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Preface 
 

“The wildness pleases. We seem to live alone with Nature. We view her in her inmost 

recesses, and contemplate her with more delight in these original wilds than in the 

artificial labyrinths and feigned wildernesses of the palace” (A.A. Cooper, third Earl of 

Shaftesbury, The Moralists, 1709/1999) 

 

The impact that aesthetics have on our daily experiences is often underestimated 

and considered a qualities of the arts, however the subsequent behavioural impact 

means that our daily visual environments are important to understand 

aesthetically. Aesthetic judgments are made daily, without conscious awareness 

however, from a scientific point of view, encapsulating what contributes to a 

positive or negative aesthetic experience has been problematic.  The field has 

suffered from a lack of coordinated cross-disciplinary effort, with many areas such 

as cross-cultural universals and individual differences remaining under-

researched.   

 

Given the long history of segregation between the various field studying aesthetic 

responses to art, nature and landscapes, this thesis will explore the highly variable 

findings regarding individual differences within the field.   It achieves this through 

a multidisciplinary approach bringing together knowledge from the fields of 

psychology, computer science, physics as well as landscape planning and design 

research. 

 

Environmental scenes contain both Euclidean and natural (Fractal) geometry, and 

whilst to date a wide-range of studies have explored aesthetic responses to simple 

Euclidean geometric shapes, there is limited evidence exploring aesthetic 

responses to fractal geometry as an individual construct.  

 

The stimuli of choice for this project are computer generated mathematical fractal 

patterns.  Mathematical fractal patterns have an advantage over natural fractals as 

they contain only fractal content.  Whereas naturally occurring fractals will also 

contain information such as colour, which can result in response bias.   A 
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shortcoming of course, is that the computer-generated shapes that have limited 

ecological validity and results are only tentatively extrapolated to responses to the 

fractal patterns in the real word.    

 

Sample sizes used in this thesis are large and taken from a cross and subcultural 

background, in some cases over 400 participants took part in individual studies 

from over 30 countries.  These large samples permitted detailed analysis of the 

strength of the mid-range hypothesis and complexity hypothesis in predicting 

preference based on a number of individual factors including country, continent, 

environment, age and gender.  The findings demonstrate that aesthetic responses 

to fractal patterns can be predicted by continent, environmental classification, age 

and gender.  
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1.0 The Foundations of Aesthetic Preference; Philosophy 

and Early Experimental Aesthetics. 
 

1.1 Historical and Philosophical foundations of aesthetics 

1.2 Foundations of Experimental Aesthetics 

 

This first chapter explores the historical foundations and philosophical roots of 

the study of aesthetics to ground the thesis firmly within its roots. It explores the 

initial philosophical questioning by the Ancient Greeks, Plato and Aristotle, who 

attributed beauty to a function of the object and a pale imitation of the world of 

Gods. Others continued this exploration in philosophy including Baumgarten who 

coined the term ‘aesthetics’ and Kant whose musings broke the experience of 

beauty into different experiences depending on the emotional responses for 

different stimulus (i.e. Art, everyday and Natural scenes). The section will then 

briefly present the findings from early empirical investigations into aesthetics by 

Gustav Fechner who is often considered the father in the field of empirical 

aesthetics. Finally the chapter will touch on the early quest to understand and 

predict general aesthetic perceptions conducted by Berlyne, Birkhoff and Eysenck 

and frame the current trends in the academic study of aesthetics discussed in 

subsequent sections. 
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1.1 Historical and Philosophical foundation of Aesthetics 

 

Contemplation of aesthetic experience can be traced back as early as the Ancient 

Greeks. These philosophical musing, focusing on sensation and perception, were 

the first in a long history of what is now considered the science of aesthetics.  

 

Plato (428BC-348BC) didn't much like the arts.  He disapproved of the power 

that art and poetry had to seduce people, “banning” Artists from is ‘ideal state’ in 

‘The Republic’ (c375BC), his Socratic dialogue outlining justice, order and 

character of the city state and the man.  Plato valued the metaphysical belief, that 

the world we experience is a pale imitation of that which is experienced by the 

Gods. The Gods world was the true world, a world that we cannot perceive.  Our 

world is an imitation of the ‘true’ world.  Art was twice removed from the trust, as 

it did not even demonstrate skill in our imitation world.   

 

Agreeing with Plato’s metaphysical ideas (but not his extreme views), Aristotle 

(384BC-322BC) offered a more in depth account of Art in Poetics (c. 335bc). 

Aristotle’s work laid the foundation for modern philosophical approaches to 

aesthetics.  His writings focused on the experiences of emotions. Exploring the 

power of Artistic stimulus, Aristotle focused on the experiences of emotions and 

how they could provoke pain and pleasure.   The viewer played a key role because 

personal experiences in life meant that we experienced individual emotions in 

different ways. The idea of exploring how our experiences shape our reactions to 

art and beauty is still very much the focus of modern day scientific aesthetics 

research, and is of high importance within this thesis.  Aristotle separated our 

experience of art as being somehow different to reality, but noted that the affective 

response felt when viewing art is dependent on our relationship in reality.  

 

The metaphysical view was adopted and explored further by the religious scholars 

St Augustine (354 AD- 430 AD) and St Thomas Aquinas (1225-1274).  St 

Augustine asserted that anything possessing a sense of order, unity and proportion 

is perceived as beautiful, because it reflects a higher order of the true world of the 

Gods.  St Thomas Aquinas built on these ideas arguing that beauty evokes a restful 
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and harmonious state, which is not down to any visual experience per se, but down 

to our faculty of knowing, or our cognitions involved in the perceptual experience.  

Both of these ideas have been supported through modern scientific explorations.  

Order and unity do indeed play a major role in our aesthetic perceptions, as does 

or personal experience.  Cognition is the function by which our judgments of 

beauty are made alongside the related processes of memory and emotion. Many 

new psychological theories of aesthetics attempt to explore the areas of the brain 

involved in our experiences of beauty. 

 

Alexander Baumgarten is widely attributed to giving the field its modern name 

in 1735 when he established aesthetics as a distinctive branch of philosophy.  

Aesthetics, by his definition, became the concept of beauty gathered through the 

senses. Baumgarten took the field beyond the study of art and defined aesthetics as 

the ‘science of sensible knowledge’ opening the area to all of our aesthetic 

experiences whether they are in art, nature or daily life.  However, perhaps the 

most recognised and commonly cited philosopher in the field, Immanuel Kant 

who began his exploration of aesthetics in his work Critique of Judgment (1790) 

felt differently.  Kant was the first to exclusively write about this concept of 

aesthetics as a sensory and perceptual experience and believed beauty was an 

entirely subjective experience because preferences differ from person to person.  

He did however state that there was a universal dimension to beauty; Universals 

which could be collectively experienced when engaging with a piece of art or 

beautiful stimulus.  

 

Kant was among the earliest philosophers to discuss aesthetics in relation to 

nature.  Defining our aesthetic responses to nature as the sublime. Kant argued that 

the sense of awe and wonder experienced towards nature could be related directly 

to matters of survival. For example positive (safety and beauty), or negative 

(power or danger) sublime experiences, such as a storm or rocky sea, generates 

unexpected feelings of delight and our engagement with reality is altered, time and 

space become enlarged and awe inspiring.  

 

Kant talked of aesthetic experiences as being ‘disinterested’.   By this he means 

we are not actively seeking aesthetic stimulus in our everyday navigation of the 



 

 15 

world.  Our experiences of beauty arrive suddenly with novel or interesting 

stimulus, at which point the cognition involved in aesthetic perception is kick 

started.  Our experiences and existing cognitive schemas (the ideas and 

expectations involved in a particular situation) are essential when classifying 

beautiful or appealing objects.  Kant’s ideas had, and continue to have a profound 

affect on the modern day research into aesthetics both in philosophical, 

psychological and artistic disciplines. His work preceded many of the later 

empirical investigations, and his thinking has inspired a continued push to 

understand this complex concept that is aesthetics. 

 

The area of aesthetics in philosophy has a long and rich past, and the above 

summary has provided just a brief insight into its history.  Whilst this area is still 

under exploration in modern philosophy, many of the ideas introduced by 

philosophers have inspired the exploration of aesthetics from a psychological 

point of view. Many of the modern theories are supported by philosophical ideas, 

such as the properties of the stimulus and their effects of aesthetic responses and 

well as the impact of personal experience and cognition on our reactions to art and 

other aesthetics scenes and objects.  

 

It is important to recognise the philosophical foundations. Modern research has 

not generated such ideas from non-existence, but with modern research methods 

we are able to unpick the philosophical ideas and make confident practical and 

theoretical assertions about our responses to aesthetic stimulus.  
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1.2 Foundations of Experimental Aesthetics 
 

Gustav Fechner (1801-1887) opened arguably the first experimental 

psychological laboratory in the world, which to many signifies the start of modern 

Experimental Psychology as a whole.  Fechner had an interest in studying all 

aspects of the senses. He made this clear when outlining the research aims for his 

lab with the study of aesthetic responses immediately following psychophysics 

thus establishing aesthetics as the second oldest filed in modern experimental 

psychology.   

 

The first empirical investigations took place in 1871 at Dresden Museum. The 

study involved 2 versions of Holbein’s Madonna with Burgomaster Meyer (Fig 

1.1) 

 

 

Figure 1.1: Holbein’s Madonna with Burgomaster Myer (1528) 

 

Spectators were asked to write down their impressions of each painting- including 

their aesthetic reactions.  Unfortunately this study was ultimately unsuccessful.  

Spectators were unclear of what they were required to do and Fechner received 

few usable replies, however it marked a movement from the philosophical 
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investigation of authors personal experiences and moved aesthetics into the 

experimental domain in which responses where averaged in an attempt to predict a 

general universal aesthetic response to stimulus.  

Fechner’s Elements of Aesthetics (1876) outlines his area of study in detail, it 

focused on bottom-up approached to aesthetics and as such looked at structures, 

shapes and colours from which aesthetic responses were, he believed, constructed.   

Fechner recognised the challenges of deconstructing art from a quantifiable whole 

for scientific study so his work looked mainly at aesthetic responses to shapes, in 

particular the Golden Section (or Golden Ratio); two quantities are in the golden 

ratio if their ratio is the same as the ratio of their sum to the larger of the two 

quantities. This ratio has a long history in science and art.  It was discussed in the 

time of the Ancient Greeks in relation to experiences of aesthetic pleasure and it 

can be found in many works of art, such as Leonardo Di Vinci, and Salvador Dali 

as well as being found in appealing facial structure and nature.   The face of the 

Mona Lisa (Figure 1.2) fits perfectly into a golden rectangle, although it is a 

matter of debate if Di Vinci purposefully integrated a golden ratio in his artworks.  

 

http://en.wikipedia.org/wiki/Ratio
http://en.wikipedia.org/wiki/Sum
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Figure 1.2: Di Vinci’s Mona Lisa, illustrating golden ratio* 

* Golden Ratio: divide a line into two, and the longer part divided by the smaller part is equal to the whole 

length divided by the longer part. 

 

Perhaps the largest impact Gustav Fechner had on Experimental Aesthetics today 

is the detailed explanations of methodology to test aesthetic responses. He 

outlined several methods: 

• The Choice Method: Participants are asked to choose a stimulus image based 

on aesthetic judgments.  

• Method of Use: Participants assess objects by their purpose and how this 

impacts aesthetic appeal.  

• The Method of Production: Participants were asked to draw their ideal shape, 

or frame a composition based on aesthetic judgments.  

• Ordering technique: Stimuli are presented to the participants to be ordered 

from highest to lowest preference. It can be used with any number of stimuli. 
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• Paired comparisons: Participants are presented with 2 stimuli and asked to 

select the one they find most appealing, beautiful, interesting etc. from the 

pair.  

• Rating Scale method: Participants are asked to rate stimulus on a scale, either 

discrete (such as a likert scale) or continuous (any number from within a 

defined range) variables. 

 

The method of production received little attention in the field until recent research 

adopted the method using computational advances of composition and framing.  

The work of McManus (2011) demonstrated how different types of stimulus could 

be tested for aesthetic value.  Whilst the method has been applied to art, music and 

everyday objects, it is still the case that the most common stimuli used in 

experimentation are geometric shapes, isolated colours and tones.  Other 

methodological techniques derived from Fechner including the Ordering 

technique, the Paired Comparisons, and the Rating Scale method, which will all be 

discussed in detail in later sections (Chapter 6). 

 

Fechner laid the foundations for current trends of empirical aesthetics; he moved 

the field from a largely philosophical subject, to an area subject to stringent 

scientific measurement.  He touched on many key areas that were later explored in 

detail in the field, including mental processes associated with aesthetic responses, 

bottom-up variables such as similarity, content, sequence, complexity, novelty and 

interest and their impact of aesthetic response. Of particular relevance to this 

thesis is the principle that suggests pleasant stimuli must provide a balance 

between order and complexity.  

 

George Birkhoff (1884-1944) was an eminent American mathematician. Towards 

the end of his career, as it the common trend in empirical aesthetics, his thinking 

became focused on aesthetics responses to art, music and poetry.  His book 

Aesthetic Measure (1933) proposed a mathematical theory of aesthetics and 

attempted to classify a formula that could represent our aesthetic responses to 

certain stimuli within a group.  

 

M=O/C 



 

 20 

 

Birkhoff’s (1933) formula, expressed above, explained aesthetic measure (M) 

within a set of stimulus, as a function of order (O) and complexity (C).  He was 

the first to reduce aesthetic response to a simple formula, however this is linked to 

many previous theories of philosophy in which unity, harmony and order where 

contrasted against diversity, multiplicity and complexity.  

 

He believed Order (O) was a positive contributor to Aesthetic Measure (M) and 

Complexity (C) contributed negatively. Whilst this is still an area of debate 

(Forsythe et al; 2008), his acknowledgement that preferences are driven by the 

relationship between these 2 variables is still widely considered valid today.   

Complexity (C) is a factor that drives attentional effort and this effort needs to be 

compensated by the reward of unity or order (O) to create a positive aesthetic 

response.  

 

Birkhoff’s (1933) Aesthetic Measure covered a wide range of stimulus and 

discussed the method of measurement and classification.  Music, Art and Poetry 

were all explored within the text but the lasting work was based on Polygon 

shapes.  Birkhoff’s theories were never tested against human responses; therefore 

his theories and application was not tested until Eysenck & Castle’s (1970b) paper 

when the concept of individual differences in aesthetic responses was explored.  

Eysenck & Castle tested responses to Birkhoff’s polygons on large sample (1100 

participants) and found very small positive correlations between experience in art 

and aesthetic preference: correlations of r=.28 for Art trained students, and r=.04 

for non art trained students. The impact of individual differences on aesthetic 

preference has proved a fruitful area of discussion and will be explored in greater 

depth in later chapters within this thesis. 

 

Eysenck (1916-1997) was a prolific researcher and influential psychologist in the 

wider area of individual differences in Psychology.   Aesthetic responses were the 

topic of his doctoral thesis, published in 1940 where he attempted to examine both 

the individual factors that influenced aesthetic experiences, but also to determine 

if there was a general factor for beauty.   Eysenck attempted to take Birkhoff’s 

(1933) formula further by applying a predictive component based on further 
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empirical testing. Focusing on the interplay between complexity or harmony and 

order or unity, Eysenck derived a predictive formula using a regression equation 

that he stated could be used to predict preference for simple geometric forms 

(Eysenck, 1941a). This equation accounted for over 80% of factors influencing 

preference judgments (Eysenck, 1941b). His results presented an interesting move 

away from previous research because complexity was found to be a positive 

predictor of preference, rather than as Birkhoff (1933) describes a factor 

influencing attentional viewing, which was then rewarded with unity and order 

producing a hedonic response.  As a result of this Eysenck (1968) proposed a 

simplified formula, whilst highlighting the need much more complex analysis to 

accommodate different kinds of aesthetic stimulus. 

 

Further investigation allowed simplification of the many of the factors in the 

original regression equation (1941b). Order was measured by various forms of 

symmetry (vertical, horizontal and rotational) and the number of sides and 

presence of angles other than 90° -measured complexity.  He later recognised the 

limitations of his work in applications outside polygons figures but believed that 

order and complexity and the interaction between the two factors was in need of 

further investigation as important to understanding aesthetic responses (Eysenck, 

1968). 

 

Daniel Berlyne (1924-1976) was interested in general laws of motivation and 

curiosity (Berlyne, 1974) and he is often cited as the founder of  ‘new 

experimental aesthetics’ (Martindale, 2007).  Unlike Hans Eysenck, Daniel 

Berlyne opposed the study of individual differences because of a belief that 

general laws need to be understood before individual differences can be explored 

(Martindale, 2007).  

 

Berlyne approached the area of aesthetic investigation from a psychobiological 

stance; methodology akin to Fechner’s (1876) bottom-up approach but in addition 

exploring the physiological effect that stimulus can have on a viewer.   Berlyne 

refers to aesthetic response as based on its ‘Arousal Potential’ (Berlyne, 1970), 

which is based on 3 factors the psychophysical properties (the intensity, pitch or 

brightness of the object/scene), the ecological properties (the signal value and 
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meaningfulness based on the environment) and the collative properties 

(complexity, novelty, surprise and order).  This model is based on the idea that 

cortisol arousal changes depending on the properties of the aesthetic stimulus 

being viewed.  Initial activation is the non-specific arousal of the reticula 

activating system, which passes through all the areas of the cortex. Whilst this 

process is happening, the reticular system fibres pass through pleasure and 

displeasure centers in the mid-brain.  The pleasure center in the mid-brain has a 

low threshold, as the arousal potential of a stimulus increases, as does our 

preference.  As pleasure centers reach their asymptomatic degree of activation, the 

displeasure centers become activated and preference begins to decline. 

 

This activation pattern results in the characteristic inverted-U shaped function of 

Berlyne’s theory (Fig 1.3). 

 

 

 

Figure 1.3- Berlyne’s (1970) model of aesthetics. 

 

Berlyne (1971) attempted to explain all aesthetic responses with this hedonic law 

model. This was a key movement in the field and recognised the importance of a 
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number of properties in aesthetic responses as well as inspiring many modern 

cognitive and neuropsychological approaches with the focus on information 

processing and cortical arousal.  

 

Unfortunately the simplicity of Berlyne’s model means that it is still one of the 

most frequently cited in empirical aesthetics but also was easily replicable and 

subsequently disputed with further testing (Martindale, 2007).  Martindale, Moore 

& Bakrim (1990) failed to replicate many of Berlyne’s findings, and found that he 

underestimated ‘meaningfulness’ on aesthetic judgments. One large flaw in 

Berlyne’s (1970; 71) arousal theory was its inability to differentiate between 

different stimuli and their arousal potential, according to Berlyne’s model if a 

Monet painting induced a particular level of arousal, and a picture of a disturbing 

scene or electric shock produces the same level of arousal this will be considered 

equally preferred. Clearly this is not the case, and here lies the major problem with 

this unspecified arousal defined in Berlyne’s model (Martindale, 2007).  It could 

be argued that the inverted-U shaped function of preference could be useful when 

used in a group of similar images, as Birkhoff (1933) limited his theory to.  This 

model has been useful in extending the investigation of complexities impact on 

aesthetic judgments and Berlyne’s work continues to inspire the further testing of 

complexity as a collative variable in aesthetic judgment (Nadal et al, 2010; 

Forsythe et al, 2011).   

 

Conclusions: 

 

Despite its limitations the Berlyne model of aesthetic preference and the other 

principle theorists discussed in this section, have had a large impact on the current 

work in the aesthetic field. To move forward in the field, the foundation needs to 

be acknowledged and built upon in the aesthetic research following these 

foundations. Most of the very early research in experimental aesthetics focused on 

the link between complexity and order in the stimulus and most concluded that 

this continuum could predict or shape our preferences. The work in this thesis 

interestingly is still exploring this interplay between complexity and order in 

stimulus and whilst the ideas have been challenged and tested and new theoretical 

and quantifiable measures have been taken, the role that complexity plays in 
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preference is still probably one of the largest in the field, even over 100 years 

since Fechner began this empirical investigation and centuries since aesthetics was 

first contemplated.  
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2.0 Modern Perspectives of Psychology and the Science of 

Aesthetics. 
 

2.1 Overview of approaches in modern aesthetics  

2.2 Objectivist/bottom-up approaches to aesthetics 

2.3 Subjectivist/top-down approaches to aesthetics 

2.4 Neuroaesthetics: The present and future in the field 

 

Much of the early research on empirical aesthetics focused on the qualities of an 

object that contribute to our aesthetic judgments. Whilst many researchers still 

explore this perceptual processing model of aesthetic judgment there have been 

many advances in the field of cognition and neuropsychological responses to 

measure aesthetic response. This chapter looks at increasingly modern theories of 

aesthetic judgment based on complexity, natural shapes, art and simple patterns. 

These stimuli offer a framework for exploring the new and advancing theories 

accounting for preference in the current times. The developing trends in modern 

aesthetic research will be outlined and explored below to show the pattern of 

research across the lifespan of empirical aesthetics. 
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2.1 Overview of approaches in modern aesthetics 
 

Since its early development, the field of experimental aesthetics has received a 

multiplicity of attention across different subfields in psychology and other 

disciplines.   As the skills and interests of psychologists have diverged so to have 

advancements in psychological theory and knowledge.  New advances in 

technology have moved forward the scientific exploration of perception.  For 

example, advanced mathematical calculations allow detailed quantification and 

measurement of previously under researched stimuli because they support more 

stringent experimental procedures.  

 

In the beginnings of the, field two broad approaches to studying aesthetic 

responses emerged, objectivism and subjectivism.   The objectivist view held that 

beauty is derived from the object: the features of the object that contribute to our 

overall assessment of beauty.  A subjectivist view held that beauty is derived from 

the individual and their experiences, emotions and knowledge. Whilst most of 

today’s research do not take an extreme dichotomous stance, it is important to 

explore the history and approaches previously taken in the field. Despite this a 

large amount of psychological research is based on objectivist approaches because 

it enables stringent quantification and examination of the physical factors that 

contribute to beauty.   In other words, there is strong experimental control, but it 

comes at a trade-off; how ecologically valid it is to compartmentalise aesthetic 

experience?   

 

2.2 Objectivist/Bottom-up Approaches to Aesthetics 

 

Put most simply, seeing is a neural activity initiated by light reflected from a 

surface (Solso, 2001).  The object we are ‘seeing’ reflects light, that when it 

reaches the retina, triggers signals, which are transduced into neural activity.  That 

neural activity is passed along to the brain for additional higher order processing.  

This view of visual perception is lawful and structured, the processes and physical 

characteristics of light and neurotransmission follow set rules with little to no 
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variation across individuals.  So we are objective in what we see, at least in a 

physiological sense. 

 

The initial exploration of aesthetic responses as a function of the object or 

stimulus can be traced back to the early philosophers (Aristotle, Kant, etc.), a 

perspective that continues in todays modern field of experimental aesthetics. The 

quest to understand factors that contribute towards our experiences of beauty are 

still some of the most published findings in the field.  Factors such as size, shape, 

colour and proportion continue to be investigated in new and advancing ways. 

 

There is an emerging wealth of literature exploring the aesthetic preference for 

symmetry that demonstrates that modern experimental aesthetics still values and 

attends to the idea that aesthetic preference is a response to the properties of an 

object, rather than based in more subjective experience. Whether it is human faces 

or visual patterns, symmetry has been found to be one of the most robust 

predictors of aesthetic judgments in both humans and other animals (Cárdenas & 

Harris, 2006; Little et al, 2007;Shepherd & Bar, 2011; Rodrigues et al 2004). 

 

Attempts to understanding this relationship have focused on the biological 

significance of symmetry.  Cádenas & Harris, (2006) believe that the preference is 

related to ease in processing.  In other words, the less energy an organism needs to 

use to process something, the more aesthetically pleasing it will. These ideas flow 

from the processing fluency hypothesis (Reber et al., 2004; Winkielman et al 

2006). An idea, which attempts to formulate a theoretical model to guide 

examination of these phenomena, and it is outlined in detail later in this chapter 

(Section 2.3). 

 

Similarly, the study of colour preferences and aesthetic responses has a tradition, 

which dates back Cohn (1894) and his study of synaesthesia (the merging of the 

senses).   Eysenck carried out key studies into this area during his doctoral thesis.  

He reviewed a large cohort of colour research concluding that a) there is general 

agreement between colour preferences of all people, b) that alternative saturation 

results in a bipolar like/dislike response and finally c) that there is very high 

agreement of preference (0.95) between sexes (Eysenck, 1940).  These findings 
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point towards a universal theory of colour preferences, but it appears that 

individual differences across a range of variables still play a role in explaining 

some variance across aesthetic preference. McManus and colleagues (1981) 

revisited the aesthetic theory of colour with additional methodological advances 

measured some 40 years following Eysenck’s exploration. McManus et al (1981) 

highlight that previous studies of colour preference generally lack any clear 

experimental definition and design to allow true assumptions to be made. To 

combat this they adopted more stringent experimental methodology, using 

Munsell colour patches, accounting for hue, value and chroma.   Results indicate 

that the majority of participants showed preference for blue and dislike for yellow.  

This effect has been reported across species (Humphrey, 1972; Sahgal & Iversen, 

1975), suggesting a potential biological and adaptive function of this colour 

preference. Further discussions explore the individual differences across colour 

preferences, with hue appearing to have the most variance across participant 

groups.  McManus et al (1981) are conservative in their conclusions and highlight 

the need to further exploration of aesthetic response to colour. 

 

Most recently, Stephen Palmer and Karen Schloss of the Berkley Colour Project 

(BCP) unravelled our aesthetic responses to colour as a function of an object or 

scene.  Pointing towards the work of Eysenck’s (1941) and McManus’s (1981) 

Palmer and colleagues report that despite some large individual differences in 

preference, consistencies for colour exist across groups.   Palmer, Schloss & 

Sammartino (2013) argue that group colour preferences show systematic and 

reliable patterns of aesthetic preference across the 3 dimensions of colour; hue, 

saturation and lightness.  The highest aesthetic judgments were given to blues and 

the lowest to yellows.  This effect appears stable, but it is difficult to explain from 

a psychophysical point of view.  

 

The patterns reported by Palmer et al, (2013) are consistent with the Ecological 

Valence Theory (EVT).  EVT is a theory; developed by Palmer & Schloss (2010) 

following a series of experiments, explored averaged colour preference across 

group of individuals from different countries, ages and universities.   EVT 

suggests that aesthetic response is directly related to how strongly related 

associated objects are related to the prototypical colour. This model moves away 
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from a traditional objectivist view as psychophysical research would take and 

moves towards a more interactionist approach in which both objective and 

subjective influences play a role in aesthetic judgment. The EVT proposes that 

people like/dislike colours to the degree they like/dislike the objects they associate 

with that colour, for example blue is most preferred and associated with positive 

stimulus such as clear sky, clean water and yellow is least preferred as it is may be 

associated with negative stimuli such as rooting food and faeces. These findings 

could suggest that an innate or evolutionary route to preference based in our 

ancestral history.  This assumption along with the associated difficulties in 

confirming these findings, have possibly contributed to the lack of corroborating 

studies. Strauss et al., (2012) found that preferences for colours can be 

affectively/emotively biased but manipulation in priming either positive or 

negative associations prior to aesthetic response measurement will demonstrate an 

effect of aesthetic preference alteration.  In this study participants were shown 

either positively valence red images (strawberries and cherries) or negatively 

valence images (blood and guts).  Weighted averages revealed that 80% of 

variance was accounted for by this affective priming.   

 

Schloss et al., (2011) furthered these findings by finding culturally bound colour 

preferences based on school colours, with participants showing greater preference 

for their own school colours over the rival school.  Individual differences such as 

gender, age and culture have also been explored at the BCP. The findings suggest 

that objective bottom-up processing may influence aesthetic judgments to a certain 

point at which subjective top-down influences shaped by individual experience 

take over and govern colour preferences.  

 

Further areas in modern aesthetic research, adopting an objectivist bottom up 

approach to understanding aesthetic response, include the influence of size, shape 

and proportion.  At first glance, observers prefer large objects to small (Silvera et 

al., 2002).  In contrast to objects with sharp contours, heightened preference has 

also been reported for objects with curved contours (Bar & Neta, 2006).  These 

responses have since been found to be consistent across both abstract and 

recognisable objects (Silvia & Barona, 2009) and are stable across valence 

balancing (Leder et al., 2011). Researchers attributed this to an interpretation of 
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sharp contours as potentially more threatening and harmful than objects with 

curved edges, recognition of edges and rapid response reactions were essential to 

early human survival. 

 

Complexity and order have been acknowledged through the history of empirical 

aesthetics as an important area of investigation. As discussed in the previous 

chapter, Berlyne (1970) approached responses to complexity from its arousal 

potential perspective. His approach, exploring motivation and curiosity, argues 

that arousal is hedonic up to a point before it becomes negatively marked and 

preference begins to fall. This inverted-U function of preference is largely 

disproved as a general model of explaining all aesthetic responses (Martindale, 

2007).  Despite this, there is increasing exploration of Berlyne’s (1970) theories 

within visual complexity. Complexity is an important, and not yet fully explored 

field within aesthetics and makes up a large component of this thesis. A more 

thorough examination of visual complexity and aesthetic response will be 

explored in Chapter 3.  

 

Prototypically or ‘supernormal’ stimuli have been found to contribute significantly 

to aesthetic preferences. Ramachandran & Herstien (1999) highlight 

prototypicality of an object as a predictor of preference, and believe these extreme 

images excite and simulate the brain as the natural (realistic/normal) images would 

however because of the extreme nature of features this excitation is experienced 

more strongly than the original stimulus. Evidence for this ‘Peak experience’ have 

been linked with evolutionary theory, as our reactions towards survival are 

exaggerated and the objective features resulting in these are amplified. This theory 

could account for the draw of artistic representations over realistic photographs of 

objects or scenes (and for previously reported colour preferences). Artists appear 

to have the ability to highlight the principal features and amplify them to a point 

evoking the highest aesthetic response (Ramachandran & Hirstein, 1999). These 

findings open potential inquiries about how individual responses can be enhanced 

using modified or man-made stimulus over real objects or scenes. One such 

example could be the use of pictures of nature within health care setting which has 

been found to promote well-being responses (Ulrich, 1991), this ‘peak experience’ 

theory could be used to generate images that amplify well-being responses, fractal 



 

 31 

patterns could be one of the possible methods to do this and will be discussed in 

depth in subsequent chapters.  

 

A ‘direct theory’ of perception (Gibson, 1966) or ‘bottom-up’ processing, 

stipulates that the visual system processes the world around us as it actually is.  A 

common analogy is that perception resembles a camera through which we as naïve 

observers experience a given visual situation.  All the findings outlined above 

have roots in this objectivist approach to aesthetic judgment, and researchers 

continue to regularly adopt this approach to allow further understanding of the 

physical factors that contribute to aesthetic responses. One consistent finding 

when exploring the universality of preference for particular bottom-up perceptual 

processes is the impact of individual differences. Differences in preferences for 

the factors across have been found across age, gender and other demographic 

variables and warrants further investigation.  

 

Alternatively, the modern approach to aesthetic research have moved toward a 

base within the subjectivist perspective, in which beauty is considered as existing 

in the eye of the beholder.  Our subjective experiences shape our preferences and 

this means that a unified theory of beauty is a challenge to formulate because, 

whilst the origins of beauty can be explored, subjectivity means that it is difficult 

using bottom-up measures to make firm and universal predictions about what 

people will experience as being beautiful.  That being said, the acknowledgement 

that beauty is a subjective experience has permitted researchers to explore the 

factors that make us different from one another, and how those differences impact 

on aesthetic experience.  So for example, the collective impact of culture and 

experience takes us to the other end of the continuum, towards a constructivist 

theory of perception (Gregory, 1970) whereby processing of the visual world is a 

‘top-down’ process influenced by previous experience, emotion and 

understanding. 

2.3 Subjectivist/top-down approaches to aesthetics 
 

Moving away from objectivist approaches which see beauty as an inherent quality 

of an object, the idea that our experiences can shape our preferences emerged as a 
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new school of thinking.  Cognition and perception is at its “most sophisticated in 

the cognition and perception of art works” (Lopes, 1999), because understanding 

the art perceiving mind is key to understanding human cognition.  

 

A common saying about familiarity is that it breeds contempt (widely attributed to 

Aesop c620-564 B.C). Aldous Huxley was similarly disparaging when 

pronouncing that “familiarity breeds indifference”(1956). However this is not so 

for the psychology of aesthetic experience, in fact; “familiarity may breed 

contempt in some areas of human behavior, but in the field of social ideas it is the 

touchstone of acceptability.” (John Galbraith; American Economist in The 

Affluent Society 1958).   A whole higher preference will be shown for scenes and 

objects that we are familiar with over those, which are new and novel and we call 

this the mere-exposure effect. 

   

Early discussions of the impact of familiarity can be seen in Fechner’s (1876) 

work, however Zajonc (1968, 1984, 1998) has received the most attention in this 

regard. Zajonc conducted a series of experiments in which participants were 

exposed to a variety of different stimuli (Chinese characters, nonsensical words 

and photographs) and preference ratings demonstrated that merely repeating 

exposure to a type of stimulus results in increased positive attitude towards 

stimulus originally rated ‘neutral’.  This effect increased with further viewing, as 

long as the stimulus was ‘unreinforced’ and only accessible in perception rather 

than conscious processing of the stimuli.  

 

The work on Zajonc has resulted in a large number of replications studies. 

Exposure effects have been used in a wide variety of research domains.  For 

example, strong mere exposure is found in children for representational art 

(Bowker & Sawyers, 1988). Hansen & Wanke (2009) found that in marketing 

research, exposure to a brand name product influenced attitude. Other studies have 

found the link between exposure and preference in food (Pliner, 1982) and music 

(Peretz et al, 1998). Cutting (2007) tested the effect with impressionist art in 

adults; results reflected the mere-exposure effect, with participant demonstrating 

higher preference for familiar pieces that had received most publication and 

display. Cutting’s study suggested that even passive, unconscious exposure would 
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lead to powerful attitude change. In fact studies has shown that mere-exposure 

effect is most powerful with implicit rather than explicit awareness of repeated 

exposure. There is an inverse relationship between stimulus recognition accuracy 

and the magnitude of the exposure effect across all mere exposure experiments 

(Bornstein, 1989).  

 

Bornstein’s (1989) meta-analysis explored the scope of mere exposure theory and 

found the effect for abstract paintings and drawings were the weakest. Meaning 

that in unstructured, unfamiliar images repeated exposure is less likely to increase 

aesthetic experience.  The impact of complexity of the mere-exposure effect 

highlights an interesting pattern, and makes links to Berlyne’s (1979) arousal 

theories of preference. Complexity is a powerful predictor of preference for a 

variety of visual stimulus.  The impact of repeated exposure of complex images 

has found repeated exposure results in heightened preference (Saegert & Jellison, 

1970) however liking for simple stimuli did not show the same pattern, with 

results showing a peak in preference following fewer exposures.  Forsythe et al 

(2008) found that familiarity with abstract shapes influences complexity ratings, 

and participants perceived familiar stimuli as less complex than stimuli that are 

new and novel.  

 

Tinio and Leder (2009) conducted a series of experiments testing the mere-

exposure effect on 2 established and reliable predictors of preference (symmetry 

and complexity.) Their initial studies exposed participants to abstract patterns and 

asked them to rate the perceived beauty. Initial results found consensus with 

original findings that exposure leads to heightened ratings. In a series of additional 

studies however, Tinio & Leder found that after repeated exposure to complex 

stimulus, participants held a greater preference for simple patterns, and 

participants who had been repeatedly exposed to simple patterns held a greater 

preference for complex patterns. The researchers say this effect is only seen in 

‘Massive familiarization’ and not in ‘Moderate familiarization’, if we are 

consciously aware of repeated exposure it appears to have the opposite effect. 

 

This change in preference could be likened to Berlyne’s (1971) inverted-U 

function of novelty. In moderate familiarisation, the image is still familiar but 
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novel enough to keep our interest, however during massive familiarisation, 

novelty is diminished and the viewers become bored of the stimuli. It appears that 

there is a delicate balance between preference and familiarity, what could be 

termed the ‘goldilocks effect’ with familiarity and complexity needing to be ‘just 

right’ to have positive aesthetic responses.  

 

A vast volume of literature supports the mere exposure effect, it has been found to 

be robust, across gender, age and cultural background (Bornstein, 1988), yielding 

strong results for a variety of stimuli and using a variety of scales of measurement 

(Bornstein & D’Agostino, 1992).  There is some suggestion that two distinct types 

of mere-exposure pattern operate; the traditional effect (as outlined above) and the 

structural mere-exposure effect.  Zizak & Reber (2004) made the distinction when 

they found that the effect can be replicated not only with direct stimulus (i.e. the 

same stimulus is shown and rated) but also with stimulus that demonstrate 

underlying rules of structure or patterns.  Focusing on artificial grammar (AG is a 

type of stimulus consisting of letter strings appearing chaotic and nonsensical but 

with underlying rules that participants are required to learn through the 

experiment), Zizak & Reber asked participants firstly to classify if the artificial 

grammar conformed to the principles of the grammar and secondly to rate how 

much they liked them. The results were influenced by the extent to which 

participants were exposed to the sentences.  At higher levels of familiarity, 

structural mere exposure occurs, however at moderate familiarity only classic 

mere exposure occurs. These results suggest an implicit learning theory may be 

involved in aesthetic judgment, although the potential impact needs further 

investigation to become clear. 

 

 

Explaining the mere-exposure hypothesis? 

 

There are a number of theories exploring the reason for the mere exposure effect. 

Some argue that learning processes underlie the effect (Gorden & Holyoak, 1983) 

this can take place apparently outside conscious awareness- involving implicit 

rather than explicit knowledge about a stimulus. This research suggests that not 

only previously encountered stimuli would evoke heightened responses, but 
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proposes that with repeated exposure we learn implicit patterns that are used 

(unconsciously) when rating similar stimulus.  

 

Perhaps the strongest, and certainly most supported suggestion, explaining the 

mere exposure effect see’s it as a cognitive process that enables us early 

recognition and identification; some have used the mere exposure model to 

explain the effects seen in perceptual/processing fluency models of preference 

(Bornstein & D’Agostino, 1994). Put simply, we prefer stimulus that we can 

process with ease, and this ease, which improves with each exposure, results in a 

heightened (and mostly unconscious) positive hedonic response.  The link that 

perceptual fluency was underlying the effect of mere exposure in heightened 

aesthetic responses was first introduced by Jacoby & Kelley (1987) and Jacoby & 

Whitehouse, (1989) who believed positive affect responses felt for familiar scenes 

and objects was down to a misattribution of perceptual fluency for liking, we 

demonstrate preference for images that we are able to process with relative ease.  

This area of research has since been developed and tested using stringent methods 

and is one of the dominant theories in understanding aesthetic judgment in modern 

research.  

 

The interactionist approach to aesthetic processing: 

 

The Reber, Schwarz & Winkielman’s (2004) theory of processing fluency builds 

on mere exposure as it explains beauty as a function of the perceivers processing 

dynamics. The theory stipulates that the easier a scene/object is to process then the 

higher the positive aesthetic response to the scene.  Reber et al’s (2004) theory 

offers one of the most comprehensive theories of aesthetic judgment since its 

philosophical foundations.  The model of processing fluency looks at low-level 

processing based on the stimulus properties as well as higher-order cognitive 

processing involved in stimulus recognition and meaning classification.  

 

Simply put, the processing fluency model proposes that the easier we can process 

stimuli, the more positive an individual’s response will be. This model is built on 

4 assumptions that account for the position and scope of the model.  The first, that 

objects differ in the fluency in which they can be processed. This assumption is 
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supported by information processing and perceptual studies. The second 

assumption, that processing fluency is hedonically marked, and high fluency is 

subjectively experienced as positive has foundations and support from the feeling-

as-information models. The third, processing fluency feeds judgment, as people 

use subjective experience to make judgments and finally the fourth assumption is 

the impact of fluency is moderated by expectations and attribution (Reber et al., 

2004). 

 

Perceptual Processing-Fluency:  

 

A wide range of research has been conducted looking at the factors/properties of 

stimulus and how these relate to aesthetic judgment. This theory of aesthetic 

pleasure, unlike many others, does not dismiss the many years of objective 

research into the qualities of stimulus that influence beauty and aesthetics, but 

instead it includes metaphysical theory as part of the explanation for preference. 

Among others, factors such as proportion and balance were identified (Birkhoff, 

1933, Fechner, 1876 Gombrich, 1984) with symmetry (Makin et al, 2012), 

complexity (Berlyne, 1971, Eysenck 1941) as well as clarity and contrast 

(Gombrich, 1984, Solso, 1997). Processing fluency takes into account these 

already established theories and houses them under the same umbrella.  These 

elements cumulated into beauty because they improve a perceiver’s ability to 

process the image more quickly, resulting in a heightened aesthetic experience. 

The properties outlined above aid in ease of processing therefore increasing 

affective response to the stimulus with these features. Perceptual processing 

fluency also according to Reber et al (2004) also accounts for increased aesthetic 

preference for prototypical over non-prototypical stimuli (Martindale, 1984), this 

is based in findings from cognitive psychology that demonstrate general 

preferences for ‘average’ stimulus (Rhodes & Tremewan, 1996).  Prototypically is 

processed more easily than its counterpart, therefore the processing fluency 

hypothesis can account for these findings.   

 

Complexity: A problem for processing fluency model?  
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Complex stimuli can be raised as a potential issue with the processing fluency 

model. We will find the most simple stimulus the most appealing however 

preference also increases with complexity (Berlyne, 1971, Forsythe et al 2008).  

How then can this be reconciled?  Reber and colleagues (2004) attempt to explain 

the link between complexity and preference within the processing fluency 

hypothesis by suggesting salience plays of role in aesthetic processing. 

 

“As complexity increases, the salience of the source of perceptual fluency 

decreases, enhancing the misattribution of fluency to beauty. However, further 

increases in complexity will eventually reduce processing fluency, leading to 

decease in perceived beauty. These mechanisms would combine to form a U-shaped 

relation between complexity and beauty, as predicted and found by Berlyne 

(1971).”  

(Reber et al., 2004, p. 373) 

 

Biederman, Hilton & Hummel (1991), found that complex shapes often have 

higher redundancy and thus are recognised faster than simple shapes, therefore 

suggesting, that simplicity doesn’t necessarily mean a stimuli will demonstrate 

ease of processing.  It could be suggested that the conceptual processing fluency, 

outlined by Reber et al., (2009) may have an equal interaction with aesthetic 

judgment, as does perceptual processing fluency. It is the interplay between the 

semantic knowledge and the sensory experience that results in heightened results 

for complex images. 

 

Fluency in processing hedonically marked? 

 

The feelings-as-information model (Schwarz & Clore, 1983), and more recent 

findings (see Schwarz & Clore, 2003 for a review), found that our feelings serve 

as a source of information in their own right.  Fluency in processing results in a 

heightened positive affect and this has been observed in a variety of studies 

including perceptual priming and psychophysiological measures (Winkeilman & 

Cacioppo, 2001).  As mood is a source of information, this ease in processing 

involved heightened affective responses, which may lead to heightened aesthetic 
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judgments based on these positive hedonic markers.  This could account for the 

higher preferences found in the perceptual processing fluency account above. 

 

Higher-order Cognitive (Conceptual) Processing Fluency:  

 

The Reber et al., (2004) model also examines the role of higher-order cognitive 

processes and processing fluency in preference.  Taking the top-down, subjectivist 

point of view, that preferences are individual ‘in the eye of the beholder’, this 

perspective accounts for taste and cultural differences within our aesthetic history.  

The semantic meaning of stimuli is important, as are our individual experiences 

and the ability to process new information.  This is an added advantage of the 

processing fluency model because we know that meaningfulness is a strong 

predictor of preference (Martindale, Moore & Borkum, 1990) suggesting that 

higher-order cognitive processes may be involved when assessing a variety of 

visual stimulus.  Meaningfulness is a better predictor of aesthetic preference than 

complexity, and meaningfulness is directly related to the ways in which 

participants will interact with a stimuli.  Hekkert and van Wierngen (1990) found 

different relationships of preference with abstract and representational art.  For 

abstract art, a Berlyne (1971) inverted-U preference for complexity was found but 

for representational art, prototypically and preference showed a linear relationship. 

Prototypically in this case can be said to influence the perceived complexity of an 

image.  

 

According to the processing fluency model, preferences develop as individuals 

become exposed to more complex and advanced imagery, thus accounting for 

expertise related differences.  Differences can be found between novice and expert 

group preference as the different viewers approach the artwork in a fundamentally 

different way (Winston & Cupchik, 1992).   Expert viewers adopt a processing 

which highlights the challenge of complex works, perhaps because the 

prototypically or ‘structural’ similarities are better known to the expert. Novice 

viewers rely on the personal meaningfulness and familiarity of an artistic stimulus. 

Similar differences between viewer expertise can be seen in wider research 

(Cupchik & Gebotys, 1988). The studies discussed above offer support for Reber 
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et al., (2004) model of conceptual processing fluency, they demonstrate the role 

the individual experience and knowledge, can influence our aesthetic evaluations.  

 

Belke et al., (2010) found evidence of the impact of cognitive fluency in art 

appreciation, when they studied the impact of bogus titles on artwork. These 

results supported Reber et al., (2004) in that paintings given semantically related 

titled were most preferred.  The title acted as a conceptual primer to higher-order 

processing of the image, secondary preferences were shown to ‘no title’ paintings 

and finally semantically unrelated titles demonstrated the least appreciation, as the 

mismatched prime increased processing time.  

 

From the objectivist approach we now have a greater understanding of what 

people find most aesthetically appealing however the subjectivist approach 

extends this and attempts to unpick the collective impact of culture and 

experience.  This takes us to the other end of the perceptual continuum, towards a 

constructivist theory of perception (Gregory, 1970) whereby processing of the 

visual world is a ‘top-down’ process influenced by previous experience, emotion 

and understanding and preference.  Although often examined in isolation, there is 

a synergy between the two theoretical approaches that can direct and inform 

stringent empirical research; objectivism supports the analysis of composite parts, 

whereas subjectivism helps us explore why individuals, cultures or subgroups like 

what they like.   Most modern philosophers and scientists now reject dichotomous 

thinking advocating a cross-cultural internationalist position of aesthetic 

perception (see for example Reber et al., 2004).  

 

Can you be more subjectively exact about what you see?  This is perhaps 

somewhat of an oversimplification, but how is it possible to objectively measure 

subjective experience? The use of cognitive and/or neural mechanisms in aesthetic 

judgments links with the newest school of thought in aesthetics research, 

neuroaesthetics. These approaches will be discussed in this section to give the 

reader an overview of the modern approaches to aesthetic research in psychology.  

 



 

 40 

2.4 Neuroaesthetics: The present and future in the field 
 

In 1999 Semir Zeki introduced the term ‘neuroaesthetics’, offering a unified name 

to the newly emerging scientific exploration returning to the biological 

underpinnings of aesthetic experience.  Of course, the identification that perhaps 

our aesthetic responses and behaviour are innately formed can be traced back to 

early philosophical and scientific musings (see Chapter 1), however with the 

power of a unified name, and key advancements in technology, neuroaesthetics 

spurred the field of empirical aesthetics into new and unexplored horizons.  

 

Neuroaesthetics is a field of study which adopts neuroscientific methods such as: 

functional MRI (fMRI), Positiron emission tomography (PET), 

magnetoencepholography (MEG), Electroencephalography (EEG) to study 

preference, appraisal and aesthetic judgment. There are in general 3 distinct but 

related fields of research within neuroaesthetics. Firstly a striving to understand 

the logic of universal truth to aesthetics; this area looks at art (as well as other 

stimuli) and attempts to unpick aesthetic laws that provoke aesthetic responses.  

Secondly, research attempt to find the relationship between neurological and 

psychological processes by exploring the brain responses to art and aesthetic 

stimuli. The final thread, currently, in the field of neuroaesthetics would be the 

evolutionary foundation of aesthetic experience. As the approach is centred on the 

biological underpinnings of aesthetic experience, it is important to understand the 

evolutionary rationale for aesthetics as a process and stimuli response.  The 

following section will discuss the progression through each area, and outline main 

findings. Finally it will explore the potential issues facing neuroaesthetics as a 

field and lay the foundation for the current research strands within this thesis.  

 

Universal Truths to aesthetics: 

 

Early research into the field of neuroaesthetics focused on understanding the laws 

used by artists, both intentionally and unintentionally to create illusions of reality 

and evoke aesthetic responses. Ramanchandran & Hirstein (1999) developed 8 

laws of aesthetics commonly found in art across different cultures and used to 

optimise and titillate the visual experiences of the viewer and the artists 
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themselves. Each law is established on the biological underpinnings of preference 

from an evolutionary standpoint.  

 

One such example is the use of ‘supernormal’ stimuli within art, in which the artist 

emphasises or caricatures the stimulus. Examples of this can be seen in the colour 

palates used by Van Gogh (Fig. 2.1), his use of extremes to colour his landscape 

would, according to this model, be preferred over Constable’s more muted and 

natural colour palate (Fig 2.2). Ramachandran & Hirstein (1999), believe that the 

extremes of supernormal images excite the same areas of the brain as the natural 

examples would, however this excitation is stronger in supernormal stimuli.  

 

 

Figure 2.1- Van Gogh- Wheatfield with Cypresses- 1889 
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Figure 2.2- Constable- Fen Lane, East Bersholt 1817 

 

Some argue that aesthetics is a by-product of basic evolutionary instincts and art, 

as a stimulus, can be seen as a ‘peak experience’ of these occurrences (Pinker; 

1997, 2002) but this suggestion does not account for the powerful and as Kant 

would put it ‘sublime’ experiences of nature that appear to have a universal and 

powerful aesthetic effect.  

 

Semir Zeki’s (1999) book “Inner Vision” argues that artists are in a sense 

neurologists, he goes on to say that when we say something is pleasing, what we 

are truly saying is that it pleases the brain.  Artists appear to have the ability to 

understand and harness this knowledge in the creative process. Neuro-imaging 

studies present some support for this idea.  Lengger et al., (2007) found 

significantly higher levels of activation in the left frontal lobe and bilaterally in the 

temporal lobes when observers were examining artworks.  Representative 

artworks evoked more associations across different brain areas, with a strong 

activation of multimodal association areas in the temporal lobe.  Other researchers 

have reported on the activation of reward centres within the brain (Maffei & 

Fiorentini, 1998) and more have argued that aesthetic experience is a reward 

because it involves problem solving and the resolution of perceptual problems is 

self-rewarding (Ramachandran & Hirsten, 1999) demonstrating ties between 

neuroaesthetics approaches and Reber at al’s (2004) processing fluency hypothesis 

discussed previously. 
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Exploring neurological responses to art and aesthetic stimuli: 

 

As well as the universal rules of art and aesthetic stimuli, the field of 

neuroaesthetics has interest in exploring the responses to art and aesthetic stimuli. 

Chatterjee (2010) provided an early overview of the field of neuroaesthetics and in 

a more recent review Nadal (2013) summarised the main insights from 

neuroimaging for the experience of art. Both authors outline the growing evidence 

points towards an interaction between multiple cognitive and affective processes, 

and highlights increasingly advanced neuroscientic techniques as a method from 

which these processes can be understood. The author outlines the two main 

methods to answer questions regarding the multicomponent experience of art from 

a neurological perspective are firstly analysing the effect of neurodegeneration or 

lesions have on aesthetic responses to art and secondly the use of neuroimaging 

techniques to measure activity in the brain when experiencing/viewing artwork. 

Below a brief summary of the main findings will be explored to provide an up to 

date and clear account of current directions in the field of empirical aesthetics.  

 

When exploring the responses from the brain towards artistic and aesthetic 

stimulus, we can employ established techniques to investigate neurological 

function based on a variety of states. One such method is looking at differences 

based on neurological disease or impaired neurological function and how aesthetic 

and artistic responses differ from ‘normal’ ageing or functioning population. There 

is a surprising wealth of case study evidence linking neurological disorders and art 

production (Zaidel, 2005). Frontal Temporal Dementia (FTD) is one such disorder 

that has been linked to increased art activity, and findings have shown people with 

FTD develop susceptibility towards increased art production (Miller & Hou, 

2004). Other studies demonstrate obsessive artistic practices in individuals 

diagnosed with Parkinson’s disease following dopamine agonist treatment 

(Chatterjee et al., 2006). Further studies have shown that damage to the specific 

areas of the brain including the amygdala have shown the link between these areas 

and artistic appreciation linked with particularly in the case studies reported with 

valence (Adolphs & Tranel, 1999; Gosselin et al, 2007)  Chatterjee (2010; 2006; 

2009) believes this paradoxical response of heightened aesthetic/artistic activity, 

with reduced neurological functioning in individuals with neurological impairment 
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could be a results of obsessive compulsive features within the disorder, or a 

response to enhanced visual and expressive vocabulary in the face of verbal or 

other cognitive diminishment seen in neurological disease.  Nadal (2013) however 

adds words of caution when making claims of neurological link to aesthetic 

experience and points out that by their nature, exploring neurodegeneration or 

lesion damage in artistic activity and appreciation is anecdotal and conclusions can 

only be drawn tentatively.  

 

Responses to artists work with neurological impairment have been reviewed and 

findings appear to depend of the severity of the disorder and increased artistic 

acclaim.  Zaimov, Kitov & Kolev (1969) reviewed products of 25 artists following 

stroke and found in some cases the work following was considered as notably 

different with previously unmasked artistic potential. Further experimental 

evidence has shown that preferences for artist work changes (among other factors) 

as a result of Alzheimer’s disease with participants, naïve to the hypothesis, rating 

paintings with increased positive aesthetic response (Williams., 2012 Doctoral 

Thesis), the work explored differences in preference and complexity responses the 

‘early’ and ‘late’ style from William DeKooning’s artwork, results found higher 

preference for DeKooning ‘late’ style works, furthermore these differences do not 

appear to be a result of differences in visual complexity of the art works. In a bid 

to overcome some of the problems associated with making claims about the 

damaged brain regions and aesthetic responses Bromberger et al (2011) adopted a 

design to explore how much specific brain lesions impair the aesthetic response to 

art, their findings mark a step forward in standardising the field and show that 

patients with right frontal, parietal and lateral temporal cortices damage differed 

significant in aesthetic responses compared with health participants when rating 

across a number of conceptual scales.  

 

The field of neuroaesthetics goes beyond using purely behavioural measures of 

preference and with advancements in technology; there has been an increased use 

of computational equipment to measure the neural correlates of implicit aesthetic 

judgments of beauty. Nadal (2013) and Chatterjee (2010) both champion the 

advances in neuroimages techniques on healthy participants to explore the brain 

activity involved in the complex process of art appreciation. Evidence suggests 
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that at least three functionally distinct brain regions are associated with the 

experience of art. The first, evaluative judgment, attentional processing and 

memory retrieval associated with the pre-frontal parietal, temporal cortical 

regions. The rewards circuit associated with cortical and subcortical regions and 

finally the low, id and high-level cortical sensory regions (Nadal, 2013).   

 

Previously studies in the field attempted to find the (one) area of the brain 

associated with aesthetic processes, however results revealed differences in areas 

of activation in a range of studies, using differing methods and stimuli for 

investigation. It was proposed by Nadal et al (2008) that lack of specific activation 

in one region is compatible with the general model of neural processing, linking 

response to aesthetic stimulus to the more general activation systems involved in 

reward, decision-making and visual processing (Chatterjee, 2004b; Chatterjee, 

2010). Newer evidence supports these claims, that there is no localised area in the 

brain specialised in experiencing art (Nadal, 2013) instead a range of activity is 

demonstrated in viewing art which suggests the processes involved in art 

appreciated are made up of crucial processes involved in perceiving and making 

decisions in everyday situations. Broadly speaking the perceptual, cognitive and 

affective systems are involved in the parallel processing involved artistic 

appreciation and Chatterjee & Vartanian’s (2014) review adds support these 

claims. The authors also suggest that aesthetic processing is found across a 

number of regions, and propose that aesthetic experiences are emerging from 

interactions across a number of neural systems specifically the sensory-motor, the 

emotional-valuation and the meaning-knowledge. The biological bases of aesthetic 

processing offer one way to work across disciplines, to understand human 

behaviour; relevant not only to artistic appreciation but wider evaluative aesthetics 

experiences we navigate through daily. 

 

Evolutionary Theory: 

 

The final area key to the field of neuroaesthetics and more widely aesthetics in 

general involves the underlying deep biological coding of responses that may 

point to evolutionary foundation in responses to aesthetics and other stimuli.  

Whilst evolutionary and biological foundations have been explored in other areas 
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within aesthetics as a field, neuroaesthetics has begun to demonstrate finding that 

support the notion empirically. Chatterjee (2010) outlines 3 distinct approaches in 

the framework of evolutionary aesthetics; beauty serves as a proxy for health and 

mate selection, objects that are beautiful are complex but are able to be processed 

proficiently and finally that art-making points to an important ritual in social 

cohesion. The first two approaches are of distinct importance within the current 

thesis and will be discussed further in chapter 5. 

 

There is growing wealth of evidence demonstrating that beauty standards are not 

acquired through experience, but are instead a result if innate beauty detectors 

come from facial attractiveness studies (Langlois et al., 1990).   Charles Darwin, 

in the Descent of Man (1871) argued that aesthetic responses have “been 

developed through sexual selection for the adornment of some male animals” 

(p.99) but other suggest that survival instincts offer a better rationale behind 

responses to stimuli such as art and most notably landscape.   For example many 

features of the most celebrated art and landscapes have distinctive qualities that 

mimic the savannah on which human developed and thrived (Dutton, 2010).  

 

Despite its contributions to understanding further the underlying biology to 

aesthetic responses and activities, the field has been scrutinised and several 

limitations have been flagged both by its supporters and its critics.  

 

Potential pitfalls of the Neuroaesthetics approach: 

 

John Hyman (2008) has criticised the neuroaesthetics movement for their ill-

defined methodology and poorly supported claims. In discussing Ramachandran’s 

work, Hyman (2008) reviews the overall application of his theories to the wider 

field of art.  Whilst acknowledging the empirical support to Ramachandran’s 

peak-shift theory, in which preferences are formed form art as they are 

exaggerated examples of visually appealing shapes, colours or scenes, he disputes 

its ability to explain all art and this lack of focus on general art, and more focus, it 

would seem, on erotic caricatures of the human form.   In discussing Zeki’s work, 

Hyman recognises the importance of the link between brain function and aesthetic 

experience, however he notes that although we can infer from brain activity that 
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an object or element has been recognised or processed visually, this does not offer 

an explanation as to how this painting or element would elicit a pleasing or 

emotional response from the viewer. Zeki argues that aesthetic theories will only 

become intelligible and profound once based on the workings of the brain, but is 

this truly all we need to understand to explain the complexities in experiencing a 

piece of art or a beautiful scene. 

 

These empirical theories offer only a glimpse into the many facets of art and 

studying in the field of aesthetics, and although a few select examples are used, 

neuroaesthetics is yet to offer a universal theory or art, which encompasses each 

form.  Hyman urges the ‘neuroaestheticians’ not to ignore the past, the 

groundwork into aesthetics set out by the philosophers and artists whose domain it 

has been for centuries. Instead of bursting into a new field with a paradigm 

shifting theory as a neuroscientist, be acutely aware that these ideas have been 

considered in the past and the best new theory as well as looking forward will also 

not disregard the past.  

 

Whilst the field of neuroaesthetics has already offered insight into the neural 

underpinnings of aesthetic experience, particularly art, there are limitations and 

restrictions in the field, which are highlighted by Chatterjee (2010), Nadal (2013) 

and Chatterjee & Vartanian (2014).  There is a need for a full understanding of the 

behavioural responses to aesthetic stimulus before moving on to more advance 

investigation of the associated neural activity. To avoid problems of reverse 

inference in neuroaesthetics (Poldrack, 2006) the current thesis uses more 

traditional models from empirical aesthetics to build a foundation of the 

behavioural and psychophysical responses to a relatively new understanding of 

our environment (fractals) with the hope that once the behavioural response is 

understood the ‘internal’ psychophysical structures and processes can be explored 

in an informed way (Chatterjee, 2010).  
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2.5 Conclusions and summary of recent trends in aesthetics: 
 

This section has given a wide overview of the current approaches and trends in the 

study of experimental aesthetics.  We can see a movement away from a purely 

objectivist approach as seen in early aesthetics research searching for a physical 

quality of objects as contributing to aesthetic responses towards a more subjective 

approach in which personal experience and individual differences contribute to 

our aesthetics response. This approach outlined by philosophers, as the reason a 

true psychological science of aesthetics cannot be adequately formed have began 

to emerge as an important dimension to explore in aesthetics.  The future trends in 

aesthetics research have been considered within neuroaesthetics; a field in which 

advanced analytic techniques are beginning to shed light onto areas once 

considered impossible to study quantitatively.  It is evident that particular areas of 

aesthetic research remain inadequately addressed and the search to fully 

understand each facet of preference is still incomplete. Complexity is on such area 

that is still discussed commonly in research, but it appears that there are persist 

issues in quantifying and classifying its impact on preference. The impact of the 

natural world on preferences has also begun to emerge as an important theme, 

which requires further attention. The understanding of our aesthetic relationship 

with nature and natural shapes could help us understand individual attitudes 

towards aesthetic objects and environments. 

 

The approach adopted by this thesis is interactionist. Complexity and fractal 

dimension (the main focus of this thesis and discussed in depth in following 

chapters) will be explored from an objectivist viewpoint in an attempt to 

understand if universal trends of preference exist in this domain. Subjective 

approaches will also be employed which explore the impact of experience and 

environment on preferences for fractal patterns. Individual differences have been 

seen across a variety of factors and the impact of these will be explored in 

following chapters.  

 

Whilst the present research does not currently adopt any advanced neuroaesthetics 

methods, it is hoped that understanding the basic concepts and responses to these 
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fractal patterns can form a foundation from which to explore the associated neural 

responses in the future.  

 

The following chapter will explore the main topic of this thesis. As we have seen 

complexity was in the foundation of the field and still to this day is elusive in its 

relationship with preference. The vast wealth of literature on complexity shall be 

discussed and fractal dimension is introduced and explored alongside this, offering 

a new and novel way to characterise the complexity found in many natural shapes.  
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3.0 Visual Complexity & Fractal Dimension: Measures of 

Predicting Aesthetics Judgments 
 

3.1 Visual Complexity: 

3.1.1 Subjective approaches to visual complexity 

3.1.2 Objective approaches to visual complexity 

3.1.3 Applications of visual complexity? 

3.1.4 Environmental Psychology and Visual Complexity 

3.1.5 Defining and measuring complexity; can it be done? 

 

3.2 Fractal Geometry: a new measure of the complexity of nature? 

3.2.1 A Brief History of Fractal Geometry 

3.2.2 Defining a Fractal shape 

3.2.3 Different types of Fractal 

3.2.4 Fractals in Art & Aesthetics 

3.2.5 Aesthetic Response to Fractals 

 

The following chapter focuses on one of the main areas of investigation within this 

thesis, visual complexity as a multidimensional construct. It explores definitions of 

visual complexity, current methods of measurement and it’s link with aesthetic 

response. The chapter then introduces the concept of fractal dimension, as a new 

method of quantifying the complexity of nature. The power of aesthetic draw of 

fractal patterns will be discussed. Finally the chapter highlights the limitations 

and gaps within the research and discusses how the current thesis will fill these 

with additional exploration. 
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3.1 Visual Complexity: 

 

The following section will explore the key area of this thesis exploration. 

Complexity as evident throughout previous discussions is a key variable in 

understanding aesthetic experience. Complex information dominates our everyday 

visual experiences. Perceived visual complexity is made up from both subjective 

factors, accounting for individual differences across age, culture and environment. 

For example, familiarity with content has been found to contribute to our overall 

perception of the visual complexity of a scene or object (Forsythe et al., 2010).   

As well as objective factors, which relate to the physical qualities and properties 

of an image, contribute to overall perceived complexity, but a true measurement of 

these qualities has often evaded researchers.  Enhanced statistical and quantitative 

measurement techniques now permits a more empirical approach to understanding 

our visual relationship with complexity and this section will provide an overview 

of these advancements.    

 

By its very nature, visual complexity is difficult to design and evaluate.  As 

outlined above, the perceived complexity of a stimulus can be determined in two 

major ways.  The subjective complexity; based on an individual viewer’s 

experience and the objective complexity; based on physical properties of the 

images that result in an overall visually complex scene.  Visual complexity has 

been associated with aesthetic responses to a variety of stimuli since the early 

developments in the field of empirical aesthetics (see Chapter 1) and despite its 

links, the field faces continued issues with the ability to offer a consistent measure 

and definition of visual complexity. Armheim (1966) believed in landscape 

design, that high aesthetic appeal was a result of high levels of both complexity 

and order. Gombrich (1979) extended this opinion by stating that aesthetic appeal 

lay at the mid-point between complete monotony and total intelligible chaos.  

Researchers argue that approaching complexity from either end of the objective-

subjective continuum is reductionist and push for a more holistic view of visual 

complexity. Others believe that complexity is a multidimensional property, which 

has yet to be adequately operationalized because of the broadness of the topic.  A 

summary of these viewpoints will also be explored in the following section as well 
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as leading the reader to an area of most interest to this thesis, fractal dimension, 

and exploring how both visual complexity and fractal dimension could be used to 

further understand our visual relationship to the world around us. 

 

3.1.1 Subjective approaches to visual complexity: 

 

Daniel Berlyne, (as explored in chapter 1) outlined complexity as one collative 

variable contributing to aesthetic experience. He believed that perceptions of 

complexity are based upon the arousal potential in individual experience, therefore 

experiences of visual complexity were a subjective measure and lay in the ‘eye of 

the beholder’ rather than any property of the stimulus.   

 

Berlyne (1970) proposed an inverted U-shaped relationship between complexity 

and preference, his psychobiological approach argued that an optimal level of 

arousal was preferred and that, depending on the current arousal state of the 

viewer this could be higher or lower (see Fig 3.1 below). 

 

 

Figure 3.1- Berlyne’s (1970) psychobiological model of aesthetics. 
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The Gestalt approach emphasises the importance of the holistic process in 

perceptual processing in which factors that contribute to overall complexity of an 

image do not simply reside within it (Pomerantz & Kubovy, 1981) in which 

experiences of visual complexity are instead a complex interplay between 

objective measures and subjective experience.  

 

Familiarity, for example, contributes to perceived visual complexity, suggesting 

that individual experience with a scene or object would result in even complex 

scenes being perceived as less complex on subsequent viewing.  Vitz (1962) found 

evidence to support this claim, participants were asked to rate and rank the 

complexity of black line drawings of ‘random walks’ with increasing complexity 

incrementally by adding additional steps from the previous image.  The results 

supported the curvilinear relationship between complexity and preference, with 

the highest preference shown for images from the mid-range of complexity.  Vitz 

(1962) highlights the role that familiarity plays in preference for complex images. 

On ranking the complex images for a second time, participants demonstrated 

higher preference for more complex images demonstrating a peak shift in 

preference demonstrating the influence of repeated exposure on complexity 

preference. The role that learning and familiarity plays in perceived complexity 

was later confirmed by Forsythe et al (2008).  In their studies exploring perceived 

complexity for nonsense shapes, significant interaction effects were reported for 

training and familiarity. Familiarity appears to bias subjective complexity towards 

basic level visual processing.  These findings call into question the role of human 

judgments in picture research.  Subjective ratings are an established method by 

which to produce normative data for language, neurological and picture research 

(see Proctor & Vu 1990, for a review) however Forsythe et al., (2008) 

demonstrated that such measures were confounded with familiarity for the stimuli.   

 

Supplementary information and learning experiences influence aesthetic 

judgments in for example including titles for artwork has been found to contribute 

to preference (Dearden, 1984; Frois & Eysenck, 1995), it is proposed that titles 

have a particular the impact of cognitive fluency in art appreciation.  Belke et al., 

(2010) studied the impact of bogus titles on perceptions of artwork, findings 
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demonstrate semantically related titles were most preferred, followed by no-title 

and artwork with unrelated titles was considered least aesthetically appealing. The 

results suggest that cognitive fluency in processing is facilitated by subjective 

judgments of aesthetic appeal, naming and semantic content contribute to rating 

for visual complexity in a scene.  

 

3.1.2 Objective Approaches to Visual Complexity: 

 

To address the extraneous influence of other variables, psychologists and 

researchers have attempted to formalise the measurement of complexity, arguing 

that if it were not possible to measure complexity and make predictions from those 

measures, then how could we every really know what was simple or truly 

complex? 

 

Gestalt theory was among the first to explore the systematic processes of 

perception (Hochberg, 1968). The Gestalt movement was a direct response to the 

structuralism movement within perceptual research and believe that the process of 

seeing was more than the individual components of shapes, light and colour but 

instead it was the consistency within the shape, the patterns that contributed to the 

overall perceived qualities, including complexity, of the object or scenes. Whilst 

Gestalt theorist found ‘rules’ of understanding perception, they saw the 

measurement of precise elements of a visual scene to determine response was 

irrelevant as perceptual systems saw the whole rather than its parts. Fred Attneave 

(1957) is a seminal figure in this area, explored the different stimulus properties 

that contribute to subjective judgments of complexity in non-representational 

figures, he found that it is not simply the case of that the amount of information 

contained within a stimulus, determined its subjective complexity ratings.  

Subjective judgment of complexity involve, according to Attneave, more than a 

sum of its part- a idea aligned with the Gestalt theory of visual perception.  

 

Further attempts to capture and measure objective complexity has been explored 

through measuring the number of elements; number of turns or amount of 

symmetry within a stimulus (Chipman, 1977; Hall, 1969) but with recent 
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technological advances came a new fast ways to quantify complexity.  Image 

compression in particular has been found to give accurate objective measures, 

which correlate with human judgments of complexity (Forsythe et al, 2008). 

Compression techniques such as Gif or Jpeg seem to be particularly useful in 

providing a measure of visual complexity that is unbiased from judgments of 

familiarity 

 

Computational compression techniques were considered a successful method of 

predicting subjective complexity because of the links with basic information 

processing theory (Donderi, 2006). Grounded in information theory, when a 

picture is compressed the string of numbers that represent the organisation of that 

picture is a measure of its information content (Donderi, 2006). When the image 

contains few elements or is more homogenous in design, there are few message 

alternatives and as such the file string contains mostly numbers to be repeated. A 

more complex picture will have more image elements and these elements will be 

less predictable. The file string will be longer and contain an increasing number of 

alternatives.  Such measures have demonstrated their usefulness in understanding 

how humans process visual complexity in an image, in particular demonstrating 

that familiarity can bias judgements of complexity.   In contrast to controls, 

observers trained to respond to nonsense shapes, rate these shapes as physically 

simpler (Forsythe et al., 2008).  Automated measures have also extended our 

understanding of the relationship between complexity and beauty   In contrast to 

Berlyne’s findings, when computerised measures of visual complexity are 

substituted for human ratings of complexity the relationship between visual 

complexity and beauty is more linear than demonstrated with the inverted U-

shaped preference synonymous with Berlyne’s theories (Forsythe et al., 2011). 

 

Despite the wealth of current findings, there is still little consensus about what 

complexity is and how it should be defined and measured (Forsythe, 2009). This 

thesis will attempt to take steps to allow closer inspection and tighter definitions of 

visual complexity in relation to aesthetic response. 
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3.1.3 Applications of visual complexity: 

 

The research reviewed above, as well as contributions to the knowledge of general 

perceptual and aesthetic theories, has been used in a variety of applications as we 

learn more about our responses to visual complexity these theories can be 

explored and considered in a real world domain. Most prominent in the modern 

field are measures to aid in website design and aesthetic appeal. Michailidou, 

Harper & Bechhofer (2008) explored the link between the visual complexity of 

web pages and the influences this has on aesthetic perception. They suggested that 

by understanding the complexity and aesthetic perception of a webpage they could 

infer the cognitive effort required for interaction with that page, others have found 

that the aesthetic response to webpages are formed quickly that these measures 

indirectly influence attitude towards webpages (Trachtinsky et al., 2006).  

Michaildou and colleagues (2008) results found that visual complexity is 

negatively related with user perceived organisation, clarity and beauty of the page.  

It is important to explore the factors that contribute to website aesthetics as links 

have been found between page aesthetics and the credibility judgments formed by 

visitors in the first few seconds of viewing the page (Robins & Holmes, 2008). 

This research demonstrates, in a small way, the applications of visual complexity 

in design, it is important to optimise aesthetic responses in design, however this 

needs to be based on the principles and findings of the field as a whole.  

 

3.1.4 Environmental Psychology and Visual Complexity: 

 

Heath, Smith & Lim (2000) in exploring the effect of visual complexity of 

preferences for urban skylines found that silhouette complexity was the strongest 

influence on preference, arousal and pleasure. This work and the work of Stamps 

(1991) demonstrate the potential to understand our relationship with our 

environment in further depth by exploring individual factors within it, such as 

perceived/measured visual complexity. The results show the potential for using 

perceptual findings such as these and applying them in design practice to evoke 

particular responses, namely high aesthetic evaluation. These are limited however 

to the man-made environments in which we spend time and does not explore the 

impact of complexity of natural rural environments alongside urban scenes. 
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Kaplan, Kaplan & Wendt (1972) studied the relationship between complexity and 

preferences for physical environment. They used a series of photographic slides of 

both natural and urban scenes that were rated for both preference and complexity. 

Their work followed Wohlwill’s (1968) study exploring complexity as a 

determinant of preference for various examples of the physical environment with 

additional and stimulus.  

 

These studies demonstrate the ways complexity can be used to assess the visual 

environment and predict responses and will be explored in greater depth in 

subsequent sections. As Wohlwill (1970) concludes, the series of studies 

demonstrate that responses to slides (photographs) of the environment vary as a 

function of the judged complexity in the same way to artificially constructed 

stimuli. Given this, the findings from the studies apply with a variety of stimulus 

can be used to build a wider picture of responses to physical landscapes. 

 

3.1.5 Defining and measuring complexity; Can it be done? 

 

There is a vast amount of research on visual complexity and its links to aesthetic 

experience. One issue the field faces is the inconsistency of stimulus used to 

explore the relationship between complexity and visual experience.  As outlined in 

the above discussions, some studies use computer or hand generated stimulus, 

which increases in complexity by the number of objects, amounts of turns, or 

presence of symmetry. Others use photographs or nature, art or websites to 

explore responses to complexity in a more ecologically applicable way.  There are 

a wide variety of approaches with which to gather complexity ratings or rankings 

from stimulus. Whilst some employ human judgments others have attempted to 

develop advanced quantitative measures to provide this information, as with 

computational compression techniques. 

 

The lack on consistency in what it is to be complex in a stimulus means that the 

field cannot move forward in a unified way.  Some argue that complexity as one 

concept does not exist, and instead we need to explore it as a multidimensional 

construct, that many different sub-sectors of complexity exist instead of one 
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overarching definition (Forsythe et al., 2010).  This is much akin to the early 

attempts to define and measure psychology as a field. Its true potential was not 

fully met until it was divided into a number of subsections, which allowed an 

adequate depth of analysis and exploration of the topic to take place. Rump (1968) 

took this multidimensional viewpoint and believed that ratings for a general 

complexity score were meaningless without further unravelling of the concept.  

Marcos Nadal’s (2007) doctoral thesis conclusions also provide additional support 

for this theory, his findings outline 3 primary aspects associated with overall 

complexity ratings and beauty scores. These were, the number and variety of 

elements, asymmetry and the recognition of individual objects and scenes. These 

results point to visual complexity as a multidimensional construct with underlying 

factors requiring further exploration.  

 

As outlined above, complexity has a long past in the field of empirical aesthetics. 

With advances in technology and analytic techniques there is continued growth 

towards new ways and avenues from which to study visual complexity and its 

potential impact on aesthetic evaluation.   Despite its long history, there continue 

to be limitations and issues with current methods used to quantify and measure 

responses to complexity.  Should we, as done in the past, attempt to separate the 

concept of complexity into finer more manageable areas for a closer measurement, 

or should we continue to explore the high order neural processes involved in 

aesthetic judgments as the current directions of neuroaesthetics is taking us? It 

could be suggested that using new sophisticated methods from neuroaesthetics has 

helped shed light on historical questions within aesthetics however they contribute 

little to new concepts without established and prior research evidence to guide 

studies and analysis. Fractal dimension is one such measure that could be used to 

further understand visual complexity particularly in a natural environment. This 

thesis aims to explore and validate established theories of complexity and fractal 

preference, supporting these with additional evidence and laying the groundwork 

for future neuroaesthetics investigations into our aesthetic relationship with 

complex patterns.  
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3.2 Fractal Geometry: a new measure of the complexity of nature? 

 

The following section introduces the concept of fractals.  A fractal pattern is a 

rough complex shape that can be found in nature, in art and even in physiological 

structures in the human body.  Fractal dimension offers a new method of 

quantifying many patterns we see in the natural world, that were once considered 

too ‘messy’ to follow any statistical qualities.  This ability to quantify natural 

patterns enables further perceptual research to take place to explore our responses, 

some of which is explored below.  Current findings demonstrate an innate 

response to fractal patterns displayed in both aesthetic judgments, wellbeing and 

restorative responses.  The field still in its youth and current findings are limited, 

invalidated but promising.  The chapter aims to show how this thesis aims to 

contribute to the field of empirical aesthetics using fractal dimension as a method 

to study human responses to environmental features.  The links to visual 

complexity are clear throughout, and it is hypothesised that fractal dimension 

could offer a new method to unpick the concept as a whole. Visual complexity has 

associated definition and methodological issues and it is proposed that fractal 

geometry could allow us to define and quantify the visual complexity of the 

natural world.  

 

A Fractal is a rough complex shape that has had success in quantifying many 

shapes and processes in nature, which were previously considered chaotic and 

without pattern.  Fractal geometry offers a language by which to describe shapes 

which cannot be understood by Euclidean geometry alone as “Clouds are not 

spheres, mountains are not cones, coastlines are not circles, and bark is not 

smooth, nor does lightening travel in a straight line” (Mandelbrot, 1983) this 

assertion is in contrast to previous views that nature was made up of messy and 

rough Euclidean shapes.  Cezanne’s view opposed this; he believed that 

everything in nature could be viewed in terms of cones, cylinders and spheres, all 

simple Euclidean geometry.  Despite his thinking, Cezanne manages to capture the 

complexity and fractal properties of nature (Fig 3.2).  
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Figure 3.2 - Mont Sainte Victoire (Courtauld) (c. 1887) Paul Cezanne 

 

This ‘knowing without knowledge’ demonstrates a trend in fractals; humans have 

been surrounded by fractals our whole lifetime and evolutionary history, fractal 

patterns and processes even make up much of our physiological structure. The 

ideas have been seen and discussed by a variety of disciplines however despite a 

few who advocate the field, fractal geometry has not yet become mainstream over 

more widely known and acknowledged Euclidean geometry.  Benoit Mandelbrot 

(Fig 3.3), the father in the field worked in a interdisciplinary way his entire career, 

contributing to math, physics, economics and psychology but when pressed he 

referred to himself as a ‘story-teller’ (Frame, 2013 TedxYale) and passed away 

during the early years of this thesis so in his memory the next sections with 

explore the story of fractals so far and in particular the ‘story’ of how fractal 

geometry has been and can be used to shed light on aesthetics experiences and 

interaction with the environment.  
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3.2.1 A Brief History of Fractal Geometry: 

 

 

Figure 3.3- Benoit Mandelbrot 

 

Benoit Mandelbrot coined the term Fractal in 1975 after the Latin ‘Fractus’ 

meaning fractured or broken.  He wanted to be able to measure the things that he 

saw all around him in nature, things that he found that Euclidean geometry was 

generally unable to measure and describe adequately. 

 

The birth of fractals is often considered to be the publication of “How long is the 

coastline of Britain?” (Mandelbrot, 1967). This work was based on the work of 

Lewis Richardson, and English mathematician.  Richardson’s work on coastlines 

found that the length of a coastline was a function of the method used to measure 

it that is if we measure a coast with a 1mile ruler and then measure it again with a 

1meter ruler we would find the measurement would grow significantly. 

Mandelbrot extended Richardson’s work and introduced the idea of fractal 

geometry and this self-similar complex property in his 1967 paper as well as 

beginning to discuss some of its applications to measuring natural processes. 

Within the paper, Mandelbrot demonstrated that the coastline of Britain couldn’t 

accurately be measured using traditional length measurements and instead needed 

an approach that embraced the complexities of the bays and cliffs that make it up. 

 

To measure this roughness found so commonly in nature Mandelbrot needed a 

tool to quantify what he as saying, in his search he found the work of Felix 
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Hausdorff (1919). Hausdorff’s work was considered something of a joke in the 

mathematics community, in its basic form, it stated that dimension doesn’t always 

need to be an integer, and objects can lie between multiple dimensions. 

Mandelbrot believed that non-integer dimension could be a good measure of this 

roughness of nature. In traditional Euclidean geometry a line has a dimension of 1, 

a square has dimensions of 2 and a cube a dimension of 3; Mandelbrot used this 

idea to address the issues of shapes that were more than a square of 2 dimensions 

but failed to fill the 3 dimensional field of a cube. Hausdorff’s (1919) work gave 

Mandelbrot the key and vocabulary to defining a fractal shape.  

 

Re-visiting old mathematical problems interested Mandelbrot greatly, and in his 

youth he was inspired by his Uncle Szolem, who had told him by solving one of 

these pathological problem he would have a prosperous career in mathematics.  

The idea of shapes and objects that didn’t fit into traditional Euclidean dimension 

(or 1, 2 or 3 dimensions) was an old concept, but these irregularities had been 

deemed pathological because the solution could not be reached using the 

Euclidean idea so strongly established in the mathematics community. These ideas 

fascinated Mandelbrot and can be traced as the foundation of fractal geometry. 

 

Georg Cantor was the first to offer a problem that couldn’t be answered using 

existing ideas about dimension. Cantor (1883) developed a set of rules to make a 

shape, now referred to as the Cantor Set (See Fig. 3.4). Within it he took a straight 

line and broke into thirds and then took away the middle section then continued 

this set of rules of each new line given from the previous step, logical thinking 

would assume that eventually there would be nothing left to throw away, but this 

wasn't the case, the pattern continued into infinity, each time you zoomed closer to 

the pattern, you were left with the look of the whole image. An exactly self-similar 

pattern could be seen at increasingly magnified scales.  
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Figure 3.4- Example of the Cantor Set 

 

 Helge von Koch also developed a shape with similar qualities. To develop a 

version of his name sake (see Fig 3.5), the Koch curve (1904) you take a triangle, 

and on each side split it into 3 and take the middle piece and substitute 2 pieces 

that are no longer than the original piece, and continue this pattern, every iteration 

adds a new triangle shape to the pattern, if you iterate this pattern an infinite 

amount of times you end up with a shapes that is infinitely long, it is a paradox to 

traditional mathematical measurements, a pathological curve. In both cases the 

image was infinitely complex but was confined within the 1 dimensional curve, it 

would never reach a 2 dimensional square but visually it was much more than a 

simple line.  
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Figure 3.5- Example of Koch Curve 

 

Mandelbrot's creativity left him enthusiastic to try to use new technology in the 

search for answers to his problem. During their early stages of his research, he 

used computers to work on yet another old mathematical theory. Gaston Julia’s 

work looked at feedback loops and iterations, he wanted to see what would happen 

if he put a number through an equation and used the results to again run the 

equation, and so on. This amount of iteration was time and effort consuming by 

hand, which meant that Julia was never been able to resolve his theory, however 

Mandelbrot with the ability of computers to do this sort of iterations, hundreds, 

thousands or millions of times was only a matter of pressing a few buttons.  
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Mandelbrot, as discussed before wanted to be able to put the visual world back 

into mathematics and he believed the ‘pathological’ mathematics problems of the 

20th century perhaps held the key to understanding this roughness and complexity 

he was seeing in nature.  Once he ran all Julia sets using new computer 

technology, the numbers he got he plotted the points on a graph. The images he 

began to see were complex and beautiful, they also had a familiarity about them. 

After running many examples of this, Mandelbrot eventually wrote a formula that 

plotted the results of all the Julia set’s, this output was to form the now iconic face 

of fractal geometry, the Mandelbrot set (see Fig 3.6).  This shape of infinite 

complexity represents the idea of fractal geometry; it is an epitome of the rules of 

fractal geometry. The self-similarity and scale invariance means it is the perfect 

example of fractal geometry, and its inability to be measured by Euclidean 

methods highlights its importance to the new field. Fractal geometry was born. 

 

 

Figure 3.6- Mandelbrot Set 

 

3.2.1 Defining a fractal shape: 

 

Above tells the story of how Mandelbrot developed the concept of mathematical 

fractal geometry. We see its place in addressing many of the historical issues 

within mathematics and defining our visual environments, however the concept of 

fractals far extends its mathematic foundations.  In more recent years, the concept 
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of a fractal has become more difficult to define universally as these patterns are 

found in many places and processes however there are several characteristic 

qualities found in fractal patterns and processes.  Mandelbrot (1983) defined 

fractals as a rough or fragmented shape that can be split into parts, each of which 

is, under differing magnifications, is a copy of the whole. Falconer (2003) extends 

this thought and highlights that among other features, a fractal has some form of 

self-similarity (including exact, approximate or statistical) and also demonstrates 

irregularity at some levels that cannot be described in traditional Euclidean 

geometric forms.  These 2 features can be used to classify fractal patterns and 

processes.  

 

Fractals can be found in a variety of different forms be it nature, mathematics, art 

or dynamic systems such as the weather or the human heartbeat.  Generally, the 

field accepts 3 types of different fractal form; Computer Generated or mathematic 

which visualizes ‘perfect’ infinite fractal forms; Natural fractals which can be 

found in many natural patterns and processes and finally Artistic Fractals, which 

can incorporate both of the above forms of fractal, this type of fractal is man-made 

and developed with the purpose, among other things, to evoke aesthetic responses 

from viewers.   

 

3.2.2 Different types of Fractal: 

 

Without the development of computers, fractal patterns could not exist. In the 

development of the Mandelbrot set, many visual images were created. The most 

iconic image of fractal geometry, the Mandelbrot set, perhaps serves as the best 

example to computer generated fractals; this infinitely complex image has 

captured the imagination of the world. Since its development computer generated 

fractals have grown in use, the work laid the foundation for creating accurate and 

natural looking landscapes using these simple rules, which has changed the face of 

graphic design. Computer generated fractals are simply a visualisation of this short 

equation, but enables us to see visually what these means, allowing us, as 

Mandelbrot desired to put the eyes back into scientific research.  
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Natural fractals are those, which exist in the natural world, look outside now and 

you are likely to see a tree, a cloud or mountain scape (if you are lucky) something 

that demonstrates the scaling found within fractal geometry.  Unlike mathematical 

or computer-generated fractals, natural fractals differ in the range of 

magnification. ‘Perfect’ fractals, such as the Mandelbrot Set can be magnified 

infinitely; each zoom will reveal a new but equally complex image. Natural 

fractals have a limited range; they can only be magnified up to a certain point. 

Despite this limitation in magnification and characteristic self-similarity, evidence 

has found that even in a small range, of just 25, is enough to account to aesthetic 

responses (Spehar et al., 2003). The list of naturally occurring fractals is endless, 

tree’s, cloud’s, waves in the sea, the branching of a river, the structure of a 

mountain, and the distribution of the stars in the sky, fractals patterns are even 

found within the human body, for example in the structure of the lungs with the 

branching bronchioles. The irregular patterns of a beating of the heart, research in 

fact found that a fractal heart beat is a healthy heart beat, and if the heart beat 

becomes too regulated and ordered this is a sign of ill health (Cipra, 2003). 

 

3.2.3 Fractals in Art & Aesthetics: 

 

The use of fractal patterns and acknowledgement of the self-similar irregular 

structures has been used by artists for many centuries. The link between fractal 

patterns and art was made by Mandelbrot when he referred to Hokusai’s ‘Great 

Wave off Kanagawa’ he highlighted the self-similar structures used by the artist 

within the waves.  
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Figure 3.7- Great Wave off Kanagawa (c. 1829-32) Katsushika Hokusai 

 

Fractal patterns have also been traced back to ancient times. Ron Eglash (1999) 

wrote about the presence of Fractals in many Rural African artistic products, as 

well as community structure. Could it be argued that a better understanding of 

nature held by societies within a rural setting and less time or exposure to 

Euclidean geometry found in urbanized societies? 

 

The works of Richard Taylor (2010), a physicist and Artist have discovered the 

work of Jackson Pollock demonstrated fractal properties. His research found that 

despite its chaotic and messy appearance is actually underlying structure displays 

ordered and deliberate fractal patterns.  

 

 

Figure 3.8- No.5 (1948) Jackson Pollock 

 

The fascination with fractal geometry still remains of interest to modern artists- 

some such as Rhonda Roland Shearer have experimented with the next 

perspectives fractal geometry can have on sculpture. Her work such, Geometric 

Proportion in Nature Study No. 1 (see fig. 13) combines both Fractal and 

Euclidean geometry to explore the interplay between the 2 in everyday life. 
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Figure 3.9-Geometric Proportions in Nature, Study No. 1. (1987) Rhonda Roland Shearer 

 

Computer artists have also found inspiration in not just natural fractals but the 

mathematic computer generated patterns such as the Mandelbrot Set. The 

infinitely complex shapes are appealing and strangely hypnotic and can be found 

commonly on screen savers.  

 

The use of fractals in Art from all ages makes the link to aesthetic response clear, 

there appears to be an aesthetic draw towards the complex shapes of nature, and as 

with many perceptual discoveries of the 20th century, it appears the Artists knew 

about them first. In more recent years, empirical studies exploring this aesthetic 

response have been conducted in an attempt to understand the appeal of natural 

patterns that Artists appear to have known for centuries.  
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3.2.4 Aesthetic Response to Fractals: 

 

The links between beauty and nature are long established, with philosophers and 

artist’s alike hunting for new ways to represent and mimic the processes of nature 

in their art. The links between fractal geometry and natural processes has been 

established since their discovery in the 70’s by Benoit B. Mandelbrot, and since 

then artists and mathematicians alike have noted their beauty (Peitgen & Richter, 

1986). Fractal geometry offered a much needed new way to quantify nature, as for 

many years the traditional Euclidean shapes did not come close to mirroring the 

complexity found within nature’s patterns and processes.  Since natural processes 

are linked to the development of fractal geometry this relationship is at its core, it 

seems only reasonable then, to investigate the role that fractal geometry plays in 

our experiences of beauty and aesthetic response as found also in aesthetics and 

nature.  

 

It is note that fractals in their development have not always been considered 

beautiful. The history of fractal geometry dates further back than Mandelbrot and 

his elusive infinitely complex set to a time when these patterns were first 

developed and regarded as “pathological”. Ironically these shapes where 

considered pathological because of their apparent disconnection with natures 

shapes, the academic world was dominated with Euclidean geometry as an 

explanation for tress, mountains and coastlines, leaving little room for these 

radical ideas of scaling and iteration that were in fact in abundance in 

environment, but were so difficult to see without the right language to describe 

them. This opinion was of the majority until Mandelbrot offered an alternative 

view, perhaps “clouds are not spheres and mountains aren’t cones” and in fact to 

consider them so would be to take away the beautiful complexity, and reduce them 

to less than their parts, a view aligned with Gestalt theorist of perception.  

 

Mandelbrot’s first glimpse at the Mandelbrot Set was, he said filled with a sense 

of familiarity, that the shapes that could not be viewed without the dawn on 

computational process was something he felt he had seen many times (Lesmoir-

Gordon, 2010). He was quick to acknowledge the aesthetic power of fractals and 
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extended this thought to say that fractal shapes mimicry of nature was the key to 

the aesthetic appeal (Mandelbrot, 1982).  

 

Although seemingly from the start the links was established between fractal 

geometry and aesthetic appeal, it was not until the 90’s that the empirical 

investigation of appeal and fractal images began.  The first piece of research 

collected data on aesthetic appeal of fractal images found a preference towards 

images that had been generated by chaos opposed the then non-chaotic 

counterparts (Taylor, 1998). These results showing not only a preference towards 

fractal patterns, but also demonstrating our perceptual ability to distinguish 

between the two- asking the question is this an innate skill held by us all? And if 

so, what could its purpose be? 

 

As research into the field developed, a pattern of preference began to emerge from 

the data. This pattern highlighted an optimal range of fractal preference; while 

research has already established the aesthetic appeal of images displaying fractal 

properties (Taylor, 1998) an optimal range began to emerge from the fractal 

spectrum that seemed to demonstrate higher universal preference. Differences 

between natural fractals, computer generated fractals and artistic fractal images, 

despite the links between all three types of fractal each type appears unique and 

can be easily distinguished with the eye. From the three, natural images are 

universally preferred, however all categories if viewed separately demonstrate a 

preference for mid-range FD scores (Spehar et al, 2003).  

 

In early research there seemed to be inconsistent results between the optimal 

aesthetic range, early research used varied forms of stimuli including computer 

generated and photographic representations of natural stimuli and this mismatch in 

experimental design has been held responsible for the conflicting results. Pickover 

(1995) reported a D value of 1.8 as the most preferred, in the study, which used 

computer-generated patterns. These results are conflicting with Aks & Sprott 

(1996) study that also used computer-generated fractal patterns but found a 

significantly lower optimal aesthetic D value of 1.3. This variance in results, lead 

to the opinion that no optimal preference range exists (Taylor et al., 2001) and 

instead preference was dependent of how the images were generated, whether they 
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be natural fractals, computer generated fractals or artistic generated fractals, such 

as the abstract work of Jackson Pollock.  

 

After investigation Taylor et al (2001) failed to validate this hypothesis and found 

instead that mid-range D values (1.3-1.5) were consistently preferred regardless of 

how the fractal images were generated. (Taylor et al., 2001, Spehar et al 2003) and 

this finding is the prevailing view within the modern field.  

 

Given that the preference falls between a range of D values rather than on a 

specific D value, theories have been put forward to account for the individual 

differences between preferences. Personality factors have been suggested to 

contribute to the differences in preference, with preference for higher D values in 

creative people (Richard, 2001), this result was tested further by Aks & Sprott 

(1996) who found that participants who deemed themselves to be creative on self-

report measures, contrary to previous research, found that they had a preference 

for slightly lowered D values, this could be suggested as an indication that other 

factors and not personality may influence the level of preference in D values.  

Hagerhall et al’s (2004) results suggest that preference peaks at D1.3 and after this 

point begins to drop, however the study failed to used a full range stimuli sample, 

therefore we cannot infer that with these higher D images the results would have 

given the same results. This peak in mid-range fractal demonstrates links between 

perceived complexity and fractal dimension, as discussed previously in Berlyne’s 

(1971) hypothesis. Demonstrating the suggested link between visual complexity 

and fractal dimension. The 2 constructs appear aligned, however research into 

their comparison is currently lacking.  

 

The correspondence between mid-range fractals and nature could be suggested to 

explain why we preference D values between 1.3-1.5, Aks  & Sprott (1996) 

suggest that people’s preference is universally set at 1.3 because of continual 

visual exposure to nature’s patterns, however more recent evidence would suggest 

that there is significant variation in the D values found in nature. Clouds do indeed 

exhibit 1.3 D values (Lovejoy, 1982) as do waves (Werner, 1999) however 

coastlines have much more variety with evidence suggesting a range between 
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1.05-1.52 (Mandelbrot, 1982; Feder, 1988) and the distribution of stars in the scale 

demonstrate much lower D values (Mandelbrot, 1982) 

 

As demonstrated above, further research in needed to fully understand the 

meaning of the strong draw towards mid-range fractal preference, This author 

believes it is important to understand why the evidence seems to point towards a 

range of preference instead of a exact value, what other factors influence our 

aesthetic opinions?  It has been suggested that “fractal dimension could provide 

part of the explanation to the well-documented connection between preference and 

naturalness” (Hagerhall et al., 2004) and this link could make the argument that 

fractal measurement could be used as an indicator of the ‘naturalness’ of an image 

given the established links between nature and fractal patterns.  

 

If fractal identification is indeed inbuilt into our perceptual and cognitive systems, 

we need to ask the question, why is this so? The ability to distinguish between 

fractal images is highest if the images used correspond to D values found in nature 

(Knill, Field & Kersten, 1990) Superior ability to distinguish between different D 

values has been suggested by Geake & Landini (1997) to demonstrate excelling in 

‘simultaneous synthesis’. This ability to distinguish between D values is 

intrinsically linked to the visual system, which has been suggested throughout the 

research to be a factor in our association with fractal images. The perception 

involved in viewing fractal images is, it seems, an innate human function.  

 

Evolutionary perspectives have been offered as an explanation for the preference 

of fractal patterns, Rogowitz & Voss (1990) suggest that for millions of years, 

humans have been exposed to nature’s fractals and during this time our visual 

system has evolved to recognise them with ease. The environment we spend the 

most time in today is significantly different to the natural world in which we 

evolved, the world is filled with Euclidean shapes in buildings, roads and 

computer screen and even if we can see nature, it seems consistently to be viewed 

through these Euclidean confines. This theory demonstrates wider links to the 

theory is aesthetics, and the questions of why are we drawn to beauty? 

Evolutionary theory suggest we are drawn to certain images or scenes because 
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they are related to our survival instinct (Ulrich, 1993, Wise & Leigh-Hazzard, 

2000) and this will be explored more thoroughly in the next chapter. 

 

Evolutionary theory offers another level of preference on the fractal D spectrum. 

Wise & Leigh Hazzrd (2000) found that observers demonstrate preference at a 

lower D value because these scenes mimic the properties of African Savannah 

scenery, were our ancestors spent a large part of their evolutionary history.  Fractal 

patterns that evoke positive aesthetic responses have been termed “biophilic 

fractals” this link is connected with the natural forms that are deeply rooted in 

fractal patterns (Taylor & Sprott, 2008). 

 

The study of fractals only adds another degree to the growing topic of the 

nature/nurture debate between aesthetic preferences. Do we find images beautiful 

because we are programmed to, we have inbuilt senses to view environments as 

appealing or not so, Or do our aesthetic judgments depend largely on our nurture 

and the environment in which we have grown, in this case cultural differences 

would be evident in aesthetic judgment. This prevailing question is one that this 

thesis attempts to explore, adding much needed new research to the field of fractal 

aesthetics, to address the questions and gaps within the current literature.  

 

Conclusions: 

 

It could be proposed that fractal dimension is a factor in a larger multidimensional 

construct of visual complexity. The labels ‘rough’, ‘chaotic’ and ‘messy’ all have 

parallels within the field of visual complexity measures. Whilst evidence has 

shown that fractal dimension is a distinct factor from visual complexity as we 

currently define it (Forsythe et al, 2010) the similarities between descriptions and 

aesthetic responses patterns warrant a deeper exploration than currently provided. 

This thesis will explore these links. 

 

The evidence pointing towards a universal preference for mid-range fractals is 

based on a small group of studies that cannot demonstrate the wider demographic 

differences between distinct samples and despite their strong and intriguing 

findings. This thesis suggests the field have been premature to make assumptions 
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about universality before a systematic exploration of factors that contribute to 

aesthetic preference for fractal patterns is fully explored. Here we attempt to fully 

clarify the current gaps within the field to make judgments regarding the links of 

fractal geometry and visual complexity and the role that both these, possibly 

intertwined concepts as well as individual experiences play in aesthetic judgments.  
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4.0 Cross-cultural, sub-cultural and further factors 

influence on Aesthetic Preference: 
 

4.1 Cross-Cultural Difference in Aesthetic Preference Literature 

4.2 Sub-Cultural Factors 

4.3 Further Individual Differences 

 

 

The following section explores the current literature into Cross and Sub-Cultural 

factors that influence aesthetic response to a variety of stimulus.  It will explore 

cultural and sub-cultural factors using a range of literature from different 

disciplines. This chapter examines responses from Empirical Aesthetics, Art and 

Nature because each of these areas (particularly nature) has been found to 

contain fractal patterns.  The majority of findings suggest that there does appear 

to be consistencies in visual preference across cultures, particularly when looking 

at aesthetic responses to landscape. This offers support for existing theories in 

Empirical Aesthetics towards universal patterns of preference. Further to this 

however, is the evidence suggesting that sub-cultural factors and most powerfully, 

experience, play a role in some cases, towards shaping our preferences. These 

findings raise questions about the ‘universality’ of mid-range preference (Spehar 

et al., 2003) conclusions raised in fractal aesthetics research, considering the 

evidence is limited and still relatively unexplored. Most of the literature reviewed 

within this section is dated, and inferences can only be made to fractal patterns 

cautiously. However on the whole, the current literature demonstrates the 

requirement for further evidence exploring how cultural and cross-cultural factors 

can influence preference for fractal patterns. 
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 Much of the historical research in empirical aesthetics aimed to find universals in 

judgments and preferences. Some researchers however explored the differences 

across cultures and countries, the impact of sub-cultural divide and visual 

environmental differences, including rural and urban populations.  The following 

section looks at a variety of studies from different disciplines including empirical 

aesthetics, art studies and landscape design exploring general opinion as to 

whether preferences are shaped by our cultural background or are founded in 

universals based on innate biological drives. The stimulus explored includes art, 

abstract geometric shapes and nature. Limited research has been carried on cross-

cultural differences in preference for fractal patterns and this section uses a variety 

of sources from which understanding of our responses to complex, aesthetic and 

natural images (all with fractal foundations) are shaped by our cultural 

experiences.  

 

4.1 Cross-cultural Difference in Aesthetic Preference Literature: 

 

The anthropologist Robert Lowie (1921) laid the groundwork for exploration of 

aesthetic responses across cultures to explore if universals or individual 

differences underlie our influence aesthetic preferences. He hoped that his brief 

inquiry would stimulate and inspire further and more thorough investigations. His 

study explored the decorative artistic and abstract style of Crow parfleches and 

compared these to the perfleches of the Shoshoni tribe.  A Parfleche is a ‘folded 

rawhide carryings bag made by the plains Indians of North America’, which is 

decorated with colour, basic geometric abstract design (Britannica encyclopaedia, 

2014). His results found that there were observable and measurable differences 

between the abstract patterns of each group’s parfleches design.  Interestingly, in 

comparing the proportions of the geometric shapes, to that of the ‘golden section’ 

proportion (Fechner, 1860), Lowie found neither group demonstrated the 

measurement as a the universally preferred proportion, rather the Shoshoni norm 

fell above Fechner’s proposals, and Crow ratios fell below. 

 

As Lowie (1921) had hoped, the exploration of cross-cultural differences in 

preferences continued to grow into the 1950’s with findings demonstrating high 
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correlations in aesthetic responses between Australian Aboriginals and Caucasian 

participants (McElroy, 1952). However, authors began to raise concerns over the 

existence of universal aesthetic principles arguing that beauty could more 

reasonability be determined by culture. Researchers, including Lawlor (1955), 

began to credit cultural experience as an overpowering component in 

understanding aesthetic universals that may exist when looking between two or 

more very different cultural heritages.   

 

Larger scale cross-cultural differences in visual perceptions were explored using 

geometric illusions. Some included samples from up to 15 societies over a period 

of 6 years (Segall et al., 1966).  It was hypothesised ahead of Seagall et al’s study 

that people from different cultures would be differentially susceptible to geometric 

illusions because they have discovered different visual habits that may 

produce/inhibit particular illusionary responses.  The result confirmed this 

hypothesis; generally western samples were more susceptible to the Muller-Lyer 

and Sander parallelogram illusions, than non-western counterparts. These and 

other differences found in susceptibility to illusions were believed to be a response 

to cultural and ecological factors in the visual environments from which the 

different participants were sourced.  This again raised the question regarding the 

strength that macro-cultural factors (country) have, against the strength of micro-

cultural factors (participants immediate visual environment).  

 

Such differences between visual illusion susceptibility are not grounded in 

biological racial difference; rather they appeared to be a result of differences in 

experience and susceptibility to visual illusions (Segall et al., 1966).  These 

findings support the theory that our perceptions are acquired through experience.   

This understanding is important to the current thesis as we attempt to explore how 

visual experiences across culture, countries and sub-groups may influence our 

perception and in turn preference of fractal patterns.  

 

Research continued looking at cultural differences in landscape preference, in one 

study a comparison between native Arctic and non-native Arctic workers, and 

those with no Artic experience as participants (Sonnenfeld, 1967) suggested that 

that landscape preference was a result of different cultures (native/non-native 
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Artic residents), and within these cultures, preference was influenced by factors 

such as meaningfulness and similarities to native landscape. These results lend 

support to arguments that experience increased preference such as the role that 

mere exposure (Zajonc, 1968) or meaningfulness (Martindale et al, 1988) play in 

shaping visual preferences.  

 

The power of cultural ties in aesthetic values was further researched by Iwao & 

Child (1966), an as they examined evidence to support the notion that universal 

truths of aesthetic evaluation in art exist across cultures. Art experts (potters) were 

recruited from Japan and findings were to be compared to previously collected 

rating data for equivalent participants from the United States. Participants were 

recruited from a number of villages and from a number of different pottery 

families. A two alternate forced choice design was used with colour and black and 

white art images and participants were asked which, in their opinion, was the 

better piece of art, translated into Japanese.  Iwao & Child (1966) report 

consistency in aesthetic judgments between both cultures, suggesting that those 

with an interest in art demonstrate agreement in aesthetic evaluation despite their 

own cultural heritage, however on closer interpretation individual differences are 

evident in the sample.  The authors suggest scenarios including the possibility that 

Japanese participants may have been exposed to western art or may have influence 

their results to match the US counterparts.  However further analysis of students 

within the local area reveal lower similarity scores than those seen between the 2 

groups suggesting some universality between art interested individuals exists 

regardless of tradition or experience within culture. Child and colleagues went on 

to run supplementary studies looking at cross-cultural differences in aesthetic 

response and found, as a whole, evidence that points towards universal aesthetic 

exceeding the bounds of ‘culture’ as we classify it (Child & Siroto, 1965; Ford, 

Prothro & Child, 1966; Child & Iwao, 1968; Iwao, Child & Garcia, 1969). 

 

Similarity Soueif and Eysenck (1971) and Eysenck & Soueif (1972) recruited 

British and Egyptian art students and lay people (non-art trained participants) to 

explore aesthetic responses. Participants were asked to rate Birkhoff’s (1933) 

polygons for pleasantness. Results showed interesting differences between cultural 

responses to these shapes.  British art students showed preference for simple 
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figures, and British lay people preferred complex figures. This trend is reversed 

within the Egyptian sample with art-educated participants preferring the complex 

figures and the lay participants demonstrated preference towards the simple 

images. Despite this curious directional result, no significant differences where 

found between the British and Egyptian groups as a whole. There were also no 

significant differences in preference between both art and non-art trained 

participants, although the trend seemed to suggest reversed trends for complexity 

preference, but these differences were not significant.  Eysenck and Soueif (1971) 

did not believe that their data support considerably large differences in aesthetic 

preference between both cultures but instead hint towards more universal 

preferences over cultural issues. 

 

In a further experiment, Soueif and Eysenck (1972) studied if the factorial 

structure of the scores awarded by Egyptian participants to Birkhoff’s (1933) 

polygons was comparable to the one revealed by a previous study involving only 

British participants (Eysenck & Castle, 1970). Results unpicked further the factors 

underlying the aesthetic preference of British participants and how these differed 

to their Egyptian counterparts.  The authors concluded that, whilst there was a 

predisposition between cultures to prefer certain polygonal figures, such as 

heightened preference in the UK sample for the cross because of the semantic 

associated which may be strong to the UK a more proportionally Christian society 

than the Egyptian sample. These findings, the author believes, proposes the 

possibility of a more deeply based, biologically determined cause for aesthetic 

judgments, rather than preferences being a function of cultural or environmental 

experiences (Soueif & Eysenck, 1972.) 

 

Eysenck & Iwawaki (1971) used a similar design to explore aesthetic responses of 

Japanese and British Participants. The results again demonstrated no significant 

differences between the cultures sampled. There were high correlations between 

the two groups, however analysis revealed that British participants generally rated 

pictures more highly than their Japanese counterparts. The findings suggest similar 

trends as seen in previous studies that there may be underlying universal 

preferences for geometric shapes.  Despite the results between cultures 

demonstrating no significant differences, large individual differences between 
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participants were reported.   These findings suggest that perhaps other factors 

(stronger than cultural bounds) can influence visual preferences for abstract or 

geometric shapes.  

 

Researchers within the field of empirical aesthetics continued to investigate cross-

cultural differences in polygon complexity. In one such study, aesthetics 

judgments for polygon shapes (varying in complexity) were collected from 5 

different cultures including the United States, Korea, China, India and Turkey 

(Farley & Ahn, 1973). Results were in an agreement with the existence of an 

aesthetic universal for complexity, which appears to have a similar influence 

across the different cultures adding credence to the previous results emerging from 

other academics working in the same field. The finding of this study however 

should be noted with caution as although the cultural-origin of participants was 

across the 5 different cultures outlined, all participants were recruited while 

studying in the United States. This factor means that the visual experiences of 

participants would have been similar at the time of testing, meaning that the 

potential influence of learned preferences for (micro) environmental features 

should be considered during interpretation the results.   

 

The role of sub-cultural or micro rather than macro cross-cultural environmental 

impact of preference is a further factor to considered when exploring the impact of 

culture in aesthetic responses. Studies have found great variability within sub-

cultures in societies compared to relatively smaller variables across-cultures and 

society when looking at participants from Australia, Pakistan and Thailand 

(Anderson, 1976). The results show general consistency between preferences, but 

marked significant differences based on sub-cultural groups such as demographic 

details and background. For example within the Australian sample, preferences of 

participants from a suburban environment and school differed significantly from 

participants from an urban and industrialised environment and school.  In 

additional to contributing to the knowledge of cross-cultural aesthetics Anderson 

(1976) highlighted the experimental/methodological issued faced by researchers at 

the time, which cause difficulties when collecting cross-cultural data. The author 

discusses the differing methods in obtaining aesthetic judgments. This 
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acknowledgement sheds light on the previous challenges faced, and highlight the 

necessity to take conclusions of these and related findings cautiously.  

 

Previous findings emphasise strong agreement for landscape preference from 

participants from generally similar cultural background. These studies focused 

mainly on scenic qualities of landscape rather than consideration of heritage 

qualities (and sense of connection) with landscape.  Zube & Pitt (1981) wanted to 

explore the gaps in literature.  Their study considered Yugoslavian, West Indian 

and American participants response to different landscapes, both scenic and of 

cultural heritage to each group.  Results stress the importance of individual 

differences as a contributor in preference formation. Significant differences 

between cultures were reported, however there are equal if not greater individual 

differences within cultural groups that influence our landscape preferences and 

scenic judgments.  One such difference involves the presence of only nature or 

man-made structures in the scenes. Previous findings show general consensus that 

natural scenes are preferred other those displaying man-made structure (Fines, 

1968; Kaplan et al., 1972) however Zube & Pitt’s (1981) findings show that not all 

cultures share this perception that scenes and landscapes including man-made 

structures are necessarily less appealing or scenic than those of only nature. These 

findings were supported in later exploration demonstrating high agreement for 

scenic preference and judgment when cultures are relatively similar (Zube, 1984). 

While large breaks in research into cross-cultural difference exist, McManus & 

Wu (2013) demonstrate the continued presence of cultural considerations in 

modern empirical aesthetics. McManus and colleagues (2010, 2013) found support 

for universals in rectangle preference across cultures but noted the smaller scale 

individual differences between preferences.  

 

Summarising the literature above, results appear to show mixed findings. While 

there is evidence to suggest that universal and perhaps biological basis for 

preferences for landscape, art and patterns can be seen across a wide variety of 

cultures, and in relation to the current thesis, these findings would support the 

current theories of universal fractal preference being based in evolutionary and 

biological foundations.  Despite these conclusions, many studies above comment 

on the role of sub-cultural or individual factors in forming preference. It can be 
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argued that the environments in which people spend time can vary vastly across 

culture/countries. The results above suggest that it may be a fruitful area of 

investigation to examine the sub-cultural and individual differences between 

aesthetic judgments. 

 

4.2 Sub-cultural factors: 

 

A summary of these findings would suggest little variation across culture in 

preferences for controlled shapes.  In landscape or art however we can see the 

power that sub-cultural factors appear to have over our preferences.   These factors 

seem more dominant than the general classification of ‘culture’ or country alone.  

More specific visual experiences other than the country or culture in which we live 

and develop, have been considered as contributing factors to aesthetic responses 

towards art, nature and visual experiences. More specifically, the following 

literature will explore the differences in aesthetic response based on urban and 

rural environmental experience as well as the impact that sub-cultures such as 

education background and expertise can have on our visual preferences.   

 

This thesis asks if the exposure to the environment, whether it be full of Euclidean 

geometry and commonly seen in urban environments or fractal geometry in rural 

environments could influence our visual preferences for such visual patterns.  

Kelly (1955) believes a person uses there past experience to interpret current 

visual experience, therefore our exposure to specific environments or visual scenes 

may influence our aesthetic judgments. Brunswik (1956) supported Kelly’s notion, 

theorising that relationships between landscape and personal outcome is acquired 

through experience.  To support this case, links can also be made to ‘place 

identity’ theory (Canter 1973, Proshansky et al., 1983), which places importance 

of past experience on evaluations of environmental quality.  

 

Empirical support for this position has found differences in preference for natural 

settings.  Differences in preference between inner-city school children and 

environmental educators have been reported (Medina, 1983), with marked 

urban/rural differences in preferences and heightened preference across groups for 
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the scenes they experience more regularly.  Again this evidence supports the mere-

exposure hypothesis (Zajonc, 1968) and the processing fluency hypothesis (Reber 

et al., 2004).  Rather than the general classification of the wider macro cultural 

environments, the micro-environments individuals spend time in are influential in 

shaping preference (Medina, 1983). 

 

Contrasting results have been found when exploring responses only to urban over 

rural scenes. Nasar (1984) conducted a study in which participants from Japan and 

the United States were shown pictures of urban street scenes and results 

demonstrate that, in contrast to Medina’s (1983) findings, each group preferred the 

non-native rather than the native scenes. The author concluded that instead of 

familiarity effect for preference in native environments, the factors of  ‘order’ and 

‘diversity’ were the main predictors of preference for urban street scenes.  Results 

also suggest that other individual factors such as ‘prominence of nature’ were 

potential predictors of preference.  These findings demonstrate the inconsistency 

in reported results between urban and rural environments on landscape preference 

(Nasar, 1984).  It should be said however, that such findings might be limited as 

the sample population only included urban scenes and failed to measure if 

differences were consistent in rural scenic landscapes. 

 

Further studies provided a wider insight into individual factors that contribute to 

aesthetic judgments of landscapes. Dearden (1984) explored the impact of training 

(examining those in the landscape planning profession and those who were not), 

impact of environmental awareness, and differences in familiarity to the general 

landscape used. Dearden included participants from various socioeconomic factors 

and findings suggest no bias in preference for landscape based on professional 

training, unlike previous studies of preference (including Souief & Eysenck, 

1971).  Dearden did however find highly significant differences between groups, 

which have experience evaluating wilderness scenes and those who did not.  

Familiarity with the landscape appeared to be positively correlated with landscape 

preference.  For example participants expressed more positive feelings toward 

natural scenes if they had previous experience within these environments rather 

than those living in high-density housing environments. Further demographic 

details such as gender, age, annual income, and education or occupation 
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background did not demonstrate significant relationships with landscape 

preferences. These findings suggest that sub-cultural environments, such as the 

differences in landscape preference between those living in urban and 

industrialised environments and those living in rural or environments containing 

more natural features.  

 

During the 10 years following these studies, Yu (1995) again explored sub-group 

differences in landscape preference in a Chinese sample of student landscape 

architects and horticulturist’s.  Students were from both urban and rural 

environments, and cross-cultural comparison included a design expert group from 

the US.    Results supported Dearden’s (1984) and other conclusions (Zube & Pitt, 

1981; Schroeder, 1983; Kaplan & Talbot, 1987), that the environment in which 

participants lived (Urban vs Rural) was a powerful predictor of the variance in 

preference for landscapes.   Some weak cross-cultural differences, between macro-

culture (such as across countries) were found, however Yu (1995) concluded that 

preferences could be overridden by living environment or education experience.  

 

There is limited research looking at aesthetic responses to a variety of stimulus 

(other than pure landscape studies between urban and rural population). The 

history of empirical aesthetics suggests that visual experiences change our 

aesthetic response to these stimulus (Reber et al, 2004; Zajonc, 1968) therefore 

this thesis aims to highlight this gap within the literature and will attempt to 

explore this factor from a more stringent experimental angle.  The current thesis 

aims to expand this area by exploring the impact of environmental background on 

preference for fractal dimension as the presence (or absence) of fractal patterns in 

visual environments in an attempt to begin to fill this currently unexplored avenue. 

 

Experience with natural environments appears to influence not only preferences as 

explored above, but also have an impact on behaviour and moral judgments. 

Several studies have demonstrated the links between experiences with nature and 

behaviour in later life in terms of conservation. Wells & Lekies (2006) explored 

the links between childhood nature experience and views and behaviour towards 

environmentalism in adulthood. The study looked a these experiences in a large 

sample of 2,000 adults and found that childhood experiences in natural 
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environments, particularly for ‘wild’ nature had positive results on environmental 

attitude in adulthood. Additionally those with wild nature experiences were 

associated positively with environmental behaviours whilst those with only 

domesticated nature activities (such as gardening interest) did not have as strong 

an association with positive environmental behaviour.  

 

In a later study, Zaradic, Perhams & Kareiva (2009) found similar results.  Time 

spent hiking or backpacking in wild nature had positive correlations with 

monetary contributions to conservation up to 11-12 years after these experiences.  

This relationship is negative with those who spent time in public or domesticated 

land or in activities such as fishing.  These results appear to show a worrying trend 

in decreasing experience with wild nature resulting in much less environmental 

identification in years to come. These results demonstrate links between sub-

cultural groups that partake in nature experiences over those, most likely urban 

populations, who do not have these similar experiences that not only appear to 

have less aesthetic response as well as less behavioural response. 

 

Whilst sub-cultural distinctions can be made between rural and urban 

environment, this classification is open to other interpretations and one such 

example could be the differences between personal interests or education and 

background as a further sub-cultural distinction. An individual’s personal interests, 

education history or employment experiences may effect how much time and 

attention is directed towards particular visual stimulus, studies have found very 

low correlations for preference between groups from different professional 

backgrounds (Buhyoff et al., 1978) and differences in preference between special 

interest conservation groups and university students (Daniel & Boster, 1976). 

Further findings have demonstrated that factors including knowledge and 

familiarity of a subject or landscape can affect assessment ratings awarded by 

individuals;(Kaplan, 1973; Gallagher, 1977; Anerson, 1978; Buyhoff et al., 1979; 

Hammitt, 1979) these findings offer support for existing theories of general 

aesthetic response that mere exposure (Zajonc, 1968) and ease in processing visual 

information (Reber et al, 2004) can have significant interactions with preferences 

ratings or choices.   
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This awareness of different preferences in sub-cultures is of interest in a variety of 

discipline including psychology, artists and different groups of designers. Buhyoff 

et al (1978) for example, reported landscape architects could accurately predict the 

preferences of ‘client groups’ based on verbal descriptions of them.  It has been 

suggested that designers, and artists alike, have long since been aware of the subtle 

rules and differences between sub-cultures and how these play an important role in 

aesthetic responses.  Mirroring Zeki’s (1999) sentiments, the science appears to 

lag behind the artists in understanding the truths behind aesthetic judgments and 

responses from a variety of different groups.   

 

This thesis summarises the literature in alignment with conclusions made by 

Kaplan & Herbert (1987) that preference are to some extent cross-cultural, but to a 

greater extent sub-cultural. The literature suggested that much more powerful 

predictors of preference, when looking at landscape in particular, lie within sub-

cultura individual identity and experience. As evidenced above, visual experience 

such as urban and rural differences can have a profound impact on our visual 

experiences, whether this is an issue of self-identity and affective responses or a 

lower level by product of repeated exposure to a scene. The evidence as with 

cross-cultural studies is non-existent when exploring the sub-cultural difference in 

preferences for fractal patterns given it is a relatively unexplored field, however 

we can begin to make assertions regarding the possible presence of sub-cultural 

differences based on the literature reviewed above.  It could be argued that if we 

are exposed to simple and largely Euclidean geometric shapes we develop 

preference for these over more complex natural shapes displaying, among other 

things fractal properties. The current thesis aims to explore this in further detail 

looking at how specifically low-level recognition (such as mere exposure) can 

account for or predict our preferences along the fractal continuum of complexity.  

 

4.3 Further individual differences: 

 

In addition to cultural and sub-cultural factors, other individual differences have 

also been found to account for variance in aesthetic judgments. Some of the 

notable areas of investigation include Age and Gender. Findings are varied when 
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exploring individual differences and it may be because of the variety of stimulus 

used to measure the responses. In the light of very limited literature regarding 

aesthetic responses to fractal patterns, the following section will use evidence 

from a variety of different disciplines including psychology, art and landscape 

studies to make tentative links for potential impact of age and gender on aesthetic 

responses to fractal shapes.  

 

Life Span: 

 

As we age do our aesthetic responses change? This question asks the impact that 

ageing (both normally and abnormally) can have on our visual preferences. We 

have seen above, that our life experiences appear to influence our aesthetic 

judgments for landscapes, art and shapes but do human developmental stages such 

as childhood, adolescence and older age influence our aesthetic judgments? In 

addition to normal developmental stages in human ageing, we also need to 

consider the influence of abnormal ageing or development in later life such as 

neurological degeneration. Several studies have found interesting results when 

looking at the impact of dementia on aesthetic responses.  Below summarises the 

current findings of aesthetic response across lifespan. 

 

Within empirical aesthetics, researchers have explored the impact of chronological 

age on preference for rectangle of different proportion in a bid to contribute to 

Fechner’s (1860) work on rectangle proportion. Thompson (1946) explored if 

children demonstrated preferences consistent with a rectangle of certain 

proportions, and if differences did exist, hoped to explore the point at which 

preference fell in line with adult preferences.  

 

Thompson (1946) used 4 different groups, pre-school, 2 school-aged children 

groups and college student groups, each with 100 participants. Results found that 

college aged student’s demonstrated similar preference to results collected from 

previous adult samples. The pre-school group showed no stable preference across 

all rectangles with very high individual differences across the sample.  The 

younger school group (third grade in American schooling) demonstrated stable 

preference for rectangles of greater width, however these preferences do not 
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correspond to the college student group. The older school aged children (sixth 

grade in American schooling) showed stable preferences, which were more 

consistent with the college-aged students than the younger school aged children. 

The findings suggest that as chronological age increases, children preferences 

become more and more similar to stable adult preference responses.  In addition to 

the purely aesthetic exploration, Thompson (1946) believed that by exploring 

children preferences for simple forms this offered an excellent method of studying 

non-verbal transmission of culture within child development. Tracking when 

preference aligned with the group or adult ‘norms’ allowed assumptions to be 

made about when children learned to recognise visual cultural rules.  Thompson 

(1946) concluded that during childhood, children learn to like proportion with 

which they are familiar and this demonstrates the role social and environmental 

experience has on developing visual preferences.  

 

Within other studies it has been suggested that older children have a preference for 

abstract art, whereas younger children prefer images of objects, which are familiar 

to them (Rump & Southgate, 1967).  However, such studies failed to control for 

the role of experience in aesthetic responses leading to arguments that age cannot 

be a strong predictor of aesthetic judgments (Taunton, 1982).   A child’s 

sensitivity to art and their subsequent responses will influence what they like and 

dislike however Taunton (1982) cautions against the use of comparison between 

children and trained/untrained adults in aesthetic research, suggesting that such 

comparison plays down the strong individual differences and idiosyncratic 

influence of preference developing with experience and learning outside of 

chronological age.  

 

Aesthetic responses to natural environments have been found to show marked age 

differences.  Findings are evidenced from a large sample of participants from a 

wide age range rated photographs of natural scenes (Balling & Falk, 1982). The 

study used two measures of preference, firstly asking how much participants 

would like to live at each depicted scene and secondly how much they would like 

to visit each depicted scene. Results demonstrated that children showed 

preferences for Savanna scenes over more familiar environments.  Striking 

differences were seen in the adolescent sample, as this group demonstrated 
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consistently lower preferences for all scenes compared to any of the other groups 

in the sample. It was suggested that perhaps the negative scoring was distinctive 

across all ratings, however within these low scores with the adolescent group 

included marked differences in preferences between the scenes compared with the 

other group preference patterns (Balling & Falk, 1982). Distinct differences 

between low ratings have been found within a secondary school sample (aged 13-

17yrs) but not within a primary school sample (aged 10-12yrs) suggested that 

when assessing landscape or natural scenes, adolescent preference appears to be 

distinctively lower when compared to younger or older generations (Herzog, 

Herbet, Kaplan & Crooks, 2000).  

 

Other studies have also demonstrated differences in preference of adolescents 

compared to younger and older groups for natural settings. Adolescents show a 

higher appreciation of developed and urban setting than their different aged 

counter parts (Kaplan & Kaplan, 2002).  This preference does not suggest 

adolescents do not show appreciation for natural settings, however this preference 

is less marked than in adults or younger children. The authors suggest this pattern 

of preference is seen because of urban spaces being active and facilitating group 

and social spaces, rather than solo and natural scenes (Kaplan & Kaplan, 2002). 

 

Similar patterns of adolescent differences were seen when exploring aesthetic 

responses to urban scenes (Medina, 1983).  Whilst least preferred scenes were 

fairly consistent between the adult and youth samples, the younger sample showed 

the highest preference for scenes similar to that which is familiar to them.  It is 

suggested that the younger adolescent sample preferred scenes depicting activity 

and mobility options where as the older sample shown highest preference for the 

quiet and private scenes depicting nature or natural elements (Medina, 1983).   

 

Lyons (1983) conducted a study exploring demographic correlates of landscape 

preference, which included amongst other variables an exploration of the impact 

of age of ratings for vegetation biomes.  Results found significant differences of 

ratings across the lifespan development with highest scores given by young 

children, significant divergence in adolescences and then the lowest scores given 

by elderly participants. Ratings showed divergence between urban and rural 
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residents adding support to the sub-cultural findings discussed above.  The study 

concludes that preferences do not appear to be based on age or other evolutionary 

theories but instead are formed in a complex process which involves experience 

and differential social factors at chronological points of lifespan development.  

 

Elderly samples have been found to display relatively low preference for wild 

nature over more managed and developed natural landscape (Balling & Falk, 

1982; Lyons, 1983; Strumse, 1996 and Van den Berg et al, 1998).  Some have 

attributed this difference in elderly samples as relating to evolutionary drives that 

would make wilderness scenes a larger risk to vulnerability, both physical and 

psychological, Alternative theories such as increased cultural and experiential 

shaping have been attributed to this change in preference at older ages (Van den 

Berg & Koole, 2006) however studies in non-normal development appear to show 

stability in preference for art stimulus despite neurodegenerative diseases such as 

Alzheimer’s, which suggests that in older age preferences remain stable despite 

the functioning capacity of working memory (Halpern et al., 2008). Other studies 

exploring neurological conditions however appear to show aesthetic changing in 

abnormal ageing, for example some individuals have been found to showed 

marked aesthetic differences in production following a stroke (Zaimov, Kitov & 

Kolev, 1969). 

 

We can see from the literature reviewed above that preferences do appear to be 

bound with age, however the impact of chronological age alone is difficult to 

interpret as a separate influential factor in aesthetic judgments. Further individual 

experience, education and social factors cannot be uncoupled from age and as 

previous literature demonstrates these factors can influence our aesthetic responses 

to a variety of stimulus.  There does appear to be marked differences in 

adolescents and in older adulthood for landscapes and it has been argued that 

perhaps social factors and priorities can account for this difference. Age alone 

cannot account for individual differences in aesthetic responses, but as the 

literature above demonstrates it is important to explore age as a factor amongst 

other individual differences when investigating this area.  
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The area of lifespan assessment of aesthetic preference and the literature discussed 

above however faces several interpretative problems, which should be noted. First 

and foremost, ageing is a complex progress that following no set trajectory, 

individual age individually and therefore the concept of chronological age is 

difficult to classify by certain standards or behaviours.  A further interpretative 

issues arises for the ‘elderly’ or older populations sampled in the literature above, 

as we age our visual system and processing become deficient, particularly when 

the complexity of the scene being assessed is high as in the literature discussed 

above (Faubert, 2002). Perceptual abilities diminish with age, and it is difficult 

particularly using the designs adopted in the literature above to ascertain the 

individual perceptual ability of the participants taking part as well as the impact 

this may have on aesthetic responses. A further interpretative issues when 

assessing aesthetic responses across lifespan refers to the issues of non-normal 

ageing as discussed above in previously (Chapter 2), studies have shown that a 

number neurological conditions play a role in aesthetic activity, without firm 

diagnostic criteria being used throughout studies, we cannot infer that all 

participants (particularly those of older age ranges) have healthy neurological 

function with no effect on subsequent aesthetic responses.  

 

Gender: 

 

Within the wider field of individual difference and developmental psychology, we 

can see marked differences in the cognitive abilities between males and females. 

These can be seen across memory, creativity, problem solving, reasoning and 

brain activation (Bell et al., 2006). In terms of aesthetic responses however, the 

findings have been mixed, some finding differences between males and females 

and others noting the overall similarities. Whilst not of direct interest/relevance 

within this thesis, gender will be explored as a factor therefore a brief summary of 

current findings will be explored below. 

 

Some early studies have suggested that women are more attracted to impressionist 

paintings than men, with men showing preference for modern paintings (Bernard, 

1972). Women preferred representational art which displays soft and curved 

patterns were as men preferred more abstract work containing higher numbers of 
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pointed or sharp shapes (Cupchik & Gebotys (1988).  Evidence seemed to point 

towards aesthetic differences, or no tangible evidence of sex differences in 

aesthetic judgments (Farrell & Rogers, 1982; Limbert & Polzella, 1998; Lindauer, 

1990).   More recent studies have however reported that women demonstrate an 

overall higher appreciation of, and gave higher scores for, art reproduction stimuli 

than males (Frumkin, 1963) and that abstract art was generally rated more highly 

by females than their male counterparts (Furnham & Walker, 2000). Some have 

suggested that it may be a result of increased exposure to different types of art 

through technological advancements that may also influence both male and female 

responses.   

 

Polzella (2000) looked at gender differences in college students for colour 

reproductions of art stimulus. Results found that Impressionist paintings were 

judged as the most pleasing by females, and also evoked relaxation and alertness. 

It was concluded that the differences between males and females might be a result 

of differences in perceptual style and emotional sensitivity within between genders 

(Polzella, 2000).  It appears that perceptual styles or affective processing may 

result in significant differences in aesthetic response between genders. One study 

found that paintings that showed behaviour evoked more pleasure and attention 

among female participants over male participants (Fedrizzi, 2012). The author 

suggests that neuroanatomical studies can enhance the comprehension of why 

such gender differences appear to exist (Fedrizzi, 2000) and other evidence 

demonstrating gender differences in cognitive processes (Leder et al, 2004) 

support this claim.  

 

Cela-Conde et al (2009) found gender-related differences in parietal activity 

during aesthetic appreciation and judgments. While in both sexes, activity is 

focused in the parietal lobe; it appears that males show lateralized right 

hemisphere activation in the parietal lobe while females show bilateral activity in 

the same region. These results could (although not expressly concluded within the 

paper) point towards a difference in the way males and females process aesthetic 

appreciation, although specifying how the differences manifest in response is 

challenging and yet to be explored in great depth. When looking at landscape 

preferences, gender differences have been found previously (Kellert, 1978; Lyons; 
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1983) it could be suggested that these differences in response to landscape 

between men and women may have evolutionary roots. 

  

 Silverman and Eal’s (1992) hunter-gather hypothesis offers one possible 

explanation for the differences in perceptual strategies and therefore as a results, 

aesthetic responses. The theory outlines that gender differences in spatial ability is 

a qualitative result (rather than any quantitative differences) of the different tasks 

of the sexes in hunter-gather tasks.  Spatial skills associated with hunting are more 

developed in males and females show heightened peripheral perception and 

incidental memory for locations and objects because of the gathering tasks. 

Further findings suggest that males look at the whole picture during aesthetic 

judgment, where as females tend to pay attention to smaller details within the 

picture (Cela-Conde et al., 2009). 

 

As also found when exploring the investigation of Age, the literature appears to 

show that whilst there may be some underlying differences in aesthetic judgment 

across gender, particularly in terms of content, the impact of social background, 

experience and interest in Art is a much more powerful predictor of difference in 

aesthetic response (Johnson & Knapp, 1963).  It is important to note that the 

literature within the area, in relation to making judgments about fractal patterns in 

limited and needs further exploration. While it is beyond the scope of the thesis to 

explore the perceptual and processing differences between men and women in 

their response to fractal patterns, the previous research will provide a good 

framework from which assumptions can begin to be made about the role that 

gender plays in preference for fractal patterns.  

 

Personality:  

 

Within research there is a long tradition of classifying and understanding 

differences in psychological experience. One such classification is the 

measurement of individual’s traits that contribute to personality, stable traits that 

are consistent across various situations. Compared to other differential factors 

within this chapter, there is a wealth of evidence exploring the impact of 

personality on aesthetic judgments. Burt (1933) conducted one of the earliest 
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studies to explore aesthetics preferences, and did this with a series of picture 

postcards. Participants were made up of ‘normal’ subjects and experts. The results 

revealed a ‘general’ factor of aesthetic judgments across all participants but further 

analysis also revealed bipolar factors for different types of art preference which 

appeared to be related to individual differences in personality.   Eysenck (1940-

1941) continued this line of work in later years and explored responses to different 

types of stimuli including pictures. His results, like Burt’s (1933) found a general 

trend in aesthetic judgment  (which he called T factor) and also a bipolar factor 

accounting for different preferences within art (which he called the K factor). 

Other studies also found this general factor and bipolar factors in aesthetic 

judgments (Barron, 1953; Peel, 1945; Green & Pickford, 1968).  

 

A wide range of personality traits and measurements have been linked with 

preference for particular scenes, or artistic stimulus. Studies have found that 

Neuroticism was linked to preference in abstract art over other artistic styles 

(Furnham & Walker, 2001; Knapp & Wulff, 1963). Perhaps the most consistent 

finding within personality and aesthetic research, particularly for artistic stimulus 

is the characteristics of ‘Sensation Seeking’ and ‘Openness to Experience’. Costa 

& McCrae’s (1985) Big-5, or, NEO personality inventory classifies ‘openness to 

experience’ as a distinct personality factor. Zuckerman, Ulrich & McLaughlin 

(1993) explored Sensation Seeking and its relationship to nature paintings as well 

as complexity and tension within the image. The results found that men liked 

complex, high-tension realistic paintings more than women did. Additionally 

complexity alone did not appear to interact with personality, and this contributed 

the basis for not exploring personality factors within the scope of this thesis. 

 

Sensation seeking was found to be positively related to preference for surreal art 

and negatively related to preference for representational art. Established measures 

such as the Big 5 personality inventory (Costa & McCrea, 1985) were weakly 

associated and it is suggested that narrower and aesthetic specific personality 

measures may be better predictors (Furnham & Avison, 1997).  Many studies 

show the relationship existing, but the power of personality traits over other 

confounded variables were explored and findings revealed that only 33% of 

variance in art experience was accounted for by personality factors (specifically 
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‘openness to experience’), measures of intelligence and finally previous art 

experience (Furnham & Chamorro-Premuzic, 2004). 

 

The wealth of evidence for aesthetic judgment and personality factors mean that 

the many areas, such as preference for fractal dimension have explored the 

personality factors that have been suggested to contribute to the differences in 

preference, with preference for higher D values in creative people (Richard, 2001). 

This result was tested further by Aks & Sprott (1996) who found that participants 

who deemed themselves to be creative on self-report measures, contrary to 

previous research, found that they had a preference for slightly lowered D values. 

This variety in findings could be suggested as an indication that other factors and 

not personality may influence the level of preference in D values.   

 

The discussions above demonstrate strong and established links between 

personality factors and aesthetic judgment. Given this wealth of evidence, and 

lacking theoretical justification for complexity, the current thesis will not directly 

explore personality factors and the relationship with fractal patterns, as previous 

research has already explored this area of investigation, however the area remains 

a fruitful area for the future. 

 

Conclusion: 

 

As evidenced throughout the current chapter, the literature exploring individual 

differences in aesthetic responses was not developed from a collective body of 

knowledge and instead the results vary and are full of contradictory findings, 

which appear to be dependant on the disciplines, design and stimulus used. This 

means that making conclusions across the differing fields is a difficult task. New 

cross-disciplinary development such as neuroscience and psychology, or sociology 

and in the case of this thesis physics and psychology are offering new more 

empirically robust directions in the field.  The literature explored above provides 

an overview the impact of cross-cultural, sub-cultural and further individual 

differences influences on aesthetic judgment across art, abstract empirical 

aesthetic stimulus as well as natural and landscape scenes. The 3 areas were 
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looked at in conjunction as there is currently limited evidence exploring fractal 

patterns cross and sub-culturally. The majority of findings suggest that there does 

appear to be some consistencies in visual preference across cultures, particularly 

when looking at aesthetic responses to landscape. This offers support for existing 

theories in Empirical Aesthetics towards a universal pattern of preference. Further 

to this however, is the findings show that sub-cultural factors and previous visual 

experience play a role in shaping our preferences. The literature reviewed raises 

questions about the ‘universality’ conclusions raised in fractal aesthetics research 

(Spehar et al., 2003), considering the evidence is limited and still relatively 

unexplored.  In summary the current literature demonstrates the requirement for 

further evidence exploring how cultural and cross-cultural factors can influence 

preference for fractal patterns is required before a true statement of universality 

can be made.  

 

One of the strongest sources of evidence within cross-cultural aesthetics points to 

a generally consistent appeal for natural scenes over man-made environments, 

although this is not always consistent; Subsequent evidence resulted a body of 

research that not only shows the responses to nature, but goes beyond aesthetics. 

The following section will explore the implications of understanding nature and 

within it fractal shapes that may venture far beyond a purely aesthetics perspective 

and towards a framework of psychological well being and behavioural impact that 

natural shapes, and in turn fractal patterns may have.  
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5.0 Beyond aesthetics…. 
 

5.1 Responses to natural and urban environment: Beyond 

aesthetics 

5.2 Connectedness to Nature 

5.3 Current applications of aesthetic research 

 

The following section explores the responses to fractal and complex images 

beyond purely aesthetics responses. As noted in the previous sections, 

fractal/complex images and patterns have an appeal, which spans further than 

purely aesthetic responses. Classifications of images, commonly of nature, have 

been found to promote psychological wellbeing, and positive behaviour, including 

environmental connectedness and even have restorative values for stress and 

medical recovery. Some theorists believe these responses are a result of our 

evolutionary history with nature, others see natural images as offering a low 

cognitive load and reducing stress responses.  Fractal complexity and nature are 

inexplicably linked and this chapter will also discuss studies demonstrating that 

restorative responses of nature can also be seen toward pure fractal patterns. The 

section will end with a brief summary of the way aesthetic findings have been used 

in real-world applications demonstrating the power that aesthetic responses have 

on behaviour, attitude and beyond. 
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5.1 Responses to natural and urban environments: Beyond 

Aesthetics. 

 

The universal aesthetic appeal of nature is well established and the rationale 

behind this strong aesthetic pull has been traced to our cognitive processing, 

evolutionary history and biological instincts.  Research trends suggest two main 

approaches to understanding the benefits of nature, which may account for such 

strong preferences seen across populations.  

 

Attention restoration theory outlined and explored by Rachel and Stephen Kaplan 

(1989; 1995) emphasises the role that natural scenes play in cognitive restoration, 

by improving attentional fatigue. Concentration was found to be improved after 

spending time in a natural environment (or viewing a natural environment) and it 

is considered a result of the effortless attention and soft draw of nature, such as 

watching the ripples in a pond or clouds float by requiring little attention (Kaplan 

& Kaplan, 1989; Kaplan, 1995). Within urban environments this effortless 

attention is less adaptive, actions must be inhibited, many distractions are present 

in the urban scene that mean attention is overstretched and eventually become 

fatigued. In a recent study Berman, Jonides & Kaplan (2008) extended this idea 

and compared the restoration effect of natural and urban environments. It was 

proposed, as in early findings, that natural environments capture attention 

modestly which allows for continued top-down attentional processing as well as 

bottom-up cues. Urban environment alternatively grab attention in an overt 

manner, leaving little attentional capacity, as the environment requires direct 

attention- this in turn results in less restoration effects. Their findings support this 

hypothesis and show that walking in nature and viewing pictures of nature 

significantly improve directed attention ability. It was concluded by the authors 

that ‘simple and brief interactions with nature can produce marked increases in 

cognitive control” (Berman et al., 2008 p.1211). This study suggests that our 

preferences for natural images are shaped by more than bottom-up factors 

involving environmental features but in fact, whether consciously or 

unconsciously, aesthetic choices result from top-down processes that favour and 

pick out scenes with restorative qualities.  



 

 100 

 

Another approach suggested for accounting for higher preferences for natural 

scenes use the evolutionary or biological model (Ulrich, 1983; Ulrich et al 1991) 

that emphasises the importance of affective functioning, such as restoration from 

psychophysiological stress associated with threat or challenge.  

 

Evolutionary theory is a promising and complementary approach to aesthetics, and 

particularly neuroaesthetics because it attempts to explain why our brain is attuned 

to particular perceptual experiences. The Biophilia hypothesis, proposed by 

Wilson (1992) is a theory that aimed to understanding our apparent affiliation with 

nature and by extension, of relevance to this thesis, fractal patterns.  It asserts the 

existence of specialist cognitive modules that are genetically based to affiliate with 

life and lifelike processes. The interaction with nature and natural forms is of a 

benefit both physiologically and psychologically.   The savannah landscape or the 

blossoming flower produce positive aesthetic responses because of they were a 

markers in our genetic history of safety or food sources. Kaplan & Kaplan (1989) 

have continued research on the topic of landscape preference and have found that 

on the whole people demonstrate preference for natural, rather than built 

environments. Natural environments displaying fractal qualities, where as man-

made built environments display (on the whole) traditional Euclidean measures. 

This calls into question the extent to which our evolutionary ancestry, rather than 

our developmental life experiences shape our preference for natural and art 

environments. “The mind is predisposed to life on the Savannah, such that beauty 

in some fashion can be said to lie in the genes of the beholder?” (Wilson, 1984; 

p.101). 

 

Some researchers attempt to define the field as an “attempt to understand the 

aesthetic judgment of human beings and their spontaneous distinction between 

‘beauty’ and ‘ugliness’ as a biologically adapted ability to make important 

decisions in life.” (Hartmann & Apaolaza-Ibanez, 2010). Heerwagen and Orians 

(1993) state that responses to the natural environment, both positive and negative, 

are a product of our evolutionary instincts.  We respond favourably to 

environments that have the most potential to keep us safe and well.  
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While the studies and links seem plausible, given the wealth of previous evidence, 

can the evolutionary approach take into account individual differences found 

between aesthetic judgments? In some ways yes, the hunter-gather hypothesis 

(Silverman & Eal’s, 1992) offers one possible theory to account for differences in 

perceptual strategies between males and females. These findings demonstrate how 

some differences may stem from our evolutionary history rather than our 

experiences. 

 

Discussed above are two possible theories that account for the strong preferences 

consistently found towards natural over urban or man-made scenes. Regardless of 

the foundations, there are studies that have found that these preferences may have 

impact beyond purely aesthetic judgment. Next we will explore some key studies 

outlining the potential impact of spending time in nature, the most preferred 

environment of most, compared with spending time in non-adaptive or cognitive 

damaging/disruptive environments.  

 

Ulrich and colleagues (1991) have done extensive research exploring the potential 

responses beyond aesthetics that natural or urban scenes have on a viewer. In one 

such study, 120 subjects were asked to view a stressful movie.  Participants were 

then shown a video of either a urban or rural environments. The study aimed to 

explore the stress restorative responses when encountering natural or urban scenes 

using both self-rate measures and a series of physiological measures to record the 

outcomes.  Results show that recovery was found to be faster and better on the 

whole after viewing natural rather than urban environments.  

 

Ulrich et al’s (1991) findings opposed Kaplan and Kaplan’s (1989) findings that 

differences occur between urban and rural environments as a result of the 

differences in attention and cognitive load. These findings showed no difference 

between classifications (urban/rural) of the scene and both elicited the same levels 

of attention or fascination. The results do not support the psycho-evolutionary 

theory as restorative responses to natural images were found to lie in positive 

emotional states and these changes are sustained by attention. 
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Following a string of fairly consistent findings for people to prefer natural over 

man-made built environments van den Berg and colleagues (2003) attempted to 

test, on a larger scale than seen previously, the role of restoration to the different 

environmental scenes.  This study has several conclusions important to this thesis, 

the first is that simulated natural environments were rated as more beautiful than 

simulated built environments- suggesting simulated nature (perhaps containing 

fractal patterns) may be able to evoke these positive restorative responses that go 

beyond mere positive aesthetic judgments. The second important finding was that 

higher preferences were associated with greater affective restoration, and this 

effect remained strong even when scenes were statistically similar. When the 

restorative effect (naturalness) was removed, differences between natural and 

urban environments in terms of preferences where significantly reduced.  The final 

relevant finding from this study to this thesis was that preferences for environment 

appear to be mediated by perceptions of the environment’s potential for 

restoration.  This is confirmed with studies that show stronger preference 

responses for natural/restorative stimulus when experiencing heightened stress or 

mental fatigue (van den Berg et al, 2003; Staats et al, 2003).  We can conclude that 

natural environments and scenes elicit stronger restorative effects than built and 

man-made environments (Ulrich, 1991; Hartig et al, 1991 & 1996; Ulrich et al, 

1991). 

  

Landscape has been found to influence aesthetic appreciation as well as health and 

well-being responses. Velarde et al (2007) aimed to review the types of landscape 

used in previous studies and then unpick the impact these individual landscapes 

had on health effects. Their findings show that most of the previous literature 

classifies environments as ‘urban’ or ‘rural’ and did not attempt to explore the 

smaller sub-groups within these environments.  Generally results supported the 

notion that natural landscapes resulted in stronger positive health effects when 

compared to urban landscapes. The authors notes the difficulty in quantifying 

landscape to allow stringent casual relationships to be explored in great details and 

all for new ways of quantifying the visual environment to further understand the 

health impact of different environments. Fractal dimensions offers one way to 

quantify natural scenes that were previously considered chaotic and unorganized, 

this thesis may go some way of following up Velarde and colleagues (2007) call to 
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stringently quantify the visual environment to begin to make further progress. 

Fractals have already been used to quantify some aspects of the visual 

environment, mainly nature, and the responses beyond aesthetics have also been 

seen.  

 

As discussed previously fractals characterise many of the seemingly complex 

visual patterns in the natural world and have been described as the “fingerprints of 

nature” (Taylor et al., 1999).  It is considered by some that fractals (with their 

strong link to nature) tap into specialists cognitive modules that have developed to 

moderated information about living things (Wilson, 1984) and that such modules 

are linked with emotional regulation and reduced physiological stress (Taylor, 

1999).  

 

Similar to research exploring the impact of nature as an overall construct, 

Hagerhall et al., (2008) broke this down and reported that viewing fractal patterns 

elicited high alpha in areas of the brain concerned with attention and visio-spatial 

processing. Providing support for the idea that training using fractal shapes could 

help the development of perceptual concepts of the natural environment, stimulate 

Biophillic responses and trigger aesthetic interest and restorative responses (Joye, 

2005; 2006).  

 

The links span further and Taylor (2010) argued that mid-range preference 

hypothesis was based on evolutionary principles that the mid-range fractals are 

most akin with a safe and plentiful environment well equip for survival.  The first 

author to state the preferences appear set at mid-range was suggested by Sprott 

(1993) and went on to be tested again in further study (Aks & Sprott, 1996), which 

demonstrated consistent preference for mid-range fractal patterns. 

 

Hagerhall (2005) continued this trend and found that people judge fractal 

landscape silhouettes at the mid-point as most natural, demonstrating the clear link 

between natural processing and fractal shapes.  In a later study Hagerhall et al 

(2008) attempted to explore responses to fractal patterns beyond purely aesthetic 

judgments and used EEG to measure participants responses exposed to various 

levels of fractal dimension. The results found that the mid-range fractals elicited 
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processing signals associated with relaxation.  The authors concluded that this 

response is seen because it offers the optimal chance of survival, supporting the 

previous conclusions made within the field (Taylor, 2010).  

 

The literature discussed above demonstrate the power that natural and fractal 

images appear to have over human wellbeing, both psychologically and 

physiologically. This leads to questions about how these relationships can be 

harnessed in a positive way? Van den Berg et al (2003) concluded their paper with 

a warning that ignoring public preference and continual industrial development 

means that environments with restorative qualities are decreasing which will in 

turn result in negative consequences to human well-being. The next section begins 

to explore the potential impact of being connected with nature beyond wellbeing 

and towards the wider wellbeing of nature and the environment as a whole.  

 

5.2 Connectedness to Nature: 

 

As demonstrated in the literature in the previous sections, fractal patterns can be 

used to evoke responses similar to those of natural images, and as such it is 

important to think about the potential uses for this perceptual and psychological 

connection between the two. There is growing evidence suggesting that feeling 

connected with nature has positive psychological and physiological repercussion 

and as such this thesis aims to extend the current findings linking natural 

responses directly to fractal patterns and explore what, if anything, aesthetic 

judgments for fractal patterns can reveal about how connected individuals feel to 

nature.  One aim of this thesis is to explore the differences between urban and 

rural participants and in addition aims to explore if preference patterns for fractal 

scales (such as the mid-range hypothesis discussed previously) are related to 

participants feelings towards nature. Feeling connected to nature has important 

implications for environmental attitude and willingness to take conservation action 

or donate to environmental causes. We will briefly highlight some key findings 

within this field and in addition explore how connectedness to nature can be 

measured and subsequently tested.  
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Despite the growing evidence showing nature has positive and restorative 

responses and that generally nature is consistently preferred over man-made 

environments such as urban city scenes, there appears to be great variation in the 

extent that individuals are drawn to and feel at one with nature. These could be 

related to a variety of factors including environmental experience. If you are living 

in an urban environment you are not commonly surrounded by nature, might this 

play a role? Alternatively do factors such as age or gender play a role in 

differences in how connected to nature individuals feel? 

 

Why some people feel strongly about nature and others feel unmoved has been 

investigated in the field of environmental psychology (Kals, Schumacher & 

Montada, 1999) and findings show that along with several other variables, positive 

experience with nature (either in the present or memories from the past) can 

predict positive environmental behaviours.  

 

Schultz (2000) found that the extent to which individuals see themselves as part of 

nature influences how likely there are to have environmental concerns. The same 

author in later works outlines 3 components that construct our connectedness to 

nature including; The Cognitive component, The Affective component, and the 

Behavioural component (Schultz, 2002).  If people feel good about their 

environment, they are more likely to respect and behave with empathy towards it. 

It has been proposed that in modern societies we spent as much as 90% of our 

time indoors away from nature. This lack on contact has been considered to have a 

negative impact on our societies connectedness to nature and results in a less 

intense feelings of responsibility to protect the natural environment (Schultz, 

2002).  

 

Strong warnings have been raised that the feeling of being disconnected with 

nature could have potentially disastrous consequences for environment 

sustainability (Nisbet et al., 2009). It appears that positive interaction with nature 

evokes a greater liking for nature, and as such increase the chances of 

environmentally sustainable behaviour. This is of particular relevance to this 

thesis, as participants will be explored across sub-cultural environments. Including 
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participants classified as ‘rural’ with common interactions with nature and ‘urban’ 

with limited interactions with nature.  

 

Several studies have demonstrated the links between experiences with nature and 

behaviour in later life in terms of conservation. Wells & Lekies (2006) explored 

the links between childhood nature experience, views and behaviour towards 

environmentalism in adulthood. The study looked a these experiences in a large 

sample of 2,000 adults and found that childhood experiences in natural 

environments, particularly for ‘wild’ nature had positive results on environmental 

attitude in adulthood. Additionally those with wild nature experiences were 

associated positively with environmental behaviours whilst those with only 

domesticated nature activities (such as gardening interest) did not have as strong 

an association with positive environmental behaviour.  

 

In a later study, Zaradic, Perhams & Kareiva (2009) found similar results that time 

spent hiking or backpacking in wild nature had positive correlations with 

monetary contributions to conservation up to 11-12 years after these experiences. 

This relationship is negative with those who spent time in public or domesticated 

land or in activities such as fishing.  These results appear to show a worrying trend 

in decrease in experience with wild nature resulting in much less environmental 

identification in years to come. These results demonstrate links between sub-

cultural groups that partake in nature experiences over those, most likely urban 

populations, who do not have these similar experiences that not only appear to 

have less aesthetic response as well as less behavioural response. 

 

Given the influence feeling connected with nature appears to have on positive 

personal and environmental wellbeing. Researchers sought to find reliable 

measures with which this construct could be measured. How connected an 

individual feels to nature is considered as a stable construct, similar to a 

personality trait (Nisbet et al., 2009). Several different measures have been 

developed in an attempt to quantify this attitude and explore the differences 

between cultures and sub-cultures in their relationship with nature. 
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The Connectedness to Nature Scale (CNS) was one such measure, developed to 

explore individual differences in how emotionally connected to the natural world 

one feels (Mayer & Frantz, 2004). The scale was developed by environmental 

psychologists hoping to find a reliable and stable measure to classify how much an 

individual is identified with the natural world around them, and any behaviour as a 

result of this connection. Mayer & Frantz (2004) found that an individuals CNS 

score is a significant predictor of subjective wellbeing and ecological behaviour. 

The measure is brief to distribute and have been found to be reliable and stable as 

a psychometric test.  

 

Other scales such as Nisbert et al’s (2009) ‘Nature Relatedness’ scale have also 

been tested and found to be valid methods of exploring individual affective, 

cognitive and experiential aspects of connection to nature. Nisbet and colleagues 

(2009) also found that feeling connected with nature has multiple benefits such as 

resulting in positive moods and less negative moods. This results mirrors the 

findings of Mayer & Mcpherson-Frantz, (2009) that exposure to nature and feeling 

connected to nature provides many benefits to psychological and physiological 

wellbeing.  

 

Based on the findings discussed in previously sections it would be expected that 

urban participants demonstrate less connection with nature than their rural 

counterparts, related to this previous research finds that positive past or present 

experiences of nature predict how connected an individual feels (Kals, 

Schumacher & Montada, 1999) however the relationship between nature 

connectedness fractals is as yet unknown. 

 

In earlier studies, this idea is noted by both Ulrich (1974) and Shafer & Mietz 

(1969) discussed the aesthetic benefits that can be of considerably importance. 

Individuals appear to want to protect what we find aesthetically pleasing therefore 

with a growing urban and industrialisation does the future point towards the work 

of Nisbet et al., (2009) who warned that loosing connection with nature means 

loosing those who want to protect it? 
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As discussed, outdoor visual environment can influence an individual’s 

psychological wellbeing. Responses demonstrate that visual landscapes are 

important beyond a purely aesthetic point and in fact influence emotive states. In 

the field of psychology and other disciplines we need to explore these 

implications, not just how we can benefit from nature, but also how we can 

prevent negative responses to high-stress environments in workplaces, hospitals, 

schools, and living locations? If nature promotes wellbeing, Ulrich (1979) asked, 

“what man-made forms, textures and materials evoke responses similar to those in 

nature elements?” Could fractal patterns offer the answer? 

 

We have seen that aesthetic responses to nature and perhaps fractal patterns can 

have wider implications than merely preference responses. While this is the case 

for nature, many other fields have noted the potential ways that aesthetic research 

can be used to promote particular behaviours, including positive environmental 

behaviour as discussed above. The following section will give an insight into the 

ways aesthetic responses are currently being used in the applied field to 

demonstrate that aesthetic judgments go beyond pure preferences but instead can 

have important psychological and behaviour implications.  

 

5.3 Current applications of aesthetic research: 

 

The next section moves away from purely natural and evolutionary theories of 

aesthetics and gives some examples of the application and responses of aesthetics 

in Architecture, Retail and finally Website Design. The section outlines the 

psychological and behavioural responses to visual environment across 3 different, 

but common, daily experienced environments. 

 

Architecture & interior design: psychological and physiological responses: 

 

Our visual environment, particular in western industrial society is dominated by 

architectural space, whether the landscape and city designs, the house in which we 

live or the building or the locations in which we work, rest and socialise.  Like 

Art, Architecture for a long time has applied intuition and inspiration to design. 
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Around the early 1990’s there was a push toward empirical investigation of the 

architectural factors that can influence on our wellbeing and psychological and 

physiological reactions to that space. Some research believe that architects 

planned and designed space that was fit for practice and purpose, but paid little 

attention to the psychological impact these designers where having on those within 

(Ulrich, 1991).  Evidence demonstrated that poor design had negative 

psychological impacts, demonstrating it is not just a case of better designing 

would see improvement psychological wellbeing but that some trends were 

actually harming viewers (Ulrich, 1984). 

 

Factors in the built architectural environment such as windows, flow and 

decoration can have significant impact of psychological and physiological 

wellbeing.  Workplaces that are windowless can be stressful to psychological 

health and as a consequence are disliked (Heewaseri & Orian, 1986; Farley & 

Veitch, 2001; Veitch & Gifford, 1996), thus demonstrating the links between 

aesthetic responses as a predictor of psychological and physiological wellbeing 

within a built environment.  This relationship can be seen in both directions, as 

further research has found that living in a home that you and others judged as 

attractive produces heightened positive psychological effects (Stamps & Nasar, 

1997). So individuals appear to like things because of the positive psychological 

effects they have, but liking something initially (immediate aesthetic response) can 

also produce positive psychological effects.  

 

One specific area of interest to psychologists and architects relates to institutional 

environments such as hospitals or prisons, and a wealth of evidence has been 

collected to explore the consequences that architecture (and their contained 

aesthetic features) have on psychological and physiological well-being. Within 

prisons, cells with a window that look out onto natural scenes, over cells with a 

window that looks out over man-made scenes have reported lower levels of stress 

and had recorded less sick calls (Moore, 1982, West, 1986) showing the potential 

impact of architectural features on everyday psychological wellbeing.  

 

Within a hospital setting, research has shown significant positive improvement in 

well-being over a variety of interventions within clinical settings. Interestingly, 
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heart surgery patients felt less post-operational stress after interior design 

intervention of natural or abstract art exposure (Ulrich & Lunden, 1990) however 

these results should be read with caution as the study lacked a control group from 

which comparisons cannot be made.  Other studies have found that nature murals 

(over blank walls) can reduce patient stress in a dental clinic (Heerwagen, 1990) 

or ceiling mounted pictures displaying serene over arousing images produce 

positive physiological responses (reduced systolic blood pressure) in stressed 

patients (Coss, 1990). These few studies represent the tip of the iceberg in the field 

that have explored both larger and smaller scale architectural and design 

interventions that have positive effects on patient or inmate well-being. In a 

comprehensive review of the data, Ulrich (1991) concluded that health-related 

effects of good design show that it can be related to reducing cost of healthcare.  

These findings also point to bad design as a hindrance to wellness and the results 

overall shed light on the importance of awareness of good health care design to 

improve psychological and physiological wellbeing.  

 

Conclusions should be made from the findings that well considered and 

empirically sound design goes some way to support residents and facilitate both 

psychological and physiological wellbeing.  Aesthetic responses maybe our 

evolutionary/biologically bound method of distinguishing environments that can 

produce positive and negative responses, which would add credence to theories 

such as the Biophilia Hypothesis (Wilson, 1984).  

 

Retail, Sales and Environmental Aesthetics: 

 

The primary purpose of understanding the retail environment and the impact of 

aesthetics (among other factors) on consumer behaviour revolves around the 

potentially significant economic and business implications. Whilst the link 

between environment and consumer behaviour has been noted in the past and 

changed in an anecdotal fashion by managers, Bitner (1992) noted that these 

changes to evoke particular consumer responses had not been based on empirical 

evidence up until that point.  
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In 2000, Turley & Milliam conducted a review of 30 years of evidence exploring 

the ‘atmospheric’1 effect of shopping behaviour. There results offered an 

interesting overview of the field, they also explore behavioural responses to store 

environments. The Approach- Avoidance consumer response (Mehrabian & 

Russel, 1974) was discussed as a result of environmental features. Turley and 

Milliman’s (2000) review concluded that managerial staff should be taking note of 

current research in the field as store environment, covering a wide range of 

perceptual input can have a significant effect of sales, with 25 from the 28 studies 

reviewed demonstrating sales differences dependant on store environment, as well 

as approach over avoidance behaviour. The review also highlighted the impact of 

individual differences, therefore authors conclude that store environments should 

be targeted to specific audiences dependant on age and gender.  

 

More closely related to the work within this thesis, Gilboa & Rafaell (2003) 

conducted an exploration of environmental features in retail stores and responses. 

The study aimed to measure the influence of grocery store environments on 

emotions and behavioural response, and was the first to test empirically the 

approach-avoidance response to complex scenes. Of most interest to the authors 

was the impact of complexity and order in the visual environment and the resultant 

approach-avoidance response linked with positive consumer behaviour.  Results 

found support for Berlyne’s inverted-U response to complex stimulus, with 

stimulus falling within the mid-range (with visually complex scenes containing 

some level of order) evoking significant approach behaviour. These finding 

support current literature within the wider field of environmental psychology in 

which environments of moderate complexity and high order show the highest 

levels of approach behaviour (Nasar, 1987; Herzog, 1992). The findings highlight 

the importance of examining visual factors such as complexity in the context of 

retail environments and demonstrate the links between low-level aesthetic 

responses and behaviour. It confirms and validates the use of complexity as a 

measure of environment and suggests behavioural predictions can be made on the 

basis of these features.  

 

Aesthetics, Website Design and Usability: 
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Recently there has been a growing wealth of studies exploring the aesthetic 

qualities of website design and the subsequent responses beyond the aesthetic. 

Attention, usability, frequency of use, likeability, credibility and likelihood of 

purchasing from site are several possible results associated with aesthetic 

responses to website design (Chen, 2009). These, amongst other factors, will be 

explored briefly in the following section to demonstrate the way aesthetic 

responses can influence behaviour and attitude to webpage interaction, an 

increasingly important field given the growth in the use of the internet in modern 

society.  

 

In a widely cited study, Tractinsky et al., (2000) found high correlations between 

perceived beauty of ATM’s and the users perceived ease of use of the ATM 

interface. This was one of the first studies to find experimental support for the 

‘beautiful-useful correlation’. The results in additional went further to find that 

even post-use perception of usability was positively affected by the aesthetics of 

the interface and not actually by the usability of the system. This study 

demonstrates the power of aesthetic appeal on other perceived attributes.  

 

A review by Tuch et al., (2000) offers a succinct overview of the field of 

aesthetics and Human Computer Interaction (HCI). They found that most studies 

found moderate to strong correlations between perceived usability and perceived 

aesthetics. These findings should be approached with caution, as there are limited 

inferences to be made about the direction of the relationship in correlational 

studies. Tuch et al., (2000) also reviewed the findings of a series of experiments 

investigating aesthetics and usability in websites and other human computer 

interfaces. The results of this review showed the notion ‘what is beautiful is 

usable’ was only partially supported with empirical evidence and in specific cases 

‘what is usable is beautiful’ was supported. Findings show that 3 from 5 studies 

reviewed showed significant effect of usability and aesthetic quality.  

 

In a follow up study Tuch et al., (2010) explored the relationship between usability 

and aesthetic response further in a lab based study exploring different versions of 

an online shopping website. There results found that aesthetics does not have an 

impact on perceived usability, but usability does significantly effect aesthetic 
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ratings. This study shows that factors above and beyond aesthetics can have 

significant influence on post-ratings of aesthetic judgment.  

 

Gender differences can also be seen in website design, a strong symmetry effect 

was found on preference for web pages, however this effect is only seen in male 

participants, but no such positive of negative reaction towards 

symmetry/asymmetry seen by female participants (Tuch et al, 2010). This 

highlights the need to acknowledge and target visual environments to particular 

target groups to ensure the highest positive response and sought after behaviour, in 

this case perceived usability.  

 

The results from the field, as outlined briefly above, have been and continue to be 

used in implementation and design decision for particular target audiences. A 

variety of difference disciplines have connections with aesthetic research and 

whilst there is predominantly separation, reviewing the literature highlights the 

potential for cross-disciplinary collaboration to really demonstrate the power that 

aesthetics have over our psychological and physiological responses to a variety of 

daily and novel situations.  

 

Conclusions:  

 

This section has explored some of the potential responses that go beyond studying 

a purely aesthetic responses in research. It demonstrates the power that nature and 

natural shapes can have our individual psychological and physiological wellbeing, 

it also explores how these responses can be mirrored using man-made stimulus 

such as art or fractal patterns while evoking the same response. The links between 

natural patterns and connectedness to nature will be explored within this thesis in 

an attempt to make links with both aesthetic and environment responses to fractal 

patterns. From the evidence it is clear that understanding aesthetic responses to 

nature and how connected these aesthetic responses make us feel to the natural 

environment can have important implications on environmental sustainability.  

This section also outlines how the findings of this thesis fit within the 

multidisciplinary field of aesthetics and environmental psychology as well as 

laying the groundwork for potential next steps with the results. Results from the 
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field have been and continue to be used in implementation and design decisions 

for particular target audiences. This section has demonstrated some of the 

foundations of aesthetics theories and their application in real-world situations.  It 

has shown the importance of studying the field of aesthetics, demonstrating how 

these basic visual processes can have much wider impact than only preference 

responses. Research has shown that responses can span to attitude, reaction and 

even behavioural changes in individuals and as such warrant further investigation. 

 

 

 
1 Atmospheric is the field specific term for retail/store environment (Turley & Milliman, 2000) 

findings fit within the multidisciplinary field of aesthetics and environmental psychology and lays 

the groundwork for potential next steps with the results.  
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6.0 Rationale & Methodology: 
 

6.1 Study rationale summaries 

6.2 Hypotheses Table  

6.3 Methodology 

6.3.1. Measuring Aesthetic Preference 

6.3.2. Fractal Stimuli & visual complexity 

6.3.3. Measuring connectedness to nature 

 

 
The following section outlines the research questions, rationale and hypotheses to 

be examined within this thesis in an attempt to add to the currently limited field of 

research exploring aesthetics responses to fractal patterns.  This chapter will also 

specify the methods adopted in the thesis and the rationale behind these 

methodological choices. The methodology section will first explore the different 

types of established methods for measurement of aesthetic judgments/responses, 

secondly will explore the stimulus used within the study, the chapter will then 

examine the different methods to analysing complexity and fractal dimension. 

Finally measurements of ‘connectedness to nature’ will be discussed as a way of 

taking the research in an applied direction. 
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6.1 Rationale Summaries 

 

 

Study One 

 

Fractal Dimensions and Visual Complexity: An interrelated concept? 

 

Visual complexity and fractal dimension have been considered distinct fields of 

perceptual stimulus, however this study aims to explore the relationships between 

the two related concepts.  Study one of this thesis explores the relationship 

between the fractal stimuli and their associated fractal dimension (FD) developed 

for use in this thesis to measures of computational visual complexity obtained by 

analysing the fractal stimulus using the GIF ratio compression technique. 

 

 

Study Two 

 

Cross-cultural comparisons between UK and Egypt samples: Rating Scale 

Method 

. 

The aim of the second study used UK and Egyptian samples in a bid to explore 

cross-cultural preference for fractal complexity in addition to recreate Souief & 

Eysenck’s 1971 study exploring differences in complexity across the two cultures. 

Souief & Eysenck’s previously found that British people (with no art training) 

preferred complex figures but Egyptian people (with no art training) preferred the 

simple images. As visual complexity is significantly related to Fractal Dimension 

(FD) this study aims to test this hypothesis with new and improved methods of 

quantifying complexity.  Eysenck and Souief (1971) did not believe that their data 

supported large aesthetic differences between cultures but instead believed that the 

findings point towards a universal preference and to unpick these findings further. 

The second study within this thesis considers the response of UK and Egyptian 

samples to fractal complexity and if this trend would follow the same pattern. The 
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aim is to explore in greater detail the impact of country/culture on visual 

preferences for fractal patterns.  

 

 

Study Three 

 

Validating the mid-range hypothesis for fractal preference 

 

This study aimed to re-test an established theory of fractal preference, the mid-

range hypothesis established by Taylor et al (2001). Taylor and colleagues found 

evidence that preferences for fractal patterns consistently fall within the mid-range 

of the fractal continuum (D1.3-1.5).  With lower preferences being shown for the 

images at the higher (D1.7-1.9) or the lower end (D1.1-1.2) of the fractal 

continuum. To allow comparisons to be made and validate the current established 

thinking, study three also introduces two further models to understanding 

preference for fractal complexity including a linear model of preference (with a 

directional relationship) as well as an equalised-mid model (systematic grouping 

of fractal dimension instead of lower end weighing in Taylor’s model) to explore 

how well each model fit the preference data. The study adopts an online design, 

allowing participants from different countries and cultures to complete the study. 

This study aims to test if the mid-range preference hypothesis is stable across a 

wider international and cross-cultural sample adding support from Taylor and 

colleagues conclusions. Within the field there was a great need for the study, as so 

far the samples within the field of fractal aesthetics have been limited to WEIRD 

samples (Henrich, Heine & Norenzayan, 2010) meaning that the majority of data 

collection is done on Western, Educated, Industrialised, Rich and Democratic 

populations- it is the view of this author that if assertions are to be made about the 

universality of preferences, it is important to explore this from a cross-cultural and 

more varied sample.  
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Study Four 

 

Optimal Fractal Preference; Stability across culture and within sub-

cultural visual environments 

 

Following from the cross-cultural differences found in study three. Study 4 aimed 

to explore if sub-cultural factors could be a powerful predictor of differences in 

preferences found in previous literature (see chapter 4). This study aims to explore 

not only a greater controlled cross-cultural sample but also explore sub-cultural 

differences looking at the differences between urban, rural and suburban 

classifications of the visual environment.  Previous literature has found differences 

between aesthetic judgments of those living in Urban and Rural backgrounds, in 

addition the Mere-exposure hypothesis would suggest that the environment in 

which we live influences preferences.  It is therefore hypothesised that the 

classification of a person’s environment can change preferences for peak level of 

fractal complexity. As those living in rural environments viewers are exposed to a 

high number of fractal and complex natural patterns it is proposed highest 

preferences will be reported for high FD/complex images. Alternatively those 

living in urban environments are exposed to mainly Euclidean and man-made 

shapes opposed to natural and commonly fractal patterns, therefore it is proposed 

preferences for higher complexity will be lower than the rural group. 

 

 

Study Five 

 

Connectedness of Nature & Environmental Classification 

 

This study aimed to explore if our aesthetic responses to fractal patterns is related 

to how connected we feel to nature. Results of previous studies within this thesis 

suggest that individuals living in rural environments demonstrated higher 

preference for higher complexity/fractal patterns than those living in urban 

environments. Previous literature exploring landscape and aesthetics has shown 

that the environment in which we spend time and see regularly governs our 
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preferences. It is proposed that this difference in aesthetic judgment may result in 

differing opinion in how connected we feel towards nature. The study aims to 

explore if preference towards complex fractal patterns based on visual experience 

goes further than purely aesthetics response and instead has additional impact 

beyond aesthetics such as how connected, and as a result how likely we are to 

protect the natural environment.  

 

Study Six 

 
The relationship between Lifespan, Culture & Gender as predictors to 

Fractal Preference 

 
The study aimed to explore the strength of the individual differences Age, 

Continent and Gender on preference for fractal patterns. Each was found as 

significant predictor model of preference in the previous studies with this thesis. 

Study 6 examines a combination of the entire data and one additional small set of 

‘elderly’ participants to test the reliability of the age effects across a wider sample. 

Previous landscape research suggests that younger people have higher preference 

for busy and complex environments where as elderly people show less preference 

for ‘wild’ nature. Does this mean less preference for fractal patterns?  The wider 

sample of participants allows more reliable contrasts between continents. This 

study aims to further test the complexity and mid-range models of fractal 

preference explored throughout previous studies within this thesis. 
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6.2 Hypotheses Table 

 

 
Table 6.1- Thesis Hypothesis Table 

Study 

One 

 

Fractal Dimension a component of Visual Complexity? 

 

It is hypothesised that the fractal stimulus images used within the thesis 

will correlate significantly to GIF compression ratio scores; a 

computational measure of visual complexity.  If confirmed this finding 

would suggest that fractal dimension can be considered as a related 

component or sub-component of visual complexity.  

 

 

Study 

Two 

 

Cross-cultural Difference in Fractal Preference? 

 

Mirroring the samples of Souief & Eysenck’s 1971 study exploring the 

cross-cultural stability of aesthetic preference with UK and Egyptian 

participants, this study hypothesises that responses for fractal patterns 

will demonstrate cross-cultural differences for non-art training 

participants. The study also hypothesises support the mid-range 

hypothesis with highest scores being awarded to images that lie within 

the D range of 1.3-1.5. 

 

Study 

Three 

 

Re-testing the Mid-Range Hypothesis in Fractal Preference 

 

 

 It is hypothesised that the overall frequency patterns of preference 

would display inverted-U shaped function, with heightened 

preference at the mid-range (D1.3-1.5). 

 

There are three different models of aesthetic patterns explored in this 

study and as such three different experimental hypotheses: 

 

 It is hypothesised that the variables Country, Age and Gender 

would significantly predict the mid-range model of preference 
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more so than the null model.  

 

 It is hypothesised that the variables Country, Age and Gender 

would significantly predict linear the Complexity model of 

preference more so than the null model.  

 

 It is hypothesised that the variables Country, Age and Gender 

would significantly predict Equalized Mid model of preference 

more so than the null model.  

 

 

Study 

Four 

 

Cross & Sub-Cultural Differences in Fractal Preference 

 

 

 It is hypothesised that the overall frequency patterns of preference 

would display inverted-U shaped function, with heightened 

preference at the mid-range (D1.3-1.5). 

 

There are three different models of aesthetic patterns explored in this 

study and as such three different experimental hypotheses: 

 

 It is hypothesised that the variables Country, Environment, Age 

and Gender would significantly predict the mid-range model of 

preference more so than the null model.  

 

 It is hypothesised that the variables Country, Environment, Age 

and Gender would significantly predict linear the Complexity 

model of preference more so than the null model.  

 

 It is hypothesised that the variables Country, Environment, Age 

and Gender would significantly predict the Equalized Mid model 

of preference more so than the null model.  
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Study 

Five 

 

Environment, Fractal Complexity and Connectedness to Nature 

 

 

 It is hypothesised that the overall frequency patterns of preference 

would display inverted-U shaped function, with heightened 

preference at the mid-range (D1.3-1.5). 

 

There are two different models of aesthetic patterns explored in this 

study and as such two different experimental hypotheses: 

 

 It is hypothesised that the variables Connectedness-to-Nature 

Score, Environment, Age and Gender would significantly predict 

the mid-range model of preference more so than the null model.  

 

 It is hypothesised that the variables Connectedness-to-Nature 

Score,, Environment, Age and Gender would significantly predict 

the Complexity model of preference more so than the null model.  

 

 

Study 

Six 

 

Lifespan, Continent & Gender- predictors of fractal preference? 

 

The final study combines all 2A-FC design data from this thesis with 

the addition of a sample of older participants responses.  

 

 It is hypothesised that the overall frequency patterns of preference 

would display inverted-U shaped function, with heightened 

preference at the mid-range (D1.3-1.5). 

 

There are two different models of aesthetic patterns explored in this 

study and as such two different experimental hypotheses: 

 

 It is hypothesised that the variables Continent, Age and Gender 

would significantly predict the mid-range model of preference 

more so than the null model.  
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 It is hypothesised that the variables Continent, Age and Gender 

would significantly predict the Complexity model of preference 

more so than the null model.  
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6.3 Methodology 
 

6.3.1 Measuring Aesthetic Preference: 

 

Within the field, there are different established methods of measuring aesthetic 

judgment. There is vast variety within the field between the ways that researchers 

try to tap into aesthetic judgments of their participants. While this variety has 

continued to develop and grow the field often researchers do not outline clearly 

their rationale behind methodological choices (Augustin et al., 2012; Faerber et 

al., 2011). In an attempt to avoid this pit-fall, the following section will explore 

some the different methods used to elicit data about aesthetic judgment and justify 

the choices made within this thesis.  Palmer, Schloss & Sammartino (2013) 

reviewed the current states of aesthetics and human preference, this paper provides 

a thorough summary of the methodological issues when measuring aesthetic 

responses. The section will use their outline as a structure from which to further 

explore the methodological choices available and used in the field.  

 

Ratings:  

 

Scales such as the likert scale (discrete) or line-mark rating (continual) methods is 

perhaps the most common way of eliciting aesthetic responses. The method allows 

researchers to show participants a series or single image allows collection of 

individual ratings for each based on a large sample. This method benefits from 

being able to collect data for a large number of images from a large number of 

participants in a short period of time, it is also a relatively simple task that can be 

altered to fit with the specific design, for example the vocabulary used when 

collecting scores is variable to include ‘liking’ ‘beauty’ ‘preference’ or 

behavioural choices such as ‘how likely would you be to visit this place’, ‘how 

likely would you be to buy this product’. This versatility means likert scales are 

widely used across various discipliners and research fields therefore results 

gathered this way can be comparable to others of similar design. Despite its wide 

use and versatility, problems can occur with consistency in scoring when using the 

rating method, particular at the start of trials. It has been suggested to over come 
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this issue, that a full range of stimulus should be shown to the participant ahead of 

rating therefore allowing participants to anchor responses in preferences ahead of 

the trials (Palmer et al, 2013). Other potential issues with this approach include the 

variance with scores between participants, there are trends of ratings with some 

choosing extreme ends of the scales and others being more modest with their 

scores, or clustering around the mid-points of the scale. We cannot truly conclude 

that the extreme scores show extreme preference responses more so than the 

modest responses. It must be acknowledged that choices made may be indicative 

of context or individual differences approach and personality differences in which 

the ratings are made (Ogden & Lo, 2011). 

 

    
 

Scored from 0 to 10, how much do you like the above picture? 

 (0 meaning extremely dislike, 10 meaning extreme like) 

 
Figure 6.1-Example Fractal stimulus 
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Ranking: 

 

Rank ordering methods commonly involve a participant being given a set of 

stimulus to order from most to least preferred.  The average rank given to each 

stimulus across the study is calculated and used as a measure of overall 

preference. The task is simple and something that is commonly experienced in 

daily life decision-making. Researchers believe that rank ordering offering a more 

reliable and valid measure than rating individual stimulus alone, and this is 

especially marked when pairwise ranking is used between 2 choices (Hochberg & 

Rabinovitch, 2000) as seen in the 2A-FC design discussed below.    

 

While this method offers good and robust methods of collecting data, with the 

stimulus used consisting of 81 images, allowing participants to rank order these 

images for preference would be a difficult, complex and time consuming method 

of collecting preference data. Therefore ranking was not considered usable within 

this thesis.  

 

 

    
Please order these images 1st, 2nd & 3rd in order of preferences. (1st = most liked, 3rd 

= least liked) 

 
Figure 6.2- Example of  ’order’ aesthetic methodology with fractal stimulus. 

 

 

2A-FC- Forced-choice:   

 

From ranking a series of images, the forced choice method allowed the same 

process with smaller numbers of stimuli. Commonly the pairwise or two-alternate 

forced-choice method is used to unpick aesthetic responses. This method mirrors 

many behaviours in everyday life decisions in which we make preference choices 
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for a variety of different situations including which station to have on the radio or 

which piece of art to hang on our wall. Given this task is a commonality in daily 

experience, it is a relatively simple and understandable task for participants. The 

2A-FC method was first used by Gustav Fechner (1860) during the first recorded 

empirical study of aesthetics; during this study participants were asked to choose 

from 2 version of Holbein’s ‘Madonna’. This method has been found to be 

particularly beneficial if the images are not overtly beautiful, therefore ‘beauty’ or 

‘preference’ ratings or scores are unlikely to be accurate as they would be if using 

artistic or realistic photographic stimulus as used in a large range of studies.  An 

alternate-choice design allows exploration of aesthetic preference and threshold 

specific information.  Using a forced choice method allows regression models 

analysis, which can provide predictive or probability statistics for the likelihood of 

an aesthetic choice to be made.  

 

The method could be critiqued for its inability to offer the magnitude of preference 

for the stimulus. If participants are making choices between two images, using this 

method it cannot be verified that a participant’s choice based on the stimulus being 

aesthetically pleasing rather than choices being based on strong/moderate dislike 

for the image not chosen. Despite the limitations, the findings offer one of the 

most controlled and suitable methods, and as such will be used (in conjunction 

with 1 ratings study) within the current thesis. 

 

     
Which image do you like most? Tick/click/mark the one you like the most. 

 
Figure 6.3- Example 2A-FC methodology with example fractal stimulus. 
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Production method: 

 

The production method is a lesser-used method for exploring aesthetic responses. 

The method involves participants changing parameters in the image, whether that 

is the colours, shape or content of an image to explore individual’s ideal aesthetic 

worldview.  The method is limited in participants artistic abilities and confidence, 

people are sometimes asked to draw or create something that appeals to them, 

their artistic talents or methods may not produce a piece that is aesthetically 

pleasing to them or others. Stimulus manipulation is a technique that has been 

used to develop the production method in aesthetic research and in recent years 

Chris McManus (UCL) have began using this method to crop photographs 

(McManus et al, 2011) or alter the proportions of Piet Mondrian’s (See Figure 6.4) 

painting to meet ‘optimal’ aesthetic experiences for the viewer. This adaption 

addresses many of the previous issues faced with the method and is enabled with 

new developments in technology. The current thesis uses a set of pre-defined 

fractal images controlled for FD, given the development of this took place ahead 

of collection, the stimulus do not currently allow this method to take place, 

therefore the production method was not included within this thesis as a method.  

 

 
Figure 6.4- Piet Mondrian (1935) Composition C (no’ III) with Red, Yellow and Blue. 
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Physiological & Neuroaesthetics Measures: 

 

 The above methods have been useful in providing a wealth of evidence exploring 

aesthetic response to a variety of stimulus however all self-reported measures are 

limited with human judgment bias. Studying self-report behavioural methods 

which are open to error therefore, with ever increasing developments in 

technology, researchers have began to use other techniques to measure human 

responses to stimulus while avoiding the potential bias or errors from self-report 

measures. There are a variety of ways to infer preference using physiological 

measures; Galvanic skin response, Heart rate, Eye movements, EEG and fMRI are 

just a selection. These measures allow us to explore further than behavioural 

judgments and infer the potential physiological responses to a variety of stimuli. 

These methods have been used in collecting information about potential 

restorative and negative responses to particular visual patterns.  Despite success in 

quantify physiological response to fractal patterns (see chapter 5 for discussion), 

particularly in terms of stress reduction of restorative qualities, the use of such 

methods are beyond the current scope of the current thesis. 

 

While the power of these methods are acknowledged, this thesis intends to lay the 

groundwork for further exploration of fractal aesthetics. At the present time, not 

enough behavioural studies have been complete using such pure stimulus as to 

allow further physiological or complex technological methods to be supported 

with valid hypotheses.  The benefits of uses computer generated pure fractal 

patterns within this thesis means than unlike previous studies confounded with 

additional variables (such as colour, familiarity or content) the present thesis 

explores only aesthetic responses to fractal patterns.  Many studies have used 

artistic or figurative stimulus and measured aesthetic judgments alongside fractal 

dimension. While these yield interesting findings, the stimulus used include a 

wealth of information above and beyond only fractal dimension which is difficult 

to unpick. In addition, many of the stimulus sets analysed in previous literature 

contain non-fractal material alongside fractal material, and while certain measures 

have been validated to be used across fractal and non-fractal images (See Williams 

PhD Thesis 2012) these cannot make strong assertions about the responses to 
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fractal patterns alone.  For this reason, much of the previous research on fractal 

dimension are confounded with other aesthetic variables, to move forward within 

the field it is important to unpick each factor and its contribution to aesthetic 

judgments. The present theses use of computer generated fractal patterns means 

that strong claims can be made about the aesthetic responses to the most basic 

form, and from these analysis we can be sure that the finding are related to fractal 

dimension (and perceived visual complexity) alone.  
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6.3.2. Fractal stimulus & Measuring Complexity 

 

The Stimulus: Professor Richard Taylor and Colleagues from the University of 

Oregon, USA, developed the stimuli sets used within this thesis (See Figure 6.5 

for example).  The patterns were generated using a mid-point displacement 

technique, which allows generation of fractal images, by manipulating the core 

image and controlling for 9 levels of fractal dimension. This control ensures a 

complete range of fractal images are developed from very low, to very high and 

set point between to accurately represent to full range of fractal patterns. This 

control over a full level of fractal dimension (from a core image) was an essential 

requirement of the stimulus as the lack of full range has been suggested to account 

for some of the variance found within the optimal preference in early fractal 

aesthetics studies.   

   

   

   

Figure 6.5- Example full computer generated fractal patterns. 
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When exploring the aesthetic response to the fractal pattern with the linear mixed-

effect models 3 different models (and grouping of the images) will be tested. They 

are outlined below. 

 

The Mid-Range Hypothesis: Richard Taylor and colleagues in a series of studies 

(Taylor et al., 2009;2011) found evidence to suggest three groups within the 

fractal continuum that appear to have significantly different aesthetic responses. 

Taylor et al outlined the peak preference lying within the ‘mid’-range of fractal 

dimension, which they defined, as 1.3-1.5 and distinguished 2 other groups, ‘low’ 

1.1 & 1.2 and ‘high’ 1.7-1.9 which were preferred less over the images falling 

within the mid-range.  

 

The Equalised 3 Level Model:  An alternative method of distinguishing the 

grouping could be an equalised model which still demonstrates 3 categories of 

fractal dimension; within an equalised model these are low (1.1-1.3), mid (1.4-1.6) 

and high (1.7-1.9). As the first study within this thesis attempts to explore if 

Taylor and colleagues ‘mid-range’ hypothesis is an accurate classification of 

aesthetic responses to fractal patterns, and alternative but similar classification was 

developed to allow strength comparisons to be carried out.  

 

Binomial Complexity grouping: The final distinction between levels of fractal 

dimension during analysis will be classifying the images as more or less complex 

than it’s paired comparison image. Within this grouping, a higher fractal 

dimension is representative of a image of higher complexity, therefore analysis 

will be done exploring if choices are made between the higher or lower images in 

terms of visual complexity. This link between fractal dimensions has been 

discussed in previous chapter (chapter 3) however this thesis aims to quantify this 

relationship statistically. To explore if this categorisation is representative of 

visual complexity (as well as fractal dimension) the thesis stimulus will be 

measured using computational complexity compression measures which has been 

demonstrated to provide reliable measures of human judgments of complexity 

(Forsythe et. al., 2008) in Chapter 7. 
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Measuring visual complexity: 
 

To assess the classification between fractal dimension and visual complexity for 

the stimulus used within this thesis comparisons were made between fractal 

dimension and computational measures of complexity (GIF).  

 

Computational measures of complexity have been used to quantify the visual 

complexity of many different stimulus including art, abstract patterns or realistic 

photographs. Measuring the visual complexity of a stimulus differs significantly 

from measures of fractal dimension that explore the roughness and underlying 

order or self-similarity of an image. Visual complexity, with compression 

measures, takes into account the whole of the image (rather than only fractal 

complexity) and compression breaks the whole image down to composite parts 

depending on the amount of information within the image. The resulting 

compression information becomes a string of symbols representing parts of the 

image including elements, shapes, contrasts and colours.  The generalized method 

means that complexity compression measures can be widely applied to different 

stimulus sets; the same cannot be said for fractal measurement techniques as 

although the methods will provide a score for fractal dimension (for example 

using the box-counting method) for any image analysed, these cannot always be 

considered reliable when measuring non-fractal images.  

 

GIF Compression: The GIF compression ratio provides a measure of the size of 

an image after compression and this is divided by the original size of the image (in 

.BMP format). This method was chosen over other computational compression 

measures such as JPEG as it works best with mono-chrome and geometric shapes 

over photographs or art scan which are better suited to JPEG compression 

techniques. The analysis between fractal dimension and the computational 

measure of visual complexity will be discussed in the following chapter (see 

Chapter 7). 

 

Stimulus Summary: 

 

Fractals offer a way of selecting one of the many facets of visual complexity and 

by using pure fractal stimulus we can truly explore the role this plays on visual 



 

 134 

judgments.  The stimulus are a ‘pure’ form of fractal dimension and allow real and 

controlled predictions to be made about aesthetic responses to fractal patterns, 

more so than previous studies have been able to do with other stimulus. Although 

the application could be seen as less ecologically valid than the use of other 

stimulus include art or photographs, the use of pure fractal images allow assertions 

to be made on the basis that judgment are based on fractal dimension and visual 

complexity alone rather than any other variables that have been found to 

powerfully influence aesthetic preference such as familiarity, meaningfulness and 

colour.  

 

Images selection (2A-FC Design): 
 

The images were developed as detailed above. In total there was 9 sets of 9 images 

developed by Richard Taylor and colleagues. To run a full forced-choice design 

this would involved comparing all 81 images to each other, resulting in 6,480 

possible pairs.  This amount of forced-choice pairs is obviously not a feasible 

number of pairs to ask participants to rate.  

 

In a bid to make the design more usable when faced with a large stimulus set, Prof 

Chris McManus from UCL developed a method of reducing the number of 

pairings required when using a forced-choice design in aesthetics research (C 

McManus, 2009).  McManus’s method samples an entire range of stimulus but 

also provides detailed information on closely similar rectangles.  Established 

analysis of 2A-FC involves summing across each column when using complete 

paired comparisons. McManus champions the use of a regression model approach 

in which dummy variables allow comparison of the preference.  

 

McManus’ study justified a modified method of 2A-FC and this thesis developed 

a further modification to the traditional design. The method adopted was justified 

because Taylor et al (2011) found no significant differences between aesthetic 

response patterns to the different sets of fractal images set (developed in the same 

way to those used in the current thesis) demonstrating it can securely be assumed 

that the fractal dimension, rather than any other individual structural differences 

that contributed to aesthetic findings. 
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The pairing matrix below (Table 6.2) demonstrates how the images for each 

pairing were chosen. Each stimulus set included 9 images, which would result in 

81 pairs per set. As literature demonstrates the presence of 3 distinct groups of 

fractal dimension, ‘Low’, ‘Mid’, ‘High’ the images were grouped to match the 

current findings, comparisons were not made between fractal patterns falling 

within the same group. This reduced design resulted in 26 potential pairing, and 

because of the number of sets two pairs allowing a variety of sets to be used.  The 

individual images selection was done using a (quasi) randomly assigned design. 

For each pair, the stimulus sets were labelled 1-9. Using a random number 

generator the FD paired comparison was made up from one image (matching the 

required Fractal Dimension outlined in the matrix) from the first randomly 

selected set and a second image selected using the same method using a different 

set.  A quasi-random design was chosen to avoid repetition of sets within each 

category. 

 

This modified design meant that there was an equal chance and probability of 

participants choosing each fractal dimension point within the scale. Therefore 

allowing judgments to be made about differences in preference between the 3 

fractal groups (low, mid, high) and complexity scales (higher or lower 

complexity).  

 

The design outlined above was used for studies 3, 4, 5 and 6 of this thesis. The 

same selection was used in each to allow an overall comparison of the sample in 

the final stages of the analysis within this thesis. A regression model analysis was 

developed in addition as advocated by McManus (2009).  
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Table 6.2 Image Selection Matrix 

 D1.1 D1.2 D1.3 D1.4 D1.5 D1.6 D1.7 D1.8 D1.9 

D1.1          

D1.2          

D1.3          

D1.4          

D1.5          

D1.6          

D1.7          

D1.8          

D1.9          

 

Image Selection (Rating Design): 

 

 

Image Selection  (Version one): Two images from each set were chosen to be 

included within the sample for Study 2 (Chapter 8). The first repetition of images 

to be included was chosen using a simple 1-9 numbering system based on the 

image set order. The 2nd repetition was done using a split number sample in which 

the number was chosen on the basis that there were at least 4-5 FD scores between 

each image. Given this the same numerical system was used, however the order 

began with set 5, ensuring that there was at least 4 FD points between the images 

chosen from the same sets. Images from each set are all similar structure but vary 

only in FD therefore to avoid preference affected by familiarity/structure rather 

than fractal dimension. At 4-5 points apart it is difficult to detect strong 

similarities between the images (see Table 6.3 for selection and difference 

information). 
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Table 6.3- Survey Type 1 

 Image Set FD 1st image FD 2nd Image Diff FD 

A Set01- 1116 1 6 5 

B Set02- 1135 2 7 5 

C Set03- 1161 3 8 5 

D Set04- 3003 4 9 5 

E Set05- 3056 5 1 4 

F Set06- 3077 6 2 4 

G Set07- 3091 7 3 4 

H Set08- 1043 8 4 4 

I Set09- 1048 9 5 4 

 

 

Developing versions 2-4: In total 4 versions of the study was developed to ensure 

that preferences were a function of FD rather than the specific image sets used. 

Above outlines how version 1 was created, versions 2-4 was developed in a 

similar way however before image selection the Image Set order was randomised 

each time using a random number generator which output a unique random 

number generator order from 1-9 to arrange the stimulus sets. The same process of 

image selection was used on the second, third and fourth sample, ensuring again 

that images did not too closely resemble the images within the same set, leaving at 

least 4 points between them (table 6.4 demonstrates version 2 selections).  

 

 

Table 6.4- Differences between FD measures 

 Image Set FD 1st image FD 2nd image Diff 

H Set08- 1043 1 6 5 

G Set07- 3091 2 7 5 

F Set06- 3077 3 8 5 

A Set01- 1116 4 9 5 

B Set02- 1135 5 1 4 

C Set03- 1161 6 2 4 

I Set09- 1048 7 3 4 

E Set05- 3056 8 4 4 

D Set04- 3003 9 5 4 
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Proposed Analyses: 
 

Within the thesis there is a mix of SPSS and R analysis software used to explore 

the data. The rationale behind these choices are explored below. 

 

Correlation & ANOVA in SPSS: 

 

Correlation is used in this thesis to explore the relationship between the fractal 

dimension of the stimuli and the computational measurement of complexity 

(GIFratio). In addition Repeated Measures Analysis of Variance (ANOVA) was 

used to explore the mean scores for a selection of stimuli within study 3 in which 

participants were asked to rate on a scale (of 0-10) about how much they like the 

fractal images.  Repeated measured ANOVA was also used to explore the 

differences amongst the frequency data based on the 2A-FC methods in studies 4, 

5 & 6. The models used above have notable limitations because although variance 

is accounted their individual differences based on participants and stimulus are 

considered noise in this model.  Serious problems have been identified with the 

use of ANOVA’s in categorical variables, such as the forced-choice design and 

other categorical outcome variables (Jaeger, 2008). Despite the use of 

transformation, there are continued problems with using ANOVA’s on categorical 

variable outcomes, justifying the use of mixed-effect models when using this type 

of data and offer advantages over using ANOVA.  
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Linear Mixed-Effect Modelling using R: 

 

Although commonly used within linguistics, linear mixed-effect models (LMM) 

are a flexible and powerful tool for understanding and analyses response to the 

environment.  LMM is a type of regression model that takes into account variables 

that would be considered of attributed as ‘noise’ in fixed-effects approaches. The 

model uses both fixed-effects such as the independent variables such as Age, 

Gender and stimulus as well as random-effects that are specific to the data sample, 

including individual variations in judgment and variances between stimulus used 

(as only a small selection of all possible stimulus that could be used).   The 

analysis will be a logistic regression model with mixed effect as the dependent 

variable (fractal dimension image choice) is a binary variable. The model uses 3 

different models exploring the classifications of the fractal images outlined above. 

 

6.3.3. Connectedness to Nature Scale 

 

The Connectedness to Nature Scale (CNS) was developed to measure individual 

differences in how emotionally connected to the natural world one feels (Mayer & 

McPherson-Frantz, 2004). The scale was developed by environmental 

psychologists hoping to find a reliable and stable measure to classify how much an 

individual identifies with the natural world around them, and any behaviour as a 

result of this connection. Mayer & McPherson-Frantz (2004) found that an 

individuals CNS score can be a significant predictor of subjective well-being and 

ecological behaviour and it has been confirmed as a reliable and easy to use 

measure of an individual’s connection with the natural world. This measure was 

selected over other potential measures included the Nature Relatedness measure 

(Nisbet, Zelenski, & Murphy, 2009), The ‘Inclusion of Nature in Self Scale 

(Schultz, 2002) or the Implicit Associates test-Nature (Greenwald, McGhee & 

Schwartz, 1998) because of the simplicity in wording (given it will be distributed 

to a sample whose first language was not English), the small number of statements 

to which to response (14 in total) and comprehensive cover of both cognitive and 

emotive responses to the natural world. Some example questions included within 

the measure are given below: 
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Figure 6.6- examples from Connectedness-to-Nature Scale (Mayer & Frantz, 2004) 

Question 2. I think of the natural world as a community to which I belong  

 

1- Strongly disagree 

2- Disagree 

3- Neutral 

4- Agree  

5- Strongly agree 

 

Question 8. I have a deep understanding of how my actions affect the natural world.  

 

1- Strongly disagree 

2- Disagree 

3- Neutral 

4- Agree 

5- Strongly agree 

 

Question 14. My personal welfare is independent of the welfare of the natural world.  *Reverse scored 

 

1- Strongly disagree 

2- Disagree 

3- Neutral 

4- Agree 

5- Strongly agree 
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7.0 - Fractal Dimensions and Visual Complexity: An 

interrelated concept? 
 

7.1 Background/Rationale 

7.2 Methodology 

7.3 Results 

7.4 Discussions 

 

 

This thesis explores fractal dimension and suggest it as a new and specific form of 

natural complexity. The following study measures the fractal stimulus used 

throughout the thesis, generated to control for fractal dimension, and how they 

relate to the established computational complexity measure GIF ratio.  

Computational measures of complexity  (such a GIF and Jpeg) have been found to 

offer reliable and unbiased measures of complexity over human judgments, which 

are open to bias from familiarity or experience. Gif ratio as opposed to purely 

fractal tools measures the image in terms of content of the scene and as such 

accounts for both fractal and non-fractal content.  The study compares the FD 

scores from the generated images from a total of 81 images, with GIF 

compression scores. The results show highly significant negative correlations 

between fractal dimensions and the GIF ratio (r=-.927, p<0.001). The findings 

confirm that fractal dimension is significantly related to visual complexity. This 

result mean that it can be confidently proposed within this thesis that fractal 

dimension can be used to offer insight to aesthetic responses to fractal dimension 

and perceived visual complexity. 
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7.1 Background & Rationale: 

 

Visual complexity is a difficult area to define; current attempts for a standardised 

definition are often inconclusive and face issues as a result of differing opinion as 

to whether complexity is an objective and subjective quality of a scene or image. 

This study adopts a method of complexity analysis to quantify the complexity of 

the stimulus. The GIF ratio, an established method of analysis (Forsythe et al, 

2008) has been used and this will be compared to the Fractal Dimension of the 

images used within the analysis. 

 

Previously human judgments have been used to assess the complexity of stimulus 

however evidence has subsequently demonstrated that human judgments of 

complexity are biased, based on level of familiarity and learning with the stimulus 

(Forsythe et al, 2008). The understanding of bias in judgment resulted in a search 

for new ways to quantify visual complexity without the need for human judgment 

scores.  Forsythe et al., (2008) proposed that image processing techniques could be 

used as alternatives to human judgments and in a series of studies tested 4 image 

measurement techniques (Perimeter, Canny, JPEG & GIF) against previously 

established human judgment norms. Findings demonstrate that complexity could 

be reasonably approximated through a compression metric (Forsythe et al., 2008), 

however differences were found between the different types of compression 

techniques used with GIF showing strongest correlations with human judgments 

than other methods such as JPEG.  

 

Whilst human judgments of complexity and compression methods are reported as 

correlated, further studies explored the relationship between complexity 

compression measures and aesthetics response.  Forsythe et al., (2011) showed 

participants photos depicting real-life scenes (both natural and man-made) as well 

as abstract and figural art from established and renowned painters, all stimulus had 

been analysed for fractal dimension (FD) and visual complexity (GIF). The results 

show that preferences for photographs for natural scenes did not support the mid-

range hypothesis of fractal preference (in which highest preferences are shown for 

images within the 1.3-1.5D range) and instead findings suggest higher complexity 

and fractal dimensions was positively correlated with preference for natural 
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scenes. Abstract art however was found to be least preferred and containing the 

lowest FD and GIF scores. These findings suggested a linear relationship opposed 

to previous findings of an inverted-U relationship between complexity and 

aesthetic judgement (Berlyne, 1970; 1971, Taylor et al, 2001). As Art and 

photographs were used, this meant that a full range of fractal dimension was not 

covered as most images rose above the suggested mid-range peak of preference 

(D1.3-1.5), therefore it is important to explore this effect in a more controlled way 

to investigate the linear/mid-range relationship between fractal dimension and 

preference.   

 

This thesis attempts to address this issue by using a set of computer generated 

stimulus which were developed to cover a full range of fractal dimension, and to 

enable the study to test the reliability of GIF and FD measures the study will 

analyse the stimulus within the current study. It is hypothesised that the Fractal 

Dimension of the stimulus will be significantly related to the compression 

complexity ratio (GIF). 
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7.2 Methodology 

 

Stimulus: 

 

Nine sets of fractal images were generated by Prof R Taylor & colleagues at 

University of Oregon, USA (See Figure 7.1 below for example of 1 set). These 

images were developed using a mid-point displacement technique. Using this 

technique allows prior ‘setting’ of FD measures to be out-put therefore allowing 

the same images to be manipulated to have the same foundation, but vary only in 

FD score. This technique allows more in depth analysis of fractal preference than 

many previous studies as it allows testing with a full range of Fractal Dimension 

values. Previous studies are limited with their stimulus sample and allows for only 

low, mid and high without a full range of FD values. 

 

 
 

 
 

   
Figure-7.1- Example sample set of a full fractal range 

 

Human complexity judgments are significantly influence by individual familiarity 

(Forysthe et al., 2008). This demonstrates inefficiencies in using human judgments 
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to assess visual complexity, therefore methods of quantifying the complexity of 

images have been explored using the relationship between computational 

compression techniques and human judgments of complexity with success 

(Forsythe et al, 2008).  All compression algorithms attempts to re-code the 

information within the stimulus to a smaller and compact representation and take 2 

forms, lossless algorithms that code all information within an image to the 

smallest possible and lossy algorithms that compression the image further by 

removing details classified as too small for human judgments to notice.  

 

GIF Ratio compression: 

 

The GIF compression ratio is a lossless algorithm and as a method is best suited to 

sharp-edged and Black and White colour images. GIF compression retains the 

sharpness of information, particularly important to this current data set as the 

sharpness of edges defines the fractal dimension of the shape, therefore this 

method of comparison was chosen over others including JPEG which is better 

equip at compressing real world images.  To measure the GIF compression ratio 

analysis requires original .BMP stimuli format, and this is compressed to GIF file.  

The amount of information between the original .BMP file and new compressed 

file are compared which gives the GIF Ratio score. Higher GIF ratio represent 

lower complexity images as they were compressed significantly from the original 

.BMP file. Higher GIF ratio scores are a result of less difference between the 

.BMP size and the GIF compression size. Each image within the set was analysed 

using this method and scores were compared to the Fractal Dimension outlined 

during stimulus development.  

 

It is hypothesised that scores will be negatively correlated, as the fractal dimension 

increases the GIF ratio decreases. 
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7.3 Results: 

 
The analysis found strong negative correlations between FD of visual stimulus and 

GIF complexity measures. Results found a strong significant correlation between 

the fractal dimensions measures of the stimulus and the GIF ratio complexity 

measure (r(79)=-.93, p<0.01). This strength of the correlation demonstrates that 

fractal dimension and complexity are related constructs (See Figure 7.2); therefore 

the results found in the study can be confidently applied to perceptual responses to 

complex as well as fractal images. 

 
Table 7.1- FD Stimulus and GIF ratio correlation 

 Stimulus 

FD 

GIF ratio -0.927 

Sig. (2-tailed) .001 

 

 

 
                                    Figure-7.2- Correlation between Fractal Stimulus and GIF 

compression score 
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7.4 Discussions: 
 

The results suggest a very strong relationship between fractal dimension of the 

stimulus and computation visual complexity compression measures (GIF). High 

correlation between FD measures and GIF scores support the findings of Forsythe 

et al., (2011) who found significant correlations between fractal dimension 

(measured using box-count technique) and visual complexity (measured using GIF 

compression technique), and additional correlations between these scores and 

aesthetic judgments. The findings of the current study support these high 

correlations and confirm a strong relationship between fractal dimension and 

visual complexity.  

 

On the basis of these findings, the results of the thesis using this controlled fractal 

stimulus can also offer insights into visual complexity.  To explore the aesthetic 

response to the complex/fractal stimulus, participant’s responses will be explored 

for frequency of choice across the fractal scale and modelled in 2 main ways. 

Firstly exploring the probability and predicting variables associated with 

participants preferring the mid-range over images not within the mid-range and 

secondly, the probability and predicting variables associated with participants 

preferring the more complex over simple images.  Further studies will attempt to 

explore the aesthetic impact of the stimulus and investigate to potential individual 

differences that could shape aesthetic choices. Further implications of the findings 

will be explored in relation to literature within Chapter 13. 
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8.0 Cross-cultural comparisons UK and Egypt  

(A Ratings Scale Design) 
 

8.1 Background/Rationale 

8.2 Methodology 

8.3 Results 

8.4 Discussion 

 

Aesthetic relationships with complex images have been the subject of much 

investigation. Fractal patterns offer an up to date, stringent quantitative 

measurement of complexity in a visual pattern. Fractal patterns have also been 

found to contribute to our experiences of beauty and display aesthetic responses 

akin with Berlyne’s (1970; 1971) inverted-U hypothesis.  Participants were 354 

undergraduate participants based in University of Liverpool and Salford 

Universities (UK) and Menoufia University (Egypt). They were asked to rate 

beauty of 27 fractal images on a scale of 1-10..  The results found that overall the 

peak preference occurs lower than previously considered (D1.2) opposed to D1.3-

1.5. Further analysis finds differences between the groups in patterns of 

preference. The UK sample demonstrated a slight inverted-U shaped curve, 

however the Egyptian sample show a negative linear relationship, the lowest FD 

images receiving the high scores and incrementally lower scores were given for 

higher FD patterns. Results also show significant differences between Genders. 

These findings raise questions about the cross-cultural validity of previous 

findings for aesthetic response to fractal patterns.  They suggests tentatively that 

environment, even large macro environments (such as country) influence our 

aesthetic response, leading the researchers to question the potential impact of 

small micro-environments on aesthetic responses. 
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8.1 Background/Rationale: 

 

Visual complexity has been on interest to those studying aesthetic experience 

since the early foundation of the field of Empirical Aesthetics.. Measuring the 

scale of order and complexity in a scene has been approached from multiple 

angles (see Chapter 1 & 2) despite the long term interest defining and measuring 

complexity is still a difficult and unresolved area. Fractal geometry has been 

suggested as a new way to quantify the complexities found in nature (See chapter 

3 for full review).  Patterns of preference for complexity have been found to take a 

variety of forms; some finding that complexity of an image is positively related 

with positive aesthetic responses (Forsythe et al, 2011) or that peak preferences lie 

at the mid-point of complexity (Berlyne, 1970). A number of studies have found 

that the inverted-U shaped function of preference to reflect aesthetic responses to 

fractal patterns (Taylor et al, 2001; Spehar et al, 2003). Results suggest that 

complexity and fractal dimension may be an interrelated construct, with previous 

studies within this thesis supporting this assertion  (Chapter 7). 

 

The current study was based upon a replication of a piece of cross-cultural 

research conducted by Souief & Eysenck (1971) exploring the differences in 

preference across UK and Egyptian participants towards complex patterns. Souief 

& Eysenck’s results suggest unusual differences across cultures in terms of 

preference for visual complexity.  As Fractal images are a relatively new method 

of measurement for complexity, it was decided that the study be replicated to 

examine the stability of Souief & Eysenck’s original findings and to examine the 

impact of fractal dimension of preferences as a new measure of complexity in the 

visual environment. The complexity examined is based on natural complexity, 

rather than any other descriptions, (definitions and measurement of complexity is 

discussed previous chapters). This allows us to consider if the impact of 

environmental/natural complexity on preference. Is it something about the 

environment in which we spend time that contributes to our preferences for 

complex natural shapes? 
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The study aims to explore the impact of culture, gender and age on a group of non 

art-trained individuals to assessing the aesthetic quality of fractal complexity. The 

study intends to add additional evidence to Souief & Eysenck’s (1971) non-art 

trained sample to explore if a similar relationship to Birkhoff (1932) shapes visual 

complexity exists to fractal complexity. 

8.2 Methodology 

 

Participants:  

 

The participant pool was recruited from undergraduate students studying in the 

UK (N=154, Females=122 Mean Age=21.5, SD=4.82) and Egypt (N=200, 

Females=100  Mean Age=19.5, SD=1.16). Participants studied a variety of 

subjects, all participants with the exception of 2 studied science based disciplines. 

On this point the results gathered can be compared to Souief & Eysenck’s (1971) 

non art-trained participants recruited in their sample.  

 

Design:   

 

An independent samples design was used. Participants were randomly assigned to 

1 of 4 versions with the randomisation coming from distribution of the 

questionnaires. In all versions participants were asked to rate a selection of 27 

fractal images, each version containing equal numbers of patterns varying from 

the lowest to the highest FD patterns (see methodology in chapter 6 for full 

methodological explanation). 

 

Materials:  

 

Computer generated fractal patterns were used (for full details on development 

and specific image sampling details see chapter 6). Using abstract generated 

stimulus over real-life scenes allowed for control in developing a full range of 

fractal dimension combatting previous studies limitations with an available range 

of fractal patterns for full exploration along the entire fractal dimension scale (see 

Figure 8.1 below for example). 
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Figure 8.1- Example of Low (1.2), Mid (1.4) and High (1.9) Fractal patterns. 

 

 

Procedure:  

 

Participants were recruited using opportunity samples within each university. The 

task was distributed using hardcopies of questionnaires that asked participants to 

rate (on a scale of 0-10) how beautiful they found the image. Four versions of the 

questionnaire were developed which included 27 separate fractal images from the 

set chosen in a quasi-random method (see chapter 6 for full details). Participants 

were also asked to provide details including age, gender and course of study. 

 

Analysis:  

 

A series of analyses were conducted to explore the overall patterns of the 

preference data across the FD scale. Fractal Dimension was also grouped into the 

categories Low, Mid & High to allow analysis of direction of preference positive 

or negative along the FD scale. Additional analyses were conducted to explore the 

impact of Country, Age and Gender on aesthetic values of fractal patterns. 
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8.3 Results: 

 
A series of analyses were conducted to explore the data set as a whole, to examine 

the mid-range hypothesis, as well as explore the sub-cultural differences between 

Cultures, and the individual differences of Age and Gender. Both the full range 

and the modified compressed groupings (Low-Mid-High) have been used in the 

analysis to allow comparisons to previous studies to be made.  

 

Overall trends in the Data Set: 

 
Figure 8.2 :Mean scores in preference for fractal scale. 

 

As demonstrated in Figure 8.2, the overall trend of the data suggests that 

differences exist between the levels of fractal dimension. The results show the 

highest preferences for lowest fractal dimension D1.1 (M=5.37 SD=2.24) with a 

gradual decrease of rating throughout the mid range D1.4 (M=4.78, SD=1.81) and 

reaching it’s lowest rating at the high point the fractal scale D1.9 (M=3.13, 

SD=2.49). Mauchly’s test indicated that the assumption of sphericity had been 

violated, χ2(35) = 1164.31, p = .0001, therefore degrees of freedom were corrected 

using Greenhouse-Geisser estimates of sphericity (ε = .390). The results show that 

there was a significant effect of fractal dimension, F(3.12, 1102.66) = 72.92, p = 



 

 153 

.0001, η2p=0.171. These results suggest that preference ratings differ significantly 

between each fractal dimension. 

Post hoc pairwise comparisons were performed across the 9 different fractal 

dimensions to explore the point(s) at which these significant differences can be 

seen.  Analysis found significant differences of preference ratings between nearly 

all of the different levels of fractal dimension. Table 8.1 demonstrates the 

significant and non-significant relationships between each level, with the 

significant difference in orange and the non-significant differences in white. There 

results show clusters of similar (non-significantly different) groups within the 

data. The results suggest clusters in which preference is most variant (evidence in 

groups of white). The overall analysis demonstrates that preference differences 

significantly as a function of fractal dimension and that higher preference are 

grouped towards stimulus at the lower end of the fractal dimension scale, rather 

than the mid or higher point.   

Table 8.1- Image post-hoc significant differences matrix 

 D1.1 D1.2 D1.3 D1.4 D1.5 D1.6 D1.7 D1.8 D1.9 

D1.1  

 
.367* .453* .588* .886* 1.415* 1.953* 2.141* 2.242* 

D1.2 
 

 

 
.086 .220 .518* 1.048* 1.586* 1.774* 1.874* 

D1.3 
  

 

 
.134 .432* .962* 1.500* 1.688* 1.788* 

D1.4 
   

 

 
.298 .828* 1.366* 1.554* 1.654* 

D1.5 
    

 

 
.530* 1.068* 1.256* 1.356* 

D1.6 
     

 

 
.538* .726* .826* 

D1.7 
      

 

 
.188 .288 

D1.8 
      

 

 
 .100 

D1.9 
      

 

 
  

* The mean difference is significant at the Adjustment for multiple comparisons: 

Bonferroni. 
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Groupings of results (Low - Mid - High): 
 

To explore the direction of preference demonstrated in the initial analysis, the data 

was grouped into 3 categories Low, Mid and High allowing further comparisons to 

be made between the preference scores as well as examine the stability of the mid-

range hypothesis previously proposed. Figure 8.3 demonstrates that preferences 

for fractal patterns is a structured as a negative linear relationship with the highest 

rated images falling at the lowest end of the fractal scale.  

 

 
Figure 8.3: Mean scores in preference for categorised fractal scale. 

 

Examining the means across the 3 levels with the highest scores for ‘Low’ 

(M=5.19, SD=2.13), the Mid grouping scoring significantly lower on average 

(M=4.73, SD=1.81) and the High group receiving the lowest beauty rating scores 

(M=3.44, SD=2.17). Mauchly’s test indicated that the assumption of sphericity 

had been violated, χ2 (2) = 225.985, p = .0001, therefore degrees of freedom were 

corrected using Greenhouse-Geisser estimates of sphericity (ε = .679). The results 

show that there was a significant effect of fractal dimension on preference ratings, 

F (1.357, 479.046) = 114.123, p = .0001, η2p=0.244. These results suggest that 

preference ratings differ significantly between each fractal dimension. Post hoc 
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pairwise comparisons demonstrated in Table 8.2, were performed across the 3 

different fractal levels to explore the point(s) at which these significant differences 

can be seen. Analysis shows that each level differs significantly from each other. 

 

Table 8.2- Post-hoc Pairwise Comparison matrix 

 Low Mid High 

Low  

 
1.426* 4.323* 

Mid 
 

 

 
2.897* 

High 
  

 

 

* The mean difference is significant at the Adjustment for multiple comparisons: 

Bonferroni. 

 

Egyptian patterns of Fractal Preference: 

 
To explore the patterns of preference across culture, each culture was explored 

separately initially. Looking at the Egyptian sample, a repeated measure ANOVA 

was conducted to examine the effect of fractal dimension on preference patterns. 

 
Figure 8.4 Graph of Choice Frequencies across the fractal scale. 

 

The Egyptian sample as evidence in Figure 8.4 demonstrates the highest 

preference scores for fractal patterns at the lowest point D1.1 (M=5.99, SD=1.88) 
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with scores dropping incrementally with FD, with the lowest preference scores are 

seen for to the most highly complex/fractal patterns of D1.9 (M=2.17, SD=1.54).  

Mauchly’s test indicated that the assumption of sphericity had been violated, χ2 

(35) = 132.62, p = .0001, therefore degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity (ε = .856). The results show that there 

was a significant effect of fractal dimension, F (6.848, 1362.706) = 159.77, p = 

.0001, η2p=0.445. These results suggest that preference ratings differ significantly 

between each fractal dimension for the Egyptian sample. Post hoc pairwise 

comparisons were performed across the 9 different fractal levels to explore the 

point(s) at which these significant differences can be seen. As can be seen in Table 

8.3 below, level differs significantly from each other for the most part, however 

some groupings of similar preferences (non-significant) FD values can be seen and 

suggest that at points distinctions between each FD level are not significantly 

related to preference.  

Table 8.3: Table of post-hoc pairwise comparisons for Egypt Sample. 

 D1.1 D1.2 D1.3 D1.4 D1.5 D1.6 D1.7 D1.8 D1.9 

D1.1  

 
.632* .850* 1.082* 1.590* 2.287* 3.220* 3.593* 3.820* 

D1.2 
 

 

 
.218 .450 .958* 1.655* 2.588* 2.960* 3.188* 

D1.3 
  

 

 
.232 .740* 1.438* 2.370* 2.743* 2.970* 

D1.4 
   

 

 
.508* 1.205* 2.138* 2.510* 2.738* 

D1.5 
    

 

 
.697* 1.630* 2.003* 2.230* 

D1.6 
     

 

 
.933* 1.305* 1.533* 

D1.7 
      

 

 
.373 .600* 

D1.8 
      

 

 
 .228 

D1.9 
      

 

 
  

* The mean difference is significant at the Adjustment for multiple comparisons: 

Bonferroni. 
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UK patterns of Fractal Preference: 

 
To explore the patterns of preference across culture, each culture was explored 

separately initially. Looking at the UK sample, repeated-measures ANOVA was 

conducted to examine the effect of fractal dimension on preference patterns. 

 

 
Figure 8.5 Bar Chart of Frequency of Choice across the fractal scale. 

 

 

The UK sample as evident in Figure 8.5 shows little difference between the 

preferences ratings for each individual Fractal Dimension. The highest scores are 

seen 2 points, D1.3 (M=4.63, SD=1.89) and D1.4 (M=4.63, SD=1.87) with the 

lowest scores for D1.6 (M=4.29, SD= 1.91) and D1.7 (M=4.26, SD-2.29). There 

are no significant difference in preference ratings across the fractal scale in the UK 

sample (Mauchly’s sphericity had been violated, χ2 (35) = 902.98, p = .0001, 

therefore degrees of freedom were corrected using Greenhouse-Geisser estimates 

of sphericity (ε = .262). The results show that there was a no significant effect of 

fractal dimension, F (2.069, 316.500) = 0.954, p = .389. These results suggest that 

preference ratings show no significant difference between each fractal dimension 

for the UK sample. As such no further post hoc pairwise comparisons were 

performed. 
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Multivariate ANOVA’s: 

 

A series of multivariate analysis of variance attempted to explore the influence of 

Cultural Group (UK or Egypt), Gender (Male or Female) and Age on the mean 

scores of low, mid and high fractal image choice. These analyses aim to unpick if 

individual differences in participants are significantly influencing preference 

scores awarded. 

 

Cross-cultural analysis: 

 

 
Figure 8.6 Bar chart of Mean Preference Scores between the 3 levels across Culture 

 

Figure 8.6 demonstrates the variety in preference scores awarded across the 3 

groupings between cultures, there is a marked negative linear preference 

relationship in the Egyptian Sample with the UK sample showing much more 

consistency in preference across the FD groupings (See Table 8.4 for mean 

summaries). The Egyptian sample has significantly higher mean rating scores for 

the lower FD grouping (Mean=13.07, SD=3.09) than the UK Sample 

(Mean=10.66, SD=4.73) where as the UK group show higher mean preference 
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rating for the high FD group (Mean=10.08, SD=5.38) than the Egyptian Sample 

(Mean=5.89, SD=2.54). 

 

Table 8.4: Grouped FD Mean scores in preference between UK and Egypt. 

 UK (N=154) Egypt (N=200) 

  Mean SD  Mean SD 

LowFDMean 10.66  4.73 13.07 3.09 

MidFDMean 10.66  3.71 10.55 2.98 

HighFDMean 10.04  5.38 5.89  2.54 

 

 

Multivariate ANOVA demonstrates that there is a significant main effect of 

culture. Mauchly’s test indicated that the assumption of sphericity had been 

violated, χ2 (2  = 171.04, p <0.001, therefore degrees of freedom were corrected 

using Greenhouse-Geisser estimates of sphericity (ε = .722). The results show that 

there was a significant main effect of fractal level, F (1.443,508.04) = 110.997, p < 

.001, η2p=0.240 and a significant interaction between fractal level and ethnic 

group F (1.443,508.04) = 76.434 p < .001, η2p=0.178. Pairwise comparisons were 

performed across the 3 different fractal levels to explore the point(s) at which 

these significant differences can be seen.  As can be seen in Table 8.5 below, each 

level differs significantly from each other at each. 

 
Table 8.5 Post-hoc pairwise comparisons across Country 

 Low Mid High 

Low  

 
1.263* 3.898* 

Mid 
 

 

 
2.635* 

High 
  

 

 

* The mean difference is significant at the Adjustment for multiple comparisons: 

Bonferroni. 
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Cross-gender analysis: 

 

 

 
Figure 8.7 Bar chart of Mean Preference Scores between the 3 levels across Gender 

 

 

As demonstrated in Figure 8.7, Males appear to show a negative relationship of 

preference across the FD groupings with Females showing a similar but less 

marked difference across the three groupings. Detailed in Table 8.6, the means 

differ significantly between gender across the MidFD and HighFD groups but not 

the LowFD group suggesting more consistency in preference for lower FD values 

than Mid or High.  

 
Table 8.6: Grouped FD Mean scores in preference between Males and Females 

 Males (N=121) Females (N=222) 

  Mean SD  Mean  SD 

LowFDMean 12.384 2.54 11.82 4.65 

MidFDMean 9.49 2.75 11.23 3.39 

HighFDMean 5.75 2.64 8.83 4.51 

 

Exploring analytically the means outlined in Table 8.6, Mauchly’s test indicated 

that the assumption of sphericity had been violated, χ2 (2) = 209.64, p <0.001, 

therefore degrees of freedom were corrected using Greenhouse-Geisser estimates 

of sphericity (ε = .685). The results show that there was a significant main effect 
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of fractal level, F (1.37, 467.6) = 130.27, p < .001, η2p=0.276 and a significant 

interaction between fractal level and Gender group F (1.37, 467.06) = 18.62 p < 

.001, η2p=0.052.  

 

Cross-Age Analysis: 
 

 

 
Figure 8.8 Bar chart of Mean Preference Scores between the 3 levels across Age Category 

 

As demonstrated in Figure 8.8, a negative linear relationship for both the groups 

within the 20 & under and Over 20 age groups. Exploring analytically the means 

outlined in Table 8.7, Mauchly’s test indicated that the assumption of sphericity 

had been violated, χ2 (2) = 223.155, p <0.001, therefore degrees of freedom were 

corrected using Greenhouse-Geisser estimates of sphericity (ε = .680). The results 

show that there was a significant main effect of fractal level, F (1.36, 478.76) = 

188.57, p < .001, η2p=0.201 and a significant interaction between Fractal Level 

and Age Group F (1.37,478.76) = 3.66, p < .05, η2p=0.01.  
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Table 8.7: Grouped FD Mean scores in preference between Age groupings. 

 20 & Under (N=238) 21 & Over (N=116) 

  Mean  SD  Mean SD 

LowFDMean 12.13 3.75 11.81 4.67 

MidFDMean 10.58 3.23 10.62 3.49 

HighFDMean 7.28 4.30 8.56 4.52 

 

Additional analysis found that there are no significant 3 ways interactions between 

Culture, Age Group and Gender for any of the 3 FD groupings (Low p=-.63, Mid 

p=0.92, High p=0.54). 
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8.4 Discussion: 

 

The results of this initial study support the findings of Souief & Eysenck (1971) in 

terms of patterns of preference in complexity for non-art trained individuals and 

cross-cultural differences. The findings of the study raise important questions 

about the role that individual differences play in preferences for fractal patterns. 

The findings demonstrate that Gender as well as Cultural Environment 

(UK/Egypt) should be considered when exploring aesthetic responses to fractal 

patterns as they show significant differences in patterns of preference.  

 

Patterns of Preference: 

 

The study found no statistical support for the mid-range hypothesis proposed by 

Taylor et al., (2001).  Instead preferences seem to be displaying a linear pattern of 

preference, with the overall patterns showing peak preferences at D1.1 with 

incremental falls in preference from this point. This finding offers conflicting 

results to many of the current findings including the mid-range preference 

hypothesis (Taylor et al., 2001) as well as Berlyne’s (1970) inverted-U function of 

complexity preference.  Results are more aligned with Forsythe et al’s., (2010) 

study that found linear preference for complexity and fractal dimension, however 

the direction of the linear preference is negative rather than positive. Forsythe et 

al., (2008) found that as complexity scores and fractal dimension increased 

(particularly for natural images/photographs), as did preference scores, however 

the opposite is found with the current sample. Most prominently this negative 

relationship of FD and preference is seen within the Egyptian sample, suggested 

cultural factors may play a role in developing the direction of complexity/fractal 

preference.  

 

Cross-cultural findings: 

 

The current findings show differences in patterns for fractal preference based on 

culture. Whilst the UK sample demonstrates statistically stable scores of 

preferences for all ranges of fractal images, the Egyptian population demonstrates 

a linear pattern with the lowest FD and most simple images the most highly 
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preferred and preference falling from this point. This study aimed to replicate 

some aspects of Souief & Eysenck’s (1971) study. With the use of fractal patterns 

over Birkhoff’s (1932) polygons the impact of a specific type of complexity, 

fractal complexity, we can explore in a more controlled way, how complexity 

preference differs between cultures. Whilst Souief & Eysenck (1971) used both 

art-educated and non-art educated students this study used a sample of participants 

came from a non-arts education background (with the exception of 2, studying 

Architecture and Media). Results found higher preferences for the lower fractal 

dimension/complexity patterns in the Egyptian sample and higher preference for 

the higher complexity group from the UK sample. This result support Souief & 

Eysenck’s (1971) finding that UK non-art trained sample demonstrated higher 

preference for complex images and Egyptian non-art training sample demonstrated 

higher preference for the simple images.  This result suggest that fractal dimension 

is a robust measure of visual complexity and preference behave between cultures 

follows the same pattern as seen when using other stimuli controlled for 

complexity.  

 

Although the differences have been found between cultures, there are limitations 

in terms of the classification of culture as a predictor of preference. It could be 

proposed that the environment in which we spend time and are exposed shapes our 

preferences, this is supported by the mere exposure hypothesis (Zajonc, 1968) and 

more recently the processing fluency hypothesis (Reber et al., 2004). Considering 

these theories from a cross-cultural perspective, the difference found between the 

countries could be a result of the differences in the visual environments in which 

people spend the most time. When making these judgments however, 

acknowledgement is needed for the variety of visual environments across culture. 

People can live in towns and urban industrialized areas or rural and natural areas, 

with visual environment varying significantly from location to location. The micro 

sub-environments (such as urban-rural distinctions) rather than the macro cross-

cultural environments (exploring across countries) may offer greater insight into 

the role that daily visual experiences play on preference for complex and fractal 

patterns and should be explored fully understand how visual environment can 

influence preference for fractal and complex shapes. 
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Gender findings:  

 

Results demonstrate some marked differences in gender.  Differences in both the 

mid and high groups but not with the low group. Females showed higher 

preference for the higher FD patterns and lower preferences for the lower FD 

patterns, with male participants demonstrating the opposite relationship. No group 

differences were seen between scores of fractal patterns in the mid-range group.  

Previous findings have shown gender difference in processing of aesthetic stimuli 

(Cela-Conde et al., 2009). The hunter-gather hypothesis (Silverman & Eels., 1992) 

offers one theory to account for differences in perceptual strategies between males 

and females. Further findings suggest that males look at the whole picture during 

aesthetic judgment, where as females tend to pay attention to smaller details 

within the picture (Cela-Conde et al., 2009), this distinction in perceptual 

processes may account for the difference as the higher fractal/complex images 

include much more details and information that females may attend to more, 

whereas the lowest fractal images resemble a single-form figure or space that 

could be considered as a whole picture.  These studies may offer some insight into 

the gender differences seen in preference for fractal/complex patterns in the 

current study although to make assumptions about the perceptual differences are 

tentative because of the nature of the study, it appears that there are marked 

aesthetic judgment differences between gender.  

 

Age findings:  

 

There was very little variation between the age groups in terms of preference for 

fractal patterns. Within previous literature, there is some evidence to suggest that 

age differences in preference for landscape/nature studies, suggesting that 

adolescents and elderly participants demonstrate preferences significantly different 

to other age populations such as children and mid-aged adults (Balling & Falk, 

1982). The sample sizes used were not equal and range of ages limited with most 

participants (N=236) falling within the 18-20 category. To make assumptions 

about age and preference for fractal patterns we need a larger and more varied 

sample of ages included within the study which will be explored in future studies 

of this thesis.  
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Conclusions: 

 

Overall the study appears to show that there are key individual and cultural 

differences in preference patterns for fractal complexity, and these findings 

support those of Souief & Eysenck (1971) regarding visual complexity and 

aesthetic judgment. It highlights the need for further exploration in the field of 

fractal complexity, particular unpicking the aspects of the environment that 

contribute to our preferences. Could mere exposure (Zajonc, 1968) result in 

changes with preferences? and if so are these highlighted in macro-cultural 

environments (such as Country) or within micro-cultural environments such as 

classifications of daily environments (as urban and rural for example)? 

The study supports the link between fractal dimensions as an associated 

component of visual complexity and highlights the role that fractal dimension can 

play in explore the differences in aesthetic responses to natural-like images. 

Further studies are needed to unpick the tentative differences in preference 

responses across culture and gender and the following studies within this thesis 

attempt to go some way towards addressing this gap. 

 
 



 

 167 

9.0 Validating the mid range hypothesis for fractal 

preference. 
 

9.1 Background/Rationale 

9.2 Methods 

9.3 Results 

9.4 Discussion 

 

This study attempts to replicate the findings of Taylor et al (2011), which suggests 

a preference peak at the mid-range of fractal points. This mid-point peak mirrors 

Berlyne’s (1963) inverted-U hypothesis demonstrating preference for optimal 

complexity and highlights a potential link between the two concepts, something 

previously suggested by Forsythe et al., (2006). The current study aims to re-test 

these findings across a wider and varied sample using a 2A-FC method with 

computer generated natural-looking fractal stimulus to control for potential bias 

found in previous studies. The sample was recruited using online recruitment tools 

including MTurk, meaning that the sample represented an international 

population. The study uses two analysis methods that demonstrate analytic 

progression. The first stage involved ANOVA and mapping of frequency of choice 

data to explore the overall patterns in the data, however because of the associated 

experimental issues using these design for binary and categorical data analysis, a 

linear mixed effect modelling was also conducted. LME was used to explore the 

data more thoroughly and will test three models to test the fit of the mid-range and 

complexity hypotheses as a significant predictor of preference. Results from all 

models demonstrated significant main and interaction effects between individual 

differences as predictor of fractal preference. 
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9.1 Background & Rationale: 

 

Previous research points towards an optimal range of fractal preference within the 

fractal scale, showing links and support for Berlyne’s (1970) arousal theory for 

complexity. While research has established the aesthetic appeal of images 

displaying fractal properties (Taylor, 1999), an optimal range emerged from the 

fractal spectrum that seemed to demonstrate higher preference. Taylor et al (2001) 

found that images within the mid-range D values (1.3-1.5) were consistently 

preferred regardless of how the fractal images were generated (Taylor et al 2001, 

Spehar et al 2003). This offered an interesting link between fractals and 

complexity, both of which seem to follow a similar preference pattern. Studies 

have suggested that people’s preference is universally set at 1.3 because of 

continual visual exposure to nature’s patterns (Aks & Sprott, 1996), supporting 

Zajonc (1968) mere exposure theory and more recently the processing fluency 

hypothesis (Reber et al, 2004) as many of natures processes display mid-range 

fractal properties. Others have suggested evolutionary foundations.  

 

Complexity and Fractal Dimension from previous studies within this thesis are 

intertwined in aesthetic preference; Forsythe et al (2006) found both concepts to 

be predictors of preference. Both were found to be positively correlated with 

preference, suggesting a linear rather than mid-range preference for both concepts. 

Replication of Berlyne’s arousal potential by Martindale et al., (1990) failed to 

replicate many of Berlyne’s (1970) findings, including the inverted-U hypothesis. 

It seems that the patterns of preference toward complex and fractal stimulus 

appear to differ in preferential patterns and this study attempts to replicate the 

findings of Taylor et al., (2011) to support the mid-range theory of fractal 

preference.  

 

Research Statement: 

 

This study attempts to replicate findings suggesting preference is centred at the 

mid-point in fractal scaling, using computer generated stimulus. This was 

considered important given the variation in preference patterns in previous 
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findings. The study uses a similar but adapted methodology to Taylor et al., 

(2001). The study aims to explore the impact of fractal dimension independently 

from the core structure of the images therefore a randomised pairing method 

different to Taylor et al’s., (2001) original design of within group rating. The 

study also aims to explore the relationship between fractal patterns and complexity 

with the aim to investigate Berlyne’s, and Taylor’s mid-range preference 

hypothesis.  Previous studies within this thesis have found additional support for 

linear relationships with preference across culture (See chapter 8), to test this 

further, this study uses linear mixed-effects modelling to explore if the linear 

complexity or the mid-range hypothesis is a better model with which to map 

preference for fractal patterns. 
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9.2 Methods: 

 

Participants: 

 

Participants were recruited via MTurk and additional web based distribution 

services. MTurk is digital platform in association with Amazon.com. Participants 

register online to be notified for recruitment calls, this method allow access to a 

sizable and willing participant pool. MTurk recruits participants from a range of 

ages and socioeconomic backgrounds from around the world. The variety of 

participants allows for data collection with higher external validity.  

 

In total data was collected from 291 participants, whose ages ranged from 18 to 74 

with a mean age 29 (SD=9.6).  Of the sample 61.5% (N=179) were male and 

38.5% (N=112) were female.  Participants were recruited from all around the 

world, in total 31 countries made up the sample. Table 9.1 below provides a full 

list of the countries included in the sample and the size of the participants from 

each country. 

Table 9.1 - Country N and total % of sample 

Country N Total % Country N Total % 

Argentina 2 0.7 Jamaica 1 0.3 

Austria 3 1 Japan 1 0.3 

Brazil 1 0.3 Korea, R 1 0.3 

Bulgaria 1 0.3 Macedonia 3 1 

Canada 7 2.4 Mexico 1 0.3 

China 10 3.4 Pakistan 3 1 

Croatia 2 0.7 Philippines 2 0.7 

Denmark 1 0.3 Poland 1 0.3 

Egypt 1 0.3 Romania 6 2.1 

Finland 1 0.3 Serbia 3 1 

France 1 0.3 Singapore 2 0.7 

Germany 1 0.3 Slovenia 1 0.3 

Iceland 1 0.3 UK 6 2.1 

India 192 66 USA 17 5.8 

Ireland 1 0.3 Not Provided 14 4.8 

Italy 3 1    
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The variance across group sizes between sample countries mean that direct 

analysis could not be conducted without further grouping. To resolve this issue 

and allow cross-cultural comparisons to be made participants where categorized 

into continent of origin, the sample sizes of each can be in Table 9.2 below.  

 

Table 9.2 Continent Location Grouping summary N 
Location Grouping Total N 

Europe 35 

North America 24 

South America 5 

Central Asia 195 

SEAsia 17 

Africa 1 

Not Provided 14 
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Materials: 

 

The stimulus used in the study consisted of 9 sets of computer generated natural-

seeming fractals each with 9 iterations varying in FD (See Figure 9.1 for example 

set). For full details of stimulus development and experimental design see 

methodology in Chapter 6. In total, participants made choices for 57 pairs, 

presented in a randomised order.  

 

     

     

     

Figure 9.1- Examples of 1 set of Fractal Images 

 

 

Design: 

 

The study used a between subjects, 2 alternative forced choice design (2A-FC). 

This method was chosen as an established method of aesthetic judgments (see 

chapter 6 for full rationale) as the images are not overtly beautiful or appealing, 

therefore ratings of pleasantness or beauty were not deemed appropriate. Previous 
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research also shows that choice designs are a reliable and easy way to collect 

preference data with participants consistently able to make judgments without 

prompts. All data collection was done using an online design, developed and 

distributed using surveygizmo.com. The link was included on the Mturk 

recruitment profile and emailed to parties of particular interested groups, such as 

university students.  

 

Procedure: 

 

Each participant was given an overview of the study details and provided with a 

link to follow should they wish to volunteer for the study. All participants were 

asked to read an information page and record electronic consent prior to taking 

part in the study. After providing demographic information including gender and 

DOB participants were presented with 57 pairs of fractal images.  Each page 

showed the pair of images and asked the participant to “click the image you like 

best” (for example see Figure 9.2); this was the same design for each pairing in the 

study.  A choice between the pairing was required for participants to move to the 

next pairing. After the participants had completed each forced-choice pairing they 

were taken to a debrief information page to explain the purpose of the study in 

greater detail and also provided with contact details should they wish to withdraw 

their results within 2 weeks of completing the study. 

 

Which image do you like best? Tick on one to select it. 

  
Figure 9.2 – Example of 2A-FC task 
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9.3 Results: 

 

9.3.1 Exploring the frequencies with ANOVA 

 

The results show that overall preference patterns reflected a curve with peaks at a 

slightly lower point than previously suggested by Taylor et al., (2011). The highest 

frequency in choice was seen for D1.2 (M=7.05, SD=3.91) with D1.3 being the 

next most preferred (M=6.94, SD=3.61). The least variance in scores across the 

sample was seen over D1.4, D1.5 and D1.6 suggesting that preference is more 

consistent for these levels compared to the lower and higher D values which 

appear to have much more variation in preference choice.  

                                                                                                                                                                   …                                                                                                                                            

 
Figure 9.3 Bar Chart displaying the mean number of choices 

 

As demonstrated in Figure 9.3, the overall trend of the data suggests that 

differences exist between the levels of fractal dimension. The results appear to 

show that the highest preferences fall at the fractal dimension D1.2 (M=7.05, 

SD=3.91) and the lowest preference falls at D1.8 (M=4.61, SD=3.87).  
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Table 9.3 Mean choice scores across each Fractal Dimension 

  

FD  Mean SD 

D1.1 6.66 3.85 

D1.2 7.05 3.91 

D1.3 6.94 3.60 

D1.4 6.72 1.70 

D1.5 6.35 1.71 

D1.6 6.09 1.73 

D1.7 4.98 3.48 

D1.8 4.61 3.87 

D1.9 4.66 4.01 

 

Mauchly’s test indicated that the assumption of sphericity had been violated, χ2 

(35) = 2979.16, p < .001, therefore degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity (ε = .183). The results show that there 

was a significant effect of fractal dimension, F (1.46, 424.45) = 23.86, p < .001, 

η2p=0.076. These results suggest that preference ratings differ significantly 

between each fractal dimension. 

 

Following this analysis, post hoc pairwise comparisons were performed across the 

9 different fractal dimensions to explore the point(s) at which these significant 

differences can be seen. Table 9.4 demonstrates the significant and non-significant 

relationships between each level, with the significant differences marked in orange 

and the non-significant differences marked in white. Analysis found significant 

differences of preference grouped mainly at the high end of fractal dimension 

scale.  The results suggest clusters in which preference is most variant and that 

there is less difference in preference choice at the lower end of the fractal scale. 

The overall analysis demonstrates that preference differs significantly as a 

function of fractal dimension and that preference within the sample differs most at 

the end of the Fractal Dimension scale.   
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Table 9.4: Table of post-hoc differences for Entire Sample. 

 D1.1 D1.2 D1.3 D1.4 D1.5 D1.6 D1.7 D1.8 D1.9 

D1.1  

 
-.392* -.282 -.069 .309 .567 1.674* 2.041* 1.993* 

D1.2 
 

 

 
.110 .323 .701 .959* 2.065* 2.433* 2.385* 

D1.3 
  

 

 
.213 .591 .849 1.955* 2.323* 2.275 

D1.4 
   

 

 
.378 .636* 1.742* 2.110* 2.062* 

D1.5 
    

 

 
.258 1.364* 1.732* 1.684* 

D1.6 
     

 

 
1.107* 1.474* 1.426* 

D1.7 
      

 

 
.368* .320 

D1.8 
      

 

 
 .048 

D1.9 
      

 

 
  

* The mean difference is significant at the Adjustment for multiple comparisons: 

Bonferroni. 

 

Impact of Gender: 

 

We explore if preference across the Fractal Scale differed significant as a function 

of gender. Figure 9.4 shows the pattern of preference across the fractal dimension 

scale for Males and Females in the sample with their mean choices across the 

scale can be seen in Table 9.5 below. 

 



 

 177 

 
Figure 9.4 Bar Chart of Mean Choice across FD split by Gender 

 

 

Mauchly’s test indicated that the assumption of sphericity had been violated, χ2 

(35) = 2973.40, p < .001, therefore degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity (ε = .183). The results show that there 

was no significant effect of fractal dimension (F (1.46, 422.47) = .332, p =. 649). 

These results suggest preference does not differ significantly because of gender. 
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Table 9.5: Grouped FD Mean scores in preference between Gender grouping. 

 Male (N=179) Female (N=112) 

  Mean  SD  Mean SD 

D1.1 6.79 3.92 6.43 3.75 

D1.2 7.16 4.03 6.87 3.72 

D1.3 6.97 3.70 6.88 3.46 

D1.4 6.63 1.66 6.87 1.77 

D1.5 6.37 1.59 6.31 1.88 

D1.6 5.94 1.61 6.32 1.89 

D1.7 4.99 3.58 4.96 3.33 

D1.8 4.56 3.97 4.69 3.74 

D1.9 4.62 4.11 4.73 3.87 

 

Impact of Age on Preference: 

 

 The age of participants were categorised to allow an analysis of variance between 

groups Analysis revealed significant differences between age groupings, the 

means and standard deviations can be seen in Table 9.6 below.  

 
Table 9.6 :Grouped FD Mean scores in preference between Age grouping. 

 18-20 (N=30) 21-30 (N=171) 31-40 (N=60) 41-50 (N=14) 

  Mean  SD  Mean SD Mean SD Mean SD 

D1.1 6.23 4.62 6.82 3.63 7.15 3,88 5.50 4.41 

D1.2 6.30 4.28 7.32 3.66 7.58 4.07 6.00 4.35 

D1.3 6.30 3.96 7.13 3.42 7.42 3.74 5.50 4.01 

D1.4 6.87 1.87 6.76 1.69 6.66 1.67 7.28 1.89 

D1.5 6.73 1.84 6.33 1.73 6.17 1.52 6.64 1.39 

D1.6 6.43 2.08 6.10 1.63 5.75 1.82 6.43 1.45 

D1.7 5.73 3.40 4.74 3.38 4.55 3.64 6.00 4.07 

D1.8 4.90 4.05 4.43 3.70 4.23 4.02 5.28 4.49 

D1.9 4.73 4.09 4.43 3.77 4.50 4.38 5.36 4.81 

   51-60 (N=12) 61-70 (N=3) 71-80 (N=1) 

   Mean SD Mean SD Mean SD 

 D1.1  5.33 3.42 1 1 11 - 

 D1.2  4.83 3.21 .33 .58 12 - 
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 D1.3  6.17 3.21 1.33 .58 10 - 

 D1.4  5.83 1.11 5.33 .58 7 - 

 D1.5  5.92 2.35 6.67 1.53 8 - 

 D1.6  6.08 2.19 7.33 1.15 5 - 

 D1.7  6.75 2.49 9.67 .58 1 - 

 D1.8  6.33 2.96 11.66 .57 0 - 

 D1.9  6.75 3.47 10.67 1.53 0 - 

 

Mauchly’s test indicated that the assumption of sphericity had been violated, χ2 

(35) = 2856.08, p < .001, therefore degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity (ε = .185). The results show that there 

was no significant effect of fractal dimension, F (8.89, 420.84) = 2.312, p =.016 

η2p=0.047. 

 

Impact of Location on Preference:  

 

The sample included a large spectrum of international participants. As the overall 

sample results seemed to show variation in preference choices across the levels 

further exploration of this variation was investigated. Given the number of 

countries and small sample sizes across each within this international sample, 

participants were grouped into continents (as the samples from each country where 

to small to truly represent preference patterns for a cultural population) the 

breakdown of participant numbers can be found in the methods section above.  

 

The three most populated groups were chosen for comparison including Europe 

(N=35), North American (N=24) and Central Asia (N=195).  The 3 grouping were 

used to explore the impact country has on preference for fractal patterns in further 

detail. Table 9.7 below outlined the mean scores for each location group across the 

9 fractal dimension scales. 
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Table 9.7 Mean preference Choice across Continent Group 

 Europe (N=35) North America 

(N=24) 

Central Asia 

(N=195) 

  Mean  SD  Mean SD Mean SD 

D1.1 7.37 3.99 4.16 3.41 7.07 3.67 

D1.2 7.66 3.96 5.04 3.77 7.45 3.76 

D1.3 7.80 3.58 4.96 3.48 7.18 3.41 

D1.4 6.77 1.33 6.87 1.89 6.69 1.66 

D1.5 6.40 1.56 6.21 2.10 6.30 1.67 

D1.6 5.97 1.48 6.25 1.89 5.94 1.70 

D1.7 4.68 3.68 6.83 3.64 4.58 3.27 

D1.8 3.46 3.74 6.79 4.08 4.35 3.68 

D1.9 3.88 4.10 6.87 4.33 4.37 3.77 

 

 
Figure 9.5 Bar Chart of Mean Choice across FD split in the European Sample 

 

 

The Europe sample demonstrates (see Figure 9.5) preference in a negative linear 

relationship with fractal dimension. It appears the participants in the sample like 

the low fractal images (D1.1, 1.2 and 1.3) but after this point preference fell with 

increased fractal D (or complexity of the image). 
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Figure 9.6 Bar Chart of Mean Choice across FD split in the North American Sample 

 

The North American sample demonstrates (See Figure 9.6) a positive linear 

relationship for Fractal D, complexity and preference, with highest choice and 

appeal seen in the highly fractal images with less preference shown for the lower 

fractal images. This data does seem to indicate an increased peak at the mid-point 

(1.3-1.4D) in line with currently literature however the highest preference is 

shown for the most fractal image in the sample (D1.9). 
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Figure 9.7 Bar Chart of Mean Choice across FD split in the Central Asian Sample 

 

 

The Central Asia Sample made up the majority of the data set. As demonstrated in 

Figure 9.7, the highest preference is shown for the lower (D1.2) range of fractal 

patterns with a sharp drop in choice for images over the D1.6 point. Results 

suggest a slight linear in preference, with a peak at the lower end of the fractal 

scale than previous found. 

 

Mauchly’s test indicated that the assumption of sphericity had been violated, χ2 

(35) = 2884.82, p < .001, therefore degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity (ε = .185). The results show that there 

was a significant effect of fractal dimension, F (4.45, 425.84) = 4.41, p = .001, 

η2p=0.044. These results suggest that preference ratings differ significantly 

between each continent. 

Table 9.8 :Table of post-hoc differences across continent. 

 Europe North America Central Asia 

Europe  -1.665 .006 

North America   .006 

Central Asia    

* The mean difference is significant at the Adjustment for multiple comparisons: 

Bonferroni. 
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Following this analysis, post hoc pairwise comparisons were performed across the 

locations to explore the point(s) at which these significant differences can be seen. 

No significant differences were found between any pairwise comparisons (see 

Table 9.8), as ANOVA is a more sensitive test, suggesting that the findings should 

be taken with caution. This finding demonstrates the issues with using frequency 

data to explore aesthetic responses when using a 2A-FC design. 
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Summary:  

 

A linear preference for fractal images is demonstrated within the frequencies of 

choice is shown based on continent. Europe and Central Asia show a positive 

linear relationship with a variety of difference in the slope from the peak; positive 

linear relationship demonstrating highest preferences for lower fractal values and 

lowest preference for higher fractal values. The North America sample shows a 

negative linear preference, with highest preference shown for higher fractal 

patterns and least preference shown for lower fractal patterns. None of the 

continent grouping demonstrates support for a peak of preference at the mid-range 

of fractal dimension.  

 

Following the initial exploration of data using the methods outlined above to give 

an overview of trends in preference for fractal patterns it was decided to reanalyse 

the data using analytic techniques more suited to the data. The problem of using 

ANOVA’s for categorical data have been well documented (Jaeger, 2008), 

because of the forced choice designs used in the current study, the study uses in 

addition a generalised linear mixed effect model, using the principles of logistic 

regression but controlling for the random variance, considered noise in the 

ANOVA analysis, of both participants and the stimulus used within the study. The 

findings of the logit models will be explored below, for a further rationale of using 

generalised linear mixed models within the 2A-FC design see Chapter 6.  
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9.3.2 Linear Mixed-effects Modelling: 

 

The method tested the fit of 3 models exploring preference for fractal patterns 

from two ways.  Each model explored if and how well continent (Europe, North 

America, Central Asia), Gender and Age are at predicting preference for fractal 

images either falling within Taylor et al’s., (2011) defined ‘mid-range’ peak 

preference point (D1.3-1.5), falling within a ‘equalised mid’ range which (D1.4-

1.6) or the choice of the most complex image from each set (highest FD/lowest 

GIF score image) Both participant samples (participant ID) and stimulus display 

(Fractal Patterns) were analysed as random effect. The model equations are 

outlined below: 

 

• Model A - (Complexity ~ (Continent+gender+cAge)^2 + (1 | ID) + (1| display)) 

• Model B - (Taylor’s MidRange ~ (Continent+gender+cAge)^2 + (1 | ID) + (1| 

display)) 

• Model C - (Equalised Midrange ~ (Continent+gender+cAge)^2 + (1 | ID) + (1| 

display)) 
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Model A- Complexity 

 

(Complexity ~ (Continent+gender+cAge)^2 + (1 | ID) + (1| display) ) 

 

Model A explored the extent to which the variables continent, gender and age 

could predict the effect that the variables for the choice of the more complex 

images from a pair.  

 

Overall fit of the model: 

Analyses compared the variance explained by the fixed and random effects and 

explore the extent to which these variables explain the variance in the data.  Model 

A accounts for significantly more variance with fixed and random effects (AIC= 

6739.1, df=12) than the null model with random effects alone (AIC= 7023.2, 

df=3), suggesting that the model is improved with the additional variables (χ2 (9)= 

302.1, p<0.01).  

Table 9.9 - Results from complexity model analysis 

  β SE Z Pr(>|z|) 

Complexity Hypothesis Intercept -4.497 0.525 -8.55 <2e-16*** 

 Continent (c-e) 0.389 0.439 0.885 0.376 

 Continent (n-e) 1.286 0.579 2.221 0.0264* 

 Gender (m-f) 0.062 0.516 0.120 0.9043 

 Age -0.005 0.032 -0.153 0.8782 

 Continent (c-e) x Gender (m-f) 0.053 0.557 0.095 0.9244 

 Continent (n-e) x Gender (m-f) -0.514 0.769 -0.669 0.5038 

 Continent (c-e) x Age 0.019 0.031 0.603 0.5468 

 Continent (n-e) x Age 0.011 0.035 0.300 0.7642 

 Gender (m-f) x Age -0.013 0.020 -0.648 0.5171 

Significance Codes: ***0.001, **0.01,  *0.05.  

 

Additional goodness of fit analysis for each variable found that Continent 

significantly added to the overall fit of the model (χ2 (6)= 300.57, p<0.01) however 
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Gender (χ2 (4)= 1.721, p=0.787) and Age (χ2 (4)= 0.9057, p=0.9237) do not 

significantly add to the overall prediction of the model.  

 

Main Effects Complexity Model: 

 

 
Figure 9.8 Percentages of choice for complex image from a pair between Europe and North 

American Sample 

 

Main Effect of Continent:  

 

The analysis found significant difference between the 2 continents (Europe & 

North America) within the sample and location influenced choice of complexity ( 

= 1.286, z = 2.221, p = 0.026) with European participants having around 1.1% of 

choosing the complex image from the pair and the North American participants 

have a 3.8% of choosing the complex image from the pair.  
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Model B- Mid-Range Model 

 

(Taylor’s MidRange ~ (continent+gender+cAge)^2 + (1 | ID) + (1| display) ) 

 

Model B explored the extent to which the variables continent, gender and age 

could predict the effect that the variables for the choice of the images falling 

within Taylor’s Mid-Range from a pair.  

 

Overall fit of the model: 

Analyses compared the variance explained by the fixed and random effects and 

explore the extent to which these variables explain the variance in the data (results 

below in Table 9.10).  Model B is accounts for significantly more variance with 

fixed and random effects (AIC= 11585, df=12) than the null model with random 

effects alone (AIC= 12088, df=3), suggesting that the model is improved with the 

additional variables (χ2 (9)= 521.58, p<0.001).  

Table 9.10- results from mid-range model analysis 

  β SE Z Pr(>|z|) 

Mid-Range Hypothesis Intercept 1.874 0.663 2.828 0.005** 

 Continent (c-e) 0.118 0.209 0.564 0.572 

 Continent (n-e) 0.741 0.284 2.610 0.009** 

 Gender (m-f) 0.160 0.245 0.653 0.514 

 Age 0.001 0.015 0.060 0.952 

 Continent (c-e) x Gender (m-f) -0.051 0.266 -0.193 0.847 

 Continent (n-e) x Gender (m-f) -0.746 0.377 -1.979 0.048* 

 Continent (c-e) x Age 0.013 0.015 0.878 0.379 

 Continent (n-e) x Age 0.016 0.016 0.980 0.327 

 Gender (m-f) x Age -0.008 0.010 -0.828 0.408 

Significance Codes: ***0.001, **0.01, *0.05. 

 

Additional goodness of fit analysis found that Continent significantly added to the 

overall fit/prediction of the model (χ2 (6)= 514.75, p<0.001) however Gender (χ2 

(4)= 7.702, p=0.103) and Age (χ2 (4)= 4.94, p=0.293) do not significantly add to 

the overall prediction of the model.  
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Main Effects Mid-Range Model: 

 

 
Figure 9.9 Percentages of choice for mid-range image from a pair between Europe and North 

American Sample 

 

Continent:  

 

The analysis found a significant difference across 2 continents within the sample 

( = 1.874, z = 2.828, p < 0.005) with European participants having around 87% 

probability of choosing the mid-range image from the pair and the North 

American participants have a 75% probability of choosing the mid-range image 

from the pair (See Figure 9.9). 
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Interaction Effects: 

 

 
Figure 9.10 Percentages of choice for mid-range image from a pair across continent and gender 

groups 

 

In addition to the significant main effects of continent, the analysis shows a 

significant interaction between Continent (North America & Europe) and Gender 

( = -0.746, z = -1.979, p = 0.048). As demonstrated in Figure 9.10, European 

females have an 86% probability of selecting the mid-range images and European 

males have an 85% probability. Within the North American sample males have a 

75% probability whilst females have a 72%. We see differences in preference 

pattern across the 2 samples in gender and preference for the mid-range. 
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Model C- EqualizedMid-Range Model: 

 

(EqualizedMidRange~ (continent+gender+cAge)^2 + (1 | ID) + (1| display)) 

 

Model C explored the extent to which the variables continent, gender and age 

could predict the effect that the variables for the choice of the images falling 

within Equalized Mid-Range from a pair.  

 

Overall fit of the model: 

Analyses compared the variance explained by the fixed and random effects and 

explore the extent to which these variables explain the variance in the data.  Model 

C is account for significantly more variance with fixed and random effects (AIC= 

15504, df=12) than the null model with random effects alone (AIC= 16211, df=3), 

suggesting that the model is improved with the additional variables (χ2 (9)= 

724.54, p<0.001) (See Table 9.11).  

 

Table 9.11- results from equalised mid-range model analysis 

  β SE Z Pr(>|z|) 

Equalised Mid Hypothesis Intercept 1.563 0.473 3.304 0.001*** 

 Continent (c-e) 0.078 0.108 0.720 0.471 

 Continent (n-e) 0.222 0.147 1.512 0.130 

 Gender (m-f) 0.135 0.127 1.068 0.285 

 Age -0.003 0.008 -0.370 0.711 

 Continent (c-e) x Gender (m-f) -0.093 0.137 -0.675 0.499 

 Continent (n-e) x Gender (m-f) -0.402 0.194 -2.066 0.039* 

 Continent (c-e) x Age 0.006 0.008 0.762 0.446 

 Continent (n-e) x Age 0.008 0.009 0.940 0.347 

 Gender (m-f) x Age 0.002 0.005 0.319 0.749 

Significance Codes: ***0.001, **0.01, *0.05. 

 

Additional goodness of fit analysis found that Continent significantly added to the 

overall fit/prediction of the model (χ2 (6)= 709.49, p<0.001) however Gender (χ2 
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(4)= 5.0579, p=0.2814) and Age (χ2 (4)= 3.1719, p=0.5295) do not significantly 

add to the overall prediction of the model.  

 

Interaction Effects: 

 

The results of the model demonstrate no main effects of the predictor variables 

and the participant’s likelihood to select an equalised-mid range (EMR) image. 

The results do however demonstrate a significant interaction effect of Continent 

(North America - Europe) and Gender (Male - Female) on preference judgments 

( = -0.402, z = -2.066, p <0.05), suggested that preference for EMR is a function 

of both continent and gender together (See Figure 9.11).  

 

The direction of the estimate suggests that Female European participants show an 

82% choice to prefer the Mid-Range images and Males have an 80% choice. 

Within the North American participants the opposite gender effects are present 

with North American Males are more likely (76%)to choose the Mid-Range than 

Female (73%) North American participants.  

 

 
Figure 9.11 Percentages of choice for EMR image from a pair across continent and gender groups 
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Overall Summary of Results: 

 

The results demonstrate that continent; particularly the differences between North 

American and European participants and gender are significant predictors of 

differences in preference for fractal images. Overall these findings suggest that 

individual differences exist between participants based on Gender and the 

Continent in which participants live. None of the 3 models have evidence to 

support differences across age suggesting age (within this limited range sample) 

does not significantly influence differences preference. 

 

When testing Taylor et al’s., (2011) mid-range hypothesis we see high choices 

towards the mid-range images (Approx. 70-80% across all participants). The 

analysis finds significant differences in probability of preference choice across 

continent with European participants demonstrating higher probability of a mid-

range choice than the North American participants. There was no significant 

difference between European and the Central Asian samples. Interactions were 

found between gender and continent (Europe - North America) and gender with 

opposite preference patterns with European males being less likely than European 

females to select a mid-range image and North American females being less likely 

than North American males.  The EMR model found similar percentage 

probability as Taylor’s mid-range model towards selecting the equal mid images 

(70-80%) however there was no main effect across continent, gender or Age. 

Finding did show a significant interaction between patterns of preference across 

gender and continent with opposite male and females showing the greater patterns 

of preference in different directions in across the 2 continents.  As a comparison, 

the complexity model demonstrates a cross-continental difference in preference, 

with European participants being significantly less likely to select the complex 

images from the pair than the North American participants. Both groups have very 

small probabilities of selecting the complex image from the pair, demonstrating a 

negative relationship between fractal complexity preference selections.   

 

To summarise the results, the mid-range and complexity models found significant 

main effect of continent on preference, whereas the EMR model did not show this 
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variance in preference. Both mid-range models found an interaction between 

gender and continent. Results provide some support for the notion that preference 

for fractal patterns in mediated by individual differences. 
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9.4 Discussion: 

 

 

 
This study attempted to replicate findings from previous literature suggesting 

preference is centred at the mid-point in fractal dimension scale (Taylor et al., 

2011). The results allow an insight into the cross-cultural stability of fractal 

preference, proposed as universal by previous literature (Spehar et al, 2003, 

Berlyne, 1977). The international sample used in this study offered an opportunity 

to explore if preference patterns differ from cross-country samples. The study also 

aimed to explore the patterns of fractal preference with the specific aim to 

investigate Berlyne’s inverted-U, and Taylor’s mid-range preference hypotheses. 

The main findings from the study (both frequency data and modelled data) show 

significant individual differences can predict differences in preference for fractal 

patterns across culture with some interaction between country and gender.  

 

Mid-Range Models: 

 

The frequency analysis did not find evidence to support the mid-range hypothesis 

previously found in literature for fractals and complexity (Taylor et al., 2011; 

Berlyne, 1977), the patterns of preference instead seem to point towards a negative 

linear relationship between fractal dimension and preference choice. Additional 

analysis explored two models; the findings demonstrate some support for the mid-

range preference for complexity or fractal dimension. Aks & Sprott (1996) suggest 

that people’s preference is universally set at D1.3 because of continual visual 

exposure to nature’s patterns others argue that observers demonstrate preference at 

a lower D value because these scenes mimic the properties of African Savannah 

scenery, were our ancestors spent a large part of their evolutionary history (Wise 

& Leigh-Hazzrd, 2000). The findings of this study however dispute that 

preferences are set at D1.3, and instead appear to be variable dependent on the 

continent in which you reside.  
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Complexity Models: 

 

To allow comparisons to be made, an additional pattern of preference was 

explored in the analysis. This model aimed to explore the likelihood of 

participants choosing the most complex image from a pair. Previous literature has 

shown that preference for complexity falls in a linear relationship with higher 

preferences being shown for higher complexity in some stimulus (Forsythe et al, 

2008). The present findings do not support this hypothesis and as evidence in the 

frequency analysis, show instead a negative linear relationship with preference 

choices being most prominent for the lower FD values and falling at the higher 

end of the fractal scale. Analysis have found there is significant difference in this 

direction however across culture. Further modelling of the data allowed us to 

calculate the choice percentage scores of participants selecting the more complex 

image from the pair and found that these are very low across the sample, 

particularly for the European sample when the complex image of a pair was only 

selected 1% of the time. These findings suggest that the participants disliked the 

complexity within the images in the study and instead appear to show a strong 

preference towards the simpler stimulus images when making a preference choice. 

Linear patterns of preference with complexity have been found within previous 

studies in this thesis, Chapter 8 explores the impact of country on preference for 

fractal patterns using a rating scale design, and the results suggest a negative linear 

relationship between Egyptian participants and fractal complexity with a more 

variance and equally distributed preference patterns shown for the UK sample. 

The strength of these findings raises questions about the stability of the mid-range 

hypothesis as a universal model of fractal preference and instead suggests a 

negative linear relationship between fractal complexity and preference as a strong 

contender to this established theory. 

 

Continent Difference in Preference: 

 

Continent emerged as a significant predictor of preference for fractal complexity 

over the lower and simpler fractal images within the stimulus set. Participants 

from North American and Europe differed significantly with results suggesting 
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negative linear relationships between each continent and preference for 

complexity.  

 

Theoretical links, explaining the Patterns of Preference: 

 

The ecological variant theory that exposure to environmental patterns of 

complexity or those that display fractal properties could potentially be influence 

and shape aesthetic responses. The mere exposure hypothesis (Zajonc, 1968) 

states that that exposure to stimulus can result in heightened preferences as we 

demonstrate higher aesthetic judgment to familiar objects, patterns of scenes. 

Reber et al., (2004) proposed a processing fluency model, which may account for 

increased preference with mere exposure as they suggest familiarity results in ease 

of processes that are hedonically marked. The current findings show significant 

differences for complexity across continents and this could be suggested to be a 

result of the different visual experience those residing in different continents may 

have, this conclusion brings into question the impact environmental exposure has 

on our preferences for shapes and structures. Not only on larger macro-scales such 

as continent and country, but also in terms of smaller micro-scales such as the 

daily visual experiences from home, work and socializing.  The environmental 

classification in which a person lives, or develops may impact our preference for 

fractal patterns. As fractal patterns are commonly found in nature, those who 

develop and live in rural setting are regularly viewing complex fractal patterns (in 

trees, plants and natural landscapes), people who spend much of their time in 

urban environments have little exposure to fractal patterns, as man-made 

structures such as roads, buildings and computer screens do not display fractal 

complexity. Based on Zajonc (1968) mere exposure hypothesis it could be 

suggested that higher preference will be shown for the scenes that resemble those 

you see regularly, therefore urban participant show preference for simple fractal 

patterns (based on the lack on complexity in their daily visual field) and 

participant in rural environments will show preference for more complex higher 

fractal patterns because of the complexity they see in their environment. This 

assertion needs further testing, the environments in which participants spend most 

of their time should be investigated to explore if exposure to natural patterns, or 
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lack there of, could be accountable for the differences in linear preference found in 

this study.  

 

Continent and Gender interactions: 

 

Further to the differences between continents and preference for complexity 

discussed above, the results also found two cases of interaction between continent 

and gender at predicting aesthetic responses to fractal patterns. The role that 

continent may play on preference has been explored above, however results 

demonstrate that gender is a strong predictor alongside continent to complex and 

mid-range fractal patterns. It appears that perceptual styles or affective processing 

may result in significant differences in aesthetic response between gender, one 

study found that paintings that showed behaviour evoked more pleasure and 

attention among female participants over male participants (Fedrizzi, 2012). The 

author suggests that neuroanatomical studies can enhance the comprehension of 

why such gender differences appear to exist (Fedrizzi, 2000) and other evidence 

demonstrating gender differences in cognitive processes (Leder et al, 2004) 

support this claim.  

 

Cela-Conde et al., (2009) found gender-related differences in parietal activity 

during aesthetic appreciation and judgments. These results suggest that there are 

difference in the way males and females process aesthetic appreciation, although 

specifying how the differences manifest in response is challenging and yet to be 

explored in great depth. When looking at landscape preferences, gender 

differences have been found previously (Kellert, 1978; Lyons; 1983) some suggest 

these differences in response to landscape between men and women may have 

evolutionary roots. Silverman and Eal’s (1992) hunter-gather hypothesis offers 

one possible explanation for the differences in perceptual strategies and therefore 

aesthetic responses. The theory outlines that gender differences in spatial ability is 

a qualitative result (rather than any quantitative differences) of the different tasks 

of the sexes in hunter-gather tasks.  Spatial skills associated with hunting are more 

developed in males and females show heightened peripheral perception and 

incidental memory for locations and objects because of the gathering tasks. 

Further findings suggest that males look at the whole picture during aesthetic 
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judgment, where as females tend to pay attention to smaller details within the 

picture (Cela-Conde et al 2009). Perceptual style and the perceptual features of the 

artwork have been found to be consequential to aesthetic judgments (Boccia et al., 

2014). 

 

Limitations of study:  

 

The study has made some intriguing findings but does have some limitations, 

which will be discussed briefly and reflected upon for future studies within this 

thesis.  One such limitation is the grouping into continents of the participants; it is 

acknowledged that using continent, as the grouping is a rough method of grouping 

based on available data, the author demonstrates an awareness that environments 

within continents and within countries have a lot a variation, and highlight the 

need for future research to be focused on the factors within environments, such as 

rural, urban or suburban settings to attempt to unpick the role environment plays 

in preference for fractal patterns. In addition to this grouping limitation, as most 

participants (62%) were recruited from India it was recognized that this sample 

had the most impact on the preference patterns found in the overall sample results. 

However despite the invariance, the largest differences were found between North 

America and Europe, rather Europe and the most populated continent of Central 

Asia.  

 

The results offer conflicting evidence to the current trends and findings with the 

field of empirical aesthetics, which have previously found preferences for the mid-

range to be relatively stable across individual variation. The findings show that 

preference for complexity is low (between 1-3%) within the sample, however 

there are significant differences in the probability of choosing (or not choosing) a 

complex image from the pair across culture. The mid-range findings show that 

people do indeed have higher preference for the mid-range model as probability 

fall within the higher percentile (around 80%). This probability however when 

compared to the complexity model likelihood (or unlikelihood of almost 99% not 

choosing the complex image) there appears to be some difference between the fit 

of the models to the data.  
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Conclusions:  

 

The results of this study show that fractal dimension can be a predictor of 

preference for natural looking computer generated stimulus, however the patterns 

of this preference seem to be influenced by individual differences in participants 

suggesting that visual environment (continent) and gender may also play a role in 

influencing our aesthetic choices.  
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10.0 Optimal Fractal Preference; Stability across culture 

and within sub-cultural visual environments 

 

10.1 Background & Rationale 

10.2 Methods 

10.3 Results 

10.4 Discussion 

 

This study aims to explore the links between macro-cultural environment 

(UK/Egypt) and mirco-cultural environment (urban/rural), as well as gender and 

age as predictors of preference for fractal patterns. Previous studies in this thesis 

demonstrate linear relationships between fractal dimension and preference 

dependent on the continent in which participants reside (Chapter 9) whereas as 

previous literature suggests images within a mid-range fractal dimension will be 

universally preferred (Spehar et al, 2003;Taylor et al, 2006).  This study explores 

two groups of participants from the UK and Egypt, residing in rural, urban and 

suburban environments within each of the two countries. The study used a 2A-FC 

online design, and samples were recruited using opportunities samples at 

universities. The results show there was no significant difference in preference 

based on country. Significant differences however were found between 

participants in the rural and urban groups.  The rural groups shows higher 

preference for higher complex FD (Fractal Dimension) images with much lower 

preference for lower complexity FD images and the urban group shows a linear 

relationship in the opposite direction in which lower complexity FD images were 

most preferred and higher complexity FD images least preferred. These results 

suggest that visual environment and the patterns we are exposed to have 

significant involvement in our how our preferences are shaped rather than any 

particular cultural quality of the countries in which we reside. The results offer 

support for cognitive exposure theories of preference and offer a conflicting 

account to current literature in the field regarding the universality or evolutionary 

theories of preference shaped around the mid-point of fractal scales. 
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10.1 Background & Rationale: 

 

Chapter 9 investigated the stability of the mid-range hypothesis of fractal 

preference in re-testing. The results raised questions on the universality of 

preference across culture. Results did not support an inverted U-shaped preference 

with optimal peak in appeal at the mid-range, as suggested in previous literature. 

Instead a linear relationship was found which differed significantly in the direction 

between continent groupings. With some groupings (Europe & Central Asia) 

preference demonstrated a negative linear relationship in which preference 

decreasing with fractal dimension. Alternatively other samples (such as North 

America) demonstrated a positive linear relationship, in which preference is 

lowest for the lowest FD stimulus and highest for the most complex FD stimulus.  

 

The present study aims to confirm and explore the linear preference relationship 

found in previous studies in further detail. It uses two targeted cross-cultural 

samples (UK and Egypt) to explore the influence of culture on preference.  In 

addition, within-culture sub-groups will be used to explore the impact of visual 

environment on preference. Participants will be recruited from differing 

environmental classifications (rural, urban and suburban). The sample aims to 

show whether differences in preference are influenced by our immediate micro-

visual environment (for example where we live) or by our more general macro-

visual environment (a more generalized view of the culture in which we live).  

Finally this study explores the use of additional measures of complexity when 

investigating the preference shown for fractal images.  As the two concepts of 

fractal dimension and complexity both influence our aesthetic responses, it was 

decided that alongside fractal dimension measured complexity models would also 

be explored to examine the correlations between fractals and complex in our 

visual experiences. 

 

The research aims to explore the impact of cross-cultural and sub-cultural 

environment of visual preferences for complex natural shapes as well as the 

potential impact of gender and age. The area currently has conflicting findings 

based from distinct disciplines with little interdisciplinary cross-over, it is hoped 
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that this research will go some way in exploring the inconsistencies and offer a 

more rounded approach to understanding aesthetic relationships with fractal 

patterns. 
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10.2 Methods 

 
Participants: In total 80 participants took part in the study. Participants were 

recruited through opportunity sampling through university student Internet 

communication.  

 

UK Sample: 47 participants were recruited for the UK Sample via electronic 

communication. The UK sample has a mean age of 21yrs, and contained 12 male 

& 35 female participants. Participants were asked to classify the environment they 

resided in; From the UK sample 15 participants classified their environments as 

‘urban’, 17 stated ‘rural’, 13 ‘suburban’ and 2 participants felt their environment 

was ‘other’.  

 

Egypt Sample: 33 participants were recruited for the Egypt sample from Monufia 

University. Students were recruited using online communication. The Egypt 

sample had a mean age of 20yrs and contained 16 males and 17 females. When 

participants were asked to classify their environment, 8 stated their environment 

was ‘urban’, 22 as ‘rural’ and 3 classified as ‘suburban’.  

 

Materials: The stimulus used in the study consisted of 9 sets of computer 

generated natural-seeming fractals each with 9 iterations varying in FD (See 

Figure 10.1 for example set). For full details of stimulus development and 

experimental design see chapter 6. In total, participants made choices with 57 

pairs were presented in a randomised order.  
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Figure 10.1- Example of 1 full set of Fractal stimulus used in study 

 

Design: The study used a between subjects 2 alternative forced choice design (2A-

FC). This method was chosen as an established method of aesthetic judgments 

(see chapter 6 for full rationale). All data collection was conducted online and 

distributed through university communication systems for recruitment. The 

website surveygizmo.com allowed the design, development and distribution of the 

survey online. 

 

Procedure: Each participant was given an overview of the study details and 

provided with a link to follow should they wish to volunteer for the study. All 

participants were asked to read an information page and record electronic consent 

prior to taking part in the study. After providing demographic information 

including environment classification (Urban, Rural, Suburban or Other), Country 

of residence (UK or Egypt), gender and Age. Participants were presented with 57 

pairs of fractal images.  Each page showed the pair of images as asked the 
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participant to “click the image you like best”; this was the same design for each 

pairing in the study.  A choice between the pairing was required for participants to 

move to the next pairing. After the participants had completed each forced-choice 

pairing they were taken to a debrief information page to explain the purpose of the 

study in greater detail and also provided with contact details should they wish to 

withdraw their results within 2 weeks of completing the study. 
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10.3 Results 
 

10.3.1 Patterns of preference 

 

 
Figure 10.2 Bar Chart of Overall Preference patterns across the fractal scale. 

 

The initial analysis of this study involved exploring the frequency of choice across 

the full fractal scale used in the study.  This analysis (whilst the limitations are 

acknowledged) offers a way to explore the patterns of preference to allow 

comparison between the mid-range and linear complexity hypotheses.  
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Figure 10.3 Frequency of overall preference choice (UK) 

 

Looking at the UK sample (See Figure 10.3) we see the highest number of choices 

fall at the mid-range of the fractal scale with the peak relatively high within this 

area (D1.6, M=6.66, SD=1.92) and preferences fall lowest towards the low-end 

(D1.1, M=5.64, SD=3.95) and high-end of the scale (D1.9, M=5.32, SD=4.11). 

Additional analysis however found no significant differences across any of the 

difference levels in choice frequency (Mauchly’s test indicated that the 

assumption of sphericity had been violated, χ2 (35) = 510.857, p <0.001, the 

Greenhouse-Geisser adjustment was therefore applied ε=.187, F(1.49, 

68.68)=0.970, p=.362). 
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Figure 10.4 Frequency of overall preference choice (Egypt) 

 

 

Within the Egyptian sample (See Figure 10.4), preference appears more varied 

across each fractal level. Preference choice peaks equally at both D1.4 (M=6.34, 

SD=2.03) and D1.6 (M=6.36, SD=1.83) with preference choices falling lowest at 

D1.8 (M=5.09, SD=3.95). Additional analysis however found no significant 

differences across any of the difference levels in choice frequency (Mauchly’s test 

indicated that the assumption of sphericity had been violated, χ2 (35) = 300.33, p 

<0.001, the Greenhouse-Geisser adjustment was therefore applied ε=.192, F (1.54, 

49.14)=0.759, p=.441). 

 

Gender Differences in Frequency of Preference Choices: 

 

Repeated measures ANOVA found differences in mean preference choices 

between Male and Female participants. Within the Male sample preference choice 

peaks at D1.4 (M=7.107, SD=1.79) and decreases with increases in fractal 

dimension level with the lowest choices for the highest fractal stimulus (D1.9 

M=4.14, SD=3.99) (See Figure 10.5). 
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Figure 10.5 Bar Chart of preference choices across fractal scale in Male Participants 

 

Within the female sample (See Figure 10.6) preferences peak at a later point at 

D1.6 (M=7.00, SD=1.85) and preference choice falls from a peak point with the 

least preference choice for the lowest FD level (D1.1 M=5.11, SD=3.62). 

 
Figure 10.6 Bar Chart of preference choices across fractal scale in Female Participants 

 

Mauchly’s test indicated that the assumption of sphericity had been violated, χ2 

(35) = 782.17, p <0.001, the Greenhouse-Geisser adjustment was therefore applied 

ε=.193, Analysis found significant difference between gender and fractal 

dimension (F (1.54, 120.26)=3.55, p=.043). 
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Environmental Classification: 

 

The patterns of preference were also explored across the environmental 

classification. It was hypothesised that this micro-cultural split would yield 

preference choice differences because of visual differences in the environment 

because of the presence (or lack-there-of) of fractal patterns.  

 

Urban: As demonstrated in Figure 10.7, the participants identifying themselves as 

‘Urban’ show preferences that group at the lower end of the continuum and peak 

at D1.3 (M=7.91, SD=3.76), and falls (nearly) incrementally from this point with 

the lowest preference choice at the highest end of the scale (D1.9 M=3.69, 

SD=4.07).  This pattern of preference points towards a negative linear relationship 

between complexity and preference choice. 

 
Figure 10.7- Bar Chart of preference choices across fractal scale in urban sample. 

 

 

 

Rural: As demonstrated in Figure 10.8, the participants identifying themselves as 

‘Rural’ show preferences that group at the higher end of the continuum and peak 

at D1.7 (M=7.11, SD=3.71), and shows a steady incremental increase up to this 

point with the lowest preference choice at the lower end of the scale (D1.1 

M=4.71, SD=3.40).  This pattern of preference points towards a positive linear 

relationship between complexity and preference choice the opposite to the pattern 
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seen for the urban sample. 

 

 

Figure 10.8- Bar Chart of preference choices across fractal scale in rural sample. 

 

Suburban: As demonstrated in Figure 10.9, the participants identifying 

themselves as ‘Suburban’ show preferences that group at the mid-range of the 

fractal scale with the peak in preference at the mid point (both D1.5 M=7.10, 

SD=1.83; and D1.6 M=7.10, SD=2.10) offering some evidence to support the mid-

range hypothesis of fractal preference. Preferences are lowest for the highest 

(D1.9, M=4.50, SD=3.62) and lowest (D1.1, M=5.65, SD=3.55) levels of fractal 

dimension in the scale. This pattern of preference points towards an Inverted-U 

relationship between complexity and preference choice. 
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Figure 10.9- Bar Chart of preference choices across fractal scale in Suburban sample. 

 

 

Further Inferential Statistics between Environmental Classification: 

 

Repeated-measured ANOVA found that preference choices differ significantly 

between the different environmental classifications. Mauchly’s test indicated that 

the assumption of sphericity had been violated, χ2 (35) = 728.07, p <0.001, the 

Greenhouse-Geisser adjustment was therefore applied ε=.196. The results found 

no significant difference across fractal level F (1.57, 117.75)=2.523 p=.097) 

however there was a significant interaction between fractal level and 

environmental classification F (3.14, 117.75)=3.97, p=.009). Post-hoc pairwise 

comparison found that significant differences between each environmental 

classification.  

 

Table 10.1 Results of one-way ANOVA between environments 

 Results of One-Way ANOVA 

D1.1 F (2, 75)= 4.25, p=0.018 

D1.2 F (2, 75)= 4.39, p=0.016 

D1.3 F (2, 75)= 4.87, p=0.010 

D1.4 F (2, 75)= .619, p=0.541 

D1.5 F (2, 75)= 3.71, p=0.029 
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D1.6 F (2, 75)=. 990, p=0.377 

D1.7 F (2, 75)= 4.63, p=0.013 

D1.8 F (2, 75)= 2.78, p=0.069 

D1.9 F (2, 75)= 4.75, p=0.011 

 

Post-hoc Analysis: Following the significant difference across environmental 

group demonstrated in Table 10.1, post-hoc analysis was conducted across each 

fractal dimension level and the significant differences (Bonferroni adjustment for 

multiple comparisons) between environmental classifications. See Tables 10.2-

10.10 for results of post-hoc analysis. 

 

Table 10.2 pairwise comparisons between environments for D1.1 fractal stimulus 

D1.1 Urban Rural Suburban 

Urban  2.894* 1.959 

Rural   -.936 

Suburban    

 

Table 10.3 pairwise comparisons between environment for D1.2 fractal stimulus 

D1.2 Urban Rural Suburban 

Urban  2.827* 2.113 

Rural   -.714 

Suburban    

 

Table 10.4 pairwise comparisons between environment for D1.3 fractal stimulus 

D1.3 Urban Rural Suburban 

Urban  2.942* 1.763 

Rural   -1.179 

Suburban    

 

Table 10.5 pairwise comparisons between environment for D1.4 fractal stimulus 

D1.4 Urban Rural Suburban 

Urban  .194 -.435 

Rural   -.629 

Suburban    
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Table 10.6 pairwise comparisons between environment for D1.5 fractal stimulus 

D1.5 Urban Rural Suburban 

Urban  .0571 -1.100 

Rural   1.157* 

Suburban    

 

Table 10.7 pairwise comparisons between environment for D1.6 fractal stimulus 

D1.6 Urban Rural Suburban 

Urban  -.409 -.796 

Rural   -.386 

Suburban    

 

Table 10.8 pairwise comparisons between environment for D1.7 fractal stimulus 

D1.7 Urban Rural Suburban 

Urban  -2.940* -1.326 

Rural   1.614 

Suburban    

 

Table 10.9 pairwise comparisons between environment for D1.8 fractal stimulus 

D1.8 Urban Rural Suburban 

Urban  -2.431 -1.374 

Rural   -1.057 

Suburban    

 

Table 10.10 pairwise comparisons between environment for D1.9 fractal stimulus 

D1.9 Urban Rural Suburban 

Urban  3.133* -.804 

Rural   2.329 

Suburban    

 

Summary:  

The preliminary frequency analysis in this study also revealed that the significant 

differences in preference between environmental are present between the ‘urban’ 

and ‘rural’ sample therefore this comparison was included in the LME analysis 
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and not comparison with the suburban sample.  Although as acknowledged in 

previous studies within this thesis, the use of frequency data in 2A-FC designs has 

limitations, this initial analysis shows some interesting patterns of preference as a 

result of individual participant environmental classification. Further, more robust, 

analysis is required to explore the differences identified here in greater depth and 

this will be explored in the next section.  
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10.3.2 Linear-mixed effect modelling: 

 

The study uses linear mixed-effect modelling. This method tested the fit of 3 

models exploring preference for fractal patterns.  Each model explored if and how 

well country (Egypt or UK), environmental classification (Urban or Rural), 

Gender and Age predict preferences for fractal images, either falling within 

Taylor’s (2010) defined ‘mid-range’ peak preference point (D1.3-1.5), falling 

within a ‘equalized mid’ range which (D1.4-1.6) or the choice of the most 

complex image from each set (highest FD/lowest GIF score image). Both 

participant samples (participant ID) and stimulus display (Fractal patterns) were 

analysed as random effect. The model equations are outlined below: 

 

 Model A- (complexity ~ (country+enviro+gender+cAge)^2 + (1 | ID) + (1| 

display)) 

 Model B -(Taylor’sMidRange~ (country+enviro+gender+cAge)^2 + (1 | ID) + (1| 

display)) 

 Model C- (EqualizedMidRange~ (country+enviro+gender+cAge)^2 + (1 | ID) + 

(1| display)) 
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Model A- Complexity 

 

complex ~ (country + enviro + gender + cAge)^2 + (1 | ID) +   (1 | display)) 

 

Model A explored the extent to which the variables Country, Environmental 

Classification, Gender and Age could predict the effect that the variables for the 

choice of the more complex images from a pair.  

 

Overall fit of the model: 

Analyses compared the variance explained by the fixed and random effects and 

explored the extent to which these variables explain the variance in the data.  

Model A (results shown in Table 10.11) is accounts for significantly more 

variance with fixed and random effects (AIC= 3227.6, df=13) than the null model 

with random effects alone (AIC= 3234.5, df=3), suggesting that the model is 

improved with the additional variables (χ2 (10)= 26.884, p=0.003).  

 

Table 10.11- Results from complexity model analysis 

  β SE Z Pr(>|z|) 

Complexity hypothesis Intercept 0.745 0.796 0.936 0.349 

 Country (e-u) -1.779 3.536 -0.503 0.615 

 Enviro (u-r) -2.965 1.105 -2.685 0.007** 

 Gender (m-f) -0.011 3.066 -0.004 0.997 

 Age -0.010 0.073 -0.139 0.889 

 Country(e-u) x enviro (u-r) 1.275 1.062 1.202 0.229 

 Country (e-u) x gender (m-f) -0.815 1.152 -0.708 0.479 

 Country (e-u) x Age -0.100 0.351 -0.286 0.775 

 Enviro (u-r) x Gender (m-f) -2.226 1.109 -2.007 0.045* 

 Enviro (u-r) x Age -0.158 0.098 -1.612 0.107 

 Gender (m-f) x Age -0.068 0.295 -0.232 0.816 

Significance Codes: ***0.001, **0.01, *0.05. 

 

Additional goodness of fit analysis found that Age (χ2 (4)= 7.9547, p=0.093), 

Country (χ2 (4)= 2.6476, p=0.618) and Gender (χ2 (4)= 7.2841, p=0.122) do not 

significantly add to the overall prediction of the model. Environmental 
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classification was found to significantly improve the overall fit of the model (χ2 

(4)= 15.902, p=0.003). 

 

Main Effects: 

 

Environmental classification significantly influenced choice of complexity ( = -

2.965, z = -2.685, p < 0.01) with rural participants having on average a 50% 

chance of choosing the complex image from the pair and the urban participants 

have an average of 6% chance of choosing the complex image from the pair (See 

Figure 10.10). 

 

 
Figure 10.10 Bar Chart demonstrating differences Main effect of environment in Complexity 

Model 

 

 

Interaction Effects: 

 

In addition to the significant main effects of environment, the analysis shows a 

significant interaction between Environment and Gender ( = -2.226, z = -2.007, p 

= 0.045) (See Figure 10.11). Males in Urban environments have an average of 
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5.74% and Females in Urban environments have a 5.79%, Males in Rural 

environments have an average of 46.79% and Females in Rural 47.02%. Although 

relatively small across averaging, there is a different directional relationship 

between complexity choice and gender.  

 
Figure 10.11 Bar Chart demonstrating interaction between enviro and Gender in Complexity 

Model 
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Model B- Mid-Range 
 

MidRange ~ (country + enviro + gender + cAge)^2 + (1 | ID) +  (1 | display)) 

 

Model B explored the extent to which the variables country (UK – Egypt), 

environmental classification (Urban – Rural), Gender and Age could predict the 

effect that the variables for the choice of the mid-range image from a pair.  

 

Overall fit of the model: 

Analyses compared the variance explained by the fixed and random effects and 

explore the extent to which these variables explain the variance in the data.  Model 

B is accounts for significantly (marginally) more variance with fixed and random 

effects (AIC= 2658.4, df=13) than the null model with random effects alone 

(AIC= 2656.6, df=3), suggesting that the model is improved with the additional 

variables (χ2 (10)= 18.163, p=0.052).  

 

Table 10.12- results from mid-range model analysis 

  β SE Z Pr(>|z|) 

Mid-Range Hypothesis Intercept 2.845 0.784 3.630 0.00028*** 

 Country (e-u) -1.252 1.338 -0.936 0.349 

 Enviro (u-r) -0.790 0.404 -1.955 0.050 

 Gender (m-f) 1.482 1.167 1.270 0.204 

 Age 0.021 0.029 0.708 0.479 

 Country(e-u) x enviro (u-r) 0.694 0.421 1.650 0.099 

 Country (e-u) x gender (m-f) -0.315 0.441 -0.715 0.474 

 Country (e-u) x Age -0.101 0.132 -0.767 0.443 

 Enviro (u-r) x Gender (m-f) -1.329 0.435 -3.057 0.002** 

 Enviro (u-r) x Age -0.051 0.036 -1.413 0.158 

 Gender (m-f) x Age 0.095 0.112 0.852 0.394 

Significance Codes: ***0.001, **0.01, *0.05. 

 

Additional goodness of fit analysis found that Country (χ2 (4)= 2.8553, p=0.582) 

and Age (χ2 (4)= 14.372, p=0.549) do not significantly add to the overall 
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prediction of the model. Gender (χ2 (4)= 10.122, p<0.01) and Environmental 

Classification was found to significantly improve the overall fit of the model (χ2 

(4)= 7.2841, p<0.001). 

 

Main Effects: 

 

Environmental classification significantly influenced choice of mid-range ( = -

0.790, z = -1.955, p = 0.050) with rural participants having around 94% of 

choosing the Mid-Range image from the pair and the urban participants have an 

89% probability of choosing the Mid-Range image from the pair (See Figure 

10.12).  

 
Figure 10.12- Bar Chart demonstrating differences Main effect of environment in Mid-range 

Model 
 

Interaction Effects: 

 

In addition to the significant main effects of environment, the analysis shows a 

significant interaction between Environment and Gender ( = -1.329, z = -2.007, p 

= 0.002). As demonstrated in Figure 10.13, the significant differences were found 

between males (93.96%) and females (78.85%) in the Urban sample and between 

males (97.96%) and females (88.80%) in the Rural sample. 
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Figure 10.13- Bar Chart demonstrating interaction between of enviro and Gender in Mid-range 

Model 
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Model C- Equalised Mid-Range 
 

 

Equalised Mid ~ (country + enviro + gender + cAge)^2 + (1 | ID) +  (1 | display)) 

 

Model C explored the extent to which the variables Country (UK – Egypt), 

Environmental Classification (Urban – Rural), Gender and Age could predict the 

effect that the variables for the choice of the more complex images from a pair.  

 

Overall fit of the model: 

Analyses compared the variance explained by the fixed and random effects and 

explore the extent to which these variables explain the variance in the data.  Model 

C does not account for significantly more variance with fixed and random effects 

(AIC= 3330.6, df=13) than the null model with random effects alone (AIC= 

3318.0, df=3), suggesting that the model is not improved with the additional 

variables (χ2 (10)= 7.458, p=0.682).  Additional goodness of fit analysis found 

each variable, Country (χ2 (4)=2.127, p=0.712), Environmental Classification (χ2 

(4)= 4.389, p=0.356), Gender (χ2 (4)= 3.116, p=0.539) or Age (χ2 (4)=5.179, 

p=0.269) do not significantly add to the overall prediction of the model.  

 

Table 10.13- results from equalised mid-range model analysis 

  β SE Z Pr(>|z|) 

Equal-Mid-Range  Intercept 1.802 0.446 4.044 5.27e-05 *** 

 Country (e-u) -1.129 0.868 -1.301 0.193 

 Enviro (u-r) -0.233 0.268 -0.868 0.385 

 Gender (m-f) 0.947 0.755 1.254 0.209 

 Age 0.037 0.019 1.900 0.057 

 Country(e-u) x enviro (u-r) 0.328 0.271 1.211 0.226 

 Country (e-u) x gender (m-f) -0.071 0.284 -0.250 0.803 

 Country (e-u) x Age -0.109 0.086 -1.267 0.205 

 Enviro (u-r) x Gender (m-f) --0.466 0.279 -1.665 0.096 

 Enviro (u-r) x Age -0.029 -1.245 -1.245 0.213 

 Gender (m-f) x Age 0.069 0.957 0.957 0.338 

Significance Codes: ***0.001, **0.01, *0.05. 
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The analysis found that none of the variables used in the analysis contributed to 

the fit of the model with the data, and based on this finding and the similarity 

between Model’s B & C in early studies, the decision was made to discontinue the 

analysis in future studies within this thesis. This type of model has no support 

from literature and it has been shown there is no empirical evidence to suggest this 

model will no longer be used. 

Despite the limitation with the model fit, the figure below (Figure 10.14) 

demonstrates no significant differences between country ( = -1.129, z = -0.868, p 

= 0.193) with UK participants having an average of 88.77% and Egyptian 

participants have a 72.63%.  

 

 
Figure 10.14 Bar Chart demonstrating main effect between country in EMR Model 

 

 

There was also no significant difference between environmental classifications in 

( = -0.223, z = -1.301, p = 0.385) with rural participants on average of 83.38% 

and urban participants 79.03%. 
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Figure 10.15 Bar Chart demonstrating main effect between environment in EMR Model  

 

 

Overall Summary of Results: 

 

The results of this study give some interesting insight into the individual 

differences involved in aesthetic evaluation of fractal images and the ‘ideal’ 

mapping or patterns of preference.  

Initial analysis of the frequency data found significant differences in preference 

patterns as a result of environmental classification. This points to differences in 

preference shaped by micro-cultural (Environmental Classification) rather than 

macro-cultural (country).  Looking at the overall patterns of preference we see no 

differences between country as both display more consistency across the FD 

levels. The frequency analysis shows differences in the direction of linear 

preference between gender. Males show highest preference for the lowest FD and 

lowest preference choices for highest FD whereas Females show the highest 

preference later in the fractal scale (D1.6) and the lowest FD value shows that 

lowest preference choices.  Similar differences in patterns of preference are seen 

in environmental classifications. The Urban sample demonstrates a negative linear 

relationship with highest preference being shown for the lowest FD levels whereas 



 

 227 

the rural sample shows a positive linear relationship with the highest preference 

being shown for the highest FD levels. The suburban sample shows a much more 

traditional inverted-U shapes preference pattern.  

 
Figure 10.16 Averaged % of choosing images in each model  

 

Model A (complexity); found that overall percentage choices are lower in the 

complexity model than in either of the mid-range models. Results of the model 

also demonstrate individual differences between participants as a result of 

environmental classification. Rural participants are more likely to choose a 

complex image from a pair than urban participants. Results also show that this 

main effect interacts with gender showing opposite gender effects in higher 

percentage for complexity.  Model B (Taylor’s Mid-Range) found marginally 

significant individual differences between urban and rural participants. Rural 

participants are more likely than urban participants to select a mid-range image 

from the pair. The model also found significant interactions between Environment 

and Gender; in both environmental groups Males are significantly more likely to 

choose the mid-range image from the pair.  The fixed variables in Model C 

(Equalised Mid-Range) were unsuccessful in accounting for more variance than 

the random effect alone. The analysis found no significant differences as a result 

of environment, age, gender or country.  
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In summary, this study found that preference for fractal complexity differ 

significantly as a result of the individual differences environment and gender but 

not as a result of Country and Age.  
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10.4 Discussion 
 

Results from the study show that individual differences play a role in predicting 

preference for fractal dimension. This finding offers evidence against the proposal 

that preference is universally ‘set’ at the mid-range of the fractal scale (Spehar et 

al., 2003). The findings instead suggest that individual variables such as 

environment and gender are strong predictors of preference for both fractal 

complexity and preferences falling within the mid-range.  

 

Environmental differences: 

 

Micro-cultural differences in environment emerge as strong predictors of 

preference for fractals in Model A & B where as macro-cultural difference 

(country) does not predict differences in preference.  In Model A analysis, 

exploring complexity, the model found that rural dwellers are nearly 10 times 

more likely to choose the complex image from a pair than the urban dwellers. One 

possibility to understand this strong difference in preference could be that the 

urban participants generally experience less fractal complexity in their daily visual 

experiences and instead are more often repeatedly exposed to Euclidean geometry 

in man-made structures. The lack of familiarity with the complex fractal stimulus 

could result in a lack of fluency and difficulty of processing these shapes (Reber et 

al., 2004), which would result in lower aesthetic responses. The rural participants 

however are regularly exposed to fractal patterns in the natural environment. 

Fractal patterns can be seen in the trees, mountains, clouds, plants and more and 

this repeated exposure to fractal patterns could heighten the aesthetic response in 

the rural participants because of their familiarity with this type of pattern in their 

visual environment.  

In Model B, the analysis explored the influence of the individual variables on the 

choice of the mid-range image in a pair. The results show that preferences differ as 

a result of environmental classification as also seen in the results of Model A. This 

difference is only marginally significant however rural dwellers are more likely to 

choose a mid-range image from a pair of stimulus than the urban dwellers. 

Analysis has shown that many of the natural objects we see in daily visual 
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experiences display mid-range fractal properties that may account for the higher 

responses from rural participants. The difference between percentage choice 

however is smaller than in Model A, suggesting less variation in choice for fractal 

patterns at this level which would offer some support for the mid-rang hypothesis 

in which preference falls consistently between D1.3-1.5 as proposed by Taylor et 

al (2011).  

 

Gender differences: 

 

In addition to the individual difference between environmental classification and 

preference choice, both Model A and B found significant interactions between 

environmental classifications and gender. The complexity model found that in 

both rural and urban participants females had a higher percentage of choosing the 

most complex image suggesting perhaps that females have a higher threshold for 

preference for visual complexity.  In the mid-range model, the percentage of 

choice for the mid-range fractal stimulus is higher in male participants from both 

the urban and rural samples. These results suggest that gender differences exist 

between complex and mid-range models and suggest an unusual function of 

gender on probability of preference choices for fractal images. Females appear to 

show higher preference for complexity and males a higher preference for mid-

range images. These gender differences need to explore further and other studies 

within this thesis aim to take these questions forward.  

 

Conclusions:  

 

Overall the results from this study suggest that preferences for fractal and complex 

patterns are influenced by our direct visual experiences in the environment, 

whether participants self-classified the residential environment as ‘urban’ or 

‘rural’. This finding is new to the field and lays the groundwork for potential 

wider interdisciplinary collaboration to explore the wider applications of 

understanding aesthetic responses to fractal patterns and by association the 

patterns of the natural world. It raises questions about the impact of the visual 

environment in which we spend time. The full implications and place in the 

literature will be explored in depth within the discussions chapter (Chapter 13). 
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11.0 - Connectedness to Nature & Environmental 

Classification 
 

11.1 Background/ Rationale 

11.2 Methodology 

11.3 Results 

11.4 Discussion 

 

 

This exploratory study aimed to examine the impact that visual preferences 

(differing in environmental experience; rural or urban) have on how connected 

individuals feel to nature. Based on the strong dichotomous relationship 

previously found between Urban and Rural participants it was cautiously 

hypothesized that individual demonstrating higher preference for higher fractal 

patterns (from rural background) would score higher in how connected they feels 

with nature, as measured by the ‘connectedness to nature’ scale. These findings 

would suggest that basic ‘bottom-up’ visual processes influence our 

environmental attitude and thinking which would in turn have potential impact on 

behaviour.  The study applied the research designs described in chapter 9 and 10 

with the inclusion of an additional measure, the ‘connectedness to nature’ scale 

(CNS). Participants were recruited from Menoufia University, Egypt, as it was an 

exploratory study a total of 30 participants were in the sample.  A Linear Mixed 

Effect Model A (Complexity) analysis demonstrated environment and age were 

significant predictors of preference for fractal patterns however connectedness to 

nature scale was not a significant predictor. The environmental effect was the 

opposite previous findings with urban participants showing higher preference for 

Complexity than rural participants. Results do not support the exploratory 

hypothesis that aesthetic preference for complex fractal patterns predicts 

connectedness to nature. It could be suggested that the connectedness to scale is 

perhaps not a valid cross-cultural tool; therefore future wider samples are needed 

to clarify the (potential) relationship. 
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11.1 Background/ Rationale: 
 

The way individuals classify their environment is a significant predictor of 

preference for fractal patterns, those living in a rural environment are have a 

significantly higher probability of choosing the complex fractal images over 

individuals classifying themselves as urban dwellers (See Chapter 10). Previous 

literature have found that exposure to patterns and scenes impacts our preferences 

(Zajonc, 1968) and it is suggested that higher preferences were found for highly 

complexity fractal images in the environment because of the visual experiences. 

Those living in a rural environment are regularly exposed to a wide variety of 

fractal patterns and processes, whilst those living in urban environments have 

visual experiences mainly with man-made structures or features of the 

environment that display Euclidean rather than fractal geometric properties. The 

simplicity in form in Euclidean and man-made structures has been suggested as a 

major contributor in preferences for complex shapes as urban dwellers have shown 

a negative linear relationship with preferences falling incrementally as fractal 

complexity increases.  

 

The differences found between aesthetic response and environmental classification 

led the researcher to consider the potential implication of the differences in 

preference.  Is this aesthetic pattern implicit or explicit? This study aims to 

determine how related individuals feel to the natural environment and if this is a 

significant predictor for preference for fractal patterns. This study also lays the 

foundations of taking the investigation of fractals in an applied direction.  It has 

been proposed that how connected one feel to nature will have a significant impact 

of behavioural response to the environment, such as sustainable and 

environmentally friendly behaviour, it has also been suggested that the increase of 

urban populations might mean that our connection with the natural environment is 

being lost. This study proposes that those living in rural environments will 

demonstrate higher connection to nature because of their increases exposure, and 

it will explore if connection to nature can be used to predictor preferences for 

fractal patterns (See chapter 5 for full review). 
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11.2 Methodology: 
 

Participants: Participants were recruited from Menoufia University, Egypt, as it 

was an exploratory study a total of 30 participants were recruited. 15 females 

(Mean age=18.80 SD= 0.86) and 15 males (Mean age= 18.87, SD=0.83), from this 

sample 15 participants classified themselves as from ‘Urban’ environments, and 

15 participants classified themselves as from ‘Rural’ environments.  

 

Materials: 

Stimulus: The study used the fractal pattern stimulus, for full details of stimulus 

selection and development see Chapter 6. See example of full set of images in 

Figure 11.1. 

 

   
 

   
 

   
Figure 11.1- Example set of Fractal Stimulus showing progression D1.1-D1.9 
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Design: The study used a hard-copy 2A-FC survey design (see Figure 11.2). 

Participants were naïve independent sample with no previous experience taking 

part in previous studies within this thesis.  

 

Which image do you like best? Tick on one to select it. 

  
Figure 11.2 – example of 2A-FC task 

 

 

Connectedness to Nature Scale (CNS):  

 

Mayer & McPherson-Frantz (2004) developed the CNS tool for measuring an 

individual’s affective relationship with the natural world and associated behaviour. 

The measure includes 14 statements. The CNS scale has high internal consistently, 

measures a one-dimensional construct and has demonstrated reliability with 

repeated testing. (Mayer & McPherson-Frantz, 2005)  

 

Scoring the CNS: 

 

 Survey respondents rate a series of statements using a five-point likert scale to 

rate how strongly participants agree or disagree with each of the 14 statements (1 

= strongly disagree & 5= strongly agree). Three questions are reversed scored 

(Questions 4, 12 & 14) and data was adjusted appropriately ahead of analysis. The 

maximum score possible is 70 demonstrating the highest-level connectedness to 

nature and the lowest possible score is 14 demonstrating the lowest level of 

connectedness with nature. 
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Procedure: 

 

Participants were recruited within a department within Menoufia University, 

Egypt as an opportunity sample. Participants were asked if they would like to take 

part in a survey lasting approximately 15mins. After reading the information sheet 

and indicating consent by signing, they were asked to answer the 14 CNS 

statements, then asked to provide demographic details such as age, gender and 

environmental classification (with options reduced to ‘urban’ and ‘rural’ rather 

than the 4 options used previously). Then were asked to rate for 57 pairs, they 

image that they preferred. Following the 2A-FC task, participants were debriefed. 
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11.3 Results: 
 

11.3.1 Patterns of Preference Analysis 

 

Exploring first the patterns of preference in the sample by looking at the frequency 

data allows us to (tentatively) shows a linear relationship between fractal 

dimension and preference choice (see Figure 11.3). The graphing of the data 

allows us to see a clear separation between three groups of choice. The lower FD 

group (D1.1-D1.3) were preference peaks, the mid-range FD group (D1.4-D1.5) 

that preference is lower, then finally the higher FD group (D1.7-D1.9) in which 

preference has the lower frequency of choices. 

 
Figure 11.3 Bar Chart Representing Overall Preference Choices 

 

 

Mauchly’s test indicated that the assumption of sphericity had been violated, χ2 

(35) = 455,639, p < .001, therefore degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity (ε = .187). The results show that there 

was a significant effect of fractal dimension, F (1.498, 73.422) = 31.074, p < .001, 
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η2p=0.388. These results suggest that preference ratings differ significantly 

between each fractal dimension. 

 

Following this analysis, post hoc pairwise comparisons were performed across the 

9 different fractal dimensions to explore the point(s) at which these significant 

differences can be seen. Table 11.1 demonstrates the significant and non-

significant relationships between each level, with the significant differences 

marked in orange and the non-significant differences marked in white. Analysis 

found significant differences of preference grouped mainly at the low-mid-high 

groupings discussed above. The overall analysis demonstrates that preference 

differs significantly as a function of fractal dimension and that preference within 

the sample differs most at the end of the Fractal Dimension scale.   

 

Table 11.1 - Table of post-hoc differences for Entire Sample. 

 D1.1 D1.2 D1.3 D1.4 D1.5 D1.6 D1.7 D1.8 D1.9 

D1.1  

 
-.420 -.180 1.760 2.240* 2.260* 5.260* 5.160* 5.160* 

D1.2 
 

 

 
.420 2.180* 2.660* 2.680* 5.680* 5.580* 5.580* 

D1.3 
  

 

 
1.940* 2.420* 2.440* 5.440* 5.340* 5.340* 

D1.4 
   

 

 
.480 .500 3.500* 3.400* 3.400* 

D1.5 
    

 

 
.020 3.020* 2.920* 2.920* 

D1.6 
     

 

 
3.000* 2.900* 2.900* 

D1.7 
      

 

 
-.100 -.100 

D1.8 
      

 

 
 .000 

D1.9 
      

 

 
  

* The mean difference is significant at the Adjustment for multiple comparisons: 

Bonferroni. 
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Environmental Classification: 
 

Frequency analysis was explored across the environmental classifications in the 

group. Looking at Figures 11.4 and 11.5, both groups show highest preference 

choices for the lowest fractal dimensions in the stimulus. In both Rural and Urban 

groups preference peaks at D1.2 (Urban: M=8.65, SD=3.76; Rural: M=9.00, 

SD=2.60) however the lowest points differ with Urban groups preferring D1.8 

stimulus least (M=3.23, SD=3.68) and the Rural group prefer D1.7 least (M=2.47, 

SD=2.29). 

 
Figure 11.4 Bar Chart Representing Preference Choices in the Urban Group 
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Figure 11.5 Bar Chart Representing Preference Choices in the Rural Group 

 

Mauchly’s test indicated that the assumption of sphericity had been violated, χ2 

(35) = 450.720, p < .001, therefore degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity (ε = .186). The results show that there 

was no significant effect of fractal dimension, F (1.488, 71.401) = .433, p=.591, 

η2p=0.009. These results suggest that fractal dimension ratings do not differ 

significantly between environmental classifications. 

 

Connectedness-to-Nature Analysis: 

 

Both Model A and B found no effect of connectedness-to-nature (CNS) scores and 

preference for fractal patterns.  

 

Environmental Classification: 

  

When looking at the overall mean scores between environmental classifications, 

analysis shows no significant difference in preference between environmental 

classification (t (28)=1.225, p=.231). Looking at the mean scores across groups we 

see, contrary to the hypothesis, urban dwellers scored higher in the CNS compared 

to their rural counterparts. These results suggest that those living in urban 
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environments feel more connected than nature dwellers which contradicts many 

established findings within psychology and landscape research.  

 

Table 11.2- Connectedness to Nature and environmental classification 

 Connectedness to Nature Scale (Mean + SD) 

Urban (N=15) 50.93 (7.36) 

Rural (N=15) 47.13 (9.49) 

 

Gender:  

 

When exploring gender differences in CNS, analysis shows a non-significant 

difference between Males and Females (t (28)=1.84, p=.076), although not 

significantly differently different, males have on average scored higher than 

females in the CNS measure of how connected they feel to nature.  

 

Table 11.3- Connectedness to Nature and gender 

 Connectedness to Nature Scale (Mean + SD) 

Male (N=15) 51.80 (6.43) 

Female (N=15) 46.27 (9.71) 

 

Age: When exploring Age differences in CNS, analysis shows a non-significant 

relationship between CNS and Age (r=.122, n= 50, p=.399).  
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11.3.2 Linear Mixed Effects Analysis 
 
 

Model A- Complexity Preference: 
 

Complexity ~ (cns + enviro + gender + cAge)^2 + (1 | ID) +   (1 | display)) 

 

Model A explored the extent to which the variables Connectedness to Nature, 

Environmental Classification (Urban – Rural), Gender and Age could predict the 

effect that the variables for the choice of the more complex images from a pair.  

 

Overall fit of the model: 

 

Analyses compared the variance explained by the fixed and random effects and 

explore the extent to which these variables explain the variance in the data (See 

Table 11.4).  Model A does not account for significantly more variance with fixed 

and random effects (AIC= 1520.4, df=10) than the null model with random effects 

alone (AIC= 5880.9, df=3), suggesting that the model is not improved with the 

additional variables (χ2 (10)= 4380.5, p<0.001).  

 

Table 11.4 - Results from complexity model analysis 

  β SE Z Pr(>|z|) 

Complexity hypothesis Intercept -6.048 8.043 -0.752 0.452 

 CNS 0.189 0.174 1.087 0.277 

 Enviro (u-r) -8.189 3.144 -2.605 0.009** 

 Gender (m-f) 1.314 2.346 0.560 0.575 

 Age -0.447 0.697 -0.642 0.521 

 cns x enviro (u-r) 0.009 0.019 0.470 0.639 

 cns x gender (m-f) 0.009 0.019 0.499 0.618 

 Country (e-u) x Age 0.017 0.015 1.163 0.245 

 Enviro (u-r) x Gender (m-f) -0.095 0.325 -0.292 0.770 

 Enviro (u-r) x Age -0.659 0.253 -2.608 0.009** 

 Gender (m-f) x Age 0.158 0.198 0.799 0.424 

Significance Codes: ***0.001, **0.01, *0.05. 
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Additional goodness of fit analysis found that Connectedness to Nature (CNS) (χ2 

(4)= 4359.1, p<0.001) significantly improve the overall fit of the model and 

Environmental Classification (χ2 (4)= 8.537, p=0.738) was marginally significant. 

Analysis found that Gender (χ2 (4)= 1.818, p=0.769) and Age  (χ2 (4)= 7.265, 

p=0.122) do not significantly add to the overall prediction of the model. 

 

Main Effects: 

 

 
Figure 11.6 - Bar Chart of Main effect of environment in Complexity Model 

 

Environmental classification was found to significantly influence choice of 

complexity ( = -8.189, z = -2.605, p <0.01) with rural participants having around 

less than 1% chance of choosing the complex image from the pair and the urban 

participants having around a 3% chance of choosing the complex image from the 

pair (See Figure 11.6).  
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Interaction Effects: 

 

In addition to the significant main effects of environment, the analysis shows a 

significant interaction between Environment and Age ( = -0.659, z = -2.608, p 

<0.001). As demonstrated in Figure 11.7 in both the urban and rural participants 

preference for complexity decreases with age.   
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Figure 11.7 Interaction effect between Environment and Age in the Complexity Model 
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Model B - Mid-Range Preference 

 

Mid-Range ~ (cns + enviro + gender + cAge)^2 + (1 | ID) +   (1 | display)) 

 

Model B explored the extent to which the variables Connectedness to Nature, 

Environmental Classification (Urban – Rural), Gender and Age could predict the 

effect that the variables for the choice of the mid-range images from a pair.  

 

Overall fit of the model: 

 

Analyses compared the variance explained by the fixed and random effects and 

explore the extent to which these variables explain the variance in the data (See 

Table 11.5).  Model B does account for significantly more variance with fixed and 

random effects (AIC= 1319.3, df=13) than the null model with random effects 

alone (AIC= 4923.7 df=3), suggesting that the model is improved with the 

additional variables (χ2 (10)= 3624.3, p<0.001).  

 

Table 11.5- results from mid-range model analysis 

  β SE Z Pr(>|z|) 

Mid-range hypothesis Intercept - 2.812 8.837 - 0.318 0.750 

 CNS 0.115 0.191 0.602 0.547 

 Enviro (u-r) - 2.333 3.597 - 0.648 0.517 

 Gender (m-f) 0.729 2.464 0.296 0.767 

 Age - 0.399 0.755 - 0.528 0.597 

 cns x enviro (u-r) 0.002 0.020 0.118 0.906 

 cns x gender (m-f) 0.001 0.021 0.044 0.965 

 Country (e-u) x Age 0.009 0.016 0.605 0.545 

 Enviro (u-r) x Gender (m-f) 0.241 0.342 0.704 0.481 

 Enviro (u-r) x Age - 0.168 0.289 - 0.581 0.561 

 Gender (m-f) x Age 0.0870 0.208 0.419 0.676 

Significance Codes: ***0.001, **0.01, *0.05. 
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Additional goodness of fit analysis found that Connectedness to Nature (CNS) (χ2 

(4)= 3606.1, p<0.001) significantly improves the overall fit of the model. 

Environmental Classification (χ2 (4)= 1.389, p=0.846), Gender (χ2 (4)= 1.229, 

p=0.873) and Age (χ2 (4)= 0.848, p=0.932) do not significantly add to the overall 

prediction of the model. 

 

Although there are no significant main or interaction identified within this model, 

some differences can be seen in percentage choice between the urban and rural 

groups with Rural participants having an approximately 8% percentage of making 

a mid-range fractal choice and Urban participants having a less than 1% (See 

Figure 11.8).  

 

 
Figure 11.8 Bar Chart of Main effect in Environmental classification in Mid-Range Model. 
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Summary of Results: 

 

The frequency analysis within this study found evidence of a negative linear 

relationship of preference and fractal dimension. Preference choice peaks at the 

lower end of the fractal scale and falls incrementally with increases in FD. When 

exploring if this patterns differs as a function of environmental classification 

evidence shows there is no significant effect of environmental classification on 

patterns of fractal preference and both groups demonstrate a negative linear 

pattern.  Connectedness-to-nature mean scores were not found to differ 

significantly between environmental classifications, Gender or be significantly 

related to Age.  

 

When conducting the linear-mixed effects modelling on the data Model A 

(complexity) was found to be no better at explaining the variance than the null 

model with random effects alone. The model found environmental classification to 

be a significant predictor of preference for the complex image from a pair with 

Urban participants having an approximately 3% choice of choosing the 

complexity image and Rural participants have a less than 1% choice.  The model 

also found a significant interaction between Environmental Classification and Age 

with both Urban and Rural participants showing decreases in CNS with Age.     

Model B (Mid-Range) was found to be no better at explaining the variance than 

the null model with random effects alone. No significant main or interaction 

effects were seen in Model B. Although none significant, the rural group were 

more likely (approx. 8%) than the urban group (less than 1%).  Results show that 

individual differences influence preference choices for fractal patterns although 

both Models were unsuccessful in accounting for more variance than the null 

models alone.  
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11.4 Discussion: 
 

Results from the study show, in line with previous findings within this thesis, that 

individual differences play a role in predicting preference for fractal dimension. 

This finding offers an alternative position to the proposal that preference is 

universally ‘set’ at the mid-range of the fractal scale (Taylor et al, 2011; Spehar et 

al., 2003) as instead, a negative linear relationship between fractal dimension and 

preference choice was found within the sample. The findings suggest that 

individual variables such as environment and age are predictors of preference for 

both fractal complexity and fractal mid-range. Connectedness-to-Nature (CNS) 

scores however, were not a significant predictor to either complexity or mid-range 

models of fractal preference. There are several possible explanations for the lack 

of relationship between CNS and fractal preference, one could be that connection 

to nature is made up of a number of factors greater than ‘environment 

classification’, also previous literature has shown that feelings of connection with 

nature could be a result of a number of other experiences such as childhood 

experiences in nature and interests, hobbies or education all additionally shape 

preference for natural landscape/shapes and these that have not been considered or 

controlled for in the current study.  

 

Environmental differences: 

 

Model A (complexity) found self-reported environmental classification was a 

significant predictor of preference for differences fractal patterns. Unlike the 

previous results found within this thesis, rural participants are less likely (less than 

1%) than urban participants (approx. 8%) to choose the complex image. In the 

findings discussed in Chapter 10 the opposite relationship was present with rural 

participants demonstrating a higher preference than urban participants, which was 

suggested to be a result of visual environmental exposure. The higher preference 

for complexity in the urban sample could be (although none significant) related to 

the Connectedness-to-nature (CNS) scores. In initial analyses conducted, the CNS 

was found to be higher in urban samples opposed to the previous literature, which 

would suggest the opposite difference should be found.  
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Age Differences: 

 

Model A (complexity) also found significant interactions between environmental 

classification and age. The findings show that preference for complexity falls in 

both groups as Age increases. These findings are in line with previous literature 

that has found preference for complexity deceases as age increases. It has been 

suggested this may be related to survival and evolutionary foundations (Balling & 

Falk, 1982). The age range used in this study is limited and therefore to fully 

understand the impact of age on preference, a larger scale age range will be 

recruited to test this hypothesis further. 

 

Limitations & Conclusions: 

 

The results of this exploratory study should be taken cautiously, the sample was 

small (N=30) and recruited from Egypt solely, a sample which previous findings 

in this thesis suggest have a higher preference for lower fractal dimension patterns. 

Both models of preference do not account for more variance than the null models 

alone. The connectedness-to-nature tool is not a validated cross-cultural tool, and 

whilst all participants must have an ability to read in English to take part in the 

study. Comprehension of the questions may have been influenced by the taking 

part in the study in a second language.  

 

Overall the findings of the current study show consistent findings with previous 

studies in this thesis, that environmental classification can significantly predict 

preference for fractal complexity. The rural and urban groupings however display 

the opposite direction, with urban populations showing preference higher 

preference for complexity than rural participants. Significant interactions were 

also found with the complexity model between environment and age, with 

preference for fractal complexity increasing in the rural sample with age and 

decreasing with age in the urban population.  The results have no found significant 

interaction with the connectedness to nature scale, that results show that, within an 

Egyptian sample, how connected we feel to nature is not related to our aesthetic 
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responses to it. Full discussion of the findings in relation to other results in this 

thesis and the literature will be can be found in Chapter 13.  
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12.0 The relationship between Lifespan, Culture & 

Gender as predictors to Fractal preference. 
 

12.1 Background/Rationale 

12.2 Methodology 

12.3 Results 

12.4 Discussion 

12.5 Alternative multinomial analysis & its limitations 

 

The study aimed to explore age as an additional predictor of preference for fractal 

patterns. Previous research within this thesis suggested that gender, culture, 

environment and age are significant predictors of preference for fractal patterns.  

The study uses a data set compiled from each 2A-FC study design within this 

thesis with the addition of a new small elderly sample to explore the strengths of 

the effects found in early studies. The study explores the patterns of preference in 

the entire data set as well as using 2 models, Model A preference for complexity 

and Model B, preference for mid-range to explore individual differences as 

predictors for this preference. The findings demonstrate support for the cross-

cultural differences found previously, which have strengthened with larger sample 

sizes. Results also find a main effect of Gender on preference for complexity. Both 

models also found significant interactions with continent and gender. Age had 

neither a main or interaction effect on fractal preference.  The results add support 

for the wider conclusions of the thesis, that individual differences account for 

preference for fractal patterns and this appears to be, in part, down to visual 

experience and in part down to gender. 
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12.1 Background/Rationale: 
 

The current study uses a combination of the data sets collected as part of this 

thesis with the inclusion of an additional older aged sample to explore the impact 

of age found in previous chapters. Earlier studies in this thesis have also found 

culture as a strong predictor for preference for fractal patterns. The difference 

found across culture are supported by findings within the field of aesthetics and 

landscape design which suggest preference for fractal patterns is a function of 

visual experience. Continental differences have been used to classify the large and 

varied sample within the thesis, and these have offered a good insight into 

similarities and differences across culture as such  

 

Several studies within this thesis have found strong gender differences in 

preferences for fractal patterns. Previous results show mixed findings for both the 

complex and the mid-range models, however significant main and interactions of 

gender have been found in different data sets. It could be suggested that innate 

perceptual differences between male and females in aesthetic processing could 

account for the differences found in preference and this study aims to explore this 

further.  

 

Age has been found to be a significant predictor of preference in a number of 

previous studies within this thesis. To explore these findings further, an additional 

age set including older people was added to the data to allow a lifespan age range 

to be used to explore the stability of preference for fractal complexity as a function 

of age and gender.  

 

Whilst one of the strongest predictors of preferences found within this thesis was 

environmental classification, with significant differences between Urban and 

Rural dwellers, as this was a consideration in later studies of this thesis based on 

earlier findings not all data sets include this information therefore it was decided 

this factor was not included within the analysis. 
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12.2 Methodology: 
 

All 2A-FC data sets from this thesis were combined to further explore the 

strengths of findings in previous analyses, which found Culture, Gender and Age 

and their interactions as significant predictors of preference for fractal patterns.  

 

Participants: 

 

In total the sample size was 443 participants, including 228 males and 204 females 

made up from the participants from studies 9, 10 & 11 with the addition of elderly 

samples recruited from local day centres. The mean age of participants was 31.03 

(SD=14.45); with age ranging from a min age 17 years and a maximum age 88 

years. Participants were recruited using a variety of methods including 

opportunity, online and targeted recruitment. To collect the older sample, the 

researcher visited a number of day centres, data at these environments were 

collected using hard copies to facilitate uptake of older participants.  

 

Procedures: 

 

Participants were recruited using a mixed of online and hard copy survey methods 

from a variety of locations including universities, online participant sample pools 

and day centres. Ahead of the study participants were provided an information 

sheet and also given the opportunity (both verbally in day-centre cases and online 

in other data collection methods) to ask questions. Following this consent was 

requested and all participants were asked to provide demographic information 

including Age, Gender, country of residence and environmental classification. The 

study involved participants making preference choices from 57 paired fractal 

images (for example stimulus set see Figure 12.1). When presented with each pair 

participants were asked ‘which they liked best’, for example of methodology see 

Figure 12.2 

 

Materials:  

 



 

 254 

Stimulus: The study used the fractal pattern stimulus as discussed in the 

methodology section of this thesis. For full details on development and selection 

please see Chapter 6. 

 

 
 

 
 

 
Figure 12.1- Example set of Fractal Stimulus showing progression D1.1-D1.9 

 

Which image do you like best? Tick on one to select it. 

  
Figure 12.2 – example of 2A-FC task 
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12.3 Results: 

 

12.3.1 Patterns of Preference Analysis 

 

Initial analysis involved exploring the overall patterns of preference in the sample 

by looking at the frequency data. This data indicates a peak of preference at D1.2 

(M=6.889, SD=3.898) and preference choices lowest at D1.8 (M=4.69, SD=3.89). 

As demonstrated in Figure 12.3, preference is peaks and is grouped at the low-to-

mid-range of the fractal scale and begins to fall at the higher end of the fractal 

scale. 

 

 
Figure 12. 3 Bar Chart of Overall Fractal Dimension for sample 

 

Mauchly’s test indicated that the assumption of sphericity had been violated, (χ2 

(35) = 5518.759, p < .001); therefore degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity (ε = .183). The results show that there 

was a significant effect of fractal dimension, F (1.467, 777.458) = 35.061, p < 

.001, η2p=0.062. These results suggest that preference ratings differ significantly 

between each fractal dimension. 
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Following this analysis, post hoc pairwise comparisons were performed across the 

9 different fractal dimensions to explore the point(s) at which these significant 

differences can be seen. Table 12.1 demonstrates the significant and non-

significant relationships between each fractal level, with the significant differences 

marked in orange and the non-significant differences marked in white. Analysis 

found significant differences of preference grouped mainly at the high points of 

the fractal scale consistent with the patterns seen in Figure 12.3. The overall 

analysis demonstrates that preference differs significantly as a function of fractal 

dimension and that preference demonstrates the most variance the higher end of 

the Fractal Dimension scale.   

 

Table 12.1: Table of post-hoc differences for Entire Sample. 

 D1.1 D1.2 D1.3 D1.4 D1.5 D1.6 D1.7 D1.8 D1.9 

D1.1  

 
-.373* -.286* -.137 .224 .224 1.452* 1.819* 1.782* 

D1.2 
 

 

 
.087 .235 .597 .606 1.825* 2.192* 2.154* 

D1.3 
  

 

 
.149 .510 .520 1.738* 2.105* 2.068* 

D1.4 
   

 

 
.362* .371* 1.589* 1.957* 1.919* 

D1.5 
    

 

 
.009 1.228* 1.595* 1.557* 

D1.6 
     

 

 
1.218* 1.586* 1.548* 

D1.7 
      

 

 
.367* .330* 

D1.8 
      

 

 
 -.038 

D1.9 
      

 

 
  

* The mean difference is significant at the Adjustment for multiple comparisons: 

Bonferroni. 
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Location Differences: 

 

Frequency data explored the differences between grouped locations. Figures 12.4 - 

12.7 below show the differences in preference patterns across the location groups 

used in the study. The European (Figure 12.4) sample shows highest preference at 

the low-to-mid range with less frequency of choice at the higher end of the fractal 

scale. The North American sample (Figure 12.5) shows the opposite pattern of 

preference with less preference choice for the lower FD images and increases in 

choice with increases in fractal dimension. Both Central Asian sample (Figure 

12.6) and African sample (Figure 12.7) show similar patterns of preference, 

peaking at the low-to-mid end of the fractal scale.  

 

Table 12.2 Participant numbers in each location group 

 Participant Numbers (N) 

Europe 177 

North America 24 

Central Asia 195 

Africa 97 

 

Mauchly’s test indicated that the assumption of sphericity had been violated, (χ2 

(35) = 4995.552, p < .001); therefore degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity (ε = .184). The results show that there 

was a significant effect of fractal dimension and location grouping (F (4.421, 

720.6) = 3.995, p < .001, η2p=0.024). These results suggest that preference ratings 

differ significantly between fractal dimension and location grouping however 

post-hoc analysis found no direct differences across the groups. 
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Figure 12.4 - Bar Chart of Overall Fractal Dimension for European sample 

 

Figure 12. 5 Bar Chart of Overall Fractal Dimension for North American sample 
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Figure 12. 6 Bar Chart of Overall Fractal Dimension for Central Asian sample 

 

 

Figure 12. 7 Bar Chart of Overall Fractal Dimension for African sample 

 

Gender: 

 

As Gender has emerged as a significant predictor of fractal preference from 

previous analysis within this thesis, the frequency preference patterns of fractal 

dimension were explored across gender ahead of the linear-mixed effects 
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modelling. In the male sample preference peaks at D1.2 (M=7.32, SD=3.94) and 

continues to fall as fractal dimension increases from this point. The patterns of 

preference for male participants (see Figure 12.8) point towards a low-to-mid peak 

in preference for fractal complexity. 

 

The female sample shows a different pattern of preference across the fractal scale 

(See Figure 12.9). Preference for the Female sample peaks at D1.6 (M=6.58, 

SD=1.88) and there is less variation across each fractal dimension than male 

participants. This lack of clear variance across scales means there is no clear 

directional or curvilinear pattern emerging from the frequency data for the female 

sample. 

 

Figure 12. 8 Bar Chart of Overall Fractal Dimension for Male sample 
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Figure 12. 9 Bar Chart of Overall Fractal Dimension for Female sample 
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12.3.2 Linear Mixed Effects Analysis 

 

 

Model A- Complexity  

 

complex ~ (continent + gender + cAge)^2 + (1 | ID) + (1 | display) 

 

Model A explored the extent to which the variables Continent, Gender and Age 

could predict choice of the more complex (higher FD) fractal image from a pair, 

Table 12.3 shows the main findings.  

 

Table 12.3- Results from complexity model analysis 

  β SE Z Pr(>|z|) 

Complexity hypothesis Intercept -0.631 0.244 -2.583 0.00978 ** 

 continent.a-e -0.356 0.665 -0.535 0.59252   

 continent.c-e -2.261 0.273 -8.267 < 2e-16 *** 

 continent.n-e -1.311 0.504 -2.601 0.00930 ** 

 gender.M-F -1.585 0.328 -4.827 1.38e-06 *** 

 cAge -0.007 0.008 -0.940 0.34701 

 continent.a-e:gender.M-F 1.446 0.549 2.636 0.00839 ** 

 continent.c-e:gender.M-F 1.703 0.406 4.195 2.73e-05 *** 

 continent.n-e:gender.M-F 0.877 0.704 1.246 0.21263 

 continent.a-e:cAge 0.003 0.052 0.051 0.95965 

 continent.c-e:cAge -0.001 0.016 -0.011 0.99099 

 continent.n-e:cAge -0.007 0.023 -0.282 0.77820 

 gender.M-F:cAge 0.028 0.013 2.096 0.03606 * 

Significance Codes: ***0.001, **0.01, *0.05. 
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Overall fit of the model: 

Analyses compared the variance explained by the fixed and random effects and 

explore the extent to which these variables explain the variance in the data.  Model 

A accounts for significantly more variance with fixed and random effects (AIC= 

17040, df=21) than the null model with random effects alone (AIC= 17154, df=3), 

suggesting that the model is improved with the additional variables (χ2 (18)= 

125.14, p<0.001).  

Additional goodness of fit analysis found that Continent (χ2 (15)= 99.06, p<0.001) 

and Gender (χ2 (7)= 29.29, p<0.001) significantly improves the overall fit of the 

model however Age (χ2 (7)= 6.845, p=0.445) does not significantly add to the 

overall prediction of the model. 

 

Main Effects: 

Results of the model identify significant main effect of continent. European 

participants show an average 22% choice of the complex image from a pair, 

analysis show this did not differ significantly from African sample ( = -0.356, z = 

-0.535, p =0.592), which showed an average choice of approximately 17% choice. 

Significant differences were however found between Europe (22%) and North 

American (8%) ( = -1.311, z =-2.601, p <0.01) and Europe (22%) and Central 

Asia (3%) ( = -2.261, z =-8.267, p <0.001) suggesting individual difference in 

preference across location. See Figure 12.10 for a comparison of percentage 

choice across each continent.  

 
Figure 12.10 - Bar Chart of % choice of complex image from a pair across continent 
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In addition the model found a main effect of gender on preference for fractal 

complexity. As demonstrated in Figure 12.11, females show a significant 

increased choice in complex fractal shapes when compared with males. Analysis 

found that females had an approximately 20% choice of the complex image from 

the pair and male had a lesser choice of approximately 5%, this difference show 

gender as a significant predictor of preference for fractal complexity ( = 1.585, z 

= -4.827, p <0.001). 

 
Figure 12.11 Bar Chart of % choice of complex image from a pair across gender 

 

Interaction Effects: 

 

In addition to the main effect of (most) Continents, the analysis found significant 

interactions in the model.  

 

Although the difference between the continents Africa and Europe was not 

significant as a main effect, the model shows a significant interaction between 

Continent (Africa-Europe) and Gender (1.446, z = 2.636, p <0.01). With 

African Males showing an approximately 7% choice of choosing a complex image 

and African Females showing an approximately 27%, and European Males 

showing an approximately 10% choice with European Females having 

approximately a 35% choice of the complex image from the pair.  
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Interaction effects were also found between Central Asia and Europe and Gender 

(1.446, z = 2.636, p <0.01). As discussed above European Males show an 

approximately 10% choice with European Females having approximately a 35% 

choice of the complex image from the pair. Central Asian males had an 

approximately 1% choice of the complex image and females had a 5% of choosing 

the complex image from a pair.  

 
Figure 12.12 Bar Chart of % choice of complex image from a pair across continent and Gender 

 

A significant interaction was also seen between Gender and Age (0.028, z = 

2.096, p <0.01). As demonstrated in Figure 12.3, Male and Female complexity 

choices show changes as a function of Age. Female participants preference for 

complexity decreases with Age, whereas Male participants preference for 

complexity increases with Age. 
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Figure 12.13 Interaction between Gender and Age in Complexity Model
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Model B- Mid-Range Model  

 

Mid Range ~ (continent + gender + cAge)^2 + (1 | ID) + (1 | display) 

 

 

Model B explored the extent to which the variables Continent, Gender and Age 

could predict the choice of the Mid-Range image from a pair; Table 12.4 shows 

the main findings.  

 

Table 12.4- results from mid-range model analysis 

  β SE Z Pr(>|z|) 

Mid-Range 

hypothesis 

Intercept 

1.915 0.580 3.304 0.0009 *** 

 continent.a-e 0.255 0.231 1.106 0.269 

 continent.c-e -0.198 0.087 -2.262 0.0237 * 

 continent.n-e 0.339 0.175 1.937 0.0527 .  

 gender.M-F -0.215 0.106 -2.025  0.0428 *  

 cAge 0.001 0.003 0.323 0.747 

 continent.a-e:gender.M-F 0.196 0.184 1.063 0.288 

 continent.c-e:gender.M-F 0.299 0.133 2.242 0.0249 * 

 continent.n-e:gender.M-F -0.340 0.243 -1.398 0.162 

 continent.a-e:cAge 0.034 0.019 1.818 0.0691 

 continent.c-e:cAge 0.004 0.006 0.715 0.475 

 continent.n-e:cAge 0.008 0.008 1.024 0.306 

 gender.M-F:cAge 0.004 0.005 0.814 0.416 

Significance Codes: ***0.001, **0.01, *0.05. 

 

Overall fit of the model: 

 

Analyses compared the variance explained by the fixed and random effects and 

explored the extent to which the variables explain the variance in the data.  Model 

B accounts for significantly more variance with fixed and random effects (AIC= 

17040, df=21) than the null model with random effects alone (AIC= 17154, df=3), 
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suggesting that the model is improved with the additional variables (χ2 (18)= 

125.14, p<0.001).  

Additional goodness of fit analysis found that Continent (χ2 (15)= 27.887, p<0.05) 

significantly improves the overall fit of the model; the variable Age marginally 

improves the model (χ2 (7)= 12.987, p<0.072) however Gender (χ2 (7)= 11.811, 

p=0107) does not significantly add to the overall prediction of the model. 

 

Main Effects: 

 

The model found a main effect of continent on preference for mid-range fractal 

images (see Figure 12.4). Significant differences in percentage choices were seen 

between Europe and Central Asia (-0.198, z = -2.262, p <0.05). With European 

samples having an average choice for the mid-range of 85% and Central Asia 

samples showing an average 83% choice.  There are also marginally significant 

differences in preference choice between European and North American samples 

(-0.339, z = 1.937, p =0.052). European samples demonstrate an 85% choice 

and North American samples an 89% choice of the mid-range image from a pair. 

 

 

Figure 12.14 Bar Chart of % choice of mid-range image from a pair across continent 
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In addition the model found a main effect of gender on preference for mid-range 

fractal images. As demonstrated in Figure 12.15, females show an increase choice 

in mid-range fractal shapes when compared with males. Analysis found that 

females had an approximately 88% choice of the complex image from the pair and 

male had a lesser choice of approximately 86%, this difference show gender as a 

significant predictor of preference for fractal complexity ( = -0.215, z = -2.025, p 

<0.05). 

 

 
Figure 12.15 Bar Chart of % choice of mid-range image from a pair across gender 

 

 

Interaction Effects: 

 

Significant interaction was seen between continent (Central Asia-Europe) and 

Gender ( =0.299, z = 2.242, p <0.05). With European Males showing a 

preference choice of 85% and European Females an 87% choice of the mid-range 

from a pair and Central Asian males showing an 82% choice and females an 85% 

choice. As demonstrated in Figure 12.16, although not significant, females show a 

consistent preference for mid-range images over males.  
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Figure 12.16 Bar Chart of % choice of mid-range image from a pair across Continent and Gender 
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Results Summary: 

 

Initial frequency choice analysis shows the overall patterns of preference 

emerging from the sample. The pattern emerging is one of heightened preference 

for the low to mid range of fractal patterns and falling incrementally with the 

increases in fractal dimension. When merging the entire 2A-FC data set from this 

thesis, preferences peak at D1.2, slightly lower than the mid-range reported in 

literature.  

 

When exploring preference patterns across location, there does appear to be 

differences in patterns of preference. The European, Central Asian and African 

sample show similar patterns of preference with peaks at lower-to-mid end of the 

fractal scale and preference dropping incrementally as fractal dimension (and 

related complexity) increase. The lowest preference choices in this sample are 

seen in the high end of the fractal scale. The North American sample demonstrates 

a different pattern of preference, with highest preferences shown for higher fractal 

dimension; within this sample (although the smallest populated sample) preference 

peaks at D1.4 and is lowest across the lower fractal dimensions (D1.1-D1.3).  

 

Patterns of preference were also explored across Gender, and results show that 

males demonstrate a negative linear relationship between preference choice and 

fractal dimension with an incremental decrease in preference as fractal dimension 

increases. Female samples however show a higher peak preference point (D1.6) 

with less variance across the fractal dimension scales than the Male sample.  

 

Model A found evidence to suggest individual differences including Continent and 

Gender significant influence preferences for fractal complexity.  Results show 

significant main effects of Gender, with females demonstrating higher preference 

for complex images than males and a main effect of continent across European 

and Central Asian, and European and North American samples. European samples 

show overall a higher preference for fractal complexity. The model also found 

significant interaction effects between gender and continent (Africa & Europe and 

Central Asia & Europe) with Gender. In both interactions females show the 

highest percentage of making a complex choice from a pair. An interaction 
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between gender and age was also discovered within the model and results show an 

opposite directional effect with male participants preference for complexity 

increasing with age and female participants preference for complexity decreasing 

with age.  

 

Model B found evidence to suggest individual differences account for the variance 

in preference for mid-range fractal images. Main effects of location were shown 

with significant differences in preference between European and North American 

samples. North American participants showed a heightened preference for mid-

range images. A main effect of Gender also emerged, with females showing a 

heightened preference choice of the mid-range images. Interaction effects also 

emerged across gender and location (Central Asia – Europe) with females scoring 

higher across both sample locations.  

 

Comparing average percentage choices across models, participants show 

consistently higher choices for mid-range images (around 80-90%) than complex 

images (ranging from 1-30%) suggesting that preferences are highest for mid-

range over complexity.  
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12.4 Discussion: 

 

The results of this study show the influence of individual differences in fractal 

preference. The results of the frequency analysis and the LME analysis 

demonstrate an impact of location and gender on shaping preference pattern for 

fractal patterns.   Overall patterns of preference demonstrate a peak at D1.2, a 

fractal dimension point below the previously reported peak in the literature, mid-

range D1.3-1.5 (Taylor et al., 2011). Looking at the overall preference patterns in 

the data, a negative linear relationship has emerged, grouping higher preference 

choices towards the lower end of the fractal scale with preference decreases as 

fractal dimension/complexity increases.   The variability of preference as a 

function of location and gender does no support the theory of universal preference 

for mid-range fractal patterns instead results demonstrate the power that individual 

differences have to shape our visual preference.  

 

Location: 

 

Individual differences have been found to account for some of the variance in 

preference for fractal patterns, and one such difference appears to be a result of 

location of residence. The studies recruited a worldwide sample that covered a 

number of locations/countries, to allow comparisons across locations continent 

grouping were used. The analysis within this study found significant difference in 

the patterns of preference as a result of location grouping, suggesting that your 

residential location shapes your preferences for fractal patterns. The significant 

differences found in Model’s A & B suggest a difference in the preference choice 

made towards complexity and mid-range fractal patterns. Model A shows on 

average preferences for a complex image from a pair is relatively low in all groups 

(between 1-30%) however the prevalence in choice differs as a function of 

Location and Gender. European samples demonstrate a higher preference for 

complexity than any other location in the study. Model B also found significant 

difference in preference for the mid-range images based on location grouping. 

With North American participants demonstrating the highest percentage choice for 

the mid-range images. This result suggests that the location in which we spend 
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time influences the preference choices that we make, although the grouping of 

continent could be criticised as too broad, it demonstrate individual difference    

 

Each analysis included in the study demonstrates significant differences as a result 

of location, suggesting factors or features of the different locations may contribute 

to these differences. Previous studies in this thesis have shown environmental 

classification to be a significant predictor of preference ahead of country grouping 

and it could be suggested that preference is shaped by the qualities of visual 

environment in which we spend time. Continent grouping does not allow these 

specific  

 

 

Gender: 

 

Models A and B suggest that preference differs as a function of gender; suggesting 

males and females have different relationships with fractal complexity. Both 

studies find females more likely to choose a complex or mid-range fractal patterns 

from a pair however interaction effects within Model A suggest this patterns 

reverses in the complexity preference with aging. With age, males show higher 

preference for complexity and females show decreases preference for complexity. 

This finding suggests a psychological or physiological impact of gender and 

complex patterns. Some studies have suggested gender is a significant predictor of 

differences in preference for Art, others believe differences in preference across 

gender may have deeper evolutionary roots.  

 

Age: 

 

Although increased age samples were recruited to explore the impact of age on 

preference for fractal patterns analysis did not find any significant main effect of 

age on preference choice. Model A found an Age x Gender interaction which, as 

discussed above, raises some interesting questions about the stability of preference 

across age and other individual differences. 

 

Summary:  
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These findings offer intriguing insight into the individual differences of preference 

for fractal patterns, and raise questions about the stability of preference for fractal 

patterns previously reported in literature (Taylor et al., 2011, Spehar et al, 2003) 

this result and general findings of this thesis will be explored in the discussion 

(Chapter 13). 
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12.5 Alternative multinomial analysis & the limitations: 

 

In addition to the binomial models used to explore the preference for fractal 

patterns in this thesis, an additional multinomial analysis was also developed to 

explore the differences between 3 levels of fractal dimension rather than only 2 as 

seen within the binomial designs. The previous analyses looked at percentage 

choice based on participants choosing from 2 choices, either the more complex 

image (complexity model) or the mid-range image (mid-range model). Although 

this analysis has offered fruitful results throughout this thesis, the authors 

acknowledge that previous literature which states the presence of 3 categories 

within the fractal scale (Taylor et al., 2011). 

The following analysis explores the data using a multinomial analysis, which 

allows assumptions to be made about the percentage of choice for the mid-range, 

but also provide information about the direction of this choice (low or high FD 

choice). The results and the recognised limitations using this analysis are 

discussed below. 

Table 12.5 Results of Multinomial Analysis 

Model Term β SE Z Pr(>|z|) 

Mid-range 

hypothesis 

(Low-Mid-High) 

Intercept -high 0.100 1.628 1.648 9.934 

 Intercept- low -0.360 -6.651 -6.663 2.666 

 Enviro (high) -0.302 -3.236 -3.240 0.001*** 

 Enviro (low) 0.064 0.819 0.824 0.409 

 Gender (high) 0.119 1.325 1.310 0.190 

 Gender (low) -0.065 -0.771 -0.761 0.447 

 Age (high) -0.010 -2.902 -2.902 0.003** 

 Age (low) 0.005 1.843 1.843 0.065 

 Enviro x gender (high) -0.576 -3.516 -3.516 0.001*** 

 Enviro x gender (low) 0.082 0.626 0.626 0.531 

 Enviro x age (high) -0.001 -0.126 -0.126 0.899 

 Enviro x age (low) -0.004 -0.929 -0.929 0.352 

 Gender (M-F) x Age (high) 0.016 3.214 3.214 0.001*** 

 Gender (M-F) x Age (low) -0.01 -2.178 -2.178 0.029* 
Significance Codes: ***0.001, **0.01, *0.05. 
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The results show significant interactions across Age and Gender when looking at 

the mid against high ( =0.016, z = 3.214, p <0.001) and the mid against the low 

( =0.01, z = -2.178, p <0.05).  The patterns of this interaction can been seen in 

Figure 12.17. For the Male sample, the probability of choosing fractal patterns in 

the high category increases with age and the probability of choosing fractal 

patterns in a low category decreases with age, whereas the probability for 

choosing the mid-range fractal patterns remains fairly consistent across age. The 

female sample interestingly shows the opposite direction of probability, with the 

likelihood of choosing the low fractal patterns increasing with Age and probability 

of preference for high fractal pattern decreases with age. There appears to be a rise 

in percentage choice for choosing the mid-range image, although not as steep as 

the low patterns within the female sample.  

 

 
Figure 12.17 – Percentage Choice of ‘low’, ‘mid’, ‘high’ images as a function of age. 
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Discussion of Multinomial Analysis: 

 

The results of this analysis show significant differences in the preference for 

fractal patterns across environment, gender and age. The patterns suggest that 

during ageing, preferences differ significantly between men and women, with 

women showing higher preference for mid and low complexity within the highest 

age point and the men showing highest preferences for high and mid images at the 

highest age point. The findings show individual differences between gender and 

age and unlike previous binomial analyses we can see patterns of preferences for 

the full-established fractal aesthetic categories (low - mid - high). 

 

Limitations & Future Directions: 

 

The results of this multinomial mixed-effect model are intriguing, however the 

method of analysis was not used throughout the entirety of this thesis as it has 

some fundamental flaws within its design. The model although suitable based on 

previous literature, suggesting 3 categories of fractal preference, does not match 

the 2A-FC designed employed throughout this thesis. While this analysis can be 

conducted, we are in effect, forcing the software to make assumptions of 

probability for 3 categories when participants were only asked to choose between 

2. This was acknowledged during analysis however was included within the thesis 

to demonstrate the journey of the research and also to suggest fruitful further 

testing using this analysis. It is suggested that future studies adopt a 3A-FC or 

ranking design for which this multinomial analysis would be most suited. By using 

a 3A-FC/ranking design researchers can explore preferences, but also find the 

direction of these preferences. Current designs allow assumptions to be made 

about the likelihood of choosing the more complex (Model A) or mid-range 

(Model B) fractal image however including 3 measures can allow further more 

stringent investigation of the 3 categorical concept of fractal aesthetics.  
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13.0 Discussion of Findings: 
 

13.1 Hypotheses table revisited 

13.2 Fractal dimension as a construct of visual complexity 

13.3 Exploring previous models of fractal aesthetics 

13.4 Complexity model 

13.5 Mid-range model 

13.6 Connection to nature, applied directions: 

13.7 Future Directions 

 

The aim of this thesis was to re-test some of the established findings towards 

fractal aesthetics and explore the as-yet, unanswered questions about the extent 

that individual differences contribute to our aesthetic choices within the fractal 

scale. This chapter will restate the findings of this thesis in relation to the original 

hypotheses, followed by an exploration of the implications of the findings and how 

they fit with current scope of the literature. This thesis has contributed new and 

novel findings to the field and these are highlighted ahead of making suggestions 

for future directions based on the findings.  
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13.1 Hypotheses Table Revisited: 

 
A summary of each study hypothesis within this thesis and their main findings are 

outlined in Table 13.1, the following discussions will expand on these findings 

with reference to the existing literature of the field. 

 

Table 13.1- Hypothesis & Summary Results Table 

Study One 

Fractal Dimension a component of Visual Complexity? 

 

 

It is hypothesised that the fractal stimulus images will correlate significantly to GIF 

compression ratio scores; a computational measure of visual complexity.  If confirmed 

this finding would suggest that fractal dimension can be considered as a related 

component or sub-component of visual complexity.  

 

Summary of Results: 

 

The findings demonstrate support for the hypothesis, that fractal dimension of the 

stimulus and the GIF compression scores of visual complexity are significant correlated 

(r=-0.92, p<0.001). This finding suggests that fractal dimension and visual complexity are 

related constructs and as such comparison can be made towards aesthetic responses to 

both fractal dimension and complexity. 

 

Study Two 

 

Cross-cultural Difference in fractal preference? 

 

 

Mirroring the samples of Souief & Eysenck’s 1971 study exploring the cross-cultural 

stability of aesthetic preference with UK and Egyptian participants, this study 

hypothesises that responses to fractal patterns will demonstrate cross-cultural differences 

for non-art training participants. The study also hypothesises that rating results will 

support the mid-range hypothesis with highest scores being awarded to images that lie 

within the D range of 1.3-1.5. 
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Summary of Results: 

 

The findings demonstrate support for Souief & Eysenck’s (1971) findings that non-art 

trained participant’s differed (significantly within the current study) across culture on 

preferences for fractal complexity.  There was no support for the secondary hypothesis; as 

results found that the mid-point was not the most preferred on the fractal scale. Instead, 

preference patterns demonstrate a negative linear pattern, rather than a curvilinear pattern 

found in previous literature.  

 

Study Three 

Re-testing the mid range hypothesis: 

 

 It is hypothesised that the overall frequency patterns of preference would display 

inverted-U shaped function, with heightened preference at the mid-range (D1.3-1.5). 

 

There are three different models of aesthetic patterns explored in this study and as such 

three different experimental hypotheses: 

 

 It is hypothesised that the variables Country, Age and Gender would significantly 

predict mid-range model of preference more so than the null model.  

 It is hypothesised that the variables Country, Age and Gender would significantly 

predict linear Complexity model of preference more so than the null model.  

 It is hypothesised that the variables Country, Age and Gender would significantly 

predict Equalized Mid model of preference more so than the null model.  

 

Summary of Results: 

 

 The overall frequency patterns of preference did not display an inverted-U shaped 

function, with heightened preference at the mid-range (D1.3-1.5), instead overall 

preference patterns point towards a negative linear relationship between fractal 

dimension and preference. Preference peaks at the 2nd lowest point of FD (D1.2) and 

falls incrementally from this point. Preference patterns differed significantly across 

the different countries in the sample.  
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There are three different models of aesthetic patterns explored in this study and as such 

three different experimental hypotheses and the outcomes are discussed below: 

 

 It was hypothesised that the variables Country, Age and Gender would significantly 

predict mid-range model of preference more so than the null model.  Findings show 

that Continent significantly improved the fit of the model however Gender and Age 

did not significantly improve the fit of the model. Significant main effect was seen 

across North American and European samples with significant interactions between 

Continent (North American – Europe) and Gender. 

 

 It is hypothesised that the variables Country, Age and Gender would significantly 

predict linear Complexity model of preference more so than the null model. Findings 

show that Continent significantly improved the fit of the model however Gender and 

Age did not significantly improve the fit of the model. Significant main effect was 

seen across North American and European samples. 

 

 It is hypothesised that the variables Country, Age and Gender would significantly 

predict Equalized Mid model of preference more so than the null model. Findings 

show that Continent significantly improved the fit of the model however Gender and 

Age did not significantly improve the fit of the model. No significant main effect 

were seen in the model however there was a significant interaction between 

Continent (North American – Europe) and Gender. 

 

The findings demonstrate that individual differences including ‘Continent’ and ‘Gender’ 

can significantly predict difference between preferences for fractal complexity and for the 

mid-range.  

 

 

Study Four 

Cross & sub-cultural differences in fractal preference: 

 

 

 It is hypothesised that the overall frequency patterns of preference would display 
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inverted-U shaped function, with heightened preference at the mid-range (D1.3-1.5). 

 

There are three different models of aesthetic patterns explored in this study and as such 

three different experimental hypotheses are provided below: 

 

 It is hypothesised that the variables Country, Environment, Age and Gender would 

significantly predict the mid-range model of preference more so than the null model.  

 

 It is hypothesised that the variables Country, Environment, Age and Gender would 

significantly predict the Complexity model of preference more so than the null 

model.  

 

 It is hypothesised that the variables Country, Environment, Age and Gender would 

significantly predict the Equalized Mid model of preference more so than the null 

model.  

 

Summary of Results: 

  

 The overall frequency patterns of preference display inverted-U shaped function in 

the UK sample, with heightened preference at the mid-range (D1.4-1.6). The 

Egyptian Sample however shows less support with results demonstrating a peak at a 

lower point in the fractal scale.   

 

There are three different models of aesthetic patterns explored in this study and as such 

three different experimental hypotheses, these and the findings are discussed below: 

 

 It is hypothesised that the variables Country, Environment, Age and Gender would 

significantly predict the mid-range model of preference more so than the null model. 

Findings show that Environment and Gender significantly improved the fit of the 

model, however Country and Age did not. A (marginally) significant main effect was 

seen across Environmental Classification; in addition a significant interactions was 

found between Environmental classification and Gender. 
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 It is hypothesised that the variables Country, Environment, Age and Gender would 

significantly predict linear Complexity model of preference more so than the null 

model. Findings show that Environment significantly improved the fit of the model 

however Country, Gender and Age did not significantly improve the fit of the model. 

Significant main effect was seen across Environmental Classification; in addition a 

significant interaction was seen between Environmental classification and Gender. 

 

 It is hypothesised that the variables Country, Environment, Age and Gender would 

significantly predict Equalized Mid model of preference more so than the null model. 

Findings show that none of the variables significantly improve the fit of the model 

more than the null model.  

 

The findings demonstrate that sub-cultural environmental classification (Urban/Rural) is 

significant predictors of preferences for fractal patterns; this also significantly interacted 

with Gender in both the mid-range and complexity models. No significant differences 

were found across country suggesting sub-cultural environment is a better predictor than 

cross-cultural classifications. 

Study Five 

Environment, fractal complexity and Connectedness to Nature 

 

 

Previous studies within the thesis have shown that environmental classification 

(rural/urban) rather than cross-cultural classification (country) is a significant predictor of 

preference for complex and mid-range fractal patterns. This study explores potential 

applications of these differences in preference. As studies have shown that interaction 

with nature has personal as well as environmental benefits, with those who spend time in 

nature more likely to take action to protect the environment.  

 

 It is hypothesised that the overall frequency patterns of preference would display 

inverted-U shaped function, with heightened preference at the mid-range (D1.3-1.5). 

 

There are two different models of aesthetic patterns explored in this study and as such 

two different experimental hypotheses are outlined below: 
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 It is hypothesised that the variables Connectedness-to-Nature Score, Environment, 

Age and Gender would significantly predict mid-range model of preference more so 

than the null model.  

 

 It is hypothesised that the variables Connectedness-to-Nature Score, Environment, 

Age and Gender would significantly predict linear Complexity model of preference 

more so than the null model.  

 

Summary of Results: 

 

 It was hypothesised that the overall frequency patterns of preference would display 

inverted-U shaped function, with heightened preference at the mid-range (D1.3-1.5). 

Results show a negative linear relationship between fractal dimension and 

preference, with preference peaking at the low D1.2 fractal dimension point. 

Preference drops incrementally from the ‘low’ end of the fractal scale with moderate 

choices in the ‘mid’ and infrequent choices in the ‘high’ fractal dimension.  

 

There were two different models of aesthetic patterns explored in this study and as such 

two different experimental hypotheses and the findings are outlined below: 

 

 It is hypothesised that the variables Connectedness-to-Nature Score, Environment, 

Age and Gender would significantly predict mid-range model of preference more so 

than the null model. Findings show that Connectedness-to-nature improved the fit of 

the model however environment, Gender and Age did not significantly improve the 

fit of the model. There were no significant main or interaction effects. 

 

 It is hypothesised that the variables Connectedness-to-Nature Score, Environment, 

Age and Gender would significantly predict linear Complexity model of preference 

more so than the null model. Findings show that Connectedness-to-nature improved 

the fit of the model and Environmental classification is marginally improves the 

model however Gender and Age did not significantly improve the fit of the model. 

There were a significant main effect of environmental classification on preference 

and a significant interaction between Environmental classification and Age.  
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The findings show no significant effect of connectedness to nature score on preferences 

for fractal patterns. The study confirms the environmental classification distinction of 

preference found in previous studies. In addition, significant main effects for age and 

preference are evident.  

 

Study Six 

Lifespan, Continent & Gender- predictors of fractal preference? 

 

The final study combines all 2A-FC design data from this thesis with the addition of a 

sample of ‘elderly’ participants responses.  

 

Age has been found to be a significant (interaction) predictor of preference in study 5 

within this thesis, therefore this studies aims to explore this strength of these predictor 

variables ‘Continent’, ‘Gender’ and ‘Age’ with a wider and more varied sample. 

 

 It is hypothesised that the overall frequency patterns of preference would display 

inverted-U shaped function, with heightened preference at the mid-range (D1.3-1.5). 

 

There are two different models of aesthetic patterns explored in this study and as such 

two different experimental hypotheses: 

 

 It is hypothesised that the variables Continent, Age and Gender would significantly 

predict mid-range model of preference more so than the null model.  

 

 It is hypothesised that the variables Continent, Age and Gender would significantly 

predict Complexity model of preference more so than the null model.  

 

Summary of Results: 

 

 It is hypothesised that the overall frequency patterns of preference would display 

inverted-U shaped function, with heightened preference at the mid-range (D1.3-1.5). 

Findings show that overall the sample shows some evidence to support the 
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hypothesis as the peak of preference at a low-to-mid point of D1.2, with preferences 

remaining high across D1.3-D1.4 dropping the lowest at the high end of the fractal 

scale.  

 

There are two different models of aesthetic patterns explored in this study and as such 

two different experimental hypotheses and findings which are outlined below: 

 

 It is hypothesised that the variables Continent, Age and Gender would significantly 

predict mid-range model of preference more so than the null model. Findings show 

that Continent improved the fit of the model, Age marginally improved the model 

however Gender and did not significantly improve the fit of the model. There was a 

significant main effect of Continent (Central Asia-Europe & North America-Europe) 

and Gender. Significant interactions are found between Central Asia-Europe and 

Gender and Africa-Europe and Age.  

 

 It is hypothesised that the variables Continent, Age and Gender would significantly 

predict Complexity model of preference more so than the null model. Findings show 

that Continent and Gender improved the fit of the model however Age did not 

significantly improve the fit of the model. There was a significant main effect of 

Continent (Central Asia-Europe & North America-Europe) and Gender. Significant 

interactions are found between Central Asia-Europe and Gender and North America-

Europe and Gender. There was also an additional interaction between Gender and 

Age.  

 

The findings demonstrate that ‘Continent’ and ‘Gender’ are have both main and 

interaction effects on preferences for complex and mid-range fractal patterns. Results 

demonstrate that females prefer complexity. Significant cross-cultural differences were 

also found within the data set.  On analysing a wider sample of age variance including an 

‘elderly’ sample, no significant main effect across Age. 
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13.2 Fractal Dimension as a construct of Visual 

Complexity: 

 
The first study of this thesis explored if fractal dimension could reliably be 

classified as an individual construct of visual complexity as a whole. Previous 

links have found that fractal dimension is perceived as rough and natural. To allow 

the two models of preferences (mid-range and complexity) to be tested within this 

thesis, study 1 explored how well fractal dimension (of the stimulus set) and GIF 

compression ratio scores (an established computational method of quantifying 

visual complexity), are related. The findings demonstrate strong negative 

correlations between fractal dimension and visual complexity suggesting that the 

current findings can be used to make claims about aesthetics responses to a full 

scale of fractal images, but, also claims about aesthetic responses to visual 

complexity.  

 

Using GIF compression measures offers a good approximation of human 

judgments of visual complexity (Forsythe et al., 2008) and is not affected by 

familiarity effects as human judgments have been found to be (Forsythe et 

al.,2008).  This was an important element as the thesis aims to explore individual 

differences of aesthetics judgments as a function of both cross and sub-cultural 

differences as well as differences across gender and age. It was therefore of high 

importance to ensure that the visual complexity measures adopted were able to 

quantify strictly.  Despite the strong relationship between fractal dimension and 

visual complexity found in Study 1, the differences between the measures and 

what can be inferred from them should be discussed. 

 

Fractal dimension measures how rough and self-similar shapes are (see Chapter 3 

for full review), this is searching for underlying structures displaying self-similar 

qualities that cannot be measured using Euclidean geometry. The scores we get 

from this analysis or during generation are judgments of fractal dimension only 

rather than any other features of the image. So for example if we had a forest 

scene (fractal branching in the trees) that also included Euclidean patterns (such as 

a house or fence) the presence and order in the Euclidean geometry would not 
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affect the overall fractal dimension of the elements in the scene. It is the roughness 

and self-similarity that is being measured so we cannot add order (using Euclidean 

shapes) or simplicity into the image and expect it to become less fractal. Fractal 

dimension of a process or scene is a stable construct. This being said, fractal 

measurements methods have been used in non-fractal stimulus (see Williams 

2013; PhD Thesis) with moderate success but persistent issues remain with these 

methods, as it is difficult to segregate the fractal and non-fractal content. 

 

Measuring visual complexity using compression techniques in comparison 

assesses the whole of the image, and attempts to measure each part (whether they 

be fractal, Euclidean, coloured or monochrome) it does not search for particular 

patterns but assesses and quantifies the whole image. Some have likened 

compression measures to methods of visual information processing in the natural 

world (Donderri, 2006).  Donderri suggested information theory as a framework 

that could explain the success of image compression techniques as a determinant 

of complexity. Information processing theory see a message or scene as a series of 

components that are being communicated, these factors include primitive 

information such as number of elements, colours, contrasts, etc. When the scene 

contains homogenous elements, there are fewer factors in the string of information 

to process, but if many items without clear order are included compression 

techniques report a long information chain, which would take time to process. 

 

Assertions about preferences for levels of complexity can be used within the 

model, approaches such as the processing fluency theory would state ease of 

processing is hedonically marked (Reber et al, 2004) in addition environmental 

studies have found preference for landscapes which maintain interest and facilitate 

ease in processes but also include elements of mystery suggesting the possibility 

of further information findings (Kaplan & Kaplan, 1989).  Visual complexity 

allows us to make judgments about a whole visual scene rather than sub-elements 

of it, as fractal measure does, however it is believed that using both together 

allows further understanding and ability to quantify experiences in the visual 

environment.  
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Overall the findings of the first study in this thesis show that fractal dimension and 

visual complexity are strongly related, and although we cannot infer direction 

using correlation, confident conclusions based on how measurements are made as 

explained above, can be made about the multicomponent nature of visual 

complexity which have been asserted previously (Nadal, 2007). Visual complexity 

is an area difficult to define and quantify, and this challenge may be due to an 

overestimation of the reach of the concept rather than factor with multiple 

components.  This thesis asserts that a multi-component model of visual 

complexity is accurate and that fractal dimension is one part of this concept; 

fractal dimension offers us a method to quantify the visual complexity of a 

specific and psychologically important stimulus; the natural world.  

 

The assertions made above highlight a potential restriction within the thesis, which 

will be explored in further depth later, however briefly outlined, the use of 

computer generated fractal stimulus (to allow in depth exploration), despite their 

established perceptual naturalness (Hagerhall et al., 2004) require testing using 

real-life visual scenes so comparative studies can be made. One method of doing 

this is using fractal measurement techniques to measure the fractal dimension of 

stimulus alongside visual complexity, although studies have previously carried 

this out with art and photographic stimulus (Forsythe et al., 2010) without 

significant relationship being reported.  New methods such as the Hausdorff’s D 

have emerged that may offer more accurate methods by which to explore the 

fractal dimension and visual complexity of real-life scenes.  This potential future 

direction will be discussed further later in this chapter (section 13.6).   
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13.3 Exploring previous models of Fractal Aesthetics: 
 

 

Studies within this thesis explored the overall patterns of preference by looking at, 

firstly the ratings of the stimulus in study two, and secondly the frequency of 

choice between each fractal dimension in studies three to six. 

 

Rating study preference patterns:  

 

The patterns of preference were first examined in the second study within this 

thesis, which had two main aims. Firstly to explore the mid-range hypothesis for 

fractal images and secondly to validate a previous study exploring cross-cultural 

differences in aesthetic responses to complexity with samples from the UK and 

Egypt (Souief & Eysenck, 1971- furthermore referred to as S&E). The findings 

demonstrate gender differences within the sample, suggesting that females prefer 

higher complexity images compared with males. Furthermore age was also found 

to influence preference ratings for fractal images with participants aged above 20 

years preferring simpler images and participants aged 20 years & under rated 

preferences significantly more for the complex high FD images.  

 

Results also demonstrated cross-cultural differences akin with S & E’s (1971) 

original findings. Non-art-trained ‘lay’ participants from the Egyptian sample 

demonstrated high preference for the simple images from the stimulus set (with 

highest mean ratings given to images of the lowest fractal dimension within the 

sample, D1.1) and mean rating scores and pattern show a fall with each increase in 

FD from this point.  S & E’s sample also find (the non-art-trained) Egyptian 

participants scored the least complex images the most pleasing.  There was less 

variety across preferences for fractal complexity in the UK sample, opposed to S 

& E’s findings which shows that the highest preferences where shown for 

complex images  

 

S & E (1971) found differences between cultures, however none were significant 

across the two sample populations and concluded that their data suggested that 

there are not large differences between aesthetic preferences in both cultures and 

instead believe their findings show support for universal theories of preference. 
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The present studies would not support this conclusion, it seems that while the 

trend for simple images is still present in the Egyptian (non-art educated) sample, 

the UK sample did not reflect the same pattern of preference for complexity and 

differed significantly from the Egyptian sample. 

 

One reason for the differences in finding could be suggested to the stimulus set 

used within the study, S & E’s original study used Birkhoff’s (1932) polygons to 

explore responses to visual complexity whereas the current sample uses pure 

computer generated fractal patterns. Both stimuli display complexity of a 

different, but related, kind. Birkhoff’s polygons display only Euclidean geometry 

and this may account for the differences in results. Fractal complexity, although 

aligned with visual complexity as evidenced in within previous studies within this 

thesis, is characteristically different from the straight lines and edges seen in many 

man-made structures (and Birkhoff’s polygons) and studies have shown we 

process fractal images differently to man-made scenes. 

 

In our daily visual experiences we are exposed to both Euclidean and Fractal 

geometry, in the man made structures and natural processes around us. It could be 

proposed that the level of interaction and exposure to these shapes influences our 

preferences for the levels of complexity within them. If we commonly see natural 

shapes our visual system is experienced at processing them, therefore when 

assessing their aesthetic value low Fractal patterns may be considered as 

uninteresting and instead to maintain attention and arousal higher fractal patterns 

would be preferred. Alternatively, if exposure to fractal complexity over 

Euclidean geometry/complexity is relatively low then the arousal potential 

(Berlyne, 1971) that this novelty interest provokes, will peak with any exposure 

and too much complexity and novelty will be considered busy and be difficult to 

process fluency, which is hedonically marked (Reber et al, 2004).  

 

If the theories of exposure discussed above are accurate, it could be suggested that 

the samples between the cultures have been exposed to different visual 

environments in the UK and Egypt and as such preferences for fractal complexity 

is markedly different. While these assumptions can be made, further investigation 
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is needed to explore the impact of culture and visual experience of preferences for 

fractal patterns. 

 
 

Looking at the sample as a whole, we see generally preferences peak lower than 

previously found (D1.2) and continues to fall with FD increase. This finding 

points towards a linear rather than curvilinear relationship between fractal 

dimension and aesthetic judgment and although potential rationale about visual 

experience has been offered to account for the differences this requires further 

testing to be fully understood.  

 

The study used a rating scale for exploring the aesthetic response to fractal 

patterns, and it is demonstrated from the mean scores that generally participants 

scores the patterns towards the low end of the scale, which could be a function of 

rating experience, but alternatively it could be suggested that participants did not 

find the fractal stimulus used particularly beautiful, therefore found the task 

difficult to complete accurately. This assertion can be supported by anecdotal 

evidence from the author that during testing several participants fed back that they 

did not find any of the stimuli beautiful/appealing suggesting that the rating design 

may be unsuitable for the stimulus set used. Based on experiences with study 2 in 

the this thesis, it was decided that a different design would be used to explore 

preference for the fractal stimulus further that would avoid the pitfalls faced 

within this study. A forced-choice design was chosen to avoid issues with rating 

the beauty of the stimulus images and this new method also allowed a different 

analysis, to be able to predict human preferences for fractal patterns based on a 

number of individual difference factors, a design and analysis more suited to test 

the overall aims of this thesis.  

 

Study two within this thesis supported claims that that fractal dimension is an 

important subcomponent of visual complexity as most of S & E’s (1971) findings 

were replicated suggesting the complexity and fractal dimension are related 

component. The study also found significant differences between culture, gender 

and age supporting the further investigation of individual differences as important 

to understanding aesthetic response to fractal complexity. Finally the study reports 

only limited support for the mid-range hypothesis and instead supports a more 
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negative linear relationship between fractal complexity and preference. Some 

potential explanations for the current findings and individual differences have 

been explored, but it is clear that further studies were needed with the aim to find 

empirical support and understanding towards these.  

 

Frequency data examining patterns of preference: 

 

Studies three, four and five of this thesis adopted the above changes to the design 

methodology. In addition to the complexity and mid-range models explored in the 

following sections, this discussion will explore the overall frequency patterns 

displayed in 2A-FC methods. The main areas to be examined within this 

discussion are overall patterns of preference, differences across culture/country, 

differences cross environment and finally gender differences.  

 

When exploring overall patterns of preference in each study, frequency findings 

were expected to peak within the ‘mid-range’ of fractal dimension scale. Taylor et 

al., (2011) exploration of 10 years of perception research on responses to fractal 

patterns found that patterns falling within the range D1.3-1.5 were most frequency 

chosen with a 2A-FC design. This theoretical position was tested by exploring 

patterns of preference against others such as the linear models of preference and 

complexity found by other researchers (Forsythe et al, 2011).   

 

Study three used a large, cross-cultural sample recruited using Mechanical Turk an 

online recruitment pool. Overall patterns of preference show that frequency of 

choices peaked at D1.2, and fell from this point incrementally with increases in 

fractal dimension. Choice means are relatively similar through the low and mid 

points of the fractal scale, and fall significantly lower at the high end of the fractal 

scale.  Study four found a peak in preference higher in the overall sample than in 

study three, with highest frequency choices for stimulus of D1.4 and D1.6 and 

drops in preference at the lower and higher end of the fractal scale. Patterns of 

preference in study four support the mid-range hypothesis patterns. Study five 

found highest preference for lower FD images with a peak in stimulus of D1.2 

with grouped drops at the mid and high sections and finally study six found a peak 
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in preference at the lower end of the scale (D1.2) with preferences dropping from 

this point.  

 

Looking at the data set as a whole, we can see patterns of preference display a 

peak lower than previously suggested in the literature, most often preference peak 

at D1.2, only slightly lower than the lowest point in the mid-range hypothesised 

(D1.3-1.5). The patterns of preference from this point, drops lowest at the highest 

level of the fractal scale, suggesting consistent patterns of dislike for higher fractal 

stimulus images. The rationale for this lack of preference in complex images could 

be explained by theories of visual processing, Reber et al’s (2004) processing 

fluency model suggests that preference peak at the mid-range of complexity 

because increases in complexity will eventually result in decreases in perceptions 

of beauty (Reber et al, 2004) the overall patterns of preference offer some support 

to this theory that high fractal dimension is least preferred.  

 

Differences in visual experience: 

 

Studies three, four & six explored the differences in patterns of preference across 

continent/country.  Preferences were mapped across country (in study four) or 

continent groupings (in studies three and six) as a result of the number of 

participants in each country. Preference patterns were unpicked to show the 

impact of individual differences on fractal preference testing the stability of 

‘universal’ preference previously posited in literature (Spehar et al, 2003; 

Abraham et al, 2011) and when examined this way, different patterns are evident, 

suggesting an impact of country/continent in shaping preferences.  

 

In study three the most densely populated continents frequency patterns were 

compared (Europe, Central Asia & North America) and while Europe and Central 

Asia show patterns of preference peaking at the low to mid range of the fractal 

scale, the North American sample demonstrates the opposite pattern with peaks at 

the highest fractal point (D1.9). One possible reason for the difference in patterns 

of preference across continent could be the differences in visual experiences 

across the three locations. 
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Study six combined the data from all previous 2A-FC design studies, and explored 

preference across the 3 continent groupings Europe, Central Asia and North 

America with the addition of Africa in the comparison. European patterns showed 

relative consistency across the low and mid fractal dimension range with lower 

preference at the higher end of the fractal scale. The African and Central Asian 

participants display similar negative linear relationships between fractal dimension 

and preference choice with preferences peaking at the lower-to-mid range. The 

North American sample displayed a different pattern of preference, preferences 

peak at the higher end of the fractal scale and fall lowest at the lowest end of the 

fractal scale. These results as in study four demonstrate that continent grouping 

has a significant influence on preferences for fractal patterns.  As each distinct 

continent shows distinct patterns of preference, one could suggest that the 

differences are a result of visual experiences (or lack of) with the natural and often 

fractal world. 

 

Study four went some way to explore this and compared the participant’s country 

of residence (UK & Egypt) alongside environmental classification (Urban & 

Rural) to further explore the impact of visual experience on preference for fractal 

patterns. The findings show that environmental classification influenced the 

differences in patterns of preference; with rural participants demonstrating higher 

preferences for the high end of the fractal continuum and urban participants 

alternatively had strong preference choices for fractal patterns at the lower end of 

the fractal scale. One possible explanation for this finding is the ecological variant 

theory.  

 

The ecological variant theory that exposure to environmental patterns of 

complexity or those that display fractal properties could potentially be influence 

and shape aesthetic responses. The mere exposure hypothesis (Zajonc, 1968) 

states that that exposure to stimulus can result in heightened preferences as we 

demonstrate higher aesthetic judgment to familiar objects, patterns of scenes. 

Reber et al., (2004) proposed a processing fluency model, which may account for 

increased preference with mere exposure as they suggest familiarity results in ease 

of processes that are hedonically marked. The findings show significant 

differences in preference pattern for fractal dimension across environment and this 
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could be suggested to be a result of the different visual experience those residing 

in different environments may have, this conclusion brings into question the 

impact visual exposure has on our preferences for shapes and structures. Not only 

on larger macro-scales such as continent and country, but also in terms of smaller 

micro-scales such as the daily visual experiences from home, work and 

socializing.  The environmental classification in which a person lives, or develops 

may impact our preference for fractal patterns. As fractal patterns are commonly 

found in nature, those who develop and live in rural setting are regularly viewing 

complex fractal patterns (in trees, plants and natural landscapes), people who 

spend much of their time in urban environments have little exposure to fractal 

patterns, as man-made structures such as roads, buildings and computer screens do 

not display fractal complexity. Based on Zajonc (1968) mere exposure hypothesis 

it could be suggested that higher preference will be shown for the scenes that 

resemble those you see regularly, therefore urban participant show preference for 

simple fractal patterns (based on the lack on complexity in their daily visual field) 

and participant in rural environments will show preference for more complex 

higher fractal patterns because of the complexity they see in their environment. 

This assertion needs further testing, the environments in which participants spend 

most of their time should be investigated to explore if exposure to natural patterns, 

or lack there of, could be accountable for the differences in linear preference 

found in this study.  

 

Study five tested the stability of this micro-cultural difference in environmental 

classification however did not find support when looking at the patterns of 

preference alone. Both groups (Urban and Rural) display similar patterns of 

preference that peak at the low end of the fractal scale and drop incrementally with 

increases in fractal dimension. This result does not support the strong dichotomy 

found in previous studies in this thesis however one potential explanation of this 

finding could include the limited sample size. As this study was exploratory only a 

small size was recruited (N=30) from only one country (Egypt). The extreme 

negative linear relationship of preference choice and fractal dimension is similar to 

the patterns of preference found in study three in which Egyptian samples show 

this type of preference pattern across the fractal scale. Whilst this finding means 

that the findings of study four should be reviewed cautiously, given the limited 
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sample size and country of origin it could be suggested that this studies findings 

are not reliable enough to make firm assumptions about the role that 

environmental classification plays in shaping preferences for fractal patterns.  

 

Alternative suggestions to explain the differences in preference across continent 

and environment reported above could be individual differences not measured 

within the study. As discussed in chapter 4, there are many individual factors that 

have been found to contribute to differences in preferences. These aesthetic 

responses to the fractal patterns could be related to the education background, 

experiences with nature/fractals or even attitude of the participants approaching 

the task. These factors need to be explored in the future in order to allow definitive 

assertions to be made.  

 

Gender: 

 

All studies explored the role gender plays in shaping patterns of preference for 

fractal stimuli.  Study three found little difference in the patterns of preference 

across gender, with most choices (in both males and females) made at the lower 

end of the fractal scale, however the cluster of this is greater for males (whose 

preference choices peak at D1.2) than females (whose preference peak later at 

D1.4). Study four found what appeared to be differences in the direction of 

preference across gender. Females showed an increase choice of higher FD 

stimulus and males showed and increased choice of the lower FD images.  Study 

five found no differences in patterns of preference across gender, with Male and 

Females both showing peaks in preference choice at the lower end of the fractal 

scale, this study.  Study six found similar patterns, that males show higher choices 

for lower fractal dimension, whereas females show more variance and preference 

peak at a later point in the fractal scale.  

 

Looking at the results as a whole, it can be stated that males on average show 

higher preference for lower fractal dimension images than females. Male 

participants show similar negative linear relationships across the studies within 

this thesis, whereas female participants show heightened preference for fractal 

patterns of the mid-range and less directional patterns of preference.  These 
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finding suggest that gender of participants influences their aesthetic relationship 

with fractal patterns.  

 

Conclusion about the mid-range hypothesis: 

 

Overall the results of the patterns of preference analysis conducted across each 

study in this thesis suggest an overall peak of preference lower than previously 

shown in the literature, which does not support current literature findings 

suggesting a mid-range peak of preference. Results also show that individual 

differences including country, environment and gender play a significant role in 

preference patterns offering evidence to contradict theories that suggest preference 

for mid-range fractal patterns would be universal (Spehar et al, 2003).  
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13.4 Complexity Model’s Results Explored: 
 

Models of complexity and preference can be traced back to the very early field of 

empirical aesthetics (Birkhoff, 1933), it has been repeatedly noted that complexity 

plays a role in aesthetic judgments. There have however been inconsistent findings 

within the field, which may be based, in the associated difficulty in defining visual 

complexity as one construct additionally the design and measurement used has 

varied greatly across disciplines. As noted by Taylor et al (2005) most complexity 

research has focused on the responses to complexity of scenes made up of 

Euclidean shapes, this means the applicability of previous findings to nature are 

limited.  The current thesis attempted to add to this field and explore the individual 

factors that can predictor fractal complexity preference. A series of studies 

explored models of complexity and preference and the results from the studies and 

their positioning within the current literature will be explored below.  

 

Studies in the thesis have shown significant cross-cultural differences toward 

fractal complexity. Study three found significant differences between North 

America and European participants likelihood to choose the complex fractal 

images from a pair. Study six revealed significant differences between Central 

Asia, North America and SE Asia when compared to a European sample. 

 

European samples are three times more likely than the other continents to choose 

the complex image when presented with a pair of images. In addition to the main 

effect of continent on fractal complexity preference, continent was also found to 

interaction significantly with gender. Results found significant interactions 

between continent (Central Asia and Europe) and gender. Result show that whilst 

European participants are generally more likely to choose the complex image, 

there are different directional patterns in probability with males in Central Asia 

being more likely to pick the complex image and European females being more 

likely to pick the complex image.  There were significant interactions between 

(Africa-Europe) continent and gender with female participants being most likely 

to choose the complex image than males in both continent groups. 
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The cross cultural findings oppose many of the previous studies which find 

general consistency across cultures for preferences (Eysenck & Iwawaki, 1971; 

Child & Iwao, 1968; Iwao, Child & Garcia, 1969) it could be suggested that as no 

such large scale cross-cultural studies have been conducted previously with fractal 

patterns. Previous studies have found much support for cross-cultural differences 

with Euclidean geometric complexity. The results of this thesis show that culture, 

and continent in particular, is a significant predictor of preference for complexity. 

Additionally visual environment appears to have an influence on preferences for 

fractal complexity.  

 

One possible explanation for the emerging differences is the visual experiences of 

people residing in each continent. These assertions are however difficult to 

support with only continent group because of the highly variant visual experiences 

within countries and cultures. Even individuals living within the same culture have 

significantly different experiences within the sub-cultural world.  Following this 

cross-continental finding, sub-cultural environment was explored in additional 

studies to assess if cross-cultural differences emerge from difference in visual 

experiences or are a result of other factors yet to be measured within this thesis.  

 

One of the most interesting findings within this thesis is the finding that sub-

cultural factors contribute strongly to preferences for fractal complexity. Study 

four within this thesis found environmental classification to be a strong predictor 

of preference for complexity. Participants were asked to classify their living 

environment including ‘Urban’, ‘Suburban’ or ‘Rural’ and findings from study 

four show significant differences in preference between ‘Urban’ and ‘Rural’ 

participants. With Rural dwellers were more likely to choose the complex image 

from a pair. 

 

Differences between preferences of alternative sub-cultural participants have been 

explored previously, mostly within the field of landscape/environmental planning. 

As discussed in Chapter 4 within this thesis, studies have shown that preferences 

for landscape are significantly influences by classifications of the environment. 

Studies have shown differences between inner city school children and 

environmental educators (Medina, 1983). Furthermore Dearden (1984) found 
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familiarity with the landscape appeared to be positively correlated with landscape 

preference and within the study rural dwellers had higher preference for natural 

landscape over urban and high-density housing environments dwellers.  Literature 

demonstrates that the environment in which participants lived was a powerful 

predictor of the variance in preference (Dearden, 1984, Zube and Pitt, 1981; 

Schroeder, 1983; Kaplan & Talbot, 1987) and despite the differences also found 

between cultures, it has been suggested that cross-cultural differences were weaker 

predictors of preference than sub-cultural differences in classification (Yu, 1995). 

 

The findings of the current thesis offer strong support for these findings that visual 

environment can predict preferences for fractal complexity. The overall findings 

would offer support for the mere exposure hypothesis (Zajonc, 1968) and 

processing fluency hypothesis (Reber et al, 2004). The environment in which we 

spend time, and repeated exposure to particular patterns within the natural 

environment appears to influence our subsequent aesthetic evaluations.  

 

This evidence could be used to make claims regarding the work of Jackson 

Pollock, previously explored by those interested in fractal aesthetics.  A wealth of 

evidence has explored the work on Jackson Pollock and his ‘fractal expressionism’ 

as coined by Richard Taylor. Anecdotal evidence suggests that the art world 

changed forever when Jackson Pollock moved from downtown Manhattan a busy 

urban environment to a quiet country town filled with fractal patterns to excite the 

senses (Taylor et al, 2005).  It is suggested that in his new habitat he spent hours 

sat on his back porch assimilation the natural shapes around him (Potter, 1985). 

The findings of this thesis would suggest that environment in which we spend time 

significantly influences our aesthetic relationship with fractal and natural shapes, 

and as such when Pollock sat taking in the shapes of nature his preferences for 

complexity began to change. Following the finding that Pollock’s iconic painting 

are not a mess of chaos but carefully dripped representation of the complexity of 

nature (Taylor, 1999) his paintings were analysed for the level of fractal 

dimension and three distinct stages were found, early Pollock paintings display 

low Fractal D, even as low as D1.1 which could be a reflection of his time in 

Urban Manhattan. Following his move to the rural environment the next two 

phases of Pollock’s artistic style rose dramatically in FD and his ‘classical’ period 
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can be quantified at approximately FD 1.7 most characteristic patterns. This 

finding suggest D1.7 appears to be the level of FD strived to by Pollock, with 

theorists suggesting that if his patterns went over this ‘sweet’ spot he dialled back 

until he reached the characteristic complexity within his images.  

 

This sweet spot at D1.7 has been suggested to be a challenge to viewers as it 

opposes the mid-range hypothesis of universal preference (Spehar et al, 

2003;Taylor et al, 2005) however the findings of this thesis would suggest another 

rationale. Following Pollock’s move to a rural environment his worked 

demonstrated marked increase in fractal complexity, the current findings suggest 

that rural dwellers have much higher preferences for complexity than those living 

in an urban environment and as such Pollock’s characteristic change in style may 

be a result of the change in visual environment and subsequent changes in 

preference for the fractal patterns of nature. While this is only hypothesised, 

further tests could be conducted to explore the robustness of this idea, including an 

analysis of rural and urban dwellers aesthetic response toward Pollock’s ‘early’ 

and ‘classic’ period pieces to explore if rural dwellers have a greater 

understanding and aesthetic resonance with the classical period because of the 

shared preference for complexity above urban dwellers.  

 

This thesis has found strong evidence for differences in preferences as a function 

of environmental classification. It has been suggested that our immediate visual 

environments in which we spend time can predict preference for fractal 

complexity. The effect of visual familiarity has been found to significantly interact 

with judgments of preference and complexity (Forsythe et al, 2008) and as such 

we could assert that interaction with Euclidean geometry in urban environments 

mean fractal patterns of any level will be considered complex and peak levels 

based on arousal theory will peak lower than those familiar with fractal 

complexity within the natural world. Visual experiences with to mid-range fractal 

images have been suggested to be at the core of their powerful aesthetic appeal 

(Aks & Sprott, 1996) however Aks & Sprott (1996) do not report the 

environmental background of the participants which as has been shown is a 

significant preference for fractal complexity.  
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In addition to cross and sub-cultural individual differences in preference, gender 

was also found to be a significant main predictor of preference for fractal 

complexity in each of the studies testing the complexity model. The findings also 

show significant interactions between continent/environmental classification and 

gender. A summary of results demonstrates that females are over 3 times more 

likely to choose the complex image than their male counterparts.  

 

Gender differences in aesthetic judgment has been suggested as a result of our 

evolutionary ancestry and the results found within this thesis go some way to 

supporting this hypothesis.  It has been proposed brain activity, not simple 

perceptual processes result in sex differences in aesthetic processing (Cela-Conde 

et al, 2009). When exploring the neural underpinning to aesthetic experience 

across sexes Cela-Conde and colleagues (2009) summarized that strong 

lateralization in men demonstrates reliance on coordinator spatial relations, were 

as women demonstrate activity in both hemispheres suggesting greater use of 

categorical spatial relations taking place during aesthetic judgment.  

 

Categorical spatial relations refer to processing of broad categories of location 

regarding other elements, so judgments are made based on the object in relation to 

other factors within the scene. Alternatively Coordinator spatial relations refer to 

precise location in location and accurate distances amongst objects. The different 

processing styles have been found to correlate with gender and results have shown 

that in a mental rotation task men use coordinator spatial relations whereas women 

use categorical spatial relations (Hugdahl et al. 2006). 

 

It is proposed that the findings explored above offer support for the hunter-gather 

hypothesis that differences in spatial abilities between genders provide a 

convincing scenario of sex differences based in our evolutionary history, and as a 

result of the division of labour between sexes (Silverman and Eals, 1992). 

 

The differences in neural activity when viewing scenes are a result of the labour 

division between hunting (a primarily male activity) requiring coordinator spatial 

relation processing and mental rotation skills and foraging (a mainly female 

pursuit) requires categorical spatial relations, including recognition and 
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remembering the content of varied objects and spatial relations between the 

objects. It could therefore be argued that the differences in neural processes are a 

result of the different visual strategies. Foraging also required a greater 

understanding of the complex visual scenes, typically of high fractal complexity if 

the undergrowth therefore this could account for the heightened preference for 

high complexity images over simpler fractal patterns as a sign of vegetation.  

 

Females employ categorical spatial relations during aesthetic judgment, this 

processing relies heavy on long-term memory so associations can be made 

between previous and current scenes. Suggestions could be made that if long-term 

memory plays a greater role in women than men, aesthetic judgment particular for 

scenes woman use memory more that could mean that experiences play a larger 

role in aesthetic processing than it does in males. One possible interpretation of 

the findings is that women firstly prefer complex fractal scenes because of the 

survival potential indicating vegetation and sustenance, in addition as it has been 

shown that females are more likely to use long-term memory in make aesthetic 

judgments, the environmental experience for females could be more powerfully 

related to preferences than males who employ coordinator spatial relations 

relevant to the specific scene. Hunting and tracking requires orientation in relation 

to objects (mental rotation skills) and greater understanding of the scene, mid-

range fractal landscapes offer the easiest landscape spatial qualities and has been 

found to be more natural (Hagerhall et al, 2004), therefore it could be proposed 

that males would display higher preference for mid-range images than females 

based on this evolutionary need.  

 

If females experiences shape aesthetic preferences more strongly than males we 

would expect findings to show interactions between gender and environment, the 

thesis has found significant interaction between both cross-cultural classifications 

(Africa- Europe) and environmental classifications (Urban-Rural) with gender, 

which is indeed what findings show.  

 

Literature demonstrates that women tend to be more aware than men of the objects 

around them even if not related to the task at hand (Silverman & Eals, 1992) 

suggesting that the impact of environment visual experiences may play a bigger 
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role in shaping preference in women more than men. Women track and navigate 

using memory rather than spatial problem solving however men outperform 

women in navigation tasks (Silverman et al, 2000) which could be suggested as a 

result of coordinator spatial relation processing. Furthermore natural fractal 

imagery has been suggested to reside in the long-term memory (Geake & Landini, 

1997) this in conjunction with gender findings between perceptual processing of 

aesthetic responses linked to our evolutionary history. Women use memory to 

locate items in visual scenes, males instead use different immediate spatial 

strategies.  

 

Of particular interest to this thesis is the finding that neural processes in males and 

females for mental rotation tasks have been found to have cross-cultural support 

for this hypothesis (Silverman, Choi & Peters, 2007) adding additional support 

toward the cross-cultural findings of fractal complexity found within the results of 

this thesis.   

 

It can be concluded that the results of this thesis offer support for the biological 

foundation of aesthetic judgment, the hunter-gather hypothesis (Silver & Eals, 

1992) offers a strong theoretical account for the gender differences in preference 

found between genders toward fractal complexity.  

 

Summary of Complexity Model Results:  

 

The results of the complexity models tested suggest that individual differences can 

predict preference for fractal complexity. Results demonstrate that both macro 

(continent/culture) and micro (environmental urban/rural) classifications of visual 

experience alongside biological foundations appear to work separately and 

together to formulate preferences for fractal complexity. These have innate and 

experiential foundations. The findings of these models offer support for current 

literature in approaches to visual complexity as well as dispute some current 

evidence regarding the universality of preference for fractal patterns. The most 

strongly supported finding within the field is the preferences for mid-range (rather 

than complex) fractal patterns, and as such the following section will explore the 

results of the analysis for the mid-range model and explore the strength of 
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individual differences for preference within this established model for fractal 

aesthetics.  

 

 

 



 

 308 

13.5 Mid-range Models Results Explored: 
 

One of the main aims of this thesis was to explore individual aesthetic responses 

to mid-range fractal patterns. Based on previous literature in both visual 

complexity and fractal aesthetics it appears that mid-range fractal images have a 

powerful aesthetic draw and as such this thesis aimed to explore the stability of the 

mid-range preference across Culture, Environmental Classification, Gender and 

Age. The results found both offer, support as well as highlighting potential issues 

with the current theory of mid-range fractal peak in preference.  

 

Initially in each study, frequency designs were used to explore the overall trends 

within the patterns of preference. As discussed above, the overall preference 

patterns show only limited support for the mid-range. Instead studies found that 

preference appeared to peak lower than the mid-range (D1.2) and lower fractal 

images were judged as most appealing with preferences falling as fractal 

dimensions increased from this point. These overall patterns changed when 

unpicking the impact of environment. 

 

Study 2 shows strong evidence that the Egyptian sample displayed a negative 

linear preference pattern for the fractal scale; the UK sample however displays 

much less variety in preference scores. The UK sample patterns showed peak 

preferences for D1.2-1.3 images (somewhat consistent with the mid-range 

hypothesis) and significant decreases in preference for fractal images of D1.6-1.7 

with scores beginning to rise again after this dip. These studies do not offer 

empirical support for the mid-range hypothesis across countries. Instead in appears 

that preferences are a result in individual differences. 

 

To explore this finding further, Study 3 gained a large cross-cultural sample from 

which to explore the stability of the mid-range hypothesis of preference. Initial 

analysis revealed that frequency of choice finds D1.2 as the peak preference 

within the fractal range, and when exploring patterns of preference across 

continent, preferences differed significantly and instead displays linear patterns of 

preference dependent on continent. These results offer interesting insight into the 
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overall patterns of preference however further, more sophisticated, analysis 

models was then explored to discover the power of each variable as a predictor of 

preference. Results were grouped into continent and the likelihood of choosing the 

mid-range image was explored as a function of several individual factors.  

 

Analysis show cross-continental main effects between North America and Europe, 

with North American participants being significantly more likely to choose the 

mid-range images than the European sample. These findings are consistent with 

the current literature collected by Prof Taylor and colleagues (Taylor et al, 2011) 

in a largely north American population. In addition, the significant differences 

across continent suggest that culture or potentially, differences in visual 

environment plays a role in preference for mid-range fractals however without 

further analysis and studies the reason for these differences was not initially clear.  

 

To explore the rationale that visual experiences may shape visual preference in 

more detail, sub-cultural as well as cross-cultural differences were investigated in 

subsequent studies. The results of study 4 found marginal sub-cultural significant 

differences in preference for mid-range fractal patterns. Findings show that rural 

dwellers are more likely to choose the mid-range fractal images than urban 

dwellers. One potential rationale for this finding could be that rural dwellers have 

higher preference for the mid-range fractals because of their perceived naturalness 

and this is a much more closely matches the environment in which they spend 

time, previous research has found visual experiences in nature are commonly 

made up from mainly mid-range fractal patterns (Aks & Sprott, 1996). Studies 

have also found that fractal patterns falling within the mid-range around D1.3 are 

perceived as most natural by naïve observers (Hagerhall et al, 2004, Hagerhall, 

2005) this preference for mid-range displayed by rural dwellers could be an draw 

towards natural images with similarities to the environments in which they spend 

time. Urban dwellers are less likely to chose a mid-range image, this finding 

alongside the frequency data above could be suggested that urban dwellers have 

higher preference for lower fractal dimension images. One potential explanation of 

this finding can be found in the visual complexity perceptual research, Berlyne’s 

(1971) arousal potential theories proposes that visual complexity is perceived 

positively up to a point until which is keeps attention and allow ease in processing. 
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The inverted-U hypothesis suggests that preference fall for visual complexity at 

the point at which processing becomes difficult  

These findings could also offer some support for Berlyne’s (1971) arousal theory 

of preference and complexity. Urban dwellers are largely exposed to simple and 

Euclidean geometry so fractal patterns are liked as they are complex and provoke 

arousal up until a point (relatively low) at which processing and understanding 

becomes difficult. The visual environments in which urban dwellers spend time 

their arousal potential is reached before rural dwellers (whose arousal potential for 

fractal complex shapes is higher based on familiarity with natural fractal patterns) 

therefore preferences from rural dwellers are more likely to fall within the mid-

range begin to fall from this point. This model could also be used to support the 

findings of Reber et al’s (2004) processing fluency hypothesis, which states that 

images are hedonically marked with ease of processing. Factors such as familiarity 

and complexity contribute to overall experiences of perceptual fluency, therefore 

rural dwellers may find fractal shapes easier to process and as such the point at 

which perception arousal potential is reached is higher (at the mid-point) than 

urban dwellers, who preference fell in frequency analysis was found to peak 

lower, as urban participants generally have little or rare interaction with natural 

fractal patterns.  

 

The high percentage likelihood of choice found for mid-range images was 

significantly higher than choice percentages made for the complex image from the 

pair (discussed in section 13.4). On average percentage choice for mid-range was 

around the 80% point  (compared with 10% or less in complexity models on 

average) suggesting higher overall preference for mid-range images in all samples. 

This high percentage choice offers support for the restoration quality of mid-range 

images, this theory that stronger preference responses will be reported for 

natural/restorative stimulus in participants experiencing heightened stress or 

mental fatigue (van den Berg et al, 2003; Staats et al, 2003), some of the 

environments in which participants spend time (particularly the urban participants) 

that has higher attentional and processing demands than natural scenes (Kaplan & 

Kaplan, 1989; Kaplan, 1995; Berman, Jonides & Kaplan, 2008) which may be a 

result of the fact that human perceptual systems developed in a largely fractal 

environment (Rogowitz & Voss, 1990) the findings show that there is high 
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percentage choice for mid-range fractal patterns, suggesting that these images 

have particular aesthetic quality in which participants responded to.  

 

The results from the analysis in chapter 10 found a significant interaction between 

gender and environment, and results show that males are more likely to select a 

mid-range image from a pair. Within other chapters there was no significant main 

or interaction effects of gender but chapter 12 found the opposite result, that 

females were significantly more likely than males to choose a mid-range image 

from a pair. The mixed finding of the effect of gender on choices for mid-range 

fractal patterns could potentially be supported by literature, including the hunter-

gather hypothesis (Silverman & Eals, 1992). Previous discussions have outlined 

this model that males and females differ in the perceptual processing and 

associated neural underpinning (Cela-conde et al, 2009). This theory suggests that 

females make use of categorical spatial relations in aesthetic judgments, which 

have been associated with experiences and memory, rather than assessment based 

on the environment as it is currently (as seen in coordinator spatial relations in 

females). 

 

As outlined above, significant gender differences were not consistently found 

throughout each analysis within this thesis. There was however a high percentage 

choice for mid-range images across both genders (average 80-90%), one potential 

rationale for this finding could be the survival benefits associated with landscape 

displaying approximately mid-range fractal dimension. Orians (1980) savanna 

hypothesis suggested that spontaneous emotional responses to landscapes that are 

positive survival or instincts and then preference fall for savanna type landscape 

(found to display mid-range fractal patterns) because they are most akin with the 

environment in which we developed and provided shelter and survival benefits.  

The Savanna hypothesis has been found to be cross-culturally consistent and 

preferences for savannah-type landscape is seen in individuals, even if they have 

never had visual interactions with this type of environment (Falk & Balling, 

2009).  This effect is particularly strong in children (Balling & Falk, 1982). 

 

The refuge theory continues this line of rationale, that preference for visual 

environment is greatest for those that can offer both shelter and ability to move 
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undetected (Appleton, 1975). Although the refuge theory has been criticised for its 

limited ability to demonstrate why differences exist across culture, Appleton 

(1996) addressed these criticisms when he asserted that preferences may well be 

shaped by culture, experience and historical influence he highlights that the 

foundations of these trends are not within a vacuum and stem and as such still 

have links in environmental preferences based upon these evolutionary instincts of 

aesthetic preference.  This rationale could be used to support the current findings 

within this thesis, while it does seem the biological and evolutionary foundations 

play a role in shaping our visual preferences for fractal patterns, they are also 

shaped in part by our current visual and cultural experiences accounting for 

significant interactions found here.  

 

Other examples of biological and evolutionary based visual preferences can be 

seen in our aesthetic responses to symmetry.  Symmetry preferences can be used 

to show how preference for abstract geometric forms can be based on evolutionary 

survival. Symmetry in mate selection as it represents strong genes, or may have 

been an unintentional by-product of visual shape recognition (Enquist & Arak, 

1994). Symmetry is an effect and easily perceived measure of genetic quality 

(Møller, 1990; Parsons, 1992) and these same conclusions can be drawn about 

responses to fractal patterns. Fractal D at the mid-range is an effective and easily 

perceived measure of naturalness and has the most positive psychological and 

physiological benefit.  

 

Other examples include facial attractiveness, for which distinctions emerge in 

early infants before learned behaviour could be possible suggesting innate and 

evolved responses (Langlois et al, 1987). The theory suggests innate responses are 

shown in infancy and begin to be shaped by our experiences. As our experiences 

with faces grow we begin to understand society specific visual experiences what 

‘average’ face are and our preferences for faces become more socially and 

culturally tied.  Using this theory as a guide we could propose this type of 

aesthetic development for fractal patterns also. Innate responses could (and 

should) be found toward mid-range, but with repeated exposure to other non-mid 

or non-fractal environments what we consider most aesthetically pleasing will 

change with experience. Cultural ties reduce and change a typically scene to which 
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we compare new viewing. We eventually learn the norm of the visual environment 

in which we spend time and these repeated exposure shaped our aesthetic 

perceptions.   

 

Summary of mid-range findings: 

 
Overall, there was less individual difference reported in the mid-range models 

compared with the complexity models, and overall preference choice percentages 

were higher than the complexity model at around 80-90%. The results however 

also find differences between continent, gender and environment, which opposes 

established theories, suggesting preference, is universally set at the mid-range 

(Spehar et al, 2003). The findings are intriguing and point to both biological and 

experiential factors shaping changes in preference but with some underlying 

innate or evolutionary preference patterns. This finding notes a current stalemate 

of the field of psycho-aesthetics, and further analysis is required to unpick the 

power of experience to influence preferences for fractal patterns.  
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13.6 Connection to Nature and Applied Empirical 

Aesthetics: 
 

As one avenue of investigation, this thesis explored if aesthetic responses to fractal 

patterns were related to how connected individuals feel to nature. The decision to 

explore this was based on the body of the literature that has suggested the aesthetic 

draw of fractals is because of their characteristic naturalness (Hagerhall et al, 

2004).   Although no significant relationship between connection-to-nature scores 

and fractal preference were found within this thesis one potential explanation of 

this could be the exploratory nature of the sample made up of only Egyptian 

participants. It could be suggested that the measure used, the Connectedness to 

Nature Scale (Mayers & Frantz, 2004- CNS) found no effect because of its lack of 

cultural validity. Further exploration of the literature following these results found 

studies which have shown that Egyptian samples behave differently than western 

samples in environmental awareness, a concept closely linked with connection to 

nature. Mostafa (2007) found that Egyptian men displayed more environmentally 

green purchasing than women; a finding opposed to those in the west that show 

where females demonstrate more environmental awareness. Although based in a 

different, but related discipline, Lee & Green (1991) claim most major consumer 

behaviour models have been developed and tested in the west and pay very little 

attention to cross-cultural settings and it could be suggest that this lack of cross-

cultural validity for the measure was the reason that no significant relationship 

between connection-to-nature and fractal preference was found.  

 

The author believes that the power of natural images and as a related construct 

fractal dimension, has been demonstrated to be a strong and lasting bond, 

therefore it would be justified that it would influence how effected we feel for 

nature. This avenue of research is not closed and further exploration with cross-

culturally tested tools is required to understand if the concepts overlap. Following 

the submission of this thesis data, further data collection on this avenue has been 

collected (with UK samples) and early analysis is showing promising findings.  
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13.7 Future Directions: 
 

The current thesis has found significant effects of individual differences on 

aesthetic responses to fractal patterns. Despite this new finding, further research is 

needed to continue the growth in the area. Based on the findings of this thesis, the 

author has highlighted several potentially fruitful areas of investigation for future 

directions.  

 

Additional Avenues of Analysis: 

 

The first future direction involves a differing analysis and was touched upon 

within chapter 12. A potentially fruitful area of extension is the proposal of 

multinomial over binomial analysis as a possible alternative to test the mid-range 

hypothesis found in previous literature further. Previous literature suggests that 

fractal preference falls into 3 categories (Low-Mid-High) therefore it could be 

argued that the current 2A-FC designed employed throughout this thesis (as well 

as in previous literature) is not a suitable method to unpick these multilevel 

aesthetic responses. This was acknowledged during analysis however was 

included within the thesis to demonstrate the journey of the research and also to 

suggest fruitful further testing using this analysis. It is suggested that future studies 

adopt a 3A-FC or ranking design for which this multinomial analysis would be 

most suited. Using a 3A-FC/ranking design researchers can explore preferences 

but also find the direction of these preferences. Current designs allow assumptions 

to be made about the likelihood of choosing the more complex (Model A) or mid-

range (Model B) fractal image however including 3 measures can allow further 

more stringent investigation of the 3 categorical concept established in literature of 

fractal aesthetics.  

 

Measuring the real visual environment: 

 

The evidence within this thesis suggests that environmental features, such as urban 

and rural environments have significant influence on our preference for fractal 

shapes. Whilst this gives us an insight into the perceptual relationship with nature 
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as a whole, it is important to note the limitations of the stimulus set used within 

the thesis. Whilst controlled computer generated fractal images has allowed strong 

conclusions to be drawn on the findings being a result of fractal dimension rather 

than other factors, further analysis is required to understand the application to real-

life scenery. One such way is photograph real-life scenes and use measures 

developed to quantify complexity (GIF as discussed previously) and fractal 

dimension to make links.  There are several ways fractal dimension can be 

measured from an image. One such measure that could be used on photographs 

and scenes is the Hausdorff D measure of fractal dimension. By allowing stringent 

measurement of the natural world, and exploring aesthetic responses to these, we 

can begin to unpick the influence that aesthetic judgment can have on attitude, 

mood and behaviour. There are a number of potential tool from which the 

environmental features can be quantified and this points towards a promising, and 

increasing applied, research direction.  Following on from this thinking, the next 

steps in exploring the consistency of the strong effects found within this thesis is 

to take the research into a more applied domain and measure for fractal dimension 

and complexity the role that they play in every day visual experiences and assess 

the implications of this in a real-life setting. As well as fractal measures of real-life 

scenes, other measures that can account for Euclidean geometry should be 

included to investigate how both forms of geometry interact to form aesthetic 

judgment towards environmental scenes. One such study the author hopes to work 

on its develop stimulus to explore the ‘peak’ ratio between Fractal and Euclidean 

geometry, both of these geometries dominant our daily visual experiences and 

now new measures offer the opportunity to explore the psychological impact of 

visual experiences in different environmental regions. 

 

 

Neuroaesthetics/Physiological benefits with fractal patterns 

explored: 

 
Further possible future directions based on the findings of this thesis include 

deeper investigations towards aesthetic relationship towards fractal patterns.  As 

discussed previously, the aims of this thesis were to explore the impact of 

individual differences on fractal preference and also provide groundwork for 

further neuroaesthetics and physiological response testing towards fractal patterns. 
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Previous literature provides some evidence to suggest that fractal and natural 

patterns can have positive psychological and physiological benefits of the viewers 

(see Chapter 5 for full review) with responses to the mid-range fractal patterns, 

demonstrating the most powerful restorative qualities. The findings within this 

thesis suggest there is more variety across peak preference for fractal patterns and 

they do not, as previously suggested, lay consistently within the mid-range of the 

fractal scale (D1.3-1.5). As differences in aesthetic judgment have been found, a 

potential avenue for exploration would be to explore the benefits of fractal 

patterns on stress reduction as done previously (See Hagerhall et al, 2004) but 

accounting for individual differences in aesthetic judgments. If aesthetic 

judgments differ between different environmental groups, could this also suggest 

that psychological and physiological responses differ too? This is an area that 

requires exploration and replication of previous studies given the new insight into 

aesthetic responses based on the findings of this thesis.  

 

Evidence has demonstrated that the visual environment we spend time in can 

significantly influence our preference for fractal complexity and therefore could 

this be used to promote health benefits (from both a psychological and 

physiological stance). If we know what people like based on experiences, and we 

know positive aesthetic responses are also linked with other feelings of usability, 

purchase etc. (see Chapter 5) there could potentially be a way of harnessing this 

effect of the visual environment in improving psychological well being 

particularly in hospital or institutional settings.  Taking into account the current 

findings one option is to tailor make visual experiences based on predicted 

preference and explore the neuroaesthetics and physiological responses to fractal 

patterns to understand not only behavioural responses (preference choices) but 

also the physiological and neuroanatomical foundations that could contribute to 

the aesthetic pull of fractal patterns.  

 

These three areas are just a snap shot of the possible fruitful directions the findings 

of the current thesis can be used. The application of such findings should not be 

underestimated and may offer way to promote stress reduction, and restorative 
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qualities to increasingly urbanised populations that are loosing connection and 

contact with nature.  
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14.0 Conclusions: 
 

The aims of this thesis were to explore visual aesthetic relationships with fractal 

patterns, and investigate if established aesthetic judgments towards fractal patterns 

are influenced by individual differences.  It was hoped that by using a large and 

controlled stimulus set of pure fractal patterns, assumptions could reasonably be 

considered unbiased by additional information within a scene.  To summarise the 

main conclusions, 6 studies were conducted as part of this thesis. 

 

Study 1 assessed the relationship between the fractal stimuli and visual complexity 

measures (GIF ratio) and found that strong correlations between the 2 concepts, 

suggesting that the findings based on the current stimuli set can be used to make 

assertions not only about fractal dimension but also visual complexity. 

 

Study 2 examined the cross-cultural differences in aesthetic judgments of fractal 

stimuli. Participants from UK and Egypt rated the fractal stimuli set for beauty and 

findings show marked differences in preference patterns across the fractal scale. In 

addition study 2 explored the validity of the mid-range hypothesis as the peak 

point of aesthetic preference within a fractal scale, findings did not support the 

mid-range hypothesis and instead point to a linear relationship between fractal 

dimension and aesthetic judgments, with this relationship most notable in the 

Egyptian sample. 

 

Study 2 suggested cross-cultural differences in preferences, and as such, Study 3 

attempted to validate these findings with a larger cross-cultural sample including 

data from over 30 countries. Analysis found preferences generally peak at lower 

ends of the fractal continuum (D1.2) and again negative linear patterns of 

preferences from this point were found for two of the three continents included 

within the analysis. Additional analysis explore how well individual differences, 

including continent, gender and age can predict preferences for complex or mid-

range fractal patterns, evidence found that continent and gender were both 

significant predictors in patterns of preferences for fractal patterns. Despite the 

confirmation of cross-cultural differences, using ‘continent’ grouping is a largely 
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unsupported method of cross-cultural grouping and as such more controlled 

samples were sought to explore cross-cultural differences more robustly.  

 

Study 4 used samples from UK and Egypt and also included the additional 

component of sub-cultural/environmental classification as a potential predictor of 

fractal preference alongside country, gender and age. Results found no support for 

cross-cultural predictors as seen previously, however environmental classification 

was strongly related to preferences for fractal patterns, with rural and urban 

dweller displaying significant differences in preference for fractal complexity and 

mid-range fractal patterns.  

 

Study 5 attempted to explore the potential real-life applications of understanding 

aesthetic judgments of fractal patterns and alongside environmental classification 

measures (Urban/Rural) this study explored if a psychometric measure of 

connectedness-to-nature would relate significantly to preferences for complex or 

mid-range fractal patterns. The results found that environmental classification is a 

predictor of aesthetic preferences however connectedness-to-nature scales 

demonstrated no significant relationship with preference choices. Findings from 

study 5 also show significant interactions between environmental classification 

and Age, with preferences for complexity falling in rural samples during ageing 

and increasing in urban samples during ageing.  

 

The final study, attempted to validate continent, gender and age as predictors of 

preference for fractal stimuli. Study 6 compiles the data from studies 3-5 with an 

additional sample of ‘elderly’ participants to provide a larger span of ages from 

which predictors regarding preferences can be made. Findings demonstrate that 

continent and gender are significant predictors of preferences for fractal stimuli 

and as such validate the conclusions made regarding preferences for fractal 

patterns as a function of culture and gender. Using a larger and more varied 

sample, findings demonstrate that age is not a stable significant main predictor of 

preference, as found in study 5.  
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General Conclusions: 

 

 The findings of this thesis show support for both evolutionary foundations as well 

as the constructivist account of aesthetic preference for fractal patterns.  It is 

proposed that an internationalist approach should be taken when exploring 

aesthetic responses to fractal patterns.  Overall results show that culture, 

environment and gender are strong and reliable predictors of preference for ‘pure’ 

fractal patterns, and as such demonstrate that individual differences underlie 

preferences, rather than falling into a universal ‘peak’ as found in previous 

literature.   The results from this thesis aimed to makes conclusions to an 

interdisciplinary audience, to avoid similar problems of variance found within the 

literature during this thesis. It is important that when exploring classifications of 

our visual experiences, psychologists, landscape architects, designers, artists, 

geographers and physicists and many other professions work in an 

interdisciplinary way so results are assessed and shared across the fields. It is 

hoped that fractal geometry and the findings from the thesis have taken a step 

towards this goal and shown how the field and previous literature from numerous 

disciplines can be used to move the field forward as a unified whole which will 

result in better and more thorough progress than the current trend of sub-

disciplinary working. Mandelbrot stated that- 

 

“Fractal geometry is not just a chapter of mathematics, but one that helps 

Everyman to see the same world differently.” (Benoit Mandelbrot, 1982) 

 

And it is hoped that based on this thesis, interdisciplinary research will progress to 

help every man, woman and academic to see the same world differently.  

 

Potential Avenues of Research: 

 

There are several potentially fruitful avenues to progress the findings of the 

current thesis. Here, only pure computer generated fractal patterns were used to 

explore aesthetic responses in a controlled manner free from other confounding 

variables. Whilst this results in reliable findings based on fractal dimension (and 
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the related construct, visual complexity) it offers little to the wider field of daily 

visual experiences that included both fractal and non-fractal content. Now fractal 

aesthetic responses have been considered alone, further studies should explore the 

interaction between Fractal and Euclidean geometry in scenes to understand 

further real-life daily visual experiences. Other potential avenues include 

neuroaesthetics responses to fractal patterns. Within the current scope of this 

thesis, investigation regarding the neural underpinning of responses to fractal 

patterns could not be explored, however now extensive behavioural measures have 

been explored and aesthetic responses to fractal further understood, we can 

examine the qualities of fractal responses that go beyond the purely aesthetic. 

These are only a small selection of the potential avenues of research from the 

current findings, and this thesis should be considered a stepping-stone to highlight 

and encourage further exploration into the unexplored.  

 

Concluding statement: 

 

Fractal geometry allows one way from which to explore our visual relationship 

with the natural environment in further depth. The findings of this thesis 

demonstrate the role that individual differences both innate and experiential play 

on forming our aesthetic judgments. It also goes begins to lay the groundwork for 

future research examining the impact of differences in such aesthetic responses 

will have on human behaviour in a multitude of settings.  

 

——— 

 

“For many years I had been hearing the comment that fractals make beautiful 

pictures, but are pretty useless. I was irritated because important applications 

always take some time to be revealed.” (Mandelbrot, 2004) 
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Appendix A: Stimulus Sets 
 

Stimulus Set 0019 (D1.1-1.9) 

  

 

 
 

Stimulus Set 0026 (D1.1-1.9) 
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Stimulus Set 0027 (D1.1-1.9) 

 

 

 
 

Stimulus Set 0039 (D1.1-1.9) 
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Stimulus Set 0046 (D1.1-1.9) 

 

 

 

 
 

Stimulus Set 0048 (D1.1-1.9) 
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Stimulus Set 1043 (D1.1-1.9) 
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Stimulus Set 1048 (D1.1-1.9) 

 

 

 
 

Stimulus Set 1067 (D1.1-1.9) 
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Appendix B: Scales 
 

Connectedness to Nature Scale – from Mayer & McPherson-Frantz (2004) 

 

Please answer each of the following questions in terms of the way you feel generally 

about nature. Please be as honest and candid about what you are presently experiencing. 

 

1. I often feel a sense of oneness with the natural world around me.  

•     

1- Strongly disagree 

•     

2- Disagree 

•     

3- Neutral 

•     

4- Agree 

  

5- Strongly agree 

 

2. I think of the natural world as a community to which I belong  

•     

1- Strongly disagree 

•     

2- Disagree 

•     

3- Neutral 

•     

4- Agree 

  

5- Strongly agree 

 

3. I recognize and appreciate the intelligence of other living organisms  

•     

1- Strongly disagree 

•     

2- Disagree 

•     

3- Neutral 

•     

4- Agree 

  

5- Strongly agree 

 

4. I often feel disconnected from nature *Reverse scored 

•     

1- Strongly disagree 

•     

2- Disagree 

•     

3- Neutral 

•     

4- Agree 

 5- Strongly agree 
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5. When I think of my life, I imagine myself to be part of a larger cyclical process of 

living. 

  

1- Strongly disagree 

•     

2-Disagree 

•     

3- Neutral 

•     

4-Agree 

 5- Strongly agree 

6. I often feel a kinship with animals and plants. 

•     

1- Strongly disagree 

•     

2- Disagree 

•     

3- Neutral 

•     

4- Agree 

  

          5- Strongly agree 

 

7. I feel as though I belong to the Earth as equally as it belongs to me.   

 

          1- Strongly disagree 

•   

2- Disagree 

•   

3- Neutral 

•   

4- Agree 

 

 5- Strongly agree 

 

8. I have a deep understanding of how my actions affect the natural world.  

  

          1- Strongly disagree 

•     

2- Disagree 

•     

3- Neutral 

•     

4- Agree 

  

          5- Strongly agree 

 

9. I often feel part of the web of life. 

•     

1- Strongly disagree 

•     

2- Disagree 

•     

3- Neutral 
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•     

4- Agree 

  

          5- Strongly agree 

 

10. I feel that all inhabitants of Earth, human and nonhuman, share a common 'life force'. 

  

          1- Strongly disagree 

•     

2- Disagree 

•     

3- Neutral 

•     

4- Agree 

  

          5- Strongly agree 

 

11. Like a tree can be part of a forest, I feel embedded within the broader natural world.  

  

          1- Strongly disagree 

•     

2- Disagree 

•     

3- Neutral 

•     

4- Agree 

 5- Strongly agree 

 

12. When I think of my place on Earth, I consider myself to be a top member of hierarchy 

that exists in nature. *Reverse scored 

  

1- Strongly disagree 

•     

2- Disagree 

•     

3- Neutral 

•     

4- Agree 

  

5- Strongly agree 

 

13.  I often feel like I am only a small part of the natural world around me, and that I am 

no more important than the grass on the ground or the birds in the trees  

•     

1- Strongly disagree 

•     

2- Disagree 

•     

3- Neutral 

•     

4- Agree 

 5- Strongly agree 

 

14. My personal welfare is independent of the welfare of the natural world.  *Reverse 

scored 



 

 360 

 1- Strongly disagree 

•     

2- Disagree 

•     

3- Neutral 

•     

4- Agree 

 5- Strongly agree 
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Appendix C: Analysis Output 
 

Chapter 7 Output: 

Correlations 

 FD GIF 

FD Pearson Correlation 1 -.927** 

Sig. (2-tailed)  .000 

N 81 81 

GIF Pearson Correlation -.927** 1 

Sig. (2-tailed) .000  

N 81 81 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

Chapter 8 Output: 

SPSS Output 

Descriptive Statistics 

 N Minimum Maximum Sum Mean Std. Deviation 

1.1 354 .00 10.00 1902.50 5.3743 2.24186 

1.2 354 .00 10.00 1772.50 5.0071 1.99698 

1.3 354 .00 10.00 1742.00 4.9209 1.82583 

1.4 354 .00 10.00 1694.50 4.7867 1.81093 

1.5 354 .00 9.50 1589.00 4.4887 1.78795 

1.6 354 .00 8.50 1401.50 3.9590 1.78017 

1.7 354 .00 9.00 1211.00 3.4209 2.01502 

1.8 354 .00 10.00 1144.50 3.2331 2.23956 

1.9 354 .00 10.00 1109.00 3.1328 2.49632 

Valid N (listwise) 354      

 
General Linear Model 

Descriptive Statistics 

 Mean Std. Deviation N 

1.1 5.3743 2.24186 354 

1.2 5.0071 1.99698 354 

1.3 4.9209 1.82583 354 

1.4 4.7867 1.81093 354 

1.5 4.4887 1.78795 354 

1.6 3.9590 1.78017 354 
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1.7 3.4209 2.01502 354 

1.8 3.2331 2.23956 354 

1.9 3.1328 2.49632 354 

 

Multivariate Testsa 

Effect Value F 

Hypothesis 

df Error df Sig. 

Partial Eta 

Squared 

Fractal Pillai's Trace .292 17.859b 8.000 346.000 .000 .292 

Wilks' Lambda .708 17.859b 8.000 346.000 .000 .292 

Hotelling's 

Trace 
.413 17.859b 8.000 346.000 .000 .292 

Roy's Largest 

Root 
.413 17.859b 8.000 346.000 .000 .292 

a. Design: Intercept  

 Within Subjects Design: Fractal 

 

Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

Fractal .036 1164.311 35 .000 .390 .394 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept  

 Within Subjects Design: Fractal 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial 

Eta 

Squared 

Fractal Sphericity 

Assumed 
2012.912 8 251.614 72.918 .000 .171 

Greenhouse-

Geisser 
2012.912 3.124 644.402 72.918 .000 .171 

Huynh-Feldt 2012.912 3.155 638.050 72.918 .000 .171 

Lower-bound 2012.912 1.000 2012.912 72.918 .000 .171 
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Error(Fractal) Sphericity 

Assumed 
9744.643 2824 3.451    

Greenhouse-

Geisser 
9744.643 1102.662 8.837    

Huynh-Feldt 9744.643 1113.640 8.750    

Lower-bound 9744.643 353.000 27.605    

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source Fractal 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Fractal Linear 1936.279 1 1936.279 132.740 .000 .273 

Quadratic 11.064 1 11.064 3.885 .050 .011 

Cubic 22.804 1 22.804 11.528 .001 .032 

Order 4 33.699 1 33.699 18.979 .000 .051 

Order 5 6.366 1 6.366 3.758 .053 .011 

Order 6 2.269 1 2.269 1.679 .196 .005 

Order 7 .421 1 .421 .291 .590 .001 

Order 8 .010 1 .010 .005 .943 .000 

Error(Fractal) Linear 5149.204 353 14.587    

Quadratic 1005.434 353 2.848    

Cubic 698.314 353 1.978    

Order 4 626.791 353 1.776    

Order 5 598.065 353 1.694    

Order 6 477.003 353 1.351    

Order 7 509.672 353 1.444    

Order 8 680.161 353 1.927    

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Intercept 57768.337 1 57768.337 5958.531 .000 .944 

Error 3422.357 353 9.695    

 

 
Estimated Marginal Means 
Fractal 
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Estimates 

Measure:   MEASURE_1   

Fractal Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 5.374 .119 5.140 5.609 

2 5.007 .106 4.798 5.216 

3 4.921 .097 4.730 5.112 

4 4.787 .096 4.597 4.976 

5 4.489 .095 4.302 4.676 

6 3.959 .095 3.773 4.145 

7 3.421 .107 3.210 3.632 

8 3.233 .119 2.999 3.467 

9 3.133 .133 2.872 3.394 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) Fractal 

(J) 

Fractal 

Mean 

Difference (I-

J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 .367* .111 .038 .009 .725 

3 .453* .115 .004 .082 .824 

4 .588* .119 .000 .205 .970 

5 .886* .136 .000 .448 1.324 

6 1.415* .158 .000 .905 1.926 

7 1.953* .180 .000 1.372 2.535 

8 2.141* .198 .000 1.503 2.780 

9 2.242* .212 .000 1.558 2.925 

2 1 -.367* .111 .038 -.725 -.009 

3 .086 .098 1.000 -.230 .402 

4 .220 .107 1.000 -.124 .565 

5 .518* .130 .003 .100 .936 

6 1.048* .140 .000 .598 1.498 

7 1.586* .164 .000 1.056 2.116 

8 1.774* .180 .000 1.195 2.353 

9 1.874* .194 .000 1.250 2.498 

3 1 -.453* .115 .004 -.824 -.082 

2 -.086 .098 1.000 -.402 .230 

4 .134 .097 1.000 -.178 .446 

5 .432* .108 .003 .083 .782 

6 .962* .122 .000 .568 1.355 
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7 1.500* .146 .000 1.028 1.972 

8 1.688* .162 .000 1.166 2.210 

9 1.788* .177 .000 1.217 2.360 

4 1 -.588* .119 .000 -.970 -.205 

2 -.220 .107 1.000 -.565 .124 

3 -.134 .097 1.000 -.446 .178 

5 .298 .102 .136 -.031 .627 

6 .828* .112 .000 .467 1.189 

7 1.366* .137 .000 .924 1.808 

8 1.554* .146 .000 1.082 2.026 

9 1.654* .170 .000 1.107 2.200 

5 1 -.886* .136 .000 -1.324 -.448 

2 -.518* .130 .003 -.936 -.100 

3 -.432* .108 .003 -.782 -.083 

4 -.298 .102 .136 -.627 .031 

6 .530* .109 .000 .178 .881 

7 1.068* .118 .000 .687 1.448 

8 1.256* .140 .000 .804 1.708 

9 1.356* .157 .000 .849 1.862 

6 1 -1.415* .158 .000 -1.926 -.905 

2 -1.048* .140 .000 -1.498 -.598 

3 -.962* .122 .000 -1.355 -.568 

4 -.828* .112 .000 -1.189 -.467 

5 -.530* .109 .000 -.881 -.178 

7 .538* .102 .000 .210 .866 

8 .726* .114 .000 .358 1.094 

9 .826* .134 .000 .396 1.257 

7 1 -1.953* .180 .000 -2.535 -1.372 

2 -1.586* .164 .000 -2.116 -1.056 

3 -1.500* .146 .000 -1.972 -1.028 

4 -1.366* .137 .000 -1.808 -.924 

5 -1.068* .118 .000 -1.448 -.687 

6 -.538* .102 .000 -.866 -.210 

8 .188 .096 1.000 -.121 .496 

9 .288 .112 .372 -.072 .648 

8 1 -2.141* .198 .000 -2.780 -1.503 

2 -1.774* .180 .000 -2.353 -1.195 

3 -1.688* .162 .000 -2.210 -1.166 

4 -1.554* .146 .000 -2.026 -1.082 

5 -1.256* .140 .000 -1.708 -.804 

6 -.726* .114 .000 -1.094 -.358 



 

 366 

7 -.188 .096 1.000 -.496 .121 

9 .100 .085 1.000 -.175 .375 

9 1 -2.242* .212 .000 -2.925 -1.558 

2 -1.874* .194 .000 -2.498 -1.250 

3 -1.788* .177 .000 -2.360 -1.217 

4 -1.654* .170 .000 -2.200 -1.107 

5 -1.356* .157 .000 -1.862 -.849 

6 -.826* .134 .000 -1.257 -.396 

7 -.288 .112 .372 -.648 .072 

8 -.100 .085 1.000 -.375 .175 

Based on estimated marginal means 

*. The mean difference is significant at the 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Multivariate Tests 

 Value F 

Hypothesis 

df Error df Sig. 

Partial Eta 

Squared 

Pillai's trace .292 17.859a 8.000 346.000 .000 .292 

Wilks' lambda .708 17.859a 8.000 346.000 .000 .292 

Hotelling's trace .413 17.859a 8.000 346.000 .000 .292 

Roy's largest 

root 
.413 17.859a 8.000 346.000 .000 .292 

Each F tests the multivariate effect of Fractal. These tests are based on the linearly 

independent pairwise comparisons among the estimated marginal means. 

a. Exact statistic 
 

 
General Linear Model 

 

Multivariate Testsa 

Effect Value F 

Hypothesis 

df Error df Sig. 

FractalLevel Pillai's Trace .284 69.704b 2.000 352.000 .000 

Wilks' Lambda .716 69.704b 2.000 352.000 .000 

Hotelling's Trace .396 69.704b 2.000 352.000 .000 

Roy's Largest 

Root 
.396 69.704b 2.000 352.000 .000 

a. Design: Intercept  

 Within Subjects Design: FractalLevel 

b. Exact statistic 
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Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

FractalLevel .526 225.985 2 .000 .679 .680 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept  

 Within Subjects Design: FractalLevel 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

FractalLevel Sphericity 

Assumed 
3436.069 2 1718.035 114.123 .000 

Greenhouse-

Geisser 
3436.069 1.357 2531.974 114.123 .000 

Huynh-Feldt 3436.069 1.360 2525.630 114.123 .000 

Lower-bound 3436.069 1.000 3436.069 114.123 .000 

Error(FractalLevel) Sphericity 

Assumed 
10628.264 706 15.054   

Greenhouse-

Geisser 
10628.264 479.046 22.186   

Huynh-Feldt 10628.264 480.249 22.131   

Lower-bound 10628.264 353.000 30.108   

 

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source FractalLevel 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

FractalLevel Linear 3308.517 1 3308.517 131.371 .000 

Quadratic 127.552 1 127.552 25.905 .000 
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Error(FractalLevel) Linear 8890.163 353 25.185   

Quadratic 1738.101 353 4.924   

 

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 108441.706 1 108441.706 6064.371 .000 

Error 6312.266 353 17.882   

Estimated Marginal Means 
FractalLevel 

Estimates 

Measure:   MEASURE_1   

FractalLevel Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 12.022 .216 11.596 12.447 

2 10.595 .176 10.249 10.942 

3 7.698 .240 7.226 8.171 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) 

FractalLevel 

(J) 

FractalLevel 

Mean 

Difference 

(I-J) 

Std. 

Error Sig.b 

95% Confidence Interval 

for Differenceb 

Lower 

Bound 

Upper 

Bound 

1 2 1.427* .214 .000 .912 1.941 

3 4.323* .377 .000 3.416 5.231 

2 1 -1.427* .214 .000 -1.941 -.912 

3 2.897* .259 .000 2.274 3.520 

3 1 -4.323* .377 .000 -5.231 -3.416 

2 -2.897* .259 .000 -3.520 -2.274 

Based on estimated marginal means 

*. The mean difference is significant at the 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Multivariate Tests 

 Value F Hypothesis df Error df Sig. 

Pillai's trace .284 69.704a 2.000 352.000 .000 
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Wilks' lambda .716 69.704a 2.000 352.000 .000 

Hotelling's trace .396 69.704a 2.000 352.000 .000 

Roy's largest root .396 69.704a 2.000 352.000 .000 

Each F tests the multivariate effect of FractalLevel. These tests are based on the linearly 

independent pairwise comparisons among the estimated marginal means. 

a. Exact statistic 
 

Descriptive Statisticsa 

 N Minimum Maximum Mean Std. Deviation 

1.1 200 1.50 10.00 5.9925 1.88119 

1.2 200 .00 10.00 5.3600 1.84047 

1.3 200 .00 10.00 5.1425 1.74389 

1.4 200 1.00 10.00 4.9100 1.75708 

1.5 200 .00 9.50 4.4025 1.70404 

1.6 200 .00 8.50 3.7050 1.63519 

1.7 200 .50 9.00 2.7725 1.47832 

1.8 200 .00 9.00 2.4000 1.43450 

1.9 200 .00 10.00 2.1725 1.53976 

Valid N (listwise) 200     

a. EGYPT OR UK SAMPLE = EGYPT 

 

EGYPT OR UK SAMPLE = EGYPT 

Descriptive Statisticsa 

 Mean Std. Deviation N 

1.1 5.9925 1.88119 200 

1.2 5.3600 1.84047 200 

1.3 5.1425 1.74389 200 

1.4 4.9100 1.75708 200 

1.5 4.4025 1.70404 200 

1.6 3.7050 1.63519 200 

1.7 2.7725 1.47832 200 

1.8 2.4000 1.43450 200 

1.9 2.1725 1.53976 200 

a. EGYPT OR UK SAMPLE = EGYPT 

 

Multivariate Testsa,b 

Effect Value F 

Hypothesis 

df Error df Sig. 

Partial Eta 

Squared 

Fractal Pillai's Trace .789 89.576c 8.000 192.000 .000 .789 

Wilks' Lambda .211 89.576c 8.000 192.000 .000 .789 

Hotelling's 

Trace 
3.732 89.576c 8.000 192.000 .000 .789 
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Roy's Largest 

Root 
3.732 89.576c 8.000 192.000 .000 .789 

a. EGYPT OR UK SAMPLE = EGYPT 

b. Design: Intercept  

 Within Subjects Design: Fractal 

c. Exact statistic 

 

Mauchly's Test of Sphericitya,b 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonc 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

Fractal .509 132.617 35 .000 .856 .890 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. EGYPT OR UK SAMPLE = EGYPT 

b. Design: Intercept  

 Within Subjects Design: Fractal 

c. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effectsa 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial 

Eta 

Squared 

Fractal Sphericity 

Assumed 
3105.381 8 388.173 159.774 .000 .445 

Greenhouse-

Geisser 
3105.381 6.848 453.488 159.774 .000 .445 

Huynh-Feldt 3105.381 7.117 436.331 159.774 .000 .445 

Lower-bound 3105.381 1.000 3105.381 159.774 .000 .445 

Error(Fractal) Sphericity 

Assumed 
3867.786 1592 2.430    

Greenhouse-

Geisser 
3867.786 1362.706 2.838    

Huynh-Feldt 3867.786 1416.290 2.731    

Lower-bound 3867.786 199.000 19.436    

a. EGYPT OR UK SAMPLE = EGYPT 
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Tests of Within-Subjects Contrastsa 

Measure:   MEASURE_1   

Source Fractal 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Fractal Linear 3021.037 1 3021.037 715.822 .000 .782 

Quadratic 15.986 1 15.986 5.566 .019 .027 

Cubic 15.984 1 15.984 6.450 .012 .031 

Order 4 44.329 1 44.329 19.846 .000 .091 

Order 5 3.962 1 3.962 1.879 .172 .009 

Order 6 2.105 1 2.105 1.332 .250 .007 

Order 7 1.309 1 1.309 .736 .392 .004 

Order 8 .669 1 .669 .309 .579 .002 

Error(Fractal) Linear 839.855 199 4.220    

Quadratic 571.506 199 2.872    

Cubic 493.176 199 2.478    

Order 4 444.493 199 2.234    

Order 5 419.626 199 2.109    

Order 6 314.372 199 1.580    

Order 7 353.800 199 1.778    

Order 8 430.958 199 2.166    

a. EGYPT OR UK SAMPLE = EGYPT 

 

Tests of Between-Subjects Effectsa 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Intercept 30188.340 1 30188.340 5195.689 .000 .963 

Error 1156.243 199 5.810    

a. EGYPT OR UK SAMPLE = EGYPT 

 

Estimated Marginal Means 
Fractal 

Estimatesa 

Measure:   MEASURE_1   

Fractal Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 5.993 .133 5.730 6.255 

2 5.360 .130 5.103 5.617 
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3 5.143 .123 4.899 5.386 

4 4.910 .124 4.665 5.155 

5 4.403 .120 4.165 4.640 

6 3.705 .116 3.477 3.933 

7 2.773 .105 2.566 2.979 

8 2.400 .101 2.200 2.600 

9 2.173 .109 1.958 2.387 

a. EGYPT OR UK SAMPLE = EGYPT 

 

Pairwise Comparisonsa 

Measure:   MEASURE_1   

(I) Fractal 

(J) 

Fractal 

Mean 

Difference (I-

J) Std. Error Sig.c 

95% Confidence Interval for 

Differencec 

Lower Bound Upper Bound 

1 2 .632* .169 .008 .086 1.179 

3 .850* .166 .000 .313 1.387 

4 1.082* .151 .000 .592 1.573 

5 1.590* .163 .000 1.062 2.118 

6 2.287* .172 .000 1.731 2.844 

7 3.220* .164 .000 2.687 3.753 

8 3.593* .166 .000 3.053 4.132 

9 3.820* .175 .000 3.254 4.386 

2 1 -.632* .169 .008 -1.179 -.086 

3 .218 .145 1.000 -.254 .689 

4 .450 .152 .126 -.044 .944 

5 .958* .178 .000 .380 1.535 

6 1.655* .167 .000 1.114 2.196 

7 2.588* .169 .000 2.039 3.136 

8 2.960* .167 .000 2.419 3.501 

9 3.188* .170 .000 2.637 3.738 

3 1 -.850* .166 .000 -1.387 -.313 

2 -.218 .145 1.000 -.689 .254 

4 .232 .142 1.000 -.229 .694 

5 .740* .157 .000 .232 1.248 

6 1.438* .152 .000 .944 1.931 

7 2.370* .159 .000 1.854 2.886 

8 2.743* .153 .000 2.246 3.239 

9 2.970* .162 .000 2.444 3.496 

4 1 -1.082* .151 .000 -1.573 -.592 

2 -.450 .152 .126 -.944 .044 
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3 -.232 .142 1.000 -.694 .229 

5 .508* .143 .017 .045 .970 

6 1.205* .149 .000 .722 1.688 

7 2.138* .155 .000 1.635 2.640 

8 2.510* .143 .000 2.046 2.974 

9 2.738* .171 .000 2.182 3.293 

5 1 -1.590* .163 .000 -2.118 -1.062 

2 -.958* .178 .000 -1.535 -.380 

3 -.740* .157 .000 -1.248 -.232 

4 -.508* .143 .017 -.970 -.045 

6 .697* .156 .000 .192 1.203 

7 1.630* .145 .000 1.160 2.100 

8 2.003* .156 .000 1.498 2.507 

9 2.230* .168 .000 1.685 2.775 

6 1 -2.287* .172 .000 -2.844 -1.731 

2 -1.655* .167 .000 -2.196 -1.114 

3 -1.438* .152 .000 -1.931 -.944 

4 -1.205* .149 .000 -1.688 -.722 

5 -.697* .156 .000 -1.203 -.192 

7 .933* .134 .000 .499 1.366 

8 1.305* .135 .000 .867 1.743 

9 1.533* .153 .000 1.037 2.028 

7 1 -3.220* .164 .000 -3.753 -2.687 

2 -2.588* .169 .000 -3.136 -2.039 

3 -2.370* .159 .000 -2.886 -1.854 

4 -2.138* .155 .000 -2.640 -1.635 

5 -1.630* .145 .000 -2.100 -1.160 

6 -.933* .134 .000 -1.366 -.499 

8 .373 .123 .100 -.026 .771 

9 .600* .141 .001 .144 1.056 

8 1 -3.593* .166 .000 -4.132 -3.053 

2 -2.960* .167 .000 -3.501 -2.419 

3 -2.743* .153 .000 -3.239 -2.246 

4 -2.510* .143 .000 -2.974 -2.046 

5 -2.003* .156 .000 -2.507 -1.498 

6 -1.305* .135 .000 -1.743 -.867 

7 -.373 .123 .100 -.771 .026 

9 .228 .118 1.000 -.155 .610 

9 1 -3.820* .175 .000 -4.386 -3.254 

2 -3.188* .170 .000 -3.738 -2.637 
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3 -2.970* .162 .000 -3.496 -2.444 

4 -2.738* .171 .000 -3.293 -2.182 

5 -2.230* .168 .000 -2.775 -1.685 

6 -1.533* .153 .000 -2.028 -1.037 

7 -.600* .141 .001 -1.056 -.144 

8 -.228 .118 1.000 -.610 .155 

Based on estimated marginal means 

*. The mean difference is significant at the 

a. EGYPT OR UK SAMPLE = EGYPT 

c. Adjustment for multiple comparisons: Bonferroni. 

 

Multivariate Testsa 

 Value F Hypothesis df Error df Sig. 

Partial Eta 

Squared 

Pillai's trace .789 89.576b 8.000 192.000 .000 .789 

Wilks' lambda .211 89.576b 8.000 192.000 .000 .789 

Hotelling's trace 3.732 89.576b 8.000 192.000 .000 .789 

Roy's largest root 3.732 89.576b 8.000 192.000 .000 .789 

Each F tests the multivariate effect of Fractal. These tests are based on the linearly independent pairwise 

comparisons among the estimated marginal means. 

a. EGYPT OR UK SAMPLE = EGYPT 

b. Exact statistic 

 

 

Descriptive Statisticsa 

 N Minimum Maximum Mean Std. Deviation 

1.1 154 .00 10.00 4.5714 2.41755 

1.2 154 .00 9.50 4.5487 2.10257 

1.3 154 .00 9.00 4.6331 1.89430 

1.4 154 .00 10.00 4.6266 1.87219 

1.5 154 .00 9.00 4.6006 1.89114 

1.6 154 .00 8.00 4.2890 1.90783 

1.7 154 .00 9.00 4.2630 2.29392 

1.8 154 .00 10.00 4.3149 2.60965 

1.9 154 .00 10.00 4.3799 2.91943 

Valid N (listwise) 154     

a. EGYPT OR UK SAMPLE = UK 

 

EGYPT OR UK SAMPLE = UK 

Descriptive Statisticsa 

 Mean Std. Deviation N 
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1.1 4.5714 2.41755 154 

1.2 4.5487 2.10257 154 

1.3 4.6331 1.89430 154 

1.4 4.6266 1.87219 154 

1.5 4.6006 1.89114 154 

1.6 4.2890 1.90783 154 

1.7 4.2630 2.29392 154 

1.8 4.3149 2.60965 154 

1.9 4.3799 2.91943 154 

a. EGYPT OR UK SAMPLE = UK 

 

Multivariate Testsa,b 

Effect Value F 

Hypothesis 

df Error df Sig. 

Partial Eta 

Squared 

Fractal Pillai's Trace .059 1.153c 8.000 146.000 .332 .059 

Wilks' Lambda .941 1.153c 8.000 146.000 .332 .059 

Hotelling's 

Trace 
.063 1.153c 8.000 146.000 .332 .059 

Roy's Largest 

Root 
.063 1.153c 8.000 146.000 .332 .059 

a. EGYPT OR UK SAMPLE = UK 

b. Design: Intercept  

 Within Subjects Design: Fractal 

c. Exact statistic 

 

Mauchly's Test of Sphericitya,b 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonc 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

Fractal .002 902.981 35 .000 .259 .262 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. EGYPT OR UK SAMPLE = UK 

b. Design: Intercept  

 Within Subjects Design: Fractal 

c. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effectsa 

Measure:   MEASURE_1   



 

 376 

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial 

Eta 

Squared 

Fractal Sphericity 

Assumed 
29.643 8 3.705 .954 .471 .006 

Greenhouse-

Geisser 
29.643 2.069 14.330 .954 .389 .006 

Huynh-Feldt 29.643 2.097 14.133 .954 .390 .006 

Lower-bound 29.643 1.000 29.643 .954 .330 .006 

Error(Fractal) Sphericity 

Assumed 
4754.746 1224 3.885    

Greenhouse-

Geisser 
4754.746 316.500 15.023    

Huynh-Feldt 4754.746 320.907 14.817    

Lower-bound 4754.746 153.000 31.077    

a. EGYPT OR UK SAMPLE = UK 

 

Tests of Within-Subjects Contrastsa 

Measure:   MEASURE_1   

Source Fractal 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Fractal Linear 16.630 1 16.630 .793 .375 .005 

Quadratic .237 1 .237 .085 .772 .001 

Cubic 7.204 1 7.204 5.383 .022 .034 

Order 4 1.473 1 1.473 1.325 .252 .009 

Order 5 2.424 1 2.424 2.079 .151 .013 

Order 6 .397 1 .397 .374 .542 .002 

Order 7 .103 1 .103 .101 .751 .001 

Order 8 1.174 1 1.174 .726 .395 .005 

Error(Fractal) Linear 3207.961 153 20.967    

Quadratic 428.769 153 2.802    

Cubic 204.754 153 1.338    

Order 4 170.194 153 1.112    

Order 5 178.419 153 1.166    

Order 6 162.398 153 1.061    

Order 7 154.880 153 1.012    

Order 8 247.370 153 1.617    

a. EGYPT OR UK SAMPLE = UK 



 

 377 

 

Tests of Between-Subjects Effectsa 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Intercept 27689.773 1 27689.773 1964.689 .000 .928 

Error 2156.338 153 14.094    

a. EGYPT OR UK SAMPLE = UK 
 
Estimated Marginal Means 
Fractal 

Estimatesa 

Measure:   MEASURE_1   

Fractal Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 4.571 .195 4.187 4.956 

2 4.549 .169 4.214 4.883 

3 4.633 .153 4.332 4.935 

4 4.627 .151 4.329 4.925 

5 4.601 .152 4.300 4.902 

6 4.289 .154 3.985 4.593 

7 4.263 .185 3.898 4.628 

8 4.315 .210 3.899 4.730 

9 4.380 .235 3.915 4.845 

a. EGYPT OR UK SAMPLE = UK 

 

Pairwise Comparisonsa 

Measure:   MEASURE_1   

(I) Fractal 

(J) 

Fractal 

Mean 

Difference (I-

J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 .023 .127 1.000 -.390 .436 

3 -.062 .144 1.000 -.532 .409 

4 -.055 .177 1.000 -.632 .521 

5 -.029 .208 1.000 -.708 .649 

6 .282 .262 1.000 -.570 1.135 

7 .308 .309 1.000 -.698 1.315 

8 .256 .347 1.000 -.873 1.386 

9 .192 .372 1.000 -1.021 1.404 

2 1 -.023 .127 1.000 -.436 .390 
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3 -.084 .123 1.000 -.485 .316 

4 -.078 .143 1.000 -.542 .386 

5 -.052 .179 1.000 -.634 .530 

6 .260 .222 1.000 -.462 .981 

7 .286 .275 1.000 -.609 1.180 

8 .234 .311 1.000 -.780 1.248 

9 .169 .341 1.000 -.943 1.280 

3 1 .062 .144 1.000 -.409 .532 

2 .084 .123 1.000 -.316 .485 

4 .006 .124 1.000 -.396 .409 

5 .032 .138 1.000 -.418 .483 

6 .344 .188 1.000 -.269 .958 

7 .370 .237 1.000 -.401 1.141 

8 .318 .279 1.000 -.589 1.225 

9 .253 .308 1.000 -.750 1.257 

4 1 .055 .177 1.000 -.521 .632 

2 .078 .143 1.000 -.386 .542 

3 -.006 .124 1.000 -.409 .396 

5 .026 .142 1.000 -.436 .488 

6 .338 .162 1.000 -.190 .865 

7 .364 .218 1.000 -.346 1.073 

8 .312 .248 1.000 -.495 1.118 

9 .247 .283 1.000 -.675 1.169 

5 1 .029 .208 1.000 -.649 .708 

2 .052 .179 1.000 -.530 .634 

3 -.032 .138 1.000 -.483 .418 

4 -.026 .142 1.000 -.488 .436 

6 .312 .147 1.000 -.166 .789 

7 .338 .179 1.000 -.247 .922 

8 .286 .229 1.000 -.461 1.032 

9 .221 .262 1.000 -.631 1.073 

6 1 -.282 .262 1.000 -1.135 .570 

2 -.260 .222 1.000 -.981 .462 

3 -.344 .188 1.000 -.958 .269 

4 -.338 .162 1.000 -.865 .190 

5 -.312 .147 1.000 -.789 .166 

7 .026 .147 1.000 -.453 .505 

8 -.026 .179 1.000 -.608 .556 

9 -.091 .214 1.000 -.787 .605 

7 1 -.308 .309 1.000 -1.315 .698 

2 -.286 .275 1.000 -1.180 .609 
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3 -.370 .237 1.000 -1.141 .401 

4 -.364 .218 1.000 -1.073 .346 

5 -.338 .179 1.000 -.922 .247 

6 -.026 .147 1.000 -.505 .453 

8 -.052 .150 1.000 -.539 .436 

9 -.117 .176 1.000 -.689 .455 

8 1 -.256 .347 1.000 -1.386 .873 

2 -.234 .311 1.000 -1.248 .780 

3 -.318 .279 1.000 -1.225 .589 

4 -.312 .248 1.000 -1.118 .495 

5 -.286 .229 1.000 -1.032 .461 

6 .026 .179 1.000 -.556 .608 

7 .052 .150 1.000 -.436 .539 

9 -.065 .122 1.000 -.462 .332 

9 1 -.192 .372 1.000 -1.404 1.021 

2 -.169 .341 1.000 -1.280 .943 

3 -.253 .308 1.000 -1.257 .750 

4 -.247 .283 1.000 -1.169 .675 

5 -.221 .262 1.000 -1.073 .631 

6 .091 .214 1.000 -.605 .787 

7 .117 .176 1.000 -.455 .689 

8 .065 .122 1.000 -.332 .462 

Based on estimated marginal means 

a. EGYPT OR UK SAMPLE = UK 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Multivariate Testsa 

 Value F 

Hypothesis 

df Error df Sig. 

Partial Eta 

Squared 

Pillai's trace .059 1.153b 8.000 146.000 .332 .059 

Wilks' lambda .941 1.153b 8.000 146.000 .332 .059 

Hotelling's trace .063 1.153b 8.000 146.000 .332 .059 

Roy's largest 

root 
.063 1.153b 8.000 146.000 .332 .059 

Each F tests the multivariate effect of Fractal. These tests are based on the linearly 

independent pairwise comparisons among the estimated marginal means. 

a. EGYPT OR UK SAMPLE = UK 

b. Exact statistic 

 

Univariate Tests 
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Measure:   MEASURE_1   

 

Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Contrast 33.032 1 33.032 5.614 .018 .016 

Error 2071.057 352 5.884    

The F tests the effect of EGYPT OR UK SAMPLE. This test is based on the linearly 

independent pairwise comparisons among the estimated marginal means. 
 
2. FractalLevel 

Estimates 

Measure:   MEASURE_1   

FractalLevel Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 11.866 .209 11.455 12.276 

2 10.602 .178 10.252 10.952 

3 7.967 .216 7.542 8.392 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) 

FractalLevel 

(J) 

FractalLevel 

Mean 

Difference 

(I-J) 

Std. 

Error Sig.b 

95% Confidence Interval 

for Differenceb 

Lower 

Bound 

Upper 

Bound 

1 2 1.263* .205 .000 .769 1.758 

3 3.898* .339 .000 3.084 4.713 

2 1 -1.263* .205 .000 -1.758 -.769 

3 2.635* .239 .000 2.061 3.209 

3 1 -3.898* .339 .000 -4.713 -3.084 

2 -2.635* .239 .000 -3.209 -2.061 

Based on estimated marginal means 

*. The mean difference is significant at the 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Multivariate Tests 

 Value F 

Hypothesis 

df Error df Sig. 

Partial Eta 

Squared 

Pillai's trace .287 70.695a 2.000 351.000 .000 .287 

Wilks' lambda .713 70.695a 2.000 351.000 .000 .287 

Hotelling's trace .403 70.695a 2.000 351.000 .000 .287 

Roy's largest 

root 
.403 70.695a 2.000 351.000 .000 .287 
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Each F tests the multivariate effect of FractalLevel. These tests are based on the linearly 

independent pairwise comparisons among the estimated marginal means. 

a. Exact statistic 
 

General Linear Model 
 

Descriptive Statistics 

 EGYPT OR UK 

SAMPLE Mean Std. Deviation N 

Low EGYPT 13.0667 3.09910 200 

UK 10.6645 4.73483 154 

Total 12.0217 4.06860 354 

Mid EGYPT 10.5475 2.98008 200 

UK 10.6569 3.71523 154 

Total 10.5951 3.31542 354 

High EGYPT 5.8967 2.54400 200 

UK 10.0379 5.38512 154 

Total 7.6982 4.52157 354 

 

Multivariate Testsa 

Effect Value F 

Hypothesis 

df Error df Sig. 

Partial 

Eta 

Squared 

FractalLevel Pillai's Trace .287 70.695b 2.000 351.000 .000 .287 

Wilks' 

Lambda 
.713 70.695b 2.000 351.000 .000 .287 

Hotelling's 

Trace 
.403 70.695b 2.000 351.000 .000 .287 

Roy's 

Largest Root 
.403 70.695b 2.000 351.000 .000 .287 

FractalLevel 

* EthGr 

Pillai's Trace .212 47.228b 2.000 351.000 .000 .212 

Wilks' 

Lambda 
.788 47.228b 2.000 351.000 .000 .212 

Hotelling's 

Trace 
.269 47.228b 2.000 351.000 .000 .212 

Roy's 

Largest Root 
.269 47.228b 2.000 351.000 .000 .212 

a. Design: Intercept + EthGr  

 Within Subjects Design: FractalLevel 

b. Exact statistic 
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Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

FractalLevel .614 171.043 2 .000 .722 .726 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept + EthGr  

 Within Subjects Design: FractalLevel 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial 

Eta 

Squared 

FractalLevel Sphericity 

Assumed 
2753.538 2 1376.769 110.997 .000 .240 

Greenhouse-

Geisser 
2753.538 1.443 1907.815 110.997 .000 .240 

Huynh-Feldt 2753.538 1.452 1896.683 110.997 .000 .240 

Lower-bound 2753.538 1.000 2753.538 110.997 .000 .240 

FractalLevel * 

EthGr 

Sphericity 

Assumed 
1896.119 2 948.059 76.434 .000 .178 

Greenhouse-

Geisser 
1896.119 1.443 1313.744 76.434 .000 .178 

Huynh-Feldt 1896.119 1.452 1306.078 76.434 .000 .178 

Lower-bound 1896.119 1.000 1896.119 76.434 .000 .178 

Error(FractalLevel) Sphericity 

Assumed 
8732.145 704 12.404    

Greenhouse-

Geisser 
8732.145 508.039 17.188    

Huynh-Feldt 8732.145 511.021 17.088    

Lower-bound 8732.145 352.000 24.807    

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   



 

 383 

Source FractalLevel 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial 

Eta 

Squared 

FractalLevel Linear 2644.421 1 2644.421 132.455 .000 .273 

Quadratic 109.117 1 109.117 22.533 .000 .060 

FractalLevel * 

EthGr 

Linear 1862.607 1 1862.607 93.295 .000 .210 

Quadratic 33.512 1 33.512 6.920 .009 .019 

Error(FractalLevel) Linear 7027.556 352 19.965    

Quadratic 1704.589 352 4.843    

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Intercept 107457.025 1 107457.025 6087.854 .000 .945 

EthGr 99.095 1 99.095 5.614 .018 .016 

Error 6213.171 352 17.651    

 
Estimated Marginal Means 
1. EGYPT OR UK SAMPLE 

Estimates 

Measure:   MEASURE_1   

EGYPT OR UK 

SAMPLE Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

EGYPT 9.837 .172 9.500 10.174 

UK 10.453 .195 10.069 10.838 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) EGYPT OR 

UK SAMPLE 

(J) EGYPT 

OR UK 

SAMPLE 

Mean 

Difference 

(I-J) 

Std. 

Error Sig.b 

95% Confidence 

Interval for Differenceb 

Lower 

Bound 

Upper 

Bound 

EGYPT UK -.616* .260 .018 -1.128 -.105 

UK EGYPT .616* .260 .018 .105 1.128 

Based on estimated marginal means 

*. The mean difference is significant at the 

b. Adjustment for multiple comparisons: Bonferroni. 
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General Linear Model 

 

Descriptive Statistics 

 GENDER Mean Std. Deviation N 

Low M 12.3843 2.54022 121 

F 11.8191 4.64960 222 

Total 12.0185 4.03823 343 

Mid M 9.4986 2.75029 121 

F 11.2342 3.39741 222 

Total 10.6220 3.28673 343 

High M 5.7521 2.64322 121 

F 8.8296 4.93552 222 

Total 7.7439 4.51234 343 

 

Multivariate Testsa 

Effect Value F 

Hypothesis 

df Error df Sig. 

Partial 

Eta 

Squared 

FractalLevel Pillai's Trace .314 77.754b 2.000 340.000 .000 .314 

Wilks' 

Lambda 
.686 77.754b 2.000 340.000 .000 .314 

Hotelling's 

Trace 
.457 77.754b 2.000 340.000 .000 .314 

Roy's 

Largest Root 
.457 77.754b 2.000 340.000 .000 .314 

FractalLevel 

* GENDER 

Pillai's Trace .079 14.546b 2.000 340.000 .000 .079 

Wilks' 

Lambda 
.921 14.546b 2.000 340.000 .000 .079 

Hotelling's 

Trace 
.086 14.546b 2.000 340.000 .000 .079 

Roy's 

Largest Root 
.086 14.546b 2.000 340.000 .000 .079 

a. Design: Intercept + GENDER  

 Within Subjects Design: FractalLevel 

b. Exact statistic 

 

Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within Mauchly's Approx. df Sig. Epsilonb 
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Subjects 

Effect 

W Chi-

Square 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

FractalLevel .540 209.636 2 .000 .685 .689 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept + GENDER  

 Within Subjects Design: FractalLevel 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial 

Eta 

Squared 

FractalLevel Sphericity 

Assumed 
3718.895 2 1859.448 130.267 .000 .276 

Greenhouse-

Geisser 
3718.895 1.370 2715.185 130.267 .000 .276 

Huynh-Feldt 3718.895 1.377 2700.005 130.267 .000 .276 

Lower-bound 3718.895 1.000 3718.895 130.267 .000 .276 

FractalLevel * 

GENDER 

Sphericity 

Assumed 
531.605 2 265.802 18.621 .000 .052 

Greenhouse-

Geisser 
531.605 1.370 388.128 18.621 .000 .052 

Huynh-Feldt 531.605 1.377 385.958 18.621 .000 .052 

Lower-bound 531.605 1.000 531.605 18.621 .000 .052 

Error(FractalLevel) Sphericity 

Assumed 
9734.973 682 14.274    

Greenhouse-

Geisser 
9734.973 467.056 20.843    

Huynh-Feldt 9734.973 469.682 20.727    

Lower-bound 9734.973 341.000 28.548    

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source FractalLevel 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial 

Eta 

Squared 

FractalLevel Linear 3625.098 1 3625.098 153.267 .000 .310 
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Quadratic 93.797 1 93.797 19.157 .000 .053 

FractalLevel * 

GENDER 

Linear 519.602 1 519.602 21.969 .000 .061 

Quadratic 12.003 1 12.003 2.451 .118 .007 

Error(FractalLevel) Linear 8065.374 341 23.652    

Quadratic 1669.598 341 4.896    

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Intercept 92473.590 1 92473.590 5735.979 .000 .944 

GENDER 471.054 1 471.054 29.219 .000 .079 

Error 5497.491 341 16.122    

 
Estimated Marginal Means 
 
1. FractalLevel 

Estimates 

Measure:   MEASURE_1   

FractalLevel Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 12.102 .228 11.653 12.550 

2 10.366 .180 10.013 10.720 

3 7.291 .241 6.816 7.766 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) 

FractalLevel 

(J) 

FractalLevel 

Mean 

Difference 

(I-J) 

Std. 

Error Sig.b 

95% Confidence Interval 

for Differenceb 

Lower 

Bound 

Upper 

Bound 

1 2 1.735* .219 .000 1.209 2.262 

3 4.811* .389 .000 3.876 5.746 

2 1 -1.735* .219 .000 -2.262 -1.209 

3 3.076* .273 .000 2.419 3.732 

3 1 -4.811* .389 .000 -5.746 -3.876 

2 -3.076* .273 .000 -3.732 -2.419 

Based on estimated marginal means 

*. The mean difference is significant at the 

b. Adjustment for multiple comparisons: Bonferroni. 
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Multivariate Tests 

 Value F Hypothesis df Error df Sig. 

Partial Eta 

Squared 

Pillai's trace .314 77.754a 2.000 340.000 .000 .314 

Wilks' lambda .686 77.754a 2.000 340.000 .000 .314 

Hotelling's trace .457 77.754a 2.000 340.000 .000 .314 

Roy's largest root .457 77.754a 2.000 340.000 .000 .314 

Each F tests the multivariate effect of FractalLevel. These tests are based on the linearly independent 

pairwise comparisons among the estimated marginal means. 

a. Exact statistic 
 
2. GENDER 

Estimates 

Measure:   MEASURE_1   

GENDER Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

M 9.212 .211 8.797 9.626 

F 10.628 .156 10.322 10.934 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) GENDER (J) GENDER 

Mean 

Difference (I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

M F -1.416* .262 .000 -1.931 -.901 

F M 1.416* .262 .000 .901 1.931 

Based on estimated marginal means 

*. The mean difference is significant at the 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Univariate Tests 

Measure:   MEASURE_1   

 Sum of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Contrast 157.018 1 157.018 29.219 .000 .079 

Error 1832.497 341 5.374    

The F tests the effect of GENDER. This test is based on the linearly independent pairwise comparisons 

among the estimated marginal means. 
 
 

General Linear Model 
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Between-Subjects Factors 

 Value Label N 

AgeCategory 1.00 20yrs or Below 238 

2.00 21yrs + 116 

 

Descriptive Statistics 

 AgeCategory Mean Std. Deviation N 

Low 20yrs or Below 12.1261 3.74732 238 

21yrs + 11.8075 4.66944 116 

Total 12.0217 4.06860 354 

Mid 20yrs or Below 10.5819 3.23098 238 

21yrs + 10.6221 3.49654 116 

Total 10.5951 3.31542 354 

High 20yrs or Below 7.2794 4.30326 238 

21yrs + 8.5575 4.84614 116 

Total 7.6982 4.52157 354 

 

Multivariate Testsa 

Effect Value F 

Hypothesis 

df Error df Sig. 

Partial 

Eta 

Squared 

FractalLevel Pillai's Trace .235 53.959b 2.000 351.000 .000 .235 

Wilks' 

Lambda 
.765 53.959b 2.000 351.000 .000 .235 

Hotelling's 

Trace 
.307 53.959b 2.000 351.000 .000 .235 

Roy's 

Largest Root 
.307 53.959b 2.000 351.000 .000 .235 

FractalLevel 

* 

AgeCategory 

Pillai's Trace .014 2.558b 2.000 351.000 .079 .014 

Wilks' 

Lambda 
.986 2.558b 2.000 351.000 .079 .014 

Hotelling's 

Trace 
.015 2.558b 2.000 351.000 .079 .014 

Roy's 

Largest Root 
.015 2.558b 2.000 351.000 .079 .014 

a. Design: Intercept + AgeCategory  

 Within Subjects Design: FractalLevel 

b. Exact statistic 

 

Mauchly's Test of Sphericitya 
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Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

FractalLevel .530 223.155 2 .000 .680 .684 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept + AgeCategory  

 Within Subjects Design: FractalLevel 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 
 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial 

Eta 

Squared 

FractalLevel Sphericity 

Assumed 
2646.731 2 1323.366 88.570 .000 .201 

Greenhouse-

Geisser 
2646.731 1.360 1945.972 88.570 .000 .201 

Huynh-Feldt 2646.731 1.367 1935.541 88.570 .000 .201 

Lower-bound 2646.731 1.000 2646.731 88.570 .000 .201 

FractalLevel * 

AgeCategory 

Sphericity 

Assumed 
109.452 2 54.726 3.663 .026 .010 

Greenhouse-

Geisser 
109.452 1.360 80.473 3.663 .043 .010 

Huynh-Feldt 109.452 1.367 80.041 3.663 .043 .010 

Lower-bound 109.452 1.000 109.452 3.663 .056 .010 

Error(FractalLevel) Sphericity 

Assumed 
10518.813 704 14.941    

Greenhouse-

Geisser 
10518.813 478.758 21.971    

Huynh-Feldt 10518.813 481.338 21.853    

Lower-bound 10518.813 352.000 29.883    

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source FractalLevel 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial 

Eta 

Squared 
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FractalLevel Linear 2556.296 1 2556.296 102.359 .000 .225 

Quadratic 90.435 1 90.435 18.421 .000 .050 

FractalLevel * 

AgeCategory 

Linear 99.407 1 99.407 3.980 .047 .011 

Quadratic 10.045 1 10.045 2.046 .153 .006 

Error(FractalLevel) Linear 8790.757 352 24.974    

Quadratic 1728.056 352 4.909    

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Intercept 96651.013 1 96651.013 5411.964 .000 .939 

AgeCategory 25.979 1 25.979 1.455 .229 .004 

Error 6286.286 352 17.859    

 
Estimated Marginal Means 
 
AgeCategory 

Estimates 

Measure:   MEASURE_1   

AgeCategory Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

20yrs or Below 9.996 .158 9.685 10.307 

21yrs + 10.329 .227 9.883 10.775 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) 

AgeCategory 

(J) 

AgeCategory 

Mean 

Difference 

(I-J) 

Std. 

Error Sig.a 

95% Confidence Interval 

for Differencea 

Lower 

Bound 

Upper 

Bound 

20yrs or 

Below 

21yrs + 
-.333 .276 .229 -.877 .210 

21yrs + 20yrs or 

Below 
.333 .276 .229 -.210 .877 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Bonferroni. 
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Chapter 9 Output: 

General Linear Model 

 

Within-Subjects Factors 

Measure:   MEASURE_1   

Flevels 

Dependent 

Variable 

1 D1.1 

2 D1.2 

3 D1.3 

4 D1.4 

5 D1.5 

6 D1.6 

7 D1.7 

8 D1.8 

9 D1.9 

 

Multivariate Testsa 

Effect Value F Hypothesis df Error df Sig. 

Flevels Pillai's Trace .227 10.406b 8.000 283.000 .000 

Wilks' Lambda .773 10.406b 8.000 283.000 .000 

Hotelling's Trace .294 10.406b 8.000 283.000 .000 

Roy's Largest 

Root 
.294 10.406b 8.000 283.000 .000 

a. Design: Intercept  

 Within Subjects Design: Flevels 

b. Exact statistic 

 

Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

Flevels .000 2979.156 35 .000 .183 .184 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept  

 Within Subjects Design: Flevels 
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b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Flevels Sphericity 

Assumed 
2270.580 8 283.823 23.859 .000 

Greenhouse-

Geisser 
2270.580 1.464 1551.355 23.859 .000 

Huynh-Feldt 2270.580 1.469 1545.479 23.859 .000 

Lower-bound 2270.580 1.000 2270.580 23.859 .000 

Error(Flevels) Sphericity 

Assumed 
27598.086 2320 11.896   

Greenhouse-

Geisser 
27598.086 424.447 65.021   

Huynh-Feldt 27598.086 426.061 64.775   

Lower-bound 27598.086 290.000 95.166   

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source Flevels 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Flevels Linear 1904.828 1 1904.828 25.751 .000 

Quadratic 181.353 1 181.353 36.198 .000 

Cubic 120.748 1 120.748 33.639 .000 

Order 4 20.907 1 20.907 8.373 .004 

Order 5 17.121 1 17.121 7.847 .005 

Order 6 3.475 1 3.475 1.725 .190 

Order 7 11.684 1 11.684 2.978 .085 

Order 8 10.464 1 10.464 5.285 .022 

Error(Flevels) Linear 21451.289 290 73.970   

Quadratic 1452.912 290 5.010   

Cubic 1040.951 290 3.589   

Order 4 724.149 290 2.497   

Order 5 632.723 290 2.182   

Order 6 584.278 290 2.015   
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Order 7 1137.656 290 3.923   

Order 8 574.129 290 1.980   

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 94512.138 1 94512.138 1930790.086 .000 

Error 14.195 290 .049   

 
Estimated Marginal Means 
Flevels 

Estimates 

Measure:   MEASURE_1   

Flevels Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 6.656 .226 6.212 7.101 

2 7.048 .229 6.597 7.499 

3 6.938 .211 6.522 7.354 

4 6.725 .100 6.529 6.921 

5 6.347 .100 6.150 6.544 

6 6.089 .102 5.889 6.289 

7 4.983 .204 4.581 5.384 

8 4.615 .227 4.168 5.062 

9 4.663 .235 4.200 5.126 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) 

Flevels 

(J) 

Flevels 

Mean 

Difference (I-

J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 -.392* .104 .007 -.728 -.056 

3 -.282 .109 .358 -.632 .069 

4 -.069 .230 1.000 -.811 .673 

5 .309 .255 1.000 -.513 1.132 

6 .567 .287 1.000 -.358 1.492 

7 1.674* .415 .003 .333 3.014 

8 2.041* .440 .000 .619 3.463 

9 1.993* .445 .000 .556 3.431 

2 1 .392* .104 .007 .056 .728 
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3 .110 .115 1.000 -.260 .480 

4 .323 .233 1.000 -.428 1.074 

5 .701 .258 .252 -.132 1.534 

6 .959* .287 .034 .032 1.886 

7 2.065* .420 .000 .709 3.421 

8 2.433* .444 .000 1.001 3.865 

9 2.385* .447 .000 .941 3.829 

3 1 .282 .109 .358 -.069 .632 

2 -.110 .115 1.000 -.480 .260 

4 .213 .215 1.000 -.480 .906 

5 .591 .238 .492 -.178 1.360 

6 .849 .267 .059 -.013 1.710 

7 1.955* .402 .000 .658 3.252 

8 2.323* .427 .000 .946 3.700 

9 2.275* .432 .000 .881 3.669 

4 1 .069 .230 1.000 -.673 .811 

2 -.323 .233 1.000 -1.074 .428 

3 -.213 .215 1.000 -.906 .480 

5 .378 .122 .074 -.014 .770 

6 .636* .136 .000 .198 1.073 

7 1.742* .255 .000 .918 2.566 

8 2.110* .280 .000 1.207 3.013 

9 2.062* .293 .000 1.118 3.006 

5 1 -.309 .255 1.000 -1.132 .513 

2 -.701 .258 .252 -1.534 .132 

3 -.591 .238 .492 -1.360 .178 

4 -.378 .122 .074 -.770 .014 

6 .258 .119 1.000 -.125 .640 

7 1.364* .239 .000 .594 2.134 

8 1.732* .262 .000 .888 2.576 

9 1.684* .273 .000 .803 2.565 

6 1 -.567 .287 1.000 -1.492 .358 

2 -.959* .287 .034 -1.886 -.032 

3 -.849 .267 .059 -1.710 .013 

4 -.636* .136 .000 -1.073 -.198 

5 -.258 .119 1.000 -.640 .125 

7 1.107* .207 .000 .437 1.776 

8 1.474* .225 .000 .748 2.201 

9 1.426* .239 .000 .655 2.197 

7 1 -1.674* .415 .003 -3.014 -.333 

2 -2.065* .420 .000 -3.421 -.709 
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3 -1.955* .402 .000 -3.252 -.658 

4 -1.742* .255 .000 -2.566 -.918 

5 -1.364* .239 .000 -2.134 -.594 

6 -1.107* .207 .000 -1.776 -.437 

8 .368* .108 .027 .019 .717 

9 .320 .120 .285 -.066 .705 

8 1 -2.041* .440 .000 -3.463 -.619 

2 -2.433* .444 .000 -3.865 -1.001 

3 -2.323* .427 .000 -3.700 -.946 

4 -2.110* .280 .000 -3.013 -1.207 

5 -1.732* .262 .000 -2.576 -.888 

6 -1.474* .225 .000 -2.201 -.748 

7 -.368* .108 .027 -.717 -.019 

9 -.048 .098 1.000 -.364 .268 

9 1 -1.993* .445 .000 -3.431 -.556 

2 -2.385* .447 .000 -3.829 -.941 

3 -2.275* .432 .000 -3.669 -.881 

4 -2.062* .293 .000 -3.006 -1.118 

5 -1.684* .273 .000 -2.565 -.803 

6 -1.426* .239 .000 -2.197 -.655 

7 -.320 .120 .285 -.705 .066 

8 .048 .098 1.000 -.268 .364 

Based on estimated marginal means 

*. The mean difference is significant at the 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Multivariate Tests 

 Value F Hypothesis df Error df Sig. 

Pillai's trace .227 10.406a 8.000 283.000 .000 

Wilks' lambda .773 10.406a 8.000 283.000 .000 

Hotelling's trace .294 10.406a 8.000 283.000 .000 

Roy's largest root .294 10.406a 8.000 283.000 .000 

Each F tests the multivariate effect of Flevels. These tests are based on the linearly 

independent pairwise comparisons among the estimated marginal means. 

a. Exact statistic 

 
General Linear Model 

Multivariate Testsa 

Effect Value F 

Hypothesis 

df Error df Sig. 
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Flevels Pillai's Trace .227 10.377b 8.000 282.000 .000 

Wilks' Lambda .773 10.377b 8.000 282.000 .000 

Hotelling's 

Trace 
.294 10.377b 8.000 282.000 .000 

Roy's Largest 

Root 
.294 10.377b 8.000 282.000 .000 

Flevels * 

Gender 

Pillai's Trace .025 .905b 8.000 282.000 .513 

Wilks' Lambda .975 .905b 8.000 282.000 .513 

Hotelling's 

Trace 
.026 .905b 8.000 282.000 .513 

Roy's Largest 

Root 
.026 .905b 8.000 282.000 .513 

a. Design: Intercept + Gender  

 Within Subjects Design: Flevels 

b. Exact statistic 

 

Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

Flevels .000 2973.404 35 .000 .183 .184 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept + Gender  

 Within Subjects Design: Flevels 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Flevels Sphericity 

Assumed 
2105.435 8 263.179 22.073 .000 

Greenhouse-

Geisser 
2105.435 1.462 1440.251 22.073 .000 

Huynh-Feldt 2105.435 1.472 1429.840 22.073 .000 

Lower-bound 2105.435 1.000 2105.435 22.073 .000 
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Flevels * 

Gender 

Sphericity 

Assumed 
31.675 8 3.959 .332 .954 

Greenhouse-

Geisser 
31.675 1.462 21.668 .332 .649 

Huynh-Feldt 31.675 1.472 21.511 .332 .650 

Lower-bound 31.675 1.000 31.675 .332 .565 

Error(Flevels) Sphericity 

Assumed 
27566.411 2312 11.923   

Greenhouse-

Geisser 
27566.411 422.475 65.250   

Huynh-Feldt 27566.411 425.552 64.778   

Lower-bound 27566.411 289.000 95.386   

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source Flevels 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Flevels Linear 1732.895 1 1732.895 23.361 .000 

Quadratic 188.058 1 188.058 37.587 .000 

Cubic 116.830 1 116.830 32.444 .000 

Order 4 21.903 1 21.903 8.753 .003 

Order 5 15.381 1 15.381 7.028 .008 

Order 6 3.191 1 3.191 1.578 .210 

Order 7 12.431 1 12.431 3.160 .077 

Order 8 14.745 1 14.745 7.541 .006 

Flevels * 

Gender 

Linear 13.428 1 13.428 .181 .671 

Quadratic 6.984 1 6.984 1.396 .238 

Cubic .252 1 .252 .070 .792 

Order 4 1.002 1 1.002 .400 .527 

Order 5 .207 1 .207 .095 .759 

Order 6 .015 1 .015 .007 .932 

Order 7 .751 1 .751 .191 .663 

Order 8 9.037 1 9.037 4.622 .032 

Error(Flevels) Linear 21437.861 289 74.179   

Quadratic 1445.928 289 5.003   

Cubic 1040.699 289 3.601   

Order 4 723.147 289 2.502   

Order 5 632.516 289 2.189   

Order 6 584.263 289 2.022   

Order 7 1136.906 289 3.934   
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Order 8 565.092 289 1.955   

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 89516.850 1 89516.850 1823931.723 .000 

Gender .012 1 .012 .237 .627 

Error 14.184 289 .049   

 
General Linear Model 

Within-Subjects Factors 

Measure:   MEASURE_1   

Flevels 

Dependent 

Variable 

1 D1.1 

2 D1.2 

3 D1.3 

4 D1.4 

5 D1.5 

6 D1.6 

7 D1.7 

8 D1.8 

9 D1.9 

 

Between-Subjects Factors 

 Value Label N 

AgeGrouping 1.00 18-20 30 

2.00 21-30 171 

3.00 31-40 60 

4.00 41-50 14 

5.00 51-60 12 

6.00 61-70 3 

7.00 71-80 1 

 

Multivariate Testsa 

Effect Value F 

Hypothesis 

df Error df Sig. 

Flevels Pillai's Trace .023 .811b 8.000 277.000 .593 
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Wilks' Lambda .977 .811b 8.000 277.000 .593 

Hotelling's 

Trace 
.023 .811b 8.000 277.000 .593 

Roy's Largest 

Root 
.023 .811b 8.000 277.000 .593 

Flevels * 

AgeGrouping 

Pillai's Trace .161 .971 48.000 1692.000 .529 

Wilks' Lambda .848 .973 48.000 1367.018 .527 

Hotelling's 

Trace 
.170 .974 48.000 1652.000 .525 

Roy's Largest 

Root 
.079 2.771c 8.000 282.000 .006 

a. Design: Intercept + AgeGrouping  

 Within Subjects Design: Flevels 

b. Exact statistic 

c. The statistic is an upper bound on F that yields a lower bound on the significance 

level. 

 

Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

Flevels .000 2856.082 35 .000 .185 .190 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept + AgeGrouping  

 Within Subjects Design: Flevels 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Flevels Sphericity 

Assumed 
74.846 8 9.356 .808 .596 

Greenhouse-

Geisser 
74.846 1.482 50.510 .808 .414 

Huynh-Feldt 74.846 1.519 49.266 .808 .416 
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Lower-bound 74.846 1.000 74.846 .808 .370 

Flevels * 

AgeGrouping 

Sphericity 

Assumed 
1285.468 48 26.781 2.312 .000 

Greenhouse-

Geisser 
1285.468 8.891 144.583 2.312 .016 

Huynh-Feldt 1285.468 9.115 141.022 2.312 .015 

Lower-bound 1285.468 6.000 214.245 2.312 .034 

Error(Flevels) Sphericity 

Assumed 
26312.618 2272 11.581   

Greenhouse-

Geisser 
26312.618 420.836 62.525   

Huynh-Feldt 26312.618 431.459 60.985   

Lower-bound 26312.618 284.000 92.650   

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source Flevels 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Flevels Linear 42.064 1 42.064 .588 .444 

Quadratic 21.705 1 21.705 4.332 .038 

Cubic 1.919 1 1.919 .555 .457 

Order 4 6.163 1 6.163 2.444 .119 

Order 5 .174 1 .174 .080 .777 

Order 6 2.817 1 2.817 1.406 .237 

Order 7 .000 1 .000 .000 .992 

Order 8 .004 1 .004 .002 .965 

Flevels * 

AgeGrouping 

Linear 1122.876 6 187.146 2.615 .018 

Quadratic 29.841 6 4.974 .993 .430 

Cubic 58.494 6 9.749 2.818 .011 

Order 4 8.035 6 1.339 .531 .785 

Order 5 17.114 6 2.852 1.316 .250 

Order 6 15.116 6 2.519 1.257 .277 

Order 7 27.347 6 4.558 1.166 .325 

Order 8 6.645 6 1.107 .554 .767 

Error(Flevels) Linear 20328.413 284 71.579   

Quadratic 1423.070 284 5.011   

Cubic 982.456 284 3.459   

Order 4 716.114 284 2.522   

Order 5 615.609 284 2.168   
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Order 6 569.162 284 2.004   

Order 7 1110.310 284 3.910   

Order 8 567.484 284 1.998   

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Intercept 10299.870 1 10299.870 207880.368 .000 

AgeGrouping .124 6 .021 .418 .867 

Error 14.071 284 .050   

 

General Linear Model 

Within-Subjects Factors 

Measure:   MEASURE_1   

Flevels 

Dependent 

Variable 

1 D1.1 

2 D1.2 

3 D1.3 

4 D1.4 

5 D1.5 

6 D1.6 

7 D1.7 

8 D1.8 

9 D1.9 

 

Between-Subjects Factors 

 Value Label N 

NewLocationGroup 1.00 Europe 35 

2.00 North America 24 

3.00 Central Asia 195 

 

Multivariate Testsa 

Effect Value F 

Hypothesis 

df Error df Sig. 

Flevels Pillai's Trace .151 5.405b 8.000 244.000 .000 

Wilks' Lambda .849 5.405b 8.000 244.000 .000 

Hotelling's 

Trace 
.177 5.405b 8.000 244.000 .000 
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Roy's Largest 

Root 
.177 5.405b 8.000 244.000 .000 

Flevels * 

NewLocationGroup 

Pillai's Trace .109 1.761 16.000 490.000 .034 

Wilks' Lambda .894 1.758b 16.000 488.000 .034 

Hotelling's 

Trace 
.116 1.755 16.000 486.000 .034 

Roy's Largest 

Root 
.075 2.296c 8.000 245.000 .022 

a. Design: Intercept + NewLocationGroup  

 Within Subjects Design: Flevels 

b. Exact statistic 

c. The statistic is an upper bound on F that yields a lower bound on the significance 

level. 

 

Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

Flevels .000 2445.295 35 .000 .187 .189 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept + NewLocationGroup  

 Within Subjects Design: Flevels 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Flevels Sphericity 

Assumed 
509.195 8 63.649 5.749 .000 

Greenhouse-

Geisser 
509.195 1.492 341.217 5.749 .008 

Huynh-Feldt 509.195 1.511 336.960 5.749 .008 

Lower-bound 509.195 1.000 509.195 5.749 .017 

Flevels * 

NewLocationGroup 

Sphericity 

Assumed 
881.348 16 55.084 4.976 .000 
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Greenhouse-

Geisser 
881.348 2.985 295.300 4.976 .002 

Huynh-Feldt 881.348 3.022 291.616 4.976 .002 

Lower-bound 881.348 2.000 440.674 4.976 .008 

Error(Flevels) Sphericity 

Assumed 
22229.911 2008 11.071   

Greenhouse-

Geisser 
22229.911 374.565 59.349   

Huynh-Feldt 22229.911 379.297 58.608   

Lower-bound 22229.911 251.000 88.565   

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source Flevels 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Flevels Linear 360.280 1 360.280 5.272 .022 

Quadratic 84.587 1 84.587 19.388 .000 

Cubic 47.464 1 47.464 13.474 .000 

Order 4 7.286 1 7.286 2.828 .094 

Order 5 4.228 1 4.228 1.955 .163 

Order 6 .043 1 .043 .021 .884 

Order 7 .646 1 .646 .179 .673 

Order 8 4.660 1 4.660 2.365 .125 

Flevels * 

NewLocationGroup 

Linear 806.837 2 403.419 5.904 .003 

Quadratic 5.887 2 2.943 .675 .510 

Cubic 7.584 2 3.792 1.076 .342 

Order 4 .904 2 .452 .175 .839 

Order 5 11.320 2 5.660 2.617 .075 

Order 6 9.420 2 4.710 2.326 .100 

Order 7 35.376 2 17.688 4.898 .008 

Order 8 4.020 2 2.010 1.020 .362 

Error(Flevels) Linear 17151.942 251 68.334   

Quadratic 1095.073 251 4.363   

Cubic 884.211 251 3.523   

Order 4 646.659 251 2.576   

Order 5 542.850 251 2.163   

Order 6 508.170 251 2.025   

Order 7 906.425 251 3.611   
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Order 8 494.581 251 1.970   

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Intercept 38664.092 1 38664.092 2275751.727 .000 

NewLocationGroup .016 2 .008 .471 .625 

Error 4.264 251 .017   

 
Estimated Marginal Means 
NewLocationGroup 

Estimates 

Measure:   MEASURE_1   

NewLocationGroup Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Europe 6.000 .007 5.986 6.014 

North America 6.000 .009 5.983 6.017 

Central Asia 5.994 .003 5.988 6.000 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) 

NewLocationGroup 

(J) 

NewLocationGroup 

Mean 

Difference 

(I-J) 

Std. 

Error Sig.a 

95% Confidence 

Interval for 

Differencea 

Lower 

Bound 

Upper 

Bound 

Europe North America -3.886E-

16 
.012 1.000 -.028 .028 

Central Asia .006 .008 1.000 -.013 .025 

North America Europe 3.886E-

16 
.012 1.000 -.028 .028 

Central Asia .006 .009 1.000 -.016 .029 

Central Asia Europe -.006 .008 1.000 -.025 .013 

North America -.006 .009 1.000 -.029 .016 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Bonferroni. 

 

Univariate Tests 

Measure:   MEASURE_1   
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 Sum of Squares df Mean Square F Sig. 

Contrast .002 2 .001 .471 .625 

Error .474 251 .002   

The F tests the effect of NewLocationGroup. This test is based on the linearly 

independent pairwise comparisons among the estimated marginal means. 

 

 

 

Chapter 10 Output: 

General Linear Model 

Within-Subjects Factors 

Measure:   MEASURE_1   

FDlevel 

Dependent 

Variable 

1 FD11 

2 FD12 

3 FD13 

4 FD14 

5 FD15 

6 FD16 

7 FD17 

8 FD18 

9 FD19 

 
Country = UK 

Between-

Subjects 

Factorsa 

 

 

a. Country = UK 

 

Multivariate Testsa,b 

Effect Value F Hypothesis df Error df Sig. 

FDlevel Pillai's Trace .181 1.078c 8.000 39.000 .398 

Wilks' Lambda .819 1.078c 8.000 39.000 .398 

Hotelling's Trace .221 1.078c 8.000 39.000 .398 

Roy's Largest 

Root 
.221 1.078c 8.000 39.000 .398 

a. Country = UK 
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b. Design: Intercept  

 Within Subjects Design: FDlevel 

c. Exact statistic 

 

Mauchly's Test of Sphericitya,b 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonc 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

FDlevel .000 510.857 35 .000 .187 .191 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Country = UK 

b. Design: Intercept  

 Within Subjects Design: FDlevel 

c. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effectsa 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

FDlevel Sphericity 

Assumed 
98.553 8 12.319 .970 .459 

Greenhouse-

Geisser 
98.553 1.493 66.008 .970 .362 

Huynh-Feldt 98.553 1.532 64.340 .970 .364 

Lower-bound 98.553 1.000 98.553 .970 .330 

Error(FDlevel) Sphericity 

Assumed 
4675.447 368 12.705   

Greenhouse-

Geisser 
4675.447 68.681 68.075   

Huynh-Feldt 4675.447 70.461 66.355   

Lower-bound 4675.447 46.000 101.640   

a. Country = UK 

 

Tests of Within-Subjects Contrastsa 

Measure:   MEASURE_1   
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Source FDlevel 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

FDlevel Linear 5.993 1 5.993 .078 .782 

Quadratic 75.004 1 75.004 9.225 .004 

Cubic .013 1 .013 .004 .951 

Order 4 12.789 1 12.789 4.938 .031 

Order 5 1.440 1 1.440 .635 .430 

Order 6 .650 1 .650 .325 .572 

Order 7 2.480E-5 1 2.480E-5 .000 .998 

Order 8 2.662 1 2.662 1.735 .194 

Error(FDlevel) Linear 3555.574 46 77.295   

Quadratic 374.015 46 8.131   

Cubic 161.905 46 3.520   

Order 4 119.142 46 2.590   

Order 5 104.367 46 2.269   

Order 6 92.159 46 2.003   

Order 7 197.707 46 4.298   

Order 8 70.578 46 1.534   

a. Country = UK 

 

Tests of Between-Subjects Effectsa 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 
15228.000 1 15228.000 

3080778804470

218200.000 
.000 

Error 2.274E-13 46 4.943E-15   

a. Country = UK 
 
Country = Egypt 

Multivariate Testsa,b 

Effect Value F Hypothesis df Error df Sig. 

FDlevel Pillai's Trace .299 1.334c 8.000 25.000 .273 

Wilks' Lambda .701 1.334c 8.000 25.000 .273 

Hotelling's Trace .427 1.334c 8.000 25.000 .273 

Roy's Largest 

Root 
.427 1.334c 8.000 25.000 .273 

a. Country = Egypt 
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b. Design: Intercept  

 Within Subjects Design: FDlevel 

c. Exact statistic 

 

Mauchly's Test of Sphericitya,b 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonc 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

FDlevel .000 300.330 35 .000 .192 .200 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Country = Egypt 

b. Design: Intercept  

 Within Subjects Design: FDlevel 

c. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effectsa 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

FDlevel Sphericity 

Assumed 
77.333 8 9.667 .759 .639 

Greenhouse-

Geisser 
77.333 1.536 50.356 .759 .441 

Huynh-Feldt 77.333 1.598 48.397 .759 .446 

Lower-bound 77.333 1.000 77.333 .759 .390 

Error(FDlevel) Sphericity 

Assumed 
3258.667 256 12.729   

Greenhouse-

Geisser 
3258.667 49.143 66.310   

Huynh-Feldt 3258.667 51.133 63.729   

Lower-bound 3258.667 32.000 101.833   

a. Country = Egypt 

 

Tests of Within-Subjects Contrastsa 

Measure:   MEASURE_1   
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Source FDlevel 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

FDlevel Linear 28.608 1 28.608 .378 .543 

Quadratic 21.365 1 21.365 3.175 .084 

Cubic 1.719 1 1.719 .509 .481 

Order 4 1.445 1 1.445 .636 .431 

Order 5 7.841 1 7.841 3.749 .062 

Order 6 1.607 1 1.607 .513 .479 

Order 7 .043 1 .043 .008 .928 

Order 8 14.704 1 14.704 4.451 .043 

Error(FDlevel) Linear 2423.292 32 75.728   

Quadratic 215.356 32 6.730   

Cubic 108.179 32 3.381   

Order 4 72.666 32 2.271   

Order 5 66.923 32 2.091   

Order 6 100.148 32 3.130   

Order 7 166.394 32 5.200   

Order 8 105.709 32 3.303   

a. Country = Egypt 

 

Tests of Between-Subjects Effectsa 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 10692.000 1 10692.000 . . 

Error .000 32 .000   

a. Country = Egypt 
 
General Linear Model 

Within-Subjects Factors 

Measure:   MEASURE_1   

FDlevel 

Dependent 

Variable 

1 FD11 

2 FD12 

3 FD13 

4 FD14 

5 FD15 

6 FD16 

7 FD17 
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8 FD18 

9 FD19 

 

Between-Subjects Factors 

 Value Label N 

Gender 1.0 male 28 

2.0 female 52 

 

Multivariate Testsa 

Effect Value F 

Hypothesis 

df Error df Sig. 

FDlevel Pillai's Trace .182 1.977b 8.000 71.000 .062 

Wilks' Lambda .818 1.977b 8.000 71.000 .062 

Hotelling's 

Trace 
.223 1.977b 8.000 71.000 .062 

Roy's Largest 

Root 
.223 1.977b 8.000 71.000 .062 

FDlevel * 

Gender 

Pillai's Trace .169 1.800b 8.000 71.000 .091 

Wilks' Lambda .831 1.800b 8.000 71.000 .091 

Hotelling's 

Trace 
.203 1.800b 8.000 71.000 .091 

Roy's Largest 

Root 
.203 1.800b 8.000 71.000 .091 

a. Design: Intercept + Gender  

 Within Subjects Design: FDlevel 

b. Exact statistic 

 

Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

FDlevel .000 782.174 35 .000 .193 .198 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept + Gender  

 Within Subjects Design: FDlevel 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 
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Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

FDlevel Sphericity 

Assumed 
221.176 8 27.647 2.267 .021 

Greenhouse-

Geisser 
221.176 1.542 143.451 2.267 .121 

Huynh-Feldt 221.176 1.587 139.360 2.267 .119 

Lower-bound 221.176 1.000 221.176 2.267 .136 

FDlevel * 

Gender 

Sphericity 

Assumed 
346.026 8 43.253 3.547 .000 

Greenhouse-

Geisser 
346.026 1.542 224.427 3.547 .043 

Huynh-Feldt 346.026 1.587 218.026 3.547 .042 

Lower-bound 346.026 1.000 346.026 3.547 .063 

Error(FDlevel) Sphericity 

Assumed 
7609.324 624 12.194   

Greenhouse-

Geisser 
7609.324 120.262 63.273   

Huynh-Feldt 7609.324 123.793 61.468   

Lower-bound 7609.324 78.000 97.555   

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source FDlevel 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

FDlevel Linear 110.201 1 110.201 1.519 .221 

Quadratic 80.871 1 80.871 10.635 .002 

Cubic 3.321 1 3.321 1.005 .319 

Order 4 8.752 1 8.752 3.556 .063 

Order 5 5.488 1 5.488 2.482 .119 

Order 6 .376 1 .376 .152 .697 

Order 7 .019 1 .019 .004 .950 

Order 8 12.149 1 12.149 5.269 .024 

FDlevel * 

Gender 

Linear 327.695 1 327.695 4.518 .037 

Quadratic .327 1 .327 .043 .836 

Cubic 13.533 1 13.533 4.096 .046 

Order 4 1.717 1 1.717 .697 .406 
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Order 5 .698 1 .698 .316 .576 

Order 6 2.018 1 2.018 .818 .369 

Order 7 .002 1 .002 .000 .985 

Order 8 .036 1 .036 .016 .901 

Error(FDlevel) Linear 5657.558 78 72.533   

Quadratic 593.122 78 7.604   

Cubic 257.716 78 3.304   

Order 4 191.983 78 2.461   

Order 5 172.485 78 2.211   

Order 6 192.507 78 2.468   

Order 7 364.126 78 4.668   

Order 8 179.828 78 2.305   

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 23587.200 1 23587.200 . . 

Gender .000 1 .000 . . 

Error .000 78 .000   

 

General Linear Model 

 

Within-Subjects Factors 

Measure:   MEASURE_1   

FDlevel 

Dependent 

Variable 

1 FD11 

2 FD12 

3 FD13 

4 FD14 

5 FD15 

6 FD16 

7 FD17 

8 FD18 

9 FD19 

 

Between-Subjects Factors 

 Value Label N 
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Enviro 1.0 urban 23 

2.0 rural 35 

3.0 suburban 20 

 

Multivariate Testsa 

Effect Value F 

Hypothesis 

df Error df Sig. 

FDlevel Pillai's Trace .185 1.930b 8.000 68.000 .069 

Wilks' Lambda .815 1.930b 8.000 68.000 .069 

Hotelling's 

Trace 
.227 1.930b 8.000 68.000 .069 

Roy's Largest 

Root 
.227 1.930b 8.000 68.000 .069 

FDlevel * 

Enviro 

Pillai's Trace .281 1.409 16.000 138.000 .146 

Wilks' Lambda .738 1.395b 16.000 136.000 .153 

Hotelling's 

Trace 
.330 1.381 16.000 134.000 .160 

Roy's Largest 

Root 
.208 1.791c 8.000 69.000 .094 

a. Design: Intercept + Enviro  

 Within Subjects Design: FDlevel 

b. Exact statistic 

c. The statistic is an upper bound on F that yields a lower bound on the significance 

level. 

 

Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

FDlevel .000 728.070 35 .000 .196 .205 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept + Enviro  

 Within Subjects Design: FDlevel 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   
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Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

FDlevel Sphericity 

Assumed 
235.479 8 29.435 2.523 .011 

Greenhouse-

Geisser 
235.479 1.570 149.982 2.523 .097 

Huynh-Feldt 235.479 1.641 143.539 2.523 .095 

Lower-bound 235.479 1.000 235.479 2.523 .116 

FDlevel * 

Enviro 

Sphericity 

Assumed 
740.410 16 46.276 3.967 .000 

Greenhouse-

Geisser 
740.410 3.140 235.792 3.967 .009 

Huynh-Feldt 740.410 3.281 225.662 3.967 .008 

Lower-bound 740.410 2.000 370.205 3.967 .023 

Error(FDlevel) Sphericity 

Assumed 
6999.488 600 11.666   

Greenhouse-

Geisser 
6999.488 117.754 59.442   

Huynh-Feldt 6999.488 123.040 56.888   

Lower-bound 6999.488 75.000 93.327   

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source FDlevel 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

FDlevel Linear 97.001 1 97.001 1.404 .240 

Quadratic 102.129 1 102.129 13.824 .000 

Cubic .981 1 .981 .310 .579 

Order 4 12.587 1 12.587 5.080 .027 

Order 5 6.677 1 6.677 2.993 .088 

Order 6 4.833E-5 1 4.833E-5 .000 .996 

Order 7 2.399 1 2.399 .573 .451 

Order 8 13.704 1 13.704 5.809 .018 

FDlevel * 

Enviro 

Linear 634.576 2 317.288 4.593 .013 

Quadratic 32.443 2 16.221 2.196 .118 

Cubic 17.583 2 8.792 2.780 .068 

Order 4 6.694 2 3.347 1.351 .265 

Order 5 3.148 2 1.574 .705 .497 

Order 6 6.409 2 3.204 1.312 .275 
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Order 7 39.304 2 19.652 4.692 .012 

Order 8 .254 2 .127 .054 .948 

Error(FDlevel) Linear 5180.807 75 69.077   

Quadratic 554.064 75 7.388   

Cubic 237.173 75 3.162   

Order 4 185.844 75 2.478   

Order 5 167.334 75 2.231   

Order 6 183.202 75 2.443   

Order 7 314.140 75 4.189   

Order 8 176.923 75 2.359   

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 23891.908 1 23891.908 . . 

Enviro .000 2 .000 . . 

Error .000 75 .000   

 

One-way ANOVA’s 

ANOVA 

 

Sum of 

Squares df Mean Square F Sig. 

FD11 Between Groups 116.944 2 58.472 4.253 .018 

Within Groups 1031.171 75 13.749   

Total 1148.115 77    

FD12 Between Groups 113.411 2 56.705 4.395 .016 

Within Groups 967.769 75 12.904   

Total 1081.179 77    

FD13 Between Groups 120.101 2 60.051 4.867 .010 

Within Groups 925.348 75 12.338   

Total 1045.449 77    

FD14 Between Groups 5.048 2 2.524 .619 .541 

Within Groups 305.824 75 4.078   

Total 310.872 77    

FD15 Between Groups 19.186 2 9.593 3.715 .029 

Within Groups 193.686 75 2.582   

Total 212.872 77    

FD16 Between Groups 6.803 2 3.401 .990 .377 
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Within Groups 257.812 75 3.437   

Total 264.615 77    

FD17 Between Groups 122.986 2 61.493 4.631 .013 

Within Groups 995.847 75 13.278   

Total 1118.833 77    

FD18 Between Groups 82.156 2 41.078 2.778 .069 

Within Groups 1109.190 75 14.789   

Total 1191.346 77    

FD19 Between Groups 153.774 2 76.887 4.755 .011 

Within Groups 1212.841 75 16.171   

Total 1366.615 77    

 

Multiple Comparisons 

Tukey HSD   

Dependent 

Variable (I) Enviro 

(J) 

Enviro 

Mean 

Difference 

(I-J) 

Std. 

Error Sig. 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

FD11 urban rural 2.8944* .9953 .013 .515 5.274 

suburban 1.9587 1.1337 .202 -.752 4.669 

rural urban -2.8944* .9953 .013 -5.274 -.515 

suburban -.9357 1.0394 .642 -3.421 1.550 

suburban urban -1.9587 1.1337 .202 -4.669 .752 

rural .9357 1.0394 .642 -1.550 3.421 

FD12 urban rural 2.8273* .9642 .012 .522 5.133 

suburban 2.1130 1.0983 .139 -.513 4.739 

rural urban -2.8273* .9642 .012 -5.133 -.522 

suburban -.7143 1.0069 .759 -3.122 1.693 

suburban urban -2.1130 1.0983 .139 -4.739 .513 

rural .7143 1.0069 .759 -1.693 3.122 

FD13 urban rural 2.9416* .9428 .007 .687 5.196 

suburban 1.7630 1.0739 .235 -.805 4.331 

rural urban -2.9416* .9428 .007 -5.196 -.687 

suburban -1.1786 .9846 .459 -3.533 1.176 

suburban urban -1.7630 1.0739 .235 -4.331 .805 

rural 1.1786 .9846 .459 -1.176 3.533 

FD14 urban rural .1938 .5420 .932 -1.102 1.490 

suburban -.4348 .6174 .762 -1.911 1.041 

rural urban -.1938 .5420 .932 -1.490 1.102 

suburban -.6286 .5660 .511 -1.982 .725 
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suburban urban .4348 .6174 .762 -1.041 1.911 

rural .6286 .5660 .511 -.725 1.982 

FD15 urban rural .0571 .4314 .990 -.974 1.089 

suburban -1.1000 .4913 .071 -2.275 .075 

rural urban -.0571 .4314 .990 -1.089 .974 

suburban -1.1571* .4505 .032 -2.234 -.080 

suburban urban 1.1000 .4913 .071 -.075 2.275 

rural 1.1571* .4505 .032 .080 2.234 

FD16 urban rural -.4099 .4977 .690 -1.600 .780 

suburban -.7957 .5669 .344 -2.151 .560 

rural urban .4099 .4977 .690 -.780 1.600 

suburban -.3857 .5197 .739 -1.628 .857 

suburban urban .7957 .5669 .344 -.560 2.151 

rural .3857 .5197 .739 -.857 1.628 

FD17 urban rural -2.9404* .9781 .010 -5.279 -.602 

suburban -1.3261 1.1141 .463 -3.990 1.338 

rural urban 2.9404* .9781 .010 .602 5.279 

suburban 1.6143 1.0214 .260 -.828 4.057 

suburban urban 1.3261 1.1141 .463 -1.338 3.990 

rural -1.6143 1.0214 .260 -4.057 .828 

FD18 urban rural -2.4311 1.0323 .054 -4.899 .037 

suburban -1.3739 1.1758 .476 -4.185 1.438 

rural urban 2.4311 1.0323 .054 -.037 4.899 

suburban 1.0571 1.0780 .591 -1.520 3.635 

suburban urban 1.3739 1.1758 .476 -1.438 4.185 

rural -1.0571 1.0780 .591 -3.635 1.520 

FD19 urban rural -3.1329* 1.0794 .013 -5.714 -.552 

suburban -.8043 1.2295 .791 -3.744 2.136 

rural urban 3.1329* 1.0794 .013 .552 5.714 

suburban 2.3286 1.1272 .104 -.367 5.024 

suburban urban .8043 1.2295 .791 -2.136 3.744 

rural -2.3286 1.1272 .104 -5.024 .367 

*. The mean difference is significant at the 0.05 level. 

 

Chapter 11 Output: 

General Linear Model 

 

Within-Subjects Factors 

Measure:   MEASURE_1   
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FDlevel 

Dependent 

Variable 

1 FD11 

2 FD12 

3 FD13 

4 FD14 

5 FD15 

6 FD16 

7 FD17 

8 FD18 

9 FD19 

 

Multivariate Testsa 

Effect Value F Hypothesis df Error df Sig. 

FDlevel Pillai's Trace .528 5.877b 8.000 42.000 .000 

Wilks' Lambda .472 5.877b 8.000 42.000 .000 

Hotelling's Trace 1.119 5.877b 8.000 42.000 .000 

Roy's Largest 

Root 
1.119 5.877b 8.000 42.000 .000 

a. Design: Intercept  

 Within Subjects Design: FDlevel 

b. Exact statistic 

 

Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

FDlevel .000 455.639 35 .000 .187 .192 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept  

 Within Subjects Design: FDlevel 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   
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Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

FDlevel Sphericity 

Assumed 
2211.200 8 276.400 31.074 .000 

Greenhouse-

Geisser 
2211.200 1.498 1475.705 31.074 .000 

Huynh-Feldt 2211.200 1.535 1440.419 31.074 .000 

Lower-bound 2211.200 1.000 2211.200 31.074 .000 

Error(FDlevel) Sphericity 

Assumed 
3486.800 392 8.895   

Greenhouse-

Geisser 
3486.800 73.422 47.490   

Huynh-Feldt 3486.800 75.220 46.354   

Lower-bound 3486.800 49.000 71.159   

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source FDlevel 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

FDlevel Linear 1981.281 1 1981.281 36.096 .000 

Quadratic 10.286 1 10.286 3.463 .069 

Cubic 89.261 1 89.261 25.696 .000 

Order 4 1.114 1 1.114 .642 .427 

Order 5 22.401 1 22.401 13.842 .001 

Order 6 3.078 1 3.078 2.099 .154 

Order 7 97.197 1 97.197 30.767 .000 

Order 8 6.582 1 6.582 3.564 .065 

Error(FDlevel) Linear 2689.552 49 54.889   

Quadratic 145.552 49 2.970   

Cubic 170.214 49 3.474   

Order 4 85.051 49 1.736   

Order 5 79.296 49 1.618   

Order 6 71.859 49 1.467   

Order 7 154.798 49 3.159   

Order 8 90.478 49 1.846   

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   
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Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 
16200.000 1 16200.000 

1396467728205

7420000.000 
.000 

Error 5.684E-14 49 1.160E-15   

 
Estimated Marginal Means 
FDlevel 

Estimates 

Measure:   MEASURE_1   

FDlevel Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 8.360 .509 7.337 9.383 

2 8.780 .473 7.829 9.731 

3 8.540 .434 7.669 9.411 

4 6.600 .204 6.190 7.010 

5 6.120 .184 5.749 6.491 

6 6.100 .241 5.615 6.585 

7 3.100 .436 2.223 3.977 

8 3.200 .458 2.280 4.120 

9 3.200 .467 2.262 4.138 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) 

FDlevel 

(J) 

FDlevel 

Mean 

Difference (I-

J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower 

Bound 

Upper 

Bound 

1 2 -.420 .276 1.000 -1.354 .514 

3 -.180 .275 1.000 -1.112 .752 

4 1.760 .521 .052 -.006 3.526 

5 2.240* .586 .013 .254 4.226 

6 2.260* .657 .043 .033 4.487 

7 5.260* .899 .000 2.211 8.309 

8 5.160* .923 .000 2.030 8.290 

9 5.160* .948 .000 1.947 8.373 

2 1 .420 .276 1.000 -.514 1.354 

3 .240 .207 1.000 -.462 .942 

4 2.180* .475 .001 .569 3.791 

5 2.660* .533 .000 .852 4.468 
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6 2.680* .626 .003 .557 4.803 

7 5.680* .883 .000 2.686 8.674 

8 5.580* .899 .000 2.531 8.629 

9 5.580* .910 .000 2.496 8.664 

3 1 .180 .275 1.000 -.752 1.112 

2 -.240 .207 1.000 -.942 .462 

4 1.940* .431 .001 .479 3.401 

5 2.420* .489 .000 .762 4.078 

6 2.440* .575 .004 .490 4.390 

7 5.440* .843 .000 2.581 8.299 

8 5.340* .870 .000 2.390 8.290 

9 5.340* .879 .000 2.362 8.318 

4 1 -1.760 .521 .052 -3.526 .006 

2 -2.180* .475 .001 -3.791 -.569 

3 -1.940* .431 .001 -3.401 -.479 

5 .480 .241 1.000 -.337 1.297 

6 .500 .327 1.000 -.610 1.610 

7 3.500* .539 .000 1.672 5.328 

8 3.400* .569 .000 1.470 5.330 

9 3.400* .579 .000 1.439 5.361 

5 1 -2.240* .586 .013 -4.226 -.254 

2 -2.660* .533 .000 -4.468 -.852 

3 -2.420* .489 .000 -4.078 -.762 

4 -.480 .241 1.000 -1.297 .337 

6 .020 .308 1.000 -1.025 1.065 

7 3.020* .469 .000 1.430 4.610 

8 2.920* .498 .000 1.232 4.608 

9 2.920* .491 .000 1.257 4.583 

6 1 -2.260* .657 .043 -4.487 -.033 

2 -2.680* .626 .003 -4.803 -.557 

3 -2.440* .575 .004 -4.390 -.490 

4 -.500 .327 1.000 -1.610 .610 

5 -.020 .308 1.000 -1.065 1.025 

7 3.000* .442 .000 1.503 4.497 

8 2.900* .448 .000 1.380 4.420 

9 2.900* .440 .000 1.408 4.392 

7 1 -5.260* .899 .000 -8.309 -2.211 

2 -5.680* .883 .000 -8.674 -2.686 

3 -5.440* .843 .000 -8.299 -2.581 

4 -3.500* .539 .000 -5.328 -1.672 

5 -3.020* .469 .000 -4.610 -1.430 
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6 -3.000* .442 .000 -4.497 -1.503 

8 -.100 .258 1.000 -.973 .773 

9 -.100 .254 1.000 -.962 .762 

8 1 -5.160* .923 .000 -8.290 -2.030 

2 -5.580* .899 .000 -8.629 -2.531 

3 -5.340* .870 .000 -8.290 -2.390 

4 -3.400* .569 .000 -5.330 -1.470 

5 -2.920* .498 .000 -4.608 -1.232 

6 -2.900* .448 .000 -4.420 -1.380 

7 .100 .258 1.000 -.773 .973 

9 .000 .230 1.000 -.781 .781 

9 1 -5.160* .948 .000 -8.373 -1.947 

2 -5.580* .910 .000 -8.664 -2.496 

3 -5.340* .879 .000 -8.318 -2.362 

4 -3.400* .579 .000 -5.361 -1.439 

5 -2.920* .491 .000 -4.583 -1.257 

6 -2.900* .440 .000 -4.392 -1.408 

7 .100 .254 1.000 -.762 .962 

8 .000 .230 1.000 -.781 .781 

Based on estimated marginal means 

*. The mean difference is significant at the 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Multivariate Tests 

 Value F Hypothesis df Error df Sig. 

Pillai's trace .528 5.877a 8.000 42.000 .000 

Wilks' lambda .472 5.877a 8.000 42.000 .000 

Hotelling's trace 1.119 5.877a 8.000 42.000 .000 

Roy's largest root 1.119 5.877a 8.000 42.000 .000 

Each F tests the multivariate effect of FDlevel. These tests are based on the linearly 

independent pairwise comparisons among the estimated marginal means. 

a. Exact statistic 

 

General Linear Model 

Within-Subjects Factors 

Measure:   MEASURE_1   

FDlevel 

Dependent 

Variable 

1 FD11 

2 FD12 

3 FD13 
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4 FD14 

5 FD15 

6 FD16 

7 FD17 

8 FD18 

9 FD19 

 

Between-Subjects Factors 

 Value Label N 

enviro 1 urban 31 

2 rural 19 

 

Multivariate Testsa 

Effect Value F 

Hypothesis 

df Error df Sig. 

FDlevel Pillai's Trace .536 5.913b 8.000 41.000 .000 

Wilks' Lambda .464 5.913b 8.000 41.000 .000 

Hotelling's 

Trace 
1.154 5.913b 8.000 41.000 .000 

Roy's Largest 

Root 
1.154 5.913b 8.000 41.000 .000 

FDlevel * 

enviro 

Pillai's Trace .166 1.021b 8.000 41.000 .436 

Wilks' Lambda .834 1.021b 8.000 41.000 .436 

Hotelling's 

Trace 
.199 1.021b 8.000 41.000 .436 

Roy's Largest 

Root 
.199 1.021b 8.000 41.000 .436 

a. Design: Intercept + enviro  

 Within Subjects Design: FDlevel 

b. Exact statistic 

 

Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

FDlevel .000 450.720 35 .000 .186 .195 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 
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a. Design: Intercept + enviro  

 Within Subjects Design: FDlevel 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

FDlevel Sphericity 

Assumed 
2172.590 8 271.574 30.178 .000 

Greenhouse-

Geisser 
2172.590 1.488 1460.536 30.178 .000 

Huynh-Feldt 2172.590 1.556 1396.207 30.178 .000 

Lower-bound 2172.590 1.000 2172.590 30.178 .000 

FDlevel * 

enviro 

Sphericity 

Assumed 
31.150 8 3.894 .433 .901 

Greenhouse-

Geisser 
31.150 1.488 20.941 .433 .591 

Huynh-Feldt 31.150 1.556 20.018 .433 .600 

Lower-bound 31.150 1.000 31.150 .433 .514 

Error(FDlevel) Sphericity 

Assumed 
3455.650 384 8.999   

Greenhouse-

Geisser 
3455.650 71.401 48.398   

Huynh-Feldt 3455.650 74.691 46.266   

Lower-bound 3455.650 48.000 71.993   

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source FDlevel 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

FDlevel Linear 1933.713 1 1933.713 34.641 .000 

Quadratic 7.672 1 7.672 2.566 .116 

Cubic 86.800 1 86.800 24.530 .000 

Order 4 .888 1 .888 .502 .482 

Order 5 21.765 1 21.765 13.190 .001 

Order 6 2.918 1 2.918 1.949 .169 

Order 7 110.188 1 110.188 37.806 .000 
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Order 8 8.646 1 8.646 4.772 .034 

FDlevel * 

enviro 

Linear 10.117 1 10.117 .181 .672 

Quadratic 2.050 1 2.050 .686 .412 

Cubic .365 1 .365 .103 .749 

Order 4 .119 1 .119 .067 .797 

Order 5 .087 1 .087 .053 .820 

Order 6 .000 1 .000 .000 .986 

Order 7 14.898 1 14.898 5.111 .028 

Order 8 3.515 1 3.515 1.940 .170 

Error(FDlevel) Linear 2679.435 48 55.822   

Quadratic 143.502 48 2.990   

Cubic 169.849 48 3.539   

Order 4 84.933 48 1.769   

Order 5 79.209 48 1.650   

Order 6 71.858 48 1.497   

Order 7 139.900 48 2.915   

Order 8 86.964 48 1.812   

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 
15266.880 1 15266.880 

3222933519333

284900.000 
.000 

enviro .000 1 .000 .000 1.000 

Error 2.274E-13 48 4.737E-15   

 
T-Test 

Group Statistics 

 enviro N Mean Std. Deviation Std. Error Mean 

CNS urban 31 48.1613 7.07152 1.27008 

rural 19 48.5789 8.95864 2.05525 

 

Independent Samples Test 

 

Levene's 

Test for 

Equality of 

Variances t-test for Equality of Means 
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F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

CNS Equal 

variances 

assumed 

1.690 .200 
-

.183 
48 .856 -.41766 2.28211 

-

5.00615 
4.17083 

Equal 

variances 

not 

assumed 

  
-

.173 
31.607 .864 -.41766 2.41603 

-

5.34134 
4.50603 

 
T-Test 

Group Statistics 

 Gender N Mean Std. Deviation Std. Error Mean 

CNS Male 16 51.8750 6.21691 1.55423 

Female 34 46.6471 7.91960 1.35820 

 

Independent Samples Test 

 

Levene's 

Test for 

Equality 

of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

CNS Equal 

variances 

assumed 

.656 .422 2.321 48 .025 5.22794 2.25241 .69916 9.75672 

Equal 

variances 

not 

assumed 

  2.533 36.881 .016 5.22794 2.06406 1.04531 9.41058 

 

Chapter 12 Output: 

General Linear Model 

 

Within-Subjects Factors 
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Measure:   MEASURE_1   

FDlevel 

Dependent 

Variable 

1 D1.1 

2 D1.2 

3 D1.3 

4 D1.4 

5 D1.5 

6 D1.6 

7 D1.7 

8 D1.8 

9 D1.9 

 

Multivariate Testsa 

Effect Value F Hypothesis df Error df Sig. 

FDlevel Pillai's Trace .198 16.190b 8.000 523.000 .000 

Wilks' Lambda .802 16.190b 8.000 523.000 .000 

Hotelling's Trace .248 16.190b 8.000 523.000 .000 

Roy's Largest 

Root 
.248 16.190b 8.000 523.000 .000 

a. Design: Intercept  

 Within Subjects Design: FDlevel 

b. Exact statistic 

 

Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

FDlevel .000 5518.759 35 .000 .183 .184 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept  

 Within Subjects Design: FDlevel 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   
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Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

FDlevel Sphericity 

Assumed 
3434.228 8 429.278 35.061 .000 

Greenhouse-

Geisser 
3434.228 1.467 2341.144 35.061 .000 

Huynh-Feldt 3434.228 1.470 2336.266 35.061 .000 

Lower-bound 3434.228 1.000 3434.228 35.061 .000 

Error(FDlevel) Sphericity 

Assumed 
51914.217 4240 12.244   

Greenhouse-

Geisser 
51914.217 777.458 66.774   

Huynh-Feldt 51914.217 779.081 66.635   

Lower-bound 51914.217 530.000 97.951   

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source FDlevel 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

FDlevel Linear 2725.793 1 2725.793 35.999 .000 

Quadratic 380.474 1 380.474 66.966 .000 

Cubic 143.189 1 143.189 38.935 .000 

Order 4 47.313 1 47.313 19.971 .000 

Order 5 50.856 1 50.856 23.733 .000 

Order 6 3.869 1 3.869 1.891 .170 

Order 7 37.366 1 37.366 8.740 .003 

Order 8 45.368 1 45.368 22.236 .000 

Error(FDlevel) Linear 40131.057 530 75.719   

Quadratic 3011.231 530 5.682   

Cubic 1949.140 530 3.678   

Order 4 1255.591 530 2.369   

Order 5 1135.706 530 2.143   

Order 6 1084.245 530 2.046   

Order 7 2265.893 530 4.275   

Order 8 1081.353 530 2.040   

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   
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Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 171600.286 1 171600.286 1007522.595 .000 

Error 90.269 530 .170   

 

 
Estimated Marginal Means 
FDlevel 

 

Estimates 

Measure:   MEASURE_1   

FDlevel Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 6.516 .170 6.182 6.850 

2 6.889 .169 6.557 7.221 

3 6.802 .159 6.489 7.115 

4 6.653 .078 6.501 6.806 

5 6.292 .072 6.151 6.433 

6 6.282 .078 6.130 6.435 

7 5.064 .158 4.753 5.375 

8 4.697 .169 4.364 5.029 

9 4.734 .176 4.389 5.080 

 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) 

FDlevel 

(J) 

FDlevel 

Mean 

Difference (I-

J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound 

Upper 

Bound 

1 2 -.373* .075 .000 -.615 -.130 

3 -.286* .078 .009 -.536 -.037 

4 -.137 .173 1.000 -.695 .420 

5 .224 .192 1.000 -.393 .841 

6 .234 .215 1.000 -.458 .925 

7 1.452* .318 .000 .431 2.473 

8 1.819* .328 .000 .764 2.874 

9 1.782* .332 .000 .714 2.849 

2 1 .373* .075 .000 .130 .615 
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3 .087 .081 1.000 -.174 .347 

4 .235 .170 1.000 -.312 .783 

5 .597 .189 .062 -.012 1.206 

6 .606 .212 .160 -.076 1.289 

7 1.825* .318 .000 .803 2.847 

8 2.192* .328 .000 1.136 3.248 

9 2.154* .332 .000 1.087 3.222 

3 1 .286* .078 .009 .037 .536 

2 -.087 .081 1.000 -.347 .174 

4 .149 .161 1.000 -.370 .668 

5 .510 .179 .159 -.063 1.084 

6 .520 .200 .346 -.123 1.163 

7 1.738* .308 .000 .749 2.727 

8 2.105* .319 .000 1.080 3.131 

9 2.068* .324 .000 1.025 3.110 

4 1 .137 .173 1.000 -.420 .695 

2 -.235 .170 1.000 -.783 .312 

3 -.149 .161 1.000 -.668 .370 

5 .362* .090 .002 .074 .649 

6 .371* .102 .011 .044 .698 

7 1.589* .199 .000 .951 2.228 

8 1.957* .213 .000 1.273 2.640 

9 1.919* .224 .000 1.201 2.637 

5 1 -.224 .192 1.000 -.841 .393 

2 -.597 .189 .062 -1.206 .012 

3 -.510 .179 .159 -1.084 .063 

4 -.362* .090 .002 -.649 -.074 

6 .009 .088 1.000 -.273 .292 

7 1.228* .180 .000 .649 1.807 

8 1.595* .192 .000 .978 2.212 

9 1.557* .201 .000 .911 2.204 

6 1 -.234 .215 1.000 -.925 .458 

2 -.606 .212 .160 -1.289 .076 

3 -.520 .200 .346 -1.163 .123 

4 -.371* .102 .011 -.698 -.044 

5 -.009 .088 1.000 -.292 .273 

7 1.218* .161 .000 .702 1.734 

8 1.586* .173 .000 1.030 2.142 

9 1.548* .183 .000 .959 2.137 

7 1 -1.452* .318 .000 -2.473 -.431 

2 -1.825* .318 .000 -2.847 -.803 
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3 -1.738* .308 .000 -2.727 -.749 

4 -1.589* .199 .000 -2.228 -.951 

5 -1.228* .180 .000 -1.807 -.649 

6 -1.218* .161 .000 -1.734 -.702 

8 .367* .086 .001 .092 .643 

9 .330* .091 .011 .038 .621 

8 1 -1.819* .328 .000 -2.874 -.764 

2 -2.192* .328 .000 -3.248 -1.136 

3 -2.105* .319 .000 -3.131 -1.080 

4 -1.957* .213 .000 -2.640 -1.273 

5 -1.595* .192 .000 -2.212 -.978 

6 -1.586* .173 .000 -2.142 -1.030 

7 -.367* .086 .001 -.643 -.092 

9 -.038 .074 1.000 -.276 .200 

9 1 -1.782* .332 .000 -2.849 -.714 

2 -2.154* .332 .000 -3.222 -1.087 

3 -2.068* .324 .000 -3.110 -1.025 

4 -1.919* .224 .000 -2.637 -1.201 

5 -1.557* .201 .000 -2.204 -.911 

6 -1.548* .183 .000 -2.137 -.959 

7 -.330* .091 .011 -.621 -.038 

8 .038 .074 1.000 -.200 .276 

Based on estimated marginal means 

*. The mean difference is significant at the 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Multivariate Tests 

 Value F Hypothesis df Error df Sig. 

Pillai's trace .198 16.190a 8.000 523.000 .000 

Wilks' lambda .802 16.190a 8.000 523.000 .000 

Hotelling's trace .248 16.190a 8.000 523.000 .000 

Roy's largest root .248 16.190a 8.000 523.000 .000 

Each F tests the multivariate effect of FDlevel. These tests are based on the linearly 

independent pairwise comparisons among the estimated marginal means. 

a. Exact statistic 
 
General Linear Model 

 

Within-Subjects Factors 

Measure:   MEASURE_1   
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FDlevel 

Dependent 

Variable 

1 D1.1 

2 D1.2 

3 D1.3 

4 D1.4 

5 D1.5 

6 D1.6 

7 D1.7 

8 D1.8 

9 D1.9 

 

Between-Subjects Factors 

 Value Label N 

NewLocationGroup 1.00 Europe 177 

2.00 North America 24 

3.00 Central Asia 195 

5.00 Africa 97 

 

Multivariate Testsa 

Effect Value F 

Hypothesis 

df Error df Sig. 

FDlevel Pillai's Trace .117 8.019b 8.000 482.000 .000 

Wilks' Lambda .883 8.019b 8.000 482.000 .000 

Hotelling's 

Trace 
.133 8.019b 8.000 482.000 .000 

Roy's Largest 

Root 
.133 8.019b 8.000 482.000 .000 

FDlevel * 

NewLocationGroup 

Pillai's Trace .091 1.903 24.000 1452.000 .005 

Wilks' Lambda .911 1.899 24.000 1398.548 .006 

Hotelling's 

Trace 
.095 1.894 24.000 1442.000 .006 

Roy's Largest 

Root 
.042 2.557c 8.000 484.000 .010 

a. Design: Intercept + NewLocationGroup  

 Within Subjects Design: FDlevel 

b. Exact statistic 

c. The statistic is an upper bound on F that yields a lower bound on the significance 

level. 
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Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

FDlevel .000 4995.552 35 .000 .184 .186 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept + NewLocationGroup  

 Within Subjects Design: FDlevel 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

FDlevel Sphericity 

Assumed 
820.175 8 102.522 8.625 .000 

Greenhouse-

Geisser 
820.175 1.474 556.572 8.625 .001 

Huynh-Feldt 820.175 1.486 551.912 8.625 .001 

Lower-bound 820.175 1.000 820.175 8.625 .003 

FDlevel * 

NewLocationGroup 

Sphericity 

Assumed 
1139.739 24 47.489 3.995 .000 

Greenhouse-

Geisser 
1139.739 4.421 257.810 3.995 .002 

Huynh-Feldt 1139.739 4.458 255.651 3.995 .002 

Lower-bound 1139.739 3.000 379.913 3.995 .008 

Error(FDlevel) Sphericity 

Assumed 
46500.891 3912 11.887   

Greenhouse-

Geisser 
46500.891 720.600 64.531   

Huynh-Feldt 46500.891 726.684 63.991   

Lower-bound 46500.891 489.000 95.094   

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   
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Source FDlevel 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

FDlevel Linear 527.670 1 527.670 7.187 .008 

Quadratic 165.561 1 165.561 31.183 .000 

Cubic 61.464 1 61.464 16.860 .000 

Order 4 15.131 1 15.131 6.327 .012 

Order 5 13.408 1 13.408 6.388 .012 

Order 6 2.247 1 2.247 1.099 .295 

Order 7 .644 1 .644 .155 .694 

Order 8 34.049 1 34.049 16.736 .000 

FDlevel * 

NewLocationGroup 

Linear 997.070 3 332.357 4.527 .004 

Quadratic 28.372 3 9.457 1.781 .150 

Cubic 26.927 3 8.976 2.462 .062 

Order 4 6.281 3 2.094 .875 .454 

Order 5 17.546 3 5.849 2.787 .040 

Order 6 6.051 3 2.017 .987 .399 

Order 7 45.998 3 15.333 3.697 .012 

Order 8 11.494 3 3.831 1.883 .131 

Error(FDlevel) Linear 35903.654 489 73.423   

Quadratic 2596.249 489 5.309   

Cubic 1782.659 489 3.646   

Order 4 1169.403 489 2.391   

Order 5 1026.331 489 2.099   

Order 6 999.808 489 2.045   

Order 7 2027.958 489 4.147   

Order 8 994.828 489 2.034   

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 82323.552 1 82323.552 512700.510 .000 

NewLocationGroup 1.026 3 .342 2.130 .096 

Error 78.518 489 .161   

 

 
Estimated Marginal Means 
1. FDlevel 
2. NewLocationGroup 
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Estimates 

Measure:   MEASURE_1   

NewLocationGroup Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Europe 5.965 .010 5.945 5.985 

North America 6.000 .027 5.946 6.054 

Central Asia 5.994 .010 5.975 6.013 

Africa 6.000 .014 5.973 6.027 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) 

NewLocationGroup 

(J) 

NewLocationGroup 

Mean 

Difference 

(I-J) 

Std. 

Error Sig.a 

95% Confidence 

Interval for 

Differencea 

Lower 

Bound 

Upper 

Bound 

Europe North America -.035 .029 1.000 -.112 .042 

Central Asia -.029 .014 .227 -.066 .008 

Africa -.035 .017 .226 -.080 .010 

North America Europe .035 .029 1.000 -.042 .112 

Central Asia .006 .029 1.000 -.070 .083 

Africa 3.886E-

16 
.030 1.000 -.081 .081 

Central Asia Europe .029 .014 .227 -.008 .066 

North America -.006 .029 1.000 -.083 .070 

Africa -.006 .017 1.000 -.050 .038 

Africa Europe .035 .017 .226 -.010 .080 

North America -3.886E-

16 
.030 1.000 -.081 .081 

Central Asia .006 .017 1.000 -.038 .050 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Bonferroni. 

 

Univariate Tests 

Measure:   MEASURE_1   

 Sum of Squares df Mean Square F Sig. 

Contrast .114 3 .038 2.130 .096 

Error 8.724 489 .018   
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The F tests the effect of NewLocationGroup. This test is based on the linearly 

independent pairwise comparisons among the estimated marginal means. 
 
General Linear Model 

Within-Subjects Factors 

Measure:   MEASURE_1   

FDlevel 

Dependent 

Variable 

1 D1.1 

2 D1.2 

3 D1.3 

4 D1.4 

5 D1.5 

6 D1.6 

7 D1.7 

8 D1.8 

9 D1.9 

 

Between-Subjects Factors 

 Value Label N 

Gender 1 Male 257 

2 Female 273 

 

Multivariate Testsa 

Effect Value F 

Hypothesis 

df Error df Sig. 

FDlevel Pillai's Trace .198 16.036b 8.000 521.000 .000 

Wilks' Lambda .802 16.036b 8.000 521.000 .000 

Hotelling's 

Trace 
.246 16.036b 8.000 521.000 .000 

Roy's Largest 

Root 
.246 16.036b 8.000 521.000 .000 

FDlevel * 

Gender 

Pillai's Trace .047 3.221b 8.000 521.000 .001 

Wilks' Lambda .953 3.221b 8.000 521.000 .001 

Hotelling's 

Trace 
.049 3.221b 8.000 521.000 .001 

Roy's Largest 

Root 
.049 3.221b 8.000 521.000 .001 

a. Design: Intercept + Gender  

 Within Subjects Design: FDlevel 

b. Exact statistic 
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Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

FDlevel .000 5483.484 35 .000 .184 .184 .125 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept + Gender  

 Within Subjects Design: FDlevel 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

FDlevel Sphericity 

Assumed 
3460.690 8 432.586 35.563 .000 

Greenhouse-

Geisser 
3460.690 1.469 2355.864 35.563 .000 

Huynh-Feldt 3460.690 1.475 2346.472 35.563 .000 

Lower-bound 3460.690 1.000 3460.690 35.563 .000 

FDlevel * 

Gender 

Sphericity 

Assumed 
495.543 8 61.943 5.092 .000 

Greenhouse-

Geisser 
495.543 1.469 337.341 5.092 .013 

Huynh-Feldt 495.543 1.475 335.996 5.092 .013 

Lower-bound 495.543 1.000 495.543 5.092 .024 

Error(FDlevel) Sphericity 

Assumed 
51381.114 4224 12.164   

Greenhouse-

Geisser 
51381.114 775.615 66.246   

Huynh-Feldt 51381.114 778.720 65.982   

Lower-bound 51381.114 528.000 97.313   

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   
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Source FDlevel 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

FDlevel Linear 2764.224 1 2764.224 36.815 .000 

Quadratic 372.175 1 372.175 65.532 .000 

Cubic 144.379 1 144.379 39.376 .000 

Order 4 46.153 1 46.153 19.471 .000 

Order 5 50.366 1 50.366 23.425 .000 

Order 6 3.368 1 3.368 1.649 .200 

Order 7 36.030 1 36.030 8.412 .004 

Order 8 43.996 1 43.996 21.601 .000 

FDlevel * 

Gender 

Linear 463.074 1 463.074 6.167 .013 

Quadratic 5.255 1 5.255 .925 .337 

Cubic 12.303 1 12.303 3.355 .068 

Order 4 3.956 1 3.956 1.669 .197 

Order 5 .431 1 .431 .201 .654 

Order 6 1.607 1 1.607 .787 .375 

Order 7 3.194 1 3.194 .746 .388 

Order 8 5.723 1 5.723 2.810 .094 

Error(FDlevel) Linear 39644.563 528 75.084   

Quadratic 2998.644 528 5.679   

Cubic 1936.006 528 3.667   

Order 4 1251.513 528 2.370   

Order 5 1135.264 528 2.150   

Order 6 1078.243 528 2.042   

Order 7 2261.486 528 4.283   

Order 8 1075.396 528 2.037   

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 171247.255 1 171247.255 1141560.141 .000 

Gender .085 1 .085 .570 .451 

Error 79.206 528 .150   

 
Estimated Marginal Means 
Gender 

Estimates 

Measure:   MEASURE_1   



 

 439 

Gender Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Male 5.999 .008 5.983 6.015 

Female 5.990 .008 5.975 6.006 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) Gender 

(J) 

Gender 

Mean 

Difference (I-

J) Std. Error Sig.a 

95% Confidence Interval 

for Differencea 

Lower 

Bound 

Upper 

Bound 

Male Female .008 .011 .451 -.014 .031 

Female Male -.008 .011 .451 -.031 .014 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Bonferroni. 

 

Univariate Tests 

Measure:   MEASURE_1   

 Sum of Squares df Mean Square F Sig. 

Contrast .009 1 .009 .570 .451 

Error 8.801 528 .017   

The F tests the effect of Gender. This test is based on the linearly independent 

pairwise comparisons among the estimated marginal means. 

 

 

 

 

R Output 

 

Chapter 9 

>  

> #Full Model 

> print(m3a.ML <- glmer (complex ~ 

(cont2+gender+cAge)^2 + (1 | ID) + (1| 

display), family=binomial, 
data=df2[df2$study=="mturk",]), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (cont2 + gender + cAge)^2 
+ (1 | ID) + (1 | display)  

   Data: df2[df2$study == "mturk", ]  

  AIC  BIC logLik deviance 

 6739 6830  -3358     6715 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 1.6795   1.2960   

 display (Intercept) 4.3242   2.0795   

Number of obs: 14361, groups: ID, 265; 
display, 41 

Fixed effects: 
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                      Estimate Std. Error z value 

Pr(>|z|)     

(Intercept)          -4.497276   0.525598  -8.556   
<2e-16 *** 

cont2.c-e             0.389218   0.439757   0.885   

0.3761     

cont2.n-e             1.286396   0.579286   2.221   
0.0264 *   

gender.M-F            0.062031   0.515721   0.120   

0.9043     

cAge                 -0.004953   0.032326  -0.153   
0.8782     

cont2.c-e:gender.M-F  0.052843   0.556880   

0.095   0.9244     

cont2.n-e:gender.M-F -0.514157   0.769074  -
0.669   0.5038     

cont2.c-e:cAge        0.018819   0.031233   0.603   

0.5468     

cont2.n-e:cAge        0.010540   0.035142   
0.300   0.7642     

gender.M-F:cAge      -0.012987   0.020046  -

0.648   0.5171     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> #Null Model 

> print(m3a0.ML <- glmer (complex ~ (1 | ID) 

+ (1| display), family=binomial, 

data=df2[df2$study=="mturk",]), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (1 | ID) + (1 | display)  

   Data: df2[df2$study == "mturk", ]  

  AIC  BIC logLik deviance 

 7023 7046  -3509     7017 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 1.7708   1.3307   

 display (Intercept) 4.5168   2.1253   

Number of obs: 15009, groups: ID, 277; 
display, 41 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -4.0584     0.3512  -11.56   <2e-16 

*** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> #Check if full model is better than null model 
at accounting for variance. 

> anova(m3a.ML,m3a0.ML) 

Data: [ 

Data: df2 

Data: df2$study == "mturk" 

Data:  

Models: 

m3a0.ML: complex ~ (1 | ID) + (1 | display) 

m3a.ML: complex ~ (cont2 + gender + cAge)^2 
+ (1 | ID) + (1 | display) 

        Df    AIC    BIC  logLik Chisq Chi Df 

Pr(>Chisq)     

m3a0.ML  3 7023.2 7046.1 -3508.6                             

m3a.ML  12 6739.1 6830.0 -3357.6 302.1      9  
< 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> #Checking individual variables 

> print(m3a1.ML <- glmer (complex ~ 
(gender+cAge)^2 + (1 | ID) + (1| display), 

family=binomial, 
data=df2[df2$study=="mturk",]), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (gender + cAge)^2 + (1 | 
ID) + (1 | display)  

   Data: df2[df2$study == "mturk", ]  

  AIC  BIC logLik deviance 

 7028 7073  -3508     7016 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 1.7594   1.3264   

 display (Intercept) 4.5135   2.1245   

Number of obs: 15009, groups: ID, 277; 

display, 41 

Fixed effects: 

                Estimate Std. Error z value Pr(>|z|)     

(Intercept)     -4.05476    0.36888 -10.992   <2e-

16 *** 
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gender.M-F      -0.02250    0.18108  -0.124    

0.901     

cAge             0.01718    0.01428   1.203    0.229     

gender.M-F:cAge -0.01695    0.01874  -0.904    

0.366     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #Check if continent is a sig predictor 

> anova(m3a.ML,m3a1.ML) 

Data: [ 

Data: df2 

Data: df2$study == "mturk" 

Data:  

Models: 

m3a1.ML: complex ~ (gender + cAge)^2 + (1 | 

ID) + (1 | display) 

m3a.ML: complex ~ (cont2 + gender + cAge)^2 

+ (1 | ID) + (1 | display) 

        Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq)     

m3a1.ML  6 7027.7 7073.4 -3507.9                              

m3a.ML  12 6739.1 6830.0 -3357.6 300.57      6  

< 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> #Checking individual variables 

> print(m3a2.ML <- glmer (complex ~ 

(cont2+cAge)^2 + (1 | ID) + (1| display), 

family=binomial, 
data=df2[df2$study=="mturk",]), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (cont2 + cAge)^2 + (1 | 
ID) + (1 | display)  

   Data: df2[df2$study == "mturk", ]  

  AIC  BIC logLik deviance 

 6733 6793  -3358     6717 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 1.6947   1.3018   

 display (Intercept) 4.3258   2.0799   

Number of obs: 14361, groups: ID, 265; 

display, 41 

 

Fixed effects: 

               Estimate Std. Error z value Pr(>|z|)     

(Intercept)    -4.46570    0.41766 -10.692  < 2e-

16 *** 

cont2.c-e       0.43897    0.27032   1.624  
0.10440     

cont2.n-e       1.03104    0.39850   2.587  

0.00967 **  

cAge           -0.01432    0.02864  -0.500  
0.61710     

cont2.c-e:cAge  0.01916    0.03106   0.617  

0.53718     

cont2.n-e:cAge  0.01346    0.03463   0.389  

0.69750     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> #Check if continent is a sig predictor 

> anova(m3a.ML,m3a2.ML) 

Data: [ 

Data: df2 

Data: df2$study == "mturk" 

Data:  

Models: 

m3a2.ML: complex ~ (cont2 + cAge)^2 + (1 | 
ID) + (1 | display) 

m3a.ML: complex ~ (cont2 + gender + cAge)^2 

+ (1 | ID) + (1 | display) 

        Df    AIC    BIC  logLik  Chisq Chi Df 
Pr(>Chisq) 

m3a2.ML  8 6732.9 6793.4 -3358.4                          

m3a.ML  12 6739.1 6830.0 -3357.6 1.7214      4     

0.7868 

> #Checking individual variables 

> print(m3a3.ML <- glmer (complex ~ 
(cont2+gender)^2 + (1 | ID) + (1| display), 

family=binomial, 
data=df2[df2$study=="mturk",]), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (cont2 + gender)^2 + (1 | 
ID) + (1 | display)  



 

 442 

   Data: df2[df2$study == "mturk", ]  

  AIC  BIC logLik deviance 

 6732 6793  -3358     6716 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 1.6856   1.2983   

 display (Intercept) 4.3264   2.0800   

Number of obs: 14361, groups: ID, 265; 
display, 41 

Fixed effects: 

                     Estimate Std. Error z value Pr(>|z|)     

(Intercept)          -4.49096    0.52396  -8.571   

<2e-16 *** 

cont2.c-e             0.40187    0.43624   0.921   

0.3569     

cont2.n-e             1.31897    0.55572   2.373   

0.0176 *   

gender.M-F            0.05480    0.51428   0.107   
0.9151     

cont2.c-e:gender.M-F  0.03892    0.55422   

0.070   0.9440     

cont2.n-e:gender.M-F -0.60514    0.74912  -
0.808   0.4192     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> #Check if continent is a sig predictor 

> anova(m3a.ML,m3a3.ML) 

Data: [ 

Data: df2 

Data: df2$study == "mturk" 

Data:  

Models: 

m3a3.ML: complex ~ (cont2 + gender)^2 + (1 | 

ID) + (1 | display) 

m3a.ML: complex ~ (cont2 + gender + cAge)^2 
+ (1 | ID) + (1 | display) 

        Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m3a3.ML  8 6732.0 6792.6 -3358.0                          

m3a.ML  12 6739.1 6830.0 -3357.6 0.9057      4     
0.9237 

> 

> ####### Mid-Range Model 

>  

> print(m3b.ML <- glmer (biCat2 ~ 

(cont2+gender+cAge)^2 + (1 | ID) + (1| 
display), family=binomial, 

data=df2[df2$study=="mturk",]), cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: biCat2 ~ (cont2 + gender + cAge)^2 + 

(1 | ID) + (1 | display)  

   Data: df2[df2$study == "mturk", ]  

   AIC   BIC logLik deviance 

 11585 11676  -5780    11561 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.33868 0.58196  

 display (Intercept) 15.80376 3.97539  

Number of obs: 14361, groups: ID, 265; 

display, 41 

Fixed effects: 

                       Estimate Std. Error z value 

Pr(>|z|)    

(Intercept)           1.8744063  0.6629297   2.828  

0.00469 ** 

cont2.c-e             0.1183764  0.2097611   0.564  
0.57252    

cont2.n-e             0.7408349  0.2839014   2.610  

0.00907 ** 

gender.M-F            0.1602208  0.2452925   
0.653  0.51364    

cAge                  0.0009177  0.0154061   0.060  

0.95250    

cont2.c-e:gender.M-F -0.0513507  0.2656620  -

0.193  0.84673    

cont2.n-e:gender.M-F -0.7459233  0.3768743  -
1.979  0.04779 *  

cont2.c-e:cAge        0.0130469  0.0148550   

0.878  0.37979    

cont2.n-e:cAge        0.0164873  0.0168315   
0.980  0.32731    

gender.M-F:cAge      -0.0081508  0.0098470  -

0.828  0.40781    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1  

>  
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> print(m3b0.ML <- glmer (biCat2 ~ (1 | ID) + 

(1| display), family=binomial, 
data=df2[df2$study=="mturk",]), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat2 ~ (1 | ID) + (1 | display)  

   Data: df2[df2$study == "mturk", ]  

   AIC   BIC logLik deviance 

 12088 12111  -6041    12082 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.37889 0.61554  

 display (Intercept) 16.04329 4.00541  

Number of obs: 15009, groups: ID, 277; 

display, 41 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   2.1141     0.6404   3.301 0.000963 

*** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #Check if full model is better than null model 

at accounting for variance. 

> anova(m3b.ML,m3b0.ML) 

Data: [ 

Data: df2 

Data: df2$study == "mturk" 

Data:  

Models: 

m3b0.ML: biCat2 ~ (1 | ID) + (1 | display) 

m3b.ML: biCat2 ~ (cont2 + gender + cAge)^2 
+ (1 | ID) + (1 | display) 

        Df   AIC   BIC  logLik  Chisq Chi Df 

Pr(>Chisq)     

m3b0.ML  3 12088 12111 -6041.1                              

m3b.ML  12 11585 11676 -5780.3 521.58      9  
< 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #Continent 

> print(m3b1.ML <- glmer (biCat2 ~ 

(gender+cAge)^2 + (1 | ID) + (1| display), 

family=binomial, 
data=df2[df2$study=="mturk",]), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat2 ~ (gender + cAge)^2 + (1 | ID) 
+ (1 | display)  

   Data: df2[df2$study == "mturk", ]  

   AIC   BIC logLik deviance 

 12087 12133  -6038    12075 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.36696 0.60577  

 display (Intercept) 16.04202 4.00525  

Number of obs: 15009, groups: ID, 277; 

display, 41 

 

Fixed effects: 

                 Estimate Std. Error z value Pr(>|z|)    

(Intercept)      2.087154   0.642753   3.247  

0.00117 ** 

gender.M-F       0.028004   0.088921   0.315  
0.75282    

cAge             0.017964   0.007184   2.501  

0.01240 *  

gender.M-F:cAge -0.013053   0.009335  -1.398  
0.16202    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m3b.ML,m3b1.ML) 

Data: [ 

Data: df2 

Data: df2$study == "mturk" 

Data:  

Models: 

m3b1.ML: biCat2 ~ (gender + cAge)^2 + (1 | 

ID) + (1 | display) 
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m3b.ML: biCat2 ~ (cont2 + gender + cAge)^2 

+ (1 | ID) + (1 | display) 

        Df   AIC   BIC  logLik  Chisq Chi Df 
Pr(>Chisq)     

m3b1.ML  6 12087 12133 -6037.7                              

m3b.ML  12 11585 11676 -5780.3 514.75      6  

< 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #Gender 

> print(m3b2.ML <- glmer (biCat2 ~ 
(cont2+cAge)^2 + (1 | ID) + (1| display), 

family=binomial, 

data=df2[df2$study=="mturk",]), cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: biCat2 ~ (cont2 + cAge)^2 + (1 | ID) 

+ (1 | display)  

   Data: df2[df2$study == "mturk", ]  

   AIC   BIC logLik deviance 

 11584 11645  -5784    11568 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.35268 0.59387  

 display (Intercept) 15.80285 3.97528  

Number of obs: 14361, groups: ID, 265; 

display, 41 

 

Fixed effects: 

                Estimate Std. Error z value Pr(>|z|)    

(Intercept)     1.970245   0.645525   3.052  
0.00227 ** 

cont2.c-e       0.096883   0.130159   0.744  

0.45667    

cont2.n-e       0.356776   0.197575   1.806  
0.07095 .  

cAge           -0.004361   0.013671  -0.319  

0.74972    

cont2.c-e:cAge  0.012278   0.014923   0.823  

0.41066    

cont2.n-e:cAge  0.016500   0.016800   0.982  

0.32602    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m3b.ML,m3b2.ML) 

Data: [ 

Data: df2 

Data: df2$study == "mturk" 

Data:  

Models: 

m3b2.ML: biCat2 ~ (cont2 + cAge)^2 + (1 | ID) 

+ (1 | display) 

m3b.ML: biCat2 ~ (cont2 + gender + cAge)^2 
+ (1 | ID) + (1 | display) 

        Df   AIC   BIC  logLik Chisq Chi Df 

Pr(>Chisq) 

m3b2.ML  8 11584 11645 -5784.2                         

m3b.ML  12 11585 11676 -5780.3 7.702      4     
0.1031 

>  

> #Age 

> print(m3b3.ML <- glmer (biCat2 ~ 

(cont2+gender)^2 + (1 | ID) + (1| display), 
family=binomial, 

data=df2[df2$study=="mturk",]), cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: biCat2 ~ (cont2 + gender)^2 + (1 | ID) 

+ (1 | display)  

   Data: df2[df2$study == "mturk", ]  

   AIC   BIC logLik deviance 

 11582 11642  -5783    11566 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.34685 0.58894  

 display (Intercept) 15.80332 3.97534  

Number of obs: 14361, groups: ID, 265; 

display, 41 

 

Fixed effects: 

                     Estimate Std. Error z value Pr(>|z|)    

(Intercept)           1.87309    0.66301   2.825  
0.00473 ** 

cont2.c-e             0.13875    0.20956   0.662  

0.50789    
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cont2.n-e             0.85857    0.27475   3.125  

0.00178 ** 

gender.M-F            0.16087    0.24620   0.653  
0.51351    

cont2.c-e:gender.M-F -0.08025    0.26615  -

0.302  0.76300    

cont2.n-e:gender.M-F -0.78647    0.36934  -
2.129  0.03322 *  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m3b.ML,m3b3.ML) 

Data: [ 

Data: df2 

Data: df2$study == "mturk" 

Data:  

Models: 

m3b3.ML: biCat2 ~ (cont2 + gender)^2 + (1 | 

ID) + (1 | display) 

m3b.ML: biCat2 ~ (cont2 + gender + cAge)^2 

+ (1 | ID) + (1 | display) 

        Df   AIC   BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m3b3.ML  8 11582 11642 -5782.8                          

m3b.ML  12 11585 11676 -5780.3 4.9449      4      
0.293 

>  

> print(m3c.ML <- glmer (biCat1 ~ 

(cont2+gender+cAge)^2 + (1 | ID) + (1| 
display), family=binomial, 

data=df2[df2$study=="mturk",]), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat1 ~ (cont2 + gender + cAge)^2 + 
(1 | ID) + (1 | display)  

   Data: df2[df2$study == "mturk", ]  

   AIC   BIC logLik deviance 

 15504 15595  -7740    15480 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 0.029531 0.17184  

 display (Intercept) 8.422009 2.90207  

Number of obs: 14361, groups: ID, 265; 
display, 41 

 

Fixed effects: 

                      Estimate Std. Error z value 
Pr(>|z|)     

(Intercept)           1.562842   0.472992   3.304 

0.000953 *** 

cont2.c-e             0.077975   0.108294   0.720 

0.471510     

cont2.n-e             0.221757   0.146690   1.512 

0.130599     

gender.M-F            0.135393   0.126764   1.068 

0.285487     

cAge                 -0.002944   0.007953  -0.370 
0.711316     

cont2.c-e:gender.M-F -0.092714   0.137299  -

0.675 0.499505     

cont2.n-e:gender.M-F -0.401733   0.194467  -
2.066 0.038846 *   

cont2.c-e:cAge        0.005852   0.007678   0.762 

0.445932     

cont2.n-e:cAge        0.008160   0.008685   
0.940 0.347458     

gender.M-F:cAge       0.001626   0.005091   

0.319 0.749369     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1  

> print(m3c0.ML <- glmer (biCat1 ~ (1 | ID) + 

(1| display), family=binomial, 
data=df2[df2$study=="mturk",]), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat1 ~ (1 | ID) + (1 | display)  

   Data: df2[df2$study == "mturk", ]  

   AIC   BIC logLik deviance 

 16211 16234  -8102    16205 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 0.0000   0.0000   

 display (Intercept) 8.4992   2.9153   

Number of obs: 15009, groups: ID, 277; 

display, 41 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     
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(Intercept)   1.6731     0.4648   3.599 0.000319 

*** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #Check if full model is better than null model 

at accounting for variance. 

> anova(m3c.ML,m3c0.ML) 

Data: [ 

Data: df2 

Data: df2$study == "mturk" 

Data:  

Models: 

m3c0.ML: biCat1 ~ (1 | ID) + (1 | display) 

m3c.ML: biCat1 ~ (cont2 + gender + cAge)^2 + 

(1 | ID) + (1 | display) 

        Df   AIC   BIC  logLik  Chisq Chi Df 
Pr(>Chisq)     

m3c0.ML  3 16211 16234 -8102.4                              

m3c.ML  12 15504 15595 -7740.2 724.54      9  

< 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> #Continent 

> print(m3c1.ML <- glmer (biCat1 ~ 

(gender+cAge)^2 + (1 | ID) + (1| display), 
family=binomial, 

data=df2[df2$study=="mturk",]), cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: biCat1 ~ (gender + cAge)^2 + (1 | ID) 

+ (1 | display)  

   Data: df2[df2$study == "mturk", ]  

   AIC   BIC logLik deviance 

 16202 16248  -8095    16190 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 0.030764 0.1754   

 display (Intercept) 8.553617 2.9247   

Number of obs: 15009, groups: ID, 277; 

display, 41 

 

Fixed effects: 

                 Estimate Std. Error z value Pr(>|z|)     

(Intercept)      1.654310   0.467261   3.540 
0.000399 *** 

gender.M-F       0.034781   0.044863   0.775 

0.438185     

cAge             0.005211   0.003621   1.439 
0.150209     

gender.M-F:cAge -0.002723   0.004710  -0.578 

0.563219     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1  

> anova(m3c.ML,m3c1.ML) 

Data: [ 

Data: df2 

Data: df2$study == "mturk" 

Data:  

Models: 

m3c1.ML: biCat1 ~ (gender + cAge)^2 + (1 | 

ID) + (1 | display) 

m3c.ML: biCat1 ~ (cont2 + gender + cAge)^2 + 
(1 | ID) + (1 | display) 

        Df   AIC   BIC  logLik  Chisq Chi Df 

Pr(>Chisq)     

m3c1.ML  6 16202 16248 -8094.9                              

m3c.ML  12 15504 15595 -7740.2 709.49      6  
< 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> #Gender 

> print(m3c2.ML <- glmer (biCat1 ~ 
(cont2+cAge)^2 + (1 | ID) + (1| display), 

family=binomial, 
data=df2[df2$study=="mturk",]), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat1 ~ (cont2 + cAge)^2 + (1 | ID) 
+ (1 | display)  

   Data: df2[df2$study == "mturk", ]  

   AIC   BIC logLik deviance 

 15501 15562  -7743    15485 
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Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 0.032009 0.17891  

 display (Intercept) 8.422104 2.90209  

Number of obs: 14361, groups: ID, 265; 
display, 41 

 

Fixed effects: 

                Estimate Std. Error z value Pr(>|z|)     

(Intercept)     1.647451   0.466520   3.531 

0.000413 *** 

cont2.c-e       0.019212   0.066963   0.287 
0.774181     

cont2.n-e       0.007780   0.101487   0.077 

0.938896     

cAge           -0.001091   0.007027  -0.155 
0.876597     

cont2.c-e:cAge  0.004566   0.007675   0.595 

0.551901     

cont2.n-e:cAge  0.006630   0.008631   0.768 

0.442399     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m3c.ML,m3c2.ML) 

Data: [ 

Data: df2 

Data: df2$study == "mturk" 

Data:  

Models: 

m3c2.ML: biCat1 ~ (cont2 + cAge)^2 + (1 | ID) 

+ (1 | display) 

m3c.ML: biCat1 ~ (cont2 + gender + cAge)^2 + 

(1 | ID) + (1 | display) 

        Df   AIC   BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m3c2.ML  8 15501 15562 -7742.7                          

m3c.ML  12 15504 15595 -7740.2 5.0579      4     

0.2814 

> #Age 

> print(m3c3.ML <- glmer (biCat1 ~ 

(cont2+gender)^2 + (1 | ID) + (1| display), 

family=binomial, 
data=df2[df2$study=="mturk",]), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat1 ~ (cont2 + gender)^2 + (1 | ID) 
+ (1 | display)  

   Data: df2[df2$study == "mturk", ]  

   AIC   BIC logLik deviance 

 15500 15560  -7742    15484 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 0.031058 0.17623  

 display (Intercept) 8.422023 2.90207  

Number of obs: 14361, groups: ID, 265; 
display, 41 

 

Fixed effects: 

                     Estimate Std. Error z value Pr(>|z|)     

(Intercept)           1.56708    0.47298   3.313 

0.000922 *** 

cont2.c-e             0.07770    0.10796   0.720 

0.471696     

cont2.n-e             0.25314    0.14152   1.789 

0.073659 .   

gender.M-F            0.13105    0.12693   1.032 
0.301878     

cont2.c-e:gender.M-F -0.09945    0.13723  -

0.725 0.468639     

cont2.n-e:gender.M-F -0.37668    0.19015  -
1.981 0.047591 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m3c.ML,m3c3.ML) 

Data: [ 

Data: df2 

Data: df2$study == "mturk" 

Data:  

Models: 

m3c3.ML: biCat1 ~ (cont2 + gender)^2 + (1 | 

ID) + (1 | display) 

m3c.ML: biCat1 ~ (cont2 + gender + cAge)^2 + 
(1 | ID) + (1 | display) 

        Df   AIC   BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 
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m3c3.ML  8 15500 15560 -7741.8                          

m3c.ML  12 15504 15595 -7740.2 3.1719      4     

0.5295 

> 

Chapter 10: 

> #Complexity new analysis breakdown 

> print(m10a.ML <- glmer (complex ~ 
(country+enviro+gender+cAge)^2 + (1 | ID) + 

(1| display), family=binomial, data=df3), 

cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: complex ~ (country + enviro + gender 

+ cAge)^2 + (1 | ID) + (1 |      display)  

   Data: df3  

  AIC  BIC logLik deviance 

 3228 3306  -1601     3202 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 2.18299  1.47750  

 display (Intercept) 0.04355  0.20869  

Number of obs: 3132, groups: ID, 58; display, 

41 

 

Fixed effects: 

                      Estimate Std. Error z value 
Pr(>|z|)    

(Intercept)            0.74510    0.79561   0.936  

0.34901    

countrye-u            -1.77924    3.53599  -0.503  
0.61484    

enviro.u-r            -2.96530    1.10456  -2.685  

0.00726 ** 

gender.M-F            -0.01124    3.06624  -0.004  
0.99708    

cAge                  -0.01019    0.07317  -0.139  

0.88922    

countrye-u:enviro.u-r  1.27549    1.06197   
1.201  0.22973    

countrye-u:gender.M-F -0.81484    1.15159  -

0.708  0.47921    

countrye-u:cAge       -0.10034    0.35090  -

0.286  0.77492    

enviro.u-r:gender.M-F -2.22641    1.10932  -

2.007  0.04475 *  

enviro.u-r:cAge       -0.15794    0.09796  -1.612  

0.10691    

gender.M-F:cAge       -0.06850    0.29490  -
0.232  0.81631    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> #Complexity new analysis Null Hypothesis 

> print(m10a0.ML <- glmer (complex ~ (1 | ID) 

+ (1| display), family=binomial, data=df3), 

cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: complex ~ (1 | ID) + (1 | display)  

   Data: df3  

  AIC  BIC logLik deviance 

 3235 3253  -1614     3229 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 3.557806 1.8862   

 display (Intercept) 0.043807 0.2093   

Number of obs: 3132, groups: ID, 58; display, 
41 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|) 

(Intercept)  -0.2753     0.2563  -1.074    0.283 

> anova(m10a.ML, m10a0.ML) 

Data: df3 

Models: 

m10a0.ML: complex ~ (1 | ID) + (1 | display) 

m10a.ML: complex ~ (country + enviro + 
gender + cAge)^2 + (1 | ID) + (1 |  

m10a.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq)    

m10a0.ML  3 3234.5 3252.7 -1614.3                             

m10a.ML  13 3227.6 3306.3 -1600.8 26.884     
10   0.002716 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  
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> print(m10a1.ML <- glmer (complex ~ 

(enviro+gender+cAge)^2 + (1 | ID) + (1| 
display), family=binomial, data=df3), 

cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: complex ~ (enviro + gender + 

cAge)^2 + (1 | ID) + (1 | display)  

   Data: df3  

  AIC  BIC logLik deviance 

 3222 3277  -1602     3204 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 2.304293 1.51799  

 display (Intercept) 0.043559 0.20871  

Number of obs: 3132, groups: ID, 58; display, 

41 

 

Fixed effects: 

                        Estimate Std. Error z value 

Pr(>|z|)   

(Intercept)            0.4796171  0.7842383   0.612   

0.5408   

enviro.u-r            -2.6090614  1.0814035  -
2.413   0.0158 * 

gender.M-F            -1.0296074  2.5787091  -

0.399   0.6897   

cAge                  -0.0008789  0.0744448  -0.012   
0.9906   

enviro.u-r:gender.M-F -1.4556737  0.9544299  

-1.525   0.1272   

enviro.u-r:cAge       -0.1672593  0.0991842  -

1.686   0.0917 . 

gender.M-F:cAge       -0.0649299  0.2408616  -
0.270   0.7875   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m10a.ML, m10a1.ML) 

Data: df3 

Models: 

m10a1.ML: complex ~ (enviro + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

m10a.ML: complex ~ (country + enviro + 
gender + cAge)^2 + (1 | ID) + (1 |  

m10a.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m10a1.ML  9 3222.3 3276.7 -1602.1                          

m10a.ML  13 3227.6 3306.3 -1600.8 2.6476      

4     0.6184 

> #Enviro 

> print(m10a2.ML <- glmer (complex ~ 
(country+gender+cAge)^2 + (1 | ID) + (1| 

display), family=binomial, data=df3), 

cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: complex ~ (country + gender + 

cAge)^2 + (1 | ID) + (1 | display)  

   Data: df3  

  AIC  BIC logLik deviance 

 3236 3290  -1609     3218 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 2.990486 1.72930  

 display (Intercept) 0.043695 0.20903  

Number of obs: 3132, groups: ID, 58; display, 

41 

 

Fixed effects: 

                      Estimate Std. Error z value 
Pr(>|z|)   

(Intercept)           -0.77101    0.61656  -1.250    

0.211   

countrye-u            -2.39161    3.44433  -0.694    
0.487   

gender.M-F            -3.75139    2.98031  -1.259    

0.208   

cAge                  -0.09908    0.05329  -1.859    
0.063 . 

countrye-u:gender.M-F  0.61455    1.18254   

0.520    0.603   

countrye-u:cAge       -0.22186    0.35318  -
0.628    0.530   

gender.M-F:cAge       -0.22969    0.32185  -

0.714    0.475   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1  



 

 450 

> anova(m10a.ML, m10a2.ML) 

Data: df3 

Models: 

m10a2.ML: complex ~ (country + gender + 
cAge)^2 + (1 | ID) + (1 | display) 

m10a.ML: complex ~ (country + enviro + 

gender + cAge)^2 + (1 | ID) + (1 |  

m10a.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 
Pr(>Chisq)    

m10a2.ML  9 3235.5 3290.0 -1608.8                             

m10a.ML  13 3227.6 3306.3 -1600.8 15.902      

4   0.003154 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1  

> #Gender 

> print(m10a3.ML <- glmer (complex ~ 

(country+enviro+cAge)^2 + (1 | ID) + (1| 
display), family=binomial, data=df3), 

cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (country + enviro + 

cAge)^2 + (1 | ID) + (1 | display)  

   Data: df3  

  AIC  BIC logLik deviance 

 3227 3281  -1604     3209 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 2.491994 1.57861  

 display (Intercept) 0.043585 0.20877  

Number of obs: 3132, groups: ID, 58; display, 
41 

 

Fixed effects: 

                       Estimate Std. Error z value 

Pr(>|z|)    

(Intercept)            0.761878   0.844297   0.902  
0.36685    

countrye-u            -0.901339   2.991414  -0.301  

0.76318    

enviro.u-r            -3.498537   1.161320  -3.013  
0.00259 ** 

cAge                  -0.014112   0.077890  -0.181  

0.85623    

countrye-u:enviro.u-r  0.507936   0.991893   
0.512  0.60859    

countrye-u:cAge       -0.003768   0.285845  -

0.013  0.98948    

enviro.u-r:cAge       -0.163714   0.104632  -
1.565  0.11766    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m10a.ML, m10a3.ML) 

Data: df3 

Models: 

m10a3.ML: complex ~ (country + enviro + 

cAge)^2 + (1 | ID) + (1 | display) 

m10a.ML: complex ~ (country + enviro + 

gender + cAge)^2 + (1 | ID) + (1 |  

m10a.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m10a3.ML  9 3226.9 3281.4 -1604.5                          

m10a.ML  13 3227.6 3306.3 -1600.8 7.2841      
4     0.1216 

> #cAge 

> print(m10a4.ML <- glmer (complex ~ 

(country+enviro+gender)^2 + (1 | ID) + (1| 

display), family=binomial, data=df3), 
cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (country + enviro + 

gender)^2 + (1 | ID) + (1 | display)  

   Data: df3  

  AIC  BIC logLik deviance 

 3228 3282  -1605     3210 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 2.508873 1.58394  

 display (Intercept) 0.043739 0.20914  

Number of obs: 3132, groups: ID, 58; display, 

41 

 

Fixed effects: 
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                      Estimate Std. Error z value 

Pr(>|z|)   

(Intercept)             0.8569     0.4613   1.858   
0.0632 . 

countrye-u             -0.8012     0.6641  -1.206   

0.2277   

enviro.u-r             -1.4981     0.6524  -2.296   
0.0216 * 

gender.M-F              0.4539     1.2015   0.378   

0.7056   

countrye-u:enviro.u-r   1.0419     1.0334   1.008   
0.3133   

countrye-u:gender.M-F  -0.4746     1.1845  -

0.401   0.6886   

enviro.u-r:gender.M-F  -2.1961     1.1301  -
1.943   0.0520 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m10a.ML, m10a4.ML) 

Data: df3 

Models: 

m10a4.ML: complex ~ (country + enviro + 
gender)^2 + (1 | ID) + (1 | display) 

m10a.ML: complex ~ (country + enviro + 

gender + cAge)^2 + (1 | ID) + (1 |  

m10a.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 
Pr(>Chisq)   

m10a4.ML  9 3227.6 3282.0 -1604.8                            

m10a.ML  13 3227.6 3306.3 -1600.8 7.9547      

4    0.09325 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1  

> 

> ##Section 2 Analysis Chapter 10 ## Mid-

Range ## 

>  

> #Complexity new analysis breakdown 

> print(m10b.ML <- glmer (biCat2 ~ 

(country+enviro+gender+cAge)^2 + (1 | ID) + 

(1| display), family=binomial, data=df3), 
cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat2 ~ (country + enviro + gender + 

cAge)^2 + (1 | ID) + (1 |      display)  

   Data: df3  

  AIC  BIC logLik deviance 

 2658 2737  -1316     2632 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.22385 0.47312  

 display (Intercept) 19.17776 4.37924  

Number of obs: 3132, groups: ID, 58; display, 

41 

 

Fixed effects: 

                      Estimate Std. Error z value 

Pr(>|z|)     

(Intercept)            2.84523    0.78375   3.630 

0.000283 *** 

countrye-u            -1.25203    1.33767  -0.936 
0.349286     

enviro.u-r            -0.79026    0.40421  -1.955 

0.050575 .   

gender.M-F             1.48234    1.16713   1.270 
0.204057     

cAge                   0.02072    0.02928   0.708 

0.479046     

countrye-u:enviro.u-r  0.69442    0.42088   
1.650 0.098963 .   

countrye-u:gender.M-F -0.31541    0.44098  -

0.715 0.474455     

countrye-u:cAge       -0.10151    0.13235  -
0.767 0.443090     

enviro.u-r:gender.M-F -1.32919    0.43478  -

3.057 0.002235 **  

enviro.u-r:cAge       -0.05068    0.03588  -1.413 
0.157800     

gender.M-F:cAge        0.09517    0.11174   

0.852 0.394378     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1  

> #Null Hypothesis 

> print(m10b0.ML <- glmer (biCat2 ~ (1 | ID) + 

(1| display), family=binomial, data=df3), 

cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  
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Formula: biCat2 ~ (1 | ID) + (1 | display)  

   Data: df3  

  AIC  BIC logLik deviance 

 2657 2675  -1325     2651 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.36068 0.60056  

 display (Intercept) 19.16920 4.37826  

Number of obs: 3132, groups: ID, 58; display, 

41 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   2.4082     0.7216   3.337 0.000845 
*** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #Check if full model is better than null model 
at accounting for variance. 

> anova(m10b.ML, m10b0.ML) 

Data: df3 

Models: 

m10b0.ML: biCat2 ~ (1 | ID) + (1 | display) 

m10b.ML: biCat2 ~ (country + enviro + gender 

+ cAge)^2 + (1 | ID) + (1 |  

m10b.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq)   

m10b0.ML  3 2656.6 2674.7 -1325.3                            

m10b.ML  13 2658.4 2737.1 -1316.2 18.163     

10    0.05228 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

>  

> ##Checking individual variables 

>  

> #Country 

> print(m10b1.ML <- glmer (biCat2 ~ 

(enviro+gender+cAge)^2 + (1 | ID) + (1| 
display), family=binomial, data=df3), 

cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: biCat2 ~ (enviro + gender + cAge)^2 

+ (1 | ID) + (1 | display)  

   Data: df3  

  AIC  BIC logLik deviance 

 2653 2708  -1318     2635 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.24184 0.49177  

 display (Intercept) 19.18063 4.37957  

Number of obs: 3132, groups: ID, 58; display, 

41 

 

Fixed effects: 

                      Estimate Std. Error z value 

Pr(>|z|)     

(Intercept)            2.75423    0.78153   3.524 

0.000425 *** 

enviro.u-r            -0.62029    0.39776  -1.559 
0.118892     

gender.M-F             0.71029    0.95595   0.743 

0.457473     

cAge                   0.02250    0.02972   0.757 
0.449074     

enviro.u-r:gender.M-F -0.96796    0.37394  -

2.589 0.009639 **  

enviro.u-r:cAge       -0.05280    0.03652  -1.446 

0.148299     

gender.M-F:cAge        0.05432    0.08873   
0.612 0.540418     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m10b.ML, m10b1.ML) 

Data: df3 

Models: 

m10b1.ML: biCat2 ~ (enviro + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

m10b.ML: biCat2 ~ (country + enviro + gender 
+ cAge)^2 + (1 | ID) + (1 |  
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m10b.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m10b1.ML  9 2653.3 2707.7 -1317.6                          

m10b.ML  13 2658.4 2737.1 -1316.2 2.8553      

4     0.5823 

>  

> #Enviro 

> print(m10b2.ML <- glmer (biCat2 ~ 
(country+gender+cAge)^2 + (1 | ID) + (1| 

display), family=binomial, data=df3), 

cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: biCat2 ~ (country + gender + cAge)^2 

+ (1 | ID) + (1 | display)  

   Data: df3  

  AIC  BIC logLik deviance 

 2665 2719  -1323     2647 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.32834 0.57301  

 display (Intercept) 19.17216 4.37860  

Number of obs: 3132, groups: ID, 58; display, 

41 

 

Fixed effects: 

                      Estimate Std. Error z value 
Pr(>|z|)    

(Intercept)            2.38753    0.75077   3.180  

0.00147 ** 

countrye-u            -0.74613    1.25566  -0.594  
0.55237    

gender.M-F            -0.64528    1.08848  -0.593  

0.55330    

cAge                  -0.01210    0.01952  -0.620  
0.53533    

countrye-u:gender.M-F  0.35891    0.44536   

0.806  0.42031    

countrye-u:cAge       -0.07373    0.12908  -
0.571  0.56786    

gender.M-F:cAge       -0.01323    0.11904  -

0.111  0.91151    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m10b.ML, m10b2.ML) 

Data: df3 

Models: 

m10b2.ML: biCat2 ~ (country + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

m10b.ML: biCat2 ~ (country + enviro + gender 
+ cAge)^2 + (1 | ID) + (1 |  

m10b.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq)    

m10b2.ML  9 2664.8 2719.2 -1323.4                             

m10b.ML  13 2658.4 2737.1 -1316.2 14.372      
4   0.006199 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #Gender 

> print(m10b3.ML <- glmer (biCat2 ~ 
(country+enviro+cAge)^2 + (1 | ID) + (1| 

display), family=binomial, data=df3), 
cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat2 ~ (country + enviro + cAge)^2 

+ (1 | ID) + (1 | display)  

   Data: df3  

  AIC  BIC logLik deviance 

 2661 2715  -1321     2643 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.29412 0.54233  

 display (Intercept) 19.16705 4.37802  

Number of obs: 3132, groups: ID, 58; display, 

41 

 

Fixed effects: 

                       Estimate Std. Error z value 

Pr(>|z|)     

(Intercept)            2.870125   0.795285   3.609 

0.000307 *** 
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countrye-u            -0.264761   1.150822  -0.230 

0.818043     

enviro.u-r            -0.966970   0.433731  -2.229 
0.025786 *   

cAge                   0.018372   0.031930   0.575 

0.565044     

countrye-u:enviro.u-r  0.176342   0.399588   
0.441 0.658988     

countrye-u:cAge       -0.009463   0.109533  -

0.086 0.931151     

enviro.u-r:cAge       -0.045606   0.039043  -
1.168 0.242766     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m10b.ML, m10b3.ML) 

Data: df3 

Models: 

m10b3.ML: biCat2 ~ (country + enviro + 

cAge)^2 + (1 | ID) + (1 | display) 

m10b.ML: biCat2 ~ (country + enviro + gender 

+ cAge)^2 + (1 | ID) + (1 |  

m10b.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq)   

m10b3.ML  9 2660.5 2715.0 -1321.3                            

m10b.ML  13 2658.4 2737.1 -1316.2 10.122      

4    0.03843 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #cAge 

> print(m10b4.ML <- glmer (biCat2 ~ 
(country+enviro+gender)^2 + (1 | ID) + (1| 

display), family=binomial, data=df3), 

cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: biCat2 ~ (country + enviro + 

gender)^2 + (1 | ID) + (1 | display)  

   Data: df3  

  AIC  BIC logLik deviance 

 2653 2708  -1318     2635 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.24418 0.49415  

 display (Intercept) 19.17624 4.37907  

Number of obs: 3132, groups: ID, 58; display, 
41 

 

Fixed effects: 

                      Estimate Std. Error z value 

Pr(>|z|)     

(Intercept)             2.6597     0.7370   3.609 

0.000308 *** 

countrye-u             -0.2651     0.2529  -1.049 

0.294360     

enviro.u-r             -0.3421     0.2471  -1.384 
0.166236     

gender.M-F              0.5355     0.4539   1.180 

0.238100     

countrye-u:enviro.u-r   0.5770     0.3895   1.481 
0.138504     

countrye-u:gender.M-F  -0.3177     0.4431  -

0.717 0.473320     

enviro.u-r:gender.M-F  -1.1892     0.4228  -

2.813 0.004913 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m10b.ML, m10b4.ML) 

Data: df3 

Models: 

m10b4.ML: biCat2 ~ (country + enviro + 
gender)^2 + (1 | ID) + (1 | display) 

m10b.ML: biCat2 ~ (country + enviro + gender 

+ cAge)^2 + (1 | ID) + (1 |  

m10b.ML:     display) 

         Df    AIC    BIC  logLik Chisq Chi Df 
Pr(>Chisq) 

m10b4.ML  9 2653.5 2707.9 -1317.7                         

m10b.ML  13 2658.4 2737.1 -1316.2 3.051      

4     0.5493 

> 

> ##Section 3 Analysis Chapter 10 ## 

Equalized Mid-Range ## 

>  

> #Mid-Range new analysis breakdown 
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> print(m10c.ML <- glmer (biCat1 ~ 

(country+enviro+gender+cAge)^2 + (1 | ID) + 
(1| display), family=binomial, data=df3), 

cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: biCat1 ~ (country + enviro + gender + 

cAge)^2 + (1 | ID) + (1 |      display)  

   Data: df3  

  AIC  BIC logLik deviance 

 3331 3409  -1652     3305 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 0.047364 0.21763  

 display (Intercept) 5.877259 2.42431  

Number of obs: 3132, groups: ID, 58; display, 

41 

 

Fixed effects: 

                      Estimate Std. Error z value 

Pr(>|z|)     

(Intercept)            1.80186    0.44562   4.044 

5.27e-05 *** 

countrye-u            -1.12885    0.86793  -1.301   
0.1934     

enviro.u-r            -0.23298    0.26838  -0.868   

0.3853     

gender.M-F             0.94719    0.75533   1.254   
0.2098     

cAge                   0.03744    0.01971   1.900   

0.0575 .   

countrye-u:enviro.u-r  0.32855    0.27140   

1.211   0.2261     

countrye-u:gender.M-F -0.07080    0.28371  -
0.250   0.8029     

countrye-u:cAge       -0.10876    0.08586  -

1.267   0.2053     

enviro.u-r:gender.M-F -0.46600    0.27987  -
1.665   0.0959 .   

enviro.u-r:cAge       -0.02973    0.02387  -1.245   

0.2130     

gender.M-F:cAge        0.06940    0.07249   
0.957   0.3384     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #Null Hypothesis 

> print(m10c0.ML <- glmer (biCat1 ~ (1 | ID) + 
(1| display), family=binomial, data=df3), 

cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat1 ~ (1 | ID) + (1 | display)  

   Data: df3  

  AIC  BIC logLik deviance 

 3318 3336  -1656     3312 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 0.068699 0.26211  

 display (Intercept) 5.879760 2.42482  

Number of obs: 3132, groups: ID, 58; display, 

41 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   1.4898     0.3943   3.778 0.000158 

*** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1  

>  

> #Check if full model is better than null model 

at accounting for variance. 

> anova(m10c.ML, m10c0.ML) 

Data: df3 

Models: 

m10c0.ML: biCat1 ~ (1 | ID) + (1 | display) 

m10c.ML: biCat1 ~ (country + enviro + gender 
+ cAge)^2 + (1 | ID) + (1 |  

m10c.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m10c0.ML  3 3318.0 3336.2 -1656.0                          

m10c.ML  13 3330.6 3409.2 -1652.3 7.4579     
10     0.6816 

> #Country 
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> print(m10c1.ML <- glmer (biCat1 ~ 

(enviro+gender+cAge)^2 + (1 | ID) + (1| 
display), family=binomial, data=df3), 

cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: biCat1 ~ (enviro + gender + cAge)^2 

+ (1 | ID) + (1 | display)  

   Data: df3  

  AIC  BIC logLik deviance 

 3325 3379  -1653     3307 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 0.053239 0.23074  

 display (Intercept) 5.877974 2.42445  

Number of obs: 3132, groups: ID, 58; display, 

41 

 

Fixed effects: 

                      Estimate Std. Error z value 

Pr(>|z|)     

(Intercept)            1.77090    0.44311   3.997 

6.43e-05 *** 

enviro.u-r            -0.16986    0.26273  -0.647   
0.5180     

gender.M-F             0.33483    0.61642   0.543   

0.5870     

cAge                   0.03624    0.01986   1.825   
0.0681 .   

enviro.u-r:gender.M-F -0.31801    0.24078  -

1.321   0.1866     

enviro.u-r:cAge       -0.02874    0.02416  -1.190   

0.2341     

gender.M-F:cAge        0.01333    0.05723   
0.233   0.8158     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m10c.ML, m10c1.ML) 

Data: df3 

Models: 

m10c1.ML: biCat1 ~ (enviro + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

m10c.ML: biCat1 ~ (country + enviro + gender 
+ cAge)^2 + (1 | ID) + (1 |  

m10c.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m10c1.ML  9 3324.7 3379.1 -1653.3                          

m10c.ML  13 3330.6 3409.2 -1652.3 2.1268      

4     0.7125 

> #Enviro 

> print(m10c2.ML <- glmer (biCat1 ~ 
(country+gender+cAge)^2 + (1 | ID) + (1| 

display), family=binomial, data=df3), 

cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: biCat1 ~ (country + gender + cAge)^2 

+ (1 | ID) + (1 | display)  

   Data: df3  

  AIC  BIC logLik deviance 

 3327 3381  -1654     3309 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 0.059591 0.24411  

 display (Intercept) 5.878520 2.42457  

Number of obs: 3132, groups: ID, 58; display, 

41 

 

Fixed effects: 

                      Estimate Std. Error z value 
Pr(>|z|)     

(Intercept)            1.64401    0.41397   3.971 

7.15e-05 *** 

countrye-u            -0.46709    0.74718  -0.625    
0.532     

gender.M-F             0.16451    0.64749   0.254    

0.799     

cAge                   0.01835    0.01182   1.552    
0.121     

countrye-u:gender.M-F  0.12438    0.26428   

0.471    0.638     

countrye-u:cAge       -0.04744    0.07679  -
0.618    0.537     

gender.M-F:cAge        0.02127    0.07079   

0.300    0.764     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1  
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> anova(m10c.ML, m10c2.ML) 

Data: df3 

Models: 

m10c2.ML: biCat1 ~ (country + gender + 
cAge)^2 + (1 | ID) + (1 | display) 

m10c.ML: biCat1 ~ (country + enviro + gender 

+ cAge)^2 + (1 | ID) + (1 |  

m10c.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 
Pr(>Chisq) 

m10c2.ML  9 3327.0 3381.4 -1654.5                          

m10c.ML  13 3330.6 3409.2 -1652.3 4.3892      

4     0.3559 

> #Gender 

> print(m10c3.ML <- glmer (biCat1 ~ 
(country+enviro+cAge)^2 + (1 | ID) + (1| 

display), family=binomial, data=df3), 

cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat1 ~ (country + enviro + cAge)^2 

+ (1 | ID) + (1 | display)  

   Data: df3  

  AIC  BIC logLik deviance 

 3326 3380  -1654     3308 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 0.05599  0.23662  

 display (Intercept) 5.87742  2.42434  

Number of obs: 3132, groups: ID, 58; display, 

41 

 

Fixed effects: 

                      Estimate Std. Error z value 
Pr(>|z|)     

(Intercept)            1.81759    0.44795   4.058 

4.96e-05 *** 

countrye-u            -0.64365    0.70437  -0.914   
0.3608     

enviro.u-r            -0.25844    0.27113  -0.953   

0.3405     

cAge                   0.03660    0.02021   1.811   
0.0702 .   

countrye-u:enviro.u-r  0.12967    0.24393   

0.532   0.5950     

countrye-u:cAge       -0.06680    0.06704  -

0.996   0.3191     

enviro.u-r:cAge       -0.02665    0.02444  -1.090   
0.2756     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m10c.ML, m10c3.ML) 

Data: df3 

Models: 

m10c3.ML: biCat1 ~ (country + enviro + 

cAge)^2 + (1 | ID) + (1 | display) 

m10c.ML: biCat1 ~ (country + enviro + gender 
+ cAge)^2 + (1 | ID) + (1 |  

m10c.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m10c3.ML  9 3325.7 3380.1 -1653.8                          

m10c.ML  13 3330.6 3409.2 -1652.3 3.1161      
4     0.5386 

> #cAge 

> print(m10c4.ML <- glmer (biCat1 ~ 

(country+enviro+gender)^2 + (1 | ID) + (1| 
display), family=binomial, data=df3), 

cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat1 ~ (country + enviro + 
gender)^2 + (1 | ID) + (1 | display)  

   Data: df3  

  AIC  BIC logLik deviance 

 3328 3382  -1655     3310 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 0.06183  0.24866  

 display (Intercept) 5.87953  2.42477  

Number of obs: 3132, groups: ID, 58; display, 
41 

 

Fixed effects: 

                      Estimate Std. Error z value 

Pr(>|z|)     

(Intercept)            1.45799    0.40717   3.581 
0.000343 *** 
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countrye-u            -0.07553    0.16674  -0.453 

0.650564     

enviro.u-r             0.03973    0.16305   0.244 
0.807474     

gender.M-F             0.26708    0.29666   0.900 

0.367963     

countrye-u:enviro.u-r  0.21691    0.25633   
0.846 0.397427     

countrye-u:gender.M-F -0.07592    0.29038  -

0.261 0.793740     

enviro.u-r:gender.M-F -0.36499    0.27756  -
1.315 0.188510     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m10c.ML, m10c4.ML) 

Data: df3 

Models: 

m10c4.ML: biCat1 ~ (country + enviro + 

gender)^2 + (1 | ID) + (1 | display) 

m10c.ML: biCat1 ~ (country + enviro + gender 

+ cAge)^2 + (1 | ID) + (1 |  

m10c.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m10c4.ML  9 3327.8 3382.2 -1654.9                          

m10c.ML  13 3330.6 3409.2 -1652.3 5.1796      

4     0.2694 

 

Chapter 11: 

>  

> #Section 1 Chapter 11 

> print(m11a.ML <- lmer (complex ~ 
(CNS+gender+cAge)^2 + (1 | ID) + (1| display), 

family=binomial, data=df2), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (CNS + gender + cAge)^2 
+ (1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 1521 1569 -751.5     1503 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 display (Intercept) 0.098021 0.31308  

 ID      (Intercept) 0.026215 0.16191  

Number of obs: 1620, groups: display, 41; ID, 
30 

 

Fixed effects: 

                Estimate Std. Error z value Pr(>|z|) 

(Intercept)      0.40201    8.24014   0.049    

0.961 

CNS             -0.02996    0.16143  -0.186    

0.853 

gender.M-F       0.52900    2.33035   0.227    

0.820 

cAge             0.12747    0.70185   0.182    0.856 

CNS:gender.M-F   0.01793    0.02023   0.887    
0.375 

CNS:cAge        -0.00181    0.01368  -0.132    

0.895 

gender.M-F:cAge  0.13664    0.19381   0.705    
0.481 

>  

> # 

> df2b <- df2[df2$enviro=="urban" | 

df2$enviro=="rural",] 

> #Section 1 Chapter 11 

> print(m11a.ML <- lmer (complex ~ 
(CNS+enviro+gender+cAge)^2 + (1 | ID) + (1| 

display), family=binomial, data=df2), 
cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (CNS + enviro + gender + 

cAge)^2 + (1 | ID) + (1 |      display)  

   Data: df2  

  AIC  BIC logLik deviance 

 1520 1590 -747.2     1494 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 display (Intercept) 0.098476 0.31381  

 ID      (Intercept) 0.000000 0.00000  

Number of obs: 1620, groups: display, 41; ID, 

30 

 

Fixed effects: 
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                       Estimate Std. Error z value 

Pr(>|z|)    

(Intercept)           -6.090351   8.109564  -0.751  
0.45265    

CNS                    0.191186   0.175787   1.088  

0.27677    

enviro.u-r            -8.252392   3.167436  -2.605  
0.00918 ** 

gender.M-F             1.329463   2.363662   0.562  

0.57380    

cAge                  -0.447413   0.696855  -0.642  
0.52084    

CNS:enviro.u-r         0.008920   0.018993   

0.470  0.63862    

CNS:gender.M-F         0.009572   0.019178   
0.499  0.61770    

CNS:cAge               0.017595   0.015136   1.163  

0.24504    

enviro.u-r:gender.M-F -0.095031   0.325191  -
0.292  0.77011    

enviro.u-r:cAge       -0.658852   0.252660  -

2.608  0.00912 ** 

gender.M-F:cAge        0.157865   0.197606   

0.799  0.42436    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #Null Model 

> print(m11a0.ML <- lmer (complex ~ (1 | ID) 
+ (1| display), family=binomial, data=df2), 

cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 5881 5901  -2937     5875 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 3.052674 1.74719  

 display (Intercept) 0.067999 0.26077  

Number of obs: 5929, groups: ID, 110; display, 

41 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -0.7686     0.1764  -4.358 1.31e-05 
*** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m11a.ML, m11a0.ML) 

Data: df2 

Models: 

m11a0.ML: complex ~ (1 | ID) + (1 | display) 

m11a.ML: complex ~ (CNS + enviro + gender 
+ cAge)^2 + (1 | ID) + (1 |  

m11a.ML:     display) 

         Df    AIC    BIC   logLik  Chisq Chi Df 

Pr(>Chisq)     

m11a0.ML  3 5880.9 5900.9 -2937.44                              

m11a.ML  13 1520.4 1590.4  -747.19 4380.5     
10  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

>  

> #CNS 

> print(m11a1.ML <- lmer (complex ~ 

(enviro+gender+cAge)^2 + (1 | ID) + (1| 

display), family=binomial, data=df2), 
cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (enviro + gender + 
cAge)^2 + (1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 5871 5932  -2927     5853 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 2.489167 1.57771  

 display (Intercept) 0.067921 0.26062  

Number of obs: 5929, groups: ID, 110; display, 
41 
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Fixed effects: 

                      Estimate Std. Error z value 

Pr(>|z|)   

(Intercept)           -0.48346    0.28331  -1.706   

0.0879 . 

enviro.u-r            -0.53288    0.40550  -1.314   

0.1888   

gender.M-F             0.25483    0.43008   0.592   
0.5535   

cAge                  -0.03914    0.01592  -2.459   

0.0139 * 

enviro.u-r:gender.M-F -0.86054    0.68580  -
1.255   0.2096   

enviro.u-r:cAge        0.02090    0.02195   0.952   

0.3411   

gender.M-F:cAge        0.05057    0.02297   
2.201   0.0277 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m11a.ML, m11a1.ML) 

Data: df2 

Models: 

m11a1.ML: complex ~ (enviro + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

m11a.ML: complex ~ (CNS + enviro + gender 

+ cAge)^2 + (1 | ID) + (1 |  

m11a.ML:     display) 

         Df    AIC    BIC   logLik  Chisq Chi Df 

Pr(>Chisq)     

m11a1.ML  9 5871.5 5931.7 -2926.75                              

m11a.ML  13 1520.4 1590.4  -747.19 4359.1      

4  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> #enviro 

> print(m11a2.ML <- lmer (complex ~ 

(CNS+gender+cAge)^2 + (1 | ID) + (1| display), 
family=binomial, data=df2), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (CNS + gender + cAge)^2 
+ (1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 1521 1569 -751.5     1503 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 display (Intercept) 0.098021 0.31308  

 ID      (Intercept) 0.026215 0.16191  

Number of obs: 1620, groups: display, 41; ID, 
30 

 

Fixed effects: 

                Estimate Std. Error z value Pr(>|z|) 

(Intercept)      0.40201    8.24014   0.049    

0.961 

CNS             -0.02996    0.16143  -0.186    
0.853 

gender.M-F       0.52900    2.33035   0.227    

0.820 

cAge             0.12747    0.70185   0.182    0.856 

CNS:gender.M-F   0.01793    0.02023   0.887    
0.375 

CNS:cAge        -0.00181    0.01368  -0.132    

0.895 

gender.M-F:cAge  0.13664    0.19381   0.705    
0.481 

> anova(m11a.ML, m11a2.ML) 

Data: df2 

Models: 

m11a2.ML: complex ~ (CNS + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

m11a.ML: complex ~ (CNS + enviro + gender 

+ cAge)^2 + (1 | ID) + (1 |  

m11a.ML:     display) 

         Df    AIC    BIC  logLik Chisq Chi Df 

Pr(>Chisq)   

m11a2.ML  9 1520.9 1569.4 -751.46                           

m11a.ML  13 1520.4 1590.5 -747.19 8.537      4    

0.07377 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #gender 

> print(m11a3.ML <- lmer (complex ~ 

(CNS+enviro+cAge)^2 + (1 | ID) + (1| display), 

family=binomial, data=df2), cor=FALSE) 
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Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (CNS + enviro + cAge)^2 
+ (1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 1514 1563 -748.1     1496 

Random effects: 

 Groups  Name        Variance   Std.Dev.   

 display (Intercept) 9.8018e-02 3.1308e-01 

 ID      (Intercept) 5.8322e-12 2.4150e-06 

Number of obs: 1620, groups: display, 41; ID, 
30 

Fixed effects: 

                Estimate Std. Error z value Pr(>|z|)    

(Intercept)     -8.42841    7.85389  -1.073  

0.28320    

CNS              0.25417    0.16628   1.529  
0.12637    

enviro.u-r      -8.71276    3.07417  -2.834  

0.00459 ** 

cAge            -0.64097    0.67771  -0.946  
0.34425    

CNS:enviro.u-r   0.00969    0.01788   0.542  

0.58786    

CNS:cAge         0.02286    0.01440   1.587  
0.11254    

enviro.u-r:cAge -0.68953    0.24567  -2.807  

0.00501 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1  

> anova(m11a.ML, m11a3.ML) 

Data: df2 

Models: 

m11a3.ML: complex ~ (CNS + enviro + 

cAge)^2 + (1 | ID) + (1 | display) 

m11a.ML: complex ~ (CNS + enviro + gender 
+ cAge)^2 + (1 | ID) + (1 |  

m11a.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m11a3.ML  9 1514.2 1562.7 -748.10                          

m11a.ML  13 1520.4 1590.5 -747.19 1.8182      

4     0.7691 

> #Age 

> print(m11a4.ML <- lmer (complex ~ 

(CNS+enviro+gender)^2 + (1 | ID) + (1| 

display), family=binomial, data=df2), 
cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (CNS + enviro + 
gender)^2 + (1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 1520 1568 -750.8     1502 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 display (Intercept) 0.097944 0.31296  

 ID      (Intercept) 0.020296 0.14247  

Number of obs: 1620, groups: display, 41; ID, 
30 

 

Fixed effects: 

                       Estimate Std. Error z value 

Pr(>|z|)   

(Intercept)           -1.048309   0.553459  -1.894   
0.0582 . 

CNS                   -0.009008   0.012328  -0.731   

0.4650   

enviro.u-r            -0.241660   0.916017  -0.264   
0.7919   

gender.M-F            -0.643276   1.028041  -

0.626   0.5315   

CNS:enviro.u-r         0.003181   0.018750   

0.170   0.8653   

CNS:gender.M-F         0.012775   0.020059   

0.637   0.5242   

enviro.u-r:gender.M-F -0.269292   0.306117  -

0.880   0.3790   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m11a.ML, m11a4.ML) 

Data: df2 

Models: 
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m11a4.ML: complex ~ (CNS + enviro + 

gender)^2 + (1 | ID) + (1 | display) 

m11a.ML: complex ~ (CNS + enviro + gender 
+ cAge)^2 + (1 | ID) + (1 |  

m11a.ML:     display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m11a4.ML  9 1519.6 1568.2 -750.82                          

m11a.ML  13 1520.4 1590.5 -747.19 7.2646      

4     0.1225 

> 

> #Section 2 Chapter 11 

> #Full Model 

> print(m11b.ML <- lmer (biCat2 ~ 
(CNS+enviro+gender+cAge)^2 + (1 | ID) + (1| 

display), family=binomial, data=df2), 

cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: biCat2 ~ (CNS + enviro + gender + 

cAge)^2 + (1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 1319 1389 -646.6     1293 

Random effects: 

 Groups  Name        Variance   Std.Dev.   

 display (Intercept) 1.5942e+01 3.9927e+00 

 ID      (Intercept) 2.7295e-14 1.6521e-07 

Number of obs: 1620, groups: display, 41; ID, 

30 

 

Fixed effects: 

                        Estimate Std. Error z value 
Pr(>|z|) 

(Intercept)           -2.8116008  8.8367434  -

0.318    0.750 

CNS                    0.1149753  0.1909523   0.602    
0.547 

enviro.u-r            -2.3327375  3.5975163  -

0.648    0.517 

gender.M-F             0.7290312  2.4636865   

0.296    0.767 

cAge                  -0.3991885  0.7552530  -0.528    

0.597 

CNS:enviro.u-r         0.0024207  0.0205132   

0.118    0.906 

CNS:gender.M-F         0.0009214  0.0208447   
0.044    0.965 

CNS:cAge               0.0099251  0.0164019   

0.605    0.545 

enviro.u-r:gender.M-F  0.2408672  0.3420841   
0.704    0.481 

enviro.u-r:cAge       -0.1678745  0.2888003  -

0.581    0.561 

gender.M-F:cAge        0.0870790  0.2080412   
0.419    0.676 

> #Null Model 

> print(m11b0.ML <- lmer (biCat2 ~ (1 | ID) + 

(1| display), family=binomial, data=df2), 
cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat2 ~ (1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 4924 4944  -2459     4918 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.28953 0.53808  

 display (Intercept) 21.66589 4.65466  

Number of obs: 5929, groups: ID, 110; display, 

41 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)    

(Intercept)   2.3973     0.7572   3.166  0.00154 
** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m11b.ML, m11b0.ML) 

Data: df2 

Models: 

m11b0.ML: biCat2 ~ (1 | ID) + (1 | display) 

m11b.ML: biCat2 ~ (CNS + enviro + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

         Df    AIC    BIC   logLik  Chisq Chi Df 

Pr(>Chisq)     

m11b0.ML  3 4923.6 4943.7 -2458.81                              
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m11b.ML  13 1319.3 1389.4  -646.65 3624.3     

10  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> #CNS 

> print(m11b1.ML <- lmer (biCat2 ~ 

(enviro+gender+cAge)^2 + (1 | ID) + (1| 
display), family=binomial, data=df2), 

cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: biCat2 ~ (enviro + gender + cAge)^2 

+ (1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 4917 4978  -2450     4899 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.22297 0.47219  

 display (Intercept) 21.66710 4.65479  

Number of obs: 5929, groups: ID, 110; display, 

41 

Fixed effects: 

                       Estimate Std. Error z value 
Pr(>|z|)     

(Intercept)            2.540495   0.761465   3.336 

0.000849 *** 

enviro.u-r            -0.262778   0.148109  -1.774 
0.076026 .   

gender.M-F             0.077208   0.157916   0.489 

0.624902     

cAge                  -0.006049   0.005478  -1.104 

0.269538     

enviro.u-r:gender.M-F -0.373697   0.251208  -

1.488 0.136856     

enviro.u-r:cAge       -0.002444   0.007825  -

0.312 0.754765     

gender.M-F:cAge        0.009764   0.008261   
1.182 0.237241     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m11b.ML, m11b1.ML) 

Data: df2 

Models: 

m11b1.ML: biCat2 ~ (enviro + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

m11b.ML: biCat2 ~ (CNS + enviro + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

         Df    AIC    BIC   logLik  Chisq Chi Df 

Pr(>Chisq)     

m11b1.ML  9 4917.4 4977.6 -2449.70                              

m11b.ML  13 1319.3 1389.4  -646.65 3606.1      

4  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #Enviro 

> print(m11b2.ML <- lmer (biCat2 ~ 

(CNS+gender+cAge)^2 + (1 | ID) + (1| display), 

family=binomial, data=df2), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat2 ~ (CNS + gender + cAge)^2 + 

(1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 1313 1361 -647.3     1295 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 display (Intercept) 15.91    3.9887   

 ID      (Intercept)  0.00    0.0000   

Number of obs: 1620, groups: display, 41; ID, 

30 

Fixed effects: 

                 Estimate Std. Error z value Pr(>|z|) 

(Intercept)     -1.226847   8.337419  -0.147    
0.883 

CNS              0.069970   0.162114   0.432    

0.666 

gender.M-F      -0.283149   2.279149  -0.124    
0.901 

cAge            -0.260867   0.707475  -0.369    

0.712 

CNS:gender.M-F   0.004977   0.020052   0.248    
0.804 

CNS:cAge         0.006147   0.013734   0.448    

0.654 
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gender.M-F:cAge  0.011254   0.190974   0.059    

0.953 

> anova(m11b.ML, m11b2.ML) 

Data: df2 

Models: 

m11b2.ML: biCat2 ~ (CNS + gender + cAge)^2 

+ (1 | ID) + (1 | display) 

m11b.ML: biCat2 ~ (CNS + enviro + gender + 
cAge)^2 + (1 | ID) + (1 | display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m11b2.ML  9 1312.7 1361.2 -647.34                          

m11b.ML  13 1319.3 1389.4 -646.65 1.3898      
4      0.846 

>  

> #Gender 

> print(m11b3.ML <- lmer (biCat2 ~ 

(CNS+enviro+cAge)^2 + (1 | ID) + (1| display), 
family=binomial, data=df2), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat2 ~ (CNS + enviro + cAge)^2 + 

(1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 1313 1361 -647.3     1295 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 display (Intercept) 15.913   3.9891   

 ID      (Intercept)  0.000   0.0000   

Number of obs: 1620, groups: display, 41; ID, 

30 

Fixed effects: 

                 Estimate Std. Error z value Pr(>|z|) 

(Intercept)     -3.094661   8.601056  -0.360    

0.719 

CNS              0.125095   0.182685   0.685    

0.493 

enviro.u-r      -2.326856   3.462235  -0.672    
0.502 

cAge            -0.435046   0.737781  -0.590    

0.555 

CNS:enviro.u-r   0.007426   0.019117   0.388    
0.698 

CNS:cAge         0.011213   0.015777   0.711    

0.477 

enviro.u-r:cAge -0.155693   0.279913  -0.556    
0.578 

> anova(m11b.ML, m11b3.ML) 

Data: df2 

Models: 

m11b3.ML: biCat2 ~ (CNS + enviro + cAge)^2 
+ (1 | ID) + (1 | display) 

m11b.ML: biCat2 ~ (CNS + enviro + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m11b3.ML  9 1312.5 1361.0 -647.26                          

m11b.ML  13 1319.3 1389.4 -646.65 1.2287      

4     0.8734 

>  

> #Age 

> print(m11b4.ML <- lmer (biCat2 ~ 
(CNS+enviro+gender)^2 + (1 | ID) + (1| 

display), family=binomial, data=df2), 

cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: biCat2 ~ (CNS + enviro + gender)^2 

+ (1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 1312 1361 -647.1     1294 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 display (Intercept) 15.921   3.9902   

 ID      (Intercept)  0.000   0.0000   

Number of obs: 1620, groups: display, 41; ID, 

30 

Fixed effects: 

                        Estimate Std. Error z value 
Pr(>|z|)   

(Intercept)            1.7782932  0.8791319   2.023   

0.0431 * 

CNS                    0.0008933  0.0130738   0.068   

0.9455   

enviro.u-r            -0.1678150  0.9482410  -

0.177   0.8595   
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gender.M-F            -0.2741357  1.0435787  -

0.263   0.7928   

CNS:enviro.u-r        -0.0016088  0.0193384  -
0.083   0.9337   

CNS:gender.M-F         0.0009749  0.0203744   

0.048   0.9618   

enviro.u-r:gender.M-F  0.1729097  0.3099126   
0.558   0.5769   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m11b.ML, m11b4.ML) 

Data: df2 

Models: 

m11b4.ML: biCat2 ~ (CNS + enviro + 

gender)^2 + (1 | ID) + (1 | display) 

m11b.ML: biCat2 ~ (CNS + enviro + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m11b4.ML  9 1312.1 1360.7 -647.07                          

m11b.ML  13 1319.3 1389.4 -646.65 0.8478      

4     0.9319 

> 

Chapter 12: 

> # Chapter 12 Analysis 

>  

> #Section 1 complexity model 

>  

> #Full Model 

> print(m12a.ML <- glmer (complex ~ 
(continent+gender+cAge)^2 + (1 | ID) + (1| 

display), family=binomial, data=df2), 
cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (continent + gender + 

cAge)^2 + (1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 6927 7009  -3452     6903 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 2.595648 1.61110  

 display (Intercept) 0.060443 0.24585  

Number of obs: 7009, groups: ID, 130; display, 
41 

Fixed effects: 

                                Estimate Std. Error z value 

Pr(>|z|)    

(Intercept)                     -0.25417    0.23946  -
1.062  0.28848    

continentafrica                  0.24767    1.17521   

0.211  0.83308    

continentcentralasia            -0.74184    0.77652  

-0.955  0.33941    

gender.M-F                      -1.12354    0.66595  -

1.687  0.09158 .  

cAge                            -0.03273    0.01118  -

2.928  0.00341 ** 

continentafrica:gender.M-F       1.27048    
0.86594   1.467  0.14233    

continentcentralasia:gender.M-F  2.85369    

1.37910   2.069  0.03852 *  

continentafrica:cAge             0.15850    0.16986   
0.933  0.35074    

continentcentralasia:cAge       -0.20062    

0.10603  -1.892  0.05848 .  

gender.M-F:cAge                  0.06782    0.02347   
2.890  0.00386 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #Null Model 

> print(m12a0.ML <- glmer (complex ~ (1 | ID) 
+ (1| display), family=binomial, data=df2), 

cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: complex ~ (1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 6929 6950  -3462     6923 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 3.100711 1.76088  

 display (Intercept) 0.060408 0.24578  
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Number of obs: 7009, groups: ID, 130; display, 

41 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -0.7229     0.1635   -4.42 9.85e-06 

*** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1  

> anova(m12a.ML, m12a0.ML) 

Data: df2 

Models: 

m12a0.ML: complex ~ (1 | ID) + (1 | display) 

m12a.ML: complex ~ (continent + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 
Pr(>Chisq)   

m12a0.ML  3 6929.4 6950.0 -3461.7                            

m12a.ML  12 6927.2 7009.5 -3451.6 20.217      

9    0.01662 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1  

>  

> #Continent 

> print(m12a1.ML <- glmer (complex ~ 

(gender+cAge)^2 + (1 | ID) + (1| display), 
family=binomial, data=df2), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (gender + cAge)^2 + (1 | 
ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 6926 6967  -3457     6914 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 2.887618 1.69930  

 display (Intercept) 0.060394 0.24575  

Number of obs: 7009, groups: ID, 130; display, 
41 

Fixed effects: 

                Estimate Std. Error z value Pr(>|z|)    

(Intercept)     -0.57477    0.19261  -2.984  

0.00284 ** 

gender.M-F      -0.37425    0.32557  -1.149  
0.25034    

cAge            -0.02666    0.01119  -2.381  

0.01726 *  

gender.M-F:cAge  0.05280    0.02051   2.574  
0.01005 *  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m12a.ML, m12a1.ML) 

Data: df2 

Models: 

m12a1.ML: complex ~ (gender + cAge)^2 + (1 

| ID) + (1 | display) 

m12a.ML: complex ~ (continent + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq)   

m12a1.ML  6 6926.3 6967.4 -3457.1                            

m12a.ML  12 6927.2 7009.5 -3451.6 11.051      

6    0.08681 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #gender 

> print(m12a2.ML <- glmer (complex ~ 
(continent+cAge)^2 + (1 | ID) + (1| display), 

family=binomial, data=df2), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: complex ~ (continent + cAge)^2 + (1 | 
ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 6930 6985  -3457     6914 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 2.830802 1.68250  

 display (Intercept) 0.060442 0.24585  

Number of obs: 7009, groups: ID, 130; display, 
41 
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Fixed effects: 

                           Estimate Std. Error z value 

Pr(>|z|)   

(Intercept)               -0.357429   0.232651  -

1.536   0.1245   

continentafrica            0.450438   1.212685   

0.371   0.7103   

continentcentralasia       0.006794   0.651953   
0.010   0.9917   

cAge                      -0.018355   0.010063  -1.824   

0.0681 . 

continentafrica:cAge       0.183907   0.175940   
1.045   0.2959   

continentcentralasia:cAge -0.157041   0.109646  

-1.432   0.1521   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1  

> anova(m12a.ML, m12a2.ML) 

Data: df2 

Models: 

m12a2.ML: complex ~ (continent + cAge)^2 + 

(1 | ID) + (1 | display) 

m12a.ML: complex ~ (continent + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq)   

m12a2.ML  8 6929.9 6984.7 -3456.9                            

m12a.ML  12 6927.2 7009.5 -3451.6 10.687      

4    0.03031 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #Age 

> print(m12a3.ML <- glmer (complex ~ 

(continent+gender)^2 + (1 | ID) + (1| display), 

family=binomial, data=df2), cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  

Formula: complex ~ (continent + gender)^2 + 

(1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 6934 6989  -3459     6918 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept) 2.947763 1.71691  

 display (Intercept) 0.060423 0.24581  

Number of obs: 7009, groups: ID, 130; display, 
4 

Fixed effects: 

                                Estimate Std. Error z value 

Pr(>|z|) 

(Intercept)                     -0.40339    0.24842  -

1.624    0.104 

continentafrica                 -0.42825    0.40818  -

1.049    0.294 

continentcentralasia            -0.62813    0.82312  
-0.763    0.445 

gender.M-F                      -0.43909    0.61468  -

0.714    0.475 

continentafrica:gender.M-F       0.08613    
0.76513   0.113    0.910 

continentcentralasia:gender.M-F  2.07441    

1.42198   1.459    0.145 

> anova(m12a.ML, m12a3.ML) 

Data: df2 

Models: 

m12a3.ML: complex ~ (continent + gender)^2 
+ (1 | ID) + (1 | display) 

m12a.ML: complex ~ (continent + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 
Pr(>Chisq)    

m12a3.ML  8 6933.7 6988.6 -3458.9                             

m12a.ML  12 6927.2 7009.5 -3451.6 14.537      

4   0.005765 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1  

>  

> #Section 2 mid-range model 

>  

> #Full Model 

> print(m12b.ML <- glmer (biCat2 ~ 

(continent+gender+cAge)^2 + (1 | ID) + (1| 
display), family=binomial, data=df2), 

cor=FALSE) 
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Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat2 ~ (continent + gender + 
cAge)^2 + (1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 5813 5896  -2895     5789 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.24517 0.49515  

 display (Intercept) 23.00364 4.79621  

Number of obs: 7009, groups: ID, 130; display, 
41 

 

Fixed effects: 

                                 Estimate Std. Error z value 

Pr(>|z|)     

(Intercept)                      2.634483   0.781922   
3.369 0.000754 *** 

continentafrica                  0.345407   0.424041   

0.815 0.415324     

continentcentralasia            -0.613243   
0.289938  -2.115 0.034423 *   

gender.M-F                      -0.350755   0.243233  

-1.442 0.149287     

cAge                            -0.009035   0.004059  -
2.226 0.026016 *   

continentafrica:gender.M-F       0.422205   

0.317572   1.329 0.183690     

continentcentralasia:gender.M-F  0.721947   
0.513392   1.406 0.159656     

continentafrica:cAge             0.082917   

0.061186   1.355 0.175365     

continentcentralasia:cAge       -0.068066   
0.040039  -1.700 0.089134 .   

gender.M-F:cAge                  0.022346   

0.008715   2.564 0.010344 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1  

>  

>  

> #Null Model 

> print(m12b0.ML <- glmer (biCat2 ~ (1 | ID) + 

(1| display), family=binomial, data=df2), 
cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat2 ~ (1 | ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 5812 5832  -2903     5806 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.29733 0.54528  

 display (Intercept) 22.99829 4.79565  

Number of obs: 7009, groups: ID, 130; display, 

41 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)    

(Intercept)    2.487      0.779   3.193  0.00141 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m12b.ML, m12b0.ML) 

Data: df2 

Models: 

m12b0.ML: biCat2 ~ (1 | ID) + (1 | display) 

m12b.ML: biCat2 ~ (continent + gender + 
cAge)^2 + (1 | ID) + (1 | display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq)   

m12b0.ML  3 5811.7 5832.3 -2902.9                            

m12b.ML  12 5813.4 5895.7 -2894.7 16.339      
9    0.06012 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> #Continent 

> print(m12b1.ML <- glmer (biCat2 ~ 
(gender+cAge)^2 + (1 | ID) + (1| display), 

family=binomial, data=df2), cor=FALSE) 

Generalized linear mixed model fit by the 
Laplace approximation  
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Formula: biCat2 ~ (gender + cAge)^2 + (1 | ID) 

+ (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 5812 5853  -2900     5800 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.27695 0.52626  

 display (Intercept) 22.99926 4.79575  

Number of obs: 7009, groups: ID, 130; display, 

41 

 

Fixed effects: 

                 Estimate Std. Error z value Pr(>|z|)    

(Intercept)      2.530740   0.779964   3.245  

0.00118 ** 

gender.M-F      -0.103683   0.119439  -0.868  

0.38535    

cAge            -0.007381   0.004017  -1.837  

0.06616 .  

gender.M-F:cAge  0.016522   0.007563   2.185  

0.02892 *  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m12b.ML, m12b1.ML) 

Data: df2 

Models: 

m12b1.ML: biCat2 ~ (gender + cAge)^2 + (1 | 

ID) + (1 | display) 

m12b.ML: biCat2 ~ (continent + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq) 

m12b1.ML  6 5811.6 5852.8 -2899.8                          

m12b.ML  12 5813.4 5895.7 -2894.7 10.241      

6     0.1149 

>  

> #gender 

> print(m12b2.ML <- glmer (biCat2 ~ 
(continent+cAge)^2 + (1 | ID) + (1| display), 

family=binomial, data=df2), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat2 ~ (continent + cAge)^2 + (1 | 

ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 5813 5868  -2898     5797 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.26801 0.5177   

 display (Intercept) 23.00662 4.7965   

Number of obs: 7009, groups: ID, 130; display, 

41 

 

Fixed effects: 

                           Estimate Std. Error z value 

Pr(>|z|)     

(Intercept)                2.602226   0.781556   

3.330  0.00087 *** 

continentafrica            0.430331   0.431826   
0.997  0.31899     

continentcentralasia      -0.443547   0.240712  -

1.843  0.06538 .   

cAge                      -0.004413   0.003651  -1.209  
0.22682     

continentafrica:cAge       0.092352   0.062634   

1.474  0.14035     

continentcentralasia:cAge -0.055322   0.041032  
-1.348  0.17757     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m12b.ML, m12b2.ML) 

Data: df2 

Models: 

m12b2.ML: biCat2 ~ (continent + cAge)^2 + (1 
| ID) + (1 | display) 

m12b.ML: biCat2 ~ (continent + gender + 

cAge)^2 + (1 | ID) + (1 | display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 
Pr(>Chisq) 

m12b2.ML  8 5812.8 5867.6 -2898.4                          

m12b.ML  12 5813.4 5895.7 -2894.7 7.3568      

4     0.1182 

>  

> #Age 
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> print(m12b3.ML <- glmer (biCat2 ~ 

(continent+gender)^2 + (1 | ID) + (1| display), 
family=binomial, data=df2), cor=FALSE) 

Generalized linear mixed model fit by the 

Laplace approximation  

Formula: biCat2 ~ (continent + gender)^2 + (1 | 
ID) + (1 | display)  

   Data: df2  

  AIC  BIC logLik deviance 

 5817 5872  -2901     5801 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 ID      (Intercept)  0.28171 0.53076  

 display (Intercept) 22.99793 4.79562  

Number of obs: 7009, groups: ID, 130; display, 
41 

 

Fixed effects: 

                                Estimate Std. Error z value 

Pr(>|z|)     

(Intercept)                      2.59067    0.78202   
3.313 0.000924 *** 

continentafrica                 -0.09176    0.14957  -

0.613 0.539554     

continentcentralasia            -0.58345    0.30272  
-1.927 0.053936 .   

gender.M-F                      -0.10959    0.22358  -

0.490 0.624014     

continentafrica:gender.M-F       0.00970    

0.27883   0.035 0.972248     

continentcentralasia:gender.M-F  0.45834    
0.52249   0.877 0.380360     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

> anova(m12b.ML, m12b3.ML) 

Data: df2 

Models: 

m12b3.ML: biCat2 ~ (continent + gender)^2 + 

(1 | ID) + (1 | display) 

m12b.ML: biCat2 ~ (continent + gender + 
cAge)^2 + (1 | ID) + (1 | display) 

         Df    AIC    BIC  logLik  Chisq Chi Df 

Pr(>Chisq)   

m12b3.ML  8 5817.1 5871.9 -2900.5                            

m12b.ML  12 5813.4 5895.7 -2894.7 11.653      
4    0.02013 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1  

>  

> 
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Appendix D 
 

Ethical Application & Confirmation 
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