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Abstract 
Equine Obesity: Concepts and Mechanisms. Philippa K Morrison 

Obesity in the UK leisure population of horses and ponies is a growing problem with 
major welfare implications. To date, research into the associations between obesity 
and metabolic disease such as insulin dysregulation and laminitis remain ongoing. 
To improve our understanding of obesity in this species, the current thesis was 
designed to address several related objectives ranging from psychological aspects 
of obesity to the role of key determinants of energy balance in the setting of 
obesity.  

Implementing dietary restriction to reverse obesity requires an owner to correctly 
recognise obesity in their animal, knowledge of which is lacking for the horse. A 
two-tier internet-based questionnaire was created and distributed through UK 
equine-based forums. Tier 1 utilised lateral photographic images of horses and 
ponies and demonstrated that only 11% of respondents (n = 546 total) correctly 
identified all overweight animals from a panel of 12 images. When assessing the 
suitability of horses and ponies for taking part in a range of activities, respondents 
considered it more appropriate for each animal to carry more weight/condition for 
competing in affiliated showing classes. Tier 2 (n = 177 responses) provided 
information regarding current management practices of horse-owners in the UK.  

The ability to quantify internal adiposity in live animals requires imaging technology 
which is not yet available for the horse. A semi-quantitative regional adipose-depot 
specific scoring system (EQUIFAT) was developed and tested. Associations between 
ante-mortem body condition score (BCS) and post-mortem EQUIFAT scores (n = 207 
animals) revealed that retroperitoneal EQUIFAT score had strong positive 
associations with BCS, whilst omental had weaker associations and mesenteric and 
epicardial scores had no associations with BCS, indicating clear functional 
differences between regional adipose depots in the horse. 

Performing in-depth molecular biology studies using abattoir-derived samples 
requires knowledge of the time-frame of RNA degradation. RNA was found to 
remain intact up to 30 minutes and 2 hours post-mortem for adipose tissue and 
skeletal muscle ( n = 3 horses), respectively.  

The expression of myostatin, a key regulator of skeletal muscle mass and energy 
balance was evaluated in lean and obese horses and ponies (n = 6/group). 
Myostatin gene expression was increased in skeletal muscle of obese animals, with 
no difference at the protein level. Circulating myostatin concentrations were 
increased in obese animals.  

Adipocyte area was increased in adipose depots (retroperitoneal, omental, crest 
and tailhead) in obese animals, except for epicardial WAT. The expression of 
lipolytic proteins PLIN1 and HSL was reduced in retroperitoneal WAT of obese 
animals, with fewer differences noted between groups for other depots.  

Together, findings from this thesis indicate a misperception of obesity exists among 
horse-owners and enthusiasts. Functional differences between regional adipose 
depots and altered expression of key regulators of energy balance have been 
identified in obese horses and ponies.  
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1 General Introduction 

1.1 Equine obesity: Implications for welfare and management 

From the beginnings of equine domestication, horses and ponies have served Man 

by fulfilling essential roles as food or working animals, employed in diverse 

activities, including agriculture, mining, transport or warfare. Today, the UK 

population of horses and ponies is estimated at ~944,000 animals (BETA National 

Equestrian survey 2015). Recreational or leisure animals now account for ~60% of 

the National equine herd, with leisure riding being reported as the most common 

equestrian pursuit (Wyse et al., 2008; BETA National Equestrian survey 2015). This 

relatively recent change of use has been accompanied by a significant decrease in 

individual animal workloads but has also served to uncouple animal management 

from traditional wisdoms in agriculture and nutrition. Not all of the welfare impacts 

associated with this move have been beneficial.  

Horses and ponies are long–lived and under natural conditions, oscillate 

circannually from periods of positive to negative energy balance across successive 

summers and winters (Fuller et al., 2001). The degree of negative energy balance 

experienced during the predictable winter decrease in both grazing quality and 

availability, in combination with increased rates of convective and conductive heat 

loss, is naturally attenuated by photoperiodically entrained, seasonally-adaptive 

physiological changes. These include a suppression of basal metabolic rate, 

catabolism of stored body fats and both physical and behavioural mechanisms to 

reduce heat loss across the body surface. By contrast, modern horse management 

promotes the year-round maintenance of positive energy balance by ensuring the 

availability of high quality forages and supplementary energy-dense feedstuffs, 

shelter and artificial thermal insulation in the form of rugs. For many animals, these 

factors have attenuated or abolished the natural winter check on body weight gain 

and have enhanced the deposition of body fat during summers spent grazing on 

cultured swards rich in non-structural carbohydrates (NSC’s, (Longland and Byrd, 

2006). Paradoxically, these ‘improved’ husbandry standards commonly culminate in 

the development of obesity with its attendant risks to health and performance 

(Argo, 2009). For many contemporary UK horses and ponies kept for leisure 
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purposes, it could be considered that a ‘mismatch’ exists between their natural 

biology and the manner in which we now elect to maintain them.  

Epidemiological data continue to report a high prevalence of obesity in the leisure 

populations of horses and ponies of industrialised nations (Harker et al., 2011; 

Wyse et al., 2008). During the winter months, a time at which body condition score 

(BCS) might be expected to be lower than during summer months obesity 

prevalence in a population of leisure horses in the South West of England was  

~27% and this increased to ~35% in summer (Giles et al., 2014). This study 

reinforced earlier data which suggested that the natural, photoperiodically-

entrained suppression of appetite and metabolic rate in winter was insufficient to 

prevent weight gain when mature ponies were housed and continued to receive ad 

libitum access to moderate quality, fibre-based feedstuffs throughout winter 

(Dugdale et al., 2011a). More recent owner-reported data suggested that the 

obesity prevalence for animals used in pleasure riding, exceeded 30% (Robin et al., 

2015) and animals in this majority sector were identified as being more at risk of 

being obese than animals used in competitive events.  

Obesity increases the risk of horses and ponies developing conditions which are 

deleterious to their health and performance. Most importantly in terms of 

numbers, these conditions include insulin dysregulation and laminitis (Geor, 2008) 

but obesity has also been associated with compromised internal organ function, 

impairment of athletic and reproductive  performance and some strangulating 

forms of colic (Argo, 2009).  The proportion of horses and ponies with a history of 

laminitis has been reported by owners to be ~15% (Ireland et al., 2013; Wylie et al., 

2011). However, not all obese horses and ponies will develop laminitis and many 

have normal insulin/carbohydrate dynamics. The precise mechanisms which link 

insulin dysregulation, laminitis and obesity remain to be elucidated and it continues 

to be an area for further research.  

Currently, controlled weight loss management is the mainstay of therapies to 

correct obesity and diminish the risk of obesity-associated disease. Strategies to 

promote weight-loss include dietary restriction and increased physical activity 
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through exercise where possible. However, it is clear that rates of weight loss are 

highly variable between animals even when dietary provision is robustly controlled. 

This has been demonstrated in a group of 12 overweight horses and ponies, for 

which daily dry matter (DM) intakes of forage were restricted to 1.25% body mass 

for 16 weeks (Argo et al., 2012). Rates of weight loss varied considerably, to the 

extent that the total weight lost by the most weight-loss sensitive animal was 3-fold 

that of the most weight-loss resistant animal. Despite consideration of outset body 

mass, BCS, body fat content and indices of insulin resistance, random effects linear 

regression modelling indicated that 65% of the measured variation in weight-loss 

responsiveness could be attributed to individual animal identity. Whilst weight-loss 

management is crucial in improving the welfare of obese animals, the initiation of 

weight-loss first requires that owners are able to recognise obesity in their animal.   

 

1.2 Psychological basis for obesity 

The psychology of obesity development has become a major research focus in 

humans (Karasu, 2012). Understanding the mental processes which promote 

obesity development is important to direct appropriate education and corrective 

advice if this rise in obesity prevalence, both in humans and their companion 

animals is to be reversed. Evidence suggests that there is a common misperception 

of body weight both among adults (Johnson et al., 2014; Wetmore and Mokdad, 

2012) and among parents in the estimation of their child’s weight status (Carnell et 

al., 2005; Jones et al., 2011). It is of concern that in the UK, only a quarter of 

parents correctly identified their child as being overweight; the same proportion of 

parents were reported to be only “a little worried” if their child was overweight 

(Jeffery et al., 2004). This latter finding was perhaps predictable, since parents not 

only had a poor perception of their child’s weight but they also showed an inability 

to identify their own overweight state (Jeffery et al., 2004). However, it is the 

responsibility of parents to try and ensure their child remains at a healthy weight as 

childhood obesity increases the risk of developing obesity and associated 

complications in adulthood (Guo et al., 2002).  
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As alluded to earlier, the recognition of obesity is a crucial prerequisite for 

implementing corrective weight-loss programmes. A more accurate perception of 

body weight status has been associated with weight-loss attempts (Bittner Fagan et 

al., 2008; Duncan et al., 2011). The social influence on obesity has also been studied 

extensively. It was of interest that people who had an obese friend, had an 57% 

increased likelihood of becoming obese themselves, Similarly, among siblings and 

spouses, the likelihood of obesity was increased by ~40% if the other became obese 

(Christakis and Fowler, 2007). More recently, the impact of social influence was 

evaluated in terms of weight loss intention. This study identified that among 

overweight and obese young adults, having more social contact with individuals 

who were also actively trying to lose weight increased the intention to lose weight 

(Leahey et al., 2011).  

The likeliness of underestimating weight status was increased in children and 

youths who had school friends and parents with a high body mass index (BMI) 

(Maximova et al., 2008). This would indicate that exposure to an environment with 

obese individuals will influence weight perception. In agreement with this, there is 

evidence to suggest that the increased exposure to obese body shapes which faces 

us in today’s obese society, has led to an upward shift in what is considered 

‘normal’ in terms of body weight (Burke et al., 2010). Furthermore, a generational 

shift in parents perceptions of their child’s weight has also been documented 

recently, with overweight/obese children being less likely to be perceived as 

overweight in a study conducted between 2005-2010 compared to one conducted 

between 1988-1994 (Hansen et al., 2014).  

An inability to accurately perceive our own weight has obvious implications for the 

animals in our care. Indeed, a discrepancy between owner and veterinarian 

assessment of BCS has been established for both dogs (Colliard et al., 2006) and 

cats (Colliard et al., 2009). More recently, 44.1% of dog owners (Courcier et al., 

2011), and 45.8% of cat owners (Courcier et al., 2010) were found to incorrectly 

assess their pets body shape, with underestimation being the most common form 

of misperception. Additionally, the misperception for dog owners was found to 
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remain - even with the use of a body condition scoring chart (Eastland-Jones et al., 

2014). Owners of obese dogs have been found to have less interest in their dogs 

nutrition and exercise needs compared with owners of non-obese dogs (Kienzle et 

al., 1998), whilst owners of overweight cats tended to treat their cat more like a 

human in terms of their feeding habits (Kienzle and Bergler, 2006).   

With regard to horses, only a few studies have been conducted to assess owner’s 

perceptions of obesity. In the UK, only a fair agreement was found between horse 

owner and expert assessment of BCS (Wyse et al., 2008), whilst more recently, poor 

agreement was noted between the BCS assigned by the horse owner and that 

assigned by the researcher (Stephenson et al., 2011).   

In combination, these studies suggest that improving our understanding of some 

psychological aspects to obesity development in the horse would enable more 

tailored nutritional and management advice to be distributed to horse owners in an 

attempt to diminish obesity in our leisure population of horses and ponies.  

It is worthy of consideration that in evolutionary terms, the ability to store excess 

energy efficiently during times of plenty was required for survival during periods of 

famine (the ‘thrifty gene’ hypothesis) (Hales and Barker, 2001). However, the so-

called ‘thrifty genes’ are disadvantageous in today’s in modern society with its 

sedentary lifestyles and ready access to energy-dense diets. The ‘thrifty gene’ 

hypothesis has been implicated in the widespread development of obesity and 

diabetes in man, and may play a similarly deleterious role for our companion 

species. Our ability to further understand the links between obesity and metabolic 

conditions requires that we first accurately quantify and measure adiposity. For the 

horse, our ability to quantify body fat is somewhat limited by their large body size. 

Currently, the definition of obesity in the horse is based on the subjective 

evaluation of BCS. Consequently, in addition to evaluating perceptions of obesity, 

an improved knowledge of equine adiposity is central to furthering our 

understanding of obesity and associated metabolic conditions.  
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1.3 Measuring adiposity  

Whilst it is evident that excessive adiposity can impair health in both humans and 

animals, understanding associations between obesity and disease risk relies on our 

ability to quantify adiposity. For humans, measurement of BMI provides a useful 

indication of weight status, and clear associations have been made between BMI-

defined obesity and mortality rates. However, BMI has clear limitations; perhaps 

most notably, it cannot distinguish between lean mass and adipose tissue. 

Furthermore, the ability of BMI to diagnose obesity as determined by body fat 

percentage is most markedly limited for individuals in the intermediate BMI ranges 

(Romero-Corral et al., 2008). Additional anthropometric measurements of central 

obesity such as waist circumference and waist/hip ratio, both used as an index of 

the accumulation of abdominal fat, have been found to be useful in defining 

associations between adiposity and metabolic disease risk (Goh et al., 2014; Pouliot 

et al., 1994; Wei et al., 1997). Nevertheless, whilst these straightforward 

measurements remain useful and are easy to apply in large population studies, 

accurate quantification of regional adiposity in subcutaneous and visceral 

compartments can only be obtained from whole-body imaging modalities such as 

computed tomography (CT) and magnetic resonance imaging (MRI).  

For Equidae, due to their large body size, the use of sophisticated whole body 

imaging techniques (e.g. CT, MRI, and DEXA) is precluded at present and 

measurements of body adiposity are generally restricted to subjective 

measurements. Several different body condition scoring systems exist and are 

variously employed by equine researchers. However all systems employ the same 

basic principles which include the visual and palpable appraisal of superficial body 

fat cover at specific anatomical locations. The most commonly used equine BCS 

system is based on a 1-9 scale (where 1 = emaciated and 9 = obese). This system 

was initially developed specifically to evaluate the body condition of Quarter horse 

mares but its use has been systematically extended to assess adiposity across 

horses and ponies of diverse breeds and gender (Henneke et al., 1983).  Currently, 

the Kohnke modification (Kohnke, 1992) of the Henneke BCS system is employed by 
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our group. It involves the visual and palpable assessment of six body areas including 

neck, withers, shoulder, ribs, loin and tailhead, assigning a number from 1-9 for 

each area (Appendix A). The average of these six numbers equates to the overall 

BCS for that animal. Although BCS system is a subjective measure of adiposity, it 

has proved to be a useful tool for indicating adiposity in horses and ponies (Dugdale 

et al., 2012).  Despite this, it has been found to be unreliable in monitoring early 

weight loss through dietary restriction in ponies, whereby ~6% loss in body mass 

(BM), accompanied by improvements in hyperinsulinemia did not result in 

alterations in BCS (Dugdale et al., 2010). The addition of objective, morphometric 

measurements such as body circumference (belly girth) may provide useful 

indications of changes in internal adipose tissues (visceral/retroperitoneal) during 

weight loss.  

The assessment of fat stored within the nuchal crest (Figure 1.1) of the neck may be 

one of the most visually obvious fat depots in the horse and mean neck 

circumference has been associated with the magnitude of insulin resistance in 

horses (Frank et al., 2006). The Cresty Neck Score (CNS) was developed by Carter et 

al. (Carter et al., 2009a), and a score of ≥4/5 has been associated, along with other 

variables, with an increased risk of laminitis (Carter et al., 2009b). However, no 

difference in neck crest height or thickness was noted between laminitis-prone and 

control ponies with similar BCS (Bailey et al., 2008), indicating increased fat 

deposition in the neck region may only be relevant when more generalised obesity 

is also present. Furthermore, measurements of neck circumference were not found 

to be useful indicators of early weight loss in a group of native pony mares (Dugdale 

et al., 2010). Moreover, the precise mechanisms linking crest fat with metabolic 

abnormalities remain to be elucidated.   
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Figure 1.1: Images depicting the 

range in body condition score 

(BCS; A and B) and associated 

cresty neck score (CNS; C and D) 

in two Welsh Mountain pony 

mares. For context, a sagittal 

section through the nuchal crest 

of a Welsh Mountain pony mare 

of BCS 8.5/9 (E) is represented to 

indicate the scale of this regional 

adipose depot.  

 

 

 

 

 

The validation of the deuterium oxide (D2O) dilution technique for the 

determination of total body fat in horses and ponies has proved to be a useful 

research tool (Dugdale et al., 2011c). However, application of this method to 

describe associations between total body fat and BCS in a large group of horses and 

ponies identified a non-linear relationship between the two variables (Dugdale et 

al., 2012). Indeed, BCS became less reliable in estimating the body fat content of 

obese animals (>6.8/9), and suggests that whilst BCS is usefully accurate in 

estimating the body fat content of non-obese animals, it cannot predict body fat 

content of obese animals.   

Recently, a method for estimating body fat content of horses and ponies based on 

objective, morphometric measurements (heart girth, belly girth, neck 

circumference and height) has been proposed and was found to have similar 

correlations to total body fat content (measured by deuterium oxide dilution) as 

evaluation of BCS, and this may provide a more objective tool for estimating body 

fat content for those inexperienced with BCS (Potter et al., 2015).  
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The most obvious problem with current measures of adiposity in horses and ponies 

is the inability to discriminate between regional adipose tissue depots. The 

contribution of visceral (omental/mesenteric) fat to the metabolic phenotype has 

been well characterised in humans (Fontana et al., 2007; Nakamura et al., 1994), 

however the precise contribution of regional adipose depots to insulin 

dysregulation and laminitis in the horse remains unclear. Until we have the ability 

to quantify regional adiposity in large animals in vivo, further work is required to 

establish how regional adipose tissue depots are altered in obesity.  

The long-term regulation of body weight is under the control of several crucial 

adiposity signals that circulate in proportion to adipose tissue mass and interact 

with satiety signals in the brain. Perhaps the best characterised of these signals in 

humans are insulin and leptin (Baskin et al., 1999; Havel et al., 1996; Yannakoulia et 

al., 2003), both capable of modulating the response of the brain to satiety signals 

(Woods and D'Alessio, 2008). Furthermore, leptin has been already been associated 

with body fat mass in the horse (Kearns et al., 2006). For the current thesis, the 

molecular focus was centred upon other key pathways involved in energy 

homeostasis that have been implicated in states of energy imbalance in humans but 

have not yet been investigated in the horse.  To this end, whilst adipose tissue 

undoubtedly plays a major role in adipose tissue dysfunction in obesity, the amount 

of excess energy available to deposit as fat is dependent on whole body energy 

requirements. As the major determinant of whole body resting energy expenditure 

and comprising around 40% of body mass (Dugdale et al., 2011b; Webb and 

Weaver, 1979; Zurlo et al., 1990), skeletal muscle has a considerable role to play in 

obesity development (Houmard et al., 2011; Maltin, 2008).  

 

1.4 Skeletal muscle: A key determinant of energy balance 

For Equidae, the wide range in body conformation, including the shape and size of 

muscle mass evident between breeds of horses and ponies, is likely to reflect a 

combination of their original evolutionary / environmental adaptations and / or 
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domestic selection to fulfil diverse athletic or aesthetic roles. This diversity of 

selective pressures could be expected to result in wide variations in muscle mass 

and fibre composition between and within the breeds. Thoroughbred horses 

selectively bred for speed and endurance will have increased proportions of their 

body mass as skeletal muscle when compared to other breeds of horse (Gunn, 

1987). Similarly, having increased proportions of the body as fat-free mass was 

beneficial to exercise performance in both Standardbred horses (Kearns et al., 

2002) and humans (Slater et al., 2005; Stöggl et al., 2010). By contrast, it could be 

suggested that mountain and moorland breeds of horses and ponies (Welsh 

Mountain, Highland, Shetland, Exmoor, Dartmoor etc.) have a greater proportion of 

adipose tissue to aid survival in their naturally challenging habitats. Taken together, 

alterations in skeletal muscle metabolism and / or between-animal differences in 

the mass, efficiency and composition of skeletal muscle, would be important in 

determining energy balance and by inference, in dictating the amount of excess 

energy available for storage in adipose tissue. 

Skeletal muscle is comprised of distinct muscle fibre types. Muscle fibres are 

classified according to their contraction speed and oxidative capacity. Type I or 

slow-twitch fibres are oxidative and highly fatigue resistant. Type II muscles fibres 

are further distinguished into Type IIA fibres, which are fast-twitch, oxidative fibres 

and show a moderate resistance to fatigue, and Type IIB/X fibres which are fast-

twitch fibres that largely rely on glycolytic metabolism to generate energy and are 

rapidly fatigued. Interestingly in Man, relative proportions of skeletal muscle fibre 

types have been associated with the propensity for obese subjects to lose weight. 

Human subjects who were sensitive to weight-loss through dietary restriction alone 

had a higher proportion of Type I fibres in the vastus lateralis muscle and a 

corresponding up-regulation of genes associated with oxidative phosphorylation in 

comparison to subjects who proved resistant to weight loss (Gerrits et al., 2010).  

The development of skeletal muscle fibres occurs during the early stages of 

myogenesis and motor nerve stimulation controls the activity of diverse sets of 

genes that are specific to the different fibre types (Chin et al., 1998; Stockdale, 
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1997; Wu et al., 2000). Fibre type composition of skeletal muscle differs between 

individuals and this can be partially attributed to genetic factors.  The heritability of 

Type I fibre proportions is estimated to be around 45% in humans (Simoneau and 

Bouchard, 1995) and in horses; the heritability of Type I fibres is greater than for 

Type IIA and Type IIX fibres (Rivero and Barrey, 2001).  However, skeletal muscle 

demonstrates post-natal plasticity. Subtle alterations in the relative proportions of 

fibre types may occur throughout adult life as a result of the modifying effects of 

disease (Gosker et al., 2002) and exercise training in both humans (Aagaard et al., 

2011; Coggan et al., 1992) and horses (Kim et al., 2005; Serrano et al., 2000). 

However, there are challenges associated with measuring fibre type in large 

animals such as equines due to the considerable variability of fibre types distributed 

both between and within individual muscles. It has been demonstrated that within 

the gluteus medius muscle of the horse, a lower percentage of type I fibres were 

identified at the superficial region of the muscle compared to the deeper region, 

highlighting the necessity to be accurate and consistent when sampling skeletal 

muscle for fibre typing (López-Rivero et al., 1992). Therefore, although fibre type 

proportions are clearly of importance, it is inappropriate to attempt to study fibre 

type proportions via use of muscle biopsy or other sampling techniques unless the 

precise anatomical location of the sample sites is possible. 

The relative proportions of different fibre types in human skeletal muscle have also 

been associated with obesity. The proportion of Type I muscle fibres was inversely 

related to both body fat content (Helge et al., 1999; Wade et al., 1990) and body 

mass index (BMI) (Hickey et al., 1995). These findings are supported by the later 

observation that obese subjects had significantly lower proportions of Type I 

muscles fibres when compared to lean subjects (Tanner et al., 2002). Further, in a 

19 year follow-up study, subjects with relatively lower proportions of Type I fibres 

had increased weight gains, increased body fat percentages and higher BMI’s 

relative to people who had greater proportions of Type I fibres (Karjalainen et al., 

2006). This decreased contribution of the highly oxidative Type I fibres in the 

metabolically dominant skeletal muscle mass of obese phenotypes, may offer an 

empirical explanation for the observation that fatty acid oxidative capacity is 
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decreased in obese subjects (Kelley et al., 1999; Kim et al., 2000).  

Skeletal muscle also plays a major role in glucose uptake, with 80% of postprandial 

glucose disposal occurring in this tissue alone (Blaak, 2005). To this end, alterations 

in skeletal muscle insulin-mediated glucose uptake have been extensively studied in 

the context of insulin resistance in humans (Goodpaster et al., 2014; Sylow et al., 

2014), and in horses (de Laat et al., 2015; Waller et al., 2011).  

As discussed, alterations in skeletal muscle mass and efficiency have clear 

implications on whole body energy balance. With this in mind, key regulators of 

skeletal muscle mass have received significant attention as potential therapeutic 

targets for the treatment of obesity and insulin resistance. One such protein is 

Myostatin, a myokine secreted from skeletal muscle. Whilst perhaps it is better 

known as a negative regulator of skeletal muscle mass, it has also been clearly 

implicated in the regulation of whole body metabolism in the development of 

obesity.  

 

1.5 A potential role for myostatin in equine obesity  

Myostatin (also known as growth differentiation factor-8, GDF-8), is a member of 

the transforming growth factor β family, a group of secreted growth factors which 

regulate body tissue growth and differentiation (McPherron et al., 1997). Since its 

discovery, myostatin has been well characterised as a potent negative-regulator of 

skeletal muscle mass (Joulia et al., 2003; Whittemore et al., 2003). Whilst myostatin 

expression may be largely genetically determined, expression levels can be 

modulated by both strength and endurance training in humans (Hittel et al., 2010; 

Hulmi et al., 2007). Natural mutations in the myostatin gene rendering it non-

functional have resulted in the ‘double muscling’ phenotype observed in certain 

breeds of cattle (Grobet et al., 1997). Furthermore, single nucleotide 

polymorphisms (SNPs) in the myostatin gene have been identified and associated 

with optimal race distance in Thoroughbred horses (Hill et al., 2010) and between 

brachymorphic (heavy) and dolichomorphic (light) breeds of horses (Dall'Olio et al., 
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2010). In addition to this, a promoter variant and intronic SNP of the myostatin 

gene were each significantly associated with greater proportions of Type IIB and 

lower proportions of Type I skeletal muscle fibre proportions in Quarter horses 

(Petersen et al., 2013). Whilst it is not known whether these genetic variants result 

in direct changes in myostatin expression, the magnitude of myostatin expression 

has been shown to be significantly greater in murine muscles largely composed of 

fast twitch fibres compared to those predominantly slow twitch muscles (Kawada et 

al., 2001). Cloning and sequencing the equine myostatin gene revealed a high 

degree of homology with other species, including that of bovine, mouse and human 

(Hosoyama et al., 2002). 

Myostatin is synthesised as a 376 amino acid precursor protein, which is 

subsequently cleaved twice to reveal the active form of the protein. The first 

cleavage removes the signal peptide from the precursor protein to leave the N-

terminal propeptide domain and the C-terminal domain. The final cleavage 

produces the N-terminal propeptide domain (myostatin propeptide) and mature 

myostatin, comprised of a disulphide-linked dimer of C-terminal domain (Huang et 

al., 2011). Mature myostatin is bound noncovalently to its propeptide and 

circulates in serum as an inactive complex (Hill et al., 2002). Members of the bone 

morphogenetic protein-1/tolloid (BMP-1/TLD) family of metalloproteinases have 

been implicated in the activation of myostatin in vivo (Wolfman et al., 2003). Upon 

activation, myostatin binds selectively to the activin type II receptor kinase 

(ActRIIB), causing phosphorylation of the type I receptor, ALK5. Initiation of an 

intracellular signalling cascade follows, involving both SMAD and non-SMAD related 

pathways (Figure 1.2) allowing myostatin to regulate the expression of several 

genes involved in muscle mass and metabolism.  
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Figure 1.2: An overview of the myostatin signalling pathway. Abbreviations: IGF-1 insulin-

like growth factor 1, IGFR insulin-like growth factor 1 receptor, P13K phosphoinositide 3-

kinase, AKT/PKB  protein kinase B, FoxO forkhead box O, mTOR mechanistic target of 

rapamycin, mTORC1/C2 mechanistic target of rapamycin complex 1/2, p70s6k ribosomal p-

70-s6 kinase, MURF-1 muscle ring-finger protein-1, SMAD cytoplasmic signalling molecules, 

ActRIB/ActRIIB activin type I/2 receptor kinase, MEK1/MAP2K1 mitogen-activated protein 2 

kinase, ERK1/2 extracellular signal-related kinase 1/2, TAK-1 transforming growth factor 

beta-activated kinase 1, MKK4/6 MAP kinase kinase 4/6, p38 MAPK p38 mitogen-activated 

protein kinase, JNK c-JUN N-terminal kinase.  

 

Early studies demonstrated that despite having similar planes of food intake in 

relation to body mass, myostatin knock-out (KO) mice possessed significant 

increases in muscle mass in comparison to their wild-type littermates, and they 

were also found to have significantly decreased fat accumulation (70% reduction in 

mean total body fat mass) (McPherron and Lee, 2002). Whilst it could be suggested 

that the absence of myostatin from birth reduced the capacity for adipose tissue 

accrual during development, myostatin KO mice challenged with a high-fat diet also 

demonstrate significantly decreased gains in body fat compared to wild-type mice 

(Dilger et al., 2010; Hamrick et al., 2006). A summary of the key literature 
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investigating the role of myostatin in obesity is summarised for clarity in Table 1.1. 

In addition to a lack of body fat, loss of myostatin function in mice has also been 

found to confer additional metabolic benefits by improving insulin sensitivities 

(Choi et al., 2011; Guo et al., 2009). This may be unsurprising since, as discussed 

earlier, the majority of glucose uptake occurs in skeletal muscle, therefore it is 

biological probable that increased skeletal muscle mass would result in 

improvements in glucose metabolism and insulin dynamics over that observed in 

obesity. Conversely, a lack of adipose tissue might be protective against insulin 

resistance through a reduction in the secretion of pro-inflammatory cytokines that 

have been linked to the development of insulin resistance in other species (Gregor 

and Hotamisligil, 2011). In agreement with this, loss of function in myostatin in 

mice, resulting in a protection against whole-body insulin resistance is considered 

to be due to reductions in plasma tumor necrosis factor-α (TNF- α) levels (Wilkes et 

al., 2009). Furthermore, improvements in insulin sensitivity through a lack of 

myostatin signalling is associated with up-regulation of the AMP-activated protein 

kinase (AMPK) signalling pathway in myostatin-null mice (Zhang et al., 2011), whilst 

circulating myostatin in plasma has been shown to have an inverse relationship 

with insulin sensitivity in human subjects (Hittel et al., 2010). In this context, 

myostatin has been suggested as a biomarker of insulin sensitivity and insulin 

resistance in a recent review (Park et al., 2015).  

More recent studies have investigated the degree by which blocking myostatin 

function can reduce fat mass gain in mature mice fed high fat diets. Blocking the 

action of myostatin in mature mice in combination with high fat feeding for 22 

weeks resulted in these mice gaining only half the weight of control mice during the 

first 8 weeks, after which time the rate of weight gain was similar (Burgess et al., 

2011). Overall, cumulative weight gain remained significantly lower for myostatin 

deficient mice, despite increased gains in lean body mass combined with similar 

gains in intra-abdominal adipose tissue. However, as only intra-abdominal adipose 

tissue was evaluated, it could be suggested that other adipose depots were 

correspondingly reduced to account for the cumulative reduced weight loss. 

Similarly, no differences in fat gain were found between mature, myostatin 
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depleted mice and control mice fed a high fat diet (McPherron et al., 2012). 

However, mature, myostatin depleted mice in the latter study had significantly 

greater gains in lean body mass, accounting for increased body weights of these 

mice from weeks 8-12 of the 12 weeks high-fat feeding. This is in contrast to the 

decreased cumulative weight gain reported in the former study and may be due to 

different study designs as the mice used in the latter study were already obese 

prior to blocking myostatin function. Taken together, this could suggest that 

blocking myostatin function may be ineffective in reducing body fat content in mice 

that are already obese, however it is generally accepted that blocking myostatin 

function in mature normal weight mice does confer protection against diet-induced 

obesity (Akpan et al., 2009; Zhang et al., 2012).  

Attempts have been made to account for the reasoning behind the resistance to 

diet-induced obesity in myostatin deficient mice. It has been suggested that 

absence of myostatin indirectly reduces the build-up of fat due to the increased 

energy requirements brought about by the relatively greater muscle mass in these 

mice, in turn reducing the amount of excess energy available to deposit as fat 

(LeBrasseur, 2012). However, myostatin can be detected at low levels in adipose 

tissue and a direct association between myostatin and adipose tissue has been 

demonstrated, whereby myostatin treatment inhibits pre-adipocyte differentiation 

in vitro (Guo et al., 2008; Hirai et al., 2007; Kim et al., 2001). Interestingly, in 

addition to protecting against diet-induced obesity, inactivation of myostatin was 

found to result in an up-regulation of genes involved in lipolysis and fatty acid 

oxidation, in combination with enhancing brown adipose tissue formation in white 

adipose tissue (Zhang et al., 2012). This finding generated considerable interest 

after the discovery of functional brown fat in adult humans (Cypess et al., 2009) led 

to the theory that formation of brown fat could provide a therapeutic treatment for 

obesity. Recently, myostatin has been found to inhibit the differentiation of brown 

fat by inhibiting the expression of key brown fat genes including uncoupling 

protein-1 UCP1) and PRDM16 (Braga et al., 2013), whilst myostatin KO in mice 

induces the browning of WAT in mice through activation of the AMPK/PGC1-

α/FNDC5 pathway (Shan et al., 2013).   
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Table 1.1: A summary of the key studies involving myostatin and obesity. Abbreviations: 

SNP single nucleotide polymorphism, MSTN Myostatin, KO knock-out, BM body mass, LBM 

lean body mass, BMI body mass index, HFD high fat diet, WT wild type, VL vastus lateralis, 

RA rectus abdominis, SC subcutaneous, TA tibialis anterior 

STUDY MAJOR FINDINGS AUTHOR 

 

H
U

M
A

N
 

MSTN secretion and expression increased in skeletal muscle 
cells derived from extremely obese relative to lean healthy 
human subjects and positively correlated to severity of insulin 
resistance. 

Hittel et al. (2009) 

MSTN expression decreased in quadriceps muscles around 18 
months following biliopancreatic division. 

Milan et al. (2004) 

SNP (rs3791783). AA genotype linked with increased 
susceptibility to obesity in a population of Chinese North Han 
people. 

Pan et al. (2012) 

MSTN gene expression decreased around 1 year following 
gastric bypass surgery in VL muscle and increased expression of 
MSTN associated with obesity in RA muscle of cross-sectional 
group (lean vs. morbidly obese). 

Park et al. (2006) 

SNP’s associated with obesity, abdominal obesity and low LBM 
in population of non-diabetic Asian Indians in North India. 
Subjects with Thr/Thr genotype of A55T polymorphism high 
risk for high % body fat, truncal subcutaneous adiposity and 
low LBM. Subjects with R/R genotype of K153R polymorphism 
high risk for obesity, abdominal obesity and low LBM.  

Bhatt et al. (2012) 

Serum MSTN increased in diabetic compared to non-diabetics 
and serum MSTN decreased with increasing components of 
metabolic syndrome 

Han et al. (2014) 

Serum MSTN increased in overweight patients compared to 
normal weight controls and was positively correlated with BMI 

Zhu et al. (2014) 

O
B

ES
E 

M
IC

E MSTN gene expression increased in SC and visceral fat and TA 
muscle in obese mice vs. WT mice. In response to 1 month HFD 
(60% kcal fat), MSTN gene expression increased in TA muscle.  

Allen et al. (2008) 

M
ST

N
 K

O
 M

IC
E

 

N
O

 H
FD

 

At 6-8 wks age, MSTN KO mice had increased energy 
expenditure, decreased total body fat mass and decreased % 
fat mass compared to WT mice. 

 

Choi et al. (2011) 

12 wk old MSTN KO mice decreased retroperitoneal, 
epididymal, parametrial & inguinal fat pad weights vs. WT 
mice. 

Lin et al. (2002) 

KO mice found to have 70% less body fat vs. WT mice McPherron & Lee 
(2002) 

M
ST

N
 K

O
 M

IC
E

 

+ 
H

FD
 

Diet = 60% kcal fat for 4 weeks. Decreased body fat content in 
MSTN KO mice: decreased weights of gonadal & 
retroperitoneal fat pads. Incorporation of MSTN mutation with 
mice with genetic obesity (leptin db/db) did not alter obese 
state.   

Dilger et al. (2010) 

Diet = 45% kcal fat for 10 weeks. MSTN KO HFD mice gained 
less weight than WT HFD mice. Improved insulin sensitivity in 

Guo et al. (2009) 
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KO HFD mice. Blocking MSTN function specifically in adipose 
tissue resulted in no effect on body composition or weight gain 
on standard or HFD. Blocking MSTN function specifically in 
skeletal muscle resulted in increased lean mass & decreased fat 
mass on standard and HFD.  

Diet = 45% kcal fat for 8 weeks. Fat mass and % body fat 
decreased in KO mice vs. WT HFD mice.  

Hamrick et al. 
(2006) 

P
O

ST
-D

EV
EL

O
P

M
EN

TA
L 

M
ST

N
 

IN
H

IB
IT

IO
N

 +
 H

FD
 

Diet = 45% kcal fat for 10 weeks. 4 weeks treatment to block 
MSTN in combination with HFD resulted in BM and lean mass 
increased in mature MSTN null mice vs. vehicle treated mice. 
10 week treatment in combination with HFD resulted in 
increased lean mass and decreased fat mass in mature MSTN 
null mice vs. vehicle treated mice. 

Akpan et al. (2009) 

Diet = 60% kcal fat for 22 weeks. Decreased cumulative weight 
gain in mature MSTN KO mice vs. control HFD mice. No 
difference in epididymal and retroperitoneal fat pad weights. 

Burgess et al. 
(2011) 

Diet = 60% kcal fat 12 weeks prior to MSTN inhibition 
treatment then further 12 weeks on HFD in combination with 
treatment. No difference in fat gain vs. vehicle treated mice. 
Increased gains in lean mass vs. vehicle treated mice 4-12 
weeks after MSTN function blocked. 

McPherron et al. 
(2012) 

M
ST

N
 K

O
 M
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E 

+ 
H

FD
 

P
O

ST
-D

EV
EL

O
P

M
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L 

M
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N
 

IN
H
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IT

O
N

 +
 H

FD
 

Diet = 45% kcal fat for 12 weeks. MSTN KO mice on HFD 
increased energy intake but BW similar to KO mice on chow 
diet. Up-regulation of genes associated with fatty acid 
oxidation and lipolysis in MSTN KO mice in peripheral tissues, 
along with up-regulation of uncoupling protein 1, 2, & 3 and 
other genes involved in BAT specification and thermogenesis in 
WAT.  

Post-developmental blocking of MSTN in combination with 
HFD resulted in lesser gains in WAT mass vs. vehicle treated 
HFD mice & resulted in similar gene expression profile to MSTN 
KO mice + HFD. 

Zhang et al. (2012) 

 

With regards to obesity in humans, myostatin gene expression was found to be 

significantly reduced in skeletal muscle in women following weight loss induced by 

gastric bypass surgery (Park et al., 2006) and biliopancreatic division (Milan et al., 

2004). Furthermore, extremely obese women were found to have a significantly 

increased secretion and expression of myostatin in skeletal muscle samples which 

was positively correlated to the severity of insulin resistance (Hittel et al., 2009). 

This finding fits into the association between skeletal muscle fibre type, myostatin 

expression and obesity as myostatin expression is greater in Type II fibres, whilst 

reduced proportions of Type I fibres predisposes to obesity. It could therefore be 

suggested that the increased expression of myostatin in obese humans is due to 

lower proportions of Type I fibres. More recently, elevated circulating myostatin 
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concentrations have been identified in overweight human subjects (Zhu et al., 

2014). Conversely, serum myostatin levels were found to be reduced in individuals 

with the metabolic syndrome (Han et al., 2014). Differences in the method for 

measuring myostatin may attribute the differing results, as different ELISA kits were 

used to measure circulating myostatin levels, with the latter study measuring full 

length myostatin peptide. Furthermore, a SNP in the human myostatin gene has 

been recently linked with increased susceptibility to obesity in a group of Chinese 

North Han subjects (Pan et al., 2012), and two further SNPs have been associated 

with increased adiposity in Asian Indians (Bhatt et al., 2012). 

Taken together, data presented here clearly suggests that although definitive 

mechanisms for myostatin signalling in equine obesity have yet to be established, 

myostatin is likely to have an important role in whole body energy homeostasis. In 

addition to the key role played by skeletal muscle in maintaining energy balance, 

maintaining the balance between fat deposition and mobilisation is also crucial in 

the regulation of energy balance.  

 

1.6 Lipolysis in the regulation of energy balance  

Traditionally viewed primarily as an inert storage site for excess energy, WAT is now 

widely acknowledged as a highly metabolically active tissue, specialised in the 

storage of excess energy as triglycerides in intracellular lipid droplets within 

adipocytes (Brown, 2001). Under basal conditions, adipose tissue regulates the 

balance between triacylglycerol (TAG) synthesis (lipogenesis) and TAG breakdown 

(lipolysis). The ability of adipose tissue to store TAG enables it to provide the body 

with energy during periods of negative energy balance, such as during fasting or 

prolonged physical exercise. The complete hydrolysis of TAG results in the 

production of three molecules of free fatty acids (FFA) and one molecule of glycerol 

which are released into the circulation to be metabolised by other organs.  

Adipose tissue is innervated by sympathetic and sensory nerve fibres which are 

able to regulate lipolysis. The main controlling factors of mammalian lipolysis are 
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the activity of the autonomic nervous system and the hormonal influences of 

insulin. The ratio between lipolytic β- and antilipolytic α2-adrenoceptors will 

ultimately determine the net outcome of catecholamine-induced lipolysis. In the 

postprandial state, elevated circulating insulin facilitates glucose uptake into 

tissues, whilst concomitantly suppressing lipolysis. Insulin’s inhibitory actions on 

both basal and catecholamine-induced lipolysis are considered to occur through the 

phosphorylation and activation of phosphodiesterase 3B, which in turn catalyses 

the breakdown of cAMP into inactive 5’-AMP, thereby reducing protein kinase A 

(PKA) activation. The actions of the catecholamines, adrenaline and noradrenaline 

exert their lipolytic functions through binding to adrenergic receptors (β1- and β2- in 

humans) located on the plasma membrane of adipocytes (Arner, 2005). This leads 

to a subsequent increase in intracellular cyclic AMP (cAMP) production, which in 

turn activates PKA. Hormone-sensitive lipase (HSL) appears to be the major target 

of activated PKA, whereby PKA-induced phosphorylation of HSL initiates its 

translocation from the cytosol to the surface of the lipid droplet to initiate lipolysis 

(Egan et al., 1992). At the lipid droplet surface, the hydrolysis of triglycerides occurs 

through the sequential actions of three lipases. Adipose triacylglyceride lipase 

(ATGL) converts TAG to diacylglycerol (DAG), whilst HSL converts DAG to 

monoacylglycerol (MAG). Finally monoglyceride lipase (MGL) cleaves MAG into 

glycerol and FFA. Although both ATGL and HSL exhibit the capacity to hydrolyse 

triglycerides in vitro, ATGL appears to have higher substrate specificity for TAG than 

DAG (Frühbeck et al., 2014), whilst only HSL demonstrates the ability to hydrolyse 

DAG (Haemmerle et al., 2002). Furthermore, complete activation of AGTL requires 

its binding with the co-activator comparative gene identification 58 (CGI58). Taken 

together, between them, ATGL and HSL are thought to be responsible for over 95% 

of TAG lipase activity (Schweiger et al., 2006).  An overview of lipolysis is provided 

in Figure 1.3. Regional differences in catecholamine lipolysis have been observed in 

humans, with a more marked response to catecholamine stimulation in visceral 

adipose tissue in comparison to subcutaneous adipose tissue, whilst basal lipolytic 

activity is noted to be higher in subcutaneous compared to visceral depots (Arner, 

1995). This is considered to be due in part to differences in the expression of 
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expression and function of the catecholamine receptors.  

In addition to the function of the lipases, lipid-droplet associated proteins also have 

significant functional roles in the control of lipolysis. Lipid droplets contain a core of 

neutral lipid surrounded by a phospholipid monolayer which is coated with specific 

proteins, including members of the PAT family of proteins. Perilipin-1 (PLIN1) is the 

founding member of the PAT family (named after the first three members, perilipin, 

adipocyte differentiation-related protein (ADRP) and tail-interacting protein of 

47kDa (TIP47)), all of which share sequence similarities and the ability to bind to 

lipid droplets. PLIN1 is expressed almost exclusively in adipocytes, and within 

adipocytes it is generally restricted to lipid droplets, however recently it has also 

been shown to localize in the endoplasmic reticulum (Skinner et al., 2013). In the 

basal state, PLIN1 is associated with CGI58, however maximal phosphorylation of 

PLIN1 results in the dissociation of CGI58 from the lipid droplet, allowing it to 

interact with ATGL in the initiation of lipolysis (Yamaguchi et al., 2007).  In addition 

to HSL, PLIN1 is also phosphorylated by PKA in response to catecholamine 

stimulation. It has been demonstrated in vitro that that PKA-mediated 

phosphorylation of PLIN1 is not essential for HSL translocation to the lipid droplet, 

but it is essential for lipid droplet interactions between PLIN1 and HSL to allow 

lipolysis to proceed (Miyoshi et al., 2006).  
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Figure 1.3: An overview of the key pathways activated during lipolysis. Abbreviations: 

CGI58 comparative gene identification-58, ATGL adipose triglyceride lipase, HSL hormone 

sensitive lipase, PLIN1 perilipin 1, MGL monoacylglycerol lipase, Gi G inhibitory subunit, Gs G 

stimulatory subunit, AC adenylyl cyclase, ATP adenosine triphosphate, cAMP cyclic 

adenosine monophosphate, PKA protein kinase A, IRS1/2 insulin receptor substrate 1/2, 

P13K phosphoinositide 3-kinase, PKB/AKT protein kinase B, PDE3B phosphodiesterase 3B, 

5’-AMP 5 adenosine monophosphate-activated  protein kinase, TG triacylglycerol, DG 

diacylglycerol, MG monoacylglycerol.  

 

It is clear from the evidence present here that the control of adipose tissue lipolysis 

is a tightly regulated physiological process, mediated by several key factors. It is 

unsurprising that states of altered energy balance such as observed in obesity will 

result in marked alterations in lipolysis and lipid-droplet associated protein 

functions, which may contribute to the pathogenesis of metabolic abnormalities 

associated with obesity.  
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1.7 Lipolysis in obesity 

Over-nutrition results in the excessive accumulation of triglycerides esterified from 

fatty acids and stored within lipid droplets in adipocytes. Obesity is well 

characterised by the expansion of the fat mass through an increase in adipocyte 

size (hypertrophy) in a variety of species (Arner et al., 2010; Grant et al., 2011; Van 

de Velde et al., 2013). The identification of adipocyte precursor cells in adipose 

tissue in vivo in mice (Rodeheffer et al., 2008), which have the capacity to 

differentiate to increase the number of terminally differentiated adipocytes 

(hyperplasia), is also a means by which adipose tissue can expand during positive 

energy balance. Expansion of the lipid droplet to accommodate triglyceride 

deposition is a highly regulated process, and whilst the exact mechanisms remain to 

be identified, PLIN1 and its interaction with another adipocyte specific protein, fat 

specific protein of 27kDa (FSP27) which is a crucial factor in maintaining large 

unilocular lipid droplets, appear to be important in mediating lipid exchange and 

lipid droplet growth (Sun et al., 2013).  

Continued expansion of adipose tissue beyond appropriate expandability limits is 

known to result in metabolic abnormalities in humans including ectopic lipid 

deposition and insulin resistance (Rutkowski et al., 2015). Obesity in humans is 

associated with increased circulating fatty acids, indicative of the elevated basal 

lipolytic activity noted in obese human subjects. This may be a direct effect of 

increased fat cell size, as fat cell size is strongly correlated with levels of basal 

lipolysis (Engfeldt and Arner, 1987). Increased circulating fatty acid concentrations 

may result in ectopic lipid deposition in other tissues such as liver and skeletal 

muscle which can be associated with insulin resistance in humans (Boden and 

Shulman, 2002). Furthermore, increased inflammation associated with obesity in 

Man results in the release of the circulating inflammatory factor, TNF-α from 

adipose tissue, which has known lipolytic effects in human adipocytes (Zhang et al., 

2002). These effects are considered to be due to increased phosphorylation of 

PLIN1 by PKA as a result of upstream elevations in intracellular cAMP through 

activation of the extracellular signal-related kinase pathway (ERK) (Zhang et al., 
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2002). It remains to be elucidated whether this could apply for the horse. To date, 

data surrounding a role of inflammation in equine obesity have been contradictory. 

In a single trial, increasing BCS was associated with an increase in the blood gene 

expression of interleukin-1 (IL-1) and serum TNF-α concentrations in a group of light 

breed mares (Vick et al., 2007). However, a more recent study of Thoroughbred 

geldings failed to detect any associations between BCS and serum TNF-α 

concentrations (Suagee et al., 2011).  In addition to alterations in basal lipolysis, 

obesity is associated with a blunted response to catecholamine-stimulated lipolysis, 

however this may be depot-specific in humans, with the lipolytic effect of 

catecholamine’s being decreased in subcutaneous adipose tissue but increased in 

visceral adipose tissue (Arner, 2005).  

The effect of obesity on PLIN1 expression has been extensively studied after initial 

studies using PLIN1 KO mouse models identified that they not only had elevated 

basal lipolysis, they were resistant to diet-induced obesity and had an attenuated 

stimulated lipolysis (Tansey et al., 2001), suggesting that PLIN1 phosphorylation is 

required for maximally stimulated lipolysis to proceed, as alluded to earlier. 

Conversely, overexpression of PLIN1 in mice was also found to be protective against 

diet-induced obesity (Miyoshi et al., 2010). This appears counter-intuitive, however 

the authors suggest this finding was due in part to alterations in brown adipose 

tissue metabolism. Similarly, another study found that PLIN1 overexpression in 

mice resulted in a down-regulation of FSP27, decreasing lipid droplet size and 

promoting a brown-fat like phenotype (Sawada et al., 2010). The discrepancy 

between studies may indicate that PLIN1 has diverse functions and extreme 

alterations in PLIN1 result in marked changes in whole body metabolism in the 

mouse which may or may not be relevant to other species.  

A summary of literature for PLIN1 and HSL in obesity is provided in Table 1.2. A 

reduction in the protein expression of PLIN1 in adipose tissue of obese human 

subjects may contribute to elevations in basal lipolysis (Ray et al., 2009), although 

when PLIN1 was quantified in human abdominal subcutaneous adipocytes, it was 

found that per fat cell, PLIN1 content was unaltered in obesity (Wang et al., 2003). 
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This would indicate that increases in fat cell size in obesity are not accompanied by 

relative increases in PLIN1 content, a factor which could contribute to elevations in 

basal lipolysis. Reduced protein expression of phosphorylated HSL and PLIN1 has 

been observed in epididymal and inguinal adipose depots of high-fat diet fed mice 

(Gaidhu et al., 2010). This was considered to be a contributing factor to the 

observed blunted response to catecholamine stimulated lipolysis. HSL 

haploinsufficiency and treatment with an HSL inhibitor in mice has been associated 

with improvements in insulin sensitivity through reductions in fatty acid uptake and 

an increase in glucose uptake (Girousse et al., 2013). However, the recent 

identification of HSL deficiency in humans, resultant from a frameshift mutation in 

the LIPE gene encoding HSL, resulted in defects in lipolysis and the development of 

type 2 diabetes (Albert et al., 2014).  It has been speculated that the confounding 

nature of these two findings may be partly due to the fact that human heterozygote 

carriers of the frameshift mutation maintain functional lipolysis, whilst 

haploinsufficient mice have dysfunctional lipolysis, indicative of species differences 

(Zechner and Langin, 2014). However these findings do indicate a putative 

functional role for HSL in the control of insulin dynamics.  

In addition, to functional differences in the expression of PLIN1 and HSL in obesity, 

polymorphisms in these genes have been characterised and associated with 

lipolytic rate (Hoffstedt et al., 2001), waist circumference in lean subjects (Carlsson 

et al., 2006),  obesity risk (Qi et al., 2004), and weight-loss resistance (Corella et al., 

2005).  

In the horse, whilst studies have assessed lipid metabolism in the context of 

hyperlipemia (Frank et al., 2003; Schmidt et al., 2001), only one study has directly 

assessed adipocyte response to lipolytic stimulation (Briedenbach et al., 1999). That 

study identified that whilst rates of lipolysis were significantly greater for ponies 

compared with horses, the ability of insulin to inhibit lipolysis was similar between 

animals (Breidenbach et al., 1999). The authors speculate that the high rates of 

lipolysis in ponies may partly explain the increased susceptibility of ponies to 

hyperlipemia.  
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Table 1.2: An overview of the key PLIN1/HSL studies. Abbreviations: KO knock-out, WT 

wild-type, HFD high-fat diet  

PLIN1/HSL MAJOR FINDINGS AUTHOR 

 

PLIN1 

PLIN1 KO mice showed elevated basal lipolysis and attenuated 
stimulated lipolysis. The KO mice consumed equal amounts of food 
than WT mice but had ~30% less accumulation of adipose tissue. 
Following 7 weeks of HFD (55% calories from fat) KO mice showed 
resistance to obesity. 

Tansey et 
al. (2001) 

PLIN1 Overexpression of either human or mouse PLIN1 in mice (transgenic 
mice). 25 weeks HFD (60% calories from fat) resulted in reduced body 
weight, reduced adipose tissue mass compared to WT mice and 
increased expression of oxidative genes from BAT. Basal and 
catecholamine stimulated lipolysis reduced and glucose tolerance 
improved  in transgenic mice   

Miyoshi et 
al. (2010) 

PLIN1 Human subcutaneous fat cells. Basal and noradrenaline lipolysis 
increased and PLIN1 protein decreased in obese women compared to 
lean women. High rate of lipolysis associated with low PLIN1 content. 
Polymorphism in PLIN1 (rs891460A/G) associated with lipolysis rates. 

Mottagui-
Tabar et al. 

(2003) 

PLIN1 Omental and subcutaneous adipose tissue from lean and obese 
human subjects. PLIN1 mRNA significantly lower in Sc adipose tissue 
from obese compared to lean subjects. PLIN1 protein relative to 
protein/fat cell surface area reduced  in obese subjects but PLIN1 per 
fat cell unchanged in obese vs. lean subjects 

Wang et al. 
(2003) 

PLIN1 & 
HSL 

Omental and subcutaneous adipose tissue from lean and obese 
women. Increased adipocyte size in obese vs. lean. PLIN1 protein 
reduced in both depots in obese vs. lean subjects and inverse 
correlation between PLIN1 protein and adipocyte size and basal 
lipolysis. Basal and stimulated lipolysis increased in subcutaneous vs. 
omental fat. HSL mRNA increased in obese vs. lean subjects, HSL 
protein reduced in both depots in obese subjects. 

Ray et al. 
(2009) 

PLIN1 Polymorphisms  in PLIN1 (rs2289487 and rs894160) identified and 
associated with a lower risk of obesity in women 

Qi et al. 
(2004) 

PLIN1 Subjects (n = 48) with 11482A polymorphism found to be resistant to 
weight loss following a 1 year low energy diet 

Corrella et 
al. (2005) 

HSL Polymorphism in HSL gene: increased frequency of allele 5 in HSLi6 
polymorphism in obese and NIDDM subjects compared to lean 
subjects  

Hoffstedt et 
al. (2001) 

HSL HSL haploinsufficiency in mice associated with reduced lipolytic 
capacity, increased fatty acid turnover and improve glucose 
metabolism and insulin sensitivity, with no change in fat mass. 

In humans, lipolytic rate positively correlated with indexes of insulin 
resistance 

Girousse et 
al. (2013) 

HSL HSL deficiency in humans associated with dyslipidaemia, hepatic 
steatosis, systemic insulin resistance and subjects had type 2 diabetes 

Albert et al. 
(2014) 

HSL & 
PLIN1 

Mice fed HFD (60% calories from fat) for 8 weeks. Phosphorylated HSL 
& PLIN1 protein content reduced in subcutaneous and visceral fat in 
HFD mice compared with WT mice. Basal lipolysis increased but 
epinephrine-stimulated lipolysis blunted in HFD fed mice compared to 
WT mice.  

Gaidhu et 
al. (2010) 
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Taken together, evidence presented here demonstrates that PLIN1 and HSL are 

closely associated proteins that have crucial functional roles in adipose tissue 

lipolysis and glucose homeostasis. The expression of these proteins has been shown 

to be altered in an obese state in humans and rodents which appears to be 

associated with alterations in basal and catecholamine-stimulated lipolysis. 

Although research surrounding PLIN1 and HSL in human metabolic disease remains 

ongoing, the function of these proteins in the setting of equine obesity remains 

unknown. 

In conclusion, there is a clear need for further research to improve our 

understanding of equine obesity. Hypotheses to be tested in this thesis were 

formed on the basis of the literature reviewed above and are fully described in 

Chapter 2.  
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2 Thesis in context 

Overarching aims of this thesis were, 

‘To explore some novel concepts and mechanisms which might underpin the 

obese state in the horse and pony, with a view to improving our 

understanding and exploring previously unconsidered therapeutic 

directions’. 

These aims were addressed through a number of related objectives which 

encompassed studies, extending from the exploration of the owner’s ability to 

correctly identify obesity in their animals, to focused molecular approaches to 

evaluate the obesogenic role of targeted cellular pathways. Intermediate objectives 

were introduced to overcome knowledge gaps related to requirements to quantify 

regional adipose tissue reserves in the horse and to determine the timeframe for 

post-mortem tissue sampling for molecular studies. 

Objectives were delivered through the following studies which are reported in 5 

separate Chapters (Chapters 3 to 7). 

 

Hypotheses and Objectives 

Chapter 3: Perceptions of obesity and management practices in a UK leisure-

based population of horse owners and enthusiasts. 

Rationale: On the combined basis of current information regarding perceptions of 

obesity in man and other companion species and the strength of unsupported but 

widespread anecdotal data for the horse, the following hypotheses were 

addressed.  

Hypothesis 3a: That professional horse keepers would be more able to identify 

equine obesity than amateur owners who maintain their animals for leisure 

purposes alone and that this would be reflected in animal management 

practices.  

Hypothesis 3b: Those perceptions of ideal body condition (adiposity) would be 
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dependent on the specific intended use of an animal across the spectrum of 

non-racing equine pursuits. 

Two key objectives were addressed. 

Objective 3a: To evaluate horse-enthusiasts perceptions of obesity and the 

influence that the equestrian discipline for which the horse is used may have 

on perceptions and to stratify responses in accordance with the professional 

or amateur status of the owners/keepers. 

Objective 3b: To collect and collate more detailed information in order to 

characterise current animal care and management practices for horses and 

ponies in the UK. 

These objectives were achieved through the development of an internet-based, 

two-tier questionnaire. A brief pictorial questionnaire was designed to survey horse 

owner and enthusiast’s perceptions of obesity in horses (Tier 1). Respondents had 

the option to participate in a more detailed management-focused questionnaire 

(Tier 2).  

 

Chapter 4: EQUIFAT: a novel scoring system for the semi-quantitative evaluation 

of regional adipose tissues in Equidae. 

Rationale: Given the literature discussed in Chapter 1, it is evident that body 

fatness is most readily estimated for living horses by the use of subjective body 

condition scoring (BCS) systems. Studies of adiposity in human subjects clearly 

indicate that the impact of adipose tissue expansion on health is associated with 

the specific anatomical distribution of excessive fat deposition. Molecular studies 

describing the cellular activity of adipose tissues in horses are beginning to identify 

comparable between-depot differences in gene and protein expression. Internal fat 

depots cannot be quantified in living horses and the exploration of depot 

differences and any associations with health or metabolic disease are largely 

dependent on post-mortem tissue sampling methods. Most commonly, data and 



  

46 

 

2 Thesis in context 

samples with respect to regional adiposity and specific disease are collected within 

an abattoir or post-mortem room or surgical setting. . Further, BCS systems to 

assess whole body ‘adiposity’ have not been validated for post-mortem application. 

Before embarking on detailed molecular studies of adipose and skeletal muscle in 

horses of known ante-mortem BCS, the following hypotheses were addressed. 

Hypothesis 4a: That the population of animals presented for slaughter at a 

UK abattoir would reflect the distribution of phenotypes recorded in 

epidemiological surveys of horses and ponies living in the UK.  

Hypothesis 4b: That the discrete adipose depots studied will demonstrate a 

spectrum of fat accumulation that can be succinctly described and used as 

the basis of a robust 5 point semi-subjective scoring system to evaluate 

specific fat depots post-mortem. 

Hypothesis 4c: That discrete adipose tissues within the equine body are 

functionally divergent and that these differences may be reflected in 

different degrees of association with ante-mortem BCS. 

From these hypotheses, 4 key objectives were formed. 

Objective 4a: To collect and collate phenotypic data to describe the 

population of horses presented at a UK abattoir on seven random dates 

within an 18 month period. 

Objective 4b: To collect anatomically defined photographic images and 

measures of specific regionally-discrete adipose tissues and use these data 

to develop region-specific, text and photographic descriptors as the basis of 

the EQUIFAT, 5 point equine fat scoring system. 

Objective 4c: To robustly validate the EQUIFAT system for field use by 

testing within and between observer evaluations and whether this was 

improved by the ability to use ‘half scores’. 

Objective 4d: To use data collected across a wider population of horses and 
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ponies to determine any associations between ante-mortem BCS and 

EQUIFAT scores for the discrete post-mortem adipose depots surveyed.  

Objectives were achieved using sub-sets of abattoir-derived data and photographic 

images of specific adipose depots in combination with ante-mortem phenotypic 

descriptors for the individual animals.  

 

Chapter 5: Post-mortem stability of RNA in skeletal muscle and adipose tissue 

and the tissue-specific expression of myostatin, perilipin and associated factors in 

the horse 

Rationale: Conducting molecular biology studies requires knowledge of the 

appropriate time-frame to collect post-mortem tissues in order to extract intact 

RNA and protein. Whilst studies have assessed this for other species, no studies 

have yet addressed this for skeletal muscle and adipose tissue from the horse. In 

addition to this, establishing the tissue-specific distribution of key proteins of 

interest is an important prerequisite to detailed studies. From the perspective of 

the literature and the intended studies, the following hypotheses were formed. 

Hypotheses 5a: That intact RNA suitable for molecular biology studies can 

be extracted from skeletal muscle and adipose tissue samples obtained from 

horses post-mortem.  

Hypotheses 5b: That extracted RNA is more stable when harvested from 

skeletal muscles than from adipose tissues.  

Hypotheses 5c: That the myostatin gene and protein is predominantly 

expressed by skeletal muscles, whilst PLIN1 gene and protein would 

predominate in adipose tissues.   

To test these hypotheses, the following objectives were addressed. 

Objective 5a: To describe the time-frame for RNA degradation in skeletal 

muscle and adipose tissues sampled post-mortem. 
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Objective 5b: To characterise the expression of myostatin, ActRIIB, 

follistatin and PLIN1 RNA across a range of tissues.  

Tissue sample used to address these hypotheses were collected from thoroughbred 

horses at the point of slaughter, and in accordance with ‘best practice’ as defined in 

Chapter 3. 

 

Chapter 6: Preliminary investigation into a potential role for myostatin and its 

receptor (ActRIIB) in lean and obese horses and ponies 

Rationale: Not all horses or ponies maintained under common management 

become obese. This variation in the proclivity of animals to become obese has 

major implications for animal management. Understanding the physiological basis 

for this variation might allow the identification and targeted nutritional 

management of obesity prone animals. At the inception of this project, work in 

other species had implicated the myokine, myostatin as a key regulator of whole 

body energy homeostasis. Myostatin had already been associated with differences 

in equine athletic performance and was considered a major component of ‘cross 

talking’ pathways between the major labile energy reserves, adipose and skeletal 

muscle tissues. The literature reviewed in Chapter 1 made myostatin a key 

candidate in the determination of energy balance. However, a role for myostatin in 

equine obesity has yet to be defined. On this basis, we tested the following 

hypothesis, 

Hypothesis 6: That myostatin gene and protein expression in skeletal 

muscles and circulating myostatin concentrations in blood serum will be 

altered in obese horses and ponies. 

Which was addressed by, 

Objective 6a: To evaluate the gene and protein expression of myostatin and 

its receptor, ActRIIB in 4 discrete skeletal muscles in lean and obese horses 

and ponies.  
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Objective 6b: To assess the circulating concentration of myostatin in blood 

serum in the same group of animals.  

Tissue and blood samples collected to address these objectives were harvested 

from lean and obese horses and ponies at the point of slaughter, and in accordance 

with ‘best practice’ as defined in Chapter 5.  

 

Chapter 7: Expression of PLIN1 and hormone-sensitive lipase in adipose tissues 

from lean and obese horses and ponies 

Rationale: Lipolysis is a tightly regulated process in adipose tissues that relies on 

the coordinated actions of several key proteins associated with the surface of the 

lipid droplets within adipocytes. Two of these proteins, HSL and PLIN1 have been 

well characterised in murine and human studies and have both been implicated to 

play important roles in obesity development. To date, no studies have yet 

addressed the expression of these proteins in equine obesity. Mobilisation of lipids 

from the lipid droplets within adipocytes effects changes in adipocyte size. 

Morphological changes in adipocytes in discrete adipose tissue depots in the obese 

and lean state are known for other species but this information is absent for the 

horse.  

Hypotheses 7a: Adipocyte cross-sectional areas are uniformly increased in 

all adipose tissue depots in the obese state. 

Hypotheses 7b:  Changes in cell size distributions within specific adipose 

tissue depots are associated with corresponding changes in the expression 

of the key lipolytic proteins, HSL and PLIN1.  

Hypotheses 7c: Lipid:protein ratios in adipose tissue homogenates are 

associated with mean adipocyte size and that the cellular protein 

distribution between lipid and cytosolic cell fractions will alter 

correspondingly. 
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These hypotheses were tested by addressing the following objectives 

Objective 7a: To characterise adipocyte area across a range of adipose 

depots from lean and obese horses and ponies. 

Objective 7b: To extract protein from the cytosolic (internatant) and lipid 

associated (fat cake) fractions of adipose tissue and to evaluate the protein 

expression of HSL and PLIN1 in these fractions across a range of adipose 

depots in lean and obese horses and ponies. 

Objective 7c: To evaluate associations between lipid:protein ratio and 

corresponding adipocyte area for each adipose depot.  

Tissue samples used to address these hypotheses were collected from lean and 

obese horses and ponies at the point of slaughter, and in accordance with ‘best 

practice’ as defined in Chapter 5.  
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Chapter 3 

 

Perceptions of obesity and management 

practices in a UK leisure-based population of 

horse-owners and enthusiasts 

 

 

 

 

 

 

During the writing of this thesis, this chapter has been submitted for publication to Acta 

Veterinaria Scandinavica (“Animal Obesity – causes, consequences and comparative 

aspects” supplement). 

Preliminary data from this chapter were also presented as an oral presentation:  

Morrison, P.K., Harris, P.A., Maltin, C.A., Grove-White, D., Barfoot, C.F., Argo, C.McG. 

(2015) Perceptions of obesity in a UK leisure-based population of horse owners. Acta 

Veterinaria Scandinavica 57, (Suppl 1: O6).   
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3.1 Abstract 

The high prevalence of obesity in the leisure population of horses and ponies in the 

UK is partly attributable to reduced workloads, improved husbandry techniques and 

the increased availability of energy-dense diets. An inability to accurately recognise 

obesity will further exacerbate this and preclude the initiation of weight-loss 

management. Currently, knowledge of human perceptions of equine obesity is 

lacking. A two-tier, internet-based questionnaire was developed to assess horse 

owner and enthusiasts’ perception of obesity using lateral photographic images of 

horses and ponies (Tier 1). Tasks included: Asserting their involvement in the 

sector; identifying overweight animals; scoring the suitability of animals for 

participation in different equestrian activities on the basis of body weight. There 

was an option to partake in a detailed questionnaire at the end of Tier 1.  

Information regarding animal management practices employed by horse owners 

were collected (Tier 2). The questionnaire was distributed through UK-based equine 

forums. Tier 1: Of 546 respondents, 98% were female. Amateur involvements 

dominated professionals (81%:19%).  Key findings included that, only 11% correctly 

identified all overweight animals presented (6/12), but between 37 and 98% 

correctly identified individual overweight animals. Professional status did not alter 

an owner’s ability to identify overweight animals. On assessing the 

weight/condition suitability of a sport horse, a cob and a pony for different 

disciplines, respondents rated each animal significantly lower (towards 

underweight; p < 0.01) for the showing discipline compared to other disciplines 

(eventing, dressage etc.). Tier 2: In total there were 177 responses. Horse/pony 

information gathered included owner-reported obesity prevalence (4.5%), seasonal 

changes in horse/pony weight, seasonal management practices, exercise and 

feeding routines.  Tier 1 provided evidence that horse owners and enthusiasts’ vary 

in their ability to identify overweight animals by visual appearance alone. Data 

support our anecdotal understanding that owners consider it appropriate that 

horses and ponies should carry more weight when competing in showing classes. 

These data will aid in targeting nutritional and management advice for horse 

owners.  
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3.2 Introduction 

Equine obesity has become a major health issue among horses and ponies 

especially in the leisure horse sector. Implementing controlled weight loss by 

nutritional restriction can be problematic for many horse owners and requires long 

term commitment. The recognition of obesity is a prerequisite for corrective 

management (dietary energy restriction) and commonly, treatment is instigated by 

a veterinarian when animals present with laminitis as opposed to being a direct 

response to owner concern.  

Current trends predict that by 2030, 57.8% of the global adult human population 

could be overweight or obese (Kelly et al., 2008). Epidemiological studies have 

established that for man, obesity is a significant risk factor for the development of 

cardiovascular disease, some cancers, diabetes and premature death (Flegal et al., 

2013; Must et al., 1999). Although a reduction in physical activity and increased 

availability of high-fat, calorie-dense diets and high sugar drinks have undoubtedly 

contributed to the increased incidence of obesity in the human population; there is 

evidence to suggest that under-recognition of weight status is common among both 

adults (Johnson et al., 2014; Wetmore and Mokdad, 2012) and parents of children 

(Etelson et al., 2003; Jones et al., 2011). In agreement with this, a UK-based study 

(which compared two surveys of human populations taken 5 years apart), identified 

that whilst self-reported body weights increased, the weight at which people 

perceived themselves to be overweight also increased (Johnson et al., 2008), 

further emphasising a misperception of weight status among adults. Evidently, the 

perception of body weight status will impact on whether or not an individual will 

take action to reverse weight gain. This has been demonstrated in studies showing 

that those with a more accurate perception of their weight status will be more 

likely to have tried to lose weight (Bittner Fagan et al., 2008; Duncan et al., 2011). 

Misperception of body weight status has now manifested in animals under the care 

of humans. Owners have been shown to misperceive their dog’s body shape  

(Courcier et al., 2011), with underestimation being the most common form of 

misperception, and this misperception remains even with the use of a body 
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condition scoring chart (Eastland-Jones et al., 2014).  

With regards to Equidae, the  growth in the UK population of leisure horses and 

ponies (those kept for pleasure purposes and competing at unaffiliated/riding club 

level competitions) has been associated with  an increased incidence of obesity, 

which has been recently documented during the summer months in a population of 

leisure animals at over 35% (Giles et al., 2014). This high obesity prevalence could 

be partly attributed to modern husbandry techniques such as increased provision of 

shelter and rugs, reductions in workload and year-round availability of energy-

dense diets, although breed has also been established to be an important risk factor 

for obesity (Giles et al., 2014; Robin et al., 2015). Data describing the owner 

perceptions of obesity in horses are sparse, although there is some evidence that 

owners underestimate body condition score (Ireland et al., 2012; Wyse et al., 2008). 

Additionally, perceptions of appropriate or ‘ideal’ body weight/condition of horses 

and ponies may differ between owners who intend their animals to participate in 

the divergent equestrian disciplines. This disparity is likely to be greatest for show-

ring animals where debate in the lay press has highlighted concerns that 

overweight animals are more likely to succeed (Horse and Hound, 2005).  

The primary objective of the current study was to evaluate horse-enthusiasts 

perceptions of obesity and the influence that the equestrian discipline for which the 

horse is used may have on perceptions. A secondary objective was to gather more 

detailed information regarding the care and management practices of horses and 

ponies in the UK since these may have an effect on the high prevalence of obesity in 

this population. These objectives were achieved via the development of an 

internet-based two-tier questionnaire whereby a short questionnaire was designed 

to obtain information on horse owner and enthusiasts perceptions of obesity in 

horses (Tier 1), with the option for horse-owners to continue and partake in a more 

detailed questionnaire (Tier 2). It was hypothesised that perceptions of obesity 

would differ between professionals and non-professionals, and that management 

practices would differ between hobbyists/leisure riders and amateur 

competitors/professionals and depending upon whether the horse/pony was kept 
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for leisure (pet/companion, non-competitive riding and competing in unaffiliated 

competitions) or competition purposes (competing in affiliated competitions), 

therefore data were also analysed to identify any such differences between the 

populations.  

 

3.3 Materials and Methods 

Questionnaire design 

The survey software, SelectSurvey (ClassApps, Missouri, USA) was used to create 

two internet-based surveys. The first questionnaire (Tier 1; Appendix B) comprised 

16 questions and gathered information relating to the respondents geographical 

location, age, duration of time involved in horses, their involvement/interest in 

equestrian disciplines, and the horse ownership status including whether they were 

professionals or non-professionals (involvement in horses forms part of or entire 

job (professionals) or their involvement was purely for fun/enjoyment (non-

professionals) and whether they own or loan a horse/pony. This was followed by a 

set of questions to evaluate obesity perceptions which used lateral photographic 

images of horses and ponies across a range of body condition scores (which had 

been previously assessed in vivo  by an experienced assessor) using the Kohnke 

modification of the Henneke body condition score system  (Kohnke, 1992). A range 

of breed types and coat-colours were used in compiling the image selection in order 

to limit bias. To determine the ability of the respondent to identify overweight and 

obese animals, the first question used 12 images and asked respondents to select 

the images of all horses/ponies they considered to be overweight (Figure 3.1).  

In order to determine the impact of the animal’s intended use (equestrian 

discipline) on obesity perceptions, lateral photographic images of a Sport horse, 

Welsh pony and a Cob horse were shown independently and respondents were 

asked to categorise the animal’s weight/condition for different disciplines (e.g. 

Dressage, Eventing, Showing) on a five point scale (1= very underweight to 5 = very 

overweight). Finally for Tier 1, respondents were presented with another two sets 
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of images (Appendix B) and asked firstly to match pictures of horses and ponies to 

the correct scenario (e.g. this horse/pony needs to lose weight immediately, this 

horse/pony could do with gaining a little weight/condition before a busy summer 

competing) and secondly to rank the horses and ponies in order of increasing 

weight/condition.   

At the conclusion of Tier 1, there was an option to take part in a more extensive 

questionnaire for horse-owners, comprising 65 questions (Tier 2; Appendix C). If 

respondents owned more than one horse/pony they were asked to answer all the 

questions with respect to a single animal of their choice. In brief, the questionnaire 

gathered horse/pony data on: basic information, health and wellbeing, use and 

exercise as well as nutrition and management of their horse/pony.  

 

 

Figure 3.1: Percentage of respondents classifying images of horses and ponies as 

overweight (Tier 1).  All animals were expertly assessed in vivo and assigned a body 

condition score from 1 (very poor) to 9 (extremely fat). The percentage of respondents 

classifying each image as overweight is shown. Overweight animals (BCS ≥6/9): A, C, E, G, J 

and L. 
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Data analysis 

Questionnaire responses were downloaded into Microsoft Excel and exported for 

statistical analysis into STATA Version 13 (StataCorp, Texas). Statistical significance 

was set at p < 0.05.  

For Tier 1 analysis, binary variables were created for professional status (non-

professional = 0 professional = 1). For Tier 2 analysis, as respondents were all horse 

owners, binary variables were created for horse ownership status (hobbyist/leisure 

rider = 0 amateur competitor/professional =1) and for the reason the horse/pony 

was kept for (animals kept for leisure/pleasure purposes = 0 animals kept for 

affiliated competitions = 1). Chi square tests were used for the analysis of 

proportions where the outcome was binary.  Multinomial logistic regression was 

employed where the outcome was more than 2 categories whilst the Wilcoxon 

signed-rank test and Student t tests were employed for score and continuous data 

respectively. 

 

3.4 Results 

Tier 1 

Survey population 

In total there were 546 responses to the questionnaire. The survey population is 

described in Table 3.1. Almost all (98%) of respondents were female and over 70% 

of the respondents were aged between 26 and 60 years old. The geographical 

distribution of responses was as follows: England 81.3%, Scotland 13%, Wales 4.2% 

and Northern Ireland 1.5%. Over 90% of respondents either owned or loaned a 

horse or pony, and over half the study population had had an active interest in 

horses for between 20 and 40 years with a further 15.9% having had an interest for 

over 40 years. For the majority of respondents (n = 441/546; 81%), their interest in 

horses was purely for fun/enjoyment (non-professionals), whilst 19% (n = 105/546) 

of respondents earned money from their involvement in horses (professionals).  
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Table 3.1: Respondent information for Tier 1 and Tier 2. 

Respondent information Tier 1 Tier 2 

Gender 

Male 

Female 

 

535 (98.00%) 

11 (2.00%) 

 

3 (1.69%) 

174 (98.31%) 

Age 

Under 18 

18-25 years 

26-40 years 

41-60 years 

Over 60 years 

 

29 (5.31%) 

102 (18.68%) 

190 (34.80%) 

199 (36.45%) 

26 (4.76%) 

 

11 (6.22%) 

37 (20.09%) 

74 (41.81%) 

48 (27.12%) 

7 (3.95%) 

Location 

England 

Scotland 

Wales 

Northern Ireland 

 

444 (81.32%) 

71 (13.00%) 

23 (4.21%) 

8 (1.47%) 

 

147 (83.05%) 

22 (12.43%) 

5 (2.83%) 

3 (1.69%) 

Professional 

Non-professional 

105 (19.23%) 

441 (80.77%) 

 

Hobbyist/leisure rider 

Amateur competitor/professional  

 67 (37.85%) 

110 (62.25%) 

 

Ability to recognise overweight horses/ponies from photographic images 

Of the twelve images presented to the respondents, six animals were classified as 

overweight or obese by the determination of body condition score (BCS > 6/9) by 

an experienced assessor in vivo.  Only eleven percent of respondents correctly 

identified all six overweight animals (Figure 3.1). Three of these overweight animals 

were correctly identified as overweight by between 65 and 98% of the respondents. 

For the other three animals, a lower percentage (between 37 and 41%) of 

respondents correctly identified that they were overweight (Figure 3.1). For two 

animals that had a BCS of 5/9, (both cob-breed horses) 96% and 73% of 
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respondents respectively considered them to be overweight. There was no 

difference between professionals and non-professionals in their ability to identify 

the six overweight animals (Table 3.2), apart from one image (A; BCS 7/9) where a 

significantly greater proportion of non-professionals (80.7% vs. 71.4%; p = 0.04) 

correctly identified the animal as being overweight.  

Weight categorisation of horses/ponies across different disciplines 

 

Sport horse 

Respondents were shown a photographic image of a horse that was evaluated in 

vivo by an experienced assessor and was assigned a BCS of 5/9 (equating to “about 

right”). Analysis revealed that respondents rated this horse significantly lower 

(towards underweight) for competing in affiliated showing classes compared to the 

other three disciplines (p < 0.01). Multinomial logistic regression was employed for 

assessing professional/non-professional differences in rating a horse’s condition for 

partaking in a given discipline.   For mainly staying in the field and participating in 

affiliated one day events, there was no difference in the response between 

professionals and non-professionals, however significantly more professionals 

considered the horse to be “very underweight” for participating in affiliated 

showing classes compared to non-professionals (relative risk ratio (RRR) = 2.06; p = 

0.04; Table 3.2). Similarly, significantly more professionals considered the horse to 

be “slightly underweight” for competing in affiliated dressage competitions 

compared to non-professionals (RRR = 1.81; p = 0.02). The difference between the 

expert opinion of the weight categorisation (about right) and the respondents’ 

answers for each discipline was also evaluated. This showed that for all the 

disciplines apart from eventing, the horse was considered underweight in 

comparison to the expert opinion (p < 0.01) (Figure 3.2).  There was no difference 

between the expert opinion and whether the respondents were professionals or 

non-professionals for competing in one day events or mainly staying in the field (p = 

0.59 and p = 0.18, respectively), whereas for both competing in affiliated showing 

classes and competing in dressage competitions, the difference between the expert 

and respondents was significantly greater for professionals (p = 0.03 for both 
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activities).  

Pony 

Respondents were shown a photographic image of a pony that that was evaluated 

in vivo by an experienced assessor and assigned a BCS of 6.5/9 (slightly overweight). 

As for the sport horse, respondents rated this pony significantly lower for 

competing in affiliated showing classes compared to the other two disciplines 

(staying in the field and a busy summer of Pony Club activities and one day events) 

(p < 0.01). Overall there were no significant differences between professionals and 

non-professionals in how they rated the pony for each of the disciplines (Table 3.2). 

The difference between the expert opinion of the weight categorisation (slightly 

overweight) and the respondents’ answers for each discipline was evaluated. 

Statistical analysis revealed that for showing and staying in the field, the pony was 

considered by respondents to be closer to ‘about right’ in comparison to the expert 

opinion (p < 0.01), whilst the opposite was true for Pony club activities, where it 

was considered to be more overweight than the expert opinion (p < 0.01) (Figure 

3.2).  There was no difference between the expert opinion, and whether the 

respondents were professionals or non-professionals for taking part in Pony Club 

activities or mainly staying in the field (p = 0.91 and p = 0.11, respectively), whereas 

for competing in affiliated showing classes, the difference between the expert and 

respondents was significantly greater for professionals ( p = 0.05). 

Cob horse 

Respondents were shown a photographic image of a cob horse that was expertly 

evaluated in vivo and assigned a BCS of 6.5/9. As for the other images, respondents 

rated the cob significantly lower for competing in affiliated showing classes 

compared to the other disciplines (mainly staying in the field, competing in 

affiliated dressage classes and competing in affiliated one day events; p < 0.01).  

Overall there were no significant differences between professionals and non-

professionals in how they rated the horse in terms of weight/condition for each 

discipline (Table 3.2). The difference between the expert opinion of weight 
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categorisation (slightly overweight) and the respondents’ answers for each 

discipline was evaluated. For all four disciplines, the horse was considered by 

respondents to be closer to very overweight than the expert opinion (p < 0.01) 

(Figure 3.2). There was no difference between the expert opinion, and whether the 

respondents were professionals or non-professionals for any of the disciplines 

evaluated (p > 0.05).  
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Table 3.2: Number and percentage of professional and non-professional respondents categorising the weight/condition of a Sport horse, Pony and Cob 

horse for each discipline (Tier 1). * denotes where professionals are significantly different (p < 0.05) from corresponding non-professional response. 

Weight status 

 

Professional/Non-
professional 

Sport horse Pony Cob horse 

Field Showing Dressage One Day 
Event 

Field Showing Pony Club Field Showing Dressage One Day 
Event 

Very 
Overweight 

Professional 0 0 0 0 16 
(15.24) 

10 (9.52) 25 (23.81) 70 
(66.67) 

59 
(56.19) 

83 (79.05) 95 
(90.48) 

Non-professional 0 0 3 (0.68) 2 (0.45) 101 
(22.90) 

67 
(15.19) 

119 
(26.98) 

273 
(61.90) 

218 
(49.43) 

311 
(70.68) 

379 
(85.14) 

Slightly 
Overweight 

Professional 1   (0.95) 1 (0.95) 3 (2.86) 14 
(13.33) 

54 
(51.43) 

39 
(37.14) 

67 (63.81) 30 
(28.57) 

31 
(29.52) 

18 (17.14) 9 (8.57) 

Non-professional 14 (3.17) 15 (3.40) 19 (4.31) 64 
(14.51) 

214 
(48.53) 

185 
(41.95) 

252 
(57.14) 

139 
(31.52) 

172 
(39.00) 

118 
(26.82) 

59 
(13.38) 

About Right Professional 80 
(76.19) 

40 
(38.10) 

72 
(68.57) 

77 
(73.33) 

35 
(33.33) 

54 
(51.43) 

13 (12.38) 5 (4.76) 15 
(14.29) 

4 (3.81) 1 (0.95) 

Non-professional 347 
(78.68) 

186 
(42.18) 

338 
(76.64) 

320 
(72.56) 

126 
(28.57) 

178 
(40.36) 

68 (15.42) 29 (6.58) 51 
(11.56) 

9 (2.05) 3 (0.68) 

Slightly 
Underweight 

Professional 24 
(22.86) 

49 
(46.67) 

30 
(28.57)* 

13 
(12.38) 

0 2 (1.90) 0 0 0 0 0 

Non-professional 78 
(17.69) 

209 
(47.39) 

78 
(17.69) 

52 
(11.79) 

0 11 (2.49) 2 (0.45) 0 0 2 (0.45) 0 

Very 
Underweight 

Professional 0 15 
(14.29)* 

0 1 (0.95) 0 0 0 0 0 0 0 

Non-professional 2 (0.45) 31 (7.03) 3 (0.68) 3 (0.68) 0 0 0 0 0 0 0 
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Figure 3.2:  Agreement between expert and respondents in weight categorisation of a (A) 

Sport horse, (B) Cob horse and pony for taking part in different activities. Line at 0 denotes 

exact agreement (“About Right” for Sport horse and “Slightly Overweight” for Cob horse 

and Pony). *Denotes where respondent is significantly different from expert. Error bars = 

95% confidence intervals. 

 

Scenario and ranking  

Respondents were shown four images of horses and ponies and asked to match 

each picture to the appropriate scenario e.g. this horse/pony is obese and needs to 

go on a strict diet immediately; this horse/pony could do with gaining a little bit of 

weight/condition before a busy summer competing etc. Over 90% of respondents 

correctly matched each of the four pictures with the correct scenario and chi-

squared tests revealed there was no difference between professionals and non-

professionals in their ability to correctly match the picture to the scenario. Lastly, 

respondents were asked to rank five images of horses and ponies in order of 

increasing weight/condition from 1-5. Over half (55%) of respondents correctly 

identified the very thin animal (1), with 45% of respondents ranking the horse who 

should have been ranked as 2 as 1. Similarly, 54.5% of respondents correctly 

identified the second ranked animal, with 44.3% of respondents ranking the very 
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thin animal (1) in second. For the three other ranks (3-5), over 98% of respondents 

correctly identified which horse matched each position. There was no difference 

between professionals and non-professionals in their ability to rank the images in 

order of increasing weight/condition.  

Tier 2 

Population Demographics 

There were 177 responses to the questionnaire.  The majority of respondents 

resided in England (83.1%), with 12.4% from Scotland, 2.8% from Wales, and 1.7% 

from Northern Ireland (Table 3.1). The distribution of ages and gender are outlined 

in Table 3.1. Almost all respondents were female (98.3%). A large proportion of 

respondents were aged between 26 and 40 years (41.8%), whilst a further 20.9% 

were aged between 18 and 25 years, 27.1% were aged between 41 and 60 years, 

6.2% aged less than 18 years and 3.9% aged over 60 years. The division in the 

respondents between hobbyists/leisure riders and amateur 

competitor/professional was 37.9% and 62.2%, respectively.  The majority of 

respondents owned or cared for 1 horse/pony (40.8%), 25.4% owned or cared for 2 

horses/ponies, whilst 33.9% of respondents owned or cared for 3 or more 

horses/ponies.  

Horse/pony information 

If respondents owned or cared for more than 1 horse/pony they were asked to 

choose just one of their animals for completing the questionnaire. Table 3.3 

outlines the data gathered regarding the horses and ponies. Eighty eight percent of 

respondents reported on management practices regarding a horse under their care 

with 12% reporting on a pony. Over 40% of horses/ponies were kept either at home 

or at a friend’s premises, whilst the remaining animals were reported as being kept 

on a livery basis, either DIY livery (22.0%) or full/part livery (36.7%). Over half 

(50.9%) of the horses/ponies were aged between 4 and 10 years old, whilst a 

smaller proportion aged either under 4 years (2.8%) or over 21 years (6.2%) and the 

remaining aged between 11 and 21 years old. The majority of horses/ponies were 
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geldings (63.3%), with only 2 colts/stallions (1.1%) and the remaining 35.6% being 

mares. Almost half (44.6%) of animals were reported to be Thoroughbred/Sport 

horse type and 17.5% were Warmbloods. The number of Native breeds, Cobs and 

Irish Draught/Irish Draught type were reasonably evenly distributed at around 10% 

prevalence. Only 7 animals were reported to be either Arabs or a cross-breed pony. 

Over half the horses and ponies were kept for leisure purposes (55.4%), with the 

remaining 44.6% kept for competing in affiliated competitions.  

 

Table 3.3: Horse/pony information gathered in Tier 2. 

Horse/pony information Number of 
respondents 

Number of horses 

Number of ponies 

156 (88.14%) 

21 (11.86%) 

Age 

Under 4 years 

4-10 years 

11-16 years 

17-21 years 

Over 21 years  

 

5 (2.82%) 

90 (50.85%) 

49 (27.68%) 

22 (12.43%) 

11 (6.21%) 

Gender  

Mare 

Gelding 

Colt/stallion 

 

63 (35.59%) 

112 (63.28%) 

2 (1.13%) 

Where kept 

At home/at a friends 

DIY livery 

Full/part livery 

 

73 (41.24%) 

39 (22.03%) 

65 (36.72%) 

Breed 

Thoroughbred/Sport horse 

Warmblood 

Cob 

Irish draught/Irish draught type 

Native breed 

Arab 

Cross-breed pony 

 

79 (44.63%) 

31 (17.51%) 

19 (10.73%) 

16 (9.04%) 

18 (10.17%) 

7 (3.95%) 

7 (3.95%) 
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Health and Wellbeing of horses and ponies 

Owners were asked about veterinary attendance in the preceding 3 month period 

prior to completing the questionnaire. Over 40% (44.6%) of respondents had a 

veterinarian attend their horse/pony in the previous 3 months. Of these 79 

veterinary visits, 36.7% of them were for routine purposes 

(vaccination/microchipping), with 37.5% for attending a wound or lameness, 21.3% 

for dental reasons, and the remaining visits for colic, skin conditions, laminitis and 

respiratory conditions. Thirteen animals (7.3%) were reported to have suffered 

from laminitis on at least one occasion in their lifetime, with the diagnosis being 

made by a veterinary surgeon in 69% of cases.  Three respondents reported that 

the animal had suffered from more than one laminitic episode. There was no 

difference in owner-reported laminitis history between leisure and competition 

horses and ponies (p = 0.10), however significantly more ponies were reported to 

have a history of laminitis compared to horses (p < 0.01).  

Respondents were asked if their horse/pony had ever been diagnosed with Equine 

Metabolic Syndrome (EMS). Only one respondent reported that their animal had 

been diagnosed with EMS which had been diagnosed by a veterinarian. 

Furthermore, 2.8% respondents reported that their animal had been diagnosed 

with pars pituitary intermedia dysfunction (PPID).Respondents were asked about 

how often they administer anthelminthics to their horse/pony. Over half of 

respondents (55.1%) reported that the decision to administer anthelminthics to 

their animal was made on the basis of regular faecal egg counting. Thirty five 

percent of respondents stated they administered anthelminthics to their 

horse/pony on a regular basis (every 4-12 weeks), with the remaining respondents 

stating they administered anthelminthics to their horse/pony according to a 

yard/vet approved program (4%), annually/twice annually (4.6%), or never/not 

known (1.1%). There was no difference in the administration of anthelmintics 

hobbyists and amateur competitors/professionals (keeper status; p = 0.54) or 

between leisure and competition horses/ponies (horse kept status; p = 0.80). 

However there was a strong correlation between keeper status and horse kept 
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status (r = 0.63) so this result was not unexpected.  

Respondents were asked to rank their horse/pony on a scale from 1 (very poor) to 9 

(extremely fat) based on their current condition. This scale was used as it was the 

same scale-range as that used for body condition scoring by our group (Kohnke, 

1992). A binary variable was created whereby the horse/pony was identified as 

obese (≥7/9) or non-obese (< 7/9). Owner-reported obesity was found to be 4.5%, 

with the majority of owners scoring their animals a 5/9 which would be considered 

to be normal (Figure 3.3). There was no difference between keeper status (p = 

0.47), and owner-reported obesity. However, significantly more leisure animals 

were reported to be obese compared to competition animals (8.2% vs. 0%; p < 

0.01).  

 

 

Figure 3.3: Owner-reported body condition score of their horse/pony in Tier 2.  
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Owners were asked to rank their horse/pony’s weight/condition, on a 5-point scale, 

between the seasons. The response for each season is shown in Figure 3.4, with a 

response of 2 equalling “about right”, 3 equals “slightly overweight” and 1 equals 

“slightly underweight”. Owners reported their horse/pony to be more overweight 

in summer compared to the other seasons (p < 0.01). Associations between the 

outcome variable “owner reported condition” during winter and summer and the 

reason the horse was kept (leisure vs. competition) were assessed by multinomial 

logistic regression. No difference was found between leisure and competition 

horses/ ponies and their owner-reported weight in winter, however leisure 

horses/ponies were found to be more likely to be slightly overweight than 

competition horses/ponies in spring (relative risk ratio (RRR) 2.4; p = 0.03), summer 

(RRR = 3.9; p < 0.01) and autumn (RRR = 3.6; p < 0.01).  

 

 

Figure 3.4: Owner-reported weight/condition of their horse/pony in the different seasons 

in Tier 2. The mean response was calculated for each season, whereby a value of 3 equates 

to slightly overweight, 2 = about right, 1 = slightly underweight and 0 = very underweight. 

Different lowercase letters indicate significant differences between seasons (p < 0.05).  
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Following this, respondents were asked to rank a selection of animal maintenance 

requirements or tasks in the order in which they perceived to be important to 

them, from 1 being the most important to 6 being the least important (Table 3.4). 

More than half of respondents (59.1%) perceived that maintaining their horse/pony 

at a healthy weight/condition was the most important of the options given (ranked 

number 1), followed by having their horse/pony’s feet regularly trimmed/shod 

(31% ranked as number 1). Grooming their horse/pony on a daily basis was 

considered to be the least important scenario (52.1% ranked as number 6). There 

was no difference in ranking between hobbyists and amateur 

competitors/professionals for any of the scenarios (p > 0.05).  

 

Table 3.4: Number and percentage of respondents ranking each maintenance requirement 

in order of importance from 1 (most important) to 6 (least important). 

Maintenance 
requirement 

Importance, 1 = most important, 6 = least important 

1 2 3 4 5 6 

Maintaining 
horse/pony at a 
healthy 
weight/condition 

101 
(59.06%) 

50 
(29.24%) 

13 
(7.60%) 

5 
(2.92%) 

2 
(1.17%) 

0 

Having your 
horse/pony’s feet 
regularly 
trimmed/shod 

53 
(30.99%) 

75 
(43.86%) 

24 
(14.04%) 

13 
(7.60%) 

4 
(2.34%) 

2 
(1.17%) 

Having your 
horse/pony’s teeth 
regularly checked 

3  
(1.75%) 

14  
(8.19%) 

61 
(35.67%) 

50 
(29.24%) 

27 
(15.79%) 

16 
(9.36%) 

Having your 
horse/pony’s back 
regularly checked 

1  
(0.58%) 

9     
(5.26%) 

14 
(8.19%) 

34 
(19.88%) 

59 
(34.50%) 

54 
(31.58%) 

Picking your 
horse/pony’s feet out 
on a daily  basis 

9 
(5.26%) 

21 
(12.28%) 

48 
(28.07%) 

43 
(25.15%) 

40 
(23.29%) 

10 
(5.85%) 

Grooming your 
horse/pony on a daily 
basis 

4 
(2.34%) 

2     
(1.17%) 

11 
(6.43%) 

26 
(15.20%) 

39 
(22.81%) 

89 
(52.05%) 
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Use and exercise of horse/pony  

Respondents were asked to assess how fit they considered their horse/pony. As 

expected, more competition horses/ponies were reported to be very/extremely fit 

compared to leisure horse/ponies (RRR 1.6; p < 0.01). Following this, respondents 

were asked how many hours they rode per week in the different seasons. The 

average number of hours ridden in a month was significantly greater for both 

amateur competitors/professionals compared to hobbyists (p < 0.01) and for leisure 

compared to competition horses/ponies (p = 0.01; Figure 3.5).  

 

Figure 3.5: Owner-reported average number of hours ridden per week in each season for 

leisure and competition horses/ponies. *Denotes significant difference from corresponding 

competition horse/pony value (p < 0.05). 

 

Seasonal Management and Feed Provision 

Questions were asked about the daily routine of the respondent’s horses/ponies 

during the summer and winter. Horses and ponies kept for leisure purposes were 

more likely to be kept outside at grass during the summer compared to competition 
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animals (61.2% vs. 41.3%; p < 0.01). There was no difference in the proportion of 

leisure and competition animals kept outside at grass during the winter months (p = 

0.13). There was no difference in the type of grazing (restricted / unrestricted) 

offered during summer (p = 0.08) or winter (p = 0.92) between leisure and 

competition animals. Significantly more (60% vs. 41.79%; p = 0.02) amateur 

competitors/professionals compared with hobbyists allowed their horse/pony 

unrestricted grazing during the summer but this was not the case during the winter 

(p = 0.57). Only 5.7% of respondents stated they used grazing muzzles during the 

summer, with 0.6% of respondents using them during the winter months. There 

was no difference in the manner and provision of hay in the stable (ad libitum vs. 

restricted) between leisure and competition horses/ponies irrespective of season (p 

= 0.53 summer; p = 0.28 winter). A significantly greater number of competition 

horses/ponies were fed some form of complementary feed in addition to forage 

(e.g. competition mix, pasture mix etc.) compared with leisure horses/ponies 

irrespective of season (summer: 57.5% vs. 31.6%; p < 0.01 winter 63.8% vs. 43.9%; 

p < 0.01). Furthermore, a greater proportion of competition horses were fed 

‘straight’ feeds (oats, bran etc.) and competition mix (a high energy coarse mix 

compounded to nutritionally support animals in hard work) compared to leisure 

animals (p < 0.01) during the summer months. In the winter months, a greater 

proportion of competition horses/ponies were found to be fed conditioning mix 

(designed to provide controlled levels of cereal starch, sugar and protein for the 

maintenance of muscle tone and to promote condition) , competition mix (p < 0.01) 

and a nutrient balancer (p = 0.04). Oral supplement feeding (nutraceutical food 

substance that may have postulated therapeutic functional benefits) was found to 

be more common during the summer months (63.1% fed some form of 

supplement) compared to winter (54%). In both summer and winter months, 

competition horses/ponies were more likely to be fed an electrolyte supplement 

than leisure horses/ponies (p < 0.01).  
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3.5 Discussion 

The current study was designed to further our understanding on perceptions of 

obesity in horses and ponies and gather wider information regarding current 

management practices of horses and ponies in the UK.  

Tier 1 has clearly demonstrated that horse owners and enthusiasts vary in their 

ability to identify overweight horses and ponies from photographic images. 

Evidence from human epidemiology studies suggest that the increased exposure to 

larger body sizes we are experiencing in this obesity epidemic has led to a shift in 

what we perceive to be normal in terms of body weight (Burke et al., 2010). This 

concept is supported by a recent study in which exposure to photographs of obese 

males resulted in an overweight male being perceived to be of a healthier weight in 

comparison to those respondents who were initially exposed to photographs of a 

healthy weight male (Robinson and Kirkham, 2014). Furthermore, the exposure to 

obesity also resulted in respondents believing that an overweight person did not 

need to lose weight (Robinson and Kirkham, 2014). A follow-up study added to 

these findings that obesity exposure led to an increased acceptability of obesity by 

shifting visual preference towards a preference of increased body size (Robinson 

and Christiansen, 2014). Taken together, these data would suggest that exposure to 

obesity has normalised our perceptions of obesity and led to an increased 

acceptance of larger body sizes. Whilst this has yet to be evaluated for the horse, 

Figure 3.6 depicts a champion Hunter horse from 1935 and one from 2008, and 

clear differences in body shape and size are evident which may be the result of a 

shift in what is perceived to be normal in terms of body condition over the years.   



 

73 

 

3 Perceptions of obesity 

 

 

 

 

 

Figure 3.6: Champion Hunter horses A) from 1935 and B) from 2008 (A; reprinted with 

permission from the Museum of English Rural Life, University of Reading; B picture supplied 

courtesy of The Scottish Farmer)  

 Data from the current study identified that only 11% of respondents correctly 

identified all six overweight horses and ponies from photographic images. 

Interestingly, for three of the images; between 65% and 98% of the respondents 

correctly identified these horses/ponies as overweight. The animals in these images 

appeared to have more  ‘visually apparent’ regional adiposity including a more 

defined ‘cresty neck’ compared to the other three overweight animals pictured, 

whereby less than half of the respondents correctly identified them as being 

overweight. Respondents may have been more drawn to these images due to the 

attention surrounding crest fat and its potential role in the aetiology of obesity and 

laminitis. A cresty neck score  was developed and shown to be positively associated 

with insulin resistance and risk of laminitis (Carter et al., 2009). Furthermore, 

expression of some inflammatory-related genes have been shown to be greater in 

crest fat compared to other adipose depots (Bruynsteen et al., 2013; Burns et al., 

2010), although it is unknown whether this difference is related to tissue 

heterogeneity or whether this difference is translated into differences at the 

protein level. More recently a higher cresty neck score has been shown during 

winter months in comparison to summer, with breed being the strongest risk factor 

for cresty neck score in both seasons (Giles et al., 2015). Increased regional 

adiposity in areas including the crest has also received attention due to its role in 

the diagnosis of Equine Metabolic Syndrome (EMS), a condition comprised of 

several factors including regional adiposity, insulin dysregulation and laminitis 

(Frank et al., 2010). Although not directly linked, there is evidence to support an 

A B 
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association between crest fat and insulin dysregulation and laminitis risk, however 

this may be confounded by breed and more work is required to establish a direct 

mechanism by which crest fat may function in obesity and associated disease risk.  

Additionally, for two of the images in this question, over 70% of respondents 

considered them to be overweight when in fact they were expertly assessed to 

have a normal body condition. Both of these horses were cob horse breeds and 

although cob type breeds have been shown to be a risk factor for obesity (Giles et 

al., 2014; Robin et al., 2015), there appears to be a misperception between the 

natural body shape of this breed and increased adiposity. Similarly, a study was 

conducted in the USA to assess owner perception of body weight and body 

condition score of draught and Warmblood horses, and they identified that almost 

half of owners considered draft horses to be overweight, whilst only 2% of 

Warmbloods were considered overweight (Hansen et al., 2015), which also suggests 

that there is a misperception of obesity between different breeds. This may be an 

area which warrants further investigation. 

Results from the discipline question in Tier 1 fell in line with anecdotal 

observations. For competing in showing classes, respondents deemed it more 

acceptable for horses and ponies, regardless of breed or body size, to carry more 

weight than for competing in other disciplines. As for the overweight question, the 

image of the cob horse used in this question was consistently considered to be 

more overweight than the expertly assessed response and again may reflect the 

misperception between the natural body shape and body fatness.  

On the whole, there were limited differences between professionals and non-

professionals in their responses to any of the questions, although professionals 

were twice as likely to consider the sport horse to be very underweight for 

competing in showing classes compared to non-professionals.  

The BCS ranking question in Tier 1 revealed some discrepancy between animals 

ranked first and second (most and second-most underweight) by respondents in 

terms of weight/condition. This may be due in part to the images used in terms of 
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animal coat colour and environmental lighting. The pony that should have been 

correctly ranked first (most underweight, BCS 1.25/9) was light grey in colour. This 

colouration may have inadvertently obscured visual appraisal of anatomical 

landmarks such as hip bones and tailhead. Conversely, the horse that should have 

been correctly ranked in second (BCS 3/9) was chestnut and the rib outline was 

more apparent. The relative visual prominence this animals ribs may have led 

respondents to consider this animal to be the leanest in terms of weight/condition.  

The geographical distribution of responses for both Tier 1 and Tier 2 questionnaires 

appear similar to a survey conducted using veterinary-registered horse owners, 

with the majority of the survey population residing in England (Wylie et al., 2013). 

The equine demographics from Tier 2 in the current study also appear to be in 

agreement with recently published data, with Thoroughbred/Thoroughbred types 

accounting for the majority of the survey population (Hotchkiss et al., 2007; Wylie 

et al., 2013), and a larger proportion of geldings was reported compared to mares; 

although the percentage of geldings in the current study was higher than previously 

published data (Wylie et al., 2013). Only 11% of the current study population 

comprised ponies, with the remaining 89% being horses, a lower proportion of 

ponies than has been reported in a similar previous survey (Wylie et al., 2013). This 

may be due to a large proportion of adult respondents who may be more likely to 

own a horse than younger respondents.  

The prevalence of owner-reported laminitis history in the current study (7.34%) was 

lower than has been reported previously, where a prevalence of 15% was identified 

(Ireland et al., 2013). However, in agreement with that study, significantly more 

ponies than horses were reported to have had a history of laminitis. It could be 

suggested that the lower incidence of laminitis in the current study may be due to a 

lower proportion of ponies in the current study, which are considered to be at 

greater risk for the development of this condition (Alford et al., 2001; Geor, 2008). 

Owner-reported prevalence of PPID was found to be 2.82%, identical to owner-

reported prevalence in a previous study (Ireland et al., 2013).  

 Owner-reported prevalence of obesity in the current study (4.52%) was markedly 
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lower than previous studies. A recent study demonstrated an owner-reported 

obesity prevalence of 30% (Robin et al., 2015). There were a lower proportion of 

native ponies and a higher proportion of competition animals in the current study 

compared to that of Robin et al. (Robin et al., 2015) which may partly explain the 

low owner-reported obesity rate as both native ponies and leisure animals are 

known to be at increased risk factors of obesity (Giles et al., 2014; Robin et al., 

2015). Notably, there were significant differences for owner-reported body 

weight/condition of their animals across the seasons in the current study. For 

spring, summer and autumn, animals kept for leisure purposes were significantly 

more likely to be slightly overweight compared to animals kept for affiliated 

competitions. No differences were observed for winter and it is unclear whether 

this is due to a weight gain in competition animals or a natural winter weight loss 

for leisure animals. Seasonal variation in body condition is an evolutionary 

conserved adaptation to aid survival during winter months when food availability is 

scarce by increasing fat deposition during high availability of food during the 

summer months. However, it has been shown that for ponies with ad libitum access 

to a fibre-based diet, this seasonal mechanism is insufficient in preventing weight 

gain during the winter months (Dugdale et al., 2011).  

The daily routines during summer and winter months were reported, with over 50% 

of animals spending 24 hours at pasture during the summer, which reduced down 

to 21% during the winter months, a finding which is consistent with other published 

data (Hotchkiss et al., 2007; Wylie et al., 2013). The majority of animals were fed 

some form of concentrate feedstuff (energy providing complementary feed), 

although fewer animals received concentrate feeds during the summer months 

when energy requirements from grazing would be expected to be sufficient. As 

expected, significantly more competition animals received some form of 

concentrate feed compared to leisure animals in both summer and winter. 

Furthermore, an electrolyte-based supplement was fed more commonly to 

competition animals compared to leisure animals in both summer and winter, 

which is to be expected due to the increased workloads experienced by 

competition animals. The percentage of animals receiving electrolyte supplements 
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was greater than in other published data (Wylie et al., 2013), but this is likely due to 

the higher proportion of competition animals in the current study.  

There are some limitations to the current study. As with any questionnaires, there 

is a risk of responder bias whereby those with an interest in the subject are more 

likely to participate. Although all the images used in Tier 1 were of the same side of 

the horse/pony and different colours of horses and ponies were used to limit bias, 

certain colours against different backgrounds may have made anatomical 

landmarks more difficult to distinguish.  

 

3.6 Conclusion 

In conclusion, this study has demonstrated a limit in horse owners and enthusiast’s 

ability to identify overweight animals from photographic images. Additionally, it has 

been clearly demonstrated that perceptions of weight/condition alter depending on 

the activity the horse/pony is intended for, with increased weight/condition 

deemed to be more appropriate for competing in showing classes. To the author’s 

knowledge this is the first study to document this finding. These data will enable 

the provision of more targeted nutritional advice to horse owners. Tier 2 has 

gathered valuable data regarding management practices and obesity prevalence.   

Seasonal changes in weight, exercise, and feeding practises were identified and may 

form the basis for further epidemiological studies.  
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4.1 Abstract 

Anatomically distinct adipose tissues represent variable risks to metabolic health in 

man and some other mammals. Quantitative-imaging of internal adipose depots is 

problematic in large animals and associations between regional adiposity and 

health are poorly understood. This study aimed to develop and test a semi-

quantitative system (EQUIFAT) which could be applied to regional adipose tissues. 

Anatomically-defined, photographic images of adipose depots (omental, 

mesenteric, epicardial, rump) were collected from 38 animals immediately post-

mortem. Images were ranked and depot-specific descriptors were developed (1 = 

no fat visible; 5 = excessive fat present). Nuchal-crest and ventro-abdominal-

retroperitoneal adipose depot depths (cm) were transformed to categorical 5 point 

scores. 

The repeatability and reliability of EQUIFAT was independently tested by 24 

observers. When half scores were permitted, inter-observer agreement was 

substantial (average κw: mesenteric, 0.79; omental, 0.79; rump 0.61) or moderate 

(average κw; epicardial, 0.60). Intra-observer repeatability was tested by 8 observers 

on 2 occasions. Kappa analysis indicated perfect (omental and mesenteric) and 

substantial agreement (epicardial and rump) between attempts.  

A further 207 animals were evaluated ante-mortem (age, height, breed-type, 

gender, BCS) and again immediately post-mortem (EQUIFAT scores, carcass weight). 

Multivariable, random effect linear regression models were fitted (breed as random 

effect; BCS as outcome variable). Only height, carcass weight, omental and 

retroperitoneal EQUIFAT scores remained as explanatory variables in the final 

model.  

The EQUIFAT scores developed here indicate functional differences between 

regional adipose depots and can be applied in surgical and post-mortem situations 

to describe associations between adiposity and disease risk.  
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4.2 Introduction 

Adipose tissue is an active endocrine organ, secreting chemical messengers 

collectively termed adipokines into the circulation to mediate communication with 

other organs. White adipose tissue (WAT) is distributed in anatomically discrete 

depots throughout the body where it performs diverse functional roles. Specific 

depots range in function from those primarily providing structural support and local 

protection to the more readily recognized role of WAT as a dynamic reserve of 

metabolic energy and water (Trayhurn et al., 2011; Wronska and Kmiec, 2012). The 

precise distribution of adipose tissues between depots within an individual, or ‘fat 

patterning’, has been related to disease risk in a number of domestic species and in 

man (Catalano et al., 2010; Lottati et al., 2009). For example, increased visceral 

(abdominal) WAT deposition measured by computed tomography (CT) has been 

clearly characterised as a risk factor for the development of cardiovascular and 

metabolic disease in man (Fox et al., 2007; Goodpaster et al., 2005).  

Despite continued reports of a high prevalence of obesity in the UK population of 

leisure horses and ponies (Giles et al., 2014; Robin et al., 2015), relatively little is 

known about functional differences between discrete adipose tissue depots in this 

species. Whilst the exact mechanisms remain unclear, obesity has been associated 

with an increased risk for the development of insulin dysregulation and the 

common systemic condition, laminitis, which initially presents as severe foot pain 

(Bailey et al., 2008; Geor, 2008).  Obesity can also have a negative impact on 

athletic performance and fertility (Henneke et al., 1983; Kearns et al., 2002). 

Understanding functional distinctions and differential health risks between the 

various adipose tissue depots requires a capability to evaluate these covert, internal 

WAT reserves. Body condition score (BCS) systems, originally intended as 

management tools for the assessment of flesh cover and subsequent meat yield in 

food animals, are now routinely applied to horses and ponies in the field to 

estimate ‘body fatness’. Various equine BCS systems have been reported. When 

BCS data (using the system described in the current study) were compared to 

concurrently-collected data generated by the empirically validated deuterium oxide 
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dilution method for a mixed breed population of horses and ponies (Kohnke, 1992), 

BCS proved to be a robust predictor of total body fat content up to BCS 6.8/9 

(Dugdale et al., 2012). Although BCS systems are straightforward and useful for the 

assessment of ‘body fatness’ in Equidae especially when undertaken by 

experienced practitioners, they have clear limitations. BCS systems, for example, 

assess externally visible/palpable adipose tissues and cannot evaluate internal 

adiposity. Further, BCS system used routinely by researchers fails to predict body 

fat content with any accuracy in obese animals (> BCS of 6.8/9) (Dugdale et al., 

2012).  Similarly, the ability to measure total body fat using the deuterium oxide 

dilution method is largely restricted to research settings and it cannot distinguish 

between body fat in specific anatomical regions. To quantify regional body fat 

distribution, powerful imaging modalities such as computed tomography (CT), dual-

energy x-ray absorptiometry (DXA), and magnetic resonance imaging (MRI) have 

been widely applied in man (Ross et al., 1992; Smith et al., 2001) and smaller food 

and companion species (Gjerlaug-Enger et al., 2012; Speakman et al., 2003). The 

larger body size of horses has to date, prohibited the application of these methods 

for the quantification of regional adipose depots in living Equidae.  

As a preliminary step towards improving our understanding of the different roles 

played by regional adipose depots in the horse, the present study aimed to develop 

and test a semi-quantitative scoring system for post-mortem evaluation of specific 

regional equine adipose depots. A second objective was to describe any 

associations between regional adiposity appraised ante-mortem via BCS, and post-

mortem regional ‘fat scores’.  

 

4.3 Materials and methods 

Three sequential studies were performed to address the objectives of 1) developing 

suitable descriptors to score 6 discrete adipose tissue depots (EQUIFAT scores) 2) 

testing the repeatability and reliability of these descriptors and to 3) using the 

system to initially evaluate any associations between these post-mortem ‘fat scores’ 
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and ante-mortem BCS. Data were derived from animals presented at a commercial 

UK abattoir (LJ Potters, Taunton, Somerset). Animals were slaughtered in 

accordance with EU legislations EC 852/2004, 853/2004 and 854/2004, for reasons 

unrelated to this study. All animals were in good general health. 

The development of EQUIFAT scores 

Anatomically defined photographic images of omental, mesenteric, epicardial and 

rump adipose depots were taken post-mortem from 38 animals between August 

and September 2012 (Table 4.1). The population comprised of mixed breed horses 

and ponies (26 horses 12 ponies; 23 mares 15 geldings) across the range of BCS (/9; 

(Kohnke, 1992)) as expected from a commercial abattoir setting (Mean BCS 5.0/9, 

SD 1.5, range 2.2-7.7/9). Photographs for each adipose depot were ranked in order 

of increasing ‘visually-apparent’ adiposity and a depot-specific 5 point scoring 

system, termed EQUIFAT (1 = least; 5 = greatest) was developed with detailed 

descriptors (Figure 4.1; Appendix D).  Representative images (n = 5) for each score 

were included with the descriptors for each adipose depot to facilitate the use of 

the scoring system.  In addition to the above subjective scores, quantitative scores 

were also created for nuchal crest and abdominal retroperitoneal adipose depots. 

Depths (± 1mm) of the nuchal crest and abdominal retroperitoneal adipose depots 

were recorded at their cranio-caudal midpoints on the medial aspect of the left, 

split carcasses. The range of recorded depths were uniformly distributed and these 

data were recoded as categorical scores (1 – 5) as follows: Crest: 1 = 0-2.99cm; 2 = 

3-5.99cm; 3 = 6-8.99cm; 4 = 9-11.99cm; 5 = ≥12cm; Retroperitoneal: 1 = 0-1.99cm; 

2 = 2-3.99cm; 3 = 4-5.99cm; 4 = 6-7.99cm; 5 = ≥8cm. 

For assessment of BCS, six areas of the body (neck, withers, loin, tailhead, ribs and 

shoulder) are graded and each area is assigned a score from 1 (very poor) to 9 

(extremely fat) based on detailed descriptors (Kohnke, 1992). The average of the six 

values is calculated to provide a final, overall body condition score. 
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Table 4.1: Population of animals used in the current study as the test population used to 

develop the EQUIFAT scoring system (n = 38) and the population used to describe 

associations between EQUIFAT scores and BCS (n = 207).  

 

 Test population (n = 38) Whole population ( n = 207) 

 

 

Average (Range) 

BCS (/9) 

 

4.98 (2.2 - 7.7) 5.07 (2.3 – 8.3) 

 

Height 

 

151cm (102-178) 

26 horses; 12 ponies 

154cm (92-178) 

148 horses; 59 ponies 

Age 

 

10.1 years (3 – 20) 11.4 years (2-26) 

 

Gender 

 

15 Geldings, 23 Mares 70 Geldings, 137 Mares 

 

 

  Testing the repeatability and reliability of EQUIFAT scores 

The constraints of the commercial setting prohibited repeatability testing at the 

time of post-mortem. Therefore, the remaining 33 photographic images (excluding 

5/38 presented with the descriptors) of each depot were randomised and used to 

create a slideshow for each depot. In order to assess the reliability and test the 

agreement between observers, the EQUIFAT scoring system was tested by a total of 

24 individuals (17 veterinary surgeons, 5 clinical pathologists and 2 scientific 

researchers). 

Half of the respondents were asked to use whole numbers only (1-5) and half were 

given the option of using whole or half scores. Each participant was informed of the 

nature of the study and provided with the images and the score descriptors. They 

were asked to assign a number between 1 and 5 (using half or whole numbers as 

above) for each image on a score sheet. Participants scored the images in isolation 

and were blinded to each other’s responses. To assess the repeatability of the 

scoring system, four observers from each group (those using whole scores and 

those allowed to use half scores) repeated the protocol at least two weeks after 

their first attempt.  
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Figure 4.1: Example EQUIFAT scoring system for mesenteric adipose depot. 

 

Associations between EQUIFAT scores and BCS 

Data for 207 animals were collected ante-mortem (BCS) and again immediately 

post-mortem (EQUIFAT) between August 2012 and January 2014 (Table 4.1). 

Information gathered ante-mortem included: age in years (passport), estimated 

withers height, breed-type, gender and BCS (/9). Post-mortem, carcass weight and 

EQUIFAT scores were recorded for omental, mesenteric, epicardial, rump, crest and 

retroperitoneal fats.  
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Data analysis 

Statistical analyses were performed using STATA 12 (StataCorp, Texas). Statistical 

significance was set at p <0.05.  

Intra-observer repeatability 

For the four observers who repeated the assessment in each group, the number 

and percentage of exact agreement, along with score differences between the 

observers first and second attempts was calculated. The non-parametric Wilcoxon 

signed-rank test was applied to test the agreement between attempts with a 

predicted total agreement of zero (100% agreement) for each observer. Pairwise 

kappa analysis using quadratic weights was then used to determine the agreement 

between observations. Quadratic weights assign less weight to agreement when 

comparative scores are further apart. Interpretation of kappa values is as follows:  0 

= poor; 0.01 to 0.20 = slight; 0.21 to 0.40 = fair; 0.41 to 0.60 = moderate; 0.61 to 

0.80 = substantial; 0.81 to 1.00 = almost perfect. 

Inter-observer agreement 

Kappa analyses were used to measure the agreement between observers for the 4 

subjectively-scored adipose depots, beyond that expected by chance alone. 

Weighted kappa, using quadratic weights, was calculated for scores from each 

individual observer against those submitted by each of the other observers. The 

mean of these 11 weighted kappa values was recorded as the inter-observer 

agreement for that individual. This was repeated for each of the 4 adipose depots 

(omental, mesenteric, epicardial and rump fats).  

Unweighted kappa was recorded for each score for each adipose depot in order to 

assess the repeatability of assigning appropriate scores for the level of adiposity 

observed.  

Associations between EQUIFAT scores and BCS 

In order to describe associations between fat scores and BCS, two multivariable 
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random effects linear regression models were fitted with BCS as the outcome 

variable and breed considered as a random effect. As aspects of the original BCS 

scoring system, crest and rump EQUIFAT scores were a priori excluded from these 

analyses. Models were fitted using a backward elimination strategy whereby a full 

model was built and then each variable removed in turn, a likelihood ratio test 

performed and the resultant P-value noted.  The variable with the highest p-value 

was then omitted and the process repeated.  This process was repeated until only 

variables with p < 0.2 remained in the model.  The omitted variables were then 

added back in turn, starting with the lowest p-value, a likelihood ratio test 

performed after each addition, and the variable retained if p < 0.2.  This process 

was continued until no further variables could be added, to produce the final 

model. 

 In Model 1, all physical attributes and remaining EQUIFAT scores (omental, 

mesenteric, epicardial and retroperitoneal) were offered to the initial model as 

explanatory variables. Model 2 was fitted using only the EQUIFAT scores in order to 

assess the association between internal fat depots and BCS irrespective of other 

physical characteristics. For both models, the intra-class correlation for the random 

effect variable (breed) was calculated as a measure of the variance attributable to 

the random effect.  

Predicted marginal means were calculated from regression models and displayed 

graphically where appropriate. 

 

4.4 Results 

Test population 

A total of 207 animals presented at the abattoir were utilised in the present study. 

Results from thirty eight animals were employed in development and validation of 

the EQUIFAT system. Paired Student t tests were employed to compare baseline 

characteristics (BCS, age, height) of these 38 to the population (n = 207) from which 
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they were derived.  The population of animals used to develop the EQUIFAT scoring 

system (n = 38) is described in Table 4.1. Figure 4.2 demonstrates there were no 

significant differences in attributes between the 38 test animals and the population 

(n = 207) in which they were nested. 

 

 

Figure 4.2: Population distributions of (A) age, (B) BCS and (C) withers height in the test 

animals (n = 38) and the population in which they were nested (n = 207). Paired Students T-

test was used to identify any differences between the populations. 

 

Intra-observer repeatability 

Overall mean exact agreement between attempts for the four observer’s using half 

scores was similar for all four adipose depots, ranging from 10.8 (32.6%) for rump 

fat to 14.8 (44.7%) for epicardial fat out of the 33 images (Table 4.2a). Mean exact 

agreement for the four observers using whole scores was greater than for those 

using half scores, with agreement ranging from 14.8 (44.7%) for epicardial fat to 
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20.8 (62.9%) for mesenteric fat (Table 4.2b). In order to determine if any bias was 

present between observers attempts, each score they assigned for the second 

attempt was subtracted from the equivalent score from their first attempt. 

Generally, all eight observers who repeated using either whole or half scores scored 

higher in their second attempt for each depot, most notably for rump fat, with 

score differences of -0.49 and -0.34 respectively. Pairwise kappa analysis was very 

similar between the groups of observers using half scores (Table 4.2a) and those 

using whole scores (Table 4.2b). There was almost perfect agreement between 

scores for omental and mesenteric fats and substantial agreement for epicardial 

and rump fats.  

Inter-observer agreement 

Weighted kappa analysis was employed to assess agreement within the two groups 

of 12 observers for each adipose depot (Table 4.3). For the four adipose depots, a 

weighted kappa value was generated for each observer against the 11 other 

observers and a mean weighted kappa was then recorded for each observer. As for 

the intra-observer agreement, the average kappa values obtained for each depot 

were very similar between those using half scores  and those using whole scores 

(Table 4.3). For those using half scores, the overall mean weighted kappa was 

substantial for mesenteric (0.79; standard deviation (SD) 0.04), omental (0.79; SD 

0.02) and rump (0.61; SD 0.07) fats, and moderate for epicardial fat (0.60; SD 0.07).  

For those using whole scores, the overall mean weighted kappa was substantial for 

mesenteric (0.79; SD 0.03) and omental fats (0.78; SD 0.04) and moderate for 

epicardial (0.54; SD 0.06) and rump fats (0.57; SD 0.08).  
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Table 4.2a: Intra-observer repeatability of the EQUIFAT scores for the four observers using half scores and assessing 33 images each of 4 adipose depots. A 

minimum of 14 days lapsed between attempts. Agreement data are presented for exact, 0.5 and 1 point differences between attempts. Kappa tests and p 

values for Wilcoxon sign-rank test are presented.

EQUIFAT Observer ID Exact 
agreement 

n/33 (%) 

0.5 point 
difference 
n/33 (%) 

1 point 
difference 
n/33 (%) 

Mean observer 
difference in score 
between attempts 

Pairwise kappa 
using quadratic 

weights 

Wilcoxon signed-rank test of 
observer difference 
compared to zero 

 p value 

M
e

se
n

te
ri

c 1 13 (39.4) 19 (57.6) 1 (3.0) 0.11 0.91 0.16 

2 13 (39.4) 12 (36.3) 8 (24.2) -0.24 0.81 0.02 

5 12 (36.4) 2 (6.1) 19 (57.5) -0.55 0.79 < 0.001 

11 12 (36.4) 10 (30.4) 11 (33.3) 0.09 0.83 0.44 

Overall Mean 12.5 (37.9) 10.8 (32.6) 9.8 (29.5) -0.15 0.84  

O
m

e
n

ta
l 

1 13 (39.4) 15 (45.5) 5 (15.1) -0.11 0.91 0.10 

2 9 (27.3) 13 (39.4) 8 (24.2) -0.38 0.77 <0.001 

5 19 (57.6) 3 (9.1) 11 (33.3) -0.14 0.89 0.23 

11 14 (42.4) 9 (27.3) 9 (27.3) 0.11 0.88 0.45 

Overall Mean 13.8 (41.7) 10 (30.3) 8.3 (25.2) -0.13 0.86  

Ep
ic

ar
d

ia
l 

1 10 (30.3) 15 (45.5) 7 (21.2) -0.29 0.74 0.01 

2 17 (51.5) 9 (27.3) 7 (21.2) -0.005 0.70 0.82 

5 16 (48.5) 1 (3.0) 12 (36.4) -0.23 0.69 0.30 

11 16 (48.5) 1 (3.0) 12 (36.4) -0.18 0.56 < 0.001 

Overall Mean 14.8 (44.7) 6.5 (19.7) 9.5 (28.8) -0.19 0.67  

R
u

m
p

 

1 10 (30.3) 16 (48.5) 5 (15.1) -0.05 0.76 0.90 

2 11 (33.33) 8 (24.2) 7 (27.3) -0.47 0.63 0.004 

5 9 (27.3) 1 (3.0) 19 (57.6) -0.74 0.54 < 0.001 

11 13 (39.4) 9 (27.3) 10 (30.3) -0.09 0.78 0.75 

Overall Mean 10.8 (32.6) 8.5 (25.8) 10.3 (31.2) -0.34 0.68  
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Table 4.2b: Intra-observer repeatability of EQUIFAT for the four observers using whole scores assessing 33 images each of 4 adipose depots. A minimum of 

14 days lapsed between attempts. Agreement data are presented for exact and 1 point differences between attempts. Kappa tests and p values for 

Wilcoxon sign-rank test are presented. 

EQUIFAT Observer ID Exact agreement 
n/33 (%) 

1 point difference 
n/33 (%) 

Mean observer 
difference in score 
between attempts 

Pairwise kappa 
using quadratic 

weights 

Wilcoxon signed-rank test of 
observer difference compared 

to zero 

 p value 

M
e

se
n

te
ri

c 2 25 (75.8) 7 (21.2) -0.10 0.84 0.18 

8 16 (48.5) 17 (51.5) 0.39 0.83 0.001 

9 23 (69.7) 10 (30.3) -0.18 0.90 0.06 

11 19 (57.6) 13 (39.4) -0.10 0.78 0.55 

Overall Mean 20.8 (62.9) 11.8 (35.6) 0.003 0.84  

O
m

e
n

ta
l 

2 18 (54.5) 15 (45.5) 0.33 0.85 0.004 

8 23 (69.7) 10 (30.3) 0.06 0.90 0.53 

9 19 (57.6) 14 (42.4) -0.06 0.88 0.59 

11 25 (75.8) 8 (24.3) -0.12 0.92 0.16 

Overall Mean 18.8 (56.8) 8.3 (25.2) 0.05 0.89  

Ep
ic

ar
d

ia
l 

2 12 (36.4) 20 (60.6) -0.42 0.41 0.004 

8 15 (45.5) 16 (48.5) -0.42 0.68 0.004 

9 14 (42.4) 14 (42.4) -0.36 0.64 0.04 

11 18 (54.5) 13 (39.4) 0.27 0.72 0.06 

Overall Mean 14.8 (44.7) 9.5 (28.8) 0.10 0.61  

R
u

m
p

 

2 19 (57.6) 11 (33.3) -0.45 0.72 0.001 

8 11 (33.3) 17 (51.5) -0.57 0.61 0.006 

9 11 (33.3) 18 (54.5) -0.79 0.58 < 0.001 

11 19 (57.6) 13 (39.4) -0.15 0.80 0.26 

Overall Mean 15 (45.5) 14.8 (44.7) -0.49 0.68  
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Table 4.3: Inter-observer agreement of the EQUIFAT scores. Weighted kappa value was 

generated for each observer (n = 12) against each other individual observers. Mean 

weighted kappa are presented for each observer. 

Observer 
ID 

 

Half scorers Whole scorers 

   

Mesenteric 
fat  

 

   

Omental 
fat 

 

   

Epicardial 
fat 

 

 

  Rump 
fat 

 

   

Mesenteric 
fat  

 

   

Omental 
fat 

 

   

Epicardial 
fat 

 

  

 Rump 
fat 

 

  

 

  Mean κw for each observer against 11 
other observers  

   

  Mean κw for each observer against 11 
other observers  

 1 

 

  0.83 

 

  0.82 

 

  0.69 

 

  0.67 

 

  0.82 

 

  0.78 

 

  0.61 

 

  0.65 

 

 2 

 

  0.74 

 

  0.76 

 

  0.56 

 

  0.62 

 

  0.78 

 

  0.79 

 

  0.52 

 

  0.54 

 

 3 

 

  0.81 

 

  0.81 

 

  0.62 

 

  0.59 

 

  0.74 

 

  0.79 

 

  0.54 

 

  0.64 

 

 4 

 

  0.82 

 

  0.77 

 

  0.56 

 

  0.45 

 

  0.79 

 

  0.78 

 

  0.51 

 

  0.53 

 

 5 

 

  0.78 

 

  0.79 

 

  0.67 

 

  0.68 

 

  0.79 

 

  0.72 

 

  0.40 

 

  0.53 

 

 6 

 

  0.73 

 

  0.81 

 

  0.58 

 

  0.54 

 

  0.82 

 

  0.80 

 

  0.62 

 

  0.63 

 

 7 

 

  0.79 

 

  0.81 

 

  0.67 

 

  0.70 

 

  0.81 

 

  0.82 

 

  0.56 

 

  0.59 

 

 8 

 

  0.75 

 

  0.76 

 

  0.64 

 

  0.54 

 

  0.82 

 

  0.78 

 

  0.54 

 

  0.55 

 

 9 

 

  0.77 

 

  0.79 

 

  0.65 

 

  0.62 

 

  0.80 

 

  0.82 

 

  0.57 

 

  0.39 

 

 10 

 

  0.85 

 

  0.78 

 

  0.59 

 

  0.56 

 

  0.75 

 

  0.67 

 

  0.56 

 

  0.68 

 

 11 

 

  0.82 

 

  0.82 

 

  0.62 

 

  0.57 

 

  0.72 

 

  0.80 

 

  0.51 

 

  0.53 

 

 12 

 

  0.81 

 

  0.78 

 

  0.44 

 

  0.66 

 

  0.80 

 

  0.76 

 

  0.59 

 

  0.58 

 

 Overall 
Mean (SD) 

  0.79 
(0.04) 

 

  0.79 
(0.02) 

 

  0.61 
(0.07) 

 

  0.60 
(0.07) 

  0.79 
(0.03) 

 

  0.78 
(0.04) 

 

  0.54 
(0.06) 

 

  0.57 
(0.08) 
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The application of unweighted  kappa analysis to describe the repeatability of the 

individual scores for each depot revealed substantial agreement between observers 

for a score of 5 for mesenteric fat (0.70) and a score of 1 for omental fat (0.61) for 

those using half scores (Table 4.4a). The repeatability of the remaining scores was 

found to have either fair or slight agreement. For observers using whole scores 

there was moderate agreement for a score of 1 for mesenteric (0.41) and omental 

(0.49) fats and almost perfect agreement for a score of 5 for mesenteric fat (0.85), 

with moderate agreement for a score of 5 for omental (0.48) and epicardial fats 

(0.41) (Table 4.4b). The repeatability of the remaining scores was found to have 

either fair or slight agreement.  Lower agreement was observed for the scores 

between 1.5 and 4.5 for mesenteric and omental fats.  

 

Table 4.4a: Repeatability of individual EQUIFAT scores for each depot to test for agreement 

between observers (n = 12) using half scores. Un-weighted kappa analyses were presented.   

 

Score 

 

Overall κ 

Mesenteric fat Omental fat 

 

Epicardial fat 

 

Rump fat 

 

  

 1 

 

0.19 (Slight) 

 

0.61 (Substantial) 

 

0.06 (Slight) 

 

0.20 (Slight) 

 

  

 1.5 

 

0.10 (Slight) 

 

0.09 (Slight) 

 

0.07 (Slight) 

 

0.18 (Slight) 

 

  

 2 

 

0.24 (Fair) 

 

0.32 (Fair) 

 

0.14 (Slight) 

 

0.28 (Fair) 

 

  

 2.5 

 

0.12 (Slight) 

 

0.03 (Slight) 

 

0.06 (Slight) 

 

0.09 (Slight) 

 

  

 3 

 

0.12 (Slight) 

 

0.21 (Fair) 

 

0.10 (Slight) 

 

0.10 (Slight) 

 

  

 3.5 

 

0.15 (Slight) 

 

0.10 (Slight) 

 

0.04 (Slight) 

 

0.03 (Slight) 

 

  

 4 

 

0.29 (Fair) 

 

0.21 (Fair) 

 

0.20 (Slight) 

 

0.10 (Slight) 

 

  

 4.5 

 

0.25 (Fair) 

 

0.10 (Slight) 

 

0.08 (Slight) 

 

0.02 (Slight) 

 

  

 5 

 

0.70 (Substantial) 

 

0.40 (Fair) 

 

0.35   (Fair) 

 

0.36  (Fair) 
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Table 4.4b: Repeatability of individual EQUIFAT scores for each depot to test for agreement 

between observers (n = 12) using whole scores. Un-weighted kappa analyses were 

presented. 

 

Score 

Overall κ 

Mesenteric fat Omental fat 

 

Epicardial fat 

 

Rump fat 

 

1 0.41 (Moderate) 

 

0.49 (Moderate) 

 

0.16  (Slight) 

 

0.17 (Slight) 

 

2 0.31 (Fair) 

 

0.37 (Fair) 

 

0.20 (Slight) 

 

0.25 (Fair) 

 

3 0.24 (Fair) 

 

0.29 (Fair) 

 

0.13 (Slight) 

 

0.17 (Slight) 

 

4 0.51 (Moderate) 

 

0.32 (Fair) 

 

0.21   (Fair) 

 

0.15 (Slight) 

 

5 0.85 (Almost perfect) 

 

0.48 (Moderate) 

 

0.41 (Moderate) 

 

0.32 (Fair) 

 

 

Associations between EQUIFAT scores and BCS 

The population of animals (n = 207) used for this part of the study are described in 

Table 4.1 and Figure 4.3. The animals were representative of the UK abattoir 

population in terms of gender, age, horse/pony split, and BCS. As outlined in the 

methods, both crest and rump fat scores were excluded a priori from analysis as 

they were highly correlated with two components of the original BCS system, 

namely “neck” and “tailhead”.  

Model 1 (Table 4.5) demonstrates there were strong positive associations between 

BCS and both carcass weight and retroperitoneal fat score. Withers height had a 

strong negative association with BCS. Age, gender, mesenteric and epicardial fat 

scores did not remain in the final model thereby demonstrating a lack of association 

with BCS. Model 2 (Table 4.5) was fitted to explore associations between the 

EQUIFAT scores and BCS. Variables remaining in the final model were 

retroperitoneal fat score and omental fat score, with neither mesenteric or 

epicardial fat scores remaining in the final model.  In both models, the coefficient 

for retroperitoneal fat score was at least 3 times greater than that for omental fat.  

Figure 4.4 demonstrates the predicted marginal means generated from Model 1 
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and clearly indicate that for retroperitoneal depots, and to a lesser extent for 

omental fats, there was a trend for BCS to increase with each unit increase in 

specific fat scores. 

 

 

Figure 4.3: Distribution of physical attributes and EQUIFAT scores in the population of 

animals used to describe associations between EQUIFAT scores and BCS (n = 207). 

Histograms were constructed with normal distribution overlaid for (A) age, (B) BCS, (C) 

withers height, (D) omental fat score, (E) mesenteric fat score, (F) epicardial fat score, (G) 

rump fat score, (H) retroperitoneal fat score, and (I) crest fat score. 
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Table 4.5. Associations between EQUIFAT scores and BCS. Two random effects, 

multivariable linear regression models were built with breed as a random effect. CI, 

confidence interval.  

 

 

Variable 

 

  Model 1 (Adj. R
2
 = 0.49) 

Breed attributable variance = 0.23 

(95% CI = 0.07 to 0.54) 

  
 
 Model 2 (Adj. R

2
 = 0.24) 

Breed attributable variance = 0.31 

(95% CI = 0.14 to 0.56) 

  

  

 

  Estimate β 

 

  95% CI 

 

  P value 

 

  Estimate β 

 

  95% CI 

 

  P value 

 

  

 Height (cm/10) 

 

  -0.62 

 

  -0.80 to 
-0.44 

 

  < 0.001 

 

   

 

   

 

   

 

  

 Carcass weight 
(kg/10) 

 

  0.11 

 

  0.08 to 
0.14 

 

  < 0.001 

 

   

 

   

 

   

 

  

 Omental fat 
score 

 

  0.09 

 

  -0.02 to 
0.21 

 

  0.10 

 

  0.16 

 

  0.03 to 
0.28 

 

  0.02 

 

  

 
Retroperitoneal 

fat score 

 

  0.32 

 

  0.17 to 
0.47 

 

  < 0.001 

 

  0.48 

 

  0.32 to 
0.64 

 

  < 0.001 

 

  

 Baseline 

 

  10.44 

 

  8.17 to 
12.71 

 

  < 0.001 

 

  3.88 

 

  3.32 to 
4.43 

 

  < 0.001 
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Figure 4.4: Marginal mean plots illustrating predicted changes in BCS with retroperitoneal 

and omental EQUIFAT scores. Error bars signify 95% confidence intervals.  

 

4.5 Discussion  

The current study firstly describes the development and testing of a novel fat 

scoring system for Equidae; the EQUIFAT scoring system, and secondly it 

demonstrates the application of the EQUIFAT scoring system to describe the 

relationship between internal adiposity and external body condition score. To the 

author’s knowledge, there have been no previous reports of data which 

characterise the association between these regional superficial and internal body 

fat distributions and body condition score in the horse. It was noteworthy that 

while obesity is prevalent among horses and ponies in the UK leisure sector (Robin 

et al., 2015), the population of animals presented for slaughter at a commercial 

abattoir was at variance with this. A greater proportion of animals assessed in the 

current study would be considered to be ‘normal’ or slightly underweight in terms 

of BCS than would be predicted had these animals been sourced from the 

numerically dominant leisure horse population.  

In order to test the repeatability and reliability of the EQUIFAT scoring system, 
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kappa analysis was employed. Kappa analysis is a well-established and widely used 

method in numerous fields of scientific research and indicates the level of 

agreement either between or within observers beyond that expected by chance 

alone (Sim and Wright, 2005). The results from the current study demonstrate 

almost perfect agreement in the repeatability of omental and mesenteric fat scores 

and substantial agreement for epicardial and rump fat scores, irrespective of 

whether half scores or whole scores were used. The data suggested that the 

EQUIFAT scoring system was robust when used on repeated occasions, although 

there did appear to be some bias between observers repeated attempts to classify 

the same images. On the whole, observers tended to score higher on their second 

attempt, although the average scoring difference remained below half a score in 

the majority of cases which was deemed as an acceptable difference by the 

authors. The inter-observer agreement between observers was also found to be 

substantial for mesenteric and omental fats for those using both whole scores and 

half scores; whilst the agreement was moderate to substantial for epicardial and 

rump fats.  

The two groups of observers in the current study were instructed either to use 

whole scores only or were given the option of using half scores. There were no 

obvious differences in agreement between the two groups and from the feedback; 

it appeared that the EQUIFAT scoring system was applied with more ease when the 

use of half scores was permitted. Therefore, it would be recommended that half 

scores are allowed for future use.   

The second part of this study applied the EQUIFAT scoring system to a large group 

of animals in order to describe associations between individual depot EQUIFAT 

scores and BCS. Due to the lack of availability of  modern imaging modalities such as 

CT scanning for the quantification of internal fat in the live horse, using the 

EQUIFAT scoring system designed in the current study at post-mortem allowed the 

investigation of  associations between external ‘body fatness’ (BCS) and internal fat 

deposition.  

The finding that retroperitoneal fat had a strong positive association with BCS 
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suggests that this intra-abdominal depot may function as a long-term storage 

depot. Studies on retroperitoneal WAT function in the horse are limited, although 

ultrasound measurements of retroperitoneal fat depths were found to be 

associated with percentage body fat in a group of 77 horses and ponies (Dugdale et 

al., 2012). However, there appears to be some debate in the literature regarding 

whether or not retroperitoneal adipose tissues should be classed as a ‘visceral fat’. 

In terms of venous drainage there are clear differences between peritoneal 

(omental and mesenteric) and retroperitoneal adipose tissues which could signify 

functional differences. Venous blood from peritoneal adipose tissues drains via the 

portal vein into the liver. Conversely, venous effluent from retroperitoneal adipose 

tissue depots drains into the renal circulation.  Evidence from rodent studies 

supports the contention that retroperitoneal and peritoneal adipose tissues are 

physiologically distinct. For high-fat diet fed rats, exercise training decreased the 

response to isoproterenol-stimulated lipolysis in mesenteric but not retroperitoneal 

adipose tissues (Chapados et al., 2008). Depot differences have been also been 

demonstrated in the immune cell populations of the stromal vascular fraction of 

omental and retroperitoneal fats in mice (Cohen et al., 2013). A recent study in 

humans however, argues that retroperitoneal fat should be considered alongside 

omental and mesenteric fats to encompass the visceral depot as retroperitoneal fat 

was significantly correlated with metabolic syndrome and the number of metabolic 

abnormalities (Hung et al., 2014).  

The visceral adipose depot (omental and mesenteric) is more metabolically and 

lipolytically active in humans and it has been shown that visceral fat is preferentially 

mobilised over subcutaneous fat during the initial stages of a very low calorie diet; 

although this depot bias is lost as weight-loss progresses (Chaston and Dixon, 2008).  

Empirical data suggests that this may also be true for the horse. Circumferential 

body measures of ‘belly girth’ in a mixed-breed population of horses and ponies 

decreased during the course of a weight-loss trial, indicative of a loss of internal 

adiposity (Argo et al., 2012). Furthermore, in the current study, omental fat score 

had a weaker association whilst mesenteric fat score had no association with BCS. 

These data suggest that, as for humans, these depots may function more as a short-
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term energy reserve. Human visceral fat incubated in primary culture secretes 

inflammatory cytokines at a greater rate than subcutaneous fat (Fain et al., 2004). 

For the horse, the nuchal crest may be an important source of inflammatory factors 

(Bruynsteen et al., 2013; Burns et al., 2010); although the relationship between 

circulating inflammatory factors and obesity is less clear in this species (Holbrook et 

al., 2012; Vick et al., 2007).   

A novel observation in the current study was the lack of any association between 

epicardial fat score and BCS. Epicardial fat is situated between the pericardium and 

myocardium and is thought to function to provide energy for the heart. Of note, 

epicardial fat was not associated with total extracted WAT from the carcass 

dissection of 7 Welsh mountain ponies across a range of BCS (Dugdale et al., 2011). 

Importantly, epicardial fat has been shown to play a key role in the pathogenesis of 

coronary artery disease in humans (Okada et al., 2014) and an increased epicardial 

fat volume has been observed in patients with type 2 diabetes (Wang et al., 2009). 

Additionally, mRNA for the brown fat marker, uncoupling protein 1 (UCP1) was 

expressed at higher levels in epicardial fat compared to other adipose depots (Sacks 

et al., 2009), suggesting that this depot may have a further role in protecting the 

myocardium from hypothermia. Further studies may be warranted in the horse to 

determine whether this depot may have a role to play in insulin dysfunction or not.   

The EQUIFAT scoring system was developed as an initial step towards wider 

applications to characterise fat patterning and clearly has broader applications in 

terms of furthering our understanding of regional adiposity and disease risk.  The 

EQUIFAT system has the potential to capitalise on data readily collected during 

surgical interventions that require laparotomy. A relatively common cause of colic 

that requires laparotomy are strangulating lesions associated with the presence of a 

pedunculated lipoma arising from small intestine mesenteric WAT. A retrospective 

study conducted to assess the short-term survival rate of colic in a group of 300 

horses and ponies that underwent exploratory laparotomy identified that 13% of 

those animals required surgical intervention due to intestinal strangulation by 

pedunculated lipoma, and the short-term survival rate of those 39 animals was 
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64.1% (Mair and Smith, 2005). Interestingly, a recent study that evaluated 

associations between pituitary lesions, obesity and the presence of mesenteric 

lipomas in insulin-resistant horses found that whilst insulin-resistant horses had a 

higher frequency of mesenteric lipomas, there was no association between obesity 

and the frequency of mesenteric lipomas (Newkirk et al., 2014). This finding 

combined with our finding in the current study that mesenteric fat scores were not 

associated with BCS would perhaps suggest that mesenteric fat scores as opposed 

to BCS may be associated with the frequency of mesenteric lipomas and may be an 

area for future study.  

 

4.6 Conclusion 

The current study outlines the development and testing of a novel depot-specific 

fat scoring system for horses and ponies ‘EQUIFAT’ which has been used to describe 

associations between regional fat depots and external BCS. The EQUIFAT scoring 

system proved to be robust when used on repeated occasions and on the whole 

there was very good agreement between observers when using the scoring system. 

Application of the scoring system on a large population of animals at post-mortem 

allowed associations to be made between BCS and the regional distribution of 

adipose tissue which demonstrated strong positive associations between BCS and 

retroperitoneal fat score, whilst there was no associations for mesenteric or 

epicardial fat scores. These associations suggest functional differences between the 

various adipose depots in terms of energy storage. Forward application of the 

EQUIFAT system would allow data collected at laparotomy or post-mortem to be 

collated with clinical findings. In combination, these methods could direct future 

studies towards furthering the understanding of the role played by regional adipose 

depots in obesity-associated pathologies such as laminitis, insulin dysregulation and 

pedunculated lipoma.    
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Chapter 5 

 

Post-mortem stability of RNA in skeletal 

muscle and adipose tissue and the tissue-

specific expression of myostatin, perilipin 

and associated factors in the horse 
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Morrison P.K., Bing C., Harris P.A., Maltin C.A., Grove-White D., Argo C.McG. (2014) Post-

Mortem Stability of RNA in Skeletal Muscle and Adipose Tissue and the Tissue-Specific 

Expression of Myostatin, Perilipin and Associated Factors in the Horse. PLoS 

ONE 9(6): e100810. doi: 10.1371/journal.pone.0100810 (Appendix F) 

Preliminary data from this chapter were also presented as a poster:  

Morrison, P.K., Harris, P.A., Maltin, C.A., Grove-White, D., Argo, C.McG. (2014) Post-

mortem stability of RNA and tissue-specific expression of myostatin, activin receptor IIB, 

follistatin and perilipin in the horse. ACVIM Forum Research Abstracts Program. Journal of 

Veterinary Internal Medicine 28, 976-1134. 
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5.1 Abstract 

Obesity, a major concern for equine welfare, is highly prevalent in the leisure horse 

population. Skeletal-muscle and adipose tissues are important determinants of 

maintenance energy requirements. The myostatin and perilipin (PLIN1) pathways 

play key roles in the regulation of muscle mass and lipolysis respectively and have 

both been associated with obesity predisposition in other mammalian species.  

High quality samples, suitable for molecular biology, are an essential prerequisite 

for detailed investigations of gene and protein expression. Hence, this study has 

evaluated a) the post-mortem stability of RNA extracted from skeletal-muscle and 

adipose-tissues collected under commercial conditions and b) the tissue-specific 

presence of myostatin, the myostatin receptor (activin receptor IIB, ActRIIB), 

follistatin and PLIN1, genes and proteins across a range of equine tissues.  

Objectives were addressed using tissues from 7 Thoroughbred horses presented for 

slaughter at a commercial abattoir; a) samples were collected at 7 time-points from 

masseter muscle and perirenal adipose from 5 minutes to 6 hours post-mortem. 

Extracted RNA was appraised by Optical Density analysis and agarose-gel 

electrophoresis. b) Quantitative real time PCR and Western Blotting were used to 

evaluate gene and protein expression in anatomically-defined samples collected 

from 17 tissues (6 organs, 4 skeletal muscles and 7 discrete adipose depots). 

The results indicate that, under the present collection conditions, intact, good 

quality RNA could be extracted from skeletal-muscle for up to 2 hours post-mortem. 

However, RNA from adipose tissue may be more susceptible to 

degradation/contamination and samples should be collected no later than 30 

minutes post-mortem. The data also show that myostatin and ActRIIB genes and 

proteins were almost exclusively expressed in skeletal muscle. The follistatin gene 

showed a more diverse gene expression profile, with expression evident in several 

organs, adipose tissue depots and skeletal muscles. PLIN1 gene and protein were 

almost exclusively expressed by adipose tissue. 
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5.2 Introduction  

Obesity, having reached epidemic proportions among horses and ponies in 

industrialised nations, is now considered a key concern for equine welfare (Argo et 

al., 2012; Harker et al., 2011). Adipose tissue and skeletal muscle can be considered 

as labile reserves of energy and nutrients within the body which can be used as 

buffers at times of negative or positive energy balance (Harris et al., 1986). The 

specific anabolic/catabolic pathways which are activated during periods of energy 

imbalance may be dependent on factors which regulate or modify the relative 

contributions of muscle or adipose tissue to whole body composition. It is widely 

accepted that skeletal muscle and adipose tissues engage in cross-talking pathways 

which ensure that they work in synergy to conserve energy balance and whole body 

homeostasis (Pedersen and Febbraio, 2012; Trayhurn et al., 2011). The cross-talk 

between skeletal muscle and adipose tissue is achieved through the synthesis and 

secretion of a variety of signalling factors and hormones respectively termed 

myokines and adipokines.   

Muscle and adipose tissues act and interact dynamically to promote energy 

homeostasis but in states of active weight gain/loss, homeostasis is over-ridden and 

the relative contributions of these tissues to body composition are altered. Two 

proteins have attracted increasing interest in the regulation of tissue reserves; 

myostatin, which regulates reserves of metabolically active muscle (McPherron et 

al., 1997a); and PLIN1, which regulates intra-cellular lipolysis (Mottagui-Tabar et al., 

2003).   

Myostatin, a member of the transforming growth factor-beta super-family and one 

of the first myokines to be recognised, has been widely characterised as a potent 

negative regulator of skeletal muscle mass (Whittemore et al., 2003; Zimmers et al., 

2002). It is  secreted from skeletal muscle cells into the circulation (Brandt et al., 

2012; McPherron et al., 1997b) and acts by binding to the activin type II receptor 

(ActRIIB), leading to a negative impact on muscle mass, while the circulating protein 

follistatin binds to, and inactivates myostatin (Amthor et al., 2004).     
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 To date, loss-of-function mutations in the myostatin gene have been associated 

with a dramatic increase in skeletal muscle mass in a number of mammalian species 

(Grobet et al., 1997; Kijas et al., 2007; Mosher et al., 2007). Furthermore, actions of 

this circulating growth factor are not restricted to muscle alone. Murine and human 

studies have clearly implicated myostatin in the development of obesity (Allen et 

al., 2008; Hittel et al., 2009; Zhang et al., 2012). The myostatin protein has been 

detected in skeletal muscle from Thoroughbred and Kiso-uma horses (Hosoyama et 

al., 2002) and polymorphisms in the equine myostatin gene have also been linked 

with optimal race distance in Thoroughbred horses (Hill et al., 2010). However, 

despite these findings, the extent of expression of myostatin across a range of body 

tissues has yet to be established for the horse.  

Perilipin (PLIN1) is a complex protein which is localised to the surface of intra-

cellular lipid droplets. In vivo, PLIN1 can prevent lipolysis by blocking the entry of 

lipases to lipid droplets (Bickel et al., 2009). In the presence of lipolytic stimuli, 

PLIN1 is phosphorylated by protein kinase A, permitting the initiation of lipolysis by 

the translocation of hormone sensitive lipase (HSL) to the surface of the lipid 

droplet. PLIN1 is pivotal in governing body fat stores. Several polymorphisms of the 

PLIN1 gene have been associated with obesity and weight-loss phenotypes in 

humans (Qi et al., 2004; Ruiz et al., 2011). Further, the magnitude of PLIN1 gene 

expression is positively associated with obesity in humans (Gjelstad et al., 2012; 

Kern et al., 2004). To date, PLIN1 expression has not been evaluated in the horse.  

In order to conduct molecular and mechanistic studies, high quality samples are 

essential to provide RNA and proteins suitable for analysis. Collection of such 

samples is relatively straight forward in laboratory studies, but this is not the case 

for large animals such as equines, where biopsy techniques can only access 

superficial tissue.  Hence it is critically important to develop and validate methods 

for the collection of high quality samples post-mortem prior to undertaking 

molecular type studies. 

 It is known from studies in pigs and cattle that increasing post-mortem interval 

negatively impacts on the purity and integrity of RNA (Bahar et al., 2007; Fontanesi 
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et al., 2008). Therefore, before potential roles for the myostatin pathway and PLIN1 

can be explored in the horse, it is important to first establish that good quality, 

intact RNA can be practically extracted from skeletal muscle and adipose tissue 

samples collected from the horse under commercial conditions. Further, the extent 

and anatomical distribution of gene and protein expression of PLIN1, myostatin and 

associated factors remains to be established for horses.  

The aims of this study were to characterise the time-course of RNA degradation in 

equine masseter muscle and perirenal adipose tissues post-mortem and then to 

demonstrate the presence and evaluate the expression of myostatin, the myostatin 

receptor (ActRIIB), follistatin (an inhibitor of myostatin receptor binding) and PLIN1 

across a spectrum of body tissues. 

 

5.3 Materials and methods 

Animals and tissue collection 

Tissues from seven mature, Thoroughbred horses were obtained post-mortem. All 

animals were in good general health and were presented for slaughter for reasons 

unrelated to this study (Table 5.1). The horses were slaughtered in a commercial 

abattoir (LJ Potters, Taunton, Somerset) for non-research purposes in accordance 

with EU legislations EC 852/2004, 853/2004 and 854/2004 on several dates 

between March and June 2012. 

Study One: Post-mortem stability of RNA extracted from masseter muscle and 

perirenal adipose tissue. 

To evaluate the time course of RNA degradation post-mortem, samples were 

collected from the masseter muscle and perirenal adipose tissues of 3 animals 

(horses 1-3, Table 5.1) as these depots were those most rapidly accessible following 

exsanguination (masseter, ~2 minutes; perirenal adipose tissue 10-15 minutes).   

Tissue samples (masseter, around 200g; perirenal adipose tissue, around 260g) 

were aseptically collected onto sterile foil and maintained at ambient temperature 
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(~13°C). Gross tissue samples were sub-sampled (around 5g) for subsequent 

evaluation at 5 minutes (masseter muscle only), 20, 30, 40, 60 , 90, 120, 240 and 

360 minutes post-mortem using sterile equipment. All sub-samples were 

macerated, snap frozen in liquid nitrogen and stored at -80°C prior to RNA 

extraction.  

Table 5.1: Phenotypic descriptors for the 7 Thoroughbred horses used in this study.  

 

 

 

 

 

 

 

 

 

 Horse No. Gender Age (Years) 

Objective 1:  1 Gelding 11 

RNA time course study 2 Mare 5 

 3 Gelding 8 

Objective 2:  4 Mare 12 

Across body study 5 Gelding 8 

 6 Mare 10 

 7 Gelding 4 
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Study Two: Tissue specific gene expression of Myostatin, ActRIIB, Follistatin and 

PLIN1 

To evaluate anatomical differences in gene and protein expression throughout the 

body, a total of 17 samples were collected from 4 carcasses (horses 4-7, Table 5.1). 

From each carcass, six body organs, plus seven anatomically-discrete adipose 

depots and four skeletal muscles were sampled (Table 5.2; Appendix E). Strict 

anatomical descriptors were used to ensure that tissue samples were collected 

from the same site in each animal (Table 5.2). Tissue samples were obtained as 

rapidly as possible post mortem (organs and adipose tissues, within 30 minutes; 

skeletal muscles within 1 hour), using sterile equipment. All samples were 

macerated and snap frozen in liquid nitrogen before being stored at -80°C pending 

RNA and protein extraction. 

RNA extraction  

Total RNA was extracted from all frozen tissue samples using TRIzol reagent 

(Invitrogen, Paisley, UK), in accordance with the manufacturers protocol. RNA 

concentration and purity was quantified spectrophotometrically (Eppendorf 

Biophotometer, Hamburg, Germany). To assess the purity of the extracted RNA, the 

ratio of optical density (OD) of the diluted RNA sample measured at wavelengths of 

260 and 280 nm, provides an indication of any contamination of the RNA sample 

with RNase proteins. Reverse transcription (RT) was carried out in a 10μl final 

reaction volume containing 0.5μg RNA using an iScript cDNA synthesis kit (Bio-Rad 

Hemel Hempstead, UK). The resulting cDNA was diluted at 1:4 and used as a 

template for real-time PCR analysis. Visual appraisal and quantification of 28S and 

18S RNA bands was conducted using agarose gel electrophoresis. 
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Table 5.2: Specific anatomical descriptors used to locate the tissue collection points for the 

6 visceral organs, 7 regionally discrete adipose tissue depots and 4 skeletal muscles 

sampled from horses used in the second objective. Approximate target sample sizes are 

given. Where relevant, tissues were collected from the left side following carcass-splitting. 

Tissue Anatomical descriptors for sample sites 

V
is

ce
ra

l o
rg

an
s 

Myocardium ~2cm3 square, full thickness section, lateral wall of left ventricle 
midway between coronary groove and ventricle apex. 

Lung ~2cm3 from dorsal aspect of the caudal lobe of the left lung at 
the intersection of the caudo-cranial and dorso-ventral midlines. 

Liver ~2cm2 full thickness section from midway along the lateral 
margin of the left lobe. 

Kidney ~2cm3, largely renal medulla, from the dorsal surface of the left 
kidney equidistant between the hillus and caudal pole. 

Stomach ~2cm2 full thickness section from the body of the stomach, 
midway along the greater curvature adjacent to the origin of the 
greater omentum. 

Spleen ~2cm3 from midpoint on the visceral surface of the intestinal 
lobe. 

A
d

ip
o

se
 t

is
su

es
 

Peri-renal ~3cm3, collected from the visceral aspect of the fat mass 
overlying the left kidney following evisceration. 

Ventro-
abdominal 

~3cm3, collected from the left split-carcass midline at a point 
equidistant between xiphisternum and pubis. 

Epicardial ~2cm3 from the coronary groove and overlying the left coronary 
artery 

Omental Variable area of omentum, sufficient to harvest ~2cm3 of 
adipose tissue, from a region adjoining the greater curvature of 
the stomach and bearing visible adipose. 

Mesenteric Variable area sufficient to harvest ~2cm3 of adipose tissue from 
the jejunum / proximal ileum mesenteries bearing visible 
adipose tissue. 

Crest ~3cm3 from the left split-carcass at the deepest part of the 
crest, midway between wither and poll extremities. 

Tailhead ~2cm3 from the subcutaneous adipose tissue overlying the 
gluteal muscles of the left carcass. 

Sk
el

et
al

 m
u

sc
le

s 

Rectus 
abdominis, 

~3cm3, collected from the left split-carcass midline at a point 
equidistant between xiphisternum and pubis. 

Longus colli, ~3cm3, from its severed cranial extremity in the left split-
carcass. 

Adductor ~3cm3, collected from the centre of the exposed midline section 
of the muscle on the left split-carcass. 

Pectoralis 
transversus 

~3cm3, collected from the exposed midline section of the 
muscle at a point just ~10cm caudal to the thoracic inlet. 
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Agarose Gel Electrophoresis 

To assess RNA integrity  from horses 1-3 (study one), 10μg RNA from masseter 

muscle samples; 8-10μg RNA from perirenal adipose tissue samples were mixed 

with loading solution (containing 500μl formamide, 162μl formaldehyde and 100μl 

5 X MOPS buffer) in a 1:3 dilution, then heated at 65°C for 5 minutes before being 

placed on ice. Two micro-litres of loading buffer (containing 1ml 50% sterile 

glycerol, 12μl 5% bromophenol blue, 7μl 1M NaOH and 12μl 10μg/μl ethidium 

bromide) was then added to the samples to make a final volume of 20μl. The 

samples were separated by electrophoresis through a 1% agarose gel, stained with 

ethidium bromide and 28S and 18S band intensities were quantified (ChemiDoc 

XRS+ Imaging System, BioRad).  

Quantitative Real-Time PCR 

The expression of myostatin and four housekeeping genes previously used in other 

equine studies (Ahn et al., 2011; Bogaert et al., 2006) (GAPDH, Beta-actin, HPRT1 

and RPL32) was determined in tissues from horses 1-7 (studies 1 & 2), with the 

expression of a further three genes (ActRIIB, follistatin and PLIN1) assessed in 

horses 4-7 (study 2). GeNorm and Normfinder software (GenEx, Germany) was used 

to assess the two ‘most stably’ expressed genes to be used for normalisation. Gene 

expression was determined by quantitative real-time PCR performed in duplicate 

using the Stratagene Mx3005P detection system (Agilent Technologies, California 

USA). Primer sequences for all four housekeeping genes were obtained from 

previously published data (HPRT1 and RPL32, GAPDH (Bogaert et al., 2006), and 

beta-actin (Ahn et al., 2011)) and 100% homology was confirmed by performing a 

basic local alignment search tool (BLAST). Primer and Taqman probe sequences for 

myostatin, ActRIIB, follistatin and PLIN1 were designed using Beacon Designer 

(Premier Biosoft, USA). All primers were designed to be exon-spanning. All 

primer/probe sets were purchased from Eurogentec (Belgium) (Table 5.3).  
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Table 5.3: Nucleotide sequences of primers and probes used in the current study. 

Gene Primer Sequence Amplification 
efficiency 

Beta-actin Forward GGACCTGACGGACTACCTC 97% 

Reverse CACGCACGATTTCCCTCTC 

HPRT1 Forward GGCAAAACAATGCAAACCTT 94.5% 

Reverse CAAGGGCATATCCTACGACAA 

GAPDH Forward CAGAACATCATCCCTGCTTC 95% 

Reverse ATGCCTGCTTCACCACCTTC 

RPL32 Forward AGCCATCTACTCGGCGTCA 94% 

Reverse TCCAATGCCTCTGGGTTTC 

Myostatin Forward GCAGTGATGGCTCTTTGGAAG 97.9% 

Reverse GCATTAGAAGATCAGACTCTGTAGG 

Probe ACCACGCGACGACGGAAACAATCAT 

ActRIIB Forward GCCTCGCTGTTCGGTTTGAG 92.9% 

Reverse GGCTCCCTCAAGCACCTCAG 

Probe ACCGCCGTGTGCCCACCTGC 

Follistatin Forward CAGTGACAATGCCACTTACGC 92.5% 

Reverse GGTCTTCATCTTCCTCCTCTTCC 

Probe TGCCATGAAGGAAGCTGCCTGTCTCC 

PLIN1 Forward GATCCCAGCCCTCCAGTACC 103.9% 

Reverse GGACGCTGATGCTGTTCCTG 

Probe AGATCGCCTCTGAGCTGAAGGACACCATC 

 

Serial dilutions of pooled cDNA were used to calculate Taqman primer efficiencies. 

The PCR cycling conditions (using Taqman probe and primers) for the genes of 

interest (myostatin, ActRIIB, follistatin and PLIN1) were as follows: 10 minutes at 

95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 55°C and 1 minute at 

72°C. Cycling conditions for housekeeping genes (using SYBR green method) were 

as follows: 10 minutes at 95°C followed by 40 cycles of 15 seconds at 95°C and  30 

seconds at 60°C and ending with, 1 minute at 95°C, 30 seconds at 55°C and 30 

seconds at 95°C.   

Relative gene expression was calculated using the comparative Ct method (2-∆∆Ct) 
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(Livak and Schmittgen, 2001). All gene expression data were normalised to 2 

internal housekeeping genes and data from the second study are presented as 

relative expression with respect to the myocardial tissue.  

Protein Extraction and Western Blotting 

Total protein was extracted from frozen tissues obtained from the horses 4-7 (study 

two) by homogenising around 100mg of tissue in a SHE buffer (250mM sucrose, 

1mM HEPES, 0.2mM EDTA) containing both phosphatase and protease inhibitor 

cocktails (both Sigma, Poole, Dorset, UK). Protein concentration was determined by 

the BCA method and protein integrity was verified using standard silver staining of 

typical SDS gels (data not shown). 

Forty five micrograms of protein extract were separated on 10% SDS-

polyacrylamide gels under reducing conditions and proteins were transferred onto 

nitrocellulose membrane (Hybond-C Extra, Amersham Bioscience, 

Buckinghamshire, UK) by electroblotting. Membranes were stained in Ponceau S 

reversible stain to verify the success of protein transfer and then blocked for 1 hour 

in 5% BSA in Tris-buffered saline containing 0.1% Tween 20 (TBST). Commercially 

available primary antibodies (listed below) were used and were selected on the 

basis that they were listed as having equine cross-reactivity. They were added at 

the following concentrations: myostatin precursor (MSTN), 1:250 [ab98337 Abcam, 

Cambridge, UK],  myostatin receptor (ACTRIIB), 1:200 [sc-25453 Santa Cruz, Dallas, 

Texas, USA], PLIN1, 1:200 [sc-67164 Santa Cruz], the serine/threonine Akt (AKT), 

1:2500 [#9272 Cell Signalling, Danvers, MA, USA]) in blocking buffer and incubated 

overnight at 4°C. The myostatin antibody detected the precursor form of the 

protein (43kDa). The membranes were washed and then incubated for 1 hour with 

a secondary antibody (Cell Signalling) at appropriate concentrations. Signals were 

detected by chemiluminescence using a SuperSignal West Pico Chemiluminescent 

Substrate (Pierce, Rockford, IL, US) and visualised on a Molecular Imager ChemiDoc 

XRS+ System (Bio-Rad). 
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 Statistical Analysis 

Statistical analyses were performed using STATA version 12.1 (StataCorp, Texas). 

Non-parametric, analytical methods were employed. The Friedman test for 

repeated measures was used to assess the effect of increasing post-mortem interval 

on myostatin gene expression in study 1. The Wilcoxon signed ranks test was used 

to analyse gene expression data from study 2.  

 

5.4 Results  

Study One: Post-mortem stability of RNA extracted from masseter muscle and 

perirenal adipose tissue. 

The purity of RNA extracted from the masseter muscle remained relatively stable 

over the 6 hour time course evaluated. . The ratio of OD for RNA extracted from 

muscle remained in excess of 1.8, indicating minimal protein contamination (Fleige 

et al., 2006), for all horses at each time point (Table 5.4). Visual assessment of the 

RNA integrity confirmed that intact 28S and 18S ribosomal RNA bands were 

detected at all time points up to 120 minutes in all three animals (1-3).  

Quantification of the 28S and 18S ribosomal RNA bands demonstrated consistent 

28S:18S ratios of close to 2 at all time points up to 240 minutes post-mortem (Table 

5.4). However by 360 minutes the average ratio had reduced to 1.42 and the 

variation was considerably increased (Table 5.4).  These results show masseter 

muscle is resilient to post-mortem RNA degradation, but samples should be 

obtained within 2 hours of death to ensure the extraction of good RNA for 

downstream molecular biology studies.  

By contrast, in adipose tissue, the OD ratios of RNA extracted from perirenal 

adipose tissue were relatively lower and more variable than those obtained from 

masseter muscle (Table 5.4).  Mean OD ratios ranged from 1.71 to 1.68 in samples 

evaluated between 20 minutes and 4 hours post-mortem but had decreased to 1.44 

by the final test at 6 hours post-mortem (Table 6.4). Visual appraisal of RNA 
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integrity demonstrated that intact 28S and 18S ribosomal bands were visible in all 

horses (horses 1-3) up to 30 minutes post-mortem.   Quantification of the 28S and 

18S ribosomal bands demonstrated the average 28S:18S ratios were 1.77 and 1.67 

at 20 minutes and 30 minutes post-mortem, respectively, and gradually decreased 

down to 1.54 by 6 hours post-mortem (Table 5.4). This indicates that adipose tissue 

appears to be more susceptible to RNA degradation than skeletal muscle.  

However, intact RNA can be extracted from adipose tissue provided samples are 

collected up to 30 minutes post-mortem under conditions similar to those used in 

this study. 

Expression of myostatin in masseter muscle and perirenal adipose tissue 

GeNorm and Normfinder results (Table 5.5) indicated that HPRT1 and Beta-actin 

were the most stably expressed of the housekeeping genes evaluated.  On this 

basis, the mean Ct values of these genes were used for the normalisation of gene 

expression data. Friedman tests demonstrated no difference in myostatin 

expression across the time course in either masseter muscle (p = 0.16) or perirenal 

adipose tissue (p = 0.96). 
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Table 5.4: RNA quality assessment by spectrophotometer (A260/A280 ratio) and 28S:18S 

ratio (agarose gel electrophoresis and Chemi-Doc imaging and analysis) for post-mortem 

intervals from 5 to 360 minutes. n=3. 

Tissue Post-mortem interval 
(minutes) 

Average A260/280 ratio 
(standard deviation) 

Average 28S:18S ratio 
(standard deviation) 

M
as

se
te

r 
m

u
sc

le
 

5 2.10 (0.16) 1.95 (0.23) 

20 2.05 (0.12) 1.82 (0.07) 

30 1.98 (0.04) 1.87 (0.19) 

40 2.02 (0.08) 2.01 (0.15) 

60 1.92 (0.13) 1.98 (0.15) 

90 2.06 (0.10) 1.92 (0.19) 

120 1.99 (0.01) 1.81 (0.18) 

240 1.95 (0.03) 1.85 (0.06) 

 360 1.85 (0.05) 1.42 (1.07) 

P
er

ir
en

al
 a

d
ip

o
se

 t
is

su
e 

20 1.71 (0.41) 1.77 (0.79) 

30 1.63 (0.42) 1.67 (0.18) 

40 1.63 (0.40) 1.48 (0.19) 

60 1.65 (0.40) 1.60 (0.64) 

90 1.63 (0.36) 1.56 (0.12) 

120 1.62 (0.42) 1.53 (0.50) 

240 1.68 (0.39) 1.28 (0.57) 

360 1.44 (0.41) 1.54 (0.09) 
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Table 5.5: Housekeeping gene comparison using GeNorm and Normfinder analysis 

Gene Study 1 Study 2 

GeNorm M value 

(ranking) 

Normfinder SD 

(ranking) 

GeNorm M value 

(ranking) 

Normfinder SD 

(ranking) 

HPRT1 1.41 (1) 0.41 (1) 1.20 (1) 0.25 (1) 

B-ACTIN 1.41 (1) 0.41 (2) 1.55 (3) 1.46 (3) 

RPL32 1.81 (2) 0.79 (3) 1.20 (1) 1.25 (2) 

GAPDH 2.35 (3) 0.90 (4) 2.74 (4) 3.92 (4) 

 

Study Two: Tissue specific gene expression of Myostatin, ActRIIB, Follistatin and 

PLIN1 

For study two, RNA quality was assessed spectrophotometrically and was shown to 

be acceptable for the proposed study of gene expression in all tissues (Table 5.6). 

Gene expression data were normalised with respect to those for RPL32 and HPRT1. 

When gene expression data across the entire range of tissues sampled were 

assessed with GeNorm and Normfinder software, RPL32 and HPRT1 demonstrated 

the greatest stability of all housekeeping genes examined (Table 5.5).  
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Table 5.6: RNA quality as assessed by spectrophotometry; average A260/A280 ratios from 

various tissues throughout the body.  (Study 2; n = 4). 

Tissue Average A260/A280 ratio 
(standard deviation) 

Myocardium 1.91 (0.04) 

Lung 1.90 (0.03) 

Liver 1.86 (0.06) 

Kidney 1.85 (0.02) 

Stomach 1.90 (0.03) 

Spleen 1.83 (0.05) 

Omental fat 1.81 (0.06) 

Mesenteric fat 1.81 (0.04) 

Retroperitoneal fat 1.74 (0.03) 

Crest fat 1.78 (0.05) 

Tailhead fat 1.73 (0.10) 

Perirenal fat 1.70 (0.08) 

Epicardial fat 1.74 (0.06) 

Rectus abdominis 1.97 (0.14) 

Longus colli 1.93 (0.18) 

Adductor 1.92 (0.03) 

Pectoralis 
transversus 

1.97 (0.06) 
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Visual appraisal of myostatin gene expression (Figure 5.1a) demonstrates 

considerably greater expression in skeletal muscles compared to any other tissues 

studied (p = 0.07 for all muscles).  Although relative transcript concentrations in 

skeletal muscle appear varied between the specific muscles sampled, differences 

were not statistically significant. The anatomical distribution in the relative 

abundance of ActRIIB mRNA was similar to that of myostatin (Figure 5.1b), with 

expression of this gene being greater in the skeletal muscles when compared to all 

other tissues studied (p = 0.07 for all muscles relative to cardiac tissue). Similarly, 

ActRIIB mRNA expression was not significantly different between the four skeletal 

muscles evaluated.  

Follistatin mRNA expression was anatomically more diverse (Figure 5.1c). Whilst no 

significant differences were detected, follistatin gene expression appears to be 

greater than cardiac tissue in lung, liver, stomach (p = 0.07), a number of adipose 

tissue depots (retroperitoneal, crest, tailhead, epicardial and perirenal; p = 0.07), 

and three of the four skeletal muscles tested (Longus colli, Pectoralis transversus 

and Adductor, p =0.07). Within the regional adipose tissues studied, crest, tailhead, 

epicardial, and perirenal samples tended to have greater follistatin expression when 

compared to the omental and mesenteric depots (p = 0.07) 

Relative to myocardial tissue, visual appraisal suggests that PLIN1 mRNA expression 

tends to be greatest in all seven adipose tissue depots studied (p = 0.07) (Figure 

5.1d). Between adipose depots, tailhead, epicardial and perirenal tended to have 

greater PLIN1 expression when compared to omental and mesenteric depots (p = 

0.07), whilst there was a trend for retroperitoneal fat to have increased expression 

relative to omental (p = 0.07) and there was a trend for crest fat to have increased 

expression compared to mesenteric fat (p = 0.07) 

 



   

  

1
2

4
 

Figure 5.1: Gene expression 

of Myostatin, ActRIIB, 

Follistatin and PLIN1 across 

a range of equine tissues as 

analysed by quantitative 

real-time PCR. Data are 

presented as relative 

expression with respect to 

myocardial tissue. Relative 

transcript abundance is 

shown for (A) Myostatin, 

(B) ActRIIB, (C) Follistatin, 

and (D) PLIN1. n = 4.  
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Tissue specific protein expression of Myostatin, ActRIIB and PLIN1 

Western blot analysis was used to assess protein expression of myostatin precursor 

protein, ActRIIB and PLIN1 across the range of tissues collected (Figure 5.2). Total 

AKT was used as a loading control (Koch et al., 2008). Whilst there appeared to be 

some non-specific binding, the myostatin (43kDa) and ActRIIB (50kDa) proteins 

were only identified in skeletal muscle samples. PLIN1 protein (57kDa) was 

demonstrably present in all of the studied adipose tissue depots.  

 

 

Figure 5.2: Tissue-specific protein expression of PLIN1, ActRIIB and myostatin precursor 
protein across a range of equine tissues assessed by Western blot with total AKT used as a 
loading control. Four membranes were probed for each horse (2 for myostatin and AKT, 
and a further 2 for ActRIIB, PLIN1 and AKT) Representative blots are shown; n=4. AKT 
loading controls are shown for each respective membrane. 

 

5.5 Discussion 

This study establishes for the first time that it is possible to obtain samples of 

sufficient quality for molecular studies from the collection of post-mortem tissues 

from horses in a commercial abattoir. 

By characterising the time course of RNA degradation in the immediate post-
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mortem interval, clear time constraints for the collection of post-mortem tissues to 

be used in the evaluation of gene-expression in equine skeletal muscle and adipose 

tissue have been described. The data indicate that while the RNA extracted from 

masseter muscle in all horses sampled was minimally contaminated with protein 

(OD [A260/A280] ratio > 1.8), for at least 6 hours post-mortem, 28S and 18S 

ribosomal bands were only clearly visible in all three animals for the first 2 hours 

following death, and average 28S:18S ratios dropped to 1.42 by 6 hours post-

mortem. It was noteworthy that perirenal adipose tissue appeared to be more 

susceptible to protein contamination. Extracting good quality RNA from adipose 

tissue is known to be more challenging than RNA extraction from other tissues due 

to the naturally high lipid content in these tissues (Hemmrich et al., 2010; Pratt et 

al., 2013). The OD (A260/A280) ratio of adipose tissue RNA remained consistently 

less than that of masseter muscle, and whilst ribosomal RNA bands were only 

clearly visible up to 30 minutes post-mortem in all horses, average 28S:18S ratios 

were 1.77 and 1.67 at 20 and 30 minutes post-mortem, indicating RNA remained 

relatively intact up to 30 minutes post-mortem.. The gold standard 28S:18S ratio for 

intact RNA is 2:1. However it is rare to find this ratio in RNA extracted from 

mammalian tissues and a cut-off of 1.5 (Ju et al., 2009) and even 1.0 (Rebouissou et 

al., 2008) (quantified from agarose gel electrophoresis) has been used for extracted 

RNA deemed to be suitable for quantitative RT-PCR. Furthermore, a recent 

publication that outlines criteria for publishing RT-qPCR data suggests that a 

28S:18S ratio quantified from agarose gel electrophoresis of between 1 and 2 is 

indicative of intact RNA (Sean Taylor, 2010).   

Taken together, these data would suggest that the optimal windows for the 

collection of muscle and adipose tissue samples to ensure the extraction of good 

quality RNA to be used in gene expression studies are up to 120 and 30 minutes 

respectively. Conversely, in both the muscle and adipose tissue samples collected 

here, evaluation of myostatin expression in all animals seemed unaffected by post-

mortem intervals of up to 6 hours. This could be interpreted to suggest that specific 

mRNAs might be variably robust. However, demonstration of the suitability of RNA 

extracted from tissues collected out with the defined optimal time-windows would 
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need to be demonstrated on a gene-specific basis.  

Although numerous publications use abattoir-derived, post-mortem tissues to 

describe gene-expression in large animal species, data describing the suitability of 

RNA obtained in this manner are sparse. Two studies  have suggested that skeletal 

muscle RNA can remain stable up to 24 hours post-mortem in porcine carcasses 

(Fontanesi et al., 2008) and for up to 8 days in the bovine (Bahar et al., 2007). In 

agreement with the current study, the bovine study also found that RNA extracted 

from subcutaneous adipose tissue was more susceptible to degradation than 

skeletal muscle, with 28S and 18S rRNA molecules remaining intact for 24 hours 

post-mortem (Bahar et al., 2007). These sampling windows greatly exceed those 

indicated in the current equine study and may be attributable to differences in 

conditions between commercial abattoir systems. The porcine and bovine studies 

were conducted in high throughput abattoirs where carcasses were rapidly 

processed and moved to cold rooms (4°C) for further sampling within 2 hours of 

death. This is in contrast to the low throughput system central to the current 

equine study and where all tissue sampling was conducted at ambient temperature 

(~13oC). Clearly, the impact of environmental temperatures is likely to have 

important implications for the long term stability and integrity of RNA and should 

be considered in conjunction with the post-mortem interval.  

 The second element of this study aimed to demonstrate the tissue-specific 

presence    of myostatin, ActRIIB, follistatin and PLIN1, and is the first study to do 

this in equine tissues. 

GeNorm and Normfinder analysis revealed that when the whole spectrum of 

tissues were analysed, HPRT1 expression remained stable across the spectrum of 

tissues in both studies. However in study two, RPL32 proved to be more stable 

especially across the organ tissues than beta-actin which was used for 

normalisation with HPRT1 in the first study (muscle and adipose tissues only). This 

would suggest that the same combinations of housekeeping genes are not always 

suitable for normalisation when a range of tissues are studied, a finding which has 

been demonstrated in a number of studies (Gu et al., 2011; Kessler et al., 2009; 
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Peters et al., 2007). Hence, careful consideration must be given to ensure the 

stability of housekeeping genes selected for the particular tissues under 

consideration. 

 Anatomically, the expression of myostatin and its receptor (ActRIIB), both at the 

gene and protein transcript level would appear to be predominantly a function of 

skeletal muscle. Conversely, PLIN1 expression was primarily restricted to adipose 

tissue depots while the follistatin gene was more ubiquitously expressed across a 

range of diverse tissues. The small population size in this study combined with large 

differences in gene expression between animals may be accounting for the lack of 

statistically significant differences between tissues in the gene expression studies, 

however it is clear from the gene and protein expression data that there are 

differences between tissues and a greater study population may have increased the 

statistical significance. 

Studies of myostatin in large animal species have generally focused on associations 

between myostatin gene mutations and carcass traits in breeds of cattle (Gill et al., 

2009), sheep (Hickford et al., 2010), and pigs (Tu et al., 2012) as an adjunct to 

selective breeding programs for optimal meat production. There are few studies in 

the horse and to date, only one report has identified myostatin precursor and 

mature myostatin protein expression in the skeletal muscles (Semitendinosus, 

Semimembranosus, Splenius, Gluteus medius) of Thoroughbred and Kiso-uma 

breeds of horses (Hosoyama et al., 2002). That gene and protein expression for 

myostatin and its receptor were largely exclusive to skeletal muscle, suggested that 

as reported for other species, myostatin may have an important role in equine 

muscle function. Notably, the gene expression of myostatin has also been reported 

to differ between skeletal muscle fibre types; with increased mRNA expression 

recorded in muscles largely composed of type II fibres (Carlson et al., 1999; 

Hennebry et al., 2009).  Although the skeletal muscles sampled in the current study 

were selected for their diversity of form and function and were therefore likely to 

vary in fibre composition, the relative extent of myostatin gene expression in the 

different muscles studied here did not prove significantly different and may be due 
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to the small number of horses studied.  

Although myostatin and its receptor were not detected at the gene and protein 

level in adipose tissues, evidence from other species suggests that myostatin can 

interact with adipose tissue to inhibit adipocyte differentiation in vitro (Guo et al., 

2008; Hirai et al., 2007a). Conversely myostatin-mediated adipose:muscle cross-talk 

has been demonstrated to up-regulate gene-associated adipogenesis in mice 

(Zhang et al., 2012). The disparity of the conclusions of these studies is likely to be 

partially associated with the different experimental approaches used. It is possible 

that further studies are needed to evaluate the role of myostatin in cross-talking 

pathways with adipose tissues in Equidae.  

The follistatin gene was liberally expressed across the range of tissues studied in 

these horses. Follistatin is a multi-functional protein, originally described as an 

inhibitor of follicle-stimulating hormone (FSH) secretion (Ueno et al., 1987). It has 

since been well characterised as a binding protein that inhibits the actions of 

members of the TGF-β family of signalling molecules including activin, myostatin, 

and bone morphogenetic proteins (BMPs) (Cash et al., 2012; Keutmann et al., 

2004). Expression of the follistatin gene has been demonstrated across a wide 

range of human tissues (Tortoriello et al., 2001). Notably, this human study did not 

evaluate follistatin expression in adipose tissues which is one tissue in which 

follistatin gene was expressed in the current study. More recently, follistatin gene 

expression has been detected in human adipose tissues with greater expression 

noted in subcutaneous as opposed to visceral adipose depots (Flanagan et al., 

2009). These data agree with the findings of the current study where follistatin 

expression was notably minimal in omental and mesenteric depots, in marked 

contrast to the clear expression noted in the other adipose tissue depots studied. 

The same study also demonstrated that treatment with exogenous follistatin could 

promote adipogenesis in cultured human progenitor cells and could reverse 

adipogenic inhibition by myostatin (Flanagan et al., 2009). Additionally, follistatin 

reversed the inhibitory effects of activin A on the differentiation of bovine pre-

adipocytes (Hirai et al., 2007b), whilst it was also identified that follistatin binds 
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myostatin to a slightly lesser extent than it binds activin A (Sidis et al., 2006). Activin 

A has been implicated as a key player in human adipogenesis (Zaragosi et al., 2010). 

In the current study, follistatin gene expression was greater in subcutaneous depots 

(crest and tailhead) relative to visceral (omental) fat. Although not measured in the 

current study, it could be suggested that if activin A is expressed in equine adipose 

tissues it may associate with follistatin to aid in the regulation of adipogenesis.   

In the relatively lean horses used in the current study, PLIN1 (gene and protein), 

was almost exclusively expressed by adipose tissues, and was remarkably consistent 

between regional adipose depots. This contrasts with human work which indicated 

that PLIN1 gene expression was greater in subcutaneous than visceral adipose 

tissues (Arvidsson et al., 2004; Wang et al., 2003), but that the PLIN1 protein 

concentrations were similar between omental and subcutaneous fat depots 

(Arvidsson et al., 2004; Wang et al., 2003). This may suggest that PLIN1 expression 

is subject to post-transcriptional modification. PLIN1 expression has previously 

been shown to be modified in an obese state, with expression positively correlated 

to percentage body fat in human subjects (Gjelstad et al., 2012; Kern et al., 2004). 

Conversely, it was observed that whilst PLIN1 gene and protein expression in 

subcutaneous adipose tissue was significantly decreased in obese as opposed to 

lean humans, PLIN1 mass per adipocyte was constant between obese and non-

obese people (Wang et al., 2003). In agreement with this, a further study also found 

that PLIN1 protein content was relatively decreased in subcutaneous adipose 

tissues from obese compared to lean women (Mottagui-Tabar et al., 2003). These 

data suggested that PLIN1 concentrations were positively associated with rates of 

basal lipolysis. These conflicting data may in part be associated with differences in 

the case-definitions for obesity between the two studies. Indisputably, PLIN1 plays 

a vital role in the regulation of lipolysis (Shen et al., 2009; Tansey et al., 2004) and it 

could be suggested that variations in PLIN1 expression are both the cause of the 

metabolic dysregulation apparent in obesity and a consequence of obesity itself. To 

the authors’ knowledge, this is the first study to identify PLIN1 expression in the 

horse and future studies may aid in the resolution of the precise contribution of this 

protein in the fat biology of the horse.  
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5.6 Conclusion 

This study clearly demonstrated that RNA remains intact up to 2 hours post-mortem 

in equine masseter muscle and up to 30 minutes post-mortem in perirenal adipose 

tissue in all three horses studied. Furthermore, the tissue distributions for 

myostatin, follistatin, ActRIIB and PLIN1 in the horse have been described. More 

focused research into how these factors are altered in settings of energy imbalance 

such as observed in obesity or weight loss are required to better understand their 

physiological roles.   
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During the writing of this thesis, this chapter has been accepted for publication:  

Morrison P.K., Bing C., Harris P.A., Maltin C.A., Grove-White D., Argo, C.McG. (2014) 

Preliminary Investigation into a Potential Role for Myostatin and Its Receptor (ActRIIB) in 

Lean and Obese Horses and Ponies. PLoS ONE 9(11): e112621. doi: 

10.1371/journal.pone.0112621 (Appendix F) 

Preliminary data from this chapter were also presented as an abstract:  

Morrison, P.K., Harris, P.A., Maltin, C.A., Grove-White, D., Argo, C.McG. Differences in the 

myostatin system between lean and obese Equidae. 2nd European Equine Endocrinology 

Symposium 2014, Windsor, UK.  
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6.1 Abstract 

Obesity is a widespread problem across the leisure population of horses and ponies 

in industrialised nations. Skeletal muscle is a major contributor to whole body 

resting energy requirements and communicates with other tissues through the 

secretion of myokines into the circulation. Myostatin, a myokine and negative 

regulator of skeletal muscle mass, has been implicated in obesity development in 

other species. This study evaluated gene and protein expression of myostatin and 

its receptor, ActRIIB in adipose tissues and skeletal muscles and serum myostatin 

concentrations in six lean and six obese animals to explore putative associations 

between these factors and obesity in horses and ponies.  Myostatin mRNA 

expression was increased while ActRIIB mRNA was decreased in skeletal muscles of 

obese animals but these differences were absent at the protein level. Myostatin 

mRNA was increased in crest fat of obese animals but neither myostatin nor ActRIIB 

proteins were detected in this tissue. Mean circulating myostatin concentrations 

were significantly higher in obese than in lean groups; 4.98ng/ml (± 2.71) and 

9.00ng/ml (± 2.04) for the lean and obese groups, respectively. In addition, there 

was a significant positive association between these levels and myostatin gene 

expression in skeletal muscles (average R2 = 0.58; p < 0.05). Together, these results 

provide further basis for the speculation that myostatin and its receptor may play a 

role in obesity in horses and ponies.    
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6.2 Introduction 

Epidemiological studies continue to report a high prevalence of obesity amongst 

the leisure population of horses and ponies in the UK (Giles et al., 2014; Harker et 

al., 2011). The well-documented negative impacts of obesity on health and 

performance have led to obesity being considered one of the major welfare issues 

in horses and ponies facing industrialised nations today (Owers and Chubbock, 

2013).  Obese animals are at an increased risk of developing insulin dysregulation 

and the severely painful and often life-threatening condition, laminitis, although the 

precise mechanisms linking these conditions are not yet fully understood.  

 The organ systems involved in energy homeostasis work in synergy to achieve the 

maintenance of whole body energy balance. As the largest metabolically active 

tissue in the body (comprising around 40% body mass, (Dugdale et al., 2011; Webb 

and Weaver, 1979)), skeletal muscle is a key determinant of resting energy 

expenditure and therefore plays a vital role in maintaining energy balance. 

Communication with other organs, including adipose tissue, is achieved through the 

secretion of molecular messengers into the circulation, termed myokines. 

Myostatin, a member of the transforming growth factor β (TGFβ) family of secreted 

growth factors, is one such myokine. The initial studies showed that mice lacking 

the myostatin gene were extremely hypermuscular and had minimal body fat when 

compared to their wild-type counterparts (McPherron et al., 1997). To date, 

myostatin has been widely characterised as a potent negative regulator of skeletal 

muscle mass (Joulia et al., 2003; Langley et al., 2002; Whittemore et al., 2003) and 

methods to inhibit myostatin function as a potential therapeutic treatment for 

increasing muscle mass in diseases such as muscular dystrophy and cancer cachexia 

have been explored (Benny Klimek et al., 2010; Wagner et al., 2008). 

Myostatin is synthesised as an inactive precursor protein which subsequently 

undergoes two cleavages to produce the mature, active form of the protein. 

Mature myostatin is bound noncovalently to its propeptide and circulates in serum 

as an inactive complex (Hill et al., 2002). Active, mature myostatin binds selectively 
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to the activin type II receptor kinase, ActRIIB. Studies in rodents and humans 

generally report that myostatin expression levels are highest in skeletal muscle, 

although it has also been identified in adipose tissue (McPherron et al., 1997). 

Previous work from this laboratory supports these findings and extends them to the 

horse. These data confirmed that myostatin gene and precursor protein expression 

is greatest in skeletal muscles and that in the horse, although low levels of 

expression were detected in adipose tissue at the gene level, myostatin precursor 

protein was absent (Morrison et al., 2014).  

Work in murine models and humans has identified that myostatin may have an 

important role in obesity development. Myostatin knock-out (KO) mice offered 

high-fat diets are resistant to gains in body fat (Dilger et al., 2010; Hamrick et al., 

2006), and although this effect may be secondary to the increases in lean body 

mass, myostatin had direct effects on adipocyte differentiation (Guo et al., 2008a; 

Hirai et al., 2007). Furthermore, blocking myostatin increased the functional 

capacity of brown adipose tissue (BAT) (Fournier et al., 2012) and may even drive 

the browning of white adipose tissue through the up-regulation of BAT-specific 

genes (Shan et al., 2013). Myostatin gene expression was positively associated with 

obesity in both mouse (Allen et al., 2008) and human studies (Hittel et al., 2009), 

whilst blocking myostatin function in mature mice elicited positive effects on 

glucose and insulin dynamics (Cleasby et al., 2014). In comparison to human and 

rodent studies, there are fewer studies of myostatin in horses and ponies, and the 

extant reports generally focus on the identification of a number of single nucleotide 

polymorphisms (SNP’s) in the myostatin gene. SNPs have been associated with 

different attributes including breeds of different morphological type (Dall'Olio et al., 

2010), optimal race distance in Thoroughbred horses (Hill et al., 2010) and skeletal 

muscle fibre type proportions in Quarter horses (Petersen et al., 2013).  

To date, no work has been conducted to characterise the expression of myostatin 

and its receptor against the setting of obesity in the horse or pony. The current 

study was designed to explore possible differences in myostatin and ActRIIB 

expression between lean and obese animals by quantifying myostatin and ActRIIB 
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gene and protein expression in skeletal muscle and adipose tissue, and measuring 

serum myostatin concentrations. 

 

6.3 Materials and methods 

Animals and tissue collection 

Tissues from six lean (body condition score (BCS) /9 = 3.07 ±0.50, where 1 = 

emaciated and 9 = obese (Kohnke, 1992)) and six obese (BCS /9 = 7.7 ± 0.46) 

mature, mixed breed horses and ponies were obtained post-mortem. All animals 

were in good general health and were euthanased for reasons unrelated to this 

study (Table 6.1). The horses were slaughtered in a commercial abattoir (LJ Potters, 

Taunton, Somerset) in accordance with EU legislations EC 852/2004, 853/2004 and 

854/2004 on several dates between March 2013 and January 2014. Ante-mortem 

data collection included BCS (/9, (Kohnke, 1992)), breed type, gender, estimated 

withers height and age. For assessment of BCS, six areas of the body (neck, withers, 

loin, tailhead, ribs and shoulder) are assigned a number from 1 (emaciated) to 9 

(obese) based on detailed descriptors. The average of these six numbers is 

calculated and this number equates to the final BCS score for the animal (Kohnke, 

1992).  

To evaluate gene and protein expression of myostatin and ActRIIB, a total of five 

anatomically-discrete adipose depots and four functionally distinct skeletal muscles 

were sampled. Strict anatomical descriptors were used to ensure that tissue 

samples were collected from the same site in each animal (Table 6.2 and Appendix 

E). Tissue samples were obtained as rapidly as possible post-mortem (adipose 

tissues within 30 minutes; skeletal muscles within 1 hour) using sterile equipment, 

as recommended previously (Morrison et al., 2014). 
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All samples were minced with scissors and snap frozen in liquid nitrogen before 

being stored at -80°C pending RNA and protein extraction. For the measurement of 

myostatin protein in serum, blood samples (~10ml) were collected into plain tubes 

(BD Vacutainer) at exsanguination and allowed to clot before centrifuging at 2000g 

for 10 minutes at 4°C. Serum was collected and stored at -20°C pending myostatin 

protein measurement by ELISA.   

Table 6.1. Phenotypic descriptors for the animals used in this study. Body condition score 
(BCS), age and gender are indicated.  

Horse ID Gender Age (years) BCS (/9) Breed type 

Le
an

 

1 Gelding 8 3 Welsh Pony 

2 Mare 5 3.8 Welsh Pony 

3 Gelding 15 2.5 Sport horse 

4 Gelding 6 3 Sport horse 

5 Mare 10 3.5 Sport horse 

6 Gelding 4 2.6 Sport horse 

O
b

es
e 

7 Mare 6 7 Cob horse 

8 Mare 13 8 Cob pony 

9 Mare 5 7.3 Sport horse 

10 Gelding 15 8.2 Cob pony 

11 Gelding 7 7.9 Cob pony 

12 Mare 15 7.8 Cob horse 
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RNA extraction  

Total RNA was extracted from all frozen tissue samples using TRIzol reagent 

(Invitrogen, Paisley, UK), in accordance with the manufacturers protocol. RNA 

concentration and purity was quantified spectrophotometrically (Eppendorf 

Biophotometer, Hamburg, Germany) and all optical density A260/280 ratios were 

within acceptable ranges (1.7-2.0). Reverse transcription (RT) was carried out in a 

10μl final reaction volume containing 0.5μg RNA using an iScript cDNA synthesis kit 

(Bio-Rad Hemel Hempstead, UK). The resulting cDNA was diluted at 1:4 and used as 

a template for real-time PCR analysis. 

Table 6.2: Specific anatomical descriptors used to locate the tissue collection points for the 
5 regionally discrete adipose tissue depots and 4 skeletal muscles sampled from horses 
used in the current study. Where relevant, tissues were collected from the left side 
following carcass-splitting. 

Tissue Anatomical descriptors for sample sites 

A
d

ip
o

se
 t

is
su

es
 

Ventro-

abdominal 

~3cm
3
, collected from the left split-carcass midline at a point 

equidistant between xiphisternum and pubis. 

Epicardial ~2cm
3
 from the coronary groove and overlying the left coronary 

artery 

Omental Variable area of omentum, sufficient to harvest ~2cm
3
 of adipose 

tissue, from a region adjoining the greater curvature of the stomach 

and bearing visible adipose. 

Crest ~3cm
3
 from the left split-carcass at the deepest part of the crest, 

midway between wither and poll extremities. 

Tailhead ~2cm3 from the subcutaneous adipose tissue overlying the gluteal 

muscles of the left carcass. 

Sk
el

et
al

 m
u

sc
le

s 

Rectus 

abdominis,  

~3cm
3
, collected from the left split-carcass midline at a point 

equidistant between xiphisternum and pubis. 

Longus colli, ~3cm
3
, from its severed cranial extremity in the left split-carcass. 

Pectoralis 

transversus 

~3cm
3
, collected from the exposed midline section of the muscle at a 

point just ~10cm caudal to the thoracic inlet. 

Pectoralis 
profoundus 

~3cm3, collected from the exposed midline section of the 
muscle, immediately deep to the collection site for Pectoralis 
transversus. 
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Quantitative Real-Time PCR 

The expression of myostatin, ActRIIB and four housekeeping genes previously used 

in other studies in horses and ponies (Ahn et al., 2011; Bogaert et al., 2006) 

(GAPDH, Beta-actin, HPRT1 and RPL32) was determined in all tissues from the 

twelve animals. GeNorm software (GenEx, Germany) was used to assess the two 

‘most stably’ expressed genes to be used for normalisation. Gene expression was 

determined by quantitative real-time PCR performed in duplicate using the 

Stratagene Mx3005P detection system (Agilent Technologies, California USA). 

Primer sequences for all four housekeeping genes were obtained from previously 

published data (HPRT1 and RPL32, GAPDH (Bogaert et al., 2006), and beta-actin 

(Ahn et al., 2011)) and 100% homology was confirmed by performing a basic local 

alignment search tool (BLAST). Primer and Taqman probe sequences for myostatin 

and ActRIIB, were designed using Beacon Designer (Premier Biosoft, USA). All 

primers were designed to be exon-spanning. All primer/probe sets were purchased 

from Eurogentec (Belgium) (Table 6.3). Serial dilutions of pooled cDNA were used to 

calculate Taqman primer efficiencies. The PCR cycling conditions (using Taqman 

probe and primers) for myostatin and ActRIIB were as follows: 10 minutes at 95°C, 

followed by 40 cycles of 30 seconds at 95°C, 1 minute at 55°C and 1 minute at 72°C. 

Cycling conditions for housekeeping genes (using SYBR green method) were as 

follows: 10 minutes at 95°C followed by 40 cycles of 15 seconds at 95°C and  30 

seconds at 60°C and ending with, 1 minute at 95°C, 30 seconds at 55°C and 30 

seconds at 95°C.   

Relative gene expression was calculated using the comparative Ct method (2-∆Ct) 

(Schmittgen and Livak, 2008). All gene expression data were normalised to 2 

internal housekeeping genes.  
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Table 6.3. Nucleotide sequences of primers and probes used in the current study. 

Gene Primer Sequence Amplification 
efficiency 

Beta-actin Forward GGACCTGACGGACTACCTC 97% 

Reverse CACGCACGATTTCCCTCTC 

HPRT1 Forward GGCAAAACAATGCAAACCTT 94.5% 

Reverse CAAGGGCATATCCTACGACAA 

GAPDH Forward CAGAACATCATCCCTGCTTC 95% 

Reverse ATGCCTGCTTCACCACCTTC 

RPL32 Forward AGCCATCTACTCGGCGTCA 94% 

Reverse TCCAATGCCTCTGGGTTTC 

Myostatin Forward GCAGTGATGGCTCTTTGGAAG 97.9% 

Reverse GCATTAGAAGATCAGACTCTGTAGG 

Probe ACCACGCGACGACGGAAACAATCAT 

ActRIIB Forward GCCTCGCTGTTCGGTTTGAG 92.9% 

Reverse GGCTCCCTCAAGCACCTCAG 

Probe ACCGCCGTGTGCCCACCTGC 

 

Protein Extraction and Western Blotting 

Soluble protein was extracted from frozen tissues by homogenising around 100mg 

of tissue in a SHE buffer (250mM sucrose, 1mM HEPES, 0.2mM EDTA) containing 

both phosphatase and protease inhibitor cocktails (both Sigma, Poole, Dorset, UK). 

Samples were centrifuged and the soluble fraction was used for determining 

protein concentration by the bicinchoninic acid (BCA) method (Smith et al., 1985). 

Thirty micrograms of protein extract were separated on 10% SDS-polyacrylamide 

gels under reducing conditions and proteins were transferred onto nitrocellulose 

membranes (Hybond-C Extra, Amersham Bioscience, Buckinghamshire, UK) by 

electroblotting (Turbo transfer, BioRad). Membranes were stained in Ponceau S 

reversible stain to verify the success of protein transfer and then blocked for 1 hour 

in 5% BSA in Tris-buffered saline containing 0.1% Tween 20 (TBST). Commercially 

available primary antibodies (listed below) were used and were selected on the 

basis that they were listed as having ‘equine cross-reactivity’. They were added at 



 

147 

 

6 Myostatin system in equine obesity 

the following concentrations: myostatin precursor (MSTN), 1:2500 [ab98337 

Abcam, Cambridge, UK], myostatin receptor (ACTRIIB), 1:2000 [sc-25453 Santa 

Cruz, Dallas, Texas, USA] and the serine/threonine Akt (AKT), 1:3000 [#9272 Cell 

Signalling, Danvers, MA, USA]) in blocking buffer and incubated overnight at 4°C. 

The myostatin antibody detected the precursor form of the protein (~43kDa). The 

membranes were washed and then incubated for 1 hour with a secondary antibody 

(Cell Signalling) at appropriate concentrations. Signals were detected by 

chemiluminescence using a SuperSignal West Pico Chemiluminescent Substrate 

(Pierce, Rockford, IL, US) and visualised and quantified on a Molecular Imager 

ChemiDoc XRS+ System (Bio-Rad). The results were normalised to the value of AKT. 

To ensure the reliability of data, western blots for myostatin and ActRIIB proteins in 

skeletal muscles were repeated three times and average densitometric values were 

calculated. 

 Myostatin ELISA 

Mature myostatin protein concentration was measured using a commercially 

available ELISA kit (R&D Systems, Catalogue number: DGDF80) which has been 

validated for use on ‘equine serum and plasma samples’ by R&D systems 

(www.rndsystems.com/pdf/DGDF80.pdf) and employs the quantitative sandwich 

enzyme immunoassay technique to measure mature myostatin concentration. Prior 

to running the plate, samples were subjected to acid activation and neutralisation 

to remove the pro-peptide from myostatin. Samples were run in duplicate and the 

ELISA was run according to the manufacturer’s protocol. Myostatin concentration 

(ng/ml) was calculated from a standard curve.  

Statistical Analysis 

Statistical analyses were performed using STATA version 12.1 (StataCorp, Texas). 

Non-parametric, analytical methods were employed to assess gene and protein 

expression data. The Kruskal Wallis test was used to assess differences in gene and 

protein expression, along with differences in circulating myostatin concentrations 

between lean and obese animals. Associations between circulating myostatin and 

http://www.rndsystems.com/pdf/DGDF80.pdf
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myostatin plus ActRIIB gene and protein expression were analysed using linear 

regression. Significance was set at p < 0.05.  

 

6.4 Results 

Animals 

The animals used in this study were slaughtered in a commercial abattoir for non-

research purposes. The BCS in the population fell within the commercial range and 

lean and obese BCS categories were selected to give clear differences in body fat 

content (Dugdale et al., 2012).  

Myostatin and ActRIIB gene expression 

Myostatin gene expression across all skeletal muscles studied was significantly 

greater in the obese animals compared to the lean animals (p < 0.05) (Figure 6.1 

and Table 6.4). In contrast, ActRIIB gene expression was significantly lower in obese 

animals in three out of the four skeletal muscles studied (p < 0.05) (Figure 6.1 and 

Table 6.4). While myostatin gene expression was considerably lower in adipose 

tissues in comparison to skeletal muscles, expression was significantly greater in the 

crest fat of obese animals compared with lean animals (p < 0.05) (Figure 6.2 and 

Table 6.5). No difference was observed between lean and obese animals for ActRIIB 

gene expression in adipose tissues (Figure 6.2 and Table 6.5).  
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Table 6.4: Median and interquartile range (IQR) for myostatin and ActRIIB gene expression 
(normalised data) in skeletal muscles of lean and obese horses and ponies.  

Muscle Lean Obese P value 

Myostatin  Median IQR Median IQR  

Rectus 
abdominis 

0.0007 0.0010 0.003 0.001 0.04 

Longus colli 0.0009 0.0004 0.003 0.003 0.02 

Pectoralis 
profoundus 

0.0003 0.0006 0.002 0.001 0.03 

Pectoralis 
transversus 

0.0004 0.0008 0.004 0.004 0.01 

ActRIIB      

Rectus 
abdominis 

0.003 0.002 0.001 0.001 0.15 

Longus colli 0.004 0.005 0.001 0.0009 0.03 

Pectoralis 
profoundus 

0.001 0.002 0.0004 0.0006 0.04 

Pectoralis 
transversus 

0.0003 0.0005 0.0001 0.0001 0.03 
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Figure 6.1: Myostatin and ActRIIB gene expression in skeletal muscles of lean and obese 

horses and ponies. *denotes where values differ significantly (p < 0.05) from lean group. n 

= 6/group. 

 

 

Figure 6.2: Myostatin and ActRIIB gene expression in adipose tissues of lean and obese 
horses and ponies. n = 6/group. 
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Table 6.5: Median and interquartile range (IQR) for myostatin and ActRIIB gene expression 

(normalised data) in adipose tissues of lean and obese horses and ponies.   

Depot Lean Obese P value 

Myostatin  Median IQR Median IQR  

Omental 0.0001 0.0001 0.0001 0.00006 0.42 

Epicardial 0.00004 0.0003 0.0001 0.0001 0.34 

Crest 0.00008 0.00005 0.0002 0.0001 0.02 

Tailhead 0.0001 0.00009 0.0001 0.0004 0.33 

Retroperitoneal 0.0002 0.0002 0.0002 0.0001 0.75 

ActRIIB      

Omental 0.0007 0.0009 0.00009 0.0007 0.11 

Epicardial 0.001 0.002 0.001 0.001 0.87 

Crest 0.0005 0.0009 0.0005 0.0004 0.86 

Tailhead 0.0004 0.0005 0.0002 0.0007 0.20 

Retroperitoneal 0.001 0.003 0.0002 0.0003 0.52 

 

Myostatin and ActRIIB protein expression 

Myostatin precursor protein expression was quantified across the four skeletal 

muscles by western blotting in three separate experiments. Although the average 

densitometric data showed no significant differences between lean and obese 

animals for any skeletal muscle studied (Pectoralis transversus, p = 0.75; Longus 

colli, p = 0.42; Rectus abdominis, p = 0.26; Pectoralis profoundus, p = 0.08), obese 

animals tended to have greater myostatin protein expression compared with lean 

animals (Figure 6.3). Similarly ActRIIB protein expression was quantified across the 

four skeletal muscles by western blotting in three separate experiments. No 

significant differences in protein expression between lean and obese animals were 

observed in the skeletal muscles studied (Figure 6.4).  
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Figure 6.3: Protein expression of myostatin precursor protein in skeletal muscles of lean 

and obese horses and ponies. n = 6/group. 

 

 

 

 

Figure 6.4: Protein expression of ActRIIB protein in skeletal muscles of lean and obese 
horses and ponies. n = 6/group. 
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Due to the differences observed at the gene level in crest fat for myostatin, we 

sought to identify whether these differences were translated into differences at the 

protein level for both myostatin and ActRIIB. However, Figure 6.5 clearly 

demonstrates there was no protein detected in either the lean or obese animals for 

myostatin precursor protein or ActRIIB.  

 

 

Figure 6.5: Protein expression of myostatin precursor and ActRIIB proteins in crest fat of 

lean and obese horses and ponies.  

 

Circulating myostatin concentration 

Circulating, mature myostatin protein was detected in serum samples from all 

animals studied. Overall, mean serum myostatin concentration was 6.99ng/ml ( 

3.10); the range was 2.72ng/ml to 11.40ng/ml. The mean values for the lean and 

obese groups were 4.98ng/ml ( 2.71) and 9.00ng/ml ( 2.04), respectively. Kruskal 

Wallis test revealed significant differences between lean and obese animals (p < 

0.05) (Figure 6.6). Univariate analysis revealed positive associations  between 

serum myostatin concentrations and myostatin mRNA expression in skeletal muscle 

for all muscles studied, irrespective of whether muscles were considered 

independently or collectively (average R2 = 0.58, p < 0.05) (Table 6.6). Associations 

between myostatin serum concentrations and the magnitude of muscle myostatin 

protein expression were weaker than those recorded for gene expression (average 

R2 = 0.28). Only myostatin protein expression in Pectoralis profoundus had a 

significant association with serum myostatin concentration (R2 = 0.50, p = 0.01) 

(Table 6.6).  No associations were identified between myostatin serum 

concentration and ActRIIB gene or protein expression (Table 6.6).  
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Figure 6.6: Circulating concentrations of myostatin protein in lean and obese horses and 

ponies. *denotes where values differ significantly (p < 0.05) from lean group. n = 6/group. 
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Table 6.6: Univariate regression analysis results for myostatin ELISA data. Myostatin 

concentration was the outcome variable and myostatin and ActRIIB gene and protein 

expression data for the individual skeletal muscles was offered as explanatory variables.  

Variable Coefficient Adjusted R
2
 95% CI P value 

M
yo

st
at

in
 g

en
e 

ex
p

re
ss

io
n

 

Rectus abdominis 1287.62 0.65 622.89 to 1952.35 0.002 

Longus colli 1179.68 0.54 409.69 to 1949.68 0.007 

Pectoralis profoundus 2811.07 0.78 1761.03 to 3861.11 < 0.001 

Pectoralis transversus 836.77 0.36 57.41 to 1616.13 0.04 

A
ct

R
II

B
 g

en
e 

ex
p

re
ss

io
n

 

Rectus abdominis -201.53 0.01 -2083.14 to 1680.08 0.82 

Longus colli -583.66 0.23 -1336.72 to 169.40 0.12 

Pectoralis profoundus -1332.49 0.32 -2710.86 to 45.89 0.06 

Pectoralis transversus -5812.13 0.33 -12115.38 to 491.11 0.07 

M
yo

st
at

in
 p

ro
te

in
 

ex
p

re
ss

io
n

 

Rectus abdominis 7.28 0.13 -6.17 to 20.74 0.26 

Longus colli 5.36 0.26 -0.95 to 11.67 0.09 

Pectoralis profoundus 16.40 0.50 4.81 to 27.99 0.01 

Pectoralis transversus 12.58 0.24 -3.39 to 28.54 0.11 

A
ct

R
II

B
 p

ro
te

in
 

ex
p

re
ss

io
n

 

Rectus abdominis -8.91 0.15 -23.98 to 6.15 0.22 

Longus colli 1.43 0.004 -13.84 to 16.71 0.84 

Pectoralis profoundus 10.35 0.25 -2.37 to 23.08 0.10 

Pectoralis transversus 6.80 0.17 -3.62 to 17,23 0.17 

 

6.5 Discussion 

This study presents preliminary data which provide the first indication of a possible 

association between BCS and myostatin gene expression and secretion in horses 

and ponies.   

The increased gene expression of myostatin in skeletal muscles of obese animals is 

in agreement with similar data for mice where myostatin mRNA levels were 

significantly greater in tibialis anterior muscle in ob/ob mice compared to wild-type 

mice (Allen et al., 2008). In that study, the expression of ActRIIB was not different 
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between lean and obese animals for skeletal muscle, whereas in the current study, 

ActRIIB mRNA was significantly down-regulated in three out of the four skeletal 

muscles studied. This may be suggestive of some element of negative feedback 

regulation between myostatin and ActRIIB.  

Increased expression of myostatin protein has been identified in the vastus lateralis 

muscle from extremely obese human subjects (BMI ≥40kg/m2) (Hittel et al., 2009). 

Perhaps the lack of statistical significance observed in the current study may be due 

to absolute differences in body fat content between species. Obese horses and 

ponies  were found to have up to 30% body fat recorded in a previous study (Argo 

et al., 2012), which is considerably lower than the body fat content of morbidly 

obese humans which was found to average 48.5% (Vijgen et al., 2011). The finding 

of altered myostatin and ActRIIB mRNA expression in muscle without parallel 

changes in protein expression has previously been shown (Baumann AP, 2003; 

Smith et al., 2010).  It is known that the mRNA expression of a particular gene is not 

always predictive of protein expression, and the correlation between the two can 

vary significantly (Guo et al., 2008b). There are several possible explanations for the 

differences between the gene and protein expression including variation in protein 

half-lives, complex post-transcriptional mechanisms, and different sensitivities in 

methodologies for detecting mRNA and protein expressions (Greenbaum et al., 

2003). Furthermore, the lack of differences between lean and obese animals 

observed at the protein level may be due to an increased secretion of myostatin 

protein from skeletal muscle, although the kinetics of myostatin secretion has yet 

to be explored for the horse.  

This preliminary study examined both myostatin gene and protein expression in 

skeletal muscles. These techniques have not been performed previously in abattoir 

derived equine material in lean and obese animals, thus there was a total absence 

of prior data to inform study design. Therefore it was not possible to perform a 

priori sample size calculations since the magnitude of differences in expression on 

which to base such calculations were unknown. Differences in gene expression 

were demonstrated between lean and obese animals and post hoc power 
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calculations confirmed that in this case the study had sufficient power (82%). 

However in the case of protein expression, no differences were observed at the P < 

0.05 level. Two hypotheses for this result may be formulated – firstly there was a 

true difference in protein expression but the sample size was insufficient to detect 

it at a P value < 0.05 or secondly no difference existed, which may be due to 

reasons outlined earlier.   A post hoc sample size calculation was performed based 

on the protein expression data from pectoralis profoundus muscle.  This suggested 

that whilst a mean difference of 0.123 (2 tailed P = 0.114) in myostatin protein 

expression was observed between groups, the power of the study (based on the 

mean difference and P value obtained) was only 35% and a sample size of 21 

animals per group would likely be required to achieve a statistical significance of P < 

0.05 with 80% power.  The validity and utility of post hoc power calculations are 

widely challenged by many biostatisticians e.g. (Goodman et al., 1994), therefore 

whilst the results of post hoc power calculations should not be taken definitively 

regarding sample sizes, it does indicate that a larger sample size may be required 

for future studies.  

Circulating concentrations of myostatin were significantly higher in obese than in 

lean animals in the current study. This is consistent with previous observations of 

increased myostatin secretion from myotubes derived from muscle of extremely 

obese humans (Hittel et al., 2009). In the current study there was one clear outlier 

in our lean group of animals for both circulating concentrations and mRNA 

expression of myostatin which upon investigation was found to be the Welsh pony 

mare (Horse 2; Table 1). It could be speculated that this may be indicative of an 

increased propensity towards obesity based on a finding from a murine study in 

which  obesity-susceptible strain of mice (C57BL/6) had increased mRNA expression 

of myostatin in skeletal muscle compared to an obesity-resistant strain of mice, 

SWR/J (Lyons et al., 2010).  

Myostatin gene expression was generally low in adipose tissues but was 

significantly higher in crest fat from obese than lean animals. Increased fat 

deposition in this subcutaneous fat depot along the nuchal crest of the neck in 
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horses and ponies has been associated with laminitis risk (Carter et al., 2009b), 

hyperinsulinemia (Carter et al., 2009a), and has been proposed to be an important 

source of pro-inflammatory cytokines (Bruynsteen et al., 2013). Differences in 

myostatin gene expression between crest fat samples from lean and obese animals 

were not reflected in protein expression in this tissue. Data indicated that neither 

myostatin precursor nor ActRIIB proteins were detectable in the crest fat of either 

lean or obese animals by the methods used in the current study. This is in 

agreement with data presented in an earlier study which similarly failed to detect 

either myostatin precursor or ActRIIB proteins in crest and other adipose tissues 

from lean (BCS < 4/9) animals (Morrison et al., 2014).   

 

6.6 Conclusion 

These preliminary data offer some evidence that the ‘myostatin system’ may differ 

at both the gene and protein level in lean and obese horses and ponies. Further 

work is needed, and these findings now provide the basis for future prospective 

studies in horses and ponies to explore the previous speculation from human 

studies (Hittel et al., 2009) that circulating myostatin levels and/or associated 

factors might act as biological marker(s) for metabolic conditions including obesity.  
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7.1 Abstract 

Adipose tissue is a highly active endocrine organ, specialised in the storage of 

excess energy as triglycerides in intracellular lipid droplets within adipocytes. 

Lipolysis is a key physiological process by which stored triglycerides are catabolised 

in a stepwise manner by the actions of several proteins to produce fatty acids and 

glycerol. Obesity in other species is associated with increases in adipocyte area and 

perturbations in lipolysis. In addition, the expression of key lipolytic proteins is 

altered in an obese state. A high prevalence of obesity continues to be reported in 

the UK leisure based population of horses and ponies; however, whether lipolytic 

proteins are altered in an obese state is not currently know. Therefore the current 

study was designed to characterise the expression of two key lipolytic proteins, 

hormone-sensitive lipase (HSL) and the lipid droplet associated protein, perilipin 1 

(PLIN1) in a range of adipose depots (retroperitoneal, omental, crest and tailhead) 

from lean and obese horses and ponies. Adipocyte area was significantly increased 

in obese animals for all depots except for epicardial WAT. The ratio of 

lipid:extracted protein was strongly associated with adipocyte area for all depots 

except epicardial WAT. Furthermore, PLIN1 and HSL protein expression was 

significantly lower in obese animals for retroperitoneal fat in both internatant 

(largely cytosolic) and fat cake (lipid droplet associated) protein fractions, whilst 

fewer differences were noted for the other depots. In conclusion, these results 

indicate that obesity in horses and ponies is associated with changes in the 

expression of lipolytic proteins in certain depots which may indicate clear functional 

differences between regional adipose depots in the horse.  
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7.2 Introduction 

The high prevalence of obesity in our leisure population of horses and ponies has 

potential negative health implications, including an increased risk of developing 

debilitating and metabolically deleterious conditions, including laminitis and insulin 

dysregulation (Carter et al., 2009). Such welfare considerations have warranted 

consideration of the key regulators of energy balance and how they might be 

altered in obesity. White adipose tissue (WAT) is a highly metabolically active 

tissue, specialised in the storage of excess energy as triglycerides in intracellular 

lipid droplets within adipocytes (Brown, 2001). These stored triglycerides are 

mobilised  to supply the body with energy during times of negative energy balance 

(e.g. during fasting, exercise or when natural foods are sparse) through the delivery 

of fatty acids in the plasma to skeletal muscle and liver to be metabolised. An 

imbalance between fat deposition and mobilisation can lead to metabolic disorders 

associated with obesity in other species such as diabetes, fatty liver disease and 

dyslipidaemia (Dandona et al., 2005).  

The catabolism of stored triglycerides into labile fatty acids, lipolysis, is a highly 

regulated process, promoted by catecholamines such as noradrenaline and 

adrenaline and inhibited by the actions of insulin. The hydrolysis of triacylglycerol 

(TAG) is catalysed in a step-wise manner by the action of adipose triacylglycerol 

lipase (ATGL), hormone-sensitive lipase (HSL) and monoglyceride lipase. Hormone-

sensitive lipase activity is considered to be a major determinant of the maximal 

lipolytic capacity of human fat cells (Large et al., 1998) and the expression of HSL 

protein in adipocytes is reduced in the obese state (Jocken et al., 2007; Ray et al., 

2009). Furthermore, a null mutation in the HSL gene has been associated with an 

increased risk of type 2 diabetes development in humans (Albert et al., 2014). 

These data confirm HSL as a key protein in the normal control of lipid and glucose 

metabolism.  

The requirement for the strict regulation of lipolysis is highlighted by specific 

functional disorders within the pathway. Obesity is characterised by the expansion 



 

166 

 

7 Adipose tissue: morphology and lipolytic proteins 

of adipose tissue by both hypertrophy and hyperplasia of adipocytes; however 

continued nutrient excess beyond the adipocyte expandability limits will result in a 

pathogenic state (Rutkowski et al., 2015).  In Man, obesity is associated with 

increased concentrations of plasma fatty acids (Arner, 2005); an effect which may 

be partly mediated by correspondingly increased concentrations of the circulating 

inflammatory factor tumour necrosis factor alpha (TNF-α), which activates the 

extracellular signal-related kinase pathway, elevating intracellular cAMP levels, 

leading to an enhanced basal lipolytic rate (Zhang et al., 2002).  In addition to this, 

increased visceral fat deposition may also contribute to elevated circulating fatty 

acids as visceral fat is more lipolytically active than subcutaneous fat (Van Harmelen 

et al., 1997). Increased circulating fatty acid concentrations are known to promote 

ectopic lipid deposition and contribute to the development of insulin resistance in 

skeletal muscle, liver and other tissues (Boden et al., 2001; Boden and Shulman, 

2002).  Furthermore, obesity has been associated with a blunted response to 

catecholamine-stimulated lipolysis (Langin et al., 2005), which has been suggested 

to be a mechanism to reduce the negative effects of insulin resistance by lowering 

fatty acid flow from adipose tissue (Jocken et al., 2007).   

For all species, lipid droplets residing in adipocytes are surrounded by a 

phospholipid monolayer which is coated with proteins. One of the key proteins 

coating the lipid droplet is perilipin (PLIN1), the founding member of the perilipin 

protein family (Bickel et al., 2009). Under basal conditions, PLIN1 prevents lipases 

from accessing the enclosed triglycerides to initiate lipolysis. PLIN1 may also 

function in controlling lipid droplet expansion through an interaction with Fat-

specific protein (FSP) 27 (Fsp27) (Sun et al., 2013). Catecholamine signalling through 

β-adrenergic receptors increases cellular cAMP concentrations. This in turn 

activates Protein Kinase A (PKA) which causes phosphorylation of PLIN1 and HSL, 

whilst the translocation of phosphorylated HSL from the cytoplasm to the lipid 

droplet surface initiates lipolysis. It has been demonstrated that PKA mediated 

phosphorylation of PLIN1 is not essential for HSL translocation but it is essential for 

lipid droplet interactions between PLIN1 and HSL to allow lipolysis to proceed 

(Miyoshi et al., 2006).  
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PLIN1 has been extensively studied in both man and rodents and its close functional 

association with HSL has established that it is a critically important protein in lipid 

and glucose homeostasis. PLIN1 knock-out (KO) mice are phenotypically 

characterised as having increased rates of basal lipolysis and attenuated 

catecholamine stimulated lipolytic responses, suggesting that PLIN1 is required for 

maximal lipolytic activity through a direct interaction with HSL at the lipid droplet 

surface (Zhang et al., 2002). Furthermore, a resistance to diet-induced obesity has 

also been observed in PLIN1 KO mice; however they have been shown to develop 

insulin resistance with ageing (Tansey et al., 2001). In humans, PLIN1 protein 

expression is down-regulated in obesity (Ray et al., 2009) and a number of 

polymorphisms of the PLIN1 gene have been identified and associated with both 

obesity risk and weight-loss resistance (Corella et al., 2005).  

To date, there are few studies describing the expression of lipolysis-related proteins 

in horses and ponies. It has previously been demonstrated that in horses, PLIN1 is 

almost exclusively expressed in WAT (Morrison et al., 2014). Furthermore, ex vivo in 

vitro assays using equine adipocytes demonstrated that lipolysis rates were 

significantly greater for ponies than horses when stimulated with adenosine 

deaminase and norepinephrine, although inhibition of lipolysis by insulin was 

comparable between horses and ponies (Breidenbach et al., 1999).  

The current study was therefore designed to characterise adipocyte area as well as 

the gene and protein expression of PLIN1 and HSL across a range of adipose depots 

in lean and obese horses and ponies, in order to establish whether these proteins 

are altered in states of positive energy balance.  

 

7.3 Materials and methods 

Animals and tissue collection 

Tissues from six lean (body condition score [BCS] /9 = 3.07 ±0.50, where 1 = 

emaciated and 9 = obese (Kohnke, 1992) and six obese (BCS /9 = 7.7 ± 0.46) mature 
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(age range 5-15 years), mixed breed horses and ponies were obtained post-mortem. 

All animals were in good general health and were euthanased for reasons unrelated 

to this study (Table 7.1). The horses were slaughtered in a commercial abattoir (LJ 

Potters, Taunton, Somerset) in accordance with EU legislations EC 852/2004, 

853/2004 and 854/2004 on several dates between March 2013 and January 2014. 

Ante-mortem data collection included BCS (/9, (Kohnke, 1992)), breed type, gender, 

estimated withers height and age. For assessment of BCS, six areas of the body 

(neck, withers, loin, tailhead, ribs and shoulder) are assigned a number from 1 

(emaciated) to 9 (obese) based on detailed descriptors. The average of these six 

numbers is calculated and this number equates to the final BCS score for the 

animal. 

 

Table 7.1: Phenotypic descriptors for the animals used in this study. Body condition score 

(BCS), age and gender are indicated. Breed types are as denoted in animal passports and/or 

confirmed by visual inspection.  

 Horse ID Gender Age (years) BCS (/9) Breed type 

Le
an

 

1 Gelding 8 3 Welsh Pony 

2 Mare 5 3.8 Welsh Pony 

3 Gelding 15 2.5 Sport horse 

4 Gelding 6 3 Sport horse 

5 Mare 10 3.5 Sport horse 

6 Gelding 4 2.6 Sport horse 

O
b

es
e 

7 Mare 6 7 Cob horse 

8 Mare 13 8 Cob pony 

9 Mare 5 7.3 Sport horse 

10 Gelding 15 8.2 Cob pony 

11 Gelding 7 7.9 Cob pony 

12 Mare 15 7.8 Cob horse 
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To evaluate the expression of PLIN1 and HSL, a total of five anatomically-discrete 

adipose depots were sampled. Strict anatomical descriptors were used to ensure 

that tissue samples were collected from the same site in each animal (Table 7.2). 

Tissue samples were obtained as rapidly as possible post-mortem (within 30 

minutes) using sterile equipment, as recommended previously (Morrison et al., 

2014). For the measurement of adipocyte area, a section of the adipose tissue 

sample (~1cm3) was fixed by placing it in 4% paraformaldehyde prior to 

haematoxylin and eosin (H&E) staining. The remainder of each sample was chopped 

finely with scissors, packed in a tinfoil fold, snap frozen in liquid nitrogen and stored 

at -80°C pending RNA and protein extraction.  

 

Table 7.2: Specific anatomical descriptors used to locate the tissue collection points for the 
5 regionally discrete adipose tissue depots sampled from horses and ponies used in the 
current study. Approximate target sample sizes are given. Where relevant, tissues were 
collected from the left side following carcass-splitting. 

 

Analysis of adipocyte area 

Fixed adipose tissues were dehydrated, cleaned and embedded in paraffin wax 

prior to sectioning (5µm) and staining with haematoxylin and eosin. Digital 

photographic images were collected using a microscope (Nikon 026435, Mason 

Depot Anatomical descriptors for sample sites 

Ventro-
abdominal 
retroperitoneal 

~3cm3, collected from the left split-carcass midline at a point equidistant 
between xiphisternum and pubis. 

Epicardial ~2cm3 from the coronary groove and overlying the left coronary artery 

Omental Variable area of omentum, sufficient to harvest ~2cm3 of adipose tissue, 
from a region adjoining the greater curvature of the stomach and 
bearing visible adipose. 

Crest ~3cm3 from the left split-carcass at the deepest part of the crest, 
midway between wither and poll extremities. 

Tailhead ~2cm3 from the subcutaneous adipose tissue overlying the gluteal 
muscles of the left carcass. 
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Microscopy) and digital camera (Nikon 7420364, Japan). On initial microscopic 

appraisal, clear differences in adipocyte size were apparent between samples 

collected from lean and obese animals. Therefore, for the purposes of data analysis, 

nine non-overlapping images were taken from each depot at 20 x magnification in 

the lean horses and 10 x magnifications in the obese horses.  Adipocyte area (µm2) 

was calculated using ImageJ software (National Institutes of Health, USA) by 

outlining the perimeter of each intact adipocyte in the nine fields of view per depot 

(average of 225 adipocytes measured per depot per horse). Areas were corrected 

for differences in image magnification between lean and obese animals.   

RNA extraction  

Total RNA was extracted from all frozen tissue samples using TRIzol reagent 

(Invitrogen, Paisley, UK), in accordance with the manufacturer’s protocol. RNA 

concentration and purity was quantified spectrophotometrically (Eppendorf 

Biophotometer, Hamburg, Germany) and all optical density A260/280 ratios were 

within acceptable ranges (1.7-2.0). Reverse transcription (RT) was carried out in a 

10μl final reaction volume containing 0.5μg RNA using an iScript cDNA synthesis kit 

(Bio-Rad Hemel Hempstead, UK). The resulting cDNA was diluted at 1:4 and used as 

a template for real-time PCR analysis. 

Quantitative Real-Time PCR 

The expression of PLIN1 and four housekeeping genes previously used in other 

equine studies (Morrison et al., 2014) (GAPDH, Beta-actin, HPRT1 and RPL32) was 

determined in all tissues from the twelve animals. GeNorm software (GenEx, 

Germany) was used to assess the two ‘most stably’ expressed genes to be used for 

normalisation. Gene expression was determined by quantitative real-time PCR 

performed in duplicate using the Stratagene Mx3005P detection system (Agilent 

Technologies, California USA). Primer sequences for all four housekeeping genes 

were obtained from previously published data (HPRT1 and RPL32, GAPDH (Bogaert 

et al., 2006), and beta-actin (Ahn et al., 2011)) and 100% homology was confirmed 

by performing a basic local alignment search tool (BLAST). Primer and Taqman 
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probe sequences for PLIN1were designed using Beacon Designer (Premier Biosoft, 

USA). All primers were designed to be exon-spanning. All primer/probe sets were 

purchased from Eurogentec (Belgium). Full details of primer/probe sets have been 

published (Morrison et al., 2014). Serial dilutions of pooled cDNA were used to 

calculate Taqman primer efficiencies. The PCR cycling conditions (using Taqman 

probe and primers) for PLIN1was as follows: 10 minutes at 95°C, followed by 40 

cycles of 30 seconds at 95°C, 1 minute at 55°C and 1 minute at 72°C. Cycling 

conditions for housekeeping genes (using SYBR green method) were as follows: 10 

minutes at 95°C followed by 40 cycles of 15 seconds at 95°C and  30 seconds at 60°C 

and ending with, 1 minute at 95°C, 30 seconds at 55°C and 30 seconds at 95°C.   

Relative gene expression was calculated using the comparative Ct method (2-∆Ct) 

(Schmittgen and Livak, 2008). All gene expression data were normalised to 2 

internal housekeeping genes.  

Protein Extraction and Western Blotting 

Adipose tissue protein was extracted from two discrete fractions within each 

centrifuged tissue homogenate: internatant (largely ‘fat-free’ fraction) and fat cake 

(assumed to comprise of lipids largely originating from adipocyte lipid droplets). 

Briefly, frozen tissues (~200mg) were homogenised in a lysis buffer (1µl/mg frozen 

tissue; 250mM sucrose, 1mM HEPES, 0.2mM EDTA) containing both phosphatase 

and protease inhibitor cocktails (both Sigma, Poole, Dorset, UK). Centrifugation 

(12,000g for 15 minutes at 4°C) separated the internatant and fat cake fractions. 

The internatant fraction was removed and kept on ice pending protein 

concentration analysis. The proteins present in the fat cake fraction were extracted 

twice in succession by the addition of a second lysis buffer containing 125mM Tris 

buffer with 5% SDS, 20% glycerol and protease and phosphatase inhibitors (Ray et 

al., 2009). Protein concentrations in both fractions (internatant and fat cake) were 

measured by bicinchoninic acid (BCA) assay (Pierce, Rockford, IL, US). In order to 

demonstrate any associations between lipid:protein ratio and adipocyte area within 

adipose tissue depots, data describing the individual animal ratio for end lipid 

weight (lipid remaining after protein extractions) to the extracted protein mass (fat 
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cake, internatant and total) per mg WAT were regressed on the mean adipocyte 

area recorded for that individual, for all study animals.  

Protein samples corresponding to 30µg (internatant) or 10µg (fat cake) for 

comparison between lean and obese animals or 10µg of both internatant and fat 

cake proteins for comparison between fractions were separated on 10% SDS-

polyacrylamide gels under reducing conditions and proteins were transferred onto 

nitrocellulose membrane (Hybond-C Extra, Amersham Bioscience, 

Buckinghamshire, UK) by electroblotting (Turbo transfer, BioRad). Membranes were 

stained in MemCode reversible stain (Pierce, Rockford, IL, US) to verify the success 

of protein transfer, signals were quantified on a Molecular Imager ChemiDoc XRS+ 

System (Bio-Rad), and then the membranes were blocked for 1 hour in 5% BSA in 

Tris-buffered saline containing 0.1% Tween 20 (TBST). Commercially available 

primary antibodies (listed below) were selected on the basis of known cross-

reactivity with equine tissues. They were added at the following concentrations: 

PLIN1, 1:1500 [NBP1-56923 Novus Biologicals, Abingdon, UK] and total HSL, 1:1000 

[NBP1-00879 Novus Biologicals, Abingdon, UK] in blocking buffer and incubated 

overnight at 4°C. The membranes were washed and then incubated for 1 hour with 

a secondary antibody (Cell Signalling) at appropriate concentrations. Signals were 

detected by chemiluminescence using a SuperSignal West Pico Chemiluminescent 

Substrate (Pierce, Rockford, IL, US) then visualised and quantified on a Molecular 

Imager ChemiDoc XRS+ System (Bio-Rad). The results were normalised to the 

MemCode total protein stain.  

Loading controls: Constraints and solutions 

Initial studies which compared lean and obese animals within adipose tissue 

fractions rapidly identified that vinculin (a cytoskeletal protein routinely used as a 

loading control), demonstrated considerable variation in expression within the fat 

cake fraction between lean and obese animals. To ensure this was not due to 

unequal loading, 0.75µg bovine serum albumin (BSA) was loaded into each well of a 

gel and transferred to a membrane which was stained with MemCode total protein 

stain and the signal was quantified (ChemiDoc XRS+) (Figure 7.1)  Hence, the data 
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clearly demonstrated that loading error (Coefficient of variation: 6.81%) was an 

unlikely cause of the variation in vinculin expression and strongly suggests that the 

use of a cytoskeletal protein may be an inappropriate control for lipid-associated 

proteins.   

 

Figure 7.1: Loading variation of bovine serum albumin assessed by loading 0.75µg BSA into 
each lane of a gel and staining the corresponding membrane with MemCode reversible 
stain. The blot was imaged and densitometric signals were calculated. 

 

In an attempt to normalise data and allow comparison between lean and obese 

animals within adipose tissue homogenate fractions, protein signals were 

normalised to the MemCode protein stain. The limitations of using established 

loading controls under these conditions was also encountered during early 

attempts to compare PLIN1 and HSL protein expression within lean and obese 

animals between the internatant and fat cake fractions. Vinculin protein expression 

again demonstrated considerable variation between the adipose tissue fractions. 

Irrespective of equality in protein loading, the MemCode protein stain 

demonstrated a greater presence of protein in the internatant fraction (Figure 7.2). 

In a final attempt to quantify protein signals for PLIN1 and HSL between the adipose 

tissue fractions, samples were spiked with BSA and membranes stained with 

MemCode. However, the molecular weight of BSA (~66kDa) was similar to a 

prominent protein present in the internatant fraction and masked the signal of 

interest, negating the usefulness of this approach. It was therefore concluded that 

as outlined above, loading variation was unlikely to explain differences between 

fractions.  
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Figure 7.2: Representative MemCode reversible protein stain of internatant and fat cake 
protein fractions. Equal amounts of internatant and fat cake proteins (10µg) were loaded 
into the gel and MemCode protein stain was applied to the membrane.   

 

Statistical analysis 

Statistical analyses were performed using STATA version 12.1 (StataCorp, Texas). 

Non-parametric, analytical methods were employed to assess gene and protein 

expression data. The Kruskal Wallis test was used to assess differences in gene and 

protein expression, along with adipose tissue histology data between lean and 

obese animals. Significance was set at p <0.05. 

 

7.4 Results 

Adipocyte area 

Adipocyte area was significantly greater for obese horses in 4/5 adipose depots 

studied (all p < 0.05, Figure 7.3, Table 7.3). For one obese animal, histological 

examination of the epicardial tissue sample revealed it to be largely comprised of 

fibroblasts. On the basis of this observation, this sample was removed from all 

analyses, including gene and protein expression. For retroperitoneal, crest, tailhead 

and omental WATs, adipocyte area was significantly greater for obese as opposed 
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to lean animals (Figure 7.3). Whilst obese animals did tend to have larger adipocyte 

areas in epicardial fat, this did not reach statistical significance (p = 0.10; Figure 

7.3). Although no differences in adipocyte area between depots were noted within 

obese animals, median adipocyte areas were greatest in WAT derived from the 

retroperitoneal depot (15086µm2; Table 7.3), whilst they were smallest for 

epicardial WAT (5121.60µm2). Similarly no significant differences in adipocyte area 

were noted within lean animals, between depots. However, retroperitoneal WAT 

recovered from lean animals recorded the smallest adipocyte areas (median, 

2230.65µm2), while adipocyte area was greatest for epicardial WAT in the lean 

animals (3301.28µm2).  

Figure 7.4 demonstrates the distribution of adipocyte areas recorded for lean and 

obese animals. For the purposes of assessing differences between lean and obese 

animals, adipocyte areas greater than 50,000µm2 were removed: Retroperitoneal 

WAT: lean animals: n = 8/2646 (0.30%) adipocyte area > 50,000µm2 (range = 

93294.88µm2 -499879.80µm2); obese animals: n = 22/1037 (2.12%; range = 

50,710.68µm2 -81,089.45µm2). Tailhead WAT: lean animals: n = 5/1639 (0.31%) > 

50,000µm2 (range = 50,728µm2 -81,435µm2); obese animals = 51/951 (5.36%; range 

= 50,044µm2 -147,707µm2). Epicardial WAT showed a similar distribution in 

adipocyte area between lean and obese animals, whilst retroperitoneal fat showed 

the most marked difference in terms of distribution between lean and obese 

animals.  
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                                                                                               Lean            Obese 

Figure 7.3. Adipocyte area in adipose tissues of lean and obese horses and ponies. The 

routine haematoxylin and eosin stain was applied to adipose tissue sections and adipocyte 

area was measured across five adipose depots in 12 animals (n = 6/group) (A). 

Representative images are shown for all depots (Omental (B), Epicardial (C), Crest (D), 

Tailhead (E) and Retroperitoneal (F)) * denotes where area is significantly different (p < 

0.05) from corresponding lean group. Scale bar = 200μm. 
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Table 7.3: Median and inter-quartile range values (IQR) for adipocyte area (µm2) and PLIN1 

gene expression (normalised value) data.  

Depot Lean Obese P value 

Adipocyte area Median IQR Median IQR  

Omental 2258.24 1724 12869.85 7383.29 < 0.001 

Epicardial 3301.28 3523.99 5121.60 7908.60 0.10 

Crest 3192.10 1901.31 9917.39 9607.37 < 0.001 

Tailhead 2432.43 2129.40 11786.60 9174.70 < 0.001 

Retroperitoneal 2230.65 1293.19 15086.00 10429.23 0.03 

PLIN1 Gene 
expression 

     

Omental 0.02 0.02 0.02 0.03 0.87 

Epicardial 0.03 0.07 0.02 0.01 0.20 

Crest 0.07 0.04 0.04 0.04 0.05 

Tailhead 0.02 0.01 0.03 0.08 1.00 

Retroperitoneal 0.02 0.03 0.03 0.05 0.34 
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Figure 7.4: The 

distribution of 

adipocyte areas 

measured in 

lean and obese 

horses and 

ponies is shown 

for: (A) 

Omental, (B) 

Epicardial, (C) 

Crest, (D) 

Tailhead and (E) 

Retroperitoneal 

WAT depots. 

Distribution of 

adipocyte area 

is shown as a 

proportion 

(height of bars 

scaled so the 

sum of their 

height equals 

1). 
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Protein extraction from internatant and fat cake fractions 

For all WAT depots studied, significantly more protein was extracted from 

internatant as opposed to fat cake fractions (p < 0.01, Table 7.4). Furthermore, for 

all WAT depots, significantly more protein was extracted from internatant fractions 

derived from lean relative to obese animals (Table 7.4). By contrast, similar 

quantities of protein were extracted from the fat cake fractions of lean and obese 

animals for all WAT depots with the exception of tailhead WAT. Tailhead depots 

yielded significantly more protein/mg WAT from fat cake fractions derived from 

lean as compared to obese animals (p = 0.04).  

Strong curvilinear associations were described between the ratios of lipid: total 

extracted protein and lipid:fat cake as well as  internatant protein with adipocyte 

area for omental, crest and tailhead WAT, with weaker associations identified for 

retroperitoneal WAT and no associations for epicardial WAT (Figure 7.5).  

 

Table 7.4: Protein extracted from internatant and fat cake adipose tissue fractions across 5 
WAT depots from lean and obese horses and ponies. P value denotes difference between 
lean and obese animals.   

Internatant protein 
(mg/mg WAT) 

Lean Obese P value 

Depot Median IQR Median IQR  

Epicardial 0.011 0.0006 0.005 0.0002 0.006 

Omental 0.014 0.010 0.006 0.0007 0.004 

Retroperitoneal 0.012 0.003 0.004 0.002 0.004 

Crest 0.010 0.002 0.005 0.0006 0.004 

Tailhead 0.009 0.002 0.004 0.0008 0.004 

Fat cake protein 
(mg/mg WAT) 

     

Epicardial 0.002 0.0008 0.002 0.0002 0.12 

Omental 0.003 0.0006 0.003 0.0005 0.13 

Retroperitoneal 0.003 0.0006 0.002 0.0003 0.26 

Crest 0.003 0.0006 0.003 0.0007 0.15 

Tailhead 0.003 0.001 0.002 0.0003 0.04 
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Figure 7.5: Associations between 

adipocyte area and lipid:protein ratio in 

lean and obese animals. A ratio of lipid 

weight (lipid remaining after protein 

extractions) to extracted protein 

concentrations in the internatant (●), fat 

cake (▲) and combined fractions (  ) was 

calculated for each animal and plotted 

against the corresponding adipocyte area 

for the individual animal. Data are shown 

for (A) Omental, (B) Epicardial, (C) Crest, 

(D) Tailhead and (E) Retroperitoneal WAT 

depots.
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PLIN1 gene expression 

There was a considerable range in PLIN1 gene expression for all animals.  For crest 

WAT, there was a significantly greater expression of PLIN1 in lean animals 

compared to obese animals (p = 0.05; Figure 7.6 and Table 7.3), whilst no 

differences were observed between lean and obese animals for the other four 

depots studied.  

 

 

Figure 7.6: Gene expression of PLIN1 in adipose tissues of lean and obese horses and 
ponies analysed by real-time PCR. Box plots are shown for each depot in lean and obese 
animals, n = 6/group. *denotes where values differ significantly (p <0.05) from lean group. 

 

PLIN1 and HSL protein expression 

Within fraction 

The relative abundance of PLIN1 and HSL proteins were compared in adipose tissue 

fractions (internatant and fat cake) between lean and obese animals. There was no 
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difference between lean and obese animals for PLIN1 or HSL in the internatant or 

fat cake fractions for epicardial and tailhead WAT (Figure 7.7 and Table 7.5). For 

omental WAT, HSL expression in the fat cake fraction was greater (p = 0.02) in lean 

animals compared to obese animals (Figure 7.7 and Table 7.5). For crest WAT, HSL 

expression was greater (p = 0.05) for lean animals compared to obese animals in 

the internatant fraction, whilst PLIN1 protein expression was significantly greater 

for lean animals compared to obese animals in the fat cake fraction (p = 0.004). For 

both proteins and both fractions, lean animals had a significantly greater protein 

expression compared to lean animals for retroperitoneal WAT. A summary of the 

results for adipocyte area, gene and protein expression can be found in Table 7.6.  

 

 

Figure 7.7: (A) Protein expression of PLIN1 and HSL in lean and obese horses and ponies 
between internatant and fat cake fractions of omental WAT. *denotes where values differ 
significantly from lean group (p < 0.05). 
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Figure 7.7: (B) Protein expression of PLIN1 and HSL in lean and obese horses and ponies 
between internatant and fat cake fractions of epicardial WAT. *denotes where values differ 
significantly from lean group (p < 0.05). 

 

Figure 7.7: (C) Protein expression of PLIN1 and HSL in lean and obese horses and ponies 
between internatant and fat cake fractions of crest WAT. *denotes where values differ 
significantly from lean group (p < 0.05). 
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Figure 7.7: (D) Protein expression of PLIN1 and HSL in lean and obese horses and ponies 
between internatant and fat cake fractions of tailhead WAT. *denotes where values differ 
significantly from lean group (p < 0.05). 

 

 

Figure 7.7: (E) Protein expression of PLIN1 and HSL in lean and obese horses and ponies 
between internatant and fat cake fractions of retroperitoneal WAT. *denotes where values 
differ significantly from lean group (p < 0.05). 
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Table 7.5: Protein expression data (median and IQR) for PLIN1 and HSL in adipose tissue 
fractions (internatant and fat cake) from lean and obese horses and ponies. 

Depot  Lean Obese  

 

P value 
Internatant 

Fraction 
Protein Median IQR Median IQR 

Omental PLIN1 0.24 0.41 0.09 0.20 0.75 

HSL 0.49 0.27 0.33 0.17 0.20 

Epicardial PLIN1 0.06 0.07 0.13 0.22 0.47 

HSL 0.31 0.06 0.30 0.19 0.75 

Crest PLIN1 0.14 0.15 0.07 0.08 0.17 

HSL 0.36 0.15 0.17 0.23 0.05 

Tailhead PLIN1 0.05 0.07 0.03 0.11 0.42 

HSL 0.22 0.15 0.17 0.21 0.52 

Retroperitoneal PLIN1 0.18 0.46 0.06 0.09 0.05 

HSL 0.42 0.16 0.15 0.16 0.01 

Fat cake 
Fraction 

Protein Median IQR Medial IQR P value 

Omental PLIN1 0.76 0.76 0.27 0.31 0.08 

HSL 0.66 0.49 0.15 0.07 0.02 

Epicardial PLIN1 0.72 0.12 0.50 0.55 0.26 

HSL 0.83 0.49 0.43 1.37 0.52 

Crest PLIN1 0.45 0.28 0.02 0.06 0.004 

HSL 0.14 0.11 0.15 0.10 0.75 

Tailhead PLIN1 0.73 0.26 0.58 0.69 1.00 

HSL 0.31 0.66 0.33 0.41 1.00 

Retroperitoneal PLIN1 0.53 0.26 0.03 0.08 0.004 

HSL 0.28 0.08 0.09 0.05 0.004 
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Table 7.6: Summary of adipocyte area, gene and protein expression data from lean and 

obese horses and ponies across five adipose depots. ND, no difference.  

Depot  Adipocyte 
area 

Perilipin 
gene 

Perilipin 
internatant 

protein 

HSL 
internatan
t protein 

Perilipin 
fat cake 
protein 

HSL fat 
cake 

protein 

Epicardial ND ND ND ND ND ND 

 

 

Omental Lean  Ob ND ND ND ND Lean Ob 

 

 

Retroperitoneal Lean Ob ND Lean  Ob  Lean Ob 

 

 

Lean Ob 

 

 

Lean Ob 

Crest Lean  Ob Lean Ob ND Lean  Ob 

 

 

Lean Ob 

 

 

ND 

Tailhead Lean  Ob ND ND ND ND ND 

 

 

 

Between fractions 

 Differences in the expression of PLIN1 and HSL between fractions were also 

assessed, however as outlined in the methods, between fraction comparisons must 

be interpreted with caution due to a lack of suitable loading control. However, it is 

worthy of note that visual appraisal of the western blots would strongly suggest 

that PLIN1 is almost exclusively present in the fat cake fraction of all depots studied, 

irrespective of whether animals were lean or obese (Figure 7.8). Conversely, HSL 

demonstrated a more ubiquitous expression between the fractions assessed for all 

depots (Figure 7.8).  
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Figure 7.8: Protein expression of PLIN1 and HSL in internatant and fat cake fractions 

between lean and obese horses and ponies. Equal amounts of protein (10µg) from the fat 

cake fraction and internatant fraction were loaded into each gel. Blots are shown for lean 

and obese animals for each of the five adipose depots studied: (A) Omental, (B) Epicardial, 

(C) Crest, (D) Tailhead and (E) Retroperitoneal. 

 

7.5 Discussion 

This is the first study to assess adipocyte area and gene expression of PLIN1 as well 

as protein expression of PLIN1 and HSL across a range of adipose tissue depots in 

lean and obese horses plus ponies.  

At the gene level, there was considerable variation in PLIN1 mRNA expression 

between lean and obese horses and ponies; however, for crest WAT there was a 

significantly greater expression of PLIN1 in lean animals compared to obese 

animals. These data agree with the findings of a comparable study of human 



 

188 

 

7 Adipose tissue: morphology and lipolytic proteins 

subjects where it was found that PLIN1 mRNA expression in abdominal 

subcutaneous adipose tissue was significantly increased in lean compared to obese 

people (Wang et al., 2003). However, other studies have reported either no 

difference in PLIN1 mRNA expression for omental fat in obesity (Ray et al., 2009), or 

an increase in PLIN1 mRNA expression in obesity for abdominal subcutaneous 

adipose tissue (Kern et al., 2004).  Differences in methodology and the criteria for 

obesity (in terms of BMI) may account for the discrepancies between studies.  

Whilst the evaluation of gene expression is important, the assessment of protein 

expression is crucial in furthering our understanding into potential alterations in 

PLIN1 and HSL expression in obesity. Importantly, although PLIN1 and HSL function 

as lipid-droplet associated proteins, PLIN1 moves between the endoplasmic 

reticulum and lipid droplet during lipid synthesis (Skinner et al., 2013). Similarly, the 

translocation of HSL from the cytosol to the lipid droplet in response to lipolytic 

stimulation has also been well characterised (Clifford et al., 2000).   On the basis 

that cellular location was likely to be indicative of protein functionality, we 

considered it important to characterise the cellular distribution of PLIN1 and HSL 

proteins in the horse. The concentration of protein extracted from the fat-free 

internatant (likely cytosolic) and lipid-droplet fat cake (lipid droplet associated) 

fractions demonstrated significant differences between lean and obese animals. 

Protein concentrations were significantly greater in the internatant fractions of all 

WAT homogenates from lean as compared to obese animals. This finding was not 

unexpected as a relatively greater proportion of adipocyte volume is likely to be 

occupied by the lipid droplet in obese animals, reducing the proportion of cytosol 

associated with each cell and thereby the total cytosol volume per mg WAT. By 

contrast, the concentrations of proteins extracted from fat cake fractions were 

generally similar across the lean and obese groups, an observation which is in 

agreement with another study in human subjects (Wang et al., 2003). Interestingly, 

in that study, it was calculated that due to the lower number of fat cells per gram of 

tissue in the obese subjects, adipose tissue protein content per adipocyte was 

correspondingly higher in the obese group. Although the total number of fat cells in 

specific WAT depots could not be quantified in the current study, it is likely, given 
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the increased adipocyte area recorded for obese equines for the majority of depots 

appraised, that protein content per adipocyte would also be relatively greater for 

horses and ponies in the obese state.   

The present finding, that adipocyte area was increased in obese animals across 

almost all depots is consistent with findings in other species including dogs (Grant 

et al., 2011) and cats (Van de Velde et al., 2013). For the horse, one study identified 

differences in adipocyte area between 5 anatomically-discrete WAT depots 

(Bruynsteen et al., 2013). In that study, retroperitoneal peri-renal adipose tissue 

had the greatest adipocyte area; a depot not evaluated in the current study. 

However, the mean adipocyte area for recorded for abdominal retroperitoneal 

WAT by that group was akin to the median value of the lean animals reported in the 

present data set and considerably lower than the median value of obese animals in 

the current study. Methodological differences clearly distinguish these reports. The 

study of Bruynsteen et al. (2014) was designed to compare the 5 WAT depots 

studied and body adiposity was crudely characterised across the 12 animals 

sampled; the standard BCS approach was not used. The study (Bruynsteen et al., 

2014) indicated that only 1/12 animals was obese, with 5/12 animal being classed 

as overweight to obese. The methods used (Bruynsteen et al., 2014) to estimate 

adipocyte area also differed. The method for measuring adipocyte area in the 

current study is a widely used technique (Ronkainen et al., 2015). However, as with 

any measurement of sectioned material, it should be noted that it is possible that a 

portion of the measurements taken do not represent the maximum cross-sectional 

area due to the nature and structure of adipose tissue. In the current study, in 

excess of 200 cells were individually evaluated in histological sections. By contrast, 

in the earlier study (Bruynsteen et al., 2014), adipocyte area was reported as the 

area of field of view divided by the number of adipocytes identified in that field; an 

approach that will encounter the same issues as the current study, however this 

will be further compounded by the likely over-estimation of individual cell size due 

to the inclusion of interstitial areas. Nevertheless, it is of interest that the 

measurements given by Bruynsteen et al. (2014) are broadly consistent with the 

values obtained in the present study for lean animals, raising the question of the 
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previous study’s (Bruynsteen et al., 2014)  method of classification of body 

adiposity. 

It was of note that the distribution of adipocyte areas in epicardial WAT was altered 

least of all the WAT depots studied between the lean and obese states. 

Interestingly, and consistent with our finding, it has been identified that epicardial 

adipocyte area was not significantly associated with BMI in human subjects (Eiras et 

al., 2010). In support of these data we have previously reported that the EQUIFAT 

score for epicardial WAT (a post-mortem fat score associated with depot-specific, 

‘visually apparent,’ gross adiposity) was also not associated with BCS in horses and 

ponies (2014).  Due to its anatomical location, this adipose depot may have a more 

direct function in supplying local nutrition and thermal support for the heart. This is 

supported by data from a human study in which the presence of the brown-fat 

specific gene, UCP-1 was identified in epicardial fat, suggestive of a functional role 

in protecting the myocardium against hypothermia (Sacks et al., 2009).    

Although no statistically significant differences were observed for adipocyte area 

between depots within lean or obese animals in the current study, it has been 

demonstrated previously in the rat (Palou et al., 2009) that retroperitoneal 

adipocyte size is greater than mesenteric and subcutaneous (inguinal) adipocytes, 

which may indicate that retroperitoneal WAT has a greater capacity for lipid droplet 

expansion. The wide range in adipocyte area for retroperitoneal WAT between lean 

and obese equines and the extensive range in area noted within obese animals 

compared to other depots in the current study may support this contention. 

Furthermore, the extensive range in adipocyte area noted within obese animals for 

retroperitoneal WAT might further indicate that this depot demonstrates 

considerable plasticity and has the greatest potential to modify lipid droplet size in 

response to changing energy balance. In support of the hypothesis that abdominal 

WAT may constitute a long-term energy reserve, the measurement of belly girth (an 

indirect measure of abdominal WAT content in animals on a steady plane of 

nutrition) in a group of obese ponies was decreased progressively with dietary 

restriction over 14 weeks, while BCS, a subjective measure of externally palpable 
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adipose reserves (including crest and tailhead) decreased minimally in the same 

period (Dugdale et al., 2010).   

To establish the association between relative proportion of lipid and protein change 

and adipocyte area, the relationship between lipid:protein ratio and adipocyte area 

was evaluated. A curvilinear relationship was shown for omental, tailhead and crest 

WAT’s. The nature of this association confirmed that as the relative lipid content 

increased, adipocyte area also increased; however, this association is not constant 

and the data suggest that once a certain ratio is attained, the adipocyte area is 

reduced. One explanation for this trend may be that this is a result of the addition 

of new smaller adipocytes (hyperplasia), which would, given their relatively 

increased cytosolic content, lead to an overall increase in protein concentrations 

per mg WAT. Mathematical modelling has demonstrated that the addition of new 

adipocytes occurs in mice during epididymal fat pad mass expansion in a strain- and 

diet-dependent manner (Jo et al., 2009), whilst a greater expression of adipogenic 

genes, reflective of hyperplasia was evident in subcutaneous WAT compared to 

omental WAT in women  (Drolet et al., 2007). Further studies would be required to 

establish whether hyperplasia occurs during adipose tissue expansion in the horse. 

For retroperitoneal fat, a weaker association was identified for lipid to internatant 

protein ratio with adipocyte area, and no association was found for lipid to fat cake 

protein ratio with adipocyte area. In combination with the data describing the 

distribution of adipocyte area, this might provide further evidence that this depot 

demonstrates the greatest plasticity and would therefore show the greatest range 

in adipocyte areas at any one time.  

The relative abundance of PLIN1 protein in the internatant fraction was found to be 

significantly lower in obese animals compared to lean animals in retroperitoneal fat 

only.  Furthermore, in the fat cake fractions, PLIN1 expressions were also 

significantly reduced in both retroperitoneal and crest fats in obese compared to 

lean animals. This finding is consistent with studies in humans that demonstrate a 

decreased expression of PLIN1 protein in obesity (Ray et al., 2009). Interestingly, 

another study found that although the calculated mass of PLIN1 per fat cell was 
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constant between lean and obese humans, the relative increase in fat cell size in 

obesity was not accompanied with an increase in PLIN1 concentration (Wang et al., 

2003).  Fat cell size has previously been positively correlated with basal lipolysis 

(Laurencikiene et al., 2011), with a complete loss of PLIN1 accounting for elevated 

basal lipolysis observed in PLIN1 KO mice (Tansey et al., 2001).  Due to the nature of 

the current study, it was not possible to measure basal lipolysis in these animals, 

but it could be speculated that it may have been altered in the obese state, as it has 

been demonstrated previously that in humans, PLIN1 protein expression in omental 

and subcutaneous fats was negatively correlated with basal lipolysis (Ray et al., 

2009). 

This study examined PLIN1 gene and protein expression in adipose tissue depots. 

These techniques have not been performed previously in abattoir derived equine 

material in lean and obese animals, thus there was a total absence of prior data to 

inform study design. Therefore it was not possible to perform a priori sample size 

calculations since the magnitude of differences in expression on which to base such 

calculations were unknown. However, clear differences in PLIN1 protein expression 

between lean and obese animals were demonstrated in some but not all adipose 

tissue depots. Two hypotheses for the lack of “statistically significant” differences 

observed in e.g. omental WAT depot may be formulated – firstly there was a true 

difference in protein expression but the sample size was insufficient to detect it at a 

P value < 0.05 or secondly no difference existed. For the retroperitoneal WAT 

depot, significant differences between lean and obese animals were demonstrated 

for PLIN1 protein expression, and post hoc power calculations confirmed that in this 

case, the study had sufficient power (50%). Applying post hoc sample size 

calculation to the omental WAT depot suggested that whilst a mean difference of 

0.075 (2 tailed P = 0.449) in PLIN1 protein expression was observed, the power of 

the study was only 11% and a sample size of 40 animals per group would likely be 

required to achieve a statistical significance of P < 0.05 with 80% power.  As 

outlined in Chapter 6, whilst the results of the post hoc power calculations should 

not be taken definitively, they do indicate that a larger sample size may be required 

for future studies.  
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The relative abundance of HSL was significantly reduced in the internatant fraction 

of crest and retroperitoneal WAT in obese animals, whilst it was reduced in the fat 

cake fraction of retroperitoneal and omental fats in obese animals. Hormone-

sensitive lipase protein expression has been previously identified as a determining 

factor of maximal lipolytic capacity of human fat cells (Large et al., 1998), and its 

expression is reduced in an obese state (Ray et al., 2009). Interaction between HSL 

and PLIN1 and the lipid droplet is required for maximal stimulated lipolysis (Shen et 

al., 2009), therefore a reduced abundance of these proteins in the fat cake fraction 

of retroperitoneal and omental WAT’s may suggest that for obese animals, these 

depots would be less sensitive to catecholamine stimulated lipolysis. In agreement 

with this, maximal stimulated lipolysis in response to noradrenaline was lower for 

omental adipocytes compared with subcutaneous adipocytes (Ray et al., 2009). 

Although the major objective of the current study was not to quantify differences in 

the relative abundance of PLIN1 and HSL between regional adipose depots, the 

finding that PLIN1 and HSL proteins are not consistently altered between depots in 

obesity is suggestive of some functional differences between these regional depots. 

No differences were observed in the relative abundance of PLIN1 or HSL in 

epicardial fat. This adipose depot has been associated with factors encompassing 

the metabolic syndrome (Iacobellis et al., 2003), and indicators of insulin resistance 

and glucose intolerance in humans (Iacobellis and Leonetti, 2005). A role for 

epicardial fat in insulin dysregulation in horses and ponies is yet to be established 

and may be an area for further research.  

The sub-cellular distribution of PLIN1 and HSL proteins between adipose tissue 

fractions was evaluated in the current study. However, as outlined in the methods, 

innate differences in the population of proteins located in each fraction precluded 

our ability to normalise data to a standard loading control.  Interestingly, this 

finding would appear to have been encountered by other researchers and a lack of 

a valid loading control for normalising between fractions has led to variation 

between studies in their normalisation strategies or some choosing to continue 

using loading controls which show no expression in the fat cake fraction, such as 

beta-actin (Okumura et al., 2014). Therefore, whilst the current results must be 



 

194 

 

7 Adipose tissue: morphology and lipolytic proteins 

interpreted with caution, our data would demonstrate that regardless of whether 

animals are lean or obese, PLIN1 predominantly resides in the fat cake fraction, a 

finding consistent with other publications (Ray et al., 2009; Yang et al., 2011).  The 

distribution of HSL appears to be more similar between the internatant and fat cake 

fraction which may reflect the greater capacity for translocation between the lipid 

droplet and the cytosol fractions during catecholamine-stimulated lipolysis.  

There was a degree of inter-animal variability in both gene and protein expression 

for some depots in the current study which may be due in part to the mixed breed 

and genders used in the current study. In addition to this, despite these animals 

being categorised as lean or obese at the time of sample collection, detailed 

nutritional history was unavailable for these animals so it was unknown whether 

they were actively gaining or losing weight which may have attributed these 

variations observed. It is acknowledged that this study did not assess the portion of 

phosphorylated PLIN1 and HSL proteins. The phosphorylation sites for these 

proteins have not yet been established for the horse. Therefore, for the purposes of 

the current study it was considered important to firstly assess the relative 

abundance of the total proteins before more detailed investigations are undertaken 

to assess the relative proportion of phosphorylated proteins in animals where a 

more detailed nutritional history is available.  

 

7.6 Conclusion 

The current study has established clear differences in adipocyte area and 

distribution between regional adipose depots in lean and obese horses and ponies. 

Furthermore, it has characterised the expression of the lipolytic proteins PLIN1 and 

HSL in adipose tissues of lean and obese horses and ponies, providing evidence that 

these proteins may be altered in obesity in certain adipose tissue fractions and 

depots, indicating important functional lipolytic differences between adipose 

depots in the horse. These data form the basis for further work to investigate 

alterations in lipolysis in equine obesity.  
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8.1 Overview 

The use of horses and ponies in the UK has changed considerably over the past 100 

years. During this time the role of the horse has shifted from primarily working 

purposes in agriculture, mining, transport and warfare in the 19th and early 20th 

centuries, to being kept almost entirely for recreational purposes as we see in 

today’s society (Wyse et al., 2008).  While this shift in purpose has had many 

positive impacts on animal welfare, some aspects of modern management could be 

considered deleterious. Reduced workloads, in combination with increased 

availability of high-quality feedstuffs and modern husbandry techniques all of which 

promote positive energy balance, have likely contributed to the high prevalence of 

obesity recorded in leisure populations of horses and ponies in the UK (Giles et al., 

2014). Across species, obesity prevention and treatment is largely dependent on 

dietary management. 

8.2 Equine obesity – can we recognise it? 

The ability to recognise obesity and an appreciation of the associated health risks 

are essential prerequisites for the initiation of weight-loss measures at least in 

humans, where  individuals who perceived themselves to be ‘overweight’ as 

opposed to being ‘about right’ were more likely to initiate weight loss attempts 

(Lemon et al., 2009). Furthermore, it has been shown that if individuals perceived 

their body weight to be a risk to their health, they were more likely to try and   lose 

weight (Gregory et al., 2008). Whether these factors also influence willingness to 

initiate body weight management strategies in horses is not known and is likely to 

be complicated by the fact that not all obese horses and ponies will develop 

laminitis and/or insulin dysregulation. The exact mechanisms linking obesity with 

insulin dysregulation and laminitis remain to be fully elucidated. However, 

regardless of whether obesity is identified alone or in conjunction with laminitis 

and/or insulin dysregulation, controlled weight loss management remains the 

primary corrective therapy. For those animals who are at a high risk of developing 

laminitis in an obese state, a failure by owners to recognise obesity and take action 
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to reverse it prior to the onset of laminitis has potential ethical implications. Under 

these circumstances, the omission of body weight management could be deemed 

to cause unnecessary pain and suffering to the animal. Furthermore, implementing 

a weight-loss program once laminitis is established will be more difficult as 

increasing energy expenditure through exercise may be contraindicated. Improving 

our understanding of owner-perceptions of obesity in horses and ponies is the first 

step in establishing the reasons behind the excessive rates of obesity reported in 

our leisure population of animals.  

Knowledge on how horse owners and enthusiasts perceive optimal body weights 

and obesity in their animals is lacking. To the author’s knowledge, two previous 

studies identified an owner-underestimation of their horse or pony’s body 

condition score (BCS) (Ireland et al., 2012; Wyse et al., 2008). Questionnaire data 

gathered in Chapter 3 improved our understanding of the perceptions of obesity 

(Tier 1) and expanded our knowledge of the current management practices 

employed by horse owners (Tier 2). Tier 1 clearly demonstrated a varied ability of 

horse owners and enthusiasts to identify overweight animals from lateral 

photographic images. It was hypothesised that equine professionals would have a 

superior ability to identify overweight animals; however, we found limited evidence 

to support this. In human studies, it has been demonstrated that mothers with less 

education were more likely to misperceive their child’s weight (Baughcum et al., 

2000). An emerging concept in human epidemiological studies, suggests that our 

increased exposure to obesity in the population we see today, has upwardly altered 

what we perceive to be normal in terms of body weight (Burke et al., 2010). It is 

tempting to speculate that, with the current high prevalence of obesity in horses 

and ponies, this upward shift in our perception of normality, may be equally 

relevant for the horses in our care.  

The large range in conformational shapes and sizes between and within different 

breeds of horses and ponies adds a degree of complexity to understanding obesity 

perceptions. Evidence from Chapter 3 suggests that, despite the two images of cob 

breed horses being of an ideal body condition, they were considered to be 
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overweight by the majority of respondents. The classic heavy neck and loin of cob 

conformation is clearly at variance with that of other breeds and these data support 

findings in Andalusian horses that some breeds may warrant separate consideration 

(Martin Gimenez et al., 2014).  It is known that breed is a risk factor for an animal’s 

propensity to become obese (Giles et al., 2014). In combination, these data would 

suggest that further advice regarding body condition of animals of varying breeds is 

required in order that horse owners better understand the difference between the 

conformational aspects of the breed and relative adiposity.  

 Tier 1 data also provided evidence to support the anecdotal wisdom that, a 

respondent’s perception of body weight and / or body condition was clearly 

influenced by the equine sporting discipline or leisure role in which a specific horse 

or pony was intended to participate. Consistently, each animal evaluated by 

photographic image (sport horse, cob horse and pony) was considered to require 

more weight/condition for competing in affiliated (professional) showing classes 

than was deemed appropriate for participation in other disciplines. As discussed, 

this finding was in agreement with anecdotal observations and would indicate that 

further advice is required to encourage the showing fraternity to promote 

education and discourage the presentation of overweight animals within the show 

horse sector. A recent publication identified that 1 in 4 show dogs which competed 

at the premier UK dog show (Crufts) were overweight (Such and German, 2015). 

The concern over heightened media exposure and the accessible nature of images 

of show-winning dogs online was considered to have been an important contributor 

to the ‘normalisation’ of canine obesity in the public eye. This could be applied to 

the equine showing industry, whereby highlighting the issue and prevalence of 

obesity at a national showing competition such as the Horse of the Year Show might 

bring about a positive change in reducing obesity prevalence in these animals. Tier 

2 reported on basic care and management practices of horses and ponies and adds 

to the current epidemiological literature for horses and ponies. 

 As with any questionnaire, there are some limitations. For the first tier, assessing 

the weight status of animals based on a single photographic image is more 
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challenging than assessing animals in vivo, although as discussed, attempts were 

introduced to limit bias. For example, different breeds and colours of animals were 

used and they had been photographed in the summer to limit the impact of a 

longer winter coat length on visual perception of weight status.  Future studies 

assessing obesity perceptions could employ the use of multiple photographic 

images of individual animals taken from different angles. For both aspects of the 

questionnaire, there is likely to be a degree of respondent bias whereby those with 

a genuine interest in the subject are more likely to respond. The low proportion of 

owner-reported obesity in Tier 2 could be due to an owner underestimation of their 

horse or pony’s body condition or it could also be speculated that those owners 

who took part had a greater knowledge with respect to nutrition and a level of 

interest in the subject that made them less likely to own an obese animal.  In 

addition, it is tempting to speculate that horse owners may be less able to correctly 

identify obesity in their own animal but are more critical and better able to 

recognise obesity in animals belonging to others.  

Evidence from human studies indicates a discrepancy between self-reported and 

actual dietary intakes and physical activity levels (Elliott et al., 2014; Lichtman et al., 

1992).  It would be expected that this will be the case for leisure horse owners who 

are likely to be over-feeding and under-exercising their horse or pony, culminating 

in the development of an obese state. During the initial development of the studies 

described in Chapter 3, a third tier was designed to evaluate perception versus 

reality in terms of feeding and exercise of horses and ponies. A home visit-based, 

owner-interview study design was constructed - and subsequently rejected on 

consideration of time constraints and an inability to control confounding factors.   

Whilst it is acknowledged that current husbandry methods for leisure horses and 

ponies are likely to persist, evidence presented in this chapter indicates that further 

education is required for horse owners in the correct identification of obesity that 

needs to become a standard part of normal husbandry. This could be delivered 

through various avenues including the potential inclusion of a body condition 

scoring tool on feed labels with advice on the risks of obesity and management. The 
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addition of weight management advice from veterinarians to those owners with 

animals deemed to be overweight or obese during routine veterinary visits may also 

provide a useful tool for education. Furthermore, health checks at regional and 

national showing competitions could be implemented to enforce the 

disqualification of obese animals on the grounds of animal welfare.  

Future directions 

It is clear from the outcomes of the above discussion that there is a need to:  

 Evaluate any associations between owner’s educational status and their 

perception of their animal’s body condition.  

 Investigate whether, as for humans, there has been a recent upward shift in 

our perception of normality in terms of the ideal body condition of horses 

and ponies. 

 Consider the use of focus groups for the evaluation of horse-owner 

perception versus reality of body condition score and feeding requirements. 

 Characterise different ownership styles and how they might be associated 

with the likelihood of owning an obese horse or pony. This need was 

highlighted by a recent article which discussed the concept of associating 

parenting styles to ownership styles for pet dogs and cats and how these 

might predispose to obesity in these pets (German, 2015). Differences in 

relationships between owners of normal weight and overweight cats/obese 

dogs have also been assessed (Kienzle and Bergler, 2006; Kienzle et al., 

1998). 

8.3 How important is regional adipose tissue distribution in Equidae? 

It is clear from human studies that whilst obesity itself poses a major health threat, 

it is in fact the regional distribution of body fat that has stronger overall links with 

metabolic disease risk. Increased visceral fat deposition is associated with the 

metabolic syndrome in humans (Després, 2006). Quantifying regional body fat 
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distribution in living horses is problematic. Their large body size precludes the use 

of modern imaging modalities such as CT and MRI. Therefore our knowledge about 

regional adipose tissue distribution is lacking for the horse. Body condition scoring 

remains a useful scoring system, however it does not account for internal adipose 

tissue deposition. Until alternative imaging modalities allowing quantification of 

internal adipose depots in large animals are developed, we have an urgent need to 

capitalise on available post-mortem or surgical material in order to draw any 

conclusions between health and internal adiposity in horses. Chapter 4 identified a 

strong, positive association between retroperitoneal EQUIFAT score and BCS. There 

was a weaker association between omental EQUIFAT score, and no association for 

mesenteric and epicardial EQUIFAT scores with BCS.  

A strong association for retroperitoneal EQUIFAT score with BCS is suggestive that 

this depot may function as a long-term and labile reserve for excess dietary energy. 

In agreement with this, the complete dissection of a group of 7 Welsh mountain 

pony mares across a range of BCS revealed that whilst dissected WAT was equally 

distributed between ‘internal’ (body wall/organ-associated) and ‘external’ 

(intermuscular/subcutaneous) depots, the retroperitoneal depot weight revealed 

the greatest range between animals and the highest calorific content compared to 

other WAT depots (Dugdale et al., 2011). Together with the finding from the 

current study, this would suggest that the retroperitoneal WAT depot has the 

greatest capacity for long-term fat deposition.  

The fact that mesenteric EQUIFAT scores were not associated with BCS would 

suggest that this depot, in combination with omental WAT may be the most labile 

reserves that can be readily accessed during times of negative energy balance. The 

visceral depot is known to be highly metabolically active compared to subcutaneous 

depots, with higher rates of lipolysis noted in omental compared to subcutaneous 

depots in human subjects (Arner, 1995). In humans, a preferential loss of visceral 

adipose tissue is observed during moderate weight loss; however this preferential 

loss is diminished with further weight loss (Chaston and Dixon, 2008). A loss of 

visceral fat would be considered beneficial in terms of reducing metabolic 
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abnormalities associated with this depot, and improvements in insulin signalling 

and glucose homeostasis in a murine model of diet-induced obesity have been 

observed following the complete removal of visceral (epididymal and perinephric) 

fat pads (Pitombo et al., 2006). However for human subjects, removal of the greater 

omentum (omentectomy) from obese subjects failed to elicit the predicted 

improvement in insulin sensitivity (Andersson et al., 2014; Fabbrini et al., 2010). 

Recently, it has been demonstrated in dogs that increases in visceral WAT content, 

affected through the sympathetic denervation of the omental adipose depot, did 

not result in alterations in insulin sensitivity (Castro et al., 2015). Taken together, 

these data would suggest that whilst reductions in omental WAT may not illicit the 

expected positive metabolic outcomes in humans; there appears to be some 

differences between species in terms of the contribution of visceral depots to 

metabolic abnormalities associated with obesity. 

A precise role for visceral WAT for the horse has yet to be established. Studies have 

shown that the expression of inflammatory genes in visceral WAT is not altered by 

an insulin resistant state in light-breed horses (Burns et al., 2010), whilst the 

difference in expression of inflammatory genes was not markedly different 

between mesenteric fat and other regional adipose depots in a group of mixed-

breed horses and ponies (Bruynsteen et al., 2013). However, significant differences 

in insulin responses have been established between breeds of horses and ponies 

(Bamford et al., 2014).  

Epicardial EQUIFAT score had no association with BCS in the current study. In 

recent years, this adipose depot has been implicated in the pathogenesis of 

coronary artery disease and type 2 diabetes (Okada et al., 2014; Wang et al., 2009). 

This lack of association between epicardial WAT and BCS also emphasises its 

distinctive functional role. The primary role of epicardial WAT may be to support 

local myocardial nutrition and to buffer the heart against hypothermia. This 

hypothesis is supported by the observation that expression of the brown-fat 

specific gene UCP-1 is relatively increased in epicardial WAT depots in other species 

in comparison to other depots (Sacks et al., 2009). This raises interesting 
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considerations for the diverse horse breeds, where in evolutionary terms; exposure 

to severe low temperature environments would have been highly variable.  

Until imaging technologies can be developed to assess regional adiposity in vivo for 

Equidae, we remain unable to assess changes in internal, visceral depots during 

weight gain and weight loss.  The distribution of the EQUIFAT scoring system in 

‘user-friendly’ score cards to clinicians and researchers are now vital in directing a 

co-ordinated research effort into regional adiposity and disease risk.  

Future directions 

On the basis of the above discussion, the following questions remain unanswered: 

 Could EQUIFAT scoring system bring us closer to defining associations 

between regional adiposity and disease risk (e.g. pedunculated lipomas)? 

 Does the expression of inflammatory factors differ between: a) breeds of 

horses and ponies of common BCS and b) between regional adipose depots 

of differing EQUIFAT scores, independent of BCS? 

 Is the role of epicardial adipose tissue in myocardial support and insulin 

sensitivity related to the evolutionary adaptations of diverse equine breeds? 

8.4 Prerequisites to molecular biology investigations 

Given difficulties exploring regional depots in vivo, there is a need to find another 

route to explain likely differences and implications of fat deposition/mobilisation in 

various reserves on health. It was therefore considered important to conduct more 

in-depth molecular biology studies, focused on the effect of obesity on key 

regulators of energy balance. The primary targets for more in-depth investigations 

were key proteins that had established roles in other species including humans, in 

the regulation of energy balance and whole-body metabolism, Myostatin and 

Perilipin 1 (PLIN1). Despite the widespread use of post-mortem / abattoir material 

for molecular biology studies in the horse, the has been a conspicuous lack of 

evidence to underpin the time limits between death and tissue collection within 
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which samples intended for RNA extraction can usefully be taken. The conduct of 

studies in the absence of this fundamental information would question the validity 

of a considerable proportion of published data (Brown et al., 2012; Echigoya et al., 

2011; Manso Filho et al., 2007). It was therefore considered ‘good practice’ in the 

current thesis to evaluate the time limits for RNA extraction and demonstrate the 

tissue-specific expression of the proteins of interest prior to undertaking more 

detailed molecular studies.   

In agreement with the current findings (Chapter 5), RNA extracted from bovine 

adipose tissue appeared less stable than that extracted from skeletal muscle in 

bovine tissues (Bahar et al., 2007). In the current study, RNA integrity was assessed 

through agarose gel electrophoresis and resulting bands were quantified by 

densitometry. Although modern technologies employing microfluidics, capillary 

electrophoresis and fluorescence now exist for assessing RNA integrity, this type of 

system was not available in our laboratory. Despite this, our results allowed us to 

recommend time-limits for the extraction of quality RNA from adipose tissue and 

skeletal muscle. A time limit of 30 and 120 minutes post-mortem was deemed an 

appropriate window to ensure the extraction of good quality RNA from adipose 

tissue and skeletal muscle, respectively.  

In addition to establishing time limits for RNA recovery, Chapter 5 confirmed 

findings in other species regarding the anatomical distribution of myostatin and 

PLIN1. Myostatin gene and protein expression was largely restricted to the skeletal 

muscles, whilst the expression of PLIN1 was predominant in adipose tissues. As 

outlined, Chapter 5 formed the foundation for subsequent studies: 1) assessing the 

expression of myostatin and its receptor (ActRIIB) in skeletal muscles of lean and 

obese horses and ponies (Chapter 6), and 2) characterising the expression of PLIN1 

and HSL across a range of adipose tissue depots of lean and obese horses and 

ponies (Chapter 7). 
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Lessons learned: 

 Prior to undertaking molecular biology studies using post-mortem material, 

it is crucial to ascertain the time-frame for obtaining tissues suitable for 

subsequent analysis.  

 

8.5 A role for the myostatin system in equine obesity 

Chapter 6 provided evidence that myostatin gene expression was up-regulated in 

skeletal muscles in obese horses and ponies, whilst ActRIIB gene expression was 

down-regulated in the obese state for 3 out of the 4 skeletal muscles studied. These 

findings were partly in agreement with similar studies in mice (Allen et al., 2008) 

and humans (Hittel et al., 2009) and indicate some form of negative feedback 

between myostatin and ActRIIB. It was important to note that these differences 

were not translated into differences at the protein level, a finding which has also 

been confirmed in other studies (Baumann AP, 2003; Smith et al., 2010), and 

highlights the dangers of using gene expression data alone to elucidate 

physiological principles. It must be noted that the precursor form of the myostatin 

protein was studied in this thesis. At the time at which the studies were performed, 

no antibody was available against the mature form of the protein.  

Of interest, it was found that gene expression of myostatin in the crest WAT was 

up-regulated in obese animals, although the precursor form of the protein was not 

detected in this tissue. It is worthy of note that in the horse, crest adipose tissue is 

histologically distinct from other adipose tissue depots and is considered to be 

comprised of a greater amount of connective tissue compared to other depots. It is 

likely that the elevated myostatin gene expression may be a function of the 

different cell types present in crest fat. Differences in the heterogeneity of cell 

types within the discrete adipose tissues should always be considered as a source of 

variation in molecular expression studies. The ELISA used in the current study 

assessed the concentration of the circulating mature form of myostatin which was 

found to be significantly elevated in obese animals, a finding which has been 
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recently supported in humans (Zhu et al., 2014). The reduction in the relative 

proportion of skeletal muscle to adipose tissue in obesity may partly explain the 

increased circulating myostatin observed in obese horses and ponies. Furthermore 

the cause and effect is not clear. The up-regulation of myostatin concentrations 

may be a direct result of obesity. Conversely, these animals may have become 

obese partly due to their elevated myostatin concentrations. However, this 

preliminary study provides some evidence that the myostatin system might be 

altered in equine obesity. As myostatin inhibition has such profound effects on 

skeletal muscle mass, it is perhaps unsurprising that myostatin has also been 

implicated in glucose uptake and insulin sensitivity. Inhibition of myostatin 

signalling is associated with improvements in whole body insulin sensitivity in mice 

(Akpan et al., 2009; Guo et al., 2009), whilst more recently, elevated myostatin 

expression in mice following a high fat diet has been demonstrated to induce 

insulin resistance in mice through the up-regulation of Casitas B-lineage lymphoma 

b (Cblb) which led to a subsequent degradation of the insulin receptor IRS-1 in 

C2C12 myotubes and HepG2 cells (Bonala et al., 2014). Due to the abattoir 

environment in which samples for the current study were collected, it was 

inappropriate to assess insulin dynamics or even basal plasma insulin 

concentrations. The long-term nutritional history of the animals was unknown and 

all animals had been fasted immediately prior to slaughter. Variation in individual 

animal responses to fasting and the inevitable stressors of the novel environment, 

both of which are known to impact on insulin concentrations, were considered to 

negate the usefulness of measured insulin concentrations as markers of animal 

health.  

Myostatin expression is known to be fibre-type specific, with a greater expression 

of myostatin noted in fast-twitch fibres (Allen and Unterman, 2007; Kawada et al., 

2001). Fibre type proportions were not studied in this chapter; however it is known 

that weight-loss sensitivity in humans is associated with a higher proportion of type 

1 fibres in the vastus lateralis muscle (Gerrits et al., 2010). A large genome-wide 

analysis in horses revealed that a promoter variant and intronic SNP in the 

myostatin gene was associated with greater proportions of Type 2B fibre types in 
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Quarter horse breeds, known for their sprinting ability over 1/4  mile (Petersen et 

al., 2013). Further genetic-based studies may be warranted to investigate whether 

fibre type proportions are associated with obesity/obesity-predisposition and 

whether any established polymorphisms in the myostatin gene are associated with 

obesity/obesity-predisposition in the horse.  

The control of myostatin expression has been considered to be regulated by the 

transcription factor MyoD (Spiller et al., 2002), although it has also been shown to 

auto-regulate its own expression through Smad-7 (Forbes et al., 2006). 

Interestingly, myostatin function may also be regulated by post-transcriptional 

mechanisms through the action of microRNAs (miRNAs) (Allen, 2010; McFarlane et 

al., 2014; Miretti et al., 2013). MicroRNAs are short, non-coding RNAs that regulate 

the expression of many genes by binding to target mRNAs to repress translation or 

induce mRNA degradation. In vitro studies have identified several miRNA’s that are 

implicated in physiological processes such as adipogenesis (Xie et al., 2009) and 

lipid metabolism (Iliopoulos et al., 2010). The discovery of circulating miRNA’s has 

led to the consideration that specific miRNA’s may provide a therapeutic treatment 

for obesity (Peng et al., 2014). Whether specific miRNA’s are altered in obesity in 

the horse remains to be identified, however recent work indicates a differential 

expression pattern of circulating miRNA’s between insulin sensitive and insulin 

resistant horses (da Costa Santos et al., 2015). Further investigations would be 

required to establish any differences between lean and obese animals.  

Future directions 

 Consolidate current findings by evaluating the expression of the mature form 

of myostatin protein in equine skeletal muscles. 

 Conduct prospective weight gain / weight loss studies to evaluate whether 

changes in serum myostatin concentration or polymorphisms within the 

myostatin gene could be quantitative markers for obesity predisposition and 

/ or weight loss resistance.  

 Establish a role for myostatin in insulin dysregulation in the horse.  
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8.6 Lipolytic proteins in equine obesity 

Chapter 7 demonstrated clear increases in adipocyte area for obese animals 

compared to lean animals for 4/5 adipose depots studied. In agreement with 

findings from Chapter 4, whereby epicardial EQUIFAT score was not associated with 

BCS, no difference in adipocyte area for the epicardial depot was noted between 

lean and obese animals in Chapter 7. Unsurprisingly, no association was found 

between lipid:protein ratio with adipocyte area for epicardial fat, whilst no 

difference in the relative abundance of PLIN1 and HSL was identified between lean 

and obese animals for either internatant or fat cake fractions. Taken together, this 

would indicate that epicardial fat has a relatively low capacity for fat deposition and 

likely has alternative functions. As described earlier, epicardial fat has increased 

gene expression of the brown fat marker, UCP-1 compared to other adipose depots. 

The presence of brown fat has not yet been established for the adult horse or pony. 

It could be speculated that the deposition of epicardial fat would differ between 

breeds of horses and native ponies that are adapted to survive outdoors during 

harsh winters due its insulator properties. Epicardial fat can be visualised and 

measured using standard two-dimensional echocardiography in humans and this 

could also be a method to evaluate epicardial fat thickness in the horse.  

Despite the fact that adipocyte area was found to be significantly greater in obese 

animals in tailhead adipose tissue, and strong associations were noted between 

lipid:protein ratio and adipocyte area; there were no differences between lean and 

obese animals for PLIN1 or HSL protein abundance in either the internatant (largely 

cytosolic) or fat cake (largely lipid droplet) fractions of tissue homogenates. 

Additionally, there was considerable variation in terms of relative protein 

abundance between animals, especially in the fat cake fractions for the tailhead 

depot. This may suggest that those obese animals that had a greater abundance of 

PLIN1, might have been losing weight, resulting in smaller lipid droplets and 

therefore a greater relative abundance of PLIN1. As a detailed nutritional history 

was not available for these animals, interpreting these results proved difficult. 

The greatest range in adipocyte area between lean and obese animals was 
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observed in retroperitoneal adipose tissues. In lean animals, this retroperitoneal 

depot had a significantly greater abundance of both PLIN1 and HSL in both the 

internatant and fat cake fractions. The large range in cell size noted in the obese 

animals may be indicative of hyperplasia. Protein signals were more consistent 

between animals for this depot. It is likely that retroperitoneal fat has a greater 

capacity for lipid storage and lipid mobilisation compared to other depots and is 

therefore the dominant long-term storage depot for excess energy. This would 

agree with data from Chapter 4 whereby retroperitoneal EQUIFAT score was 

strongly associated with BCS. As discussed in Chapter 7, it could be speculated that 

the quantity of PLIN1 and HSL proteins per fat cell remains unchanged between 

lean and obese animals and the apparent reduction in the relative abundance of 

PLIN1 and HSL may be consequence of the increased size of adipocytes in the obese 

animals. The expansion of lipid droplets in obesity would therefore not be 

accompanied by a relative increase in PLIN1 protein concentration which may lead 

to lipid droplet instability and elevated basal lipolysis rates. It is acknowledged that 

lipid droplet size was not quantified in this study, however it is generally accepted 

that increased adipocyte size observed in obesity is primarily due to the expansion 

of the lipid droplet within the adipocyte.  

Fewer alterations in the abundance of PLIN1 and HSL proteins were noted between 

lean and obese animals for crest and omental WAT depots. If the above speculation 

regarding cell size and relative protein abundance can be confirmed, the lower 

range of adipocyte areas between lean and obese animals for crest and omental 

depots may account for the less pronounced differences in the relative abundance 

of PLIN1 and HSL between lean and obese animals.   

In addition, an interesting concept being addressed in the human literature 

surrounds the notion of adipose tissue expandability limits. This theory suggest that 

it may not be the absolute amount of fat deposited that causes metabolic disease 

but rather that exceeding the functional capacity of adipose tissue to expand that 

results in a pathogenic state (Virtue and Vidal-Puig, 2010). In a human study, it was 

found that the gene expression of lipid-droplet associated molecules, PLIN1, the 
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Cide domain-containing protein, Cidea and Cidec/FSP27 were significantly elevated 

in omental and subcutaneous adipose tissue of obese, insulin-resistant compared to 

obese, insulin-sensitive individuals (Puri et al., 2008). Whilst protein expression was 

not assessed by these authors, this finding may support the hypothesis that lipid-

droplet associated proteins play an important role in expandability limits of adipose 

tissues. Although the relative abundance of PLIN1 protein was consistently lower in 

all obese animals compared with lean animals for retroperitoneal adipose tissue (a 

depot which appeared to have the greatest capacity for expandability), the 

variation between animals for other depots eluded to earlier, may have been 

associated with unmeasured differences in insulin dynamics between individual 

obese animals and this in turn could be related to differences in adipose tissue 

expandability limits.  Furthermore, the lack of consensus regarding associations 

between inflammatory factors and obesity in horses and ponies and the fact that 

not all obese horses and ponies will develop insulin dysregulation or laminitis may 

be linked to the individual’s ability to expand adipose tissue appropriately.  

In the context of comparison of protein abundances between lean and obese 

animals within adipose tissue fractions, the assessment of PLIN1 and HSL protein 

expression between the internatant and fat cake fractions was also described in 

Chapter 7. However due to methodological limitations discussed, it was not 

appropriate to quantify these differences due to a lack of a suitable loading control 

to compare between fractions. However, identifying a protein that is expressed to 

the same degree in both fractions may not be possible due to the inherent 

differences between fractions. The visible differences when the MemCode protein 

stain was applied between fractions was stark, despite the same amount of protein 

loaded. This may be due to a relatively low abundance of numerous proteins in the 

fat cake fraction compared with high abundance of proteins at around 65kDa in the 

internatant fraction. The MemCode stain is a highly sensitive protein stain with a 

lower limit of detection of 25-50ng protein per band. In Chapter 7, spiking samples 

with BSA was attempted, however it was found that the band displayed was at a 

similar molecular weight to an already prominent band in the internatant fraction. 

This method could prove successful for comparing between fractions if a protein 
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with either high or low molecular weight was used.  

Further analysis of adipose tissues employing methods such as Oil-red O to assess 

lipid droplet size, would be beneficial and add to our understanding of lipid droplet 

dynamics in obesity. Estimating the contribution of hyperplasia to the growth of 

adipose depots would be less straightforward. Knowledge of the total weight of 

individual depots would be required to gain an accurate indication of adipocyte 

numbers. However, the Coulter counting method described by Hirsch and Gallian 

(Hirsch and Gallian, 1968) could be employed to assess the number of adipocytes 

present per unit weight of tissue.  

Obtaining adipose tissue samples from a rigorously phenotyped group of animals 

with known nutritional history and assessing the relative contributions of the 

phosphorylated forms of PLIN1 and HSL would aid in our understanding of the 

regulation of lipolysis in obesity for the horse.  It was not intended to establish 

differences in the relative abundance of PLIN1 and HSL between depots in the 

current study and further studies would be required to establish depot-differences 

in these proteins which may reflect regional differences in lipolysis rates as 

observed in humans.  

One limitation of Chapters 6 and 7 is the relatively small sample size used and the 

mixed-breed nature of these animals. In an ideal scenario, we had hoped to obtain 

tissues from lean and obese animals from the same breed type; however it became 

apparent that the population of animals observed at the abattoir was not 

representative of the general leisure horse population in the UK. Very few truly 

obese animals were presented at the abattoir. The dichotomy in phenotype 

(gender, breed, BCS) between the abattoir population and those included in 

quantitative surveys evaluating obesity prevalence in the wider UK equine 

population was noteworthy and intimates limited overlap between sectors. For 

example, whilst racehorses will account for only a relatively low proportion of the 

population of horses and ponies owned in the UK, animals from this industry 

appear to be over-represented in the abattoir population. Given time constraints 

within the project, it was not possible to wait for obese animals of the same breed 
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to be presented. In addition, no nutritional history was available for the animals 

used, therefore it is unknown whether the obese animals had been in that body 

condition for a considerable length of time and likewise for the lean animals it is 

unknown whether these animals were actively losing or gaining weight at the time 

of sampling. Given the relative infrequency of encountering lean or obese slaughter 

animals, it was not possible to account for seasonal changes.  Samples were 

collected over a period of about 18 months in total, with lean animal samples 

collected in March (x 3), May, June and December and obese animals samples 

collected in March, September (x 2), October, November and December.  

At the time that the ideas behind this thesis were conceived, both myostatin and 

PLIN1 were emerging as highly topical areas of research in the fields of obesity and 

associated metabolic disorders. Whilst blocking of myostatin function was 

considered to be an exciting therapeutic target for obesity treatment, the discovery 

that the loss of myostatin function resulted in an upregulation of genes involved in 

brown adipose tissue formation (Zhang et al., 2012) generated considerable 

interest. The secretion of a novel myokine, irisin from skeletal muscle of myostatin-

null mice was clearly implicated in driving the ‘browning’ of white adipose tissue 

(Shan et al., 2013), and since then, a wealth of studies have emerged describing 

associations between irisin and obesity and associated metabolic derangements 

observed in obesity. The ability to increase energy expenditure through the 

conversion of white adipose tissue to brown adipose tissue poses as an effective 

therapeutic target to treat obesity. More recently, irisin infusion in obese mice has 

been proposed to improve insulin sensitivity and enhance lipolysis through 

increased HSL expression and phosphorylation in combination with a reduced 

expression of PLIN1 (Xiong et al., 2015). Recently, fibronectin type III domain-

containing protein 5 (FNDC5), the gene encoding irisin was found to be up-

regulated by exercise training in Thoroughbred horses (McGivney et al., 2014). 

Whilst it remains to be known whether adult horses possess any brown fat and 

secrete irisin, this could certainly be an area for further investigations.  
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Future directions  

 Evaluate any associations between PLIN1 protein concentration and basal 

lipolysis rates in horses. 

 Determine whether specific breed and / or adipose tissue depot differences 

are implicated in the capability of individual adipose tissues to expand. This 

may improve our understanding the metabolically healthy / unhealthy 

phenotypes.  

 There is a requirement to establish a suitable loading control for the 

quantification of lipid droplet proteins. 

 Assessing lipid droplet size by a staining technique such as Oil-red O or 

electron microscopy would enable the quantification of lipid droplet size and 

changes in obesity. 

 Conduct in-depth studies using samples obtained from rigorously-

phenotyped horses and ponies to evaluate the precise contribution of 

phosphorylated PLIN1 and HSL to lipolysis and establish adipose depot-

differences in lipolysis regulation.  

 Establish whether functional brown fat is present in adult horses and ponies 

and evaluate whether the myokine irisin is present and plays a role in 

‘browning’ fat. 
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8.7 Conclusions 

Evidence presented in this thesis encompasses a range of aspects in equine obesity 

and adds to our current knowledge of obesity perceptions, differing functional 

aspects of the adipose depots in the horse and provides novel information 

concerning how the myostatin system and elements of the lipolytic system are 

altered in equine obesity. The primary conclusions are as follows: 

 Horse owners and enthusiasts have a limited ability to recognise overweight 

horses and ponies from photographic images and it was deemed more 

acceptable for horses and ponies to carry more weight/condition for 

competing in affiliated showing classes (Chapter 3).  

 Retroperitoneal EQUIAT fat score has a strong association with BCS whilst 

omental EQUIFAT score had a weaker association and mesenteric as well as 

epicardial scores had no association with BCS, indicating different functions 

of the regional adipose depots in the horse (Chapter 4).  

 RNA remains intact up to 30 minutes and 120 minutes post-mortem in 

adipose tissue and skeletal muscle, respectively. The expression of 

myostatin is generally restricted to skeletal muscles, whilst PLIN1 expression 

is predominant in adipose tissues in the horse (Chapter 5). 

 Circulating myostatin concentration in blood serum and myostatin gene 

expression in skeletal muscles is elevated in obese horses and ponies 

(Chapter 6).  

 Adipocyte area was increased in obese animals for all depots except 

epicardial fat. PLIN1 and HSL relative protein abundance was reduced in 

obese animals in retroperitoneal fat for both fat cake and internatant 

fractions. Fewer differences were identified between lean and obese 

animals for the other depots studied (Chapter 7). 
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Appendix A: Kohnke body condition scoring system 

 

Adapted from: Kohnke, J. 1992. Feeding and nutrition: The making of a champion. 
Birubi Pacific, Australia. pp.163-166.



 

227 

 

B Appendix 

 

 

Appendix B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

228 

 

B Appendix 

Appendix B: Tier 1 

 

1. Which region of the United Kingdom do you live in? 

a. Northern Scotland  b. North East Scotland  c. North West Scotland 

d. Eastern Scotland   e. Western Scotland  f. Southern Scotland 

g. South East Scotland  h. South West Scotland  i. Wales 

j. Northern Ireland   k. Midlands   l. North East England 

m. North West England  n. South East England  o. South West England 

p. Southern England  q. Eastern England 

 

2. What age category do you fall into? 

a. Over 60  b. 41-60 c. 26-40  d. 18-25 e. Under 18 

 

3. Are you: 

a. Male   b. Female 

 

4. Do you currently: 

a. Own your own horse/pony  

b. Loan a horse/pony 

c. Don’t currently own/loan but have done previously    

d. Ride at a local riding school 

e. Have never owned/loaned a horse/pony but have a keen interest    

f. Other (please specify) 

 

5. Overall, how long have you had an active interest in horses and/or riding/driving 
horses? 

a. More than 40 years b. 20-40 years  c. 6-19 years   

d. 1-5 years   e. Less than 1 year 

 

6. Which of the following disciplines are you interested in/compete in? 

a. Dressage   b. Eventing   c. Showjumping   

d. Showing   e. Pony Club/Riding Club f. Driving   

g. None of the above – leisure rider/happy hacker  h. Other (please specify) 

 

7. Which of the following best describes your involvement/interest in horses and ponies? 

a. They form part of or my entire job (I make money from my interest/involvement 
with horses/ponies) 

b. My interest/involvement is purely for fun/enjoyment 

c. Other (please specify) 

 

 



   

  

2
2

9
 

8. Based on the pictures below, which of the following horses/ponies do you consider to be overweight? You can choose as many as you wish. 
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9. Based on the picture above, and based only on 
the weight/condition of the horse/pony, select 
whether the horse/pony is the appropriate 
weight for the activity stated below: 

 

 

 

 

 

 

 

10. Based on the picture below, and based only 
on the weight/condition of the horse/pony, select 
whether the horse/pony is the appropriate 
weight for the activity stated below: 

 

 

 

 

 

 Very 
Underweight 

Slightly 
Underweight 

About 
Right 

Slightly 
Overweight 

Very 
Overweight 

Mainly staying in the 
field with the 
occasional weekend 
hack 

     

Competing at affiliated 
one day events 

     

Competing in affiliated 
showing classes 

     

Competing at affiliated 
dressage 

     

 Very 
Underweight 

Slightly 
Underweight 

About 
Right 

Slightly 
Overweight 

Very 
Overweight 

Mainly staying in the 
field with the 
occasional weekend 
hack 

     

A busy summer 
involving Pony Club 
camp and one day 
events 

     

Competing in 
affiliated showing 
classes 
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11. Based on the picture above, and based 
only on the weight/condition of the 
horse/pony, select whether the horse/pony 
is the appropriate weight for the activity 
stated below: 

 

 

 

 

 

 

Based on the above pictures, match each picture to the appropriate scenarios in the 
following questions: 

 

12. This horse/pony is obese and needs to go on a strict diet ASAP 

A   B  C  D 

 

13. This horse/pony could do with gaining a little bit of weight/condition before a busy 
summer competing 

A   B  C  D 

 

14. This horse/pony has just finished the hunting season and is ready for a busy summer 
competing in one day events 

A   B  C  D 

 

15. This horse/pony could do with losing some weight before attending Pony Club camp 

A   B  C  D 

 

 Very 
Underweight 

Slightly 
Underweight 

About 
Right 

Slightly 
Overweight 

Very 
Overweight 

Mainly staying in the 
field with the 
occasional weekend 
hack 

     

Competing at affiliated 
one day events 

     

Competing in affiliated 
showing classes 

     

Competing at affiliated 
dressage 
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16. Based on the pictures above, rank these horses/ponies in order of increasing body 
weight/condition (1 = very thin to 5 = very fat) 

 

 1 2 3 4 5 

A      

B      

C      

D      

E      
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Appendix C 
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Appendix C: Tier 2 
 
 

SECTION 1: About You   (Please circle appropriate answers) 

 

1. Which region of the United Kingdom do you live in? 

a. Northern Scotland  b. North East Scotland  c. North West Scotland 

d. Eastern Scotland  e. Western Scotland  f. Southern Scotland 

g. South East Scotland  h. South West Scotland  i. Wales 

j. Northern Ireland  k. Midlands   l. North East England 

m. North West England  n. South East England  o. South West England 

p. Southern England  q. Eastern England 

 

2. What age category do you fall into? 

a. Over 60  b. 41-60 c. 26-40  d. 18-25 e. Under 18 

 

3. Are you: 

a. Male   b. Female 

 

4. How many horses or ponies do you own/care for? ................... 

(If more than one horse or pony owned pleased select only one to complete the rest of the 

questionnaire) 

 

5. Name of horse/pony chosen to complete questionnaire: .......................................... 

 

6. Where do you keep your horse/pony? 

a. At home  b. At a friend’s  c. Full livery  d. Part livery 

 e. DIY livery  f. Full livery + riding and/or competing for you 

 

7. Which of the following best describes you as a horse/pony keeper? 

a. Pet keeper (keeping for pleasure, don’t ride)     

b. Professional yard manager 

c. Professional rider/instructor/competitor (this is your full-time job)   

d. Hobbyist/leisure rider/driver      

e. Amateur competitor (affiliated and unaffiliated riding/driving competitions)   

f. Keeping for someone else           

 g. Pleasure rider/competing locally at unaffiliated riding/driving competitions 
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8.  Which of the following societies/associations are you a current member of? 

a. British Horse Society    b. Endurance GB  

c. Riding Club          d. British Eventing   

e. British Showjumping    f. British Dressage              

g. Association of British Riding Schools  h. British Carriage driving  

i. The Pony Club     j. None      

k. Other, please specify: ......................................................  

  

9. Overall, how long have you had an active interest in horses and/or riding/driving 

horses? 

a. More than 40 years   b.  1-5 years   c. 6-19 years 

d. 20-40 years    e.  Less than 1 year 

 

 

SECTION 2: About your horse/pony 

 

10. How old is your horse/pony? 

a. Less than 4 years old   b. 4-10 years old  c.  11-16 years old                              

d. 17-21 years old   e. More than 21 years old 

 

11. How many years have you owned/cared for your horse/pony? 

a. 11 years or more  b. 6-10 years   c.  1-5 years  

 d. Less than 1 year 

 

12. Which of the following height categories does your horse/pony fit into? 

a. Under 12hh  b. 12.1-14.2hh  c.  14.3-16hh  d. Over 16hh 

 

13. Gender:  

a. Mare/Filly  b. Gelding  c. Stallion/Colt 

 

14. Colour: 

a. Chestnut b. Black   c. Bay  d. Grey   

e. Coloured f. Roan   g. Palomino h. Dun   

i. Other, please specify: ................................. 

 

15. Which of the following breed categories does your horse/pony best fit into? 

a. UK native breed of horse/pony  b. Thoroughbred/Thoroughbred type 

c. Warmblood/Warmblood type  d. Cob 
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e. Draught horse  f.  Arab/Arab type 

g. Irish Draught/Irish Draught type  h. Cross-breed pony 

i. Sport horse/pony  j. Other, please specify:  

 

 

SECTION 3: Health and Wellbeing of your horse/pony 

 

16. In the past 3 months, has a vet attended your horse/pony?  IF YES - PLEASE ANSWER 

Q17 

a. Yes      b.  No 

 

17. For what reason did a vet attend your horse/pony? 

a. Lameness   b. Laminitis   c. Colic   

 d.  Dental   e. Respiratory infection  f. Wound  

 g. Routine vaccination  h. Microchipping  i. Castration  

 j. Skin condition   k. Other, please specify: ............................................. 

    

18. To the best of your knowledge, has your horse/pony ever had laminitis?  

IF YES – PLEASE ANSWER Q19 & 20  

a. Yes      b.  No 

 

19. Was it diagnosed by a vet? 

a. Yes      b.  No 

 

20. Has your horse/pony had more than one laminitic episode? 

a. Yes      b.  No 

 

21. Has your horse/pony ever been diagnosed with Equine Metabolic Syndrome (EMS)?  

IF YES - PLEASE ANSWER Q22 

a. Yes      b.  No 

 

22. Was it diagnosed by a vet?    IF YES - PLEASE ANSWER Q23 

a. Yes      b.  No 

 

23. Was it diagnosed with a blood test?  IF YES - PLEASE ANSWER Q24 

a. Yes      b.  No 

 

24. Please provide any further information including the type of blood test performed if 

known: ……………………………………………………………………………………………………………………………. 
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25. Has your horse/pony ever been diagnosed with Cushings disease (Pars pituitary 

intermedia dysfunction, PPID)? 

a. Yes      b.  No 

 

26. How often do you worm your horse/pony? 

a. Never   b. Every 4 weeks  c. Every 6 weeks                                                  

d. Every 8 weeks       e. Every 12 weeks  f. If indicated to do so from 

worm egg counts   g. Other, please specify: ...................................... 

 

27. Do you measure your horse/pony’s body weight with a weigh tape or scales? 

a. Yes      b.  No 

 

28. What do you think your horse/pony weighs to the nearest 50kg? ........................... 

 

29. Which one of the following descriptors best describes the weight/condition of your 

horse/pony during the different seasons? (Please tick the appropriate boxes) 

 

30. Compared to this time last year, do you think that your horse/pony has: 

a. Put on weight/condition  b. Lost weight/condition 

c. Is at a similar weight/condition 

 

31. In your opinion, rank the following in order of importance, with 1 being the most 

important and 6 the least important: 

a. Maintaining your horse/pony at a healthy weight/condition: ................ 

b. Having your horse/pony’s feet regularly trimmed/shod: ........................ 

c. Having your horse/pony’s teeth regularly checked: ............................... 

d. Picking your horse/pony’s feet out on a daily basis: .............................. 

e. Having your horse/pony’s back regularly checked: ................................  

f. Grooming your horse or pony on a daily basis: ...................................... 

 

32. On a scale from 1 (very poor) to 9 (extremely fat) what number would you assign your 

horse/pony in its’ current condition?  

............................................... 

 Very 

Overweight 

Slightly 

Overweight 

About 

Right 

Slightly 

Underweight 

Very 

Underweight 

Spring      

Summer      

Autumn      

Winter      
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SECTION 4: Use and Exercise of your horse or pony 

 

33. Which of the following best describes the main reason for which your horse/pony is 

kept? 

a. Pet/companion   

b. Hacking/schooling/hunting (non-competitive riding)      

c. Breeding    

d. Riding club/Pony club/Driving (unaffiliated competitions) 

e. Affiliated competitions (Dressage/SJ/Eventing/Driving etc.) 

 

34. Is your horse/pony current exercised? 

a. No – not currently in any work  b. Yes – primarily ridden work  

 c.  Yes – primarily driven work    d. Yes – primarily in-hand/lunging work 

 

35. Which one of the following best describes the current workload of your horse/pony? 

a. Light work     b. Medium work   

c. Hard work     d. Not in work 

  

36. On average, how many days do you ride per week in the following months: 

a. December-February: ..........................  b. March-May: ............................................ 

c. June – August: ................................... . d. September – November: ......................... 

 

37. On average, how many hours do you ride per week in: 

a. December-February: ............................. b. March-May: ............................................ 

c. June – August: ....................................... d. September – November: ......................... 

 

38. Which one of the following descriptors best describes the current fitness of you 

horse/pony? 

a. Unfit  b. Moderately fit c.  Very fit  d. Extremely fit 

 

 

SECTION 5: Nutrition and management of your horse/pony in the 

summer months (May to September) 

 

39. In the summer months (May-September), do you ROUTINELY feed any of the 

following? 

a. Straights (oats, bran etc.)   b. Combination of feeds 
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c. Conditioning mix/cubes   d. Stud mix/cubes   

 e. Competition mix/cubes   f.  Pasture/leisure/pony mix/cubes 

g. Fibre blend     h. Balancer     

i. None      j. Other, please specify: ............................... 

 

40. In the summer months (May-September), do you EVER OCCASIONALLY feed any of 

the following? 

a. Straights (oats, bran etc.)   b. Combination of feeds   

c. Conditioning mix/cubes   d. Stud mix/cubes  

e. Competition mix/cubes   f.  Pasture/leisure/pony mix/cubes 

g. Fibre blend     h. Balancer     

i. None      j. Other, please specify: ............................... 

 

41. In the summer months (May-September), do you provide your horse/pony with 

supplements (excluding vitamins and minerals)? 

a. No   b. Yes – Joint  c. Yes – Hoof  d. Yes – Digestion

 e. Yes – Behaviour f. Yes - Immunity g. Yes – Lifestyle h. Yes – Wellbeing 

i. Yes – Electrolytes j. Yes – Weight management    

k. Other, please specify: .......................................................... 

 

42. Which of the following best describes your horse/pony’s daily routine in the summer 

months (May – September)? 

a. Lives out at grass – may only come into a stable to be tacked up or groomed 

b. Is turned out either at night or during the day (~8 hours at grass) 

c. Out at grass for part of the night or day (between 1 and 8 hours at grass) 

d. Stabled at all times (except when ridden/driven) 

e. Other, please specify: ................................................................................. 

 

43. Does your horse/pony have access to hay/haylage/soaked hay on a typical summer 

day (May-September)? 

a. Yes – receives ad libitum (as much as it can eat) of hay/haylage/soaked hay when stabled 

b. Yes – receives restricted amounts of hay/haylage/soaked hay when stabled 

c. Yes – receives ad libitum hay/haylage/soaked hay in the field 

d. Yes – receives restricted amounts of hay/haylage/soaked hay in the field 

e. No 

f. Other, please specify: ................................................................................ 

 

44. If stabled in the summer months (May-September), what type of bedding is used? 

a. Shredded paper/cardboard  b. Shavings/sawdust   
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c. Straw     d. Rubber matting only   

e. N/A     f. Other, please specify: ................................ 

 

45. If stabled in the summer months (May-September), is your horse/pony: 

a. N/A  

b. Able to see other horses/ponies (i.e. Over door, through grill etc.)   

c. Isolated from seeing other horses/ponies 

 

46. Is your horse/pony usually clipped during the summer months (May-September)? 

a. Yes     b.  No 

 

47. Which of the following best describes the type of grazing your horse/pony has access 

to during the summer months (May-September)? 

a. Unrestricted grazing     

b. Restricted grazing – strip grazing  

c. Restricted grazing – starvation paddock  

d. Restricted grazing – limited by time availability 

e. No access to grazing 

 

48. If out at grass during the summer months (May-September), is your horse/pony: 

a. On its own   

b. Out with others (including livestock)  

c. No access to grazing 

 

49. If your horse/pony has access to grazing during the summer months (May-

September), which of the following best describes the pasture type? 

a. Unknown     b. Specific for horses 

c. Originally planted for cattle/sheep  d. No access to grazing   

e.  Hill grazing     f. Permanent pasture 

g.  Unimproved grass    h. Other, please specify: .............................. 

 

50. Is the pasture used for grazing fertilised? 

a. Yes  b. No   c. Unknown  d. No access to grazing 

 

51. Does your horse/pony typically wear a grazing muzzle when out at grass during the 

summer months (May-September)? IF YES, PLEASE ANSWER Q52 

a. Yes      b.  No 
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52. On average, how many hours during the summer months (May-September) does your 

horse/pony wear a grazing muzzle? 

a. Less than 3 hours b. Between 3 and 8 hours c. More than 8 hours 

 

 

SECTION 6: Nutrition and management of your horse/pony in the 

winter months (November-March) 

 

53. In the winter months (November-March), do you ROUTINELY feed any of the 

following? 

a. Straights (oats, bran etc.)   b. Combination of feeds  

c. Conditioning mix/cubes   d. Stud mix/cubes   

 e. Competition mix/cubes   f.  Pasture/leisure/pony mix/cubes 

g. Fibre blend     h. Balancer    

 i. None      j. Other, please specify: ............................... 

 

54. In the winter months (November-March), do you EVER OCCASIONALLY feed any of 

the following? 

a. Straights (oats, bran etc.)   b. Combination of feeds   

c. Conditioning mix/cubes   d. Stud mix/cubes   

 e. Competition mix/cubes   f.  Pasture/leisure/pony mix/cubes 

g. Fibre blend     h. Balancer    

 i. None      j. Other, please specify: .............................. 

 

55. In the winter months (November-March), do you provide your horse/pony with 

supplements   (excluding vitamins and minerals)? 

a. No    b. Yes – Joint   c. Yes – Hoof  

 d. Yes – Digestion  e. Yes – Behaviour  f. Yes - Immunity 

 g. Yes – Lifestyle  h. Yes – Wellbeing  i. Yes – Electrolytes 

 j. Yes – Weight management k. Other, please specify: ...................................................... 

 

56. Which of the following best describes your horse/pony’s daily routine in the winter 

months  (November-March)? 

a. Lives out at grass – may only come into a stable to be tacked up or groomed 

b. Is turned out either at night or during the day (~8 hours at grass) 

c. Out at grass for part of the night or day (between 1 and 8 hours at grass) 

d. Stabled at all times (except when ridden/driven) 

e. Other, please specify: ................................................................................. 
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57. Does your horse/pony have access to hay/haylage/soaked hay on a typical winter day 

(November-March)? 

a. Yes – receives ad libitum (as much as it can eat) of hay/haylage/soaked hay when stabled 

b. Yes – receives restricted amounts of hay/haylage/soaked hay when stabled 

c. Yes – receives ad libitum hay/haylage/soaked hay in the field 

d. Yes – receives restricted amounts of hay/haylage/soaked hay in the field 

e. No 

f. Other, please specify: ................................................................................ 

 

58. If stabled in the winter months (November-March), what type of bedding is used? 

a. Shredded paper/cardboard  b. Shavings/sawdust    

 c. Straw     d. Rubber matting only    

 e. N/A     f. Other, please specify: ............................................ 

 

59. If stabled in the winter months (November-March), is your horse/pony: 

a. N/A  

b. Able to see other horses/ponies (i.e. Over door, through grill etc.)   

c. Isolated from seeing other horses/ponies 

 

60. Is your horse/pony usually clipped during the winter months (November-March)?  

a. Yes     b.  No 

 

61. Which of the following best describes the type of grazing your horse/pony has access 

to during the winter months (November-March)? 

a. Unrestricted grazing     

b. Restricted grazing – strip grazing  

c. Restricted grazing – starvation paddock   

d. Restricted grazing – limited by time availability 

e. No access to grazing 

 

62. If out at grass during the winter months (November-March), is your horse/pony: 

a. On its own   

b. Out with others (including livestock)   

c. No access to grazing 

 

63. If your horse/pony has access to grazing during the winter months (November-

March), which of the following best describes the pasture type? 
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a. Unknown     b. Specific for horses   

 c. Originally planted for cattle/sheep  d. No access to grazing   

 e.  Hill grazing     f. Permanent pasture 

g. Unimproved grass    h. Other, please specify: .............................. 

 

64. Does your horse/pony typically wear a grazing muzzle when out at grass during the 

winter months (November-March)?  IF YES, PLEASE ANSWER Q65 

a. Yes      b.  No 

 

65. On average, how many hours during the winter months (November-March) does your 

horse/pony wear a grazing muzzle? 

a. Less than 3 hours b. Between 3 and 8 hours            c. More than 8 hours 
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EQUIFAT: Regional adipose tissue scoring system 
 

 OMENTAL FAT 

Evaluate ~30cm of omentum extending distally from the midpoint of 
the greater curvature of the stomach 

Score Descriptor Exemplar 

1 No or minimal fat visible 

 

2 
Fat in immediate vicinity of the gastroepiploic 
vessels (GEVs)   but vessels still clearly visible. 

 

3 
Distinct fat deposits around and beginning to fill the 
spaces between GEVs. 
GEVs partially obscured by fat. 

 

4 
Extensive accumulations of fat largely obscuring 
and filling the spaces between most GEVs 

 

5 
Omental peritoneum and GEVs completely 
obscured by fat. 

 

MESENTERIC FAT 

Evaluate ~30cm of mesentery extending distally from the serosal 
margin of a ~0.5 m loop of proximal jejunum. 

Score Descriptor Exemplar 

1 No or minimal fat visible.  

 

2 
Fat in the immediate vicinity of the superior 
mesenteric vessels (SMVs) but arterial arcades still 
clearly visible. 

 

3 
Distinct fat deposits around and beginning to fill 
the spaces between SMVs. SMVs partially obscured 
by fat. 

 

4 
Extensive accumulations of fat largely obscuring 
and filling spaces between most arcades of the 
SMVs. 

 

5 

 
Mesenteric peritoneum, SMVs completely 
obscured by fat. 
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EPICARDIAL FAT 

Evaluate left heart 

Score Descriptor Exemplar 

1 No or minimal fat visible 

 

2 

Fat limited to immediate vicinity of coronary groove 
(CG) and paracornial interventricular branch of left 
coronary artery (PIBLCA). Entire PIBLCA visible.  Fat 
‘level’ with adjacent myocardium.  

3 

Fat ‘tendrils’ extend from vicinity of PIBLCA across 
myocardium. Proximal limits of PIBLCA partially               
obscured by fat. Fat minimally protruding over             
myocardial surface.  

4 
Lobular fat emanating from CG & PIBLCA only distal                   
PIBLCA visible. Fat protruding above myocardium but            
≥50% of ventricular myocardium visible. 

 

5 

CG & PIBLCA completely obscured by lobular fat. 
Fat in folded bulges with < 50% ventricular 
myocardium visible. 
  

RUMP FAT 

Evaluate dorsal rump from point of tailhead over loin 

Score Descriptor Exemplar 

1 No / minimal fat cover.   Flesh clearly visible. 
(<10% fat cover)) 

 

2 
Visible fat on tailhead, flesh remains visible lower 

down rump 

(10 – 25% fat cover). 
 

3 Small patches of flesh may remain visible. 
(25 – 50% fat cover). 

 

4 
Flesh not clearly visible, fat may have bulging 

appearance. 
(50 – 75% fat cover). 

 

5 Fat appears thick and more protruding. 
(>75% fat cover) 

 

ABDOMINAL RETROPERITONEAL FAT:  Cr/Cau midpoint 

Score      1       2      3      4     5 

Depth (cm) 0 – 1.9 2 – 3.9 4 – 5.9 6 – 7.9    ≥8 

NUCHAL CREST FAT:         Depth at craniocaudal midpoint 

Score      1      2      3       4       5 

Depth (cm) 0 – 2.9 3 – 5.9 6 – 8.9 9 – 11.9     ≥12 
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Appendix E: Anatomical location of skeletal muscles sampled 

 

 

 
         

 

 

 

          Adductor 

          (Chapter 5) 

 
Rectus abdominis 

(Chapter 5 & 6) 

 

Pectoralis 
profoundus 
(Chapter 6) 

Pectoralis 
transversus 

(Chapter 5 & 6) 

 
Longus colli 

(Chapter 5 & 6) 
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