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Abstract 

Open-cell porous metals have many applications due to high surface area to volume ratios. 

Porous metals manufactured by the space holder methods have distinctively different porous 

structure from commercial open-cell metal foams, but very little research has been conducted 

to characterise the surface area of this class of materials. This paper measured the geometric, 

electroactive and real surface areas of porous Cu samples manufactured by the Lost 

Carbonate Sintering process by quantitative stereology and cyclic voltammetry. A cyclic 

voltammetry (peak current) procedure has been developed and successfully applied to the 

measurement of electroactive surface areas of the porous Cu. For porous Cu samples with 

pore sizes 75-1500 µm and porosities 0.5-0.8, the volumetric and gravimetric specific 

geometric, electroactive and real surface areas are in the ranges of 15-90 cm
-1

 and 5-45 cm
2
/g, 

200-400 cm
-1

 and 40-130 cm
2
/g, and 1000-2500 cm

-1
 and 400-800 cm

2
/g, respectively, 

varying with pore size and porosity. The geometric, electroactive and real surface areas are 

found to result from the contributions from primary porosity, primary and secondary 

porosities, and surfaces of metal particles, respectively. The measurement methods adopted in 

this study can provide vital information of surface areas at different length scales, which is 

important for many applications.  
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1. Introduction 

Porous metals have attracted considerable attention in both academia and industry in the last 

few decades, due to their unique mechanical, thermal, acoustic, electrical and chemical 

properties
1-3

. Open-cell porous metals in particular have many potential applications such as 

heat exchange
4,5

, sound absorption
6
, catalyst support

2
 and porous electrode 

2
. High surface 

area is often desirable for these functional applications. In electrochemical applications, for 

instance, the reaction surface area of electrode is the most important characteristic
7
 because 

high surface area means high energy density and thus better performance. Porous metals are 

therefore gradually replacing metal mesh electrodes in some applications, such as alkaline 

fuel cells, because of lower mass-to-surface ratio and lower cost
8
.  

Surface area of the porous metal is very sensitive to the manufacturing method. For similar 

pore size of 600 µm and porosity of 0.95-0.99, the Incofoam Ni foam produced by CVD has 

a surface area of 292 cm
2
/g 

8
, while the Mitsubishi Ni foam produced by the slurry foaming 

method has a surface area of 19710 cm
2
/g 

9
 (both measured by BET). However, the 

information on the surface area of porous metals manufactured by different methods is very 

limited in the literature.   

Very little research has been conducted to date to understand the characteristics of the 

internal surfaces of porous metals manufactured by the space holder methods, which are an 

important family of methods developed recently for manufacturing open cell porous metals. 

In powder metallurgy based space-holder methods 
3,10

, a metal powder is first mixed with a 

sacrificial powder (space holder), such as NaCl 
11

, K2CO3 
12

 or urea 
13

, and then compacted 

into a preform, followed by sintering. The space holder material is removed before, during or 

after sintering by either dissolution or decomposition to create pores. The metal particles are 

bonded during sintering to form a metal network.  

The porous metals produced by powder metallurgy based space-holder methods have 

distinctively different internal pore architecture from the commercially available open-cell 

metal foams, e.g., Incofoam by CVD and ERG foam by investment casting3. The latter have 

lattice-like structure with high porosities (0.8-0.95) and the metal struts usually have a 

smooth surface. In contrast, the porous metals manufactured by the space-holder methods 

have lower porosities (0.5-0.85) and have porous structures with bimodal pores and rough 

internal surfaces. The primary pores are open pores randomly distributed in the metal matrix 
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and interconnected through small windows. They are effectively negative replicas of the 

particles of the space holder material, so their shapes, sizes and quantity are well defined. 

There are numerous secondary pores in the metal matrix. They are the small interstices or 

voids between the metal particles resulting from partial sintering. Up to date, no quantitative 

information on the surface area of this type of porous metals has been reported in the 

literature.  

Surface area of porous metals is generally characterised either by geometric area or by true 

area, which can be different by more than two orders in magnitude. The active or effective 

surface area for a particular application depends on the length scale at which the surface plays 

a role. It is often greater than the geometric area but lower than the true area. Taking porous 

electrodes as an example, real surface area is important for energy storage applications such 

as super capacitors, because it directly determines the amount of charge stored 
14,15

. In 

applications involving electrochemical reactions, however, the electroactive surface area, i.e., 

the area that effectively transfers the charge to the species in solution, is the key parameter. It 

depends on how well the electrolyte accesses the pores and is also influenced by the 

magnitude of the diffusion or Nernst layer in the electrolyte and the surface roughness of the 

electrode 
16,17

. Electroactive surface area of the electrodes determines the maximum power or 

current density that can be achieved and therefore has a significant effect on the performance 

of the electrochemical cell.  

This paper measures the surface areas, at different length scales, of porous Cu samples 

manufactured by the Lost Carbonate Sintering (LCS) process 
12,18

, which is a representative 

powder metallurgy based space holder method. The quantitative stereology (QS) method is 

used to determine the geometric surface area, i.e., surface area of the primary pores. Two 

cyclic voltammetry (CV) methods are used to measure the electroactive and real surface areas, 

which include contributions from both primary and secondary pores. Both volumetric and 

gravimetric surface areas are presented to facilitate comparisons with other porous metals on 

the basis of unit volume or unit mass. The effects of pore size and porosity on the surface 

areas are analysed. This study will provide a basis for quantitative understanding of the 

surfaces of porous metals produced by all solid route space holder methods. It also introduces 

the CV techniques to the measurements of effective surface areas of porous metals. 
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2. Experimental 

2.1 Preparation of porous Cu samples 

Porous Cu samples with different porosities and pore sizes were fabricated by the LCS 

process developed by Zhao and his colleagues 
12,18

. The raw materials used in the 

experimental work were commercially pure Cu powder (Ecka Granules Metal Powder Ltd, 

UK) with a mean particle size of 72 µm (measured by Malvern Mastersizer 2000) and food 

grade K2CO3 powder (E&E Ltd, Australia) sieved into five different particle size ranges: 75-

150 µm, 250-425 µm, 425-710 µm, 710-1000 µm and 1000-1500 µm. Each of these K2CO3 

powders were mixed with the Cu powder at a pre-specified volume ratio according to the 

target porosity and then compacted into a preform under a pressure of 200 MPa. In 

fabricating a sample for QS measurement, the preform was first sintered at 850 °C for 2 h. 

The partly sintered sample was cut and ground when the K2CO3 particles were still in the 

preform so that a flat surface was obtained and the pores at the surface were not enlarged, 

filled or smeared during preparation. The sample was further sintered at 950 °C for 2 h. In 

fabricating a sample for CV measurements, the preform was directly sintered at 950 °C for 2 

h. At this sintering stage, the Cu particles in the preform were fully bonded and the K2CO3 

particles were decomposed, resulting in an open-cell porous Cu sample with a fixed porosity 

in the range of 0.5-0.8 and one of the five pore size ranges corresponding to the five K2CO3 

particle sizes.  

Figure 1 shows the typical porous structure of the porous Cu samples, obtained by SEM 

(JSM-6610, Japan). The large pores (primary pores) are negative replicas of the K2CO3 

particles and are largely spherical. They are all interconnected to form an open cell network. 

The cell walls are formed by the sintering of Cu particles and have a structure characteristic 

of sintered materials, i.e., metal particles connected by sintering necks and interspersed with 

micro-voids (secondary pores).  
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Figure 1: Microstructure of porous Cu (a) a global view, (b) morphology of pores and cell 

walls, and (c) sintering necks between Cu particles. 

2.2 Measurement of geometric surface area by QS 

QS was used to determine the geometric specific surface area of the porous Cu samples. 

Geometric surface area takes into account the total surface area of the primary pores formed 

by the K2CO3 particles, excluding the secondary pores (i.e., the interstices formed between 

a 

b 

c 
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the Cu particles). The samples with the pore size of 75-150 µm were not measured by the QS 

method because of the difficulty in differentiating the primary and secondary pores.  

An optical micrograph of the carefully-prepared flat surface of each porous cupper sample 

was taken by an optical microscope and a counting grid was superimposed onto the 

micrograph as shown in Figure 2. The Image-Pro Plus 6.0 software (Media Cybernetics Inc., 

USA) was used to identify and count the intercepts between the grid lines and the pore 

perimeters on the micrograph. The volumetric specific geometric surface area, SVG, is the 

total internal surface area of the primary pores per unit volume of the sample and was 

obtained by 
19

: 

𝑆𝑉𝐺 =
2𝑃

𝐿
                                                               (1) 

where P is the number of intercepts between the grid lines and the primary pore perimeters 

and L is the total length of the grid lines.  

The gravimetric specific geometric surface area, SMG, is the total internal surface area of the 

primary pores per unit mass of the sample and was calculated by: 

𝑆𝑀𝐺 =
𝑆𝑉𝐺

(1−)𝜌
                                                               (2) 

where  is the porosity of the sample and  is the density of solid Cu.  

 

Figure 2: Optical micrograph of a porous Cu sample superimposed with a counting grid  
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2.3 Measurement of electroactive surface area by CV – peak current method 

CV is a potentiodynamic electrochemical technique that can be used to analyse the redox 

reactions taking place at the surface of solid electrodes. For a redox reaction controlled by the 

diffusion of OH
-
, the anodic or cathodic peak current in the cyclic voltammogram 

corresponding to the reaction can be expressed by Delahay equation 
20

: 

𝑖𝑝 = 3.67 × 105𝑛
3

2𝐴𝑐𝐷
1

2𝑣
1

2                                                    (3) 

where ip is the peak current, n is the number of electrons in the reaction, A is the surface area 

of the electrode, c is bulk concentration of OH
-
, D is the diffusion coefficient of OH

-
 and v is 

the scan rate of the electrode potential.  

Delahay equation cannot be used directly to calculate the surface area of Cu electrode due to 

passivation 
20

. However, the peak current for a redox reaction is still proportional to the 

electrode surface area, although the proportionality coefficient may be different from that 

shown in equation (3).  

In the current work, we propose a new approach to determine the electroactive surface area of 

a porous structure whose surface area is difficult to be measured by conventional methods. 

We first use a series of solid Cu plates with known surface areas to determine the 

proportionality coefficient of the Delahay relationship that is specifically applicable to Cu. 

We then use this relationship to determine the electroactive surface area of a porous metal 

electrode by measuring the peak current in the cyclic voltammogram.  

Figure 3 shows a schematic diagram of the three-electrode electrochemical cell used for the 

CV measurements. The CV system consisted of a computerized potentiostat (Autolab 

PGSTAT101), working electrode (Cu plate or porous Cu sample), counter electrode (Pt plate 

for solid Cu samples and Pt coil for porous Cu samples), reference electrode (SCE) and 

electrolyte (0.1M KOH). The potential of the working electrode was varied between -1.55 

and 0.8 V against the SCE reference electrode, with a scan rate of 0.026 V/s. 
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Figure 3: Schematic of the three-electrode electrochemical cell used for the CV 

measurements 

A series of solid Cu plates with known geometric surface areas were used as working 

electrodes for calibration. Each Cu plate was first polished to 1 µm surface finish and then 

washed by 10% HCl, reducing the surface roughness to below 0.01 µm (measured by profiler 

PROSCAN 1000). The error of surface area caused by surface roughness was <0.01%. The 

Cu plate was fixed onto a nylon block with its edges sealed by resin and was connected to the 

potentiostat by a Cu wire.  

A series of porous Cu samples were used as working electrodes for surface area measurement. 

Each porous Cu sample was cut to the dimensions of 0.3 cm × 0.4 cm × 0.5 cm, washed by 

10% HCl and cleaned by ultrasonic treatment to ensure that complete infiltration of the 

sample by the electrolyte was achieved during the measurement. The porous Cu sample was 

connected to the potentiostat by two Cu wires coated with resin. The total surface area of the 

two contact points were less than 0.016 cm
2
.  

Figure 4a shows the cyclic voltammograms of three solid Cu plates with different known 

surface areas as examples. Three anodic peaks appeared in each voltammogram, 

corresponding to the following reactions 
20

. 

2𝐶𝑢 + 𝑂𝐻− → 𝐶𝑢2𝑂 + 𝐻2𝑂 + 2𝑒    (Peak I)        (4a) 

𝐶𝑢2𝑂 + 2𝑂𝐻− + 𝐻2𝑂 → 2𝐶𝑢(𝑂𝐻)2 + 2𝑒    (Peak II)             (4b) 

𝐶𝑢 + 2𝑂𝐻− → 𝐶𝑢𝑂 + 𝐻2 + 2𝑒    (Peak III)        (4c) 

 

     

  

Working electrode 

(porous copper) 

 

 

 

Reference electrode (SCE) 

Counter electrode (Pt) 

Electrolyte 

(0.1M KOH) 
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Figure 4: Cyclic voltammograms of (a) Cu plates with different surface areas and (b) a 

typical porous Cu sample. (c) Linear relation between Cu plate surface area and current of 

peak III.  
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In agreement with the CV tests carried out at slow scan rates
 20

, reaction (4c) is the 

predominant reaction, which is controlled by the diffusion of OH
-
 ions. Figure 4c shows that 

the peak current value of Peak III is directly proportional to the surface area of the Cu plate, 

so peak III was used in this work for the determination of surface area of porous Cu samples. 

The relationship between the electroactive surface area, AE (cm
2
), and peak current, Ip (mA), 

for the Cu plates is: 

𝐴𝐸 = 2.60 × 𝐼𝑝    (R
2
 = 0.9791)                                              (5) 

Figure 4b shows the voltammogram of a porous Cu sample. It is shown that it has the same 

shape as those of solid Cu both in the literature 
20

 and in the current tests (Figure 4a), 

indicating that the electrochemical processes at the surface of porous Cu are the same as 

those at the surface of solid Cu. The relation in Eqn. (5) should also be applicable to porous 

Cu.  

The electroactive surface areas of the porous Cu samples were determined from Eqn. (5) by 

measuring the peak current values of Peak III under the same conditions as used for the solid 

Cu plates. The volumetric and gravimetric specific electroactive surface areas were obtained 

by dividing the electroactive surface area by the volume and mass of the sample, respectively.  

2.4 Measurement of real surface area by CV – double layer capacitance method 

The electrical double layer is a structure that describes the variation of electric potential near 

the electrode surface. The thickness of the double layer is usually thinner than 10 nm when 

the concentration of electrolyte is higher than 0.001 M 
7
. A large amount of electrical charge 

can be stored in this very thin layer and the double layer capacitance depends on the electrode 

surface area. Therefore, measurement of double layer capacitance can be used to estimate the 

real surface area of solid metal electrodes 
15,21

. 

The voltammograms of the solid and porous Cu working electrodes in the alkaline solution 

(Figures 4a and 4b) showed that the current was low and changed very little in the forward 

scan in the potential range from -1 to -0.75 V, indicating that there was no redox reactions 

and no Faradaic current in this potential range. This potential range was therefore chosen for 

the double layer capacitance measurements. 
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The double layer capacitance of each porous Cu sample was measured in the same three-

electrode electrochemical cell shown in Figure 3. Figure 5a shows the cyclic voltammograms 

of a porous Cu sample in the non-Faradaic region with different scan rates. The double layer 

capacitance, C (mF), can be determined by 
15

: 

𝐶 =
𝐼

𝑣
                                                                   (6) 

where I (mA) is the change in current in the charge/discharge cycle and v (V/s) is the scan 

rate. The change in current was obtained by measuring the difference between the upper and 

bottom lines in the voltammogrm, as shown schematically in Figure 5a. In order to minimise 

measurement errors, a series of voltammograms were obtained at different scan rates and the 

change in current was plotted against scan rate, as shown in Figure 5b. The double layer 

capacitance of the sample is the proportionality coefficient between change in current and 

scan rate and was obtained by fitting the data to a straight line going through the origin. 

Lukomska and Sobkowski 
22

 showed that the specific capacitance of the Cu/electrolyte 

interface is approximately 0.02 mF/cm
2
, so the real surface area of porous Cu electrode, AR 

(cm
2
), can be estimated by: 

𝐴𝑅 =
𝐶

0.02
                                                                  (7) 

The volumetric and gravimetric specific real surface areas can be obtained by dividing the 

real surface area by the volume and mass of the sample, respectively. 
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Figure 5: (a) Voltammograms of a porous Cu sample in the non-Faradaic region with 

different scan rates; (b) Linear relation between change in current and scan rate 

3. Results 
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The variations of volumetric and gravimetric specific geometric surface areas, measured by 

the QS method described in 2.2, as a function of porosity and pore size are shown in Figure 6. 
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porosity and decrease with pore size. However, volumetric specific geometric surface area is 

less sensitive to porosity.  

 

 

Figure 6: Variations of (a) volumetric (SVG) and (b) gravimetric (SMG) specific geometric 

surface areas with porosity at different pore sizes: experimental (  250-425 µm,  425-710 

µm,   710-1000 µm,  1000-1500 µm); modelling (  250-425 µm,  425-710 µm, 

 710-1000 µm,  1000-1500 µm) 
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3.2 Electroactive surface area 

The variations of volumetric and gravimetric specific electroactive surface areas, measured 

by the CV – peak current method as described in 2.3, as a function of porosity and pore size 

are shown in Figure 7. In the porosity range 0.5-0.8 and pore size range 75-1500 µm, the 

volumetric and gravimetric specific electroactive surface areas are in the ranges of 200-400 

cm
-1

 and 40-130 cm
2
/g, respectively. The specific electroactive surface area is nearly one 

order of magnitude higher than the geometric surface area. The trends of the effects of 

porosity and pore size on electroactive surface area are less clear than those on the geometric 

surface area. In general, both volumetric and gravimetric specific electroactive surface areas 

decrease with pore size; the gravimetric specific electroactive surface area increases with 

porosity; the effect of porosity on the volumetric specific electroactive surface area is not 

pronounced.  
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Figure 7: Variations of (a) volumetric (SVE) and (b) gravimetric (SME) specific electroactive 

surface areas with porosity at different pore sizes:   75-150 µm,   250-425 µm,  425-710 

µm,  710-1000 µm,  1000-1500 µm 
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volumetric and gravimetric specific real surface areas are in the ranges of 1000-2500 cm
-1

 

and 400-800 cm
2
/g, respectively. The specific real surface area is about one and two orders of 

magnitude higher than the electroactive and geometric surface areas, respectively. The trends 

of the effects of porosity and pore size on real surface area are again less clear than those on 

the geometric surface area. In general, the volumetric specific real surface area decreases 

with porosity while the gravimetric specific real surface area increases with porosity. The 

effect of pore size on the specific real surface areas is not pronounced.  
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Figure 8: Variations of (a) volumetric (SVR) and (b) gravimetric (SMR) specific real surface 

areas with porosity at different pore sizes:  75-150 µm,   250-425 µm,  425-710 µm,  

710-1000 µm,  1000-1500 µm 
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4. Discussion 

4.1 Geometric surface area 

Geometry surface area is the total surface area of the cell walls of the primary pores in the 

porous sample. Because primary pores are in effect negative replicas of the K2CO3 particles 

used in the fabrication process, geometric surface area can be approximated by the total 

surface area of the K2CO3 particles less the area of the necks formed between the adjacent 

K2CO3 particles.  

Zhao 
23

 analysed the connectivity of the NaCl particle network in an Al/NaCl compact used 

for manufacturing porous aluminium by the SDP process. Although the analysis was 

developed using SDP as an example, it is applicable to all powder metallurgy based space-

holder methods, because these methods use the same principle to generate the porous 

structure. The analysis can be applied directly to LCS by substituting K2CO3 for NaCl and Cu 

for Al.  

The direct contact between two spherical K2CO3 particles in the Cu/K2CO3 preform will form 

a neck, which will result in a window between the two resultant primary pores in the porous 

Cu sample. The magnitude of the neck depends on the relative sizes of the K2CO3 and Cu 

particles. The area of the sphere crown on the K2CO3 particle corresponding to the neck, Ac, 

can be calculated by 
23

: 

𝐴𝑐 =  
𝜋

2
𝑑𝑝

2(1 −
∅+2

√∅2+6∅+5
)                                           (8) 

where dp is the diameter of the K2CO3 particle (effectively, the pore size) and ∅ is the K2CO3-

to-Cu particle size ratio, i.e., the ratio between the diameters of the K2CO3 and Cu particles, 

dp and dCu, respectively.  

The average number of K2CO3/K2CO3 contacts on a single K2CO3 particle in the Cu/K2CO3 

powder mixture, µ, depends not only on the K2CO3-to-Cu particle size ratio, ∅, but also on 

the volume fraction of the K2CO3 in the mixture (which is effectively the porosity of the 

resultant porous Cu, ) and can be calculated by 
23

: 

µ =  
2

(1−
∅+2

√∅2+6∅+5
)(1−∅+

∅


)
                                                   (9) 
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The surface area of each pore is therefore the surface area of the K2CO3 particle less the total 

area of the sphere crowns forming the necks. The volumetric specific geometric surface area 

of the porous Cu, i.e., the total surface area of the primary pores per unit volume, can thus be 

calculated by: 

𝑆𝑉𝐺 =
𝐴𝑝−𝜇𝐴𝑐

𝑉𝑝/
=

6

1/𝜀+1/[(1−𝜀)∅]
=

6

𝑑𝑝/𝜀+𝑑𝐶𝑢/(1−𝜀)
                            (10) 

where Ap and Vp are the surface area and volume of a K2CO3 particle, respectively. The 

gravimetric specific geometric surface area can be calculated accordingly by:  

𝑆𝑀𝐺 =
𝑆𝑉𝐺

(1−𝜀)𝜌
=

6

𝜌[𝑑𝐶𝑢+𝑑𝑝(1−𝜀)/𝜀]
                                        (11) 

Eqs. (10) and (11) show that the volumetric specific surface area of LCS porous Cu is a 

function of porosity, , K2CO3 particle size or pore size, dp, and Cu particle size, dCu. The 

gravimetric specific surface area is also a function of the density of Cu, . Although the 

particles of the K2CO3 and Cu powders used in this experiment have a size range instead of a 

uniform size, it is possible to estimate the volumetric and gravimetric specific surface areas 

using mean particle sizes. 

The calculated values of the volumetric and gravimetric surface areas for the porous Cu 

samples are shown in Figure 6 alongside the experimental values. The calculations were 

carried out using Eqs. (10) and (11) with the following input values: density of Cu  = 8.9 

g/cm
3
, mean Cu particle diameter dCu = 72 µm, and mean K2CO3 particle diameters dp = 338 

µm, 568 µm, 855 µm and 1250 µm for the particle size ranges 250-425 µm, 425-710 µm, 

710-1000 µm and 1000-1500 µm, respectively. Figure 6 shows that the experimental values 

generally follow the trends predicted by this model, indicating that the model gives a 

reasonable quantitative description of the major controlling factors for surface area. However, 

the calculated values are higher than the measured results. This is likely due to the 

approximations of the broad particle size ranges of the K2CO3 and Cu powders by single 

particle sizes.  

The volumetric and gravimetric specific geometric surface areas of the LCS porous Cu are in 

the ranges of 15-90 cm
-1

 and 5-45 cm
2
/g, which are in the same orders of magnitude as those 

of Incofoam Ni foam (20 cm
2
/g 

24
) and those of VITO foam (14.1 cm

-1
 for stainless steel and 

42.5 cm
-1

 for Ti foam, both determined by micro-CT 
25

). 
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4.2 Electroactive surface area 

Figure 9 shows the ratio of electroactive and geometric surface areas (same for volumetric 

and gravimetric) as a function of mean pore size at different porosities. Because the samples 

used for QS and CV measurements had slightly different porosities, the ratio values could not 

be obtained directly from the experimental data. For each sample with a measured volumetric 

specific electroactive surface area shown in Figure 7(a), the volumetric specific geometric 

surface area was obtained by interpolation of the data in Figure 6(a) based on the porosity of 

the sample. The ratio was simply the former divided by the latter. The volumetric specific 

geometric surface areas of the samples with the smallest pore size range 75-150 µm were 

calculated using Eq. (10), because no experimental data were available.  

 

Figure 9: Variation of the ratio between the electroactive (AE) and geometric (AG) surface 

areas with mean pore size at different porosities 

Figure 9 shows that the ratio of electroactive and geometric surface areas increases nearly 

linearly with mean pore size and generally increases with decreasing porosity. An especially 

interesting characteristic of the trendlines is that their intercepts at the vertical axis are all 

unity, indicating that there are more surfaces contributing to the electrochemical reactions 

and peak current than the geometric surface area. The electroactive surface area can be 

separated into two parts: contribution from the primary porosity (geometric surface area) and 

contribution from the secondary porosity, i.e., the voids or interstices inside the Cu matrix. 
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The contribution to the electroactive surface area from the secondary porosity can be 

significantly greater than the geometric surface area (up to 14 times as shown in Figure 9). 

This high contribution is due to the numerous small voids or interstices in the Cu matrix as a 

consequence of incomplete densification of Cu particles during sintering. The network 

formed by these voids, i.e., the secondary porosity, can be penetrated by the electrolyte and 

therefore make significant contributions to the electroactive surface area. 

It can be seen from Figure 9 that the contribution to the electroactive surface area from the 

secondary porosity is proportional to pore size and decreases with porosity. The effect of 

porosity on the ratio between electroactive and geometric surface areas can be explained by 

the relative quantities of Cu particles in the interior and exterior regions in the solid matrix. 

For a fixed pore size, increasing porosity means more Cu particles are located in the surface 

region and the number of Cu particles residing in the interior region is reduced. Relative to 

the contribution of the primary porosity to the electroactive surface area (i.e., geometric 

surface area), the contribution of the second porosity decreases. Therefore, the ratio between 

electroactive and geometric surface areas decreases with porosity. The effect of pore size is 

likely a manifestation of the effect of the diffusion layer on the concentration distribution of 

the electroactive species.  

The diffusion layer thickness for the diffusion of OH
-
 towards Cu electrode can be calculated 

by 
26

: 

𝜎 = √
𝐷𝑅𝑇

𝑛𝐹𝑣
                                                           (12) 

where D (2×10
-5

cm
2
/s) is the diffusion coefficient of OH

-
, R is the gas constant (8.134 J/K 

mol), T is the temperature (298K), n is the number of electronic transfer (2 for reaction 4c), F 

is the Faraday constant (96485 C/mol) and v is the scan rate (0.026 V/s in this work). Under 

the current experimental conditions, the diffusion layer thickness for a flat surface is 

calculated to be about 31 µm. This is about 1/2 to 1/20 of the pore radius. The actual 

thickness of the region with low concentrations of electroactive species is even greater and 

occupies a significant portion of the pores. 

For small pores with a radius comparable to the diffusion layer thickness, a large proportion 

of the electrolyte is within the diffusion layer. Only a small reservoir of electrolyte in the 

central region of the pore has the initial concentration of the electroactive species. The 
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electroactive species in the electrolyte is consumed rapidly during the CV measurement. In 

addition, acute curvature associated with small pores also leads to a greater actual diffusion 

layer than that predicted for a flat surface. All these factors reduce the concentrations of the 

electroactive species in the region next to the electrode surface, leadings to a reduced peak 

current and thus a reduced electroactive surface area.  

With increasing pore sizes, the reservoir of electrolyte with the initial concentration of the 

electroactive species becomes bigger. The diffusion layer thickness also approaches that 

predicted for a flat surface due to reduced curvature. As a consequence, the region of 

depleted electroactive species next to the pore walls is reduced, leadings to an increased peak 

current and thus an increased electroactive surface area.  

4.3 Real surface area 

The real surface area measured by the double layer capacitance method accounts for all 

surfaces in the porous Cu sample which can be reached by the electrolyte. Because of 

insufficient densification of Cu particles during sintering in LCS, the majority of the voids or 

interstices between the Cu particles are interconnected and therefore contribute to the real 

surface area. The real surface area is therefore the total surface area of all Cu particles, 

excluding the sintering necks between the Cu particles and the small number of isolated voids.  

Figure 10 plots the volumetric specific real surface area (SVR) versus the theoretical 

volumetric specific surface area of the Cu particles (SVCu), which is defined as the total 

surface area of all Cu particles per unit volume of the porous sample and is calculated by 

assuming that all Cu particles are perfect spheres of 72 µm diameter with a smooth surface. 

It shows that there is a strong correlation between the real surface area of the porous Cu 

sample and the total surface area of the Cu particles in the sample. The former is about 5.8 

times of the latter. This difference can be accounted for by the surface roughness of the Cu 

particles. As shown in Figure 1c, the particles of the Cu powder used in this work are 

neither spherical nor smooth surfaced. The actual surface area of a Cu particle is much 

higher than predicted by assuming a perfect sphere.  

The volumetric and gravimetric specific real surface areas of the LCS porous Cu are in the 

ranges of 1000-2500 cm
-1

 and 400-800 cm
2
/g, which are higher than those of the Incofoam Ni 

foam (292 cm
2
/g, measure dby BET 

8
) but considerably lower that those of the Mitsubishi Ni 

foam (19710 cm
2
/g, measured by BET

 9
). 
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Figure 10: Volumetric specific real surface area of porous Cu sample (SVR) versus the 

theoretical volumetric specific surface area of the Cu particles (SVCu) for different pore sizes:  

 75-150 µm,   250-425 µm,  425-710 µm,  710-1000 µm,  1000-1500µm. 
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5. Conclusions 

1) A cyclic voltammetry (peak current) procedure has been developed to measure 

electroactive surface area of porous metals.  

2) Geometric, electroactive and real surface areas of porous Cu samples manufactured 

by the LCS process, with pore sizes 75-1500 µm and porosities 0.5-0.8, have been 

measured successfully by quantitative stereology, cyclic voltammetry (peak current) 

and cyclic voltammetry (double layer capacitance) methods, respectively. 

3) The volumetric and gravimetric specific geometric surface areas are in the ranges of 

15-90 cm
-1

 and 5-45 cm
2
/g, respectively. They increase with porosity and decrease 

with pore size. Geometry surface area is due to the contribution from primary porosity 

only. It is a function of porosity, pore size and Cu particle size, and can be described 

by the analytical model in Ref [24].  

4) The volumetric and gravimetric specific electroactive surface areas are in the ranges 

of 200-400 cm
-1

 and 40-130 cm
2
/g, respectively. Electroactive surface area consists of 

contributions from primary and secondary porosities. The latter contribution increases 

with pore size and decreases with porosity.  

5) The volumetric and gravimetric specific real surface areas are in the ranges of 1000-

2500 cm
-1

 and 400-800 cm
2
/g, respectively. Real surface area is the total surface area 

of all Cu particles less the sintering necks and isolated voids, and has a strong 

correlation with the total geometric surface area of all the Cu particles in the sample.  
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