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Abstract  

A clinical prediction model (CPM) is a tool for predicting healthcare outcomes, usually within a 

specific population and context. A common approach is to develop a new CPM for each 

population and context, however, this wastes potentially useful historical information. A better 

approach is to update or incorporate the existing CPMs already developed for use in similar 

contexts or populations. In addition, CPMs commonly become miscalibrated over time, and 

need replacing or updating. In this paper we review a range of approaches for re-using and 

updating CPMs; these fall in three main categories: simple coefficient updating; combining 

multiple previous CPMs in a meta-model; and dynamic updating of models. We evaluated the 

performance (discrimination and calibration) of the different strategies using data on mortality 

following cardiac surgery in the UK: We found that no single strategy performed sufficiently 

well to be used to the exclusion of the others. In conclusion, useful tools exist for updating 

existing CPMs to a new population or context, and these should be implemented rather than 

developing a new CPM from scratch, using a breadth of complementary statistical methods. 
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1. Introduction 

Clinical prediction models (CPMs) are tools for predicting the natural course of diseases or the 

responses of patients to healthcare interventions, with regard to specific endpoints and 

observable characteristics1. For example, clinicians, healthcare managers and patients may be 

interested in assessing the risk of dying within 30 days of undergoing a heart bypass operation. 

We expect this risk to depend both on the characteristics of the patient, such as gender, age, 

and comorbidities, and on the characteristics of the intervention, such as the experience of the 

surgeon. A CPM is usually developed by fitting a statistical model to existing data. The choice 

of model to be fitted depends on the nature of the endpoint; common choices are logistic 

regression (for a binary endpoint) and survival models (for a time-to-event endpoint). 

CPMs have three main practical uses. First, they may be used at an individual patient level to 

communicate risk and aid in the clinical decision-making process by stratifying patients into 

different treatment option groups2 or to determine whether further testing is warranted to 

reach an appropriate decision3,4. Second, they may be used for planning healthcare services by 

predicting disease prevalence and future demand on services, or to explore the consequences 

of different local policy options. Third, they may be used in the quality management of 

healthcare services, where clinical audit processes compare observed with expected outcomes, 

given appropriate adjustments for differences in case-mix (e.g. ensuring the surgeon who takes 
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on difficult cases, with a higher baseline risk, is appropriately compared with his/her peers 

who operate on lower risk patients)5,6. 

The topic of developing, validating and using CPMs receives considerable attention in the 

statistical and clinical literature; for a recent overview see the PROGRESS paper series 2,7–9. The 

importance of transparent reporting of the development, monitoring and validation of CPMs 

has recently been emphasised by the TRIPOD statement10. 

In practice, CPMs are usually selected or developed for a given population and endpoint of 

interest. There are two general approaches: 1) develop a new CPM in the population of 

interest; or 2) use an existing CPM that has been developed and used in related contexts. The 

first approach wastes prior information, risks over-fitting, and ultimately leads to many CPMs 

existing for the same endpoint, which is confusing and makes it difficult to decide which one to 

apply in practice. The second approach may result in a CPM that is not fit for purpose, poorly 

calibrated and lacking discrimination. A better way forward may be to combine these 

approaches and work from the ‘middle ground’ in which existing CPMs that may be relevant 

for the population and endpoint of interest are taken, and revised to suit the new population. 

Another common pitfall with CPMs is that their performance can deteriorate over time: 

calibration drift11(P392). This can be attributed to changes over time in: prevailing disease risks 

(e.g. the obesity epidemic accelerating the force of diabetes morbidity); unmeasured risk 

factors for disease and treatment outcomes; treatments; treatment settings; adjunct 
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treatments and wider healthcare; and data quality. Therefore, to remain valid, CPMs must 

evolve over time – either by renewing or updating the model at discrete timepoints12, or by 

allowing the CPM to operate dynamically, updating continuously in an online fashion13. 

The quantitative performance of a CPM can be evaluated through its discrimination (how well 

patients with poor outcomes are separated from those with better outcomes) and calibration 

(agreement between probabilities from the CPM and observed outcome proportions). These 

can be assessed internally (using, for example, cross-validation to correct for within-sample 

optimism) or, more preferably, externally using a different population14. The discrimination is 

measured by the area under the receiver operating characteristic (ROC) curve (AUC)15, with a 

larger AUC indicating a better prediction model. The ROC is a plot of the sensitivity versus 1-

specificity for a CPM, based on dichotomizing the predicted probabilities from this CPM into 

disease and non-disease two groups over a continuous range of thresholds. Approaches exist 

to construct a 95% confidence interval (CI) for the AUC16–19. A calibration plot20 plots the 

observed against the predicted outcome probabilities. For a perfectly calibrated model, this 

should fall on a 45 degree straight line. A univariate logistic regression model can also be used 

to assess calibration: a calibration intercept can be obtained by regressing the binary outcome 

on the predicted log-odds while fixing this log-odds as an offset variable ; and a calibration 

slope can be obtained by a separate fit while fixing the intercept at previously estimated 

value21. A method with good calibration should have zero intercept and a slope of one. If the 

intercept is greater (smaller) than zero, it indicates the prediction is systematically too small 
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(too large); if slope is bigger (smaller) than one, it indicates CPM is under-fitting (over-fitting) 

the data. Other measures to assess the performance of CPMs can be found in Steyerberg et 

al.4 or Austin et al22. A model with poor calibration can be recalibrated easily, whereas poor 

discrimination is far more difficult to improve.  

The aim of this paper is to highlight and compare various statistical strategies for modifying 

existing CPMs to perform well in a new population, and strategies to maintain performance 

over time. In Section 2 we review various statistical strategies for updating existing CPMs, 

focussing on developments since 2004, but with historical references where appropriate. We 

illustrate the application of these strategies using data from the UK and Ireland National Adult 

Cardiac Surgery Audit (NACSA) registry cardiac surgery data, which is introduced in Section 3. 

The performance of the selected strategies as applied to the NACSA data are presented in 

Section 4. We conclude in Section 5 with a discussion. 

2. Methods for updating CPMs 

Focussing on the statistical literature of the last 12 years (2004-2015), we have identified three 

main approaches for updating CPMs in light of new data. The first approach, which we term 

regression coefficients updating, focuses on updating some or all coefficients from an existing 

CPM. The second approach is meta-model updating, which synchronizes multiple existing 

CPMs into one new meta-CPM. The third approach is dynamic updating, in which one or 
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multiple CPMs can be continuously and simultaneously updated in calendar time, constantly 

learning from new data.  

Throughout this section we consider a situation in which we have 𝑀 previous logistic 

regression models available to predict a binary outcome 𝑌. These 𝑀 models have been 

developed in previous data. For model 𝑚, let 𝑋𝑚 denoting the design matrix of the covariates; 

𝛼𝑚 and 𝛽𝑚 be the original model intercept and a vector of slopes respectively, and 𝐿𝑃 stands 

for linear predictors, so the model is specified by: 

logit(𝑃[𝑌 = 1]) =  𝛼𝑚 + 𝛽𝑚𝑋𝑚 = 𝛼𝑚 + 𝐿𝑃𝑚, 

and 𝑚 = 1, … , 𝑀. We wish to update, potentially combine, and apply these models in new 

data, termed the updating dataset. 

2.1 Regression coefficients updating 

A simple and widely used strategy is to update the regression coefficients of an existing CPM. 

This approach can be broadly placed into six ordinal categories based on the extent of 

modification4,12: 1) update the intercept only; 2) update the intercept and adjust the other 

regression coefficients by a common factor; 3) category 2 plus extra adjustment of a subset of 

the existing coefficients to a different strength; 4) category 3 plus adding new predictors; 5) re-

estimate all of the original regression coefficients; 6) category 5 plus adding new additional 

predictors. These approaches have been used in various medical applications23–25 26,27 and were 

applied to single CPM update. 
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The first two categories influence the calibration performance of the CPM but not the 

discrimination. They assume that the relative association between predictors and outcome 

stays at the same level between the original and new datasets, and the only difference 

between the two datasets is the observed outcome frequencies. Calibrating the intercept 

ensures that the observed and expected outcome rate agree on the new dataset. For a given 

model 𝑚  this strategy recalculates a new intercept, 𝛼𝑚
𝑈1, via fitting a new logistic regression 

model using the updating dataset while taking the LPm from the original model as an offset, 

that is to fix the coefficient for LPm at unity:  

logit(𝑃[𝑌 = 1]) =  𝛼𝑚
𝑈1 + 𝐿𝑃𝑚. 

The coefficients for the predictors therefore stay unchanged at 𝛽𝑚 for the updated model. 

Such a method has been proposed in predicting the risk of severe postoperative pain28.  

Method 2 is referred to as “logistic calibration”29, and estimates an overall correction factor 

and proportionally adjusts the original coefficients by this factor. It works by fitting a univariate 

logistic regression using 𝐿𝑃𝑚 from the original model 𝑚 as the covariate. The new predictor-

outcome associations are then 𝛽𝑚
𝑈2 = 𝐵𝑚𝛽𝑚 with a new intercept to be 𝛼𝑚

𝑈2 = 𝐴𝑚: 

logit(𝑃[𝑌 = 1]) =  𝐴𝑚 + 𝐵𝑚𝐿𝑃𝑚. 

These first two strategies are the simplest and can work effectively when the size of the new 

dataset is relatively small and the case-mix is similar in the updating and validation sets. 
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The remaining approaches should be considered if discrimination is of concern, the strength of 

the association between some predictors and the outcome is thought to be substantially 

different in the new population, or it may be useful to consider some predictors that were not 

in the original CPM. Method 3 updates a CPM using method 2 first, then re-estimates a subset 

of the coefficients that exhibit different strength in the original and new datasets. Some 

authors23–25 used objective criteria such as the likelihood ratio test and forward stepwise 

variable selection to decide which coefficients needed to be adjusted; while others28,30 used 

expert knowledge for this decision. Method 4 involves extending the original model by 

including new risk factors which were not originally in a CPM30. These newly added predictors 

may not have been available when a CPM was first developed, and could lead to further 

improvement in both calibration and discrimination. 

When methods 1 to 4 appear to be inadequate, more extensive revisions can be considered. In 

Methods 5 and 6, the only way in which the original CPM is used is to select the covariates for 

inclusion in the model. The historical data is otherwise disregarded. Specifically, Method 5 fits 

a new CPM based exclusively on the covariates from the existing CPM, i.e. fitting: 

logit(𝑃[𝑌 = 1]) =  𝛼𝑚
𝑈3 +  𝛽𝑚

𝑈3𝑋. 

Method 6 additionally allows new predictors to be added. If the original individual-level data 

are available, these can be combined with the updating dataset to build a new model12. Both 

Methods 5 and 6 are aggressive modelling approaches which give a low or no weighting to the 
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historical information, are likely to over-fit the data, and the resulting CPMs are less stable. 

The updated model may fit the local setting perfectly, but may lack external validity. 

To overcome the potential problem of over-fitting, applying shrinkage to CPMs estimated by 

Methods 3 to 6 has been proposed23, in which the updated coefficients are shrunk either 

towards zeros or towards the re-calibrated coefficients of Method 2. 

2.2 Meta model updating 

In the situation where there are multiple historical CPMs available in the literature for the 

same or similar endpoints and populations (e.g. there are a number of scores31–33 used for 

assessing the operative mortality after cardiac surgery in adults), meta-analysis techniques 

have been proposed to synchronize them into one meta-model, in the presence of an updating 

dataset34–36. Commonly, the original CPMs were derived independently from different 

populations. The individual-level data used to fit the original CPMs are unlikely to be available, 

and each of these CPMs may have a distinct set of predictors. By combining these CPMs 

together, the resulting meta-CPM may have better performance than each individual CPM and 

be more amenable to generalization to a wider population. 

We use the notation above to accompany the main text to explain how a meta model can be 

created in practice.  Assume there are M historical CPMs, each with their own design matrix 

X1, …XM. The (co)variance among these model coefficients (𝛼1, 𝛽1), … , (𝛼𝑀 , 𝛽𝑀) could be 

obtained; but the original individual-level data may not always be available.  A new dataset 
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with individual-level data Z=(Y’,X’) are available for updating. A meta-model aims to summarize 

all the information from M historical models and the new data Z into an overall effect model 

CPMT : logit(𝑃[𝑌 = 1]) = 𝛼𝑇 + 𝛽𝑇𝑋. 

A two-stage strategy has been proposed under the scenario when all the historical CPMs and 

the updating dataset have the same set of predictors34.  In the first stage, the new dataset Z is 

summarized into estimates of association between outcome and predictors (i.e. to estimate 

logit(𝑃[𝑌 = 1]) = 𝛼𝑍 + 𝛽𝑍𝑋 using data Z). This step can be carried out by any method as if a 

new CPM is first built using the updating dataset. As a result, the new individual data are 

reduced into model coefficients 𝛼𝑍 and 𝛽𝑍, and their covariance estimates. In the second stage, 

traditional meta-analysis techniques are applied to combine the coefficients of (𝛼1, … , 𝛼𝑀 , 𝛼𝑍)  

and (𝛽1, … , 𝛽𝑀 , 𝛽𝑍) from the new and the historical models together into 𝛼𝑇 and 𝛽𝑇. These 

meta-analysis techniques include: 1) a naïve univariate meta-analysis, which pools estimated 

effects among various studies via weighted least squares; 2) multivariate meta-analyses with a 

random effects model considering both within and between studies correlations; and 3) 

Bayesian inference that use the historical data CPM1 … ,CPMM to construct a prior, and use the 

individual data from updating set Z as likelihood; then a new meta-CPMT  is formed from the 

posterior distribution. The intercept of the meta-model is then recalibrated as per the 

approaches described in Section 2.1. These methods were applied, for example, on a traumatic 

brain injury and deep venous thrombosis data and it was concluded that the meta-CPM 

approach improved the discrimination and calibration compared with refitting a new model 
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using only the updating dataset (ignoring any historical information)34. The first two meta-

analysis techniques value the historical and the updating datasets equally and produce 

averaged pooled coefficient effects, therefore it may not predict the target population well as 

a result. It emphasizes the target updating population more than the historical data. All these 

strategies assume CPMs share a similar set of predictors, which is not always realistic. 

Although various remedies had been proposed regarding how to impute the between-risk-

factors covariance when they are not available, the robustness of these imputation methods is 

unknown. It is not clear how to update predictors in the sense of adding or removing 

predictors under these frameworks. 

Debray et al.35 provide methods for the case where all individual-level data from all the original 

historical models are available. Their approaches involve re-fitting a meta-model using all the 

historical individual data, while allowing study-specific intercepts to account for different 

sources of historical data. That is to create one CPM: logit(𝑃[𝑌 = 1]) = 𝛼𝑖
𝑈 +  𝛽𝑈𝑋  for all 

source of dataset i=1.…M  with a commonly shared predictor-outcome association 𝛽𝑈 for all i. 

This is achieved using a random intercept model, or stratified estimation of the study-specific 

intercept 𝛼𝑖
𝑈, to account for the heterogeneity caused by different baseline risk from different 

populations. Various proposals are then made to choose the intercept to use for the new study 

population. However, this approach only allows the intercept to vary between populations; 

hence, if the predictor-outcome relationships are highly heterogeneous, the meta-CPM will 
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perform poorly. As a result, although more information is available, these methods35 could still 

be out-performed by a traditional meta-analysis34 method. 

The above updating schemes are limited to the case when all sources of data share the same 

set of predictors. Model averaging and stacked regression do not have such a constraint36 (i.e. 

variables for X1 ,…,XM, X’ can be all or partially the same, or completely distinct). There are 

three steps involved in a model averaging meta-model update. The first step involves updating 

each of the historical CPM via the approaches discussed in Section 2.1. The second step applies 

Bayesian model averaging on all historical CPMs and obtains weighted average predictions for 

each individual.  The weights are calculated as 𝑤𝑚 = exp(−0.5𝐵𝐼𝐶𝑚)/ ∑ exp(−0.5𝐵𝐼𝐶𝑚)𝑚 ; 

where 𝐵𝐼𝐶𝑚 =  −2𝑙𝑚 + 𝑘𝑚 log(𝑁), 𝑙𝑚 is the log-likelihood, 𝑘𝑚 is the number of parameters 

been updated in the first step (e.g. one parameter for the intercept update), and 𝑁 is total 

number of patients in the updating dataset. The third step refits a meta-model using weighted 

average predictions from the contributing scores as the dependent variable, and using all 

variables from the original models as independent variables. This approach gives more weight 

to CPMs which fit the updating dataset better (with higher likelihood) and to those with a less 

complicated update (penalising those with fewer parameters changed less heavily) in step 1. 

However, it is not clear how intensive the update should be in step 1; with different strategies, 

the weights assigned to different historical CPMs would be different and the final meta-model 

would thus be affected. This model averaging strategy has a tendency to become model 

selection, assigning a weight of 1 to a single CPM and a weight of 0 to the remaining ones: 
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because the weight is assigned by an exponential function, a small differences in likelihood or 

penalizing term could easily inflate a model weight to unity or null.   

The stacked regressions meta-model proposal uses the risk score from each CPM as a predictor 

in a new meta-CPM, which is therefore a logit-linear combination of all pre-existing CPMs36. It 

calculates a weight 𝜋𝑚 for each model m and updates the coefficients in one go, with the new 

coefficients for each individual model hence being 𝛽𝑚
𝑈6 = 𝛽𝑚𝜋𝑚, but overall coefficients being 

𝛽𝑈6 =  ∑ 𝛽𝑚𝜋𝑚𝑚 . The form of the meta-model using stacked regression is: 

logit(𝑃[𝑌 = 1]) =  𝜋0 +  ∑ 𝜋𝑚𝐿𝑃𝑚𝑚 .  

This strategy uses the updating data less intensively with fewer parameters to be estimated 

comparing with the model averaging proposal. However, there are clearly multicollinearity 

issues in the meta-CPM model, and the quoted papers failed to demonstrate whether the 

stacked regression approach outperformed alternatives using simulation. 

In summary, meta-models combine several CPMs into one updated CPM, and have the 

potential to generalize to a wider population, and to have better performance than the 

individual CPMs. However, fitting a meta-model may not be practical when there is only a 

small number of historical CPMs (random effects cannot be estimated, and the weights 

calculated are unstable). The usual good practice of conducting a meta-analysis, such as 

selecting well-designed historical CPMs to be combined, should be applied. None of the meta-

analysis strategies have discussed adding new predictors. All the meta-model update 
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techniques described in this section are relatively new applications to the CPM literature. 

More research is needed to establish principles such as how frequently an update should be 

carried out, how big the updating dataset should be, and how to conduct model selection. 

2.3. Dynamic model (DM) updating 

Dynamic updating refers to the continuous updating of one13 or multiple37,38 CPMs , as 

opposed to the previous approaches that are only conducted at fixed time points. As a result, 

the coefficients for an updated CPM are continuously varying with time. In this section we 

focus on a Bayesian dynamic logistic regression for a single CPM update (“DM”). For a single 

model 𝑚, let 𝜃𝑚
𝑡 = (𝛼𝑚

𝑡 , 𝛽𝑚
𝑡 )′ be the vector of parameters for model 𝑚 at time 𝑡. Let 𝑌𝑡 and 

𝑋𝑡 denote the outcome data and covariate data available up to time 𝑡, and 𝑦𝑡 and 𝑥𝑡 the data 

from time 𝑡 only. Let 𝜆 be a forgetting parameter. The procedures can be initiated by assuming 

𝜃𝑚
0 is normally distributed with mean estimated at the historical model coefficients (i.e. 

𝜃𝑚
0 = (𝛼𝑚, 𝛽𝑚)′), and covariance matrix Σ0

estimated (for example) using one-tenth of the 

updating data (if it is not available from the historical model). Then the prediction equation is:  

𝑝(𝜃𝑚
𝑡 |𝑌𝑡−1, 𝑋𝑡−1) =  𝑁(𝜃𝑚

𝑡−1, 𝑅𝑡);      𝑅𝑡 =  𝜆−1Σ𝑡−1. 

The updating equation is proportional to the product of a Bernoulli density (Likelihood) and 

the prediction equation (Prior) so that the whole procedure has a Bayesian interpretation:  

𝑝(𝜃𝑚
𝑡 |𝑌𝑡 , 𝑋𝑡) ∝ 𝑝(𝑦𝑡|𝜃𝑚

𝑡 )𝑝(𝜃𝑚
𝑡 |𝑌𝑡−1, 𝑋𝑡−1) ∝ Likelihood × Prior 
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The estimate of 𝜃𝑚
𝑡  is chosen to maximise this expression; the expression cannot be written in 

closed form, so is approximated using a Normal distribution.  

The forgetting parameter  is embedded in the prediction equation which controls the 

variance of the prior distribution in the updating equation: with a small  it is equivalent to 

have a less informative prior that the updated model will rely less on the historical information 

(through a flatter prediction equation).  

The estimating procedure involves recursively applying the prediction and the updating steps.  

The DM updating can also be applied to several CPMs simultaneously, resulting in dynamic 

model averaging (DMA)37,38. This assumes that there are multiple historical CPMs acting 

together at all times; at a given time, some are more predictive than others, and how well a 

CPM predicts may alter over time. A physical example might refer to the existence of several 

latent sub-populations, and the proportions of these sub-populations in a target population 

may vary over time. Each of these sub-populations can be predicted by a specific CPM model. 

Therefore, DMA can be used to predict an optimal weighted average for the whole population 

at any time point. 

DMA has been applied to a continuous outcome in an engineering cold rolling mill example37 

and to a binary outcome medical example of paediatric laparoscopic appendectomies38. In the 

latter medical example, the purpose of the study was for inference rather than future 

prediction, and we are not aware of any DMA application on updating CPMs. However, a single 
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DM update has been applied in cardiac surgery data10. In general, DM can continuously adapt 

to the changes of the underlying process, without paying a high price for model uncertainty in 

a big model space, and is relatively insensitive to the choice of forgetting parameters except 

when responding to abrupt changes37. The forgetting parameters can be selected using an 

auto-tuning procedure. Although this procedure can be conducted at each time point, for each 

parameter, and on a continuous scale, this has a high computational load. Therefore, a 

simplified discrete proposal on the choice of forgetting parameters has been suggested for 

computational feasibility38. DM incorporates historical data, which is likely to provide a smooth 

and stable update to the coefficients13. Most of the applications so far are explanatory in 

nature to study the relationship between outcome and predictors, less so for the prediction 

purpose. 

Comparing DMA with meta-CPM using Bayesian model averaging (BMA) approach36, the latter 

case considered a fixed set of ‘true’ models while the former method allowed the multiple 

‘true’ models to vary over time. If any static strategy were applied repeatedly over time, this 

would itself become a dynamic approach39,40.  

To summarize, DMs are more adaptive than the single static model solutions described in 

Sections 3.1 and 3.2. Although a static model can be updated repeatedly, these methods 

would only be implemented when there are fair amounts of new data available, and 

consequently they should not be conducted too often. The risk factors of a CPM are likely to 

evolve slowly over time; DM responds to this in a smooth way. DMA has the ability to consider 
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a huge model space, in that case it might be viewed as an automatic model selection process 

by implementing this approach on all 2k possible models (with k covariates), and one can 

identify the most active models using posterior model probabilities. However the computing 

load might not be trivial. Moreover, it is not clear how a dynamic model should be validated, 

and there may be issues with clinical acceptability if outputs, and hence recommended clinical 

decisions may be changing from one day to the next. 

We are now turning towards evaluating the different proposals. To do so, we will use data 

from the National Adult Cardiac Surgery Audit (NACSA) registry, which is described in more 

detail in the next section. 

 

3. National Adult Cardiac Surgery Audit (NACSA) Registry Data 

Members of the Society for Cardiothoracic Surgery in Great Britain and Ireland (SCTS) submit 

clinical data on adult cardiac surgery operations to the National Adult Cardiac Surgery Audit 

(NACSA) registry—one of six national clinical audit databases managed by the National 

Institute of Cardiovascular Outcomes Research (University College London), covering all 

National Health Service trusts and some private and Irish hospitals. The SCTS have been 

recording data in some form since 1977, and have published risk-adjusted mortality outcomes 

on the individual surgeon level since 200511. 
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Historically, the commonly used risk score for auditing and decision-making in cardiac surgery 

in the UK was the logistic EuroSCORE41 (ES), which was published to replace the additive 

EuroSCORE risk score42. This is a logistic regression model that produces a predicted probability 

of mortality for patients due to any cause following a cardiac operation, based on risk factors 

available before a procedure is carried out. ES is based on data collected in 1995 (although the 

logistic model was not published until 2003), and over time it has become poorly calibrated43. 

More recently this has been replaced with EuroSCORE II44,45 (ES2), which is based on data 

collected in 2010. Whilst structurally similar to ES, ES2 updates the definition of some original 

risk factors. For example, ES did not differentiate risk between a patient having an isolated 

mitral valve repair operation and a patient have quadruple coronary artery bypass surgery, 

mitral valve repair and aortic valve replacement, whereas ES2 introduces a ‘weight of 

intervention’ variable. Furthermore, ES2 incorporates some new factors, and removes others. 

The complete NACSA registry was downloaded and pre-processed using cleaning rules 

developed in collaboration with cardiac surgeons46. These rules were employed to harmonise 

transcriptional discrepancies, map data between different database versions, remove clinically 

implausible values, and remove paediatric, duplicate and non-cardiac surgery records. 

Following this all records between 1st April 2007 and 31st March 2012 were retained. Figure 1 is 

a flow chart showing various subsets of NACSA data. There are 182,492 records during this five 

year period. As the focus of this paper is illustration of methodology rather than clinical use, 

we restricted our subjects to those who received coronary artery bypass graft surgery (CABG) 



19 
 

either isolated or with other concomitant cardiothoracic surgery. However, we note that the 

EuroSCORE models were developed for prediction in the population of all cardiac surgery 

patients, not a specific procedural subgroup. We conducted our analyses on a single imputed 

dataset derived using the chained equations technique47,48.  There were 127,946 patients after 

imputation.  Complete-case analysis was also carried out as a sensitivity analysis  (114,345 

complete cases) and results for this are reported in the Supplemental Material. Construction of 

the datasets is reported in Figure 1 and Table 1.  

The NACSA dataset was chronologically ordered according to the date of surgery, then split in 

a 2:1 ratio with the first two-thirds of the data (n=85,297) used for updating; and the 

remaining third (N= 42,649) used for validation. As the two datasets are from difference time 

periods, this constitutes transportability rather than internal validation49. 

 

4. Analysis and Results 

4.1 Comparative evaluation setup 

In order to demonstrate some of the methodologies described in Section 2 and highlight 

differences between them, we chose ES41 and ES244 to be updated using the NACSA updating 

dataset. Once the update was considered to be satisfactory, the updated models were tested 

on the NACSA validation dataset. 
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There is evidence that both ES and ES2 are miscalibrated on contemporary NACSA data, due to 

differences in characteristics between NACSA and the original datasets on which the two 

scores were derived43,45. Moreover, the predicted (risk-adjusted) mortality has increased over 

time in the dataset from 6.09% and 2.93% (2007/08) to 6.51% and 3.26% (2011/12) for ES and 

ES2 respectively. 

The crude mortality in the updating dataset is 2.67% in contrast to 4.8% and 3.9% for the data 

on which ES and ES2 are based on respectively. Applying both scores directly to the updating 

dataset, they showed good discrimination (AUC for ES: 0.817 (95% CI: 0.809, 0.826); for ES2: 

0.831 (95% CI: 0.823, 0.839 )), but over-predicted the mean mortality to be 6.16% using ES and 

2.94% using ES2. The miscalibration of ES is also reflected in a logistic regression of the 

outcome on the predicted log-odds yielding slopes (0.97 (SE=0.009)) and intercepts (-0.99 

(SE=0.022)) different from 1 and 0 respectively. These results highlight the need for exploring 

revised models for use in the NACSA data. 

Table 1 Imputed data analysis: Summary of the original, updating, and validation 

datasets . 

 ES original data ES2 original 

data 

NACSA 

updating 

NACSA 

validation  

Data 

collection 

period 

Sep-Nov 1995 3rd May-25th Jul 

2010 

1st April 2007-

26th May 2010 

26th May 2010- 

31st Mar 2012 

Sample size 19,030 22,381 85,297 42,649 

Setting 128 surgical 154 hospitals, 43 hospitals, 1  43 hospitals, 1 
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centres, 8 

countries* 

43 countries* country(UK) country(UK) 

 

Mortality % 4.8% 3.9% 2.67% 2.69% 

*Data from UK were included in both ES and ES2. 

 

 

In the remainder of this section we illustrate six of the updating strategies:  

 Strategy I: Intercept update (Category 1 in Section 2.1).  

 Strategy II: Logistic calibration (Category 2 in Section 2.1).  

 Strategy III: Model refit (Category 5 in Section 2.1).  

 Strategy IV: Dynamic updating using Bayesian dynamic logistic model for 

single CPM (DM). For the current analysis  is treated as a time-invariant 

scalar, fixed at 0.99 for the main analysis with sensitivity analysis conducted 

for other values of (see Section 4.3). Updates were made on a monthly basis. 

We use the updated CPM on 5th May 2010 (the final date of the updating data) 

for validation purposes. 

 Strategy V Meta-model with model averaging update. For this analysis, 

almost all the weight was placed on ES2 hence this strategy resembles a model 

selection procedure (the weight for ES is 5.2 × 10−71). We therefore also 

evaluated a pragmatic approach of assigning equal weights to both CPMs. 
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Most of the ES2 predictors are not new to ES but change their definitions from 

ES, while 9 predictors share exactly the same definitions in ES and ES2. For 

those re-defined variables, we adopt their newer definitions.  

 Strategy VI: Meta-model with stack regression update. For the initial 

recalibration stage, we used intercept updating only. 

All analyses were conducted using R50 (version 3.0.1). R Packages pROC51 and dma52 were used 

to calculate AUC and for DM modelling respectively. The (Cox) calibration21 intercept and slope 

were estimated using univariate logistic regression.  Calibration plots22 were produced using 

lowess smoother.  R codes are available on request from the authors.  

4.2 Validation results  

Table 2 summarises the calibration and discrimination performance of an updated CPM using 

the validation dataset based on the six selected strategies.  

When the original ES was applied directly to the validation dataset, it showed good 

discrimination (AUC=0.819) but it systematically over-estimated the mortality (calibration 

intercept=-1.06, slope=0.97). All updating strategies greatly improved the calibration over the 

original model and slightly improved discrimination. Adjusting the model intercept (Strategy I) 

contributed the most toward calibration improvement with the calibration intercept changing 

from -1.06 to -0.07. All Strategies II to IV showed further improvement of calibration and 
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discrimination over Strategy I which suggested the strength of predictors and outcomes 

association is different in the original ES and the NACSA datasets. 

The unmodified ES2 showed good discrimination (AUC=0.828) but slightly overestimated the 

mortality (calibration intercept of -0.20) in the validation dataset. With simple intercept 

adjustment (Strategy I) the updated CPM showed good fit to the validation data, with the 

calibration slope and intercept becoming very closed to1 and 0 respectively(although 

calibration intercept is still statistically significantly different from zero). Here, the updated 

models using Strategies II to IV made little or no improvement to model performance, 

compared with Strategy I. 

The meta-model Strategy V using pragmatic equal weights approach performed better than 

each of the individual original CPMs, mainly as a result of both intercepts of the original CPMs 

being updated before the two models were combined. With one extra predictor than the 

original ES2, this meta-model had better calibration than the original ES2. Strategy VI of 

stacked regression modelling performed better than ES and ES2 although this improvement is 

slight; as expected it assigned more weight to ES2 (𝜋1 = 0.90) than ES (𝜋2 = 0.18), but the 

difference is far less extreme than strategy V.  

As an alternative to Cox recalibration, the calibration plots of the binary observed outcomes 

regressed on the predicted probabilities from an updated CPM using non-parametric loess 

smoother  were also examined (Figure 2).  The results showed similar patterns to the results 
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reported above, that not a single method out-performed others. The lack of calibration was 

mainly demonstrated in the high predicted probabilities range.  

The complete-case analysis is reported in Supplemental Material.  For all 6 updating strategies 

chosen, they showed similar discrimination and calibration to the imputed-data analyses.  

Table 2. Imputed data analysis: Performance of updated CPMs on the validation dataset.  

 Discrimination  Cox recalibration  

Strategy AUC (95% CI)  Intercept (SE) Slope (SE) 

     

Original EURO1 

(ES) 

0.8194 (0.8079-0.8309) 

 

 -1.06092 (0.031678)* 0.97285 (0.013164)* 

I 0.8194 (0.8079-0.8309)  -0.06656 (.031679)* 0.98535 (0.009733) 

II 0.8194 (0.8079-0.8309)  -0.05877(0.031291) 1.00109 (0.009745) 

III 0.8293(0.818-0.8405)  -0.03461(0.031345) 1.00293 (0.009856) 

IV ( =0.99) 0.8293(0.8181-0.8405)  -0.05159(0.031299) 1.00534 (0.009892) 

     

Original EURO2 

(ES2) 

0.8279(0.8164-0.8394) 

 

 -0.20358(0.031269)* 1.00855 (0.010277) 

 

I 0.8279(0.8164-0.8394)  -0.09525(0.031269)* 1.00803 (0.009952) 

II 0.8279(0.8164-0.8394)  -0.10722 (0.031611)* 0.99432 (0.009964) 

III 0.8344(0.8231-0.8457)  -0.10882(0.031611)* 0.99588 (0.010181) 

IV(=0.99) 0.8345(0.8232-0.8458)  -0.10719(0.031557)* 0.99874 (0.010170) 

     

Meta-model     

V 0.8289(0.8176-0.8402)  -0.09071(0.031405)* 1.00267(0.009944) 

VI 0.8297(0.8183-0.841)  -0.09920(0.031595)* 0.99588(0.009962) 

Values of intercept and slope in bold are significantly different from 0 or 1 respectively, 

using a p-value cutoff of 0.05. 

 

4.3 Sensitivity analysis on DM parameter 
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Sensitivity analysis was conducted on the forgetting parameter for a range of values 

between 0.5 and 1. For both ES and ES2, the best AUC and calibration were achieved when 

was close to 0.99. Despite 𝜆 being close to 1, there is still a significant amount of forgetting, 

because the forgetting operates in a compound manner, and there are 38 time points in the 

training dataset. A smaller forgetting parameter is equivalent to using a less informative prior 

in the updating equation stage, so that the data from the far past become less influential on 

the current dynamic model estimates. Using a smaller  the estimation relies on a smaller 

recent dataset, which made the validation results worse than with a larger 

We did not adopt dynamic model averaging here, but a single CPM dynamic model approach. 

We could input both ES and ES2 into a single DMA framework as two potential models and 

allow them to be active at different time and with different rates. However, due to the similar 

nature of these two models, they do not capture different dimensions to predict the mortality.  

5. Discussion 

In this paper we have reviewed a variety of approaches that can revise CPMs for a new 

population and maintain performance over time, and we have contrasted some of the key 

methods using a typical example of mortality surveillance around cardiac surgery. 

In the cardiac surgery example there was general agreement that an older risk score (logistic 

EuroScore; ES) needed to be updated while this was less evident for a more recent score 

(EuroScore II; ES2). Following Hickey et al13, the need for updating of ES is likely to be 
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attributed to a change in case-mix and various characteristics in the data that have changed 

over the years. In particular, the case-mix adjusted mortality rate had decreased substantially. 

In comparing the various updating approaches, we did not find any single method that 

outperformed the others, the differences are more nuanced. For situations where only small 

changes between the original and updating datasets occur, simple re-calibration methods, 

such as intercept updates, are sufficient as seen on the example of ES2. More involved 

methods are useful when larger changes are evident, as seen in the case of ES. It is also 

noteworthy here that we used a large updating dataset, which will support more complex 

updating strategies. Meta-model approaches are a new area and more research is needed 

before these approaches can be recommended, particularly around dealing with the high 

multicollinearity between the risk scores. Dynamic modelling is a promising area allowing 

continuous updating, which is particularly relevant given the trend towards instant data 

capture and regular uploads to a central database. One distinguishing feature of the various 

approaches is the quantity of information on previous data and models that are required to 

utilize a given approach, and how this past information is integrated into the new model. 

The validation we have provided is officially testing transportability rather than internal 

validation. However, the similarity of the time periods means this could be viewed as a split-

sample validation. From this perspective, such a method is known to be outperformed by 

bootstrapping base validation53. However, at the level of 38.3 events per variable in validation 

set (and 75.8 in updating set) the validation performance of these two methods are similar 53. 
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Other than the aforementioned methods, there are some pragmatic updating strategies which 

make ad-hoc adjustments to the predicted risks. For example, a calibration factor is published 

every quarter for The Society of Thoracic Surgeons National Adult Cardiac Surgery risk54. In 

order to consider clustering effects, at e.g. hospital level, methods such as random effects 

models or generalized estimating equations (GEEs) have been suggested31. However, such 

models may be difficult for clinical users to understand. 

Sophisticated updating based on a very small dataset should be applied with caution, because 

the methods discussed here put comparatively large weight on the updating data and hence 

the CPM would be prone to peculiarities of the updating dataset, and hence over-fitting. One 

potential remedy for this issue is to shrink the coefficient estimates towards the original CPM 

according to the relative sizes of the original and updating datasets. 

Although more complex approaches, such as DM or DMA, are attractive from a statistical 

standpoint, it is unclear how practical such approaches are. They will be more difficult to 

explain to non-statisticians, more difficult to validate, and implementation requires a 

continuous data stream. 

In conclusion, there are a wide range of updating methods available for applying CPMs in new 

populations and maintaining their performance over time – ranging from very simple 

calibration adjustments, to more involved approaches involving dynamic modelling or 

combining multiple CPMs. Whenever there are existing CPMs that have the potential to apply 

to the clinical domain or population of interest, their performance, and potential for updating 
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or revision, should be explored before considering the development of a new CPM from 

scratch. This will help to avoid the perplexing quantity of CPMs operating in similar or identical 

contexts. Although this article only focus on statistical aspect, a CPM should not only be judged 

by its quantitative performance; equally important is its clinical and face validity. 
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Figure 1: A flow chart of NACSA registry data structure. CABG=1 identified patients who 

underwent coronary artery bypass graft surgery. 
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  Figure 2: Calibration plot: Diagonal line 

has intercept=0 and slope=1. The binary outcomes were displayed as dots along y=0/1 lines. 
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Supplemental Material: Complete-case analysis  

Table S1.  Summary of the original, updating, and validation datasets. 

 ES original data ES2 original 

data 

NACSA 

updating 

NACSA 

validation  

Data 

collection 

period 

Sep-Nov 1995 3rd May-25th Jul 

2010 

1st April 2007-

5th May 2010 

5th May 2010- 

31st Mar 2012 

Sample size 19,030 22,381 76,230 38,115 

Setting 128 surgical 

centres, 8 

countries* 

154 hospitals, 

43 countries* 

43 hospitals, 1 

country(UK) 

 43 hospitals, 1 

country(UK) 

 

Mortality % 4.8% 3.9% 2.6% 2.5% 

*Data from UK were included in both ES and ES2. 

Table S2. Performance of updated CPMs on the validation dataset.  

 Discrimination  Cox recalibration  

Strategy AUC (95% CI)  Intercept (SE) Slope (SE) 

     

Original 

EURO1 (ES) 

0.8155 (0.8027-0.8283)  -1.13477(0.034525)* 0.96628(0.014281)* 

I 0.8155 (0.8027-0.8283)  -0.13324(0.034525)* 0.98182(0.010569) 

II 0.8155 (0.8027-0.8283)  -0.12329(0.034204)* 0.99448(0.010579) 

III 0.8268(0.8143-0.8393)  -0.10687(0.034273)* 0.99667(0.010747) 

IV ( =0.99) 0.8265 (0.814-0.839)  -0.13333(0.034228)* 0.99895(0.010815) 

     

Original 

EURO2 (ES2) 

0.8245 (0.8118-0.8372)  -0.27264(0.034068)* 1.00694(0.011196) 

I 0.8245 (0.8118-0.8372)  -0.14656(0.034068)* 1.00644(0.010787) 

II 0.8245 (0.8118-0.8372)  -0.16590(0.034533)* 0.98860(0.010804) 

III 0.8319 (0.8194-0.8444)  -0.17494(0.034520)* 0.99037(0.011078) 

IV(=0.99) 0.8318 (0.8193-0.8443)  -0.19441(0.034472)* 0.99276 (0.011134) 
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Meta-model     

V 0.8247 (0.8121-0.8373)  -0.14833(0.034225)* 1.00010  (0.010782) 

VI 0.8261 (0.8135-0.8387)  -0.15935(0.034520)* 0.98983 (0.010803) 

Values of intercept and slope in bold are significantly different from 0 or 1 respectively, 

using a p-value cutoff of 0.05.


