27	 OPTIMAL	 LOW	

025	 33	 M	 IM	 ALIVE	 N/68.42	 N/68.42	 OPTIMAL	 LOW	

026	 28	 M	 IM	 ALIVE	 N/14.79	 Y/14.79	 OPTIMAL	 LOW	

027	 24	 M	 IM	 ALIVE	 N/20.81	 Y/20.81	 OPTIMAL	 LOW	

028	 58	 M	 IM	 ALIVE	 N/9.01	 Y/9.04	 FAILURE	 LOW	
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029	 59	 M	 IM	 ALIVE	 N/15.88	 N/17.95	 OPTIMAL	 LOW	

030	 30	 F	 IM	 ALIVE	 Y/14.79	 Y/9.34	 BC	 HIGH	

031	 28	 F	 IM	 ALIVE	 N/15.98	 Y/15.98	 SUB-

OPTIMAL	

HIGH	

032	 68	 F	 IM	 ALIVE	 N/9.9	 Y/9.9	 FAILURE	 HIGH	

033	 58	 M	 IM	 ALIVE	 Y/7.17	 Y/7.17	 BC	 HIGH	

034	 23	 M	 IM	 ALIVE	 Y/36.03	 Y/11.87	 BC	 HIGH	

035	 33	 M	 IM	 ALIVE	 Y/12.53	 Y/13.91	 BC	 HIGH	

036	 56	 M	 IM	 ALIVE	 Y/11.28	 Y/11.28	 BC	 HIGH	

037	 24	 M	 IM	 ALIVE	 Y/21.44	 Y/22.98	 BC	 HIGH	

038	 64	 M	 IM	 ALIVE	 Y/15.62	 Y/15.62	 BC	 HIGH	

039	 60	 M	 IM	 ALIVE	 Y/31.53	 N/31.53	 BC	 HIGH	

040	 32	 M	 IM	 ALIVE	 Y/15.19	 Y/15.19	 BC	 HIGH	

041	 45	 M	 IM	 ALIVE	 Y/23.18	 Y/23.18	 BC	 HIGH	

042	 69	 F	 DAS	 ALIVE	 N/54.12	 N/54.12	 OPTIMAL	 LOW	

043	 30	 F	 DAS	 ALIVE	 N/16.77	 Y/16.77	 SUB-

OPTIMAL	

LOW	
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044	 24	 F	 DAS	 ALIVE	 N/44.48	 N/44.48	 OPTIMAL	 LOW	

045	 51	 F	 DAS	 ALIVE	 N/27.16	 N/27.16	 OPTIMAL	 LOW	

046	 62	 F	 DAS	 ALIVE	 N/23.93	 Y/12.79	 OPTIMAL	 LOW	

047	 58	 F	 DAS	 ALIVE	 N/12.66	 N/12.66	 OPTIMAL	 LOW	

048	 54	 M	 DAS	 ALIVE	 N/59.67	 N/59.67	 OPTIMAL	 LOW	

049	 43	 M	 DAS	 ALIVE	 N/23.7	 N/23.7	 OPTIMAL	 LOW	

050	 48	 M	 DAS	 ALIVE	 N/37.55	 N/37.55	 OPTIMAL	 LOW	

051	 48	 M	 DAS	 ALIVE	 N/21.14	 N/21.14	 OPTIMAL	 LOW	

052	 66	 M	 DAS	 ALIVE	 N/18.67	 N/18.67	 OPTIMAL	 LOW	

053	 54	 F	 DAS	 ALIVE	 N/44.02	 N/44.02	 OPTIMAL	 HIGH	

054	 47	 F	 DAS	 ALIVE	 N/43.73	 Y/31.89	 OPTIMAL	 HIGH	

055	 73	 F	 DAS	 ALIVE	 N/23.87	 N/23.87	 OPTIMAL	 HIGH	

056	 53	 F	 DAS	 ALIVE	 N/17.98	 N/17.98	 OPTIMAL	 HIGH	

057	 52	 M	 DAS	 ALIVE	 N/54.35	 N/54.35	 OPTIMAL	 HIGH	

058	 62	 M	 DAS	 ALIVE	 N/52.47	 N/52.47	 OPTIMAL	 HIGH	

059	 54	 M	 DAS	 ALIVE	 N/37.91	 N/37.91	 OPTIMAL	 HIGH	

060	 49	 F	 NIL	 ALIVE	 N/64.67	 N/64.67	 OPTIMAL	 LOW	
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061	 63	 F	 NIL	 ALIVE	 N/61.18	 N/61.18	 OPTIMAL	 LOW	

062	 53	 F	 NIL	 ALIVE	 N/60	 N/60	 OPTIMAL	 LOW	

063	 67	 F	 NIL	 ALIVE	 N/60.49	 N/60.49	 OPTIMAL	 LOW	

064	 46	 M	 NIL	 ALIVE	 N/58.82	 N/58.82	 OPTIMAL	 LOW	

065	 45	 M	 NIL	 ALIVE	 N/57.21	 N/57.21	 OPTIMAL	 LOW	

066	 64	 M	 NIL	 ALIVE	 N/8.81	 N/8.81	 OPTIMAL	 LOW	

067	 57	 F	 NIL	 ALIVE	 N/56.45	 N/56.45	 OPTIMAL	 HIGH	

068	 27	 F	 NIL	 ALIVE	 N/19.86	 N/19.86	 OPTIMAL	 HIGH	

069	 74	 F	 NIL	 ALIVE	 N/11.77	 N/11.77	 OPTIMAL	 HIGH	

070	 73	 F	 N/A	 N/A	 N/A	 N/A	 N/A	 LOW	

071	 54	 F	 N/A	 N/A	 N/A	 N/A	 N/A	 LOW	

072	 68	 F	 N/A	 N/A	 N/A	 N/A	 N/A	 LOW	

073	 69	 M	 N/A	 N/A	 N/A	 N/A	 N/A	 LOW	

074	 55	 M	 N/A	 N/A	 N/A	 N/A	 N/A	 LOW	

075	 54	 M	 N/A	 N/A	 N/A	 N/A	 N/A	 LOW	

076	 34	 M	 N/A	 N/A	 N/A	 N/A	 N/A	 LOW	

077	 35	 F	 N/A	 N/A	 N/A	 N/A	 N/A	 HIGH	

078	 27	 F	 N/A	 N/A	 N/A	 N/A	 N/A	 HIGH	
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079	 62	 F	 N/A	 N/A	 N/A	 N/A	 N/A	 HIGH	

080	 52	 F	 N/A	 N/A	 N/A	 N/A	 N/A	 HIGH	

081	 29	 M	 N/A	 N/A	 N/A	 N/A	 N/A	 HIGH	

082	 69	 M	 N/A	 N/A	 N/A	 N/A	 N/A	 HIGH	

083	 63	 F	 N/A	 ALIVE	 N/A	 N/A	 N/A	 LOW	

084	 74	 F	 N/A	 ALIVE	 N/A	 N/A	 N/A	 HIGH	

085	 76	 M	 N/A	 ALIVE	 N/A	 N/A	 N/A	 HIGH	

086	 61	 M	 N/A	 ALIVE	 N/A	 N/A	 N/A	 LOW	

087	 69	 F	 N/A	 DEAD	 N/A	 N/A	 N/A	 LOW	

088	 60	 M	 N/A	 DEAD	 N/A	 N/A	 N/A	 HIGH	

089	 55	 M	 N/A	 ALIVE	 N/A	 N/A	 SUB-

OPTIMAL	

LOW	

090	 24	 M	 N/A	 ALIVE	 N/A	 N/A	 SUB-

OPTIMAL	

HIGH	

091	 39	 M	 N/A	 ALIVE	 N/A	 N/A	 SUB-

OPTIMAL	

HIGH	

092	 45	 F	 N/A	 ALIVE	 N/A	 N/A	 FAILURE	 LOW	

093	 68	 F	 N/A	 ALIVE	 N/A	 N/A	 FAILURE	 LOW	

094	 69	 F	 N/A	 ALIVE	 N/A	 N/A	 FAILURE	 HIGH	

095	 70	 M	 N/A	 ALIVE	 N/A	 N/A	 FAILURE	 HIGH	
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096	 58	 M	 N/A	 ALIVE	 N/A	 N/A	 FAILURE	 HIGH	

097	 56	 M	 N/A	 ALIVE	 N/A	 N/A	 FAILURE	 HIGH	

098	 49	 M	 N/A	 ALIVE	 N/A	 N/A	 FAILURE	 HIGH	

099	 62	 M	 N/A	 ALIVE	 N/A	 N/A	 FAILURE	 HIGH	

100	 63	 M	 N/A	 ALIVE	 N/A	 N/A	 FAILURE	 HIGH	

101	 60	 F	 N/A	 DEAD	 N/A	 N/A	 BC	 HIGH	

102	 51	 M	 N/A	 DEAD	 N/A	 N/A	 BC	 HIGH	
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List	of	Abbreviations	

ABBREVIATION	 DEFINITION	

2G/3G	TKI	 2nd	generation/3rd	generation	TKI	

ABC	 ATP-binding	cassette	

ABCC3	 ATP-binding	cassette	C3	

ABL1	 Abelson	leukaemia	

ADAGIO	
Adherence	assessment	with	Glivec:	indicators	and	

outcomes	

AGP	 α1-acid	glycoprotein	

AGS	 Human	Caucasian	gastric	adenocarcinoma	

AKT	(PKB)	 Protein	kinase	B	

ALL	 Acute	lymphoblastic	leukaemia	

AML	 Acute	myeloid	leukaemia		

AP	 Accelerated	phase	

APML	 Acute	promyelocytic	leukaemia	

APS	 Ammonium	persulphate	

ATF2	 Activating	transcription	factor	2	

ATP	 Adenosine	triphosphate	

BC	 Blast	crisis	

BCR	 Breakpoint	cluster	region	

BELA	
Bosutinib	efficacy	and	safety	in	newly	diagnosed	chronic	

myeloid	leukaemia	

BM	 Bone	marrow	

BOS	 Bosutinib	

BRCA1/2	 Breast	cancer	1/2	
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BSA	 Bovine	serum	albumin	

CCR	 Complete	Cytogenetic	Response	

CHR	 Complete	haematological	response	

CIP2A	 Cancerous	inhibitor	of	PP2A	

CIP2A-1a	 CIP2A	long	transcript	(905	amino	acids)	

CIP2A-1b	 CIP2A	short	transcript	(746	amino	acids)	

c-KIT	 Cellular	stem	cell	growth	factor	receptor	

CML	 Chronic	myeloid	leukaemia	

c-Myc	 v-myc	myelocytomatosis	viral	oncogene	homolog	

CP	 Chronic	phase	

CpG	 Cytosine-phosphate-guanine	

CrKL	
V-Crk	Avian	Sarcoma	Virus	CT10	Oncogene	Homolog-

Like	

DAS	 Dasatinib	

DASISION	 Dasatinib	versus	imatinib	study	in	treatment-naïve	CML	

DMEM	 Dulbecco’s	modified	eagle	medium	

DMSO	 Dimethyl	sulphoxide	

DNA	 Deoxyribonucleic	acid	

dNTP	 Deoxyribonucleotide	triphosphate	

DSSB	 Double	strength	SDS	buffer	

DTT	 DL-dithiothreitol	

E2F1	 Eurkayote	Transcription	factor	2	

ECL	 Enhanced	chemiluminescence	

EDTA	 Ethylene	diamine	tetraacetic	acid	

EFS	 Event	free	survival	

EGTA	 Ethylene	glycol	tetraacetic	acid	

ELISA	 Enzyme-linked	immunosorbence	assay	

ELK1	 ETS	domain-containing	protein	Elk-1	

ELN	 European	LeukemiaNet	

ENESTnd	
Evaluating	nilotinib	efficacy	and	safety	in	clinical	trials	

newly	diagnosed	patients	



244	|	P a g e 	

	

EPIC	
Phase	III	trial	of	ponatinib	compared	with	imatinib	in	

patients	with	newly	diagnosed	CP-CML	

ER	 Endoplasmic	reticulum	

ERK	 Extracellular	signal-regulated	kinases	

ETS1	
V-Ets	Avian	Erythroblastosis	Virus	E26	Oncogene	

Homolog	1	

FCS	 Foetal	calf	serum	

FDA	 Food	and	drug	administration	

FO	 Forskolin	

FSC	 Forward	scatter	

FTY720	 Fingolimod	

FWB7	 F-box/WD	repeat-containing	protein	7	

GAPDH	 Glyceraldehyde	3	phosphate	dehydrogenase	

GFP	 Green	fluorescent	protein	

GRB2	 Growth	factor	receptor-bound	protein	2	

GSK-3β	 Glycogen	synthase	kinase	3	beta	

HCl	 Hydrogen	chloride	

HEAT	 Huntingtin,	elongation	factor	3,	PP2A,	TOR1	

HEK293	 Human	embryonic	kidney-derived	

HELA	 Human	epithelial	cells	

HEPES	 4-(2-hydroxyethyl)-1-piperazineethanesulfonic	acid	

HIC1	 Hypermethylated	In	Cancer	1	

HL60	 Human	promyelocytic	leukaemia	cells	

hOCT1	 Human	organic	cation	transporter	1	

HSC	 Haematopoietic	stem	cell	

HSCT	 Haematopoietic	stem	cell	transplantation	

IFN-α	 Interferon-α	

IGBP1	 Immunoglobulin	binding	protein	1	

IgG	 Immunoglobulin	G	

IM	 Imatinib	

IRIS	 International	randomised	study	of	interferon	versus	
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STI571	

JAK2	 Janus	kinase	2	

JNK2	 c-Jun	N-terminal	kinase	2	

KD	 Kinase	domain	

L	 Leucine	

LAMA84	 Human	CML	cell	line	

LB	 Lysogeny	broth	

MAPK	 Mitogen-activated	protein	kinases	

M-/m-/µ-BCR	 Major-/minor-/micro-breakpoint	cluster	region	

MDR	 Multi-drug	resistant	

MFI	 Mean	fluorescence	intensity	

MgCl2	 Magnesium	chloride	

MMR	 Major	molecular	response	

MNC	 Mononuclear	cell	

MPN	 Myeloproliferative	neoplasms	

MR4	 Molecularly	response	at	the	4	log	level	

NaCl	 Sodium	chloride	

NaF	 Sodium	fluoride	

NaOH	 Sodium	hydroxide	

NIL	 Nilotinib	

NP-40	 Nonyl	phenoxypolyethoxylethanol	

OA	 Okadaic	acid	

Oral	SCC	 Oral	squamous	cell	carcinoma	

OS	 Overall	survival	

p53	 Tumour	protein	53	

PACE	
Ponatinib	Philadelphia-positive	acute	lymphoblastic	

leukaemia	and	CML	evaluation	

PBMC	 Peripheral	blood	mononuclear	cell	

PBS	 Phosphate	buffered	saline	

PCR	 Polymerase	chain	reaction	

PDGFRα/β	 Platelet-derived	growth	factor	receptors	
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PFS	 Progression	free	survival	

Ph+	 Philadelphia	positive	

PI	 Propidium	iodide	

PI3K	 Phosphoinositide	3-kinase	

PIN-1	 Peptidyl-prolyl	cis-trans	isomerase	NIMA-interacting	1	

PME-1	 PP2A	methyl	esterase	1	

PON	 Ponatinib	

PP2A	 Protein	phosphatase	2A	

PP2A-A	 PP2A-structural	subunit	

PP2A-B	 PP2A-regulatory	subunit	

PP2A-C	 PP2A-catalytic	subunit	

PR	 Proline-rich	

pS-	 Phospho-serine-	

pT-	 Phospho-threonine-	

PVDF	 Polyvinylidene	difluoride	

pY-	 Phospho-tyrosine-	

qRT-PCR	 Quantitative	real-time	polymerase	chain	reaction	

RAS	 Rat	sarcoma	

RIPA	 Radioimmunoprecipitation	assay	

RLT	 RNeasy	lysis	buffer	

RNA	 Ribonucleic	acid	

ROC	 Receiver	operating	characteristics	

RPE	 RNeasy	wash	buffer	2	

RPMI-1640	 Roswell	park	memorial	institute	1640	

RW1	 RNeasy	wash	buffer	1	

SDS	 Sodium	dodecyl	sulphate	

SET	 Nuclear	proto-oncogene	

SETBP1	 SET	binding	protein	1	

SFK	 SRC	family	kinase	
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SH1/2/3	 Src	Homology	domain	1/2/3	

siRNA	 Small	interfering	RNA	

SNP	 Single	nucleotide	polymorphism	

SOC	 Superoptimal	broth	with	catabolite	repression	

SRC	 Sarcoma	

SSC	 Side	scatter	

START-A/-B/-C/-L	
SRC-ABL1	tyrosine	kinase	inhibition	activity	research	

trial-A/-B/-C/-L	

STAT5	 Signal	transducer	and	activator	of	transcription	5	

SV40	 Simian	virus	40	

T315I	 Tyrosine	315	isoleucine	mutation	

TBE	 Tris/Borate/EDTA	

TBS	 Tris-buffered	saline	

TBS-T	 Tris-buffered	saline-Tween20	

TEMED	 Tetramethyl	ethylene	diamine	

TK	 Tyrosine	kinase	

TKI	 Tyrosine	kinase	inhibitor	

U937	 Human	leukemic	monocyte	lymphoma	cell	line	

UPN	 Unique	patient	number	

WB	 Western	blotting		

WBC	 White	blood	cell	
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