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“Who then is this, that even the wind and the sea obey him?!”

- Mark 4:41



Abstract

This thesis takes an interdisciplinary approach to the problem of the aleatory uncertainty

manifest in the design of engineering structures that are subject to random loading,

with specific application to continuous gust loading on aircraft and wave loading on

offshore structures. The main focus is on aircraft gust loading because this is the area

in which more significant progress is made. A review of the literature on gust loading

is carried out to evaluate the sufficiency of existing methods and the possibility of a

unified certification model is discussed.

In order to obtain reliable probabilistic design loads using conventional stochastic

simulation techniques, a large number of simulations are required to derive probability

distributions that have adequately low sampling variability in the area of interest. A

novel method, called the Efficient Threshold Upcrossing method, is developed that

reduces the required number of simulations by at least 2 orders of magnitude. The

method is initially developed for the efficient derivation of short-term offshore

structural response statistics and is subsequently applied to the modelling of aircraft

response to continuous turbulence.

The ETU method was successfully extended to take into account long-term statistics

of nonlinear aircraft response and it was shown that reliable design exceedance curves

can be obtained by as little as 4% of the computational cost of the conventional method.

The current methods for the computation of design loads for nonlinear aircraft are

limited to discrete, ‘1 - cosine’ gust encounters as the continuous turbulence models are

only applicable to linear aircraft response. However, the most significant outcome of

this thesis is that this is no longer the case, because the ETU method provides a way

to calculate nonlinear response statistics in the time domain at a significantly lower

computational cost.

Mathematical models of a simple offshore structure, and both linear and nonlinear

aircraft, are developed and a more robust technique is introduced for simulating

patches of continuous turbulence. These models, which have the ability to generate

random inputs, are used to derive response probability distributions for each of the

test structures. The results obtained by applying the new approaches to these data

sets show that they offer a marked improvement in performance.
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Nomenclature

General

δ Random Phase Angle rad

i
√
−1

λ Average Number of Threshold Upcrossings

µx Mean Value of Random Process, {x (t)}

ω Angular Frequency rad/s

σx Standard Deviation of Random Process, {x (t)}

τ Arbitrary Time Difference s

a Spectral Amplitude m or m/s

C Correlation Coefficient
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g Acceleration Due to Gravity m/s2
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Nh Number of Harmonics

Rx Autocorrelation Function of Random Process, {x (t)}

T Duration of a Sample Record s

t Time s

Tn Time period of the nth harmonic s

U Number of Threshold Upcrossings

Aerospace Engineering

γe Mode Shape Describing Wing Bending Deformation

γy Scaled Peak-Response Amplitude
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Uncertainty in Aerospace Engineering

Unsteady loads calculations are an important aspect of the design and development

of an aircraft, and have an impact upon the concept and detailed structural design,

aerodynamic characteristics, weight, flight control system design, control surface design

and performance. They determine the most extreme stress levels and estimate fatigue

damage and damage tolerance for a particular design. For this purpose, loads cases due

to dynamic gusts and manoeuvres are applied to detailed structural models in order to

determine the worst values for a range of different Interesting Quantities (IQs).

The requirements for certified loads are defined in the context of the design

envelope shown in figure 1.1 (Wright & Cooper 2007). Certification specifications

require that enough points, on or within the boundary of the design envelope, are

investigated to ensure that the most extreme loads for each part of the aircraft

structure are identified. In this context, the design envelope encompasses the

respective ranges of permitted mass / centre of mass envelopes. Currently, the

airworthiness regulations require certification in terms of single isolated discrete gusts

in the time domain and ‘patches’ of continuous Gaussian turbulence in the frequency

domain; both vertical and lateral gusts and turbulence are considered.

A major issue faced in the design of aircraft, along with virtually all other engineering

1



1. Introduction 2

Figure 1.1: Flight Envelope: Design Speed vs Altitude (Wright & Cooper 2007)

structures, is the presence of uncertainty in both the natural processes that influence the

loads they are subjected to, and the manufacturing processes used for their production.

In engineering design, the problem of uncertainty is a difficult one, so it is important

to be clear about the nature of the uncertainty being considered in order to help solve

the problem effectively. Engineering uncertainty can be divided into two categories,

epistemic and aleatory uncertainty, both of which play an important role in different

parts of the engineering design process. Epistemic uncertainty is the kind that, in

theory, could be eliminated by more advanced knowledge or equipment, even though it

may not be available in practice. For example, a standard tape measure may measure

to the nearest millimetre, introducing an uncertainty in its measuring capability of

±0.5mm, which could be reduced by using a more accurate device such as a laser distance

measurer. Aleatory uncertainty, on the other hand, is caused by processes that are

inherently random, which means that it cannot be eliminated or reduced, only accounted

for. For example, if a person travels to work at a busy time every day, the exact length of

time it takes them will vary from day to day even if they take the same route, because of

the traffic. This journey time cannot be made quicker by gaining more information about

the traffic or by buying a different car, but they may choose to begin their journey earlier

to account for the possibility of more traffic. In other words, even if all the available

variables could be kept perfectly constant, the result would be different every time. This

means that aleatory uncertainty is often a more difficult problem to deal with because
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in order to account for it, relatively complex models or high factors of safety are usually

required.

This project is concerned with the development and application of modelling

techniques that enable the aleatory uncertainty associated with aircraft and offshore

structures to be taken into account. It is hoped that this will contribute to the

bringing about of designs that are more economical and to a greater understanding of

the random processes involved.

One of the main sources of aleatory uncertainty in aircraft design is the occurrence of

loading due to the aforementioned atmospheric turbulence encounters, which is known as

gust loading. In order to account for this uncertainty, aerospace loads engineers require

information about the velocity of the gusts that aircraft are likely to encounter, for which

is it necessary to make idealisations about the structure of atmospheric turbulence. As

will be discussed in detail in Chapter 2, the mathematical description of this turbulence is

a highly controversial subject and there are two, allegedly conflicting, overall approaches

that are currently in use. Although controversial, the issue is an important one because

reducing the weight of an aircraft while maintaining its safety has a hugely positive

effect on the manufacturing costs, fuel costs, and ultimately flight costs, not mention

the positive impact it has on the environment. In addition, saving time in the design

process by developing convenient and practical methods to account for gust loading

uncertainty would be highly beneficial for loads engineers. A general picture of the

accepted structure of atmospheric turbulence is shown in figure 1.2, but will be further

explained in Chapter 2.

Figure 1.2: The General Structure of Atmospheric Turbulence (Wright & Cooper
2007)
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Alternative gust loading prediction methods have been presented to the gust loads

community but there have not been any dramatic changes to the requirements for a long

time and the current methods are highly deterministic, leaving room for improvements

using a probabilistic approach.

1.1.2 Uncertainty in Offshore Engineering

There are many different types of offshore structure, such as jacket structures (see

figure 1.3) or floating structures that are tethered to the sea bed, all of which are

affected in different ways by random loads produced by water waves. This introduces

aleatory uncertainty into their design, which is accounted for by assuming a

mathematical description of the surface elevation (the displacement of the water from

the mean water level) of the waves. This description varies depending on the specific

conditions that a structure is designed for, but the most common description is based

on Linear Random Wave Theory (LRWT), the main mathematical principles of which

are outlined in section 3.2 of this thesis.

The main problem faced by engineers in this area is that although good

probabilistic methods are available, they require an extremely large number of

calculations to obtain accurate results, which is incredibly time consuming, even for

the simplest structures because of the inherent nonlinearity involved in the

determination of Morison loads. As structures become more complex, usually in

deeper water, their dynamic response becomes a more important part of the design,

resulting in even more time consuming methods. This issue is consequently addressed

by the implementation of more deterministic methods for the sake of convenience,

resulting in designs that are more conservative, which of course increases the cost. One

of the primary aims of this project, therefore, is to research and develop techniques

that reduce simulation time by using less data, whilst maintaining the accuracy and

reliability of the design.

Another issue is the demand for offshore structural models to take into account other

factors such as current, load intermittency in the splash zone (the area of the structure

that is exposed to water and air at different times), and the aforementioned dynamic
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effects, which will all inevitably require increasingly complex modelling.

Figure 1.3: Example of a Typical Jacket Structure (Courtesy of BP)

1.1.3 Interdisciplinary Approach

One of the great advantages of this project is that it provides an opportunity to integrate

two separate engineering disciplines in order to discover new applications of leading edge

techniques for dealing with uncertainty. The reason these two disciplines are a good

combination is that the random processes that cause much of their aleatory uncertainty

are very similar in nature, especially since water waves are primarily caused by wind.

Therefore, the benefit that this project offers by combining knowledge of uncertainty

in offshore and aerospace engineering is that it explores the different ways that are

currently used to describe what are essentially very similar processes. For example, the

probabilistic methods used for offshore structures can be used to great advantage in the
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search for aircraft designs that are more economical, provided they are properly applied

and could be complemented by the development of methods for reducing simulation

times.

Although original contribution has been made to both disciplines, the focus of this

thesis is inclined towards aerospace engineering because that is the area in which more

significant progress has been made.

1.1.4 Research Objectives

In summary, the main objectives of the research carried out in this project are:

(1) To explore techniques that speed up the derivation of offshore structural response

statistics and find ways to improve existing techniques as well as develop new ones,

so that offshore structures can be designed more efficiently.

(2) To investigate the aspects of the probabilistic modelling of offshore structural

response that can be applied to the field of aircraft gust loading and produce a

stochastic model for probabilistic aircraft response.

(3) To apply new techniques for speeding up probabilistic response calculations to the

aircraft stochastic gust model, so that the response of nonlinear aircraft to

continuous turbulence can be determined probabilistically, instead of limiting it to

deterministic, discrete gusts. There are many different types of aircraft

nonlinearity, however, and it is beyond the scope of this thesis to investigate all of

them, so this work will only include structural nonlinearity in the form of cubic

stiffening of the wing.

(4) To critically evaluate any new techniques that are developed by comparing them to

conventional methods, reviewing their limitations and considering the effect of the

key assumptions that are made.



1. Introduction 7

1.2 Overview of Thesis Content

As well as presenting the foregoing background and motivation for the project, this

chapter specifically outlines original contribution that the author has made to the fields

of offshore and aerospace engineering and also includes a list of the author’s publications.

Chapter 2 contains a review of the literature on aircraft gust loading, which serves

to more fully set out the problems involved in the determination of reliable gust design

loads, and explore the ways in which the field of aerospace engineering may benefit from

the research in this thesis.

Chapter 3 presents some of the relevant mathematical background that is required

to understand the analysis presented in this thesis, but is limited to only the background

that is common to both offshore and aerospace engineering, in order to avoid repetition

in their respective chapters.

Chapter 4 is focussed on the development of the probabilistic offshore structural

response model that is used for the wave loading analysis in this thesis, along with a

description of the conventional method for the derivation of extreme response probability

distributions. It also explains and demonstrates the difference between short-term and

long-term response statistics, concepts which play an important role in probabilistic

design.

Chapter 5 presents an existing method for speeding up the derivation of offshore

structure response probability distributions, known as the Efficient Time Simulation

(ETS) technique, and looks at ways that the ETS method might be enhanced to

produce more accurate distributions. The chapter also develops a new method, called

the Efficient Threshold Upcrossing (ETU) method, which is based on the same

fundamental principles as the ETS method, but seeks to produce more reliable

distributions by including more information about the statistical properties of the

structural response.

Chapter 6 is focussed on the development of separate linear and nonlinear

probabilistic aircraft response models that are used for the gust loading analysis

presented in this thesis. The current techniques for simulating patches of continuous

turbulence are improved for additional robustness and the conventional method for
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deriving aircraft response statistics is described. Furthermore, the effect of accounting

for long-term statistics is included by introducing the concept of a ‘turbulence severity

state.’

Chapter 7 applies the newly developed ETU method to enable the statistics of

aircraft gust response to be calculated efficiently. A preliminary study is first presented

where the methodology is demonstrated using only the linear aircraft response model.

The method is then applied to the derivation of nonlinear aircraft response statistics,

and is also extended to account for the long-term statistics.

Chapter 8 summarises the conclusions that are made throughout the thesis, evaluates

the achievement of the research objectives set out in the previous section and outlines

areas where further research might be beneficial.
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1.3 Outline of Original Contribution

The original contributions of the author to the fields of offshore wave loading and aircraft

loading are primarily concentrated in chapters 5 and 7, respectively, and are centred

around the development of the Efficient Threshold Upcrossing (ETU) method. There

is also some original contribution in chapter 6 regarding the methods for simulating

patches of continuous turbulence and the development of the nonlinear gust response

model.

The original contributions to the field of offshore wave loading are:

• The investigation into the enhancement of the ETS technique by fitting the results

to analytical generalised extreme value distributions before apply total probability

theorem.

(Chapter 5)

• The development of the ETU method to speed up the derivation of reliable short-

term response probability distributions for quasi-static structures that are exposed

to random wave loading.

(Chapter 5)

The original contributions to the field of aircraft gust loading are:

• The inclusion of non-deterministic spectral amplitudes in the simulation of

continuous gust patches, which is a more robust approach.

(Chapter 6)

• The development of a MATLAB-based stochastic gust response model that enables

the derivation of short-term and long-term exceedance curves for quasi-steady

nonlinear aircraft, which enables probabilistic design loads to be determined.

(Chapter 6)

• The application of the ETU method to the efficient derivation of reliable short-term

response exceedance curves for quasi-steady nonlinear aircraft that are subjected

to continuous turbulence.

(Chapter 7)
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• The extension of the ETU method to account for long-term response statistics for

the efficient determination of probabilistic design loads for nonlinear aircraft.

(Chapter 7)
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Chapter 2

Review of the Literature on Gust

Loading

This chapter contains a review of the literature on aircraft gust loading, which seeks to

more fully set out the problems involved in the determination of reliable gust design

loads. The sufficiency of existing methods is evaluated, forming the basis for the

motivation behind most of the original research carried out in this project.

2.1 The Key Approaches

One of the main sources of uncertainty in aircraft load prediction is the occurrence

of random gust loading from atmospheric turbulence. In order to account for this

in the design of an aircraft, it is necessary to describe the expected gust velocities

mathematically so that the corresponding structural responses can be determined. To

do this, there are two key approaches and there has been much debate over which is

the most appropriate method, within these approaches, to account for the range of

applications. Hoblit (1988) covers both approaches in detail, with particular attention

to the determination of aircraft structural loads. Introduction to Aircraft Aeroelasticity

and Loads (Wright & Cooper 2007) is a more recent text that contains a very useful

chapter covering these two approaches.

The first approach is the discrete gust, where gust velocity is represented by an

12
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isolated idealised event that is described deterministically. The earliest description of

discrete gusts (Rhode & Lundquist 1931) took the form of a simple step input of a

field of uniform velocity, but shortly after, Rhode (1937) adapted it to take the form

of the linear ramp gust in order to take into account differences in aircraft motion.

Since then, it has been modified (Pratt 1953) to become what is now known as the ‘1 -

cosine’ gust, which meant that the structural dynamic response could be considered. In

this approach, the gust velocity wg experienced by the aircraft is described in the time

domain as

wg (t) =
wg0
2

(
1− cos

2πV

Lg
t

)
(2.1)

where wg0 is the design gust velocity, Lg is the length of the gust and V is the true

airspeed.

This type of gust profile has a fixed shape as shown in figure 2.1 in its general form,

in which the gust velocity varies in space but is easily computed as a function of time t

using equation 2.1.

 

€ 

wg0

€ 

Lg

Figure 2.1: General Form of the ‘1 - cosine’ Gust

The second approach is continuous turbulence, where the gust velocity is represented

by a random signal varying over a potentially infinite length of time. As one might

expect, this has been idealised for design purposes so that the random signal, also known

as a stochastic gust patch, is considered to occur over a finite length of time. Other

idealisations vary, dependent on individual methods, and will be considered later in this

chapter. This approach arose from work by Rice (1944) on the mathematical description

of random signals, which was later applied specifically to gust loading problems in the
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early 50s (Liepmann 1952, Press & Mazelsky 1954). It works by using information about

the Power Spectral Density (PSD) of the atmosphere to solve for the gust velocity

in the frequency domain by Fourier analysis, enabling the expected RMS value and

the frequency of exceedance to be calculated deterministically, although the method

is based on probability. The first frequency spectrum used for this method was the

Dryden spectrum (Liepmann 1952) but since then, the Von Karman spectrum (von

Karman 1948), shown in figure 2.2, has become the standard for design use because

it is a more accurate fit with observed data and is better supported by theory at the

high frequencies (Hoblit 1988). Figure 2.3 shows a typical gust patch, but a significant

distinction between the two approaches should be highlighted at this point: there are an

infinite number of possible shapes for a continuous turbulence profile, which is reflective

of reality, but the ‘1 - cosine’ gust is limited to a fixed shape.

Figure 2.2: Von Karman Spectrum Taken from Wright & Cooper (2007)

Figure 2.3: Example of a Continuous Gust Patch

The current design regulations (Federal Aviation Regulations (FAR), 1996 and Joint

Airworthiness Requirements (JAR), 2007) require both of the above approaches to be
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carried out; a ‘1 - cosine’ analysis for the determination of the limit gust load and a

PSD analysis for the dynamic response. There is more flexibility in the continuous

turbulence requirements, for example FAR 25 states that the prescribed design criteria

may be overlooked if “more rational criteria can be shown.” No such freedom exists for

the discrete gust requirements and it has been suggested (Noback 1986) that the reason

for this is that there is a higher appreciation of the ‘1 - cosine’ method within both FAR

and JAR. Clearly there have been amendments to FAR and JAR since these suggestions

were made, but the sections of the regulations on which the argument is based remain

unchanged. The main point that Noback (1986) makes is that the PSD method is used

as a supplementary requirement to make sure that the response characteristics do not

substantially deviate from those of the discrete gust. He points out that the possible

difference in the nature of the two methods may result in a conflict situation. For this

reason it is important to have a good understanding of these methods and the underlying

assumptions when considering the most appropriate methods to use. As new methods

have been developed, some of which will be outlined in the next section, this conflict

has been a central factor in the reception of these methods.
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2.2 Latest Advancements

Since the earliest description of gust profiles, there has been a lot of progress in aircraft

development, resulting in more complex designs that require lighter and more flexible

aircraft. This has resulted in a number of advancements in the methods used to design for

gust loading in the search for quicker and more accurate structural loads determination.

The biggest advancement in this area was the discovery of a relationship between gust

velocity and gust length, which was not taken into account in the design regulations until

more recent amendments. It was recommended by Noback (1986) that the regulations

be amended to take into account this relationship by making the design gust velocity,

wg0 ∝ H1/3, where H is known as the ‘gradient distance’ and is half the gust length.

Since then, it has been shown (Jones 1989) that a more suitable relationship is wg0 ∝

H1/6, which has been adopted by both FAR and JAR. The comparison of these power

laws is shown in figure 2.4.
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ity. The alternative power laws w ~ H
in and w ~ H

l/6 corre-
sponding to the values  D = 3 and D = 2.5 of the fractal dimen-
sion are shown in Fig. 7. The practical significance of varying

the value of D is most pronounced for the very short gusts.
Subsequent to the formulation of the /3-model, a more re-

fined theoretical analysis15 of the energy-cascade process in
turbulent flow has indicated that, rather than taking a single
constant value, the D is a function of the intensity of the
fluctuation in turbulence velocity. This has been supported by

an analysis32 of measurements of continuous turbulence,
which indicate that the D takes the value D - 3 at low intensi-
ties but tends asymptotically toward an extrapolated value of
D of order 2.5 at the most extreme intensities. Implications of
this result for possible future airworthiness requirements are
mentioned in Sec. VII.

The effects of scale-dependent intermittency on the statistics
of large peaks in system response are most simply illustrated
for linear systems. Retaining the exponential form for the
function F [Eq. (7)], but replacing Eq. (6) by Eq. (29), the
average rate of occurrence ny of response peaks greater than or
equal to y is obtained by generalizing Eq. (16):

exp - (32)

where y(H)  is defined by Eq. (13), uk is given by Eqs. (5) and
(31), and a (H) takes the form of the product aH

3
 ~

 D
, from Eq.

(30).
Applying the Laplace approximation, Eq. (32) may be eval-

uated asymptotically to give an expression analogous to that in
Eq. (22):

(33)

where y(H) is now calculated using Eqs. (13), (5), and (31).
Results corresponding to Eq. (33) have been used to com-

pare the effects on aircraft response of alternative choices of
the parameter D in Ref. 31.
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O
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Fig. 7 Comparison of alternative //1/3 and H
1/6 power laws.

VI. Effects of Nonlinear Aircraft Dynamics

It is a feature of the SDG method that linear and nonlinear
systems can be assessed in a uniform manner. In each case,
response evaluation is based on a worst-case analysis in which
the maximum response to families of equiprobable input pat-
terns is found. For nonlinear systems, however, the search for
a worst case must be performed for several families of inputs,
corresponding to different levels of intensity, whereas for lin-
ear systems only a single intensity needs to be considered.

In the application of the method to nonlinear systems, the
relationship between the maximum system response and the
associated input configuration (the tuned gust pattern) some-
times exhibits discontinuous or "jump" behavior. For in-
stance, if the uk [Eq. (12)] is increased in a continuous manner,
the tuned gust pattern may change slowly and smoothly with
uk (in a linear problem it is independent of uk)\ subsequently,
however, a further small increase in uk may lead to a sudden
switch to a completely different pattern. Having established a
new "branch," the variation may become smooth and gradual
again. As seen in Sec. IV, denoting the peak amplitude of
response to an input pattern H at intensity u byy(Hu)-wQ
may envisage the function y(Hn,uk) as defining a class of
"landscapes" whose shape depends on uk. For any uk,y(uk)m

[Eq. (26)] is the elevation of the highest hill. The above jump
phenomenon arises when there exist two distinct local maxima
(hills) in y(Hn 9uk) and a value of uk at which the two maxima
are of equal magnitude but growing at different rates with
respect to uk. It follows from Eqs. (26) and j(27) that the
associated discontinuities in (d/duk)y(uk)m and Hm(uk) imply
an associated discontinuity in the plot of ny against y. Such
possibilities emphasize the importance of investigating system
behavior at the critical amplitudes of response and illustrate
the weakness of extrapolating the function ny from smaller
values of y. A numerical study is described in Ref. 8 in which
the statistical input/output relations predicted by the SDG
method for various second-order systems having strong non-
linearities are shown to be in good agreement with the results
of computer simulation.

For nonlinear systems, the principle of superposition is no
longer applicable, and to find the maximum response to a
pattern comprising n ramp components, a multidimensional
search is required. Nevertheless, when interest lies primarily in
the assessment of performance failures, which are relatively
rare events, computational effort is being used in a more eco-
nomical manner than in a standard Monte Carlo simulation in
the sense that a systematic computer search to find the input
pattern causing critical response is more efficient than simply
waiting for the critical input pattern to come up at random. In

a recent paper Noback33 argued that the SDG search procedure
may lead to prohibitively long simulation times. His reason-
ing, however, is based on the assumption that a uniform,
exhaustive search of the input space is required. In fact, there
is a substantial amount of literature

34
'
35

 concerning closely
analogous problems in statistical physics that shows how the
steps in the simulation may efficiently combine a systematic
(hill-climbing) search for a worst case with an element of ran-
domization that prevents the search halting at subsidiary,
rather than global, maxima.

VII. Specification of Numerical Parameters

It is a principal objective of the SDG method to cover, in a
single unified approach, flight in patches of continuous turbu-
lence and encounters with relatively isolated intense gusts. To
conclude this paper we outline the methods used to determine
numerical values for the parameters in the SDG model from
measured data and review the current situation regarding the
specification of these numerical values for the representation
of continuous turbulence and relatively isolated gusts.

Figure 2.4: Comparison of the Two Power Laws by Jones (1989)

In addition, entirely new methods have been developed, some of which propose a

different description of gust velocity, and some of which offer different ways of finding

the best design gust velocity. The rest of this section focuses on some of these methods

and a discussion of their potential benefits or limitations will follow.
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2.2.1 Statistical-Discrete-Gust Method

The Statistical-Discrete-Gust (SDG) method was developed by Jones (1968) and has

been by far the most significant development of the earlier work on gust loading. In

2004, Jones et al. (2004) produced a full report for the Federal Aviation Administration

(FAA) to consider Jones’ method as a replacement for both the Discrete Tuned Gust

and Power Spectral Density methods in the design requirements.

Jones et al. (1988) claims that the SDG method “resolves the dilemma, faced by

the designer, in choosing between random-process and deterministic models for input

disturbances.” His method is based on modelling the gust velocity as an ensemble of

individual discrete ramp components related to an intensity parameter u0, that is

piu0 =
wg1

H
1/6
1

=
wg2

H
1/6
2

= . . . (2.2)

where i increases to the number of individual ramp components and pi is a ‘complexity

factor’ dependent on i. In its simplest form, the ensemble consists of a single ramp

component where p1 = 1, resulting in equation 2.3:

u0 =
wg0

H1/6
(2.3)

The innovation of the SDG method is that it enables the maximum response of

nonlinear systems to be predicted (Jones 1980, 1989, 2009a) by introducing the scaled

peak-response amplitude γy for a specific response variable y so that

γy (H,u0) =
y (H,u0)

u0
(2.4)

for a nonlinear system.

Jones (1980, 2007) has also extended his method to an explicit statistical

interpretation for use in a ‘mission analysis’ design requirement. It produces the

number of expected response peaks N (y) per unit distance flown, that are greater than
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magnitude y using the relationship

N (y) =
α

λ ¯̄H (u0)
e

− u0/β (2.5)

where λ in this instance is known as the pattern sensitivity factor, ¯̄H is the value of

H associated with the intensity parameter u0 and α and β are related to so-called

intermittency parameters.

A more detailed explanation of equation 2.5 can be found in Jones (1980) but it

should be pointed out that it is based on the same mathematical description of

turbulence outlined above.

In summary, the basis for the SDG theory is that there is a certain range of

turbulence, known as the inertial range, in which the stationary-Gaussian assumption

breaks down and that in order to account for the non-Gaussian characteristics of

turbulence in this range, the phases of the Fourier components cannot be considered

statistically independent of one another (Jones 1989). Jones’ solution to this is to

model atmospheric turbulence as a process of scale-dependent intermittency (Jones

et al. 1988), rather than a continuous one, which is based on classical theory of

self-similarity (Kolmogorov 1941) and fractal geometry (Mandelbrot 1982).

2.2.2 Matched-Filter Theory

Matched Filter Theory (MFT) was first developed by North (1943), where it was

originally applied to determination of signal discrimination in radar, but later Papoulis

(1970) showed that the theory could be extended to find maximum responses,

obtaining results in ‘simple algebraic terms’ rather than by using integral equations

and the calculus of variations. It was not until 1991, following an investigation by

NASA into the SDG method (Perry et al. 1990), that MFT was applied to aeroelastic

systems, specifically the computation of time-correlated gust loads (Pototzky et al.

1991).

The basic principle of MFT, as applied to gust loading, is that it allows direct

determination of the input signal that produces the maximum response of a system.

This means that it enables calculation of the maximum load response and the ‘critical’
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gust profile. Initially, the MFT method was only able to account for linear systems

(Pototzky et al. 1991) but since then, it has been adapted to take into account system

nonlinearity to some extent using one-dimensional and multidimensional search

procedures (Scott et al. 1993). The main difference between the linear and the

nonlinear MFT-based methods is that the linear method guarantees that there is no

other normalized signal that will produce a response value greater than the calculated

maximum response. However, when the system is taken as nonlinear, there is no

guarantee that the value calculated from the optimization procedure is a global

maximum. A clear explanation and comparison of both these methods and their

relation to stochastic-simulation-based methods is given by Scott et al. (1995).

2.2.3 Stochastic Simulation

Stochastic simulation techniques are closely linked to Matched-Filter Theory methods

because they have been used as part of the validation for MFT results. They are

characterised by having some random aspect to their description of turbulence that is

not typically found in the alternative methods. Stochastic simulation in general is not

confined to a single method, but there are of course common themes throughout the

variety of available stochastic methods, namely the use of the description of gust velocity

as continuous turbulence rather than a discrete gust, introducing a probabilistic aspect.

However, the balance of deterministic and probabilistic analysis within an individual

method seems to vary between different methods.

For example, one recent stochastic-simulation-based method presented by Scott et al.

(1995) is referred to as an ‘extracting and averaging procedure,’ in which what is known

as a stochastic gust patch of total duration, T is generated from the Von Karman

spectrum using a Fourier analysis.1 The ‘time history’ of the response of an aircraft

model to this gust patch is generated using a transfer function, the points where the

peak loads occur are identified, and the largest of these peaks is selected. This enables

a sample of time span ±τ0 to be extracted, centred around the point where the peak

load occurred, which in turn enables the corresponding gust velocity profile, the one that

1This is the usual practice for stochastic methods; see Chapter 6.
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caused this particular response record, to be extracted. The rest of the gust patches and

response records are discarded and the extracted records of duration 2τ0 are averaged

and used for determining the aircraft design loads. Evidently, this process does introduce

a deterministic aspect into the method in the arbitrary selection of values of T and τ0,

which have been shown to affect the results, and the averaging procedure clearly moves

away from a probabilistic analysis.

Another gust model, produced by Vink & de Jonge (1997), has the option of a

stochastic simulation method if the user desires to employ a continuous turbulence

approach. It works in a similar way to the previous model (without the extracting and

averaging procedure); by generating a single 10-second sample of the gust velocity profile

and the corresponding response values based on aircraft properties that can be defined

by the user. The model also enables the response to a ‘1 - cosine’ gust to be determined

and for both types of analysis there are options to consider the aircraft model as ‘plunge

only’, ‘plunge & pitch’, or ‘plunge, pitch & 3 flexible modes’. This entire gust model is

limited to use for a linear system and its purpose is “to study various aspects of aircraft

response to turbulence.” Figure 2.6 shows response time histories that correspond to

the continuous gust patch shown in figure 2.5. The interesting quantities for which

time histories are shown in Figure 2.6 are load factor, wing root shear force, wing root

bending moment, wing root torsion moment and tail root shear force.

Figure 2.5: Stochastic Gust Input from the NLR Model
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Figure 2.6: Loads Time Responses to Stochastic Gust Patch from the NLR model
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2.3 The Sufficiency of Existing Methods

Noback (1986) states that “the problem of the determination of airplane loads due to

atmospheric gusts is an old one; but it has certainly not yet been solved.” Although

this statement was made in 1986, there has been very little in the way of changes to

the design requirements since then, which would explain why there is still so much

controversy surrounding the subject today. The main areas of discussion are regarding

the best overall approach to use for the description of gust velocity (discrete gust or

continuous turbulence), and between which should be considered the decisive individual

method (‘1 - cosine,’ Classic PSD, SDG, MFT or Stochastic Simulation techniques)

when predicting the limiting structural loads of an aircraft.

One main argument in favour of continuous turbulence over discrete gust methods

is that it is a much more realistic representation of the atmosphere (Abdulwahab &

Hongquan 2008, Hoblit 1988, Steiner & Pratt 1967). Of course, this is undisputed

because gust loading does in fact occur continuously, not in isolation (Flomenhoft

1994). Disagreements arise, however, when the idealisation of continuous turbulence as

a stationary-Gaussian process, is brought into question. Jones (1989) explains that it

is generally accepted that more extreme fluctuations of gust velocity are not

adequately represented by the Gaussian model, which is backed up by Etkin (1981)

and Chen (1972). It is apparent that in the inertial range of turbulence, there are

instances of higher peak gust velocities than would be predicted by the

stationary-Gaussian model (Jones et al. 1988). Even Hoblit (1988) grants that “there

is accumulating evidence that actual turbulence is not really stationary and Gaussian”

and outlines numerous examples where this has been the case. Nevertheless, he still

maintains that although much severe turbulence may not be strictly

stationary-Gaussian, it does have the appearance of continuous turbulence, and he

outlines two studies of measured turbulence encounters that strongly support this

claim (Jones 1964, Strom & Weatherman 1963).

Another very important objection to J. G. Jones’ criticism of PSD methods that

Hoblit (1988) makes is that there is a difference between non-Gaussian turbulence and

non-stationary turbulence; a topic that is thoroughly discussed in AFFDL-TR-68-127
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(Crooks et al. 1968). Jones immediately attributes the departure from self-similarity of

continuous turbulence to the conclusion that “turbulence velocity in the inertial subrange

is strongly non-Gaussian” (Jones et al. 1988). Hoblit points out that there is a tendency

to assume implicitly that a sample is stationary and then to evaluate whether it is

Gaussian, and suggests that this inclination comes from the absence of any definite

way to evaluate stationarity, where it is a simple matter to compute the probability

density and compare it with a Gaussian curve. He then goes on to explain that it is

entirely possible for a given sample to be locally Gaussian, but non-stationary overall,

which would produce a non-Gaussian sample if, say, two locally Gaussian samples with

different RMS values were combined. This means that the departures from self-similarity

in the extreme values that Jones refers to also have the possibility of being explained by a

low probability occurrence of the combination of a number of differing high-RMS-value,

locally Gaussian patches.

Having said this, so far there has not been a practical way of modelling turbulence in

this way, which means that there does need to be a design method that accounts for the

undeniable deviations from the stationary-Gaussian model. This explains why the ‘1 -

cosine’ gust is still included in the design requirements (Federal Aviation Regulations

1996, Joint Airworthiness Requirements 2007), given that the design gust velocities

are deterministically selected based on older aeroplanes that are assumed to have a

satisfactory safety record (Noback 1986). In view of the above discussion, the apparent

conflict between these two approaches would appear to be unnecessary. The justification

for this conclusion is best conveyed by the following quote from Bernard Etkin (1981):

“In the application of gust information to structural design, there will no

doubt continue to be controversy on the relative merits of power-spectral-

density methods and discrete gust methods, and on how well each represents

the real physics of the atmosphere. This controversy will not be resolved in

favour of one or the other - both techniques have their place in the spectrum

of design and analytical tools and both represent aspects of reality.”

It is, therefore, a fair assessment to say that the only way to reduce the number

of design requirements and improve them is to come up with a single, feasible method
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that is able to adequately represent all the aspects of reality encompassed by both of the

above approaches.

This is the claim that Jones makes of his Statistical-Discrete-Gust model in putting

it forward as an alternative to the current design requirements (Jones et al. 2004). In

this documentation, he states:

“This method claims to have the potential to replace the Power Spectral

Density Model and the Tuned Isolated Discrete Gust, which jointly ensures

that an airplane has sufficient structural strength for encounters with

continuous turbulence and discrete gusts of design-level intensity.”

The main reasons, given in the above reference, that Jones deems the SDG method

as superior to existing methods are as follows. Firstly, he points out that the PSD

method assumes that the phases of the Fourier components that make up the gust

profile are purely random, when in fact, they are strongly correlated. He explains

that the SDG method, on the other hand, offers the capability of modelling localized

discrete fluctuations explicitly in terms of ramp-shaped gust components, which takes

into account the effects of the phase correlations that are present in severe turbulence

and result in the supposedly non-Gaussian effects. Secondly, he calls attention to the fact

that the Tuned Isolated Discrete Gust is limited to a single-shape gust profile, which

is a significant disadvantage when it comes to aircraft with widely differing dynamic

response characteristics because in reality they can tune to gust patterns of different

shapes. In solution to this, Jones explains that his method can be interpreted as a

generalization of the existing discrete gust model to take into account tuning to gust

patterns of different shapes. Finally, as mentioned previously, the main advantage that

the SDG method has is the ability to solve for both a linear and a nonlinear response

using a search procedure.

Despite the apparent benefits of the SDG method, it has been met with a considerable

amount of opposition and was not accepted as a replacement for the current design

requirements by the FAA, following their investigation for which the full documentation

mentioned above (Jones et al. 2004) was produced.
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One common objection to the SDG method is that it is based on theory that is

largely unfamiliar within the engineering environment, in contrast with both PSD and ‘1

- cosine’ methods. This objection is brought up by T. A. Zeiler (Jones et al. 2004) as one

of the reviewers of the SDG method selected by the FAA. It is also backed up by Hoblit

(1988), who summarises his view by stating that the method is “hopelessly cumbersome

to use, is far from straightforward in its derivation, provides a good deal less information

than current PSD methods, and is probably no more realistic.” The arduous nature of

the method, another common objection, was confirmed later by NASA’s investigation

into the SDG method (Perry et al. 1990). It was found that, depending on which of

the two SDG analysis methods is used, linear or nonlinear, an SDG analysis results

in a computational cost of between 20 and 60 times that of a PSD analysis. In his

comment on this investigation, Etkin (1992) agrees that the SDG method is simply an

approximate representation of the PSD method and goes on to ask the question, “Why

use an approximation when the real thing is available?” He then goes on to point out

that, although it is clearly not to save computing time, the methods ability to use non-

Gaussian turbulence inputs is one advantage, but that it makes no provision for the

variation of vertical gust across the span, “raising serious concerns about its utility for

finding asymmetric loads associated with lateral response modes.”

More recently, R. P. Chen (1995) writes that “the present SDG method is inadequate

as a gust loads design tool” even though his paper proves that there is an equivalence

between the results of PSD and SDG methods within the linear ‘overlap.’ The main

reason that he gives for this rejection, among others, is that “it is inconceivable that any

airframe manufacturer, large or small, will invest 20 times longer CPU time to obtain

mere consistent values.” However, he does conclude his paper by commending the SDG

method for its usefulness in raising consciousness of the relatively unfamiliar subject of

fractal geometry.

The consensus seems to be that the main source of value found in the SDG method

is its ability to take into account nonlinear inputs and nonlinear systems, even though

other methods are still favourable due to their relative simplicity and practicality. The

FAA summarise the current state of the SDG method following their investigation with
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the following extract included at the end of their report (Jones et al. 2004):

“The FAA is comfortable with the current turbulence design criteria and

structural level of safety.

Although a single SDG method may offer some simplification for the

applicant, and some useful ability with respect to nonlinear systems, it

does not appear to offer substantial advantages over-and-above the current

combination of PSD and TDG.

However, the SDG method continues to be a candidate as a viable criteria

alternative to current practice, and the FAA would be receptive to future

representations on the matter from industry or individuals, provided

resolution of at least the following:

(1) Traditional levels of safety: the acceptability of reductions in severity

of lateral design loads is presently uncertain, and an issue which must be

addressed.

(2) Industry acceptance: there should be the prospect of widespread

willingness to substitute existing methodologies, not currently in evidence.

(3) Maturity: sufficient additional investigation and analysis to firmly

establish the proposed design standard and associated numerical constants,

including consideration of altitude effects.”

As for Matched Filter Theory based methods, it has been shown (Scott et al. 1995,

Zeiler 1997) that they yield “strikingly similar” results to those produced using the

stochastic simulation based method described earlier, with a slightly lower

computational cost for the one-dimensional search analysis and a much higher cost for

the multidimensional search. As yet, the method does not appear to have been

considered as a replacement for the current design requirements. This is probably

because the stochastic method it is compared to is a more deterministic idealisation of

the classic PSD method and the nonlinear aspect is still far too computationally costly

to replace the more convenient ‘1 - cosine’ gust, given that they are both entirely

deterministic and able to take into account nonlinearity.
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The above discussion shows that the sufficiency of a gust loading prediction

method does not depend solely on its ability to describe turbulence accurately, but

also on its practicability within the context of the aircraft design process and its ease

of understanding in relation to the loads engineers who are likely to use it. It has also

been highlighted that, when it comes to the practicability of a given method, the issue

of computational cost is of particular interest to aircraft designers, who require

accurate limit loads for range of mass cases at a large number of points on the flight

envelope. It is a reasonable conclusion that, despite some weaknesses, the current

requirements remain the most sufficient for designing aircraft to withstand loading

from atmospheric turbulence, but there is scope for improvements in future research.
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2.4 Opportunities for Further Development

2.4.1 A Unified Model for Gust Response

Etkin (1981) suggests that a cause for satisfaction is the virtual absence, in recent

years, of primary structure failures in transport aeroplanes attributable to inadequate

design loads. Evidently, this trend has continued since his paper was written, which is a

source of great confidence in the safety provided by the current requirements. However,

when it comes to the search for more economical designs, it should also be pointed out

that this absence of failure may also be evidence that there is room for further weight

saving without reducing safety (Etkin 1981). Of course, whether this room for increased

economy exists or not can only be proven when a new method, deemed to be equally or

more reliable than the current methods, produces design loads that are lower than the

current ones.

It was shown in the previous section that the methods currently used for determining

the limiting structural loads due to gusts are largely deterministic, which is one reason

for the potential room for improvement. This is because the ‘1 - cosine’ gust is considered

a ‘worst case’ analysis, which means that the majority of aircraft will probably never

experience gust velocities anywhere near those predicted. The problem with this is

that it does not allow the designer to select information based on the likelihood of a

particular gust occurring. In other words, it provides no information on how often the

proposed ‘worst case’ gust should be expected to occur, because in reality there is no

such thing as a ‘worst case’ gust. There is only an arbitrary gust velocity chosen based

on the strength of older aeroplanes assumed to have a satisfactory safety record (Noback

1986). A probabilistic method, on the other hand, would allow selection of design loads

based on their probability of occurrence, which in one sense is still just as arbitrary in its

choice, but has the added advantage of providing the designer with more information.

This potential for more information is one of the major advantages that PSD methods

have over the Discrete Tuned Gust, along with the infinite variation of gust profile

shapes. However, currently they are still partially deterministic and their inability to

take into account the non-stationary or non-Gaussian nature of extreme gusts means



2. Review of the Literature on Gust Loading 29

that ‘1 - cosine’ gusts are still the best option.

In light of this discussion, the opportunities for further development are evident. In

order to test whether there is room for further improvement in gust prediction, it would

be highly beneficial to develop a new method, extended from the PSD method, that

makes it possible to account for both non-Gaussian turbulence and nonlinear systems,

that is entirely probabilistic, and that is based on real information about the atmosphere.

It seems that the best way to develop a truly probabilistic model is by the use of

stochastic simulation techniques, which for the above purpose would likely become very

long-winded. Therefore, further research into analytical techniques that dramatically

reduce computation with a minimal impact on the accuracy of the results would be highly

beneficial in the development of a new gust load prediction method. If computational

cost could be reduced, it may be possible to extend the capability of PSD methods to

nonlinear response because calculating time domain responses to stochastic inputs is

not impossible, but is so time consuming that it has never been a viable option. A

probabilistic model with the ability to account for nonlinear response characteristics

would be a significant contribution to the field of aircraft loads analysis.

2.4.2 Wider Applications

The need to determine accurate response statistics for systems that are exposed to

random inputs is certainly not unique to the field of aerospace engineering. One of

the fundamental problems that will be explored in this thesis, is that the accuracy of

the statistics is dependent upon the number of samples that are simulated, i.e. low

sampling variability, and therefore the response of any system must be simulated a very

large number of times if the probabilities of rare events are to be calculated reliably.

This problem occurs in any discipline that involves the statistical modelling of systems

with aleatory uncertainty. Hence, there are many fields that might benefit from the

method developed later in this thesis, which aims to reduce the number of simulations

required to derive response statistics with acceptably low sampling variability, thereby

reducing the sizeable computational cost usually incurred. The scope of this work is to

apply the method to the areas of offshore and aerospace engineering, but there are some
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other examples of areas for which the method may be relevant.

For instance, Monte-Carlo simulation techniques have recently gained enormous

popularity in the field of radiotherapy (Seco & Verhaegen 2013), in which random

particle interactions on a microscopic level can be simulated in order to provide

solutions for macroscopic systems. A specific example of where such methods have

been used is in the theoretical testing of improved instrumentation for measuring the

levels of in-flight ionizing radiation that aircrews are subjected to (Benson et al. 2002).

Much of the radiation levels to which they are exposed vary strongly with solar

activity, which is inherently random, and analytical estimates of the response of the

instruments can only be made based on measured data that does not account for

variations in flight path and altitude (Scraube et al. 1999, Benson et al. 2002). This

leads to the need for complex numerical models, which sometimes include nonlinear

particle interactions that must be solved in the time domain (Seco & Verhaegen 2013),

incurring a significant computational cost.

Another area in which Monte-Carlo simulation techniques play a huge part is

finance. For example, quantitative analysts use complex numerical models to estimate

fair prices for derivative securities, which are affected by a large number of random

variables that can be included in the models, such as stock prices, exchange rates and

interest rates (McLeish 2005). Boyle (1977) developed a stochastic-simulation-based

method for estimating the value of stock options but identified that

“One potential drawback of the method arises from the fact that the

standard error of the estimate is inversely proportional to the square root

of the number of simulation trials. Although any desired degree of accuracy

can be obtained by performing enough simulation trials there are usually

more efficient ways of reducing the error.”

This demonstrates that it is not just in engineering that analysts are seeking to

benefit from techniques that improve the efficiency of Monte-Carlo methods. It is true

that advancements in computer technology are enabling increasingly more calculations

to be carried out at greater speed, but any further increases in efficiency that can be

made using mathematical techniques, such as the ones developed in this thesis, will
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still serve to facilitate the modelling of more complex systems until such a time as the

available computational power renders their benefits negligible.



Chapter 3

General Mathematical

Background

This chapter only covers the mathematical background that is relevent to both offshore

and aerospace aspects of the project, whereas background that is limited to each

individual discipline will be covered in their respective chapters. Although the

equations in this chapter apply to both disciplines, they have been written as though

applied to offshore engineering for the sake of simplicity. For example, the

mathematical descriptions that form the basis of Linear Random Wave Theory

(LRWT) in section 3.2 can also be used to describe atmospheric turbulence, the only

difference being the notation.

3.1 Random Processes

The characteristic property of a random physical process is that it cannot be described

by an explicit mathematical relationship. It is therefore always necessary to make

assumptions about the nature of a particular random process in order to create an

adequate model to represent it. To begin to make an idealised mathematical definition

of a random process, a judgement must be made as to whether it is stationary or

non-stationary, and as to which probability distribution most realistically represents it.

The importance of the concept of stationarity in this project was highlighted in

32
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Chapter 2, along with the Gaussian vs. non-Gaussian issue.

3.1.1 Stationary and Non-stationary Processes

A time history of a random process {x (t)} that is observed over a finite time interval

is known as a sample record. A process is truly stationary if its mean value µx and

autocorrelation function Rx remain constant over time and over the infinite ensemble of

possible sample records, denoted by {}. The mean values and autocorrelation functions

are found by taking average values of x (t) at t1, or t1 and τ , respectively, for the number

of sample records N . This is demonstrated in equations 3.1 and 3.2 (Bendat & Piersol

1971).

µx (t1) = lim
N→∞

1

N

N∑
k=1

xk (t1) (3.1)

Rx (t1, t1 + τ) = lim
N→∞

1

N

N∑
k=1

xk (t1)xk (t1 + τ) (3.2)

Hence, the process {x (t)} is truly stationary when the following conditions are

satisfied:

(i) µx (t1) = µx and Rx (t1, t1 + τ) = Rx (τ)

(ii) µx (k) = µx and Rx (τ, k) = Rx (τ)

If only condition (i) is satisfied then {x (t)} is said to be weakly stationary, but

for many practical applications, verification of weak stationarity justifies an assumption

of strong stationarity (Bendat & Piersol 1971). The surface elevation η of the sea is

modelled as an stationary random process for a single sea state, but is non-stationary

when more than one sea state is considered, hence the 3-hour-interval approximation.

Non-stationarity is simply a failure to meet the requirements for stationarity outlined

above.
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3.1.2 Gaussian and Non-Gaussian Processes

A random process {x (t)} is considered Gaussian if the probability density function of

the x values, as T → ∞, can be described by equation 3.3 (Montgomery & Runger

2002), along with its subsequent derivatives (ẋ, ẍ, etc.)

p (x) =
1√

2πσx
exp

[
(x− µx)2

2σx2

]
, −∞ ≤ x ≤ ∞ (3.3)

There are some processes than are inherently Gaussian, but many processes are

assumed to be Gaussian when the values are closely described by equation 3.3, even if

it is not a perfect fit. Furthermore, the Gaussian distribution probability distribution

of the process itself, and there may be aspects of the process for which another

distribution is more suitable. For example, surface elevation η is represented by the

Gaussian distribution, but the wave heights of η, that is, the difference in height

between corresponding crests and troughs, are often defined by the Rayleigh

distribution, an assumption which is discussed in section 4.3.

The cumulative probability distribution of ηmax (Abu Husain & Najafian 2011) that

can be used to validate simulated extreme surface elevation values is

P (ηmax ≤ ηmax∗) = exp

[
− T
Tz

exp

(
−ηmax∗

2

2ση2

)]
(3.4)

where ∗ denotes a given value of the variable that precedes it.

This shows that even if some aspects of a physical process are non-Gaussian (i.e.

not adequately described by equation 3.3), they may be described by alternative

distributions, which can be determined by stochastic simulation techniques.



3. General Mathematical Background 35

3.2 Linear Random Wave Theory

Linear Wave Theory (Airy 1841), which was developed by George Biddell Airy in the 19th

Century, is still today the most commonly used description of ocean waves. However,

there are a number of assumptions that from the basis for their mathematical description:

(i) The water is homogeneous and incompressible, thus the density is uniform;

(ii) Water viscosity and surface tension can be ignored;

(iii) The waves are long-crested, which means that they are represented by a two-

dimensional analysis;

(iv) The waves do not change shape as they travel across the surface of the water;

(v) The sea bed is horizontal and impermeable;

(vi) There is no motion of the water apart from that induced by the waves.

The mathematical description of linear random waves given in sections 3.2 and 3.3

is taken from Dean & Dalrymple (1991), unless otherwise stated. Linear Random Wave

Theory (LRWT) defines a unidirectional sea as the summation of a large number of

harmonics or linear regular waves having equally-spaced discrete frequencies. At a point

x or at time t a linear regular wave with amplitude a and angular frequency ω has surface

elevation η (x, t) above the mean water level (MWL), and takes the form

η (x, t) = a cos (kx− ωt) (3.5)

So the surface elevation of a sample of random waves consisted of Nh superimposed

harmonics is defined as

η (x, t) =

Nh∑
n=1

an cos (knx− ωnt+ δn) (3.6)
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where an is the amplitude of the nth harmonic, which is known as the spectral amplitude.

kn is the wave number, which, in the absence of current and for water depth d, is defined

by the following relationship:

ωn
2 = gkn tanh knd (3.7)

The phase angles δn of the components are considered to be random and independent

from each other. They are uniformly distributed in the range 0 ≤ δn ≤ 2π their

probability density function is

p (δ) =
1

2π
(3.8)

The mean square value of η, for the nth harmonic, η̄n
2, for fixed values of δn and x,

is calculated by

η̄n
2 =

1

Tn

∫ Tn

0
an

2 cos2 (−ωnt) dt =
an

2

2
(3.9)

where Tn is the period of the nth harmonic; and because the phase angles are assumed

to be uncorrelated, the variance of η is

ση
2 =

Nh∑
n=1

an
2

2
(3.10)

This information, with the assumptions that precede it, is essential for performing a

spectral analysis, as shown in the following section.
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3.3 Spectral Analysis

By definition, a frequency spectrum gives the spectral density Sη (ω) a continuum of

frequencies, but assume that for a discrete number, Nh of harmonics, the frequencies

are equally spaced at ∆ω. Each frequency ωn is at the centre of a band of width ∆ω,

and the variance associated with the nth band is Sη (ω) ∆ω. Therefore

Sη (ωn) ∆ω =
an

2

2
(3.11)

Combining equations 3.10 and 3.11 for the infinite number of harmonics found in

the reality gives

ση
2 =

∫ ∞
0

Sη (ω) dω (3.12)

and from equations 3.6 and 3.11

η (x, t) =

Nh∑
n=1

√
2Sη (ωn) ∆ω cos (knx− ωnt+ δn) (3.13)

which means that if the frequency spectrum is defined for a given location, it is possible

to simulate a (random) surface elevation sample record using the following approach.

First, it is necessary to generate a set of random independent phases, along with

corresponding deterministic amplitudes anDSA for each harmonic from equations 3.8

and 3.14, respectively.

anDSA =
√

2Sη (ωn) ∆ω (3.14)

However, an alternative method suggested by Rice (1944), in which the amplitudes

are treated as random variables instead of just the phase angles, has been shown

(Morooka & Yokoo 1997, Tucker et al. 1984) to produce sample records that more

accurately represent their frequency spectrum. Using non-deterministic spectral

amplitudes, the sea surface is represented as the discrete Fourier series:
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η (t) =

Nh∑
n=1

(An cosωnt+Bn sinωnt) (3.15)

where An and Bn are random variables with standard deviation σn =
√
Sη (ωn) ∆ω.

Morooka & Yokoo (1997) showed that, by applying the following trigonometric

identities:

Rn =
(
An

2 +Bn
2
)1/2

(3.16)

δn = arctan

(
Bn
An

)
(3.17)

equation 3.15 can be rewritten as

η (t) =

Nh∑
n=1

Rn cos (ωnt+ δn) (3.18)

in which Rn is the random amplitude of the nth harmonic and δn is its phase angle.

Morooka & Yokoo (1997) also stated that An and Bn can be expressed as

An = αn [Sη (ωn) ∆ω]1/2 (3.19)

Bn = βn [Sη (ωn) ∆ω]1/2 (3.20)

where αn and βn are independent random numbers, of Gaussian distribution and zero

mean.

Substituting the random components An and Bn into equation 3.16 gives

Rn =
[
αn

2Sη (ωn) ∆ω + βn
2Sη (ωn) ∆ω

]1/2
(3.21)

which can be written as

Rn =
√

2Sη (ωn) ∆ω

√
αn2 + βn

2

2
(3.22)
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This gives the relationship between the non-deterministic spectral amplitudes

anNSA (= Rn) to the original deterministic amplitudes anDSA :

anNSA = anDSA

√
αn2 + βn

2

2
(3.23)

Due to the robustness of this alternative method, it is the non-deterministic spectral

amplitudes that will be used for all the simulations in this work.

Once the amplitudes have been determined, the Discrete Fourier Transform (DFT) of

the surface elevation can be constructed by describing the contribution of each harmonic

in the form

ηn (x, t) =
anNSA

2
ei(δn−knx)eiωnt +

anNSA

2
e−i(δn−knx)e−iωnt (3.24)

which for a fixed point, x = 0, can be expressed as the sum of two complex exponential

terms with frequencies, ωn and −ωn:

ηn (t) = Xneiωnt + Yne−iωnt (3.25a)

Xn =
anNSA

2
eiδn (3.25b)

Yn =
anNSA

2
e−iδn (3.25c)

Making use of the fact that Yn is the complex conjugate of Xn means that a sample

record of η (t) can be generated very quickly by calculating the inverse Fast Fourier

Transform of its DFT.
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3.4 Probability Theory

Some of the basic principles of probability theory that have played an important role

in being applied to the uncertainty in this project are outlined in this section. The

equations in this section are taken from Montgomery & Runger (2002), with the

exception of equation 3.30.

3.4.1 Total Probability Theory

The addition rule states that the probability of the union of two mutually exclusive

events, X and Y , is calculated by

P (X ∪ Y ) = P (X) + P (Y ) (3.26)

The multiplication rule states that the conditional probability of an event X, given

Y has occurred, is calculated by

P (X | Y ) =
P (X ∩ Y )

P (Y )
(3.27)

Consider j mutually exclusive and collectively exhaustive events that are denoted

by E1, E2 . . . Ej , and an event A in the same sample space. It follows that the joint

events A ∩ E1, A ∩ E2 . . . A ∩ Ej , are mutually exclusive, and since A can be defined as

(A ∩ E1)∪ (A ∩ E2)∪ · · · ∪ (A ∩ Ej), equation 3.26 means that the probability of A can

be found by

P (A) =
∑
j=1

P (A ∩ Ej) (3.28)

Combining equation 3.27 with equation 3.28 results in the Total Probability Theorem,

that gives the total probability of event A based on its conditional probabilities:

P (A) =
∑
j=1

P (A | Ej) P (Ej) (3.29)

As shown in chapter 4, these concepts become very useful when it comes to modelling

a random process that is governed by other random factors, such as the probability of



3. General Mathematical Background 41

a specific sea state occurring, which affects the total probability of the surface elevation

values.

3.4.2 Empirical Probability Distributions

An empirical cumulative probability distribution can be determined based on the

number of points in the distribution N after the values are ranked in ascending order.

The probability that the random variable x will not exceed a given value h, can be

approximated using the following equation (Gringorten 1963), in which n is the rank of

the corresponding point from 1 to N :

P (x ≤ hn) =
n− a
N + b

(3.30)

where, for extreme value distributions, a and b are assumed to be 0.44 and 0.12,

respectively.



Chapter 4

Mathematical Modelling of Wave

Loading

4.1 Simulation of Random Sea Waves

This section describes the method for simulating ocean waves that can be described by

Linear Random Wave Theory and thus, are under the assumptions given in 3.2.

4.1.1 Water Particle Kinematics

The surface elevation of sea waves can be used to determine more useful information that

is more directly related to the loading on an offshore structure, namely the velocities

and accelerations of the water particles at the coordinates (x1, z) and at time t. These

are also modelled as a random process described by the summation of a large number

of harmonics. The horizontal water particle velocity u and acceleration u̇ caused by the

nth harmonic are defined by equations 4.1 and 4.2, respectively (Stokes 1847).

un (x1, z, t) = anωn
cosh [kn (z + d)]

sinh (knd)
cos (ωnt− knx1 + δn) (4.1)

u̇n (x1, z, t) = anωn
2 cosh [kn (z + d)]

sinh (knd)
sin (ωnt− knx1 + δn) (4.2)

42
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where d is the water depth and z is the vertical distance from the mean water level

(upwards positive).

For a given surface elevation frequency spectrum, the corresponding horizontal

water particle velocity and acceleration frequency spectra can be obtained using the

transfer functions that are based on equations 4.1 and 4.2, respectively, by employing

the following relationships:

Su (ω) = Sη (ω) |Hu (ω)|2 (4.3)

Su̇ (ω) = Sη (ω) |Hu̇ (ω)|2 (4.4)

for which the transfer functions are calculated by

Hu (ωn) = ωn
cosh [kn (z + d)]

sinh (knd)
e−iknx1 (4.5)

Hu̇ (ωn) = iωn
2 cosh [kn (z + d)]

sinh (knd)
e−iknx1 (4.6)

This means that a previously calculated DFT of the surface elevation can be directly

multiplied by the transfer functions Hu (ω) and Hu̇ (ω) to obtain the respective DFTs of

u and u̇. This enables time histories of both these ‘response’ parameters to be calculated

quickly by computing the inverse Fast Fourier Transform of their DFTs. This technique

can be applied to any system parameter that is a linear response to the original random

input and is not limited to random waves only.

4.1.2 Sea States

A important concept in this project is the use of sea states to describe the intensity of

the conditions for a particular duration, usually 3 hours or so, where they are

considered constant. A sea state is defined by the average values of information about

the wave heights and time-periods of the surface elevation during the chosen duration.
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Information about the conditions of the sea during one of these 3-hour periods is given

in the form of a corresponding frequency spectrum. The magnitude of the frequency

spectrum is determined by the sea state, whereas the particular shape of the frequency

spectrum depends on the geographical location of the waves being considered. The

relationship between a frequency spectrum and the actual surface elevation of the sea

at a particular point was outlined in section 3.3.
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Figure 4.1: Pierson-Moskowitz Wave Spectrum

Figure 4.1 shows the well-known Pierson-Moskowitz Spectrum (Pierson & Moskowitz

1964), which is used to describe waves in the North Atlantic and is defined as

Sη (f) =
Hs

2

4πTz
4f5

exp

(
− 1

πTz
4f4

)
(4.7)

where Hs is the significant wave height, which is defined as the average value of the

highest third of all wave heights (distance from trough to crest) that occur in a given

duration. Tz is the average zero-upcrossing period, which is essentially the given duration

divided by the number of waves that occur in that duration, where a wave is defined as

the surface elevation having crossed the mean water level twice (once upwards and once

downwards). A sea state, therefore, can be considered as a period of time for which the

values of Hs and Tz can realistically be assumed to be constant.

To reiterate, the specific values shown on the y-axis would vary with sea state (i.e.
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every 3-hours or so) but the shape of the spectrum is characteristic of the North Atlantic

at all times.
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4.2 Simulation of Extreme Quasi-Static Response

Statistics

4.2.1 A Simple Model

In order to keep computational cost to a minimum when simulating a large number of

sample records, a very simple offshore structure, shown in figure 4.2, is used in this

study. In fact, the model would be more accurately described as a loads model, since it

is only the geometry, not the actual structure, that is modelled. In other words: it is

assumed to be a rigid structure. The test ‘structure’ is a cylindrical monopod divided

into five segments and the distributed loading is represented by a nodal load at the

midpoint of each segment. Clearly, only five segments would not be sufficient for an

accurate calculation of design response, but for the purpose of comparing methods it

makes no difference whether there are five segments or five-hundred. Also, the model

does not take into account the effect of current or load intermittency in the splash zone.

The structure has drag and inertia coefficients of Cd = 0.8 and Cm = 1.7, respectively.

Unless stated otherwise, the water depth is taken to be 50 m, the leg has a constant

diameter of 3.0 m and the sea state for the short-term cases is defined by Hs = 15 m

and Tz = 13 s.

It should be noted that the goal of the research at this point is not to analyse

highly complex structures, but to develop mathematical techniques that can work on

any structure. Therefore, the very simple structure shown in figure 4.2 is sufficient

because, without prolonged simulation time, it allows the techniques to be tested, which

verifies them for use on more complex models.
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Figure 4.2: Simple Offshore Structural Model: d = 50 m, D = 3 m, n = 5 nodes

4.2.2 Offshore Structural Response

Morison Loading on Cylindrical Members

Morison’s equation (Morison et al. 1950) states that the wave-induced horizontal force

per unit length q on a vertical submerged cylinder (cylinder diameter /

wavelength < 1/5) is the sum of a nonlinear drag component qd and a linear inertial

component qi. This is shown in the following equation:

q = qd + qi = kd|u|u+ kiu̇ (4.8a)

kd =
1

2
CdρD (4.8b)

ki =
1

4
CmρπD

2 (4.8c)

The drag and inertia coefficients, Cd and Cm, are dependent on Reynold’s number,

Kuelegan-Carpenter number and cylinder roughness. In using Morison’s equation to

calculate the nodal forces, it is assumes that vortex-induced transverse forces have a

negligible effect (Sarpkaya & Isaacson 1981).
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Effect of Load Nonlinearity
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(a) Inertia-dominated Structure, D = 3.0 m
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(b) Drag-dominated Structure, D = 0.5 m

Figure 4.3: Components of Morison Load on Drag- and Inertia-dominated Structures

Evidently, the calculation of the Morison force at each node on the structure, first

requires the evaluation of the water particle kinematics at the corresponding nodes. As

previously mentioned, the water particle kinematics are linearly related to the surface

elevation and hence can be calculated using simple transfer functions. The loads

however, cannot be calculated using transfer functions due to the nonlinearity of the

drag component, which can be seen in equation 4.8a. The difference between the loads

on drag- and inertia-dominated structures can be demonstrated by varying the

diameter of the cylindrical elements and examples of short sample records of Morison

load including drag and inertia components are given in figure 4.3.

Figures 4.4a and 4.4b are cumulative probablity distributions from a much longer
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sample records of total morison load and correspond to the same diameters used in the

previous figures. It is clear that the drag-dominated structure results in a highly non-

Gaussian response probability distribution, which indicates strong nonlinear behaviour

because a linear system would have produced a Gaussian response to the Gaussian input.

In comparison, linear behaviour is exhibited by the inertia-dominated structure in figure

4.4a.
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(a) Inertia-dominated Structure, D = 3.0 m
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(b) Drag-dominated Structure, D = 0.5 m

Figure 4.4: CDFs of Base Shear Force; derived from a Single Sample Record in each
case

As one would expect, these figures are in agreement with equation 4.8, but more

importantly, they reinforce the point that a frequency domain analysis, which relies

upon a linear relationship between input (surface elevation) and response (Morison

load dependent), is not sufficient for calculating the statistical properties of offshore

structural response (Tickell 1977). Thus, the rest of the analysis must be carried out in

the time domain, unless a linearised approximation for the drag component is used,

which would of course sacrifice some of the accuracy and reliability of the results. But

for structures that exhibit strong nonlinearities, i.e. drag-dominated structures, this

type of analysis would be completely unreliable. Here lies the heart of the problem

that is being tackled in this project: to calculate the loads in the time domain at every

node is extremely time consuming compared to the alternative frequency domain
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approximations, but it is absolutely necessary if one is to conduct a reliable structural

analysis. This problem is magnified when considering the sheer number of sample

records that need to be simulated in order to generate even short-term response

statistics, but this will be discussed a little later in this chapter.

Interesting Quantities

Once the Morison loads on the structure have been calculated for a given sample record,

they can be used to establish a time history of whichever structural response parameter

that is of particular interest for the design, often called an interesting quantity. The

interesting quantities considered in this project are limited to base shear (BS) and

over-turning moment (OTM), but of course there are a vast number of responses that

an engineer might want to calculate in reality (e.g deck deflection, stresses in critical

members, etc.). In this case, assuming a linear system in which dynamic effects are

negligible, the quasi-static base shear force and over-turning moment at the sea bed is

calculated using equations 4.9 and 4.10, respectively.

BS =

NN∑
k=1

qklseg (4.9)

OTM =

NN∑
k=1

qkZklseg (4.10)

where Zk is the distance of the kth node from the sea bed and lseg is the length of one

cylindrical segment, which is equal to d/NN.

4.2.3 Short-Term Response Statistics

In order to compute an empirical distribution for an interesting quantity, it is necessary

to simulate a large number of sample records. Figure 4.4 gave examples of CDFs using

all the load values from a single sample record, but for design purposes, it is more useful

to calculate an extreme value distribution, which is the probability distribution of the
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single maximum value from each of a range of response sample records. This distribution

gives the proportion of sample records that can be expected to have extreme values that

exceed a certain value.

This distribution is considered to be short-term if only a single sea state is considered.

In other words, all of the surface elevation sample records are generated using the exact

same frequency spectrum, i.e. the exact same values of Hs and Tz. The conventional

procedure for calculating a short-term extreme response distribution is as follows:

(1) The frequency spectrum, defined by equation 4.7, is used along with equation 3.23

to generate random amplitudes and phases for a range of harmonics. Thus, the

discrete fourier transform of a surface elevation sample record can be defined using

equation 3.25.

(2) The DFTs of the horizontal water particle velocity and acceleration at each node are

calculated using equations 4.5 - 4.6. Then sample records of u and u̇| are calculated

by taken the inverse Fourier Transform of their respective DFTs.

(3) The water particle kinematics sample records are used to calculate the Morison

forces at the respective nodes using equation 4.8.

(4) Equations 4.9 and 4.10 can then be used to determine the structural response in

term of base shear and over-turning moment. If required, time histories of other

interesting quantities can be established.

(5) The maximum (extreme) value of an interesting quantity for this sample record is

extracted.

(6) For the exact same input parameters, steps (1) to (5) are repeated for a very large

number of sample records, say 100,000, and the extreme values of the interesting

quantities are ranked in ascending order.

(7) The empirical cumulative probability distribution of each interesting quantity is

given by equation 3.30.
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Figure 4.5: Short-Term Probability Distribution of Base Shear using the Conventional
Method

Figure 4.5 shows an example of an extreme response distribution, plotted to the

Gumbel scale, that was obtained using the method outlined above.1 It can be clearly

observed that, although the distribution consists of 100,000 data points (one extreme

value from each simulated response sample record), the vast majority of them are

nowhere near the tail of the distribution, which is the area of greatest value when it

comes to estimating design response values. However, reducing the number of

simulations using the conventional method would simply increase the sampling

variability, and hence the reliability, at the high extreme values (the ‘tail’ of the

distribution). Thus, the reason that the Conventional method takes so long is that it

requires a very large number of simulations to produce a distribution with a tail that is

adequately reliable for obtaining design response values.

1In this case, two-minute sample records were used to reduce computational cost, but three-hour
sample records would be more realistic.
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4.2.4 Long-Term Response Statistics

‘Short-term’ probability distributions describe the probability of exceedance of the

interesting quantities for a single sea state, which is defined by specific values of Hs

and Tz. A ‘long-term’ probability distribution is one that enables the total probability

of exceedance to be determined on the basis of all possible sea states. In other words,

it takes into account the fact that random waves are actually non-stationary by

applying the probability of occurrence of a large number of stationary processes

(individual sea states).

For example, the probability distribution in figure 4.5 shows the probability that the

structure response will exceed a value rmax based on the condition that the sea state,

Hs = 15 m, Tz = 13 s, has already occurred. This probability can be written in general

terms as P (rmax | Hs ∩ Tz), which means that, from equation 3.29, the total probability

of rmax for the range of j sea states can be written as

P (rmax) =
∑
j=1

P
[
rmax | (Hs ∩ Tz)j

]
P
[
(Hs ∩ Tz)j

]
(4.11)

In order to illustrate the application of this to the design of offshore structures, the

following example has been provided, using extreme surface elevation ηmax instead of

extreme response rmax so that the analytical distribution could be used and thus, no

simulations were necessary.

Suppose there are three sea states that could possibly occur, denoted by SS1, SS2

and SS3. Evidently, they are collectively exhaustive and mutually exclusive so the sum

of their probabilities of occurrence must be equal to one. The properties of the sea states

are:
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SS1: Hs = 5 m, Tz = 7.9 s, P(SS1) = 0.2

SS2: Hs = 10 m, Tz = 11.2 s, P(SS2) = 0.7

SS3: Hs = 15 m, Tz = 13.7 s, P(SS3) = 0.1

With these properties, equation 4.12 can be used to find the total probability of the

extreme values of surface elevation for all three sea states:

P (ηmax) = P (ηmax | SS1) P (SS1) +

P (ηmax | SS2) P (SS2) + P (ηmax | SS3) P (SS3)

(4.12)

Figure 4.6 shows the theoretical solution for P (ηmax) and compares it to the

individual probability distributions P (ηmax | SS1), P (ηmax | SS2) and P (ηmax | SS3).
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Figure 4.6: Example of Long-term CDF of Extreme Surface Elevation using only 3
Sea States

For design purposes, one might assume that taking the worst conditions that could
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occur and simulating sample records for that sea state would be a sensible solution.

However, in this case it is clear that the use of the long-term case predicts lower extreme

values for a given design probability of exceedance than if the worst-case sea state, SS3,

is used. This demonstrates that to achieve the most efficient designs, all of the possible

conditions that could occur must be taken into account. This magnifies the problem of

the high computational cost when it comes to simulating long-term structural response

distributions, for which no analytical solution is available due to the nonlinearity of the

drag component of the Morison load.

As one would expect, in reality there is a much larger number of possible sea states

that could occur. Also, Hs and Tz are not statistically independent, so P (ηmax) must

be calculated for each joint event Hs ∩ Tz. This means that in order to find the total

probability of ηmax, the joint probability distribution of Hs and Tz must be determined.

Fortunately, real data is available that makes this possible as shown in figure 4.7, which

is known as a sea state scatter diagram. This particular data was taken from the

Forties region of the North Sea, the conditions of which have been assumed for all the

simulations in this project.

From figure 4.7 the probability of the joint event Hs∩Tz can be calculated by dividing

the number of times that the sea state Hs∩Tz occurred by the total number of recorded

sea states (88053 in this case). Therefore, the sea state scatter diagram is essentially

a joint probability mass function of Hs and Tz. Given this information, the long-term

distribution of extreme surface elevation can be established, which can later be used to

validate the offshore structural response model used in this project.

It is important to note, however, that since the sea state scatter diagram is

comprised of data that was measured over a finite period of time that is relatively

short (approximately 27 years), there are extreme sea states that could theoretically

occur at that site, that are not accounted for in the data in table 4.7 because they did

not occur during the time the data was being recorded. This leads to unreliable

long-term surface elevation probability distributions because sea state conditions of

greater intensity (and of greater return period) than those measured are not accounted

for (Goda 2010). Trial calculations have shown that scatter diagrams should cover the
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average occurrence of sea states over a duration which is at least 10 times as long as

the service life of the structure (Inglis et al. 1985). Clearly, this amount of measured

data is not available given that offshore structures are typically designed for loads that

occur once every hundred years. Therefore, in order to calculate reliable long-term

probability distributions for offshore structural response, the sea state scatter diagram

must be extrapolated to account for the more extreme sea states. This extrapolation

has not been carried out for the work in this project, because it is not necessary for

simply demonstrating the method for simulating long-term statistics, but it would

need to be if one were calculating actual design loads.
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4.3 Model Validation

Before techniques for speeding up the derivation of structural response distributions can

be tested, it is necessary to ensure that the model that will be used is reliable. Of course,

structural response distributions can not be compared to analytical equations, because

they do not exist; otherwise the distributions would not need to be simulated at all. The

properties of simulated surface elevation sample records, however, can be compared with

analytical equations that describe linear random waves and Gaussian processes. Due to

the linear relationship with surface elevation, the water particle kinematics of the model

can also be validated using analytical probability distributions. It must be assumed

that if the model behaves in a way that is consistent with these analytical descriptions,

the properties of the simulated structural response are also realistic. Figure 4.8 defines

some of the properties of random sea waves that will be examined in order to validate

the capability of the model.

 

MWL (η = 0) 

Wave Height 

Crest Height 

Crest 

Trough 

Figure 4.8: Properties of Sea Waves

Figures 4.9 - 4.13 show comparisons of simulated data from the model in section 4.2

with analytical descriptions of the CDFs of each wave property. Figure 4.9, plotted on

a Gaussian scale, compares the simulated values of η from a single sample record to the

theoretical CDF of a zero-mean Gaussian process,

P (η ≤ η∗) =
1

2

[
1 + erf

(
η∗√
2ση2

)]
(4.13)

where, because the sea is modelled as a narrow-banded process, the standard deviation of

the surface elevation ση is directly related to the significant wave height in the following

way (Hoffman & Karst 1975):
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Hs ≈ 4ση (4.14)

Figure 4.10 compares simulated values of ηmax from a large number of sample records

to the theoretical distribution given in equation 3.4, and is plotted to the Gumbel scale.

Both figures 4.9 and 4.10 show that the model behaves as expected; any deviation from

the theoretical distribution in either case is clearly due to sampling variability, which is

a product of the aleatory uncertainty within the process. Figures 4.12 and 4.13, on the

other hand, display systematic deviation from the theoretical distributions, which must

be justified if the model is to be deemed sufficiently realistic.
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Figure 4.9: CDF of Surface Elevation Values from a Single 3-hour Sample Record

Assuming that the crest height is equal to H/2, figure 4.12 compares simulated crest

heights from a single sample record to an analytical distribution for wave heights that is

based on the Rayleigh distribution (Tayfun 1980) which, combined with equation 4.14,

gives

P (H ≤ H∗) = 1− exp

(
−2H∗

2

Hs
2

)
(4.15)
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Figure 4.10: CDF of Extreme Surface Elevation from 10,000 Sample Records

Figure 4.12 shows that the empirical distribution of wave crests deviates from

equation 4.15 for lower crest heights. This is most likely due to the way that crest

heights have been extracted from the sample records. In the program used to calculate

crest heights, a wave is considered to be between two points of zero-upcrossing, which

means that some smaller waves that occur will be missed because they occur entirely

above or below the mean water level. Figure 4.11 demonstrates this, and it is clear

that it is these smaller waves that are less likely to cross the MWL and thus are

undetected by the program, which accounts for the apparent scarcity of smaller wave

crests in the distribution from figure 4.12.

 

MWL (η = 0) 
Measured Crest Height 

Smaller (Local) Crest 

Figure 4.11: Limitation in the Measurement of Crest Height from Simulated Data
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The deviation of the empirical data in figure 4.13 from the theoretical distribution

is in fact consistent with reality because the Rayleigh distribution has been shown to

be overly conservative at predicting large (crest-to-trough) wave heights (Tayfun 1981).

This is due to the fact that the crest and the trough of a wave do not occur at the same

time, and so for high crests, associated troughs are likely to have a smaller amplitude

(Forristall 1984). Thus, the assumption that the wave height is twice the crest height

becomes invalid for higher crest heights, especially for spectra that are not quite as

narrow, such as the Pierson-Moskowitz spectrum used in this study.
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Figure 4.12: CDF of Crest Heights from a Single 40-day Sample Record Plotted to
the Rayleigh Scale
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Figure 4.13: CDF of Wave Heights from a Single 40-day Sample Record Plotted to
the Rayleigh Scale

Figures 4.14 and 4.15, show that the empirical distributions of water particle

kinematics and their extreme values are also consistent with reality. The slight

deviation in figure 4.15b is most likely due to some small error in the calculation of σu̇

for defining the theoretical distribution, rather than the simulated data.

Up until now, the distributions in this section have been short-term, assuming the

sea state (Hs = 15m ∩ Tz = 13s) has occurred, but it is necessary to confirm that the

model performs realistically for the full range of sea states that could possibly occur.

In this case, simulated extreme values are compared to a theoretical long-term CDF of

ηmax based on the sea state scatter diagram shown in figure 4.7. As observed in figure

4.16, the model gives an excellent fit between the empirical and theoretical curves and it

should be noted that the number of simulations is extremely high (10 million in total) in

order to produce a tail with sufficiently low sampling variability. This again highlights

the importance of developing techniques to reduce the number of simulations required

to achieve an accurate distribution when it comes to calculating time-domain response

statistics.
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(a) Horizontal Water Particle Velocity
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(b) Horizontal Water Particle Acceleration

Figure 4.14: CDFs of Water Particle Kinematics Values from a Single 90-minute
Sample Record
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(a) Horizontal Water Particle Velocity
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(b) Horizontal Water Particle Acceleration

Figure 4.15: CDFs of Extreme Water Particle Kinematics from 10,000 Sample Records
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Figure 4.16: Long-Term CDF of Extreme Surface Elevation



Chapter 5

Speeding Up the Derivation of

Response Probability

Distributions

5.1 Improving the Reliability of the Efficient Time

Simulation Technique

5.1.1 The Original ETS Technique

The main problem faced when calculating probability distributions of extreme

structural response is that in order to obtain a few data points in the most unlikely

region of extreme response values, a very large number of response sample records

must be simulated. However, for design purposes, one is primarily interested in the tail

of the probability distribution (the rarest occurrences), and even though hundreds of

thousands of sample records have been simulated, the vast majority of the data points

lie in the region that is of little interest. This means that only a very small amount of

the simulation time is taken up by calculating the useful information of the response

extreme values at the tail of the distribution. The challenge, if reducing the number of

simulations, is to maintain the accuracy of the results. Fortunately the accuracy of any

new technique can be confirmed by comparing the response probability distributions to

65
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those of the conventional method outlined in section 4.2.

One way that the number of simulations can be reduced whilst maintaining a

sufficient number of points in the tail of the distribution is using the Efficient Time

Simulation (ETS) Technique (Abu Husain & Najafian 2010). This spreads out the

sampling variability, transferring it to the parts of the distribution that are of little or

no interest to the designer. The underlying approach employed by this method takes

advantage of the fact that there is a strong correlation between extreme response

values and extreme surface elevation values. This is a very useful correlation because it

indicates that surface elevation sample records with high extreme values are likely to

produce response sample records with high extreme values. Conversely, low surface

elevation extreme values can be expected to bring about low response extreme values.

Abu Husain & Najafian (2010) show correlation coefficients as high as 0.939 and 0.955,

for the relationship of extreme surface elevation with extreme base shear and

over-turning moment, respectively.

The correlation is exploited by dividing the theoretical probability distribution for

extreme surface elevation (equation 3.4) into several groups such that the probability

that a given surface elevation extreme value ηmax∗ will fall into a certain group can be

easily calculated. The fact that the response is calculated in the time domain means that

converting surface elevation sample records to response sample records constitutes the

vast majority of the simulation time. Dividing the surface elevation sample records into

groups according to their extreme values allows a limit to be placed upon the number of

response sample records that are calculated within each group. This means that it is no

longer necessary to calculate a large number of response records in order to obtain the

relatively small number of extreme values that form the tail of the response distribution.

Once the chosen number of response sample records within a particular group have been

calculated, all the subsequent surface elevation sample records that fall into that group

can be discarded, potentially saving a great deal of simulation time.

Surface elevation sample records are calculated until the chosen number of response

sample records for each group have been generated, at which point the desired data can

be extracted from each sample record in order to determine the statistical properties of
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the structural response. In the offshore engineering aspect of this project, seven groups

were used (G = 7), separated by six boundaries for which the chosen probability values

used in this study are presented in figure 5.1.
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Figure 5.1: Theoretical Extreme Value Distribution for Surface Elevation Divided into
7 Groups

Let S be the set of all the simulated response extreme values such that

S = {S1, S2, . . . , SG} where Si ⊂ S. The values in S are divided into these subsets

based on the extreme values of their corresponding surface elevation sample records,

using the boundaries specified in figure 5.1.

In order to calculate a response probability distribution from the limited number of

sample records in each group, it is first necessary to determine the probability Pi that

a sample record belongs to the ith subset of S. This is calculated for each group such

that

P1 = P (ηmax1) (5.1a)

Pi = P (ηmaxi)− P
(
ηmaxi−1

)
, i = 2, 3, . . . , G− 1. (5.1b)

PG = 1− P (ηmaxG) (5.1c)

In the ETS method, the extreme values are extracted from the response sample records,
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and their probability distributions for each group are calculated using equation 3.30. The

distribution P (rmax ≤ R) gives the probability that the extreme response rmax will not

exceed a given response value R, and will be denoted as Prmax (R). Thus, the cumulative

probability distribution of extreme response values within the ith group is denoted as

P
(i)
rmax (R). Once P

(i)
rmax (R) has been determined for each group, total probability theorem

is applied in the following way to determine the overall probability distribution of rmax:

Prmax (R) =
G∑
i=1

P(i)
rmax

(R)Pi (5.2)

Equation 5.2 makes clear the importance of having a strong correlation between the

extreme values of surface elevation and response. The underlying assumption in the

method is that the probability Pi that ηmax will belong to the ith subset is the same as

the probability that the corresponding response extreme value rmax will also belong to

that subset. Hence, Pi is used in equation 5.2 with regards to the response, whereas it

was originally calculated from then theoretical extreme value distribution of the input.

Although Abu Husain & Najafian (2010) showed high correlation coefficients for

both base shear and over-turning moment, they used a different structure to the one in

section 4.2. This means the correlations must be calculated again for the structure used

in this project in order to verify the aforementioned assumption is valid.

Figure 5.2 demonstrates that there is a very strong correlation between extreme

surface elevation and the response extreme values. The correlation coefficients for base

shear and over-turning moment of 0.965 and 0.954, respectively, which are very close to

those found by Abu Husain & Najafian (2010) with a slightly different structure. The

fact that the correlations are not linear does not affect the validity of the ETS method,

it only matters that the correlation is strong and positive.

As figures 5.3a and 5.3b show, the original ETS method gives a good

approximation of the extreme response distributions compared to those generated

using the conventional method. Of course, the number of surface elevation sample

records that are converted to response time-histories within each group has large effect

on the accuracy of the distributions. In the example in figures 5.3a and 5.3b, there

were 100 sample records in each group, making a total of only 700 response
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(a) Extreme Base Shear
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(b) Extreme Over-turning Moment

Figure 5.2: Correlations Between Extreme Surface Elevation and Corresponding
Extreme Response Values Based on 20,000 Simulations

simulations. This is significantly small compared to the 100,000 sample records that

were required to generate the conventional distributions. This doesn’t tell the whole

story though, because the number of response sample records in each group does not

have to be equal to that of the other groups, but the effect of changing these values

will be investigated later in section 5.2.

It is evident that the need for a strong correlation between input and output

parameters leads to the need to verify that such a correlation exists for every new

structure. For example, it may be that the correlation only exists for the very simple

models that are presented in this thesis, which means that it is not guaranteed that

the method can automatically be applied to more complex, realistic models. Instead, if

the efficient method is to be used, it is necessary to run a number of simulations to

establish the correlation between the input and the output. One problem with this is

that this process is potentially time-consuming in itself and may negate the effect of

using the efficient method in the first place. However, it could be argued that the

number of simulations required to assess the correlation, combined with the number of

simulations required by the efficient method, may still be smaller than the number of
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simulations required by the conventional method. This leads to the obvious question:

how many simulations are required in order to give confidence that a strong correlation

exists?

No investigation has been undertaken into precisely answering the above question,

which is why the correlations in this thesis were calculated using an extremely large

number of simulations, as in figure 5.2. However, it might be argued that, because it is

a strong correlation that is required, such a correlation should become apparent after

only a small number of simulations.1 This means that there is an initial test that can be

carried out relatively quickly on any new structure to verify whether or not the efficient

method can be used, and if no evidence of a correlation is found using a small number

of points, then it may be assumed that the correlation would not be strong enough to

justify the use of the method. In such cases, the engineer would be limited to using other

methods that may be more time consuming or make further assumptions to simplify the

structure so that it can be analysed in the frequency domain.

In order to more precisely define the number of simulations that would be required

for such an initial test, it is recommended that future work is carried out in which the

correlation coefficients derived from a small number of simulations could be compared

to those derived from an extremely large number of simulations, and the smaller

number of simulations could be gradually increased until the correlation coefficients

converged. This could be carried out upon a range of different structures to see

whether the convergence consistently occurs around the same number of simulations.

1Around 20 - 50 in the author’s experience, which is significantly lower than the hundreds of thousands
typically required by the conventional method.
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(a) Base Shear

99.9  90    50    20    5     1     0.1   0.01  0.001 0.0001

2

3

4

5

6

7

8

9

10

x 104

   Percentage Exceeding (%)   

   
Ex

tre
m

e 
O

ve
rtu

rn
in

g 
M

om
en

t (
kN

m
)  

 

 

 
Conventional Method
ETS Method

(b) Over-turning Moment

Figure 5.3: CDFs of Extreme Response Using the ETS Technique
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5.1.2 The Enhanced ETS Technique

Although the ETS provides a good estimate of response distributions, it does not

typically produces a very smooth curve because it introduces sampling variability at

the extremes of each group, instead of just the tail of the entire distribution. This

results in a curve with a shape that slightly resembles that of an umbrella, which can

be observed in figure 5.3. In attempt to minimise this ‘umbrella’ effect, a enhanced

version of the ETS method was developed, which will be presented in this section.

The enhanced version follows the same procedure as the original ETS method, except

that the generalised extreme value distribution is fitted to each subset’s distribution

using MATLAB before total probability theorem is applied. The generalised extreme

value distribution essentially ‘lets the data decide’ on the best extreme value distribution

(Gumbel, Frechet or Weibull) to describe it, due to the inclusion of a shape parameter

K. The probability density function of rmax in its generalised form is defined as

p (rmax | K,µ, σ) =

(
1

σ

)
exp

{
−
[
1 +K

(rmax − µ)

σ

]− 1
K

}[
1 +K

(rmax − µ)

σ

]−1− 1
K

(5.3)

This parameters K, µ and σ are determined for each group so that the overall

distribution can be determined by

p (rmax) =
G∑
i=1

pi (rmax | Ki, µi, σi)Pi (5.4)

The CDFs in figure 5.4 are based on the same number of simulations as figure 5.3,

but were calculated using the enhanced ETS technique. The distributions are somewhat

smoother than those from the original method and there is the added advantage of being

able to choose the precise range of response values that are plotted, rather than being

limited by the random nature of the model. There is of course a limit to this, because

extrapolation outside the range of simulated results may make false assumptions about

the behaviour of the structure in extreme cases. This is especially the case for structures

that exhibit a high degree of nonlinearity.
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Figure 5.4: CDF of Extreme Response Using the Enhanced ETS Technique
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5.1.3 Sampling Variability

Although the CDFs that were generated using the enhanced ETS method appear to be

‘smoother’ than those generated using the original ETS method, the so-called

‘umbrella’ effect has not been eliminated. Also, it is very difficult to say, based on a

single comparison curve, whether one method is better than the other, given that the

computational costs are virtually identical. For two methods with the same

computational cost, the most effective method is the one that provides the greatest

reduction in sampling variability. Thus, although figures 5.3 and 5.4 serve to validate

the respective methods, a better way to compare them is to plot a large number of

CDF curves on top of one another. Each method should provide a different ‘envelope’

of sampling variability, which, if the same number of curves is generated for each

method, will allow their accuracy to be compared. This analysis can also include the

conventional method in order to visualise the improvement that the ETS techniques

provide. For this type of comparison, the number of permitted response simulations in

each group has been reduced in order to save time. Because the curves from each ETS

technique will allow 20 response simulations in each group, the curves from the

conventional method should contain 140 extreme values (20×7) so that the

computational cost is the same for all the methods.

The ‘envelopes’ in figure 5.5 were created by generating 500 curves, from identical

input values, for each method and plotting them on top of each other. The comparison

clearly shows that there is a reduction in sampling variability when using either ETS

method or the enhanced version. Unexpectedly, however, the so-called enhanced ETS

method increases the sampling variability in comparison to the original ETS method,

especially for the over-turning moment distribution. This means that, although the

method is ‘enhanced’ in terms of the smoothness of the distribution curve, it is actually

a little less reliable than the original ETS method. The reason for this reduction in

reliability may be that each group’s empirical distribution is forced to conform to the

analytical generalised extreme value distribution described in equation 5.3, instead of

using only the simulated data from the model. If a more reliable distribution is to

be obtained from a given number of simulated response sample records, it is necessary
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to use more information from each sample record, an option that is explored in the

following section.
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Figure 5.5: Comparison of Sampling Variability ‘Envelopes’ for Each Method; 140
Simulations for Each
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5.2 The Efficient Threshold Upcrossing Method

5.2.1 Method Development and Procedure

The ETS method, outlined in the previous section, was shown to be effective, but

there is evidently still room for improvement when it comes to deriving accurate

response probability distributions. Even the enhanced version suffers from the

so-called ‘umbrella’ effect around the boundaries of the groups that are used in the

analysis. If this problem could be reduced even further, then distributions with

acceptably low sampling variability could be derived at an even lower computational

cost. This would have an enormous impact on increasingly complex nonlinear

structures such as dynamic structures that are exposed to current and load

intermittency in the splash zone, which although they are not covered in this project,

are important considerations that effect the statistical properties of structural response

Tung (1995), Liaw & Zheng (2003).

Extreme Value 

MWL 

(a) ETS Method

MWL 
Threshold 1 
Threshold 2 
Threshold 3 
Threshold 4 
Threshold 5 
Threshold 6 

(b) ETU Method

Figure 5.6: Data Extracted for Response Statistics in ETS and ETU Methods
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This section presents the newly developed Efficient Threshold Upcrossing (ETU)

method, which combines the speed of the ETS method with the superior accuracy of

a technique based on threshold upcrossings (Naess et al. 2007). The advantage of the

ETU method is that it uses a great deal more information from each response sample

record than the ETS method with negligible additional computation cost, meaning that

it should require fewer simulations to achieve the same level of sampling variability as

the ETS method.

The difference between the ETU and ETS methods is the data that is extracted from

the response sample records. In the ETS method, it is only the extreme values that are

recorded, and that form the basis for the empirical distribution based on equation 3.30.

In the ETU method, however, a larger amount of data is extracted from each sample

record so that a more accurate response distribution can be obtained. Instead of using

only the extreme values, the number of upcrossings U of a predefined range of response

thresholds is counted2. This means the response is now being modelled as Poisson

process because the probability of the discrete event of a threshold being exceeded is

of interest, as opposed to a continuous range of possible extreme values. The average

number of upcrossings λ of a response threshold A directly relates to the extreme value

distribution (Naess et al. 2007) such that

P (rmax ≤ A) = exp [−λ (A)] (5.5)

This relationship enables the upcrossing rates for each threshold in each sample record

to be used to calculate response probability distributions. The method by which one

arrives at the response probability distribution having response sample records that

belong to G groups is subsequently outlined.

The range of thresholds is linearly distributed and is defined as the vector

A = [A1, A2, . . . , ANT
], where NT is the number of thresholds. The average number of

threshold upcrossings corresponding to each threshold is therefore defined as the

vector λ = [λ1, λ2, . . . , λNT
]. For each group, λ must be calculated separately because

2Figure 5.6b is for the purpose of representation only. In reality, there are great deal more than 6
thresholds used in the ETU analysis.
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the number of simulations in each group N
(i)
sim are not necessarily the same. This

calculation is carried out using equation 5.6, in which Ui denotes the total number of

upcrossings of the thresholds in A from all the response sample records in group i.

(λ | ηmax ∈ Si) =
Ui (A)

N
(i)
sim

(5.6)

Once the vector (λ | ηmax ∈ Si) has been calculated for each group, total probability

theorem is applied to determine the expected values of λ for the range of thresholds A.

The expected values are denoted by E [λ] and are calculated as

E [λ] =
G∑
i=1

(λ | ηmax ∈ Si)Pi (5.7)

This takes into account the fact that the response sample records belong to separate

groups with their own probability of occurrence so that the overall extreme response

probability distribution can be obtained by

P (rmax ≤ A) = exp (−E [λ]) (5.8)

In order to demonstrate more clearly how it works, a flow diagram of the procedure

for deriving an extreme response distribution using the ETU method is shown in figure

5.7. The subset with the highest range of response values, and hence the least likely to

occur, will be known as the ‘extreme’ group, which is the 7th group in this case. All of

the other subsets will be known as the ‘interim’ groups (groups 1-6 in this case). The

procedure assumes that the occurrence of sample records belonging to the ‘extreme’

group is sufficiently rare that the interim groups will already have fulfilled their quota

by the time the extreme group has.3 This means the simulation can be stopped when

enough response sample records have been calculated in the extreme group.

One advantage of making the aforementioned assumption is that it is no longer

necessary to predetermine the total number of surface elevation sample records that

need to be generated to obtain enough response sample records in the extreme group,

3This assumption would only cause a problem if the extreme group only required a very small number
of sample records, which would defeat the point of using the method anyway.
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which is the approach used in the original ETS method (Abu Husain & Najafian 2010).

This saves a small amount of computational cost because it prevents unnecessary surface

elevation sample records from being generated that would have been discarded anyway.

Has the 
quota for the extreme 

subset been met? 

Frequency 
Spectrum 

Find the extreme 
value 

Determine which 
subset the sample 
records belongs to 

Has the 
quota for that subset 

been met? 

Calculate the 
corresponding response 

sample record 

Count the number of 
upcrossings of each 
response threshold 

Generate a surface 
elevation sample record 

Add this data to the 
previously extracted data 

for the given subset 

Apply Total 
Probability Theorem 

No 

Yes 

Yes No 
Apply equation 5.8 

Figure 5.7: Procedure for the Derivation of Extreme Response Probability
Distributions using the ETU Method

5.2.2 Validation and Distribution Tailoring

It was previously mentioned that an advantage of the ETS and ETU methods is that

each group does not need to contain the same number of response sample records. For

example, the area of greatest interest when it comes to design loads is the ‘tail’ of the

extreme value distribution. The tail of the curve is formed using data extracted largely

from the sample records in the ‘extreme’ group (group 7) and not from the ‘interim’

groups (groups 1-6). Therefore, a more accurate tail can be obtained from the same

number of simulations by allowing more simulations in the extreme group and fewer

in the interim groups. ‘Distribution tailoring’ means that, instead of spreading the

sampling variability out evenly across the distribution (as in section 5.1), it can be

moved away from the parts of the distribution that are most important.
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The cases established in table 5.1 are varied in such a way that particular features of

the ETU method can be observed. In each case, the number of simulations in the groups

has been altered so that it either speeds up the derivation of the probability distribution,

or transfers the sampling variability to the areas that are relatively insignificant for

practical purposes. These are the cases that will be used to validate the ETU method

as well comparing it to the original ETS method. The ‘enhanced’ version of the ETS

method will not be considered because it was deemed to be less reliable than the original

version in section 5.1.

For the sake of simplicity, the extreme value distributions in each case are based on

short-term statistics (i.e. rmax | Hs ∩ Tz) and the probability that a given sea state will

occur has not been taken into account. However, the method can easily be extended to

account for the long-term statistics (Abu Husain et al. 2013) outlined in section 4.2, but

this will only be exploited in its application to aircraft gust loading in chapter 7.

For ease of reference, the input data for generating all of the following figures are

as follows: Cd = 0.8, Cm = 1.7, Hs = 15 m, Tz = 13 s, T = 120 s, d = 50 m, D =

3.0 m. Also, the Conventional method response probability distribution is derived from

100,000 response simulations in each case.

Table 5.1: Details of the Analysis for Each Case

Total No. of
Simulations

No. of Simulations
Computational

Cost Reduction
Interim

Groups (1-6)
Extreme

Group (7)

Case 1 700 100 100 99.3 %

Case 2 210 30 30 99.8 %

Case 3 210 10 150 99.8 %

Case 4 100 5 70 99.9 %

Firstly, it can be observed from figure 5.8 that the ETU method agrees extremely well

with the Conventional method, even though in this case the probability distribution is

derived from approximately 150 times fewer simulations. It is also evident that the ETU

method produces a smoother distribution than the ETS method, which is presumably

due to the additional information that is extracted from the response sample records in
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the ETU procedure.

Case 2 implements a reduction in the total number of simulations, while the

proportion of simulations in each group is kept constant. Figure 5.9 demonstrates

that, now with 500 times fewer simulations than the Conventional method, the ETU

method manifests a slight instability around the tail of the distribution due to the

increase in sampling variability. Despite this, it still agrees very well with the

Conventional method, especially in the lower part of the distribution.

It is the tail of the distribution, however, that is of greatest value when it comes

to acquiring design values, so Case 3 is arranged such that the sampling variability in

the tail of the distribution is reduced. While keeping the total number of simulations

the same as in Case 2, this is accomplished by transferring it to the lower part of the

distribution by reducing the number of simulations in the interim groups and increasing

that of the extreme group. The advantage of this can clearly be seen in figure 5.10.

It is clear that Case 3, although it is the same speed as Case 2, marks a significant

improvement in the accuracy of the tail of the distribution. This demonstrates that the

ETU method can be tailored to suit design requirements by rebalancing the number of

points in each group so that the most important part of the distribution is sufficiently

accurate. As shown, this can be achieved without any extra computational cost.

So far, both the ETU and ETS methods have exhibited similar agreement with the

conventional distribution, with the ETU method apparently producing a more reliable

curve in the lower part of the distribution. However, because the ETU method extracts

more data from the response sample records with no extra computational cost, it should

be expected that if the total number of simulations is sufficiently reduced, a noticeable

difference in accuracy will appear between the two methods.

Figure 5.11 presents distributions that are derived from 1000 times fewer

simulations than the Conventional method, as defined in Case 4. It shows that, even

with such a small number of simulations, the ETU method displays a good agreement

with the Conventional method, especially in the tail of the distribution. Also, when a

very small number of simulations is used, it appears to produce slightly more stable

response probability distributions than the ETS method because the number of points
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in the distribution is dependent upon the number of thresholds instead of the number

of simulations.

Overall, the ETU method appears to produce a more reliable curve in the lower

part of the distribution compared to the ETS method, yet performs similarly in the tail.

This is consistent with the way that the data is extracted in each method. In the ETS

method, each point on the distribution comes from a single sample record, so if there

are only a few sample records in the lower groups, then there will only be a few data

points in the lower part of the distribution. Likewise, the accuracy of the tail of the

distribution depends upon the number of sample records in the extreme group. However,

the ETU method is not as straightforward because a single sample record, regardless of

what group it belongs to, provides statistical data for all the thresholds that are crossed

in its duration. This means that the lower part of the distribution is affected by the

sample records in the extreme group as well as the ones in the interim groups. The

inverse is not true, however, because sample records from the lower groups are very

unlikely to cross the thresholds that are crossed in the extreme group, and therefore

provide no additional information about the tail of the distribution. This means that

the ETU method should be favourable over the ETS method because it allows for fewer

simulations in the lower groups, so that more computation time can be focussed on the

extreme group, without sacrificing as much accuracy as the ETS method does.
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Figure 5.8: CDFs of Extreme Response for Case 1: ∼150 Times Faster
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Figure 5.9: CDFs of Extreme Response for Case 2: ∼500 Times Faster
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Figure 5.10: CDFs of Extreme Response for Case 3: ∼500 Times Faster



5. Speeding Up the Derivation of Response Probability Distributions 87

99.9  90    50    20    5     1     0.1   0.01  0.001 0.0001

500

1000

1500

2000

2500

3000

3500

   Percentage Exceeding (%)   

   
Ex

tre
m

e 
Ba

se
 S

he
ar

 (k
N

)  
 

 

 
Conventional Method
ETS Method
ETU Method

(a) Base Shear

99.9  90    50    20    5     1     0.1   0.01  0.001 0.0001

2

3

4

5

6

7

8

9

10

x 104

   Percentage Exceeding (%)   

   
Ex

tre
m

e 
O

ve
rtu

rn
in

g 
M

om
en

t (
kN

m
)  

 

 

 
Conventional Method
ETS Method
ETU Method

(b) Over-turning Moment

Figure 5.11: CDFs of Extreme Response for Case 4: ∼1000 Times Faster
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Selection of the Number of Thresholds

The number of thresholds used in each analysis was 100. The selection of the number

of thresholds is somewhat arbitrary, but this is because it does not have a major

impact on the effectiveness of the method. It does, however, effect the presentation of

the response distribution in that if number of the thresholds is too low, it may not be

possible to accurately read the required data from the curve. Figure 5.12 demonstrates

(using Case 1 as an example) that distributions with fewer thresholds, still accurately

follow the distributions obtained by the conventional method, but would make it

increasingly difficult to obtain reliable data, especially if the distribution does not

follow a straight line. For example, one would have a problem determining the extreme

base shear force that was exceeded in only 0.01% of sample records using the

distribution with 10 thresholds in figure 5.12 because there aren’t enough points in

that region. Therefore, the thresholds need to be sufficiently close together that a

simple linear interpolation would give reliable values. Since there is a relatively

low-computational cost associated with increasing the number of thresholds, it is

preferable to provide more data points than to employ more complex interpolation

techniques. The issue of selecting the ‘best’ number of thresholds to use is more about

precision than accuracy and, thus, it is one that must be address on a case-by-case

basis. Accordingly, in the work presented in this thesis, 100 thresholds were deemed

adequate for the primary purpose of comparing probability distributions that are

derived using different techniques.
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Figure 5.12: Effect of the Number of Thresholds on Response Distribution

Manifestation of Sampling Variability

It can be observed in figures 5.8 - 5.11 that there is a clustering of points towards the

extreme values of the response probability distributions for the ETU method. This

is a manifestation of the sampling variability, which is very different from that of the

conventional and ETS methods because the ETU method models the response statistics

as a Poisson process. This means that the data points are not the actual simulated

values (as in the conventional and ETS methods), but are instead determined based on

the number of exceedances of a predefined threshold value, which is a discrete event.

Therefore, the clustering of points occurs when a peak crosses multiple thresholds that

are not exceeded by any other peaks, resulting in a number of thresholds that apparently

have the same probability of exceedance. Similarly, this phenomenon, can still occur

when a threshold is exceeded by more than one peak, but where at least one consecutive

threshold is only exceeded by the same peaks. To illustrate this, examples of these

occurrences are shown in figure5.13, in which it can be assumed that no other peaks

cross any of thresholds in the figure. In this case, thresholds 94 and 95 would have

equal probabilities of exceedance because they are only exceeded by the first peak.
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Likewise, thresholds 90 - 92 would have equal probabilities of exceedance because they

are exceeded by all three peaks. It is only threshold 93, therefore, that would have a

unique probability of exceedance because it’s neighbouring thresholds are exceeded a

different number of times. Of course, in reality each threshold would have a unique

probability of exceedance, but it is only possible to determine this value accurately if

enough peaks are simulated to distinguish between each threshold.

 

Threshold 90 
Threshold 91 
Threshold 92 
Threshold 93 
Threshold 94 
Threshold 95 

Figure 5.13: Examples of Threshold Upcrossings to Demonstrate Clustering of Points
Due to Sampling Variability

5.2.3 Reliability Comparisons

In order to properly compare the reliability of the two methods, sampling variability

‘envelopes’ are plotted in figure 5.14 using the same approach as in section 5.1. The

envelopes are made up of 500 response distributions plotted on top of one another, with

20 simulations in each group.

Again, the results are surprising, but much more promising than the ‘enhanced’

ETS method comparison. In both figures 5.14a and 5.14b, the ETU method performs

at least as well as the ETS method, with a small improvement in reliability in the lower

parts of the distributions. The difference in sampling variability is far less significant

than was expected based on the argument in section 5.2.2. This may be because the

number of simulations in the interim groups was not low enough to demonstrate the

advantage. In theory, a distribution curve could be generated with no sample records in

the interim groups using the ETU method, whereas this would not be possible with the

ETS method. Also, the ‘envelopes’ in figure 5.14 do not allow the difference in reliability

to be quantified because the envelopes would expand as the number of distributions

plotted were increased. So if the number of distributions plotted were, say, 10,000 instead
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of 500, which would be far too time-consuming to demonstrate, the ETU method might

appear much more reliable, even though the number of simulations were identical. In

other words, the important thing to note is that ETU method performs at least a little

better than the ETS method, and thus, should be suitable for application to the aircraft

gust loading problem discussed in chapter 2.
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Figure 5.14: Sampling Variability ‘Envelopes’ for ETU and ETS Methods Using 20
Simulations in Each Group



Chapter 6

Mathematical Modelling of Gust

Loading

6.1 Simulation of Continuous Turbulence

6.1.1 Reliable Gust Velocity Sample Records

As outlined in chapter 3, the velocity of the continuous turbulence that an aircraft is

subjected to can be modelled as an ergodic random process, where the gust velocity wg

is made up of a large number of harmonics with random, uniformly distributed phase

angles. A ‘frozen field’ hypothesis is assumed, which means that the aircraft is either

considered to be at a single point in space while wg varies with time, or moving through

space within a ‘snapshot’ of turbulence from a single point in time, as shown in figure

6.1. This means that it is relatively simple to go back and forth between the spatial

domain wg(x) and the time domain wg(t) where necessary, as long as the speed of the

aircraft V is known. At a single point in space, from equation 3.6, the velocity of a

continuous gust is defined as

wg (t) =

Nh∑
n=1

an cos (ωnt+ δn) (6.1)

Time-domain sample records of gust velocity can be obtained using the spectral

analysis procedure outlined in section 3.3, where the spectral density of the atmosphere

93
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Figure 6.1: Aircraft Entering a Gust (Wright & Cooper 2007)

is described by the widely-accepted Von Karman spectrum (von Karman 1948) shown

in figure 6.2, which is usually defined as a function of spatial frequency as

Φw (Ω) = σw
2 L

π

1 + (8/3) (1.339ΩL)2[
1 + (1.339ΩL)2

]11/6 (6.2)

where L is the characteristic scale wavelength, which is taken to be 762 m.

Figure 6.2: Von Karman Frequency Spectrum (Wright & Cooper 2007)

In current methods, the spectral amplitudes are only calculated deterministically

using equation 3.14, but in this project, the amplitude of the nth harmonic is modelled

as a random process with a mean value of anDSA . This is achieved using equation 3.14,

which is a more robust approach (Morooka & Yokoo 1997, Tucker et al. 1984) because it

means that shorter sample records are able to more accurately represent the frequency
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spectrum from which they were generated.

This has been demonstrated in figure 6.3 by calculating CDFs of extreme gust

velocity using both deterministic and non-deterministic spectral amplitudes. The

empirical distributions were each derived from the 10,000 sample records, first with

relatively long sample records of 10-minute duration, then with relatively short sample

records of only 2-minute duration. Figure 6.3a clearly shows that the technique used

has no effect on distributions that are derived from long sample records, but in figure

6.3b the sample records with non-deterministic spectral amplitudes are shown to

produce a distribution that much more accurately fits the theoretical distribution.

This is a significant finding because current continuous gust response models, such as

the NLR model (Vink & de Jonge 1997) introduced in chapter 2, are limited to

producing sample records using only the deterministic spectral amplitudes, which

means they are likely to be underestimating the magnitude of the aircraft response if

short sample records are used.
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(b) Short Sample Records (2 minutes)

Figure 6.3: Effect of Using Deterministic and Non-Deterministic Spectral Amplitudes
on Extreme Gust Velocity CDF. V = 280 m/s, σw = 1.0 m/s.
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6.1.2 Exceedance Curves

So far in this thesis, cumulative probability distributions of extreme values have been

used to describe the statistical behaviour of the random processes. However, when

dealing with continuous turbulence and aircraft design loads it is conventional to deal

with exceedance curves, which express the probability distribution as the expected

number of peaks that will exceed a given threshold per unit time.1 The frequency of

exceedance of the threshold x is denoted as N (x) and an exceedance curve is made up

of the values of N (x) that correspond to a range of values of x. Thus, the theoretical

exceedance curve for vertical gust velocity is simply a slight variation on the

combination of equations 3.4 and 5.5, and is defined as

N (wg) = N0 exp

(
− wg

2

2σw2

)
(6.3)

where N0 is the expected number of peaks per unit time, which is known as the

characteristic frequency and is calculated by

N0 =
1

2π

√∫
ω2Φw (ω) dω∫
Φw (ω) dω

(6.4)

Figure 6.4 shows that the method used in this project for simulating gust velocity

sample records is capable of producing reliable exceedance curves, by comparing a

simulated curve to the theoretical curve defined in equation 6.3. The simulated curve

was derived from 10,000 gust velocity sample records, each with a duration of 3

minutes.

It is common practice to plot the frequencies of exceedance on a logarithmic scale

against the squares of the threshold values because this produces a straight line for a

stationary-Gaussian process.

1Not necessarily the sample record duration; usually one second or one hour.
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Figure 6.4: Gust Velocity Exceedance Curve Validation. V = 280 m/s, σw = 1.0 m/s.

6.1.3 Turbulence Severity States

So far, there has not been a model that takes into account the non-Gaussian nature of real

turbulence using PSD methods, which is probably because this combination is assumed

impossible. This assumption is true if the task is to generate a single stationary sample

record that has the non-Gaussian attributes of real turbulence. However, as discussed in

chapter 2, it is possible to simulate the non-Gaussian nature of turbulence by modelling

it as a non-stationary process made up of a large number of locally Gaussian sample

records; an idea that is backed up by Hoblit (1988). This can be done by calculating

the long-term statistics of gust velocity, which means plotting an exceedance curve that

takes into account all the possible conditions that the aircraft will encounter in its

lifetime. In order to do this, the concept of a ‘Turbulence Severity State’ (TSS) must

be introduced, which is essentially the aerospace equivalent of the sea state introduced

in section 4.2.

A Turbulence Severity State is a period of time where the gust velocity can be

assumed to be stationary (i.e. constant conditions) and each one is determined by the

magnitude of the frequency spectrum, which varies depending only on the RMS value



6. Mathematical Modelling of Gust Loading 99

σw. This means that a TSS is defined by a range of RMS values that is small enough

to be adequately represented by its midpoint value of σw. Therefore, because each TSS

has its own probability of occurrence, all the possible conditions to which an aircraft

might be exposed can be accounted for by applying the probability distribution of a

range of Turbulence Severity States. This is simpler than it is for an offshore structural

analysis for two reasons. Firstly, long-term wave statistics are dependent on the joint

probability distribution of Hs and Tz, whereas turbulence conditions are only defined by

a single variable σw. Secondly, the shape of the frequency spectra that describe ocean

waves varies depending on the particular part of the world that they are in, whereas the

description of atmospheric turbulence is not dependent upon location.

The RMS gust velocity is itself a random variable with probability density function

p (σw), which was first defined by Press et al. (1956) as

p (σw) = P1
1

b1

√
2

π
exp

(
−σw

2

2b1

)
+ P2

1

b2

√
2

π
exp

(
−σw

2

2b2

)
(6.5)

Thus, only the short-term probability distribution of wg is Gaussian, i.e. when the

turbulence is only considered to have a single value of σw. The long-term statistics of gust

velocity, and therefore aircraft response, can easily be calculated using the conditional

probability distributions of wg and the probability distribution of σw by

p (wg) =

∫ ∞
0

p (wg | σw) p (σw) dσw (6.6)

Using a stationary-Gaussian model, it is possible to generate an exceedance curve

of wg, but the probabilities will be based on the condition that a particular TSS has

already occurred (i.e. It doesn’t account for fluctuations in σw). However, the use of

long-term statistics enables the total probability of wg to be determined on the basis of

a discretised range of all possible Turbulence Severity States. In other words, it takes

into account the fact that atmospheric turbulence is actually non-stationary, making it

non-Gaussian, by applying the probability of occurrence of a large number of stationary

processes (i.e. individual Turbulence Severity States). Implementing total probability

theorem, long-term exceedance curves are determined by equation 6.7 given that the
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discrete Turbulence Severity States are mutually exclusive and collectively exhaustive.

N (wg) =

NT∑
j=1

N
(
wg | σwj

)
P
(
σwj

)
(6.7)

Suppose that the sample space consists of only 3 possible Turbulence Severity States

that have RMS values of 0.5, 1.0 and 2.0 m/s, and probabilities of occurrence of 0.6, 0.3

and 0.1, respectively. Instead of assuming a worst case and calculating the corresponding

exceedance curve, the long-term case can be considered, which is the exceedance curve

of wg across the whole sample space, by generating a number of sample records for

each σw value and applying equation 6.7, using the corresponding TSS’s probability of

occurrence P
(
σwj

)
.

Figure 6.5 shows the long-term exceedance curve and compares it to the conditional

exceedance curves for each TSS, each of which is based on 10,000 sample records of

3-minute duration.
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Figure 6.5: The Effect of Long-Term Statistics on Gust Velocity Exceedance Curves .
V = 280 m/s.

It is clear from figure 6.5 that using the exceedance curve for the worst possible

TSS would yield a higher gust velocity than the long-term case for a given probability
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of exceedance. This would result in overestimated design loads, leading to unnecessary

material costs and a heavier aircraft. This demonstrates the potential advantage of

accounting for long-term statistics in that it gives more realistic exceedance probabilities

but produces lower design gust velocities.

The RMS value of the long-term case can easily be calculated (as if it were a single

stationary condition) as a combination of the three Turbulence Severity States:

σwLT =
√

(0.6)(0.5)2 + (0.3)(0.1)2 + (0.1)(2.0)2 = 0.92m/s (6.8)

Figure 6.6 compares the long-term (non-stationary) case to a stationary exceedance

curve with an equivalent RMS value σwEQ = σwLT, that was generated from the same

number of sample records of equal duration.
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Figure 6.6: Comparison of Long-Term Case with an Equivalent RMS Value
Exceedance Curve. V = 280 m/s.

Figure 6.6 shows that even with just three Turbulence Severity States, the

long-term case predicts higher extreme values in the region from which design values

are selected, than would be predicted by an equivalent stationary-Gaussian model.

This verifies the claim that this model has the potential to take into account the more

extreme fluctuations found in non-Gaussian turbulence by modelling it as a
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non-stationary process. This being said, the literature (Jones 2009b) still suggests that

there are some other underlying assumptions that cause PSD methods to

underestimate the gust velocity in cases of very extreme turbulence. Jones et al.

(1993) argues that this is due to the PSD method’s failure to account for wavelet

phase correlations that define the local structure of the turbulence. This is an

important consideration but is beyond the scope of this thesis, although it may be

considered in future work.

6.1.4 Altitude Considerations

In reality, the sample space consists of a great deal more than 3 turbulence severity

states, so in order to account for the long-term case the probability distribution for the

full range of σw must be known. The problem is that the probabilities of non-storm

and storm turbulence P1 and P2, along with corresponding intensity scale parameters b1

and b2, are all dependent upon altitude, so p (σw) and hence the long-term exceedance

curves are different for every altitude in the flight envelope.
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Figure 6.7: Effect of Altitude on Long-Term Gust Velocity Exceedance Curves.
V = 280 m/s.

Figure 6.7 shows long-term exceedance curves that were obtained from the
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simulation of 10,000 gust patches where a continuous range of possible altitudes has

been divided into 6 altitude bands, accounting for each altitude band’s different

probability distribution of σw. The values of the non-storm and storm turbulence

parameters for each altitude band are presented in table 6.1, and are based on data

read from graphs in Hoblit (1988). Since p (σw) is dependent upon altitude, the

frequency of exceedance curves are not truly long-term until they account for the

amount of time an aircraft is likely to spend in each altitude band. However, this is

only possible on a case-by-case basis and is part of the mission analysis design

procedure, in which a single long-term exceedance curve for gust velocity can be

obtained when the total probability distribution of σw is calculated by

p (σw) =

NA∑
n=1

tn

[
P1n

1

b1n

√
2

π
exp

(
− σw

2

2b1n

)
+ P2n

1

b2n

√
2

π
exp

(
− σw

2

2b2n

)]
(6.9)

where tn is the proportion of flight that an aircraft is expected to spend in the nth

altitude band.

Table 6.1: Non-Storm & Storm Turbulence Parameters for 6 Altitude Bands
(Data Extracted from Figures in Hoblit (1988))

Altitude Band P1 P2 b1 b2
0 - 2,000 ft 0.63 0.004 1.1125 2.3316
2,000 - 10,000 ft 0.20 0.0012 1.0515 2.6516
10,000 - 20,000 ft 0.06 0.00027 1.0058 3.2002
20,000 - 30,000 ft 0.023 0.00011 0.9448 3.5355
30,000 - 40,000 ft 0.011 0.00010 0.8991 3.0174
40,000 - 50,000 ft 0.0046 0.00011 0.9753 2.7278

In the absence of information about a specific aircraft mission profile, the long-term

exceedance curves used in this thesis will assume that the aircraft is always in the 0 -

2000 ft altitude band. However, in Dale et al. (2013), the long-term gust model outlined

in this chapter, including altitude data, was used for a specific mission profile to explore

the effect of continuous turbulence on a newly developed camber morphing concept.



6. Mathematical Modelling of Gust Loading 104

6.2 Simulation of Linear Aircraft Structural Response

6.2.1 Frequency Domain Response

For the analysis presented in this thesis, an aircraft structural model has been created

that enables the full range of possible conditions to be taken into account in a single

analysis so that long-term response upcrossing rates can be calculated if required. This

means that the model can be used to calculate design loads based on a mission analysis,

provided the aircraft is considered to be linear. The assumption of aircraft linearity

allows the structural response to be calculated in the frequency domain, where the

frequency spectrum Φy of a response variable y is obtained by

Φy (ω) = Φw (ω) |Hy (ω)|2 (6.10)

The generalised response q to an individual gust harmonic with amplitude a can be

expressed as a frequency domain vector q̃ that accounts for all the degrees of freedom

in the model, such that

q (t) = q̃eiωt (6.11)

where the frequency domain vector can be found by

q̃ = Hqg (ω) a (6.12)

in which Hqg is the vector of transfer functions relating the generalised response to the

gust velocity (Wright & Cooper 2007) and is defined as

Hqg (ω) =
[
−ω2M + iωC + K

]−1{
RW +RT exp

(
− iωl

V

)}
φ
( ωc

2V

)
(6.13)

where the mass matrix M, the aerodynamic damping matrix C, the stiffness matrix K

and the gust-dependent aerodynamic vectors RW and RT , are defined in appendix A.
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The exponential term in equation 6.13 relating to the gust-dependent response at the

tailplane, introduces a phase shift to account for the time delay that occurs between the

wing and the tailplane encountering the gust. This phenomenon, which is demonstrated

in figure 6.8, is known as the gust penetration effect.

Figure 6.8: Gust Penetration Effect (Wright & Cooper 2007)

Furthermore, Theodorsen’s function φ has been included in the linear analysis, which

accounts for the fact the aircraft does not respond to the gust instantaneously, but the

response takes a certain amount of time to build up, depending on the chord length c.

The physical response z at a particular point on the aircraft is also obtained in

the frequency domain using a transformation matrix Tzq that relates the generalised

response to the values of rigid body and flexible modal displacements. The aircraft

displacements and their derivatives are calculated by

z̃ = Tzqq̃ (6.14a)

˙̃z = iωTzqq̃ (6.14b)

¨̃z = −ω2Tzqq̃ (6.14c)

Time domain response sample records of each interesting quantity y, e.g. ‘internal’ loads

such as wing root torsion moment, can then be obtained simply by taking the inverse

Fourier transform of their frequency domain response ỹ. Once q̃ is known, the frequency
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domain response to an individual gust harmonic with amplitude a is calculated by

ỹ =
[
−ω2Ay + iωBy +Cy

]
q̃ +Dya (6.15)

where Ay, By, Cy and Dy are all transformation vectors that relate the aircraft

motion or the gust input to the interesting quantity y. Of course, these vectors will

vary depending on the interesting quantity, so the transformation vectors for the main

interesting quantities used in this thesis are defined in Appendix B.

6.2.2 Linear Response Exceedance Curves

In order to derive linear response exceedance curves, the aircraft transfer functions only

need to be calculated once, then response time-histories to a large number of randomly

generated gust patches can be obtained using equation 6.12 for all the harmonics in

each gust patch. Again, the exceedance rates of a range of thresholds of each interesting

quantity are calculated for all the gust patches by counting the number of threshold

upcrossings and dividing by the total simulation time. This provides the statistical

information required for an empirical exceedance curve. The simulated exceedance rates

for the short-term case, i.e. assuming σw is constant, can be compared to the theoretical

exceedance curve for linear response, which is described as

N (y) = N0 exp

[
−
(
y/Ā

)2
2σw2

]
(6.16)

where Ā is defined as

Ā ≡ σy
σw

(6.17)

Thus, based on equation 3.12, it can be calculated by

Ā =

√∫∞
0 Φy (ω) dω√∫∞
0 Φw (ω) dω

(6.18)

Therefore, given that the aircraft behaves linearly, both Ā and N0 are constant
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for each interesting quantity and ultimately depend upon the transfer functions, which

means that it is a very simple matter to determine the theoretical exceedance curve for

a particular linear response. In fact, one might argue that it is not necessary to simulate

any results at all since response statistics are so easily available analytically. However,

with the intention of later applying probabilistic analysis to nonlinear aircraft, for which

there are no such analytical methods, the methodology must first be demonstrated

upon a linear model. Furthermore, the linear model will later be used as part of the

methodology for deriving nonlinear response statistics and therefore it must be validated.

6.2.3 Basic Aircraft Model

The above methodology for the derivation of linear aircraft response statistics is

demonstrated using a simple aircraft mathematical model (Vink & de Jonge 1997) (see

figure 6.9) with 5 degrees of freedom; 2 rigid body motions and 3 flexible modes.

(a) Structural Elements

(b) Aerodynamic Elements

Figure 6.9: Schematic of the NLR Model (Vink & de Jonge 1997)

The model’s default values for the aircraft geometry were used, thus, the aircraft
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has a 24 m span, a chord of 3.83 m and a sweep angle of 17◦. Unless stated otherwise,

it is assumed that the true airspeed V of the aircraft is 280 m/s. The original NLR

model enables the user to calculate a single 10-second time history of each interesting

quantity, corresponding to a continuous gust patch of the same duration. The model

has been modified so that the duration of the gust velocity sample records can be varied

and non-deterministic spectral amplitudes are used.

Five interesting quantities can be determined by the gust response model: load

factor n, wing shear force Zw, wing bending moment Mbw, wing torsion moment Mtw

and tailplane shear force Zt. To avoid repetitive figures and for reasons that will later

become apparent, the load factor, wing shear and wing torsion are the only results that

will be presented from the linear analysis.

It is important to note that the modified NLR model described here was only used

for the preliminary study presented in section 7.1 of the following chapter. The linear

part of the analysis in section 7.2 was performed on a different aircraft structural model

(see section 6.3.1) that could also be analysed in the time domain, as the NLR model

does not have this capability. However, every linear analysis in the frequency domain

was carried out according to the same procedure outlined in this section, regardless of

the structural model that was used.

Figure 6.10 shows that the linear model can produce reliable empirical exceedance

curves for short-term response. The simulated data was extracted from 10,000 gust

patches along with their corresponding response time-histories. Evidently, it agrees

very well with the analytical distribution up until the increase in sampling variability

at the tail of the distribution. The fact that the curves are straight lines indicates that

the model is linear, and that the gust inputs are both locally and globally Gaussian and

stationary.

It is more useful however, to simulate the long-term exceedance curves for each

interesting quantity so that design loads of for the life of the aircraft can be obtained.

Usual practise when conducting a mission analysis is to define the design load as the

load that is only exceeded once in every 50,000 hours of flight. This corresponds to a

frequency of exceedance N (y) = 2 × 10−5 hr−1, for which the corresponding load can



6. Mathematical Modelling of Gust Loading 109

be read directly from its long-term exceedance curve. The analytical description of the

long-term response exceedance curve is obtained by combining equations 6.6 and 6.16

such that

N (y) = N0

[
P1 exp

(
−y/Ā

b1

)
+ P2 exp

(
−y/Ā

b2

)]
(6.19)

Using the method outlined in section 6.1.3, long-term response exceedance curves

that account a range of turbulence severity states, were simulated using 10,000 gust

patches along with their corresponding response time-histories. Due to the absence of

data for an actual mission profile, which may vary for every aircraft, it was assumed

that the aircraft would only fly between 0 and 2000 ft. In other words, there was only

one probability distribution of σw, for which the values of P1, P2, b1 and b2 were taken

from table 6.1. Again, the results demonstrate that the linear model has the ability to

accurately calculate empirical long-term response exceedance curves for the purpose of

obtaining probabilistic design loads.
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Figure 6.10: Validation of Simulated Short-Term Response Exceedance Curves.
V = 280 m/s, σw = 1.0 m/s.
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Figure 6.11: Validation of Simulated Long-Term Response Exceedance Curves for
A = 0 - 2000 ft. V = 280 m/s.
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6.3 Simulation of Nonlinear Aircraft Structural Response

6.3.1 Nonlinear Aircraft Model

A new aircraft model was developed in order to enable the gust response to be calculated

in the time domain, which enables the introduction of structural nonlinearity. It is

similar to the NLR model, but has been simplified so that the computational time is

not excessive, yet not so much that the techniques developed in this thesis cannot be

adequately demonstrated. The new model, shown in figure 6.12, does not allow the

wing to be swept, so that each strip of the wing encounters the gust at the same time.

Otherwise, for a time domain response, there would effectively be a different gust input

for each strip, instead of just two inputs (one for the wing and one for the tailplane).

Also, the model has a rigid fuselage and is limited to 3 degrees of freedom instead of 5;

2 rigid body modes (heave and pitch), and 1 flexible mode (wing bending).

 

b/10 

X 

bt /2 

X 

b/2 l 

(a) Structural Elements 

b/10 

X 

bt /2 

X 

b/2 l 

(b) Aerodynamic Elements

Figure 6.12: Schematic of the Model Used for Nonlinear Analysis

The gust inputs are generated as outlined in section 6.1, using non-deterministic

spectral amplitudes based on the Von Karman frequency spectrum. Unless stated
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otherwise, the true airspeed V and the air density ρ is assumed to be 280 m/s and

0.30 kg/m3, respectively.

6.3.2 Time Domain Response and Validation

Linear Response in the Time Domain

When an aircraft exhibits nonlinear behaviour, and thus equation 6.10 is not a valid

assumption, the response to a gust must be calculated in the time domain, which

means that the response at each time step is calculated separately and combined to

form a response sample record. The generalised response q to a gust input wg (t) can

be determined from the aircraft equations of motion, which are expressed in the time

domain as

Mq̈ + Cq̇ + Kq = RWwg (t) +RTwg

(
t− l

V

)
(6.20)

where the response vector for the linear case q is defined as

q =


zC

θ

qe

 (6.21)

where zC , θ and qe are the generalised displacements for each degree of freedom: heave,

pitch and wing bending, respectively.

For the time domain solution, the differential equations were solved using the

ode45 (Dormand-Prince) solver in MATLAB and SIMULINK, which is based on a

Runge-Kutta integration scheme with a variable time-step. The second order

differential equation (6.20) is re-written as two first order differential equations, where

the initial conditions q̇(0) and q(0) are taken to be zero.

Once the equations of motion have been solved and q is known, time domain response

sample records of each interesting quantity y are calculated directly by
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y (t) = Ayq̈ +Byq̇ +Cyq +Dywg (6.22)

It is important to note that the time domain model does not include unsteady effects,

which would be represented by Wagner’s and Kussner’s functions, in order to the reduce

computational cost of running a large number of simulations in the time domain. This

actually reinforces the need for new techniques that require fewer simulations to derive

reliable response statistics, because it demonstrates that if more efficient techniques are

available, the models can increase in complexity without incurring an impractically high

computational cost.

Before structural nonlinearity is included in the model, it is important to verify that

the time domain model produces reliable response sample records by computing the

linear response in the time domain and comparing it to the frequency domain response

to the same gust input. In order to enable this comparison, a frequency domain model

was developed for the new aircraft shown in figure 6.12, that uses the procedure outlined

in section 6.2, except that unsteady effects are ignored, which means that Theodorsen’s

and Sears’ functions are no longer included in the frequency domain analysis.

Figure 6.13 shows the heave response to a typical ‘1 - cosine’ gust, along with its

derivatives, demonstrating that both frequency and time domain solutions to the

equations of motion yield almost identical results. The only discrepancy is that the

time domain solution appears to produce slightly larger amplitude oscillations for

acceleration than the frequency domain solution, but a difference that small should

have an insignificant effect on the threshold exceedance curves.

As well as comparing the two MatLab models (frequency and time domain) to one

another, it as also necessary to ensure that the loads on the aircraft are realistic to

give a degree of confidence in the results presented in this thesis. In order to do this, a

deterministic MSC NASTRAN gust response analysis (SOL 146) was carried out using

the aircraft shown in figure 6.12, in order to compare response time histories with those

from the MatLab model. The models were subjected to two typical ‘1 - cosine’ gusts,

with lengths of 80 m and 160 m, and a peak gust velocity of 6.25 m/s. Response

time histories of wing root bending moment and wing root shear force are presented in
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Figure 6.13: Time Domain and Frequency Domain Heave Response to a ‘1 - cosine’
Gust. V = 280 m/s, Lg = 80 m, wg0 = 6.25 m/s.

figures 6.14 and 6.15. Some disparity in the results is to be expected since there are

differences between the way the gust analysis is performed in NASTRAN compared to

the MatLab model presented in this thesis. For example, the NASTRAN analysis uses

the Doublet-Lattice Method to calculate the aerodynamic forces, and includes unsteady

effects, whereas the MatLab model is limited to the use of Strip Theory and performs

a quasi-steady analysis. This being said, the comparison is still beneficial because the

fact that response time histories from both analyses show similar features is a source of

assurance that the aircraft loads are somewhat realistic. The fact that MatLab model

is not a perfect model of reality is not really an issue in this case, because it does not
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prevent comparisons between conventional and efficient probabilistic methods using the

same model, which is the main goal of this research.

In addition to the foregoing deterministic analysis, it must be ensured that the

frequency and time domain solutions produce the same exceedance curves when the

linear response to a large number of continuous gust patches is considered. The

interesting quantities being considered in the nonlinear analysis are the wing root

torsion moment Mtw and the wing root shear force Zw. Exceedance curves for these

interesting quantities were calculated using both solutions and are compared in figure

6.16, in which each curve is derived from 10,000 gust patches, assuming a constant

RMS value of σw = 1.0 m/s. It is clear from this figure that the time domain model

produces reliable response sample records, and that the statistical properties of the

wing torsion and wing shear are almost identical to those of the frequency domain

model. The simulated values for wing shear in figure 6.16b are very slightly higher in

the time domain for a given frequency of exceedance, which is probably due to the

small difference in acceleration amplitudes shown in figure 6.13.

Long-term exceedance curves using both frequency and time domain models are also

compared in figure 6.17b, which shows very good agreement between the two solutions.

The long-term case assumes that the aircraft only flies in the 30,000 - 40,000 ft altitude

band, with a range of gust RMS values of 0 m/s ≤ σw ≤ 15 m/s. Given that long-term

exceedance curves are also derived from 10,000 gust patches, it may appear odd that

the curves have relatively low sampling variability in the region of very low frequencies

of exceedance, especially compared to the short term curves, for which data does not

even exist in that region. This is because the long-term curves are influenced by the

probability distribution of σw (see equation 6.5), and that distribution accounts for the

probability that the aircraft will not encounter turbulence. In other words, P1 +P2 < 1,

which means that the expected number of threshold upcrossings per hour is significantly

reduced. Nonetheless, especially for aircraft models that are particularly complex, the

computational cost for deriving long-term response exceedance curves in the time domain

is still very high.
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Figure 6.14: Comparison of MatLab and NASTRAN Response Time Histories for
Change in Wing Root Bending Moment due to a ‘1 - cosine’ Gust.
V = 220 m/s, wg0 = 6.25 m/s.
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Figure 6.15: Comparison of MatLab and NASTRAN Response Time Histories for
Change in Wing Root Shear Force due to a ‘1 - cosine’ Gust.
V = 220 m/s, wg0 = 6.25 m/s.
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Figure 6.16: Comparison of Short-Term Time Domain and Frequency Domain
Exceedance Curves for Linear Response. V = 280 m/s, σw = 1.0 m/s.



6. Mathematical Modelling of Gust Loading 120

2 4 6 8 10
x 108

10−6

10−5

10−4

10−3

10−2

10−1

100

101

 Mtw
2 (Nm)2 

Fr
eq

ue
nc

y 
of

 E
xc

ee
da

nc
e 

(h
r −

1 )

 

 
Theoretical Distribution
Freq. Domain Model
Time Domain Model

(a) Wing Torsion

1 2 3 4
x 109

10−6

10−5

10−4

10−3

10−2

10−1

100

101

 Zw
2 (N)2 

Fr
eq

ue
nc

y 
of

 E
xc

ee
da

nc
e 

(h
r −

1 )

 

 
Theoretical Distribution
Freq. Domain Model
Time Domain Model

(b) Wing Shear

Figure 6.17: Comparison of Long-Term Time Domain and Frequency Domain
Exceedance Curves for Linear Response. V = 280 m/s.
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Introduction of Structural Nonlinearity

Given that the time domain model has been shown to produce reliable results, nonlinear

characteristics can be introduced into the structural model. In this case, the nonlinearity

is introduced into the flexible mode in the form of an additional cubic stiffening term,

such that the restoring force Fe due to the wing bending stiffness is defined as

Fe = keqe + γekeqe
3 (6.23)

where ke is the original linear modal stiffness and γe is the hardening coefficient, which

determines the proportion that the linear and nonlinear terms contribute to the total

restoring force. Thus, the stiffness term for the flexible mode in the matrix K is expressed

as ke
(
1 + γeqe

2
)
.

A hardening coefficient of γe = 5 was used for the work presented in this thesis, which

ensured linear behaviour for small deflections (tip rotations of magnitude 0◦ < θe < 5◦

in this case), but sufficient nonlinearity to observe the difference for the larger deflections

that come from the more extreme gust cases; this is demonstrated in figure 6.18.

0 5 10 15 20
0

2

4

6

8

10

12

14
x 104

Tip Rotation (deg)

R
es

to
rin

g 
Fo

rc
e 

(N
)

 

 
Linear Stiffness
Cubic Stiffening

Figure 6.18: Effect of Cubic Stiffening Nonlinearity. γe = 5.

Figure 6.19 shows the fluctuation of the wing root torsion moment during a ‘1 -

cosine’ gust encounter, comparing the linear frequency domain and linear time domain
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solutions along with that of the nonlinear time domain model.
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Figure 6.19: Linear and Nonlinear Wing Torsion Response to a ‘1 - cosine’ Gust.
V = 280 m/s, Lg = 80 m, wg0 = 6.25 m/s.

6.3.3 Nonlinear Response Exceedance Curves

Nonlinear response exceedance curves derived in the conventional manner are required

in order to validate the alternative method demonstrated in the following chapter. The

short-term and long-term exceedance curves that were used in this project are

presented in figures 6.20 and 6.21, respectively, along with the corresponding linear

response exceedance curves for comparison. Each curve was derived from 10,000

sample records and, again, the long-term case assumes that the aircraft only flies in

the 30,000 - 40,000 ft altitude band, with a range of gust RMS values of 0 m/s ≤ σw ≤

15 m/s. The short-term case assumes a constant RMS value of σw = 1.0 m/s.

The nonlinear results cannot be validated by comparison to an analytical equation,

which is the very reason that the simulations are necessary, so it must be assumed

that the reliability of the linear time domain exceedance curve is synonymous with the

validity of the nonlinear results, since the equations of motion are solved in the same

way.

It can be observed that the cubic stiffening has very little effect on the short-term

or long-term statistics of the wing root torsion moment, but has a substantial effect on

those of the wing root shear force. One might argue that it is not necessary to speed

up the derivation of the wing torsion exceedance curve, because the frequency domain
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Figure 6.20: Comparison of Short-Term Linear and Nonlinear Response Exceedance
Curves. V = 280 m/s, σw = 1.0 m/s.

model is sufficient in this case. This is true, but in this thesis the nonlinear model will

still be used for both interesting quantities because it will enable the investigation of

the effect of the extent of the nonlinear behaviour on the performance of the alternative

method.
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Figure 6.21: Comparison of Long-Term Linear and Nonlinear Response Exceedance
Curves. V = 280 m/s.



Chapter 7

Application of the ETU Method

to Gust Response

In chapter 5, the Efficient Threshold Upcrossing method was developed in the context of

its original application to nonlinear offshore structural response. This chapter seeks to

apply the method to the efficient derivation of both short-term and long-term aircraft

response exceedance curves. The method was first demonstrated using only a short-

term linear aircraft model in the preliminary study presented in section 7.1, which was

published in 2013 (Lambert, Najafian & Cooper 2013). It has since been extended to

account for cubic stiffening nonlinearity and long-term statistics, for which the findings

are presented in sections 7.2 and 7.3.

7.1 A Preliminary Study: Linear Aircraft Response

The ETU method works by exploiting the strong correlation between maximum surface

elevation values and maximum response, as demonstrated in figure 5.2. This correlation

means that surface elevation sample records with high extreme values are likely to

produce response sample records that also have high extreme values. Conversely, low

surface elevation extreme values can be expected to bring about low response extreme

values. The ETU method can then be applied if the theoretical probability distribution

of extreme surface elevation (in the offshore case) is known.

125



7. Application of the ETU Method to Gust Response 126

Initially, it was expected that a similar correlation would exist between extreme

values of gust velocity and the corresponding aircraft response extreme values, and that

since the theoretical distribution of extreme gust velocity is known, the ETU method

could be applied to calculate aircraft response to continuous turbulence. However, figure

7.1, which is based on data from 20,000 simulations, shows that there is in fact no such

correlation. This means that the largest gusts do not produce the highest structural

response values.

(a) Load Factor (b) Wing Torsion (c) Wing Shear

Figure 7.1: Correlation of Extreme Gust Velocity with Corresponding Maximum
Response

Furthermore, the same type of analysis was conducted to check for correlations of

maximum response with both maximum gust height (from peak to trough) and

maximum gust steepness (taken from both positive and negative slopes). These were

also found to be uncorrelated, as shown in figures 7.2 and 7.3, which also means that

the steepest gusts also do not necessarily produce the highest responses.

One possible explanation for the absence of correlation demonstrated by figures 7.1-

7.3 can be deduced from the frequency spectra shown in figure 7.4. The frequency

spectra of load factor and wing torsion show peak spectral densities at around 5 rad/s,

whereas the peak spectral density of gust velocity peaks at a much lower frequency of

around 0.2 rad/s and is close to zero at 5 rad/s. This means that the frequencies that

produce the highest aircraft response are not the ones associated with the highest gust

velocities and, therefore it is actually unlikely that the sample records with the largest

gusts will produce response sample records with the highest extreme values.
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Figure 7.2: Correlation of Maximum Gust Height with Corresponding Maximum
Response
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Figure 7.3: Correlation of Steepest Gust with Corresponding Maximum Response

Fortunately, the foregoing argument does not rule out the application of the ETU

method to gust loading. This is because in order for the method to work, it is only

necessary to find a strong correlation between the maximum response and any other

variable provided that (i) the theoretical cumulative probability distribution of its

extreme values is known, and (ii) the time taken to calculate its corresponding sample

record is small compared to that of the response. For the sake of clarity, the variable

that satisfies conditions (i) and (ii) will be known as the ‘low-demand’ variable, and

the variable that it is correlated with, but has a relatively high computational cost

(e.g. non-linear response), will be known as the ‘high-demand’ variable.

From figure 7.4 it is clear that there is a much better chance of correlation between

extreme load factor and extreme wing torsion, because their spectra both peak at the
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Figure 7.4: Frequency Spectra of Gust Velocity and 2 IQs

same frequencies. Therefore, it is possible that the load factor may be considered as

the low-demand variable while treating the other four interesting quantities as the high-

demand variables. Clearly, since they are also linear responses, their computational cost

is not very high, but in the absence of a non-linear model at the time of the preliminary

study, they were suitable for the purpose of demonstrating the methodology and validity

of the ETU method.

Correlation coefficients for maximum load factor and the extreme values of the other

four IQs were calculated based on 20,000 simulations, two of which are shown in figure

7.5. Table 7.1 shows that wing torsion and wing shear had the highest correlations

coefficients, with very strong (0.95) and moderate (0.68) correlations, respectively, which

is why they have been selected to represent the so-called high-demand variables in this

study. The difference in correlation strength will also provide some insight into the

extent to which the ETU method is limited by correlation.

Table 7.1: Correlation Coefficients of 4 IQs with Extreme Load Factor Based on 20,000
Simulations

Wing Shear Wing Bending Wing Torsion Tail Shear
0.68 0.55 0.95 0.51

Now that a suitable low-demand variable has been established, the ETU method

can be applied. The correlation between the low and high-demand variables is exploited

by dividing the theoretical CDF of the low-demand variable (load factor) into several

groups such that the probability that a given low-demand extreme value h will fall into
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(a) Wing Torsion (b) Wing Shear

Figure 7.5: Correlation of Maximum Load Factor with Corresponding Maximum
Response

a certain group can be easily calculated. The theoretical distribution for extreme load

factor is given by

P (nmax ≤ h) = exp

{
−N0nT exp

[
−
(
h/Ān

)2
2σw2

]}
(7.1)

For the application to aircraft gust response, eight groups will be used for the ETU

analysis, instead of seven groups, which were used for the original application to offshore

structures. Hence, there are now nine boundaries, for which the chosen cumulative

probability values are Plim.= [0, 0.1, 0.5, 0.8, 0.95, 0.99, 0.995, 0.999, 1].

Again, let S be the set of all the simulated response extreme values such that

S = {S1, S2, . . . , SG} where Si ⊂ S. The values in S are divided into these subsets

based on the extreme values of their corresponding load factor sample records, using

the boundaries of nmax that are calculated using equation 7.1. The probability Pi that

a sample record belongs to the ith subset of S is given by equation 5.1.

Given that the conditions for low and high-demand variables are satisfied, it is simply

a matter of implementing the procedure outlined in figure 5.7. When the number of

threshold upcrossings of the response thresholds are counted from each high-demand

sample record, the expected frequency of exceedance values are those based on the

condition that the sample record belongs to a particular subset, i.e E [N (y) | h ∈ Si].
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Thus, total probability theorem must be applied for each response threshold to calculate

the expected number of upcrossings:

E [N (y)] =
G∑
i=1

E [N (y) | h ∈ Si]Pi (7.2)

It was explained in chapter 5 that one of the advantages of the ETU method is that

each subset does not need to contain the same number of high-demand sample records,

allowing the distribution to be ‘tailored’ to minimise unnecessary computational cost.

It was also shown that a more accurate ‘tail’ can be obtained from the same number of

simulations by allowing more simulations in the extreme group and fewer in the interim

groups. Therefore, since the tail of the exceedance curve is the area of greatest interest

when it comes to design loads, two cases were considered in the preliminary study, which

vary the number of simulations in the extreme group along with the total number of

simulations, as defined in table 7.2.

Table 7.2: Number of Simulations in Each Group in the ETU Analysis for Each Case

Total No. of Interim Extreme Computational
Simulations Groups (1-7) Group (8) Cost Reduction

Case 1 800 100 100 99.2%
Case 2 200 10 130 99.8%

For the sake of simplicity, the exceedance curves in each case are based on short-term

statistics, where σw = 1.0, and the probability that an aircraft will encounter turbulence

was not taken into account in the initial study.

It can be seen from figure 7.6 that the wing torsion exceedance curve from the ETU

method agrees extremely well with that of the Monte-Carlo method, even though in

this case it is derived from 125 times fewer simulations. For the wing shear, however, it

clear that the weaker correlation has an adverse impact on the accuracy of the curve.

On the other hand, the ETU method still produced a very accurate curve for the more

frequently exceeded thresholds. Nevertheless, this still demonstrates that for the ETU

method to be effective, a very strong correlation is required between the low and high-

demand variables.
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(b) Wing Shear

Figure 7.6: Short-Term Exceedance Curves using the ETU Method for Case 1: ∼ 125
Times Faster. V = 280 m/s, σw = 1.0 m/s.

Figure 7.7 shows that, even with 500 times fewer simulations, the ETU method

produces a very reliable exceedance curve for wing torsion. In fact, despite the drastically

lower computational cost, the tail of the ETU curve is smoother and more reliable than

that of the Monte-Carlo curve. This is because, in the ETU method, the sampling

variability is effectively ‘shared out’ and distributed to the areas of the curve that are

of lower interest when it comes to obtaining design loads. Interestingly, the wing shear

curve shows very little difference from that of case 1 in that it still produces an accurate

curve for the first half of the distribution, with the results becoming meaningless for the

least frequently exceeded half of the thresholds.

In the foregoing analysis, the linear responses were used to represent the

high-demand variables when, in reality, they incur a very low computational cost.

Also, given that analytical solutions for linear response exceedance curves are

available, neither the Monte-Carlo simulation approach nor the ETU method offer any

real benefit in this case. However, the objective of this study was to provide a
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(b) Wing Shear

Figure 7.7: Short-Term Exceedance Curves using the ETU Method for Case 2: ∼ 500
Times Faster. V = 280 m/s, σw = 1.0 m/s.

demonstration of the ETU method in order to show that it would be beneficial if

applied to a nonlinear aircraft model. For the nonlinear case, it is expected that a

strong correlation could be found between the maximum values of linear and nonlinear

response, a hypothesis that is investigated in the following section (7.2). Provided such

a correlation exists, the linear response may be used as the low-demand variable so

that the statistics of the nonlinear response, which is the high-demand variable, can be

derived with great efficiency.
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7.2 Efficient Nonlinear Aircraft Response

As previously mentioned, it is much more convenient to compute response exceedance

curves using equation 6.16 rather than carrying out a large number of simulations that

produce the same results. However, Monte-Carlo simulation techniques become much

more beneficial when there is no analytical description of the response statistics, which

is certainly the case when considering nonlinear aircraft.

For nonlinear cases, equation 6.10 is not valid, which means that the aircraft response

must be calculated in the time domain. This induces a much higher computational

cost than the simple PSD analysis, making it impractical to include nonlinear response

statistics as part of the design requirements. This means that so far, nonlinear aircraft

models only account for so-called ‘worst case’ gusts and not for continuous turbulence.

Nevertheless, there is no reason why response sample records cannot be generated by

computing the nonlinear response to each continuous gust patch in the time domain.

The statistical information such as the number of threshold upcrossings can then be

extracted from each of the nonlinear response sample records. The only problem is

that it would take an unacceptably long time to generate the number of sample records

required to sufficiently reduce sampling variability such that accurate design loads could

be obtained.

This section seeks to apply the Efficient Threshold Upcrossing method to the

derivation of nonlinear response exceedance curves so that, for the first time, aircraft

with nonlinear characteristics can be designed probabilistically and hence, it is hoped,

more economically and efficiently.

The first step is to establish the so-called low-demand and high-demand variables for

use in the analysis. The high-demand variables in this case are the desired interesting

quantities that are calculated based on the nonlinear structural response; namely, the

wing torsion moment Mtw and the wing root shear force Zw. According to the conditions

outlined in the previous section, the linear structural response may be a suitable low-

demand variable, as the analytical probability distribution of its extreme values is known,

but it is first necessary to assess whether a strong correlation exists between linear

and nonlinear response. In order to determine the correlation, 20,000 gust patches
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were simulated, and the corresponding linear and nonlinear response time-histories were

calculated for each gust patch. Then the maximum values of both linear and nonlinear

response were taken and plotted against one another so that the correlation coefficients

for each interesting quantity could be calculated.
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Figure 7.8: Correlation of Maximum Linear Response with Corresponding Maximum
Nonlinear Response

Figure 7.8 shows that a strong correlation does exist between the extreme values

of linear and nonlinear response for both of the interesting quantities considered. The

correlation coefficients for wing root torsion moment and wing root shear force were

found to be 0.944 and 0.914, respectively. Based on the previous study, it is reasonable

to assume that the correlation is sufficiently strong so as to qualify the linear response as

the low-demand variable. The question remains, however, of how strong the correlation

needs to be to ensure that the ETU method is effective. As explained earlier, the ETU

method works based on the assumption that high-demand variables belong to the same

subsets as their corresponding low-demand variables. This would only truly be the

case if the correlation coefficient between the two variables was equal to 1. In other

words, if the value of a low-demand variable increases, the value of the corresponding

high-demand variable will always be increased, and vice versa. It follows then, that as

the correlation coefficient gets lower, the probability that the two variables will actually

belong to the same subset will reduce, even though it is still assumed to be the case in
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the ETU method.

The effect of using a weakly correlated low-demand variable on the response

exceedance curve was observed in figures 7.6b and 7.7b, where the correlation

coefficient was only 0.68. It seems that too many of the simulations in that case

violated the assumption of equal probability to produce any meaningful data.

However, since a correlation does exist, weak though it is, it would be reasonable to

expect the reliability of the exceedance curve to improve if the number of simulations

in each group was increased, because there would be a higher chance that sample

records would occur that complied with the assumption of equal probability. Of

course, as the correlations became weaker, there would come a point where the number

of sample records in a group would need to be so high that it would not be worth

using the ETU method at all. Thus, any computational cost savings cannot be

considered independently from the strength of the corresponding correlations.

There is not enough information based on the current work to give a specific value

for a correlation coefficient above which the ETU method remains effective, but it is fair

to say that the computational cost reductions presented in this thesis can be achieved

for systems which have low- and high-demand variables with correlation coefficients

above at least 0.91. This is backed up by the following analysis, in which there was no

noticeable effect of the small reduction in correlation coefficient in comparison to the

previous study.

The procedure that is used to apply the ETU method to nonlinear aircraft response,

using the corresponding linear response as the low-demand variable, is outlined in the

flow chart shown in figure 7.9.

The cases that describe the number of simulations in each group for the nonlinear

analysis are defined in table 7.3. Eight groups are used for the nonlinear ETU analysis,

but more cases are defined in comparison to the preliminary study in section 7.1. This

enables the capability of the ETU method to be explored further by including the option

to vary the number of simulations in group 7 as well as group 8. The reason for this is

that in previous studies, when the majority of the simulations have been concentrated

into the extreme group, a large difference in accuracy suddenly occurs at the point in the
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Figure 7.9: Procedure for the Derivation of Nonlinear Response Exceedance Curves
Using the ETU Method

curve that corresponds to the lower boundary of the extreme group. This phenomenon

can be most clearly observed in figure 5.11 from the ETU analysis for efficient offshore

structural response. In an effort to reduce this effect and produce a more accurate curve,

some of the cases (Cases 3, 6 and 9) focus more of the simulation time in the highest

of the interim groups (group 7), at the expense of the lower interim groups along with

the extreme group. As in the previous studies, the other cases either distribute the

simulation time approximately equally between all the groups (Cases 1, 4 and 7), or

focus most of the simulation time towards sample records in the extreme group (Cases

2, 5 and 8).

It is worth noting that, although the computational cost reductions shown in table

7.3 are an order of magnitude lower than the previous studies, it is because the results

of the ETU analyses are compared to the conventional exceedance curves in figure 6.20,

which are derived 10,000 sample records instead of 100,000 in order to save time. The
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Table 7.3: Number of Simulations in Each Group in the Nonlinear ETU Analysis for
Each Case

Total No. of Lower Interim Highest Interim Extreme Computational
Simulations Groups (1-6) Group (7) Group (8) Cost Reduction

Case 1 125 125 125
Case 2 1000 40 40 720 90%
Case 3 30 220 600

Case 4 50 50 50
Case 5 400 20 20 260 96%
Case 6 15 110 200

Case 7 12 14 14
Case 8 100 4 4 72 99%
Case 9 3 22 60

boundaries for the probability distribution of extreme linear response that define each

subset have been lowered accordingly so that the conventional and ETU exceedance

curves can be compared. The nine probability boundaries used to define the eight

groups for the nonlinear ETU analysis in this section are Plim. = [0, 0.10, 0.50, 0.65,

0.80, 0.90, 0.95, 0.99, 1].

It is clear from the earlier studies shown in this thesis that the computational cost

reduction provided by the ETU method is not actually proportional to the number of

simulations required by the conventional simulation, which means that it becomes more

effective as the number of simulations required by the conventional analysis increases.

This is because the probability boundaries that define the groups used in the ETU

analysis can be adjusted if information about less frequently exceeded thresholds is

needed, which would not necessarily require any more simulations in the ETU method,

but may require many orders of magnitude more simulations in a conventional analysis.

The short-term exceedance curves for nonlinear response that were derived using the

ETU analysis, along with comparisons to the conventionally derived exceedance curves

from section 6.3, for the cases defined in table 7.3, are presented in figures 7.10 - 7.18.

The first thing to notice from the exceedance curves in cases 1 - 3 (figures 7.10 - 7.12),

which were derived from 100 times fewer simulations than the reference curves (i.e. the

ones based on the conventional method), is that there is some systematic deviation from

the reference curve for the wing root shear. This is most likely due to the higher degree
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of nonlinearity in the wing shear compared to the wing torsion, which agrees almost

perfectly with the reference distribution. The difference in accuracy between the two

IQs is not surprising given that the nonlinear wing torsion has a stronger correlation

with its corresponding linear extreme values than the wing shear does. Despite this

discrepancy, the simulated values from the ETU method for the wing shear are still

within 2% of the reference values around the tail of the exceedance curves in cases 1 - 3.

The error is only magnified in its presentation because the frequencies of exceedance are

plotted against the square of the response thresholds, rather than simply the threshold

values.

Secondly, for a given total number of simulations, the ETU method always produces

a more reliable curve when the majority of the simulation time is concentrated into

the extreme groups. This is demonstrated by the fact that exceedance curves in cases

1, 4 and 7 (figures 7.10, 7.13 and 7.16), in which the simulations are spread out more

evenly between the groups, are clearly more affected by sampling variability around the

tail than any of the other cases that are derived from the same number simulations.

This again highlights one of the major benefits of the ETU method: that the effect of

sampling variability can moved away from the tail of the distribution by changing the

number of simulations in each group. It is especially advantageous because the earlier

studies in this thesis showed that reducing the number of simulations does not have as

significant an effect in the lower groups, which is due to the fact that the more extreme

sample records still provide upcrossing data for the lower thresholds.

Furthermore, the inclusion of the option to vary the number of simulations in the

highest interim group (group 7) proved to be worthwhile. Cases 3, 6 and 9 (figures

7.12, 7.15 and 7.18) consistently produced exceedance that were less affected by

sampling variability around the than the respective curves in cases 2, 5 and 8 (figures

7.11, 7.14 and 7.17). This went some way towards solving the problem of the

occurrence of a sudden difference in accuracy that results in a large step in the

exceedance curve corresponding to the boundary of the extreme group. In other words,

it shows that the ETU method is generally more effective when the difference in the

number of simulations varies more gradually between groups, instead of focussing a
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large amount the extreme group. Therefore, it may be expected that there is some

optimum distribution of simulation time between then groups that produces a curve

that is minimally affected by sampling variability, which could be investigated in

future work.

Finally, it can be observed from figure 7.18 that, with as little as 1% of the

computational cost of the conventional method, the ETU method has the ability to

produce short-term exceedance curves that are in good agreement with the reference

curves, even where there is a high degree of nonlinearity in the response. One issue

that has not been solved regarding the reduction in computational cost, however, is

that in order to perform an ETU analysis it is first necessary to establish a

low-demand variable that is strongly correlated with the nonlinear response. This

means that a certain number of sample records of the high-demand variable must be

simulated to verify that such a correlation exists, which incurs further computational

cost. In this thesis, for example, 20,000 simulations were used in each case to evaluate

the correlations, but it is uncertain how many simulations are actually sufficient. It

may be much fewer than 20,000 but might vary depending upon the degree of

nonlinearity in the model. There is also the question of whether it could be assumed

that the linear response will always be strongly correlated with the nonlinear response

for each interesting quantity, so that the additional simulations were no longer

required, but so far there has not been enough research on this issue to justify such an

assumption. Nevertheless, the ETU method remains promising when it comes to the

derivation of short-term aircraft response statistics with cubic stiffening nonlinearity

and will be extended to the long-term case in following section.
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Figure 7.10: Short-Term Exceedance Curves for Nonlinear Response using the ETU
Method for Case 1: ∼ 10 Times Faster. V = 280 m/s, σw = 1.0 m/s.
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Figure 7.11: Short-Term Exceedance Curves for Nonlinear Response using the ETU
Method for Case 2: ∼ 10 Times Faster. V = 280 m/s, σw = 1.0 m/s.
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Figure 7.12: Short-Term Exceedance Curves for Nonlinear Response using the ETU
Method for Case 3: ∼ 10 Times Faster. V = 280 m/s, σw = 1.0 m/s.
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Figure 7.13: Short-Term Exceedance Curves for Nonlinear Response using the ETU
Method for Case 4: ∼ 25 Times Faster. V = 280 m/s, σw = 1.0 m/s.
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Figure 7.14: Short-Term Exceedance Curves for Nonlinear Response using the ETU
Method for Case 5: ∼ 25 Times Faster. V = 280 m/s, σw = 1.0 m/s.
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Figure 7.15: Short-Term Exceedance Curves for Nonlinear Response using the ETU
Method for Case 6: ∼ 25 Times Faster. V = 280 m/s, σw = 1.0 m/s.
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Figure 7.16: Short-Term Exceedance Curves for Nonlinear Response using the ETU
Method for Case 7: ∼ 100 Times Faster. V = 280 m/s, σw = 1.0 m/s.
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Figure 7.17: Short-Term Exceedance Curves for Nonlinear Response using the ETU
Method for Case 8: ∼ 100 Times Faster. V = 280 m/s, σw = 1.0 m/s.
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Figure 7.18: Short-Term Exceedance Curves for Nonlinear Response using the ETU
Method for Case 9: ∼ 100 Times Faster. V = 280 m/s, σw = 1.0 m/s.
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7.3 Extension to Long-Term Statistics

This section seeks to extend the capability of the ETU method to account for the long-

term statistics of nonlinear aircraft gust response. As previously discussed, in order to

obtain reliable aircraft design loads probabilistically, the entire range of conditions that

the aircraft may encounter in its lifetime must be accounted for. These conditions can

be defined by so-called turbulence severity states, which are discrete ranges of RMS gust

velocities that are adequately represented by their midpoint. For the long-term analysis

presented in this section, ten turbulence severity states are applied and it is assumed

that 0 < σw < 15 m/s, which are sufficient conditions to produce realistic exceedance

curves in the area of interest for design loads (see figure 6.17). Evidently, the fact that

there is a range of values for σw means that the analytical extreme value distribution for

the linear response is not constant when it is based on equation 6.16. It may be possible

to use the distribution given by equation 6.19 to define the boundaries of each subset,

but difficulties would arise because it would take a very long time for simulations with

low values of σw to produce response sample records that fall in to the extreme groups.

For this reason, a slightly different procedure is used in this section, which is outlined

as follows:

(1) The total number of simulations to be used in the analysis is divided equally by the

number of turbulence severity states, ten in this case.

(2) Using the procedure shown in figure 7.9, a separate short-term ETU analysis is

carried out for each value of σw, using the fraction of the total number of simulations

defined in step (1). This means that each analysis has a separate extreme value

distribution for the low-demand variable that is based on equation 6.16

(3) Total probability theorem is applied to the short-term threshold exceedance rates

using the equation

E [N (y)] =

NT∑
j=1

E
[
N (y) | σwj

]
P
(
σwj

)
(7.3)

which gives the long-term frequencies of exceedance of the given range of thresholds.
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(4) The results are compared to the long-term exceedance curves in figure 6.21, which

was generated from 10,000 simulations using the method outlined in section 6.1.3.

The cases1 that describe the number of simulations in each group in the long-term

nonlinear ETU analysis, for each value of σw, are defined in table 7.4. The total number

of simulations is the sum of the number of simulations in each group multiplied by

the number of turbulence severity states, e.g. For case 10, total No. of simulations =

[(3 × 6) + 22 + 60] × 10 = 1000. The number of simulations in each subset have been

distributed in a similar manner to cases 3, 6 and 9 in the previous section because these

were the cases that produced the most reliable curves relative to the other respective

cases that had the same total number of simulations.

Table 7.4: Number of Simulations in Each Group in the Nonlinear ETU Analysis for
Each Long-Term Case

Total No. of Lower Interim Highest Interim Extreme Computational
Simulations Groups (1-6) Group (7) Group (8) Cost Reduction

Case 10 1000 3 22 60 90%
Case 11 400 2 10 18 96%
Case 12 100 1 2 2 99%

The nine probability boundaries used to define the eight groups for the ETU analysis

are Plim. = [0, 0.10, 0.50, 0.80, 0.90, 0.95, 0.99, 0.999, 1]. Also, in the absence of

information about a specific aircraft mission profile, it has again been assumed that the

aircraft only flies in the 30,000 - 40,000ft altitude band. The results of the long-term

ETU analysis based on the foregoing procedure for the cases defined in table 7.4 are

shown in figures 7.19 - 7.21.

It can be observed form figures 7.19 and 7.20 that there is very little difference

between the reliability of the exceedance curves from cases 10 and 11. Both cases

produce exceedance curves that agree very well with the reference curves, and the high

degree of nonlinearity in the wing root shear force does not appear to have any effect

on the results of the nonlinear ETU analysis.

1Although there are only three cases in this section, the first case is labelled as case 10 in order to
avoid confusion with the cases in section 7.2.
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Figure 7.21, which presents the results form case 12, shows that although there is

a fairly good agreement with the reference curves for each of the interesting quantities,

it would be somewhat difficult to obtain reliable design values in the region where

N (y) = 2×10−5, due to the increased sampling variability. Nevertheless, it is surprising

that separate ETU analyses that have such a low number of simulations in each group

are able to produce reliable exceedance curves when they are combined using total

probability theorem.

Although it may be concluded that case 12 has too few simulations to produce

exceedance curves with adequately low sampling variability, the exceedance curves from

case 11 would certainly be suitable for obtaining design values in the region of interest.

This means that reliable long-term exceedance curves for aircraft with cubic stiffening

nonlinearity can be obtained by at least as little as 4% of the computational cost of the

conventional method, which is a significant outcome given that it is these curves that

are used to determine the aircraft design loads in a mission analysis.
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Figure 7.19: Long-Term Exceedance Curves for Nonlinear Response using the ETU
Method for Case 10: ∼ 10 Times Faster. V = 280 m/s.
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Figure 7.20: Long-Term Exceedance Curves for Nonlinear Response using the ETU
Method for Case 11: ∼ 25 Times Faster. V = 280 m/s.
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Figure 7.21: Long-Term Exceedance Curves for Nonlinear Response using the ETU
Method for Case 12: ∼ 100 Times Faster. V = 280 m/s.
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Concluding Remarks

The studies presented in this chapter demonstrate that the ETU method has successfully

enabled the probabilistic response of nonlinear aircraft to continuous turbulence to be

calculated at a practically feasible computational cost, where it was previously limited

to the deterministic ‘1 - cosine’ gust. It is important to note that conclusions about the

capability of the ETU method can only be limited to the specific type of nonlinearity

addressed in this thesis, namely, cubic stiffening of the wing, and even that area has not

been covered in great detail. For example, it is necessary to explore how the effectiveness

of the ETU method would be impacted by changes in the hardening coefficient γe, which

essentially defines how much the nonlinear term contributes to the overall stiffness of

the wing (see equation 6.23). The hardening coefficient was always taken to equal 5 in

this work, but it cannot be assumed that if this value were to be increased, that the

strong correlations shown in figure 7.8 would still exist between the linear and nonlinear

responses.

Nevertheless, some progress has been made towards a unified model for aircraft

design gust loads, in which the current design criteria would be replaced with a single

criteria that did not rely on the safety record of older aeroplanes, and was able to

account for the infinite number of possible shapes of gust profile that an aircraft might

encounter. There are still some obstacles that need to be overcome, however, before such

a model exists; for example, the aforementioned issue of the correlated phase differences

that result in gust velocity profiles that cannot be adequately represented by a Gaussian

turbulence model, even when non-stationarity is accounted for.



Chapter 8

Conclusions and Future Work

This chapter seeks to summarise the findings from each of the studies presented in this

thesis and outline areas where further research might be beneficial. Although, there has

been plenty of overlap, the conclusions from each engineering discipline are presented

separately for the purpose of clarity.

8.1 Offshore Wave Loading

8.1.1 Conclusions

The main aims of this project, with respect to offshore engineering uncertainty, were to

explore techniques that speed up the derivation of offshore structural response statistics

and find ways to improve existing techniques as well as develop new ones, so that offshore

structures may be designed more efficiently. To this end, a study that sought to enhance

the Efficient Time Simulation method was carried out and in a separate study, a new

method was developed, which was called the Efficient Threshold Upcrossing Method.

Regarding these studies, the following conclusions have been drawn:

• Although Conventional (Monte Carlo) Time Simulation is a favourable technique

when deriving offshore structural response probability distributions, it requires

the simulation of an excessively large number of response sample records to

achieve acceptably low sampling variability. This renders the method impractical

for design use due to the resultant high computational cost.

150
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• An existing method, known as the Efficient Time Simulation (ETS) method, has

been presented as a solution to this problem because it allows response probability

distributions to be derived from a relatively small number of simulations, without

sacrificing the versatility of the conventional method.

• The ETS method works by exploiting the strong correlation between surface

elevation extreme values and corresponding response extreme values. Surface

elevation sample records are divided into subsets according to their extreme

values, which allows a limit to be placed upon the number of response sample

records that are calculated from within each subset.

• An attempt was made to enhance the capability of ETS method by fitting the

data from each subset to a generalised extreme value distribution before apply

total probability theorem. which produced response probability distributions that

appeared ‘smoother,’ but were actually slightly less reliable than those derived

from the original ETS method.

• In an effort to improve the reliability and efficiency of the response probability

distributions, the Efficient Threshold Upcrossing (ETU) method was developed.

The ETU method works in a similar way to the ETS method, but extracts more

data from the response sample records by utilising information about the average

threshold upcrossing rates instead of simply the extreme values, increasing the

accuracy of the distributions.

• The ETU method has been validated against the conventional method by

comparing the probability distributions of extreme quasi-static base shear force

and extreme quasi-static overturning moment and it was shown that even a very

small number of simulations exhibit a good agreement. The ETU method is

shown to be up to 3 orders of magnitude more efficient than the conventional

method.

• Both ETU and ETS methods were also compared and it was shown that probability

distributions derived from the ETU method were slightly more reliable than those
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of the ETS method, especially in the lower part of the distributions. They also

appeared to become increasingly more stable in comparison as the number of

simulations was reduced.

8.1.2 Recommendations for Future Work

Based on the findings presented in this thesis, in the field of offshore wave loading, the

following recommendations are made for future work that may prove beneficial:

• The offshore structural analysis in this project was limited to the quasi-static

response, where current and load intermittency in the splash zone were assumed

to have a negligible effect. It is recommended that the ETU method should be

applied to an dynamic analysis that takes these factors into account.

• The offshore model itself was as simple as it could possibly be, so that the

methodology could be demonstrated at minimal computational cost. It is

recommended that a more complex structure should be included the ETU

analysis, and it may be worthwhile to integrate a high fidelity offshore structural

response software package such as SESAM into the procedure. This would enable

different types of structures, such as floating structures, to be analysed

probabilistically at a potentially low computational cost.

• Because the ETU method depends on a correlation between high- and low-demand

variables, it is impossible to say how widely it can be applied to more realistic

structures, due to the simplicity of the offshore model used in this work. It may

be that the correlation exists only because of the simplicity of the model. This, an

investigation into the correlations for a wide range of different structural models

must be carried out in order to determine the effect of model complexity on the

validity of this critical assumption.
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8.2 Aircraft Gust Loading

8.2.1 Conclusions

The main aims of this project, with respect to aerospace engineering uncertainty, were

to produce a stochastic model for nonlinear aircraft response to continuous turbulence

and to make it practically feasible for obtaining aircraft design loads by significantly

reducing the simulation time. To this end, such a model has been developed in

MATLAB/SIMULINK that also employs a robust technique for simulating patches of

continuous turbulence, and these aims were achieved by applying a new technique for

speeding up probabilistic response calculations to the aircraft gust model. Studies were

carried out using both linear and nonlinear aircraft models, and the following

conclusions have been drawn:

• Models that calculate both linear and non-linear aircraft response statistics have

been developed and it is shown that for both models, long-term exceedance curves

for design loads can be accurately derived by Monte-Carlo simulation. The models

use non-deterministic spectral amplitudes, which were shown to produce much

more reliable gust velocity sample records than the conventional deterministic

spectral amplitudes. However, the difference becomes smaller as the duration of

each sample record approaches infinity.

• The Efficient Threshold Upcrossing method was applied to aircraft gust loading

and it was shown that it can be used to accurately calculate short-term nonlinear

response statistics while reducing computational cost by at least 2 orders of

magnitude in comparison to Monte-Carlo simulation. This technique, however, is

dependent on a strong correlation between so-called ‘low-demand’ and

‘high-demand’ variables.

• It was found that such a correlation does not exist between extreme gust velocity

and extreme linear response, nor does it exist for extreme gust slope. The ETU

method was therefore demonstrated by exploiting the strong correlations that were

found between extreme linear response and extreme nonlinear response for each
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of the interesting quantities, namely, wing root shear force and wing root torsion

moment.

• It was explained that, practically, the ETU method is only beneficial when

applied to a response with high computational demand and for which the

analytical solution of the exceedance curve is not known. This means that it is

best applied to nonlinear response but is of little value in the linear case.

• One major problem was pointed out that is yet to be solved, which concerns

the correlation requirements between high- and low-demand variables, namely,

linear and nonlinear response. It may be that a correlation only existed in this

case because the type of nonlinearity, cubic stiffening, does not produce vastly

different results from the linear case for most sample records. Therefore, no wider

conclusions can be drawn about other types of nonlinearity because they were not

investigated in this work.

• The effect of varying the number of simulations in each subset in an ETU analysis

was investigated and it was shown that the ETU method is more effective when the

majority of the simulation time is concentrated towards the extreme groups, so that

the effect of sampling variability is moved away from the ‘tail’ of the exceedance

curves (where the most infrequently exceeded thresholds are). However, it was

also found that more reliable exceedance curves were generally produced when the

difference in the number of simulations varies more gradually between the groups.

This indicated that there may be some optimum solution for the distribution

of simulation time between the groups that produces a curve that is minimally

affected by sampling variability.

• The ETU method was successfully extended to take into account long-term

statistics and it was shown that reliable long-term exceedance curves for the

response of aircraft with structural nonlinearity can be obtained by at least as

little as 4% of the computational cost of the conventional method, which means

that nonlinear aircraft design loads based a mission analysis can be obtained

very efficiently.
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• It should be noted that all of the simulations in this work were perform on a

single desktop computer, but running 100,000 simulations took approximately 9

days using the conventional method, which was reduced to a matter of a few

hours using the ETU method. The model was kept as simple as possible,

however, and it is common for industrial finite element models to contain

thousands of degrees of freedom. This means that, even with access to

high-performance computers, the conventional method would probably still incur

an impractically high computational cost. It is hard to say with certainty

whether the ETU method would lead to sufficiently practical simulation times,

but based on the author’s discussion with industrial loads engineers, a cost

reduction of 2-3 orders of magnitude would be very beneficial.

• Finally, it is widely understood that the calculation of design loads for nonlinear

aircraft are limited to discrete, ‘1 - cosine’ gust encounters and that continuous

turbulence models are only applicable to linear aircraft response. However, the

most important conclusion that can be drawn from this thesis is that this is no

longer the case, because the ETU method provides a way to calculate

structurally nonlinear response statistics in the time domain at a significantly

lower computational cost.

8.2.2 Recommendations for Future Work

Based on the findings presented in this thesis, in the field of aircraft gust loading, the

following recommendations are made for future work that may prove beneficial:

• The gust response model used for the nonlinear ETU analysis did not fully account

for unsteady effects, because Kussner’s and Wagner’s functions were not included

in the equations of motion. Although it would be very time consuming to derive

the exceedance curves using the conventional method, which would be required

for validation, it is recommended that the model should be extended so that the

ETU method can take these effects into account.

• It was stated earlier that there may be an optimum solution for the distribution of
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simulation time between the groups in an ETU analysis. Future work to investigate

this further may significantly improve the reliability of exceedance curves that are

derived from the ETU method.

• An investigation into the effects of different types of nonlinearity on the correlations

between high- and low-demand variables is necessary, in order to establish the

scope of the ETU method’s application.

• It would also prove beneficial to gain a more specific understanding of the

computational reductions that are actually required by industry in order to make

a nonlinear probabilistic gust analysis possible.

• Lastly, although progress towards a unified certification model for gust loads has

been made in this project, one of the obstacles that still remains is the inability

of non-stationary Gaussian turbulence to account for the apparent phase

correlations that lead to higher gust velocities in some extreme cases. Until this

issue is successfully tackled, there will always be a need for both discrete and

continuous turbulence models in the design process. It is hoped that future

research will be carried out in this area so that the aerospace industry can

benefit from simplified certification criteria for gust response that results in more

economical but reliable aircraft designs.



Appendix A: Definitions of

Aerodynamic Derivatives

The matrices of aerodynamic derivatives used in the aircraft equations of motion, given

in equations 6.13 and 6.20 are defined as

M =


m 0 0

0 Iy 0

0 0 me

 (A.1)

C =


−Zż −Zq −Zė

−Mż −Mq −Mė

−Qż −Qq ce −Qė

 (A.2)

K =


0 −Zα −Ze

0 −Mα −Me

0 −Qα ke −Qe

 (A.3)

The vectors of gust-related derivatives are defined as

RW =


ZgW

MgW

QgW

 and RT =


ZgT

MgT

QgT

 (A.4)

The definitions of all the aerodynamic derivatives, which are taken from Wright &

Cooper (2007), are shown in table A.1.
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Table A.1: Definitions of Aerodynamic and Gust-Related Derivatives

Derivative Mathematical Definition

Zα −1
2ρV

2[SWaW + STaT(1− kε)]

Zż −1
2ρV [SWaW + STaT(1− kε)]

Zq −1
2ρV STaTlT

Ze
1
2ρV

2[−SWaWJ1 − STaTγeT]

Zė −1
2ρV STaTκeT

ZgW −1
2ρV SWaW

ZgT −1
2ρV STaT(1− kε)

Mα
1
2ρV

2[SWaWlW − STaT(1− kε)lT]

Mż
1
2ρV [SWaWlW − STaT(1− kε)lT]

Mq −1
2ρV STaTl

2
T

Me
1
2ρV

2[SWaWlWJ1 − STaTlTγeT]

Mė −1
2ρV STaTlTκeT

MgW
1
2ρV SWaWlW

MgT −1
2ρV STaTlT(1− kε)

Qα
1
2ρV

2[SWaWJ2 − STaT(1− kε)κeT]

Qż
1
2ρV [SWaWJ2 − STaT(1− kε)κeT]

Qq −1
2ρV STaTlTκeT

Qe
1
2ρV

2[−SWaWJ3 − STaTγeTκeT]

Qė −1
2ρV STaTκ

2
eT

QgW −1
2ρV SWaWJ2

QgT −1
2ρV STaT(1− kε)κeT
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Note that

J1 =
1

s

∫ s

y=0
γedy (A.5)

J2 =
1

s

∫ s

y=0
(κe − lAγe) dy (A.6)

J3 =
1

s

∫ s

y=0
(κe − lAγe) γedy (A.7)

where γe = γe(y), κe = κe(y) are functions that describe the flexible mode shape.1

1In this instance, y denotes the spanwise coordinate of the aircraft, rather than the generic response
variable that it signifies in the rest of this thesis.



Appendix B: Aircraft Internal

Load Transformation Vectors

The internal load transformation vectors that are used in equations 6.15 and 6.22, are

defined for wing root shear force (denoted by subscript Z) and wing root torsion moment

(denoted by subscript T ) as

AZ =


A1Z

A2Z

A3Z

 =


µs

−µslWM

µs
[
κe0
(
1 + A

3

)
+ lEγe0

(
1 + B

2

)]
 (B.8)

BZ =


B1Z

B2Z

B3Z

 =


1
4ρV aWSW

−1
4ρV aWSWlW

1
4ρV aWSW

[
κe0
(
1 + A

3

)
+ lAγe0

(
1 + B

2

)]
 (B.9)

CZ =


C1Z

C2Z

C3Z

 =


0

1
4ρV

2aWSW

1
4ρV

2aWSWγe0
(
1 + B

2

)
 (B.10)

DZ =
1

4
ρV aWSW (B.11)
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AT =


A1T

A2T

A3T

 =


−A1Z lE

−A2Z lE

−A3Z lE

 (B.12)

BT =


B1T

B2T

B3T

 =


B1Z lA

B2Z lA

B3Z lA

 (B.13)

CT =


C1T

C2T

C3T

 =


0

C2Z lA

C3Z lA

 (B.14)

DT = DZ lA (B.15)

where

A = −3
m

mW

[
1 +

lWM (lE + lWM)

ly
2

]
(B.16)

and B = 0 for the case where wing bending is dominant, which has been assumed in

this instance.
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