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Abstract

Thermochemical sulfate reduction (TSR), the reaction of petroleum with anhydrite in reservoirs resulting in the growth of
calcite and the accumulation of H2S, has been documented in the Feixianguan Formation dolomite reservoir in the Sichuan
Basin, China. Fluid inclusion salinity and homogenization temperature data have shown that TSR results in a decrease in
salinity from a pre-TSR value of 25 wt.% down to 5 wt.% as a result of water created as a byproduct of progressive TSR.
We have studied the isotopic character of the water that resulted from TSR in the Feixianguan Formation by analyzing
the oxygen isotopes of TSR calcite and determining the oxygen isotopes of the water in equilibrium with the TSR calcite
at the temperatures determined by aqueous fluid inclusion analysis. We have compared these TSR-waters to water that would
have been in equilibrium with the bulk rock, also at the temperatures determined by aqueous fluid inclusion analysis. We have
found that the TSR-waters are relatively depleted in oxygen isotopes (by up to 8& compared to what would be expected at
equilibrium between the bulk rock and water) since this type of water was specifically derived from anhydrite. The generation
of relatively large volumes of low salinity, low d18O water associated with advanced TSR in the Feixianguan Formation has
also been reported in the Permian Khuff Formation in Abu Dhabi and from sour Devonian fields in the Western Canada
Basin. This suggests that TSR-derived water may be a common phenomenon, the effects of which on mesogenetic secondary
porosity and reservoir quality have previously been underappreciated.
Crown copyright � 2015 Published by Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Thermochemical sulfate reduction (TSR) occurs when
petroleum reacts with aqueous sulfate, derived from the dis-
solution of sulfate minerals (mainly anhydrite but also
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celestite and barite) at elevated temperatures (greater than
approximately 100–140 �C for oil and greater than 140 �C
for gas) (Heydari and Moore, 1989; Worden et al., 1995;
Cai et al., 2004; Worden and Smalley, 2004). A general
reaction can simply be written as follows:

sulfateþ petroleum! calciteþH2S�H2O� CO2

� S� altered petroleum ðR1Þ

TSR leads to significant alteration of petroleum and gener-
ates a variety of reduced forms of sulfur (S and H2S) and
oxidized forms of carbon (carbonate minerals and CO2)
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as well as a combination of water, sulfides, organosulfur
compounds and bitumen (Machel, 1987; Krouse et al.,
1988; Heydari and Moore, 1989; Machel et al., 1995;
Worden et al., 1995, 1996, 2000; Worden and Smalley,
1996; Heydari, 1997; Bildstein et al., 2001; Cai et al.,
2003, 2004, 2010).

The general reaction (R1) can be written as a series of
simple stoichiometric reactions for methane (R2), ethane
(R3) or other alkane gases:

CaSO4 þ CH4 ! CaCO3 þH2SþH2O ðR2Þ
2CaSO4 þ C2H6 ! 2CaCO3 þH2Sþ 2H2Oþ S ðR3Þ

It has further been suggested (Worden and Smalley, 1996;
Heydari, 1997; Orr, 1977) that any elemental sulfur that
results from ethane reduction further reacts, e.g. with
methane or ethane (R4). Linking R3 and R4 together
results in the complete oxidation of ethane by anhydrite
(R5):

C2H6 þ 7Sþ 4H2O! 7H2Sþ 2CO2 ðR4Þ
7CaSO4 þ 4C2H6 ! 7CaCO3 þ 7H2Sþ 5H2Oþ CO2 ðR5Þ

An important characteristic of balanced reactions of the
complete oxidation of methane (R2) or ethane (R5) (and
all other alkanes) by sulfate is that water is apparently cre-
ated by this redox process.

Many TSR-related studies have focused on gas and oil
compound stable isotopes and geochemistry (Sassen and
Moore, 1988; Sassen et al., 1991; Worden et al., 1995;
Worden and Smalley, 1996, 2004; Manzano et al., 1997;
Mankiewicz et al., 2009; Liu et al., 2013, 2014;
Hosgormez et al., 2014). Some studies have focused on
the carbon and sulfur isotope ratios of minerals involved
in the reactions (Videtich, 1994; Machel et al., 1995;
Heydari, 1997; Cai et al., 2001; Vinogradov et al.,
2006a,b). Relatively few studies have focused on the rock
textural evidence and the implication for the mechanism
of TSR (Heydari et al., 1988; Videtich, 1994; Machel
et al., 1995; Heydari, 1997; Worden et al., 2000; Jiang
et al., 2015). Only three studies have thus far directly stud-
ied the effects of TSR on oxygen isotope and water
(Worden et al., 1996; Alonso-Azcarate et al., 2001; Yang
et al., 2001).

The Feixianguan Formation from the Sichuan Basin
offers an ideal place to study the oxygen isotope character-
istics of TSR due to its relatively closed diagenetic environ-
ments (Ni et al., 2012; Cai et al., 2014; Jiang et al., 2014a),
and thus the oxygen isotopic values of TSR calcites can be
simply related to the original oxygen isotope of limestone
and their formation temperature, the influx of diagenetic
fluids, water–rock interaction, and oxygen isotope effects
caused by TSR. In addition, the Sr isotope values of TSR
calcite lie within the range of Feixianguan seawater (Li
et al., 2012; Cai et al., 2014) and these TSR calcites show
salinity values higher than seawater (>3.5 wt.% NaCl) as
recorded by the fluid inclusion (Jiang et al., 2014a) this pre-
cludes the possibility that meteoric water and/or younger
seawater have flowed into the Feixianguan Formation,
which led to a conclusion that connate early Triassic seawa-
ter derived fluids dominated the TSR diagenesis period.
Thus, in this study, we will focus on the TSR diagenetic cal-
cites in the Feixianguan Formation dolomite reservoirs in
Sichuan Basin, China, in an attempt to identify the effects
of TSR upon the formation water salinity as well as the
oxygen isotopic value. Specifically, we have addressed the
following questions:

1. How much water was locally generated by TSR?
2. What are the isotopic and geochemical characteristics of

formation water associated with TSR water?
3. What are the possible roles and effects of TSR water in

carbonate reservoir?
2. GEOLOGICAL SETTING

The diamond shaped Sichuan Basin is located in the east
of Sichuan Province, southwest China. It is a large intracra-
tonic basin with an area of about 230,000 km2 (Fig. 1A).
The Sichuan Basin is tectonically-bounded by the
Longmenshan fold belt in the northwest, the Micangshan
uplift in the north, the Dabashan fold belt in the northeast,
the Hubei-Hunan-Guizhou fold belt in the southeast, and
by the Emeishan-Liangshan fold belt in the southwest.

Oolitic banks were present on the margins of the Lower
Triassic trough; these were intensely dolomitized and now
form good-quality gas reservoirs (Fig. 1). In the study area,
the Feixianguan Formation has been subdivided into four
members, in stratigraphic order: T1f1, T1f2, T1f3 and T1f4,
using core and wireline log data (Cai et al., 2004; Zhu
et al., 2005a). The arid climate and sea level fluctuations
during the early Triassic resulted in the deposition of mul-
tiple gypsum-rich layers in the Feixianguan Formation
(Ma, 2008). Anhydrite beds and shales are interbedded
micritic limestones in the upper part of the Feixianguan
Formation; these constitute a good regional seal for the
underlying T1f carbonate reservoir (Zhao et al., 2005)
(Fig. 2).

The Feixianguan Formation reached its maximum bur-
ial depth of �7000 m in the study area between 120–
170 Ma. Temperatures in the Lower Triassic reservoirs
reached 100 �C at about 200 Ma, 150 �C at 175 Ma, and a
maximum temperature of about 225 �C at 120 Ma before
inversion started in the Cretaceous (Fig. 3). TSR occurred
in the dolomite reservoirs of the Feixianguan Formation
within a temperature range of 110 �C to 220 �C. TSR pro-
duced significant amounts of H2S as well as altering the
composition and stable isotopes of the hydrocarbon gases
(Cai et al., 2004, 2012; Hao et al., 2008; Liu et al., 2013,
2014).

3. SAMPLES AND METHODS

More than 100 carbonate reservoir core samples were
collected from Puguang, Maoba, Luojiazhai, Dukouhe
sour gas fields in the lower unit of the Triassic
Feixianguan Formation. Selected samples were examined
as hand specimens at the time of core sampling.
Seventeen samples that showed vug-filling calcite cement
textures, typical of TSR calcites (Machel, 1987; Krouse



Fig. 1. Location of the study area and sampled gas fields in Feixianguan Formation reservoirs in the NE Sichuan Basin. The green rectangle
area shows the area that has proven evidence of TSR (Jiang et al., 2014a).
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et al., 1988; Machel et al., 1995; Worden et al., 1995, 2000;
Worden and Smalley, 1996; Cai et al., 2004; Zhu et al.,
2005a) were selected from the collection of core samples.
All samples were petrographically studied using a standard
polarizing light microscope and an SEM in backscattered
electron imaging mode (BSEM) (Jiang et al., 2014a).
Finely polished and etched slabs and thin sections were
stained with Alizarin Red S and potassium ferricyanide to
distinguish calcite from dolomite and their ferroan
equivalents.

Fluid inclusions in double polished wafers were studied,
using a Linkam THMSG 600/TS90 heating–cooling stage
connected to Nikon petrographic microscope, to obtain
thermometric data related to phase changes (liquid–vapor
homogenization and last ice melting temperatures). UV flu-
orescence was performed on these doubly polished wafers
to ascertain whether fluid inclusions were aqueous or petro-
leum. Inclusions were classified as being primary, or sec-
ondary (in healed fractures). Instrumental precision is
±0.1 �C. The heating and cooling process follow standard
methods as applied previously to these samples (Jiang
et al., 2014a). Last ice melting temperatures were converted
to salinity using standard equations (Oakes et al., 1990;
Bodnar, 2003).

Powdered calcite samples were extracted using a den-
tist’s drill and subject to carbon and oxygen isotopes anal-
yses. About 30–50 mg of drilled out sample was reacted
overnight with 100% phosphoric acid at 25 �C under vac-
uum to release CO2 from calcite. The CO2 was then ana-
lyzed for carbon and oxygen isotopes on a Finnigan
MAT251 mass spectrometer standardized with NBS-18.
All carbon and oxygen data are reported in units per mil
relative to the Vienna Peedee Belemnite (VPDB) standard.
The precision for both d13C and d18O measurements is
±0.1&.
4. RESULTS

4.1. Sedimentary environment of deposition and petrographic

analysis

The Feixianguan Formation was deposited as shallow
marine limestone which was dolomitized during early



Fig. 2. Lithological column and sedimentary evolution from the Carboniferous to Triassic (A), during the early Triassic Feixianguan (B), for
the NE Sichuan Basin, showing potential gas source rock and reservoirs (modified from Cai et al., 2004 and Ma et al., 2008).

Fig. 3. Typical burial and paleo-temperature history constructed for well LJ2 from the NE part of the Sichuan Basin. Isotherms have been
constrained by vitrinite reflectance and fluid inclusion measurements (modified from Cai et al., 2004).
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diagenesis. The initial and main dolomitization event com-
menced, due to reflux processes, under near surface condi-
tions relatively soon after deposition as shown by cement
fabric and isotope evidence published previously (Jiang
et al., 2013, 2014b). A subordinate later stage of dolomiti-
zation developed locally at temperatures in the range 80–
140 �C as shown by petrographic, fluid inclusion, stable iso-
tope data (Jiang et al., 2014b).
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TSR-calcite (growing as a result of the oxidation of
petroleum fluids by dissolved anhydrite) and non-TSR
calcite cements of the Feixianguan Formation form the
focus of this paper. TSR calcite in the Feixianguan reser-
voirs has a vug- and pore-filling texture (Fig. 4) and is
totally nonluminescent under CL (Cai et al., 2004,
2014; Zhu et al., 2005a; Li et al., 2012). Two types of
TSR calcite were identified in the Feixianguan
Formation. The dominant type of TSR calcite sits in
pores surrounding dolomite rhombs (here called poikilo-
topic TSR calcite) and is typically 50–200 lm in length
(Fig. 4A and B). Also present, though less common, is
a replacive form of TSR calcite that exists as a rind on
the corroded surfaces of anhydrite nodules in dolomicrite
(Zhu et al., 2005a; Jiang et al., 2014a).

Non-TSR related calcite (both pre- and post-) are pre-
sent in vugs and veins. Some calcite pre-dates the final stage
of dolomitization (fluid inclusion temperatures from the
later dolomite homogenized at 80 to 140 �C) (Jiang et al.,
2014b) and thus grew before TSR calcite. Calcite veins
can easily be observed in thin-section and core
(Fig. 4C and D) since they are up to several centimeters
wide and have lengths >1 meter. Calcite veins cross-cut
all early and late stage diagenetic cements and fabrics,
including TSR calcite, showing that vein calcite post-date
the growth of TSR calcite.
Fig. 4. Photographs showing the presence of pre-TSR, TSR, and post-TS
filling TSR calcite (arrowed) in oolitic dolomite, well Du4, depth 4790.8
dolomite, well LJ2. (C) BSEM image showing pore-filling pre-TSR calcite
fracture-filling post-TSR calcite in dolomicrite, well DW102, depth 4820
4.2. Fluid inclusion petrography, aqueous homogenization

temperatures and salinity

Doubly-polished detachable wafers (15 in total) of both
non-TSR calcite and TSR calcites were prepared from sub-
surface core samples from a number of wells in various dry
and variably sour gas fields in the study area. Data from
these samples have been supplemented by previously pub-
lished fluid inclusion data from TSR and non-TSR calcite
(Hao et al., 2009; Jiang et al., 2014a). Pre- and post-TSR
calcite, as well as TSR-calcite, contain primary, two-phase
aqueous inclusions. These fluid inclusions showed no signs
of necking, deformation or leakage, and had effectively uni-
form liquid–vapor ratios at room temperature, suggesting
that the homogenization temperature data are not an arti-
fact of post-formational processes.

There are two type of TSR calcite; those that have
oil-filled inclusions coeval with the aqueous inclusions and
those that are demonstrably free of oil-inclusions (Jiang
et al., 2014a). The measured aqueous fluid inclusion
homogenization temperature data in TSR calcite range
from about 116 �C to more than 180 �C (Figs. 5 and 6;
Table 1). TSR calcite with associated oil inclusions has
aqueous inclusions that homogenize at a minimum of
116 �C and a mode of homogenization temperature values
between 130 and 140 �C with an absolute maximum of
R calcite in the Feixianguan Formation. (A) BSEM image of pore-
m. (B) BSEM image of pore-filling TSR calcite (arrowed) in oolitic
in dolomicrite, well JZ1, depth 2978.8 m. (D) BSEM image showing
.5 m.



Fig. 5. Fluid inclusion data from pre-TSR calcite, TSR calcite, and post-TSR calcite in the Feixianguan Formation (including data from
Jiang et al., 2014a). (A) Fluid-inclusion homogenization temperature data, and (B) salinity data from aqueous inclusions from TSR calcite.
(C) Fluid-inclusion homogenization temperatures, and (D) salinity data from aqueous inclusions from pre-TSR and post-TSR calcite.

Fig. 6. Comparison of average salinity and homogenization temperature from fluid inclusions in pre-TSR, TSR, and post-TSR calcites in the
Feixianguan Formation.
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about 160 �C; this has been labeled oil-phase TSR (Jiang
et al., 2014a). TSR calcite free of oil inclusions has aqueous
inclusions that homogenize at a minimum of 135 �C and
has a spread of homogenization temperatures that extends
to the maximum burial temperature; this has been labeled
gas-phase TSR (Jiang et al., 2014a). The salinity of the
aqueous inclusions in TSR calcite varies from 5.1 to
21.0 wt.% (Figs. 5 and 6; Table 1). Salinity values seem to
decrease with the increasing temperature of trapping both
for the entire dataset and for individual samples.
Oil-phase TSR calcite has aqueous inclusions with salinity
from greater than 24 to as low as 8 wt.% with a mode at
about 21 wt.%. Gas-phase TSR calcite has aqueous inclu-
sions with salinity ranging from 19 to 5 wt.% with a mode
of 10 wt.%.

Fluid inclusions from pre-TSR calcite have homogeniza-
tion temperatures between 101 and 104 �C (Figs. 5 and 6).
Salinity data from pre-TSR calcite range from 10 to
>22 wt.%. Fluid inclusions from post-TSR calcite have
homogenization temperatures between 125 and 185 �C
(Figs. 5 and 6). Salinity data from post-TSR calcite range
from 4.2 to 6.8 wt.% (Fig. 5; Table 1). In the Feixianguan



Table 1
Carbon and oxygen isotope, and average value of fluid inclusion salinity and homogenization temperature (Th) of diagenetic calcites from
dolomite hosted reservoirs of Feixianguan Formation, Northeast Sichuan Basin: data below detection or no data available; a*: data from
Jiang et al. (2014a); b*: data from Li et al. (2012); c*: data from Hao et al. (2009); d*: data from Wang et al. (2007); e*: data from Zhu et al.
(2005a,b); f*: Wang et al. (2002).

Well Depth(m) Host mineral d13C (&VPDB) d18O (& VPDB) Th (�C) Salinity (%NaCl)

JZ-1 2978.8 Pre-TSR calcite �0.5 a* �4.9 a* 101.1 a* 16.6 a*

LJ-1 3470.4 Pre-TSR calcite – – 104.0 a* 14.4 a*

PG-6 4876 TSR calcite – – 114.6 21
DW-102 4900.7 TSR calcite �1.1 a* �9.5 a* 145.8 a* 18.9 a*

LJ-6 3936 TSR calcite – – 149.2 a* 19.2 a*

D-5 4793 TSR calcite �16.5 b* �8.6 b* 167.4 a* 10.0 a*

PG-1 5421.2 TSR calcite �10.1 �10.5 164.1 –
PG-1 5423.2 TSR calcite �12.1 �7.8 150.6 –
PG-1 5426.5 TSR calcite �12 �10.9 163.4 –
PG-1 5428.4 TSR calcite �9.8 �12.3 173.5 –
PG-1 5428.6 TSR calcite �12.6 �11.8 169.9 –
PG-2 4784.5 TSR calcite �10 �9.2 172 –
PG-2 4775.2 TSR calcite �8.7 �12.8 170.9 –
PG-2 4779.9 TSR calcite – – 180.9 5.1
PG-3 5894.4 TSR calcite – – 154.5 c* 6.4 c*

PG-4 5790 TSR calcite �7.1 �12.6 171.1 –
PG-6 4862.7 TSR calcite �5.8 �12.9 178.4 –
PG-6 5145.6 TSR calcite �7.8 �10.8 183.4 –
PG-6 5378.4 TSR calcite – – 163.6 7.2
MB-3 3876 TSR calcite �7.8 �6.3 131.2 –
LJ-6 – TSR calcite – – 149.2 a* 19.2 a*

LJ-2 3400.7 TSR calcite �16.3 �7.9 134.1 16.3
LJ-2-1 – TSR calcite �13.5 �8.2 165.2 7.5
LJ-7 – TSR calcite �18.4 d* �6.1 d* 123.6 18.4
LJ-5 3002.9 TSR calcite �6.1 e* �5.7 e* – –
P-1 – TSR calcite �7.3 f* �6.4 f* 125.2 –
P-1 3464.7 TSR calcite �18.2 e* �6.3 e* – –
P-3 3536 TSR calcite �17.0 e* �5.9 e* – –
P-4 3238 TSR calcite �16.3 e* �6.0 e* 119.7 19.6
PG-6 – Post-TSR calcite 0.6 a* �5.8 a* 125.6 a* 6.8 a*

DW-1 4735 Post-TSR calcite 1.4 �6.7 185 4.2
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Formation, salinity values seem to broadly decrease with
increasing temperature from pre-TSR diagenesis to
post-TSR diagenesis (Figs. 5 and 6).

4.3. Stable isotope analysis

New carbon and oxygen isotope data from carbonate
host rocks, TSR-calcite and pre- and post-TSR calcite
(Table 1) have been supplemented by previously published
data (Wang et al., 2002, 2007; Zhu et al., 2005a; Li et al.,
2012). The Feixianguan Formation matrix dolomite dis-
plays a narrow range of carbon isotope values between
0& and 4& V-PDB and oxygen isotopic values between
�3& and �7& V-PDB (Fig. 7). Most of the pre- and
post-TSR calcite carbon isotope data lie between �0.5&

and 2& V-PDB with oxygen isotope data between �6&

and �8& V-PDB.
In contrast, TSR calcite has a wide range of carbon iso-

tope values between �3& and �19& V-PDB and narrower
range of oxygen isotope values between �5.7& to �9.5&

V-PDB (Fig. 7). The negative carbon isotope value
(Fig. 7, Table 1) confirms that there is a significant propor-
tion of organic carbon in TSR (Worden et al., 1995;
Worden and Smalley, 1996; Machel, 2001; Cai et al.,
2004, 2014; Zhu et al., 2005a).

5. DISCUSSION

5.1. Water generated by TSR

Based on the detailed petrographic and gas chemistry
studies, it has been unequivocally demonstrated that ther-
mochemical sulfate reduction has occurred in the
Feixianguan Formation in the Sichuan Basin (Cai et al.,
2004, 2010, 2013, 2014; Zhu et al., 2005a; Hao et al.,
2008; Liu et al., 2013, 2014; Jiang et al., 2014a,b). In the
Feixianguan Formation, TSR has largely occurred due to
gas-reduction and not oil reduction. The gas in the
Feixianguan Formation varies from a dryness of 95% to
100% (CH4/CnH2n+2) and it has been shown that at least
some of the TSR is due to methane oxidation by sulfate.
Reference to simple stoichiometric reactions of the total
oxidation of methane (R2) or ethane (R5) by anhydrite
reveals that these processes apparently generate water to
correctly mass balance. Note that the TSR-created water
should be low salinity since it is essentially pure H2O.



Fig. 7. The carbon and oxygen isotopic compositions of pre-TSR, TSR and post-TSR calcites in the Feixianguan Formation. The colored
rectangles show the ranges of data of the different diagenetic carbonate cement phases. Previously published data (a* data from Jiang et al.,
2014a; b* data from Li et al., 2012; d* data from Wang et al., 2007; e* data from Zhu et al., 2005a,b; f* Wang et al., 2002) differentiated from
the new data presented here.
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The first study to identify the generation of water by
TSR was from the Permian Khuff Formation in Abu
Dhabi (Worden et al., 1996). However, this led to some dis-
cussion since the same phenomenon was apparently not
found in another sour province (Machel, 1998; Worden
et al., 1998). Since then, several case studies from around
the world have supported the notion of the creation of
water during TSR (Yang et al., 2001; Du et al., 2007;
Vandeginste et al., 2009).

In the Feixianguan Formation, the connate water was
seawater, thus the initial formation water has salinity most
likely being closed to 3.5 wt.% (Jiang et al., 2014b). During
shallow diagenesis (25–40 �C), the Feixianguan Formation
was characterized by brine reflux dolomitization (Jiang
et al., 2013, 2014b). This was followed by the invasion of
highly saline brine from the overlying Jialingjiang
Formation, which resulted in localized burial dolomitiza-
tion between 80 and 140 �C (Zhu et al., 2007; Jiang et al.,
2013, 2014b). The salinity of formation water in the
Feixianguan Formation was up to 25 wt.% during burial
dolomitization (Jiang et al., 2014b). This high formation
water salinity is also reflected in the pre-TSR calcite cement
(Figs. 5 and 6) confirming that, before TSR commenced,
the formation water had a salinity of up to 25 wt.%. The
lower temperature, i.e. earlier, TSR calcite has high salinity
fluid inclusions, presumably reflecting the pre-TSR forma-
tion water salinity (Fig. 6). However, during TSR,
Feixianguan Formation water salinity decreased with pro-
gressively increasing burial temperatures reaching values
as low as 5 wt.% at the highest temperatures (Fig. 6). This
pattern from the Feixianguan Formation concurs with the
pattern of TSR leading to reduced formation salinity
reported previously (Worden et al., 1996; Yang et al.,
2001; Vandeginste et al., 2009). Significantly, the lowest for-
mation water salinity revealed by fluid inclusions from TSR
calcite in the Feixianguan Formation is close to the current
formation water salinity (Li et al., 2012). The reduction in
salinity from 25 wt.% to as low as 5 wt.% suggests that a
given volume of the original saline formation water was
diluted by a factor of approximately four or more by the
addition of fresh water due to the oxidation of petroleum
gases during TSR (R2, R5). The relative volume of water
generated by TSR in this study is similar to that reported
from sour gas provinces in Abu Dhabi and in the
Western Canada Sedimentary Basin (Worden et al., 1996;
Yang et al., 2001).

5.2. Interpretation of oxygen isotopes of formation water

based on TSR calcite data

The average temperatures of growth of TSR calcite were
obtained from aqueous fluid inclusion homogenization
temperatures (Table 1). The measured calcite d18O values
were then used, in conjunction with the fluid inclusion
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temperatures, to generate the d18O values of the formation
water associated with TSR calcite growth by employing a
standard calcite-water oxygen isotope fractionation equa-
tion (Friedman and O’Neil, 1977) and the aqueous fluid
inclusion homogenization temperatures. The results of
these calculations are presented in Table 2 and are labeled
d18OTSR-water. Identical calculations were made for the
pre- and post-TSR calcite thus revealing the d18O values
of the formation water in equilibrium with pre- and
post-TSR calcite (Table 2).

5.3. Interpretation of theoretical formation water oxygen

isotope values based on bulk rock data

It can be assumed that the early Triassic Feixianguan
limestones originally had a d18O value of about �5&

VPDB after the transformation of aragonite and high-Mg
calcite to low-Mg calcite (Veizer et al., 1999; Korte et al.,
2005a,b; Chafetz et al., 2008; Huang et al., 2012).
Another calculation was performed using the same
calcite-water oxygen isotope fractionation equation to pre-
dict what the d18O values of the formation water would
have been if the initial bulk marine limestone (with the
d18O value of about �5& VPDB) had simply
re-equilibrated with formation water (i.e. no TSR effect)
at the temperature defined by aqueous fluid inclusions.
This modeled output is labeled d18OBR-water (where
BR-water stands for bulk rock water).

5.4. Prediction of the oxygen isotopes of water derived from

the reduction of anhydrite

The oxygen in TSR calcite is derived from anhydrite and
thus the oxygen isotopes of TSR calcite must be influenced
by the oxygen isotopes of the parent anhydrite. However,
up to this time, there have been no reports of d18O values
from anhydrite from the Feixianguan Formation although
this is not unusual since there have been rather few reports
of anhydrite oxygen isotopes globally.

It has been reported previously that mineral sulfate-d18O
values positively correlated with mineral sulfate-d34S value
during the Triassic and other geological times (Claypool
et al., 1980; Alonso-Azcarate et al., 2006; Boschetti et al.,
2011). Hence, we have employed a linear relationship, based
on these publications, between sulfate-d34S and sulfate-d18O
(d18OAnhydrite = 1.146 � d34SAnhydrite� 4.3194, R2 = 0.4856)
to predict the oxygen isotope signature of Feixianguan
Formation anhydrite in the Sichuan Basin. An average
d34S value of 21.92& CDT was calculated for the
Feixianguan Formation anhydrite (n = 16) (Zhu et al.,
2005a) thus suggesting that the Feixianguan Formation
anhydrite d18O value was 20.81& V-SMOW.

The theoretical d18O of water that would result from the
TSR-induced breakdown of anhydrite to calcite and water
was calculated by using the derived anhydrite d18O value
of 20.81& V-SMOW, a published calcite-water fractiona-
tion equation (Friedman and O’Neil, 1977) and the recog-
nition that the four oxygen atoms in anhydrite split with
three going to calcite and one into the water (Worden
et al., 1996). The results of this calculation (labeled
d18OAB-water, where AB-water represents water due to anhy-
drite TSR breakdown) are presented in Table 2 and were
derived using the following equation:

d18OAB�water ¼ 3=4� ½ð2:78� 106=T 2Þ � 2:89� ð1Þ

For reference, the calcite that should theoretically result
from the breakdown of anhydrite during TSR (labeled
d18OAB-calcite) can be derived with the matching equation:

d18OAB�calcite ¼ 1=4� ½ð2:78� 106=T 2Þ � 2:89� ð2Þ

This approach assumes that TSR occurred predomi-
nantly at the mean temperature recorded by fluid inclusions
in TSR calcite. It also assumes there was no kinetic isotope
fractionation of oxygen isotopes during TSR (i.e. assuming
that TSR was a bulk process with no preferential reaction
of 16O-anhydrite).

5.5. Comparison of TSR-water and bulk rock water

The water that was associated with growth of TSR cal-
cite (d18OTSR-water) can be compared to the theoretically
modeled water that would have been in simple isotopic
equilibrium with the host rock (d18OBR-water) (Table 2).
The d18OTSR-water values are considerably lighter than the
d18OBR-water values throughout the data set. This suggests
that the water that resulted from TSR was
isotopically-distinct from any formation water that was in
equilibrium with the bulk rock before TSR started.

The difference between d18OTSR-water and d18OBR-water

has been calculated and is labeled Dd18O (Table 2). Dd18O
varies from �1& to �8& showing that there was a consid-
erable deviation from the water that would be expected
from simple isotopic equilibrium with the host rock.
Dd18O has been plotted as a function of fluid inclusion
homogenization temperature (Fig. 8). The water in equilib-
rium with the pre-TSR calcite is effectively the same as that
expected for the bulk rock calculation (Table 2) and this
value has been added to Fig. 8. The water in equilibrium
with the post-TSR calcite is �0.8& (Table 2) and so is only
marginally different to that expected from the bulk rock cal-
culation, this value has also been added to Fig. 8.

Before TSR, there is negligible difference between the
determined water-d18O from the pre-TSR calcite d18O and
d18OBR-water; the difference between d18OTSR-water and
d18OBR-water (Dd18O) varies with temperature, and thus
the degree or extent of TSR. The maximum difference
occurs at the highest temperature (Fig. 8). Following
TSR, as recorded in the post-TSR calcite, there is negligible
difference between the determined water-d18O from the
post-TSR calcite d18O and modeled d18OBR-water. This sug-
gests that the effect of the addition of TSR water ceased
once TSR has terminated. There appears to be a cycle of
progressively and increasingly affected formation water
d18O during TSR which then stops as soon as TSR stops
(Fig. 8).

Note that there are no alternative plausible sources of
isotopically-light (and low salinity) water that could have
influenced the deeply buried and gas-charged Feixianguan
Formation in the way shown (Figs 5–8). Gas-filled forma-
tions have negligible relative permeability for water



Table 2
Model d18O values of water and calcite. Where TSR-water is the water that is interpreted to be in equilibrium with TSR-calcite at the temperature of growth, BR-water is the water interpreted to
be in equilibrium with the host bulk rock at the equivalent temperature of TSR calcite growth.

Sample no. Diagenetic
stage

Th (�C)
Measured
from fluid
inclusion

Measured
calcite d18O
& VPDB

Measured
calcite d18O
& V-SMOW

Derived d18OTSR-water &

SMOW based on
measured calcite d18O at
Th (�C)

Model formation water
d18OAB-water & SMOW
assuming breakdown of
anhydrite d18O of 20.81
at Th (�C)

Model d18OBR-water &

SMOW based on
equilibration of bulk marine
limestone at Th (�C)

Dd18O &

SMOW
d18OTSR-water �
d18OBR-water

JZ-1 Pre-TSR 101.1 �4.9 25.9 8.89 8.08 8.79 0.10
P-4 TSR 119.7 �6.0 24.7 9.60 9.46 10.63 �1.03
LJ-7 TSR 123.6 �6.1 24.6 9.85 9.72 10.98 �1.13
P-1 TSR 125.2 �6.4 24.3 9.68 9.83 11.12 �1.44
LJ-2 TSR 134.1 �7.9 22.8 8.89 10.40 11.88 �2.99
DW-102 TSR 145.8 �9.5 21.1 8.17 11.09 12.81 �4.64
LJ-2-1 TSR 165.2 �8.2 22.5 10.88 12.12 14.18 �3.30
D-5 TSR 167.4 �8.6 22.1 10.61 12.23 14.32 �3.71
PG-1 TSR 164.1 �10.5 20.1 8.46 12.06 14.10 �5.65
PG-1 TSR 150.6 �7.8 22.9 10.24 11.36 13.16 �2.93
PG-1 TSR 163.4 �10.9 19.7 8.02 12.03 14.06 �6.04
PG-1 TSR 173.5 �12.3 18.2 7.21 12.52 14.71 �7.50
PG-1 TSR 169.9 �11.8 18.8 7.43 12.35 14.48 �7.06
PG-2 TSR 172.0 �9.2 21.4 10.25 12.45 14.62 �4.37
PG-2 TSR 170.9 �12.8 17.7 6.52 12.40 14.55 �8.03
PG-4 TSR 171.1 �12.6 17.9 6.70 12.41 14.56 �7.86
PG-6 TSR 178.4 �12.9 17.6 6.85 12.74 15.01 �8.17
PG-6 TSR 183.4 �10.8 19.8 9.31 12.97 15.31 �6.00
MB-3 TSR 131.2 �6.3 24.4 10.31 10.22 11.64 �1.33
DW-1 Post-TSR 185.0 �6.7 24.0 13.65 13.04 15.40 �1.75
PG-6 Post-TSR 125.6 �5.8 24.9 10.33 9.85 11.16 �0.82
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Fig. 8. The relationship between temperature and the deviation of TSR-related water from the expected formation water d18O assuming water
equilibration with Lower Triassic marine calcite at increasing temperature (Dd18O value; equal to d18OTSR-water � d18OBR-water). Data have
been differentiated for pre-TSR calcite, TSR calcite, and post-TSR calcite in the Lower Triassic Feixianguan Formation. The figure shows that
isotopically-distinct (low d18O) water was produced during TSR.
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(Archer and Wall, 1986) implying that any mass influx of
flowing water, from any source, is highly unlikely. Also,
there are no indications of meteoric water influx or any
other source of low salinity, isotopically light water from
petrological, trace and rare earth elements (REE), Sr iso-
topes, or carbon and oxygen isotopes of other diagenetic
minerals (Cai et al., 2004, 2014; Zhu et al., 2005b; Li
et al., 2012; Jiang et al., 2013; Jiang et al., 2014a,b).

It is significant that this pattern of relative reduction of
formation water d18O was also found in the TSR-affected
Khuff Formation (Worden et al., 1996) where the forma-
tion water d18O decreased from about 8& to about 2&

SMOW as TSR proceeded.

5.6. Cause of the isotopically-light TSR water in the

Feixianguan Formation

Water associated with TSR in the Feixianguan
Formation has relatively low d18O values ranging from
6.5& to 10.9& (d18OTSR-water, Table 2). The water that the-
oretically results from TSR breakdown of anhydrite at each
specific temperature, assuming that initial anhydrite had a
d18O of 20.8& and assuming no kinetic isotope effect,
ranges from 9.5& to 13.0& SMOW (d18OAB-water,
Table 2). The calculated TSR-water thus seems to have
lower d18O values than what should have been produced
by anhydrite breakdown given the assumption employed.

The pre-TSR anhydrite d18O value of 20.8& is no more
than an estimate (see previous). It is possible that this value
is an overestimate. It is also not necessarily safe to assume
that TSR occurred by a bulk reaction (anhydrite dissolved
and then totally reacted with petroleum phases). It is possi-
ble that there was a kinetic isotope effect during TSR: the
16O-fraction of anhydrite dissolved or reacted more quickly
than the 18O fraction of anhydrite thus resulting in lower
initial d18O values for the (early) reaction products. It is
possible that a combination of these factors can explain
why the calculated d18OTSR-water values are lower than the
estimated d18OAB-water values (Table 2).

5.7. Implications of TSR water and its oxygen isotope

fraction

Water recorded in aqueous fluid inclusions following
TSR from Sichuan Basin (data reported here), from Abu
Dhabi (Worden et al., 1996), and from the Western
Canada Basin (Yang et al., 2001), have diluted the previ-
ously saline formation from initial high values (�25 wt.%)
to low values (�5 wt.%). It can be surmised that the added
water had very low salinity. Based on reactions R2 and R5,
the newly created water should have zero salinity.

The newly created water tends to have relatively lower
d18O values than the ambient formation water (interpreted
from mineral d18O values). In the Permian Khuff
Formation in Abu Dhabi, water interpreted to be present
when TSR was most intense had a d18O of about 1& or
2& in contrast to water at early stage TSR that had a
d18O of up to 10& (Worden et al., 1996). In the Triassic
Feixianguan Formation reported here, water interpreted
to be present when TSR was most intense had a d18O of
about 6.5& in contrast to the water that would have been
present had TSR not occurred (labeled bulk-rock water;
Table 2) that would have a d18O of up to 14.5&. The oxy-
gen isotope difference (minimum to maximum TSR effect) is
similar for both the Permian Khuff Formation and the
Triassic Feixianguan Formation.

The generation of significant volumes of water by TSR
is overlooked at peril (Worden et al., 1996) since the added
water can have a range of consequences including a
TSR-autocatalytic effect (since the TSR reaction happens
between dissolved sulfate and petroleum; more water repre-
sents more opportunity for reaction); influences on rock
properties recorded by resistivity and other logs (in rocks
actively undergoing TSR); and ongoing diagenetic
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alteration of the rock mediated by the increased amount of
water as a result of TSR. Note that we have not necessarily
identified formation-wide dilution of saline pore water by
low d18O water in the Feixianguan Formation in this study;
rather we have identified dilution at the sites at which TSR
has occurred and at which the resulting calcite grew.

Interestingly, the deeply buried (up to 5000 m)
Feixianguan Formation dolomite reservoirs with high
H2S concentrations (average value at about 15%), show
anomalously high porosity (up to 15%). At least some of
the high porosity has been proposed to be the result of late
stage dissolution and is thus secondary porosity; this disso-
lution has been linked to TSR (Ma et al., 2008; Zhao et al.,
2011; Cai et al., 2014). The dilution of pre-existing forma-
tion water by up to four times (by volume) with new water
resulting from TSR may lead to insights into naturally ele-
vated carbonate reservoir quality during deep burial envi-
ronments (Ehrenberg et al., 2012). The generation of H2S
by TSR may lead to the development of acidic fluids that
could locally dissolve carbonate minerals in the reservoir
(Worden et al., 1996; Cai et al., 2014). The newly created
water that is added to the carbonate reservoir systems due
to TSR, as well as the associated H2S generated by TSR,
could lead to the dissolution of minerals and creation of
secondary porosity deep in sedimentary basins. This has
clear and significant implications for petroleum exploration
deep in sedimentary basins (Heydari and Moore, 1989;
Worden et al., 1996; Heydari, 1997; Ehrenberg et al.,
2012; Cai et al., 2014).

6. CONCLUSIONS

1. TSR calcite, as well as pre-TSR and post-TSR calcite,
has been recognized in the Lower Triassic Feixianguan
Formation carbonate reservoir in the Sichuan Basin,
China. Pre-TSR calcite has fluid inclusion homogeniza-
tion temperatures of <110 �C and salinity up to
24 wt.% Post-TSR calcite has fluid inclusion homoge-
nization temperatures of 185 �C down to 120 �C with
the lower representing post inversion conditions.
Post-TSR calcite has relatively low salinity (as low
4 wt.%).

2. TSR calcite, with carbon isotope values down to
�20.2& VPDB, has a range of fluid inclusion homoge-
nization temperatures from 115 to >181 �C. TSR calcite
has a wide range of fluid inclusion salinity values (5–
25 wt.% NaCl). Fluid inclusion salinity decreases with
increasing fluid inclusion homogenization temperature.

3. The pre-TSR formation water was progressively diluted
by the addition of water created during TSR by the oxi-
dation of hydrogen in alkane gases (including methane)
by sulfate. The initial pore water in the gas field, present
before TSR, was diluted by the addition of approxi-
mately four initial pore water volumes of TSR-created
water.

4. Oxygen isotope calculations suggest that water gener-
ated by TSR is isotopically lighter than water that would
have equilibrated with the bulk rock during burial and
heating. The oxygen in the TSR-created water must have
originated from the parent anhydrite, with the isotopes
partitioned between the product water and product cal-
cite. The TSR-water with the lowest d18O is associated
with TSR calcite that grew at the highest temperature
and thus experienced the most extreme degree of TSR.

5. Water is vital to diagenetic reactions such as TSR itself,
as well as the dissolution of carbonate minerals to create
secondary pores, reaction of ferroan carbonates with
H2S to create pyrite, etc. The generation of low salinity,
low d18O water associated with advanced TSR in the
Feixianguan Formation, Sichuan Basin, found here,
has also been reported in the Permian Khuff
Formation in Abu Dhabi (Worden et al., 1996), and
from sour Devonian fields in the Western Canada
Basin (Yang et al., 2001). This suggests that
TSR-derived water may be a common phenomenon,
the effects of which have hitherto been underappreciated.
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