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Abstract 

   Recently, the interest in implantable devices for biomedical telemetry has 

significantly increased. Amongst the different components of the implantable device, the 

antenna plays the most significant role in the wireless data transmission. However, the 

human body around the antenna alters its overall characteristics and absorbs most of its 

radiation. Therefore, this thesis is mainly focused on improving the antenna characteristics 

(bandwidth and radiation efficiency) to overcome the human body effect and investigating 

new structures that reduce the power absorption by the human body tissues.  

A novel antenna design methodology is developed and used to design new flexible 

implantable antennas of much lighter weight, larger radiation efficiency, and wider 

bandwidth than existing embedded antennas. These antennas work for multiple ((401-406 

MHz) MedRadio, 433 MHz and 2.45 GHz ISM) bands which satisfy the requirements of low 

power consumption and wireless power transfer. This has been combined with thorough 

investigations of the antenna performance in the anatomical human body. New effective 

evaluation parameters such as the antenna orientation are investigated for the first time.  

New structures inspired by complementary and multiple split ring resonators (CSRRs 

and MSRRs) are designed. The structures are found to reduce the electric near field and 

hence the absorbed power which increases the radiated power accordingly. This new 

promising function of metamaterial based structures for implantable applications is 

investigated for the first time.  

The path loss (between pacemaker and glucose monitoring implantable antennas 

inside the anatomical body model) and (between an implantable and external antennas for a 

wireless power channel at 433 MHz) are estimated. Moreover, the optimum antenna type for 

on-in body communication is investigated. Loop antennas are found to outperform patch 

antennas in close proximity to the human body. 
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Chapter 1 

 Introduction 

1.1 Background 

  Recently, the interest in implantable devices for biomedical applications such as 

cancer treatment by hyperthermia, drug delivery and healthcare monitoring [1, 2, and 3] has 

significantly increased. Implantable devices can sense bio-signals such as the temperature, 

blood pressure, etc. from inside the human body and transmit them to an external device (the 

reverse communication is also possible). The external device is either placed in the close 

proximity to the human body (in the near field region of the antenna) or at a distance of a 

few metres (in the far field region of the antenna). Two examples on these applications are 

shown in Figs. 1.1 and 1.2, respectively. The application in the far field region is the focus of 

this thesis. The information received by the external device is post-processed by monitoring 

units and medical experts who treat the patient accordingly as shown in Fig. 1.2. This allows 

some diseases, such as cancer or diabetes, to be diagnosed in their very early stages, while 

critical medical conditions, such as heart attacks or strokes, can be prevented [3]. This is also 

very helpful for healthcare systems by monitoring several bio-physical parameters such as 

glucose and blood sugar level. Indeed, many devices such as pacemakers, implantable 

glucose sensors and wireless capsule pills have demonstrated the importance of implants in 

treatment and health monitoring [3].  
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The implantable device is composed of several components such as a battery, sensors 

and an antenna. An example of an implantable device is illustrated in Fig. 1.3. Among all of 

these components, the antenna plays the most significant role in building up the 

communication link from inside the human body to an external receiver. It can be seen from 

the figure that the antenna exploits a considerable space inside the implant. Thus, the antenna 

may play an important role in the overall size and weight reduction of the implantable 

device. 

 

Fig. 1.1: Wearable receiver of wireless capsule endoscopy [4]. 

 

Fig. 1.2: Illustration of a health monitoring system [3]. 
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Fig. 1.3: Illustration of an implantable device. 

To achieve the intended functions of the implantable device successfully, the 

implantable antennas should be carefully designed. However, implantable antenna design is 

very challenging which is mainly due to the following reasons: 

1. Physical limitations and frequency band allocations: The Medical Device Radio 

Communications (MedRadio) band is mainly allocated for implantable applications. 

This band covers the 401 – 406, 413 – 419, 426 – 432, 438 – 444, and 451 – 457 

MHz [5] and is well suited for this service, due to the signal propagation 

characteristics in the human body, compatibility with the incumbent users of the 

band (meteorological aids such as weather balloons), and its international 

availability. The range of frequencies within this band represents a good choice as 

higher frequencies suffer from larger human body attenuation [6]. However, this 

band selection presents challenges to the design due to its relatively low frequency 

range. For antennas to resonate in a relatively low frequency band, they have to be of 

a large size, this cannot be the case for implantable antennas which have to be in a 

small implantable device. Therefore, miniaturization is needed. This may result in 

electrically small antennas which suffer from small radiation efficiency. On the other 

hand, the small physical size of these antennas causes small gain values. Unlike the 

normal physically small antennas in free space, implantable antennas obtain a 
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relatively wide bandwidth because of the human body loss. However, this wide 

bandwidth is obtained at the cost of smaller radiation efficiency. This will be further 

explained later. Other frequency bands such as the 433 MHz and 2.45 GHz ISM 

bands are also used for biomedical applications. The 433 MHz is mainly used for 

wireless power transfer from an external antenna to the implantable device. This has 

the advantage of avoiding surgeries to replace the implant battery. It also reduces the 

size of the implantable device by saving the internal space that is exploited by the 

battery. This frequency band supports higher data rate transmissions in comparison 

with lower frequencies that are normally used for inductive coupling. However, this 

requires dual- ((401-406) and 433 MHz ISM bands) or broad-band antennas. The 

2.45 GHz is mainly used for wakeup applications to save power by transmitting data 

only when is needed [7]. This also introduces the requirements of multi or broad-

band implantable antennas. It is worth mentioning that using the 2.45 GHz for data 

transmission leads to larger attenuations of the signal in the human body tissues in 

comparison with the MedRadio band.    

2. The complicated medium of propagation: The main challenges of implantable 

antenna design are due to the human body environment in which these antennas 

radiate. Unlike free space, human bodies are composed of different tissues of large 

relative permittivity and conductivity which are distributed asymmetrically. This 

causes attenuation in the tissue layer and reflection at the boundaries between the 

tissues. It is worth mentioning that further losses (i.e. free space losses) are added 

when the wave travels in free space from the human body to an external receiver 

(more details about this communication path loss and link budget will be provided  

in Chapters 2 and 6). This shows the main difference between the case of the near 

and far field implantable communications; much smaller losses are obtained for the 

case of near field communication as the receiver is directly attached to the human 
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body or placed at a shorter distance (the free space loss is directly proportional to the 

distance from the human body to the external device).  

The human body modifies the antenna behaviour; the relatively large 

permittivity of the body tissues helps in miniaturizing the antenna size. Moreover, 

the losses widen the antenna bandwidth (more details will be provided in the 

following chapter). However, a trade-off between the bandwidth and radiation 

efficiency has to be carefully applied to satisfy both of following: 

 Ensure a robust performance in the human body where detuning happens.  

 Satisfy the required budget of the intended communication.  

3. The specific absorption rate (SAR) and power limitations: In order to prevent 

hazardous heating of the biological tissues, implantable antennas have to comply 

with the SAR specifications. The IEEE C95.1-1999 standard restricts the SAR 

averaged over any 1 g of tissue in the shape of a cube (1 g-AVG SAR) to less than 

1.6 W/kg [8]. The IEEE C95.1-2005 standard restricts the SAR averaged over any 

10 g of tissue in the shape of a cube (10-g AVG SAR) to less than 2 W/kg [9]. The 

maximum input power that is provided to the antenna should satisfy these 

limitations. Moreover, the maximum equivalent isotropic radiated power (EIRP) has 

to be less than -16 dBm in the MedRadio band [10].  

1.2 Research Motivations and Objectives 

Biomedical telemetry has a significant role in improving people's life and health. 

Therefore, many designs of implantable and ingestible antennas were proposed. However, 

none of them has completely satisfied the overall requirements (small size, light weight, 

wide bandwidth, relatively large radiation efficiency and gain) for actual implants of robust 
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performance. While some designs were of a good radiation characteristics, the overall 

implant dimensions were large [3, 11, 12, and 13]. Moreover, most of these designs are of a 

very narrow bandwidth which causes a frequency detuning out of the MedRadio band after 

actual implantation in the real human body and after a short period of implantation [3]. On 

the other hand, the small designs in [14, 15] obtained very small gain values in the 

anatomical body model. Most of these antennas were heavy in weight and non-conformal to 

the implant structure. Although, the flexible designs in [16, 17] were light in weight and 

conformal to the structure, they were used for implants of large sizes and attenuations. 

Therefore, the primary motivation of this research is the development of a new set of 

implantable antennas that satisfy all the requirements that are mentioned above for an 

efficient design and can be used actually for real implantable devices. The added values of 

flexible antennas and considerable limitations and shortcomings of their previous designs 

motivate a particular focus on the development of efficient flexible antennas.   

   Because of the difficulty of the experimental validation in the actual human body, 

evaluation in the anatomical human body is very important. However, few designs [3] were 

evaluated in the full anatomical human body. Generally, that evaluation was brief and at one 

position and orientation only. The anatomical human body model mimics the multilayer 

human body accurately and sometimes is the only tool of an accurate evaluation. Therefore, 

it is very important to understand its actual effect on the antenna performance. For example, 

unlike the radiation pattern in simplified and homogeneous body models [18], the radiation 

pattern is more directional in these anatomical models. A Lot of ambiguities still exist about 

the effective design parameters such as the implant orientation on the antenna performance 

in the full anatomical body model. Although the orientation effect was briefly indicated in 

[19], its effect on the overall antenna characteristics was not thoroughly investigated. For all 

these cases, it is very important to understand the effect of the size of the simulated 

anatomical body part on the antenna performance and overall characteristics. Although this 
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parameter is expected to have a considerable effect on the antenna performance, it has been 

neglected by most of previous studies such as in [20]. All of these points were interesting 

propositions which supplied the motivation to: 

 Investigate the effect of different implantation areas and tissues of the 

anatomical body model on performance. This is to evaluate the robustness of 

the antenna performance and select the optimum position of implantation for 

health monitoring implants.  

 Discuss the conditions and requirements for an accurate and a quick 

evaluation of the implantable antenna performance.  

 Elaborate and quantify the orientation effect on performance which was 

ignored previously despite of its importance. 

   The requirements of low power consumption and emergence of small passive 

implants motivate the design of a broadband antenna that works for the (401-406 MHz) 

MedRadio, 433 MHz and 2.45 GHz ISM bands. These bands support the functionalities of 

wireless data transmission, power transfer and wakeup receiver, respectively [21].  

Metamaterials are structures of many interesting features. They have been used to 

miniaturize antennas and improve their impedance matching which is reflected on a larger 

overall radiation [18, 22]. They have also been used to reduce the SAR in the human head 

[23]. Moreover, they are used to control the electric and magnetic field around the antenna 

[24, 25]. This is very beneficial for implantable antennas which become more efficient if 

their electric near field is reduced. These special features motivate investigating the effect of 

complementary split ring resonators (CSRRs) and multiple split ring resonators (MSRRs) 

based top loading layer on the performance of implantable antennas in the human body. The 

CSRRs are integrated to a broadband loop antenna to:  
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 Improve the antenna matching for S11 < -10 dB. 

 Improve the overall antenna radiation. This is obtained by reducing the 

electric near field. When it is reduced, the absorbed power is decreased 

hence the radiated power is increased accordingly. This will be explained in 

details in Chapter 5. 

   MSRRs are used to design a top loading layer around the implantable device and 

antenna to improve the overall radiation from the antenna regardless of the antenna structure. 

The main reason of the small radiated power from the implantable antenna is the power loss 

due to absorption of the antenna radiation by the surrounding human body tissues. The use of 

insulation layers to reduce the absorbed power has already been investigated in [26]. 

However, the resultant improvement was very limited and small especially for a thin layer 

and small implant. Therefore, the use of a new type of more efficient layers based on 

MSRRs has been proposed. Up to the author's best knowledge, metamaterials are used to 

improve the radiation of implantable antennas for the first time in this thesis. Although some 

metamaterials based designs were proposed for implantable antennas such as in [18, 27], 

they were only used to miniaturize the antenna and obtain resonance at another frequency by 

coupling to another radiator (SRR coupled to a spiral).  

    The human body forms an important part of in-in, in-on and in-off body 

communication paths. In-in (in to in) body communication comprises communication 

between implantable antennas inside the human body, in-on (in to on) body communication 

comprises communication between an implantable antenna and another antenna worn by the 

human body or placed on it, and in-off (in to off) body communication comprises 

communication between an implantable antenna and another external antenna outside the 

human body in the free space. The path loss between implantable antennas in an anatomical 

body model was estimated in [28]. However, it was for communication channels at 2.45 GHz 
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where attenuations are larger than that at 403 MHz. Implantable antennas of a relatively 

large size were considered in that study and thus the path loss was almost under-estimated. 

Moreover, the effect of the implant orientation especially at the same position which is found 

to be very effective on overall path loss variations was not considered. Off-body channels 

and path losses were characterized in [29, 30]. However, the effect of the body orientation on 

the overall path loss variations was not considered in those studies. This effect has to be 

evaluated for long term health monitoring implants as the human body moves and rotates 

around the receiver over the long health monitoring process. Although some antennas were 

designed for the applications of wireless power transfer, the path loss at 433 MHz was rarely 

estimated. Such estimation is very important to quantify the required link budget for the 

entire power transfer system. While the optimum implantable antenna type was investigated, 

the optimum wearable or on body antennas for an efficient on-in or in- on body 

communication was not investigated. It should be pointed out that an accurate estimation of 

the body path loss provides a valuable and reliable data source for doctors and designers. It 

also helps to boost many related applications. All of these aspects have provided another 

motivation to estimate these path losses accurately.  

1.3 Organisation of Thesis 

This thesis includes 7 chapters and is outlined as the following: 

Chapter 2 is to review and discuss the foundations of radio communications in a lossy 

matter and study the general effect of the human body on antenna performance. It also 

reviews the work related to implantable antenna design and communication paths. This 

chapter is important as it establishes a background for all concepts and investigations in the 

following chapters.  
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Chapter 3 presents a general design methodology for flexible implantable antennas. 

This methodology is used to design many broadband antennas that cover the MedRadio 

(401-406) and 433 MHz ISM bands for different applications and types of implants. This 

chapter also presents the related measurements in a liquid body phantom and pork. This 

chapter is very important as it provides a general methodology for flexible implantable 

antenna designs that suit different applications and guarantee performance in the real human 

bodies. New flexible antennas that are more efficient than previous antennas are proposed in 

this chapter. In addition, this chapter presents a simple tool to measure the performance 

robustness of implantable antennas over a long period of implantation and material 

variations.  

Chapter 4 concerns evaluating the antenna performance in the anatomical body 

models. To emphasize the importance of such an evaluation, the reliability of using the 

simplified body models is firstly investigated. Then, the performance of some of the 

proposed antennas at this thesis is evaluated at different positions and orientations in the 

anatomical body model. The following three parameters are investigated in depth for the first 

time in this chapter: 

 The radiation pattern in the anatomical body model in comparison with that in 

the simplified body model. 

 The implant orientation even at the same position of implantation.  

 The body part which should be considered in simulations for an accurate and a 

quick evaluation.  

The analysis in this chapter provides important guidelines for an accurate evaluation 

of the antenna performance. It also elaborates for the first time some effective parameters 

that have to be considered seriously during the design and surgery processes. 
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Chapter 5 is divided into two parts, the first part deals with the utilization of 

metamaterial inspired structure based on (CSRRs) for a more efficient implantable antenna. 

The second part of this chapter investigates the use of metamaterial based layers around the 

implantable antenna to improve the overall radiation from the human body. The results show 

an optimistic potential for using metamaterials for more efficient transmission from the 

implantable antenna to an external receiver. They also show a new function of metametrials 

based structures in the lossy human body which is the reduction of the absorbed power. 

Chapter 6 estimates and quantifies the loss of a communication path between a 

pacemaker and a glucose monitoring device. The benefit of this type of communication is 

indicated in [28]. Both of the glucose monitoring and pacemaker devices need to 

communicate with a device outside the human body to control some bio-parameters. The 

glucose monitoring implant can communicate with the pacemaker/central hub which then 

can communicate with a receiver placed outside the body. The data transfer from the in-body 

implants to the receiver placed outside the body thus only needs to take place from one of the 

in-body implant. This reduces the need for various sensors to communicate with receivers 

outside the body. For efficient communication, the communication path losses should be 

carefully estimated. Therefore, the losses of this communication path is estimated and 

quantified. The results of this estimation represent a good source of data for doctors and 

other designers in the field. It also provides the link margins for different orientations and 

positions of the implantable antenna. This chapter also estimates the path loss between an 

implantable and external loop antenna for a power transfer communication. This chapter also 

evaluates the body orientation effect on the path loss for in-off body communications. 

Further investigations on the optimum wearable antenna type to communicate with 

implantable antennas are also conducted in this chapter. 

Chapter 7 summarizes conclusions and discusses future work.      
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Chapter 2 

 Implantable Antennas: Basics and 

Literature Review  

2.1 Introduction 

The performance of the implantable device and antenna is mainly influenced by the 

lossy and asymmetric human body. Unlike free space, human body tissues are lossy and of 

large relative permittivity. Therefore, the antenna performance in the human body is 

different from that in free space. The radiation in such a sensitive environment requires the 

compliance with many conditions such as the specific absorption rate and power regulations. 

This also imposes difficulties in the measurements which have to be conducted in human 

body mimicking phantoms. A good understanding of the antenna behaviour in the human 

body is necessary for a successful antenna design. This chapter provides a summary of the 

relevant theoretical basics for antenna designs in lossy media and compare it generally with 

the case in free space. It also provides a revision of the research areas of this work and aims 

particularly to: 

 Summarize all the basic required knowledge for the design of implantable antennas. 

 Review the subject areas of this thesis. This is very important to understand the 

current challenges and contributions of this work. 
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 Build a solid base for the analyses in the following chapters. 

To achieve these purposes, this chapter is arranged into two parts: the effect of the 

lossy human body on the overall antenna characteristics is summarized in the first part. 

Then, the research on the following topics is reviewed in the second part of this chapter: 

 Implantable antenna design (rigid and flexible antennas for near and far field 

applications). 

 Evaluations in simplified and anatomical body models. 

 The use of metamaterials for implantable antennas. 

 Estimation of in-in, in-on and in-off body path losses. 

 Models and methods of measurements. 

The main contributions of this chapter to the thesis content are: 

 Summary of the required knowledge to understand implantable antennas 

behaviour in the human body.  

  Provision of a solid background for the investigations in the following 

chapters. 

 Summary of the previous designs and investigations that are related to the 

subject areas of the thesis. 

2.2 The Effect of the Human Body on the Antenna 

Performance 
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Unlike free space, the human body is lossy and frequency dependent. The conductivity 

of muscle and skin which are common tissues of implantation is 0.79 and 0.69 S/m, 

respectively at 403 MHz while the conductivity of the stomach, colon and small intestine are 

1, 0.86 and 1.9 S/m, respectively at this frequency. The relative permittivity of the human 

body tissues are also of large values (57.1, 0.69, 67.5, 62.5 and 66) for these tissues, 

respectively at 403 MHz [31]. The effect of the large conductivity and permittivity is mainly 

reflected on a larger attenuation loss ( L (dB)) inside human tissues which can be calculated 

using [32]: 

                                            leL 


 10log20                                                 (2.1)                             

where  (m) is the distance that the signal travels in the tissue and α (Np/m) is the attenuation 

constant which can be calculated using Eq. 2.2 [32]. 
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where  (rad/m) is the angular frequency,   is the tissue permeability (H/m) and equals to 

free space permeability ( 0 ) for all the nonmagnetic human body tissues,  (F/m) is the 

permittivity of the tissue which equals to ( r 0 ) where 0  is the free space permittivity and 

r  is the relative permittivity, and σ is the tissue conductivity (S/m).  

It should be mentioned that these electromagnetic properties (permeability, and 

permittivity) are complex quantities as defined in Eqs. (2.3-2.4) [3, 33].  

     rr j ///

0    

                                                    











0

/
/

0



 jr                                              (2.3)                                          



Chapter 2: Implantable Antennas: Basics and Literature Review                            Page | 15                                                 

__________________________________________________________________________ 

 

                                             rr j ///

0                                                   (2.4) 

The human bodies are non-magnetic and thus do not present magnetic losses (the 

imaginary part of effective permeability is zero). For simplicity, r  and 
r  are used in this 

thesis to represent r
/  and r

/ , respectively. 

In addition to attenuation losses, extra losses due to reflections ( rL (dB)) at the 

boundary between the tissues occur which can be calculated using Eqs. (2.5 - 2.7) [32]. 

Normal incidence is assumed in Eq. (2.6). 

                                            1020logrL                                                      (2.5) 
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where   (Ω) is the intrinsic impedance and  is the reflection coefficient at the boundary 

between tissues. 

It is also obvious from these equations that the losses increase at higher frequencies. 

This explains the benefits of allocating the (401-406 MHz) MedRadio band mainly for data 

transmission rather than the 2.45 GHz ISM band which is also used sometimes for medical 

applications [34]. It should be pointed out that larger conductivity and smaller permittivity 

are always obtained at higher frequencies. For example, the conductivities of muscle, skin, 

stomach, colon and small intestine at 2.45 GHz are 1.74, 1.46, 2.2, 2 and 3.17 S/m, 

respectively whereas the relative permittivity for these tissues at this frequency is 52.7, 38, 

62.1, 53.8 and 54.4, respectively. However, it is obvious from these values that the increase 
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rate of the conductivity is much larger than the reduction of the permittivity. In addition to 

the reflection at the boundary between tissues, a part of the signal will be reflected back at 

the boundary between the skin layer and free space. This is due to the large difference in 

their electromagnetic properties and intrinsic impedances. 

The received signal power by the off-body receiver can be calculated using Eq. (2.8) 

[14, 35].  

RX TX TX RX P P TX RXP P G G L e ML ML                              (2.8) 

where RXP  and TXP  (dBm) are the received and transmitted power, respectively, TXG  (dB) 

is the transmitter antenna gain. This gain value is normally negative for implantable antennas 

as it includes in-body (attenuations and reflections) losses, RXG  (dB) is the receiver antenna 

gain, Pe  (dB) is the polarization mismatch factor, MLTX (dB) is the transmitter impedance 

mismatch loss, MLRX (dB) is the receiver impedance mismatch loss. PL  (dB) is the path loss 

which can be obtained using Eq. (2. 9) [29]: 
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where n is the path loss component which is environment-dependent. n =1.5 for line-of-sight 

(LOS) indoor propagation, while n= 3 for none-line-of-sight (NLOS) indoor propagation, d0 

≤ d is a reference distance which is assumed to be 1 m in this thesis, 0 (m) is the 

wavelength which is inversely proportional to the frequency. and S is the random scatter 

around the mean [14, 29]. In the case of free space loss n= 2 and hence Eq. (2.9) simplifies to 

[36]:  
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where fL  (dB) is the free space loss. 

Gain in free space (receiver antenna gain for this case) is defined as the ratio of the 

radiation intensity in a given direction from the antenna to the total input power accepted by 

the antenna divided by 4π. If the direction is not specified, the direction of the maximum 

radiation is implied. Mathematically, the gain (dimensionless), can be written as [37]:   

inP

U
G

4
                                                          (2.11) 

Where U (W/unit solid angle) is the radiation intensity and Pin (W) is the total input power 

accepted by the antenna. The radiation intensity is linked to the average radiated power 

intensity (Savg (W/m
2
)) by distance (r (m)) squared, that is [37]: 

    avgSrU 2                                                       (2.12) 

The gain in a conducting medium (Gcon) is obtained in [38] as: 

 
r
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where Rrad  (Ω) is the radiation resistance, Rintrinsic (Ω) is the intrinsic resistance which is 

given by: 





2
int rinsicR                                                       (2.14) 

g is a function involving the parameters of the medium and is given as: 
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|H| (A/m) is the magnitude of the magnetic field taken in the maximum field direction of the 

antenna under consideration at distance d (m). δ is the skin depth and Ii (A) is the input 

current [38]. This shows that the gain of the antenna in a conducting medium such as the 

case of the implantable antenna inside the human body increases if the magnetic field of the 

antenna increases.   

In a free space environment, the near field is mainly reactive, thus neither affecting the 

radiated nor the absorbed power. In the case of implantable antennas, on the contrary, the 

near field strongly couples with the closest surrounding material, thus increasing the lost 

power [3]. This is reflected on smaller radiation efficiency as explained in the following sub-

section. 

2.2.1 The Effect of the Human Body on the Antenna Radiation 

Efficiency and Radiated Power 

 The effect of the lossy medium on the antenna radiation efficiency and resistance has 

already been investigated [3, 38]. The conventional techniques for determining the antenna 

radiation efficiency and resistance are found to be incorrect inside the lossy medium [38]. 

However, this applies to an infinite lossy medium. For the case of implantable antennas, the 

receiver will be placed somewhere in free space outside the human body. Therefore, the 

classical definition of radiation efficiency ( ) in Eq. (2.16) will be used at this thesis in 

accordance with [3]. 

                                                 
source

rad

P

P
                                                    (2.16) 

where radP  (W) is the radiated power which is evaluated in free space at far field, sourceP (W) 

is the source power. For the case of antennas in the human body, the source power is divided 
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into the radiated, absorbed and reflected power ( radP + absP + reflectedP ). For the same source 

power, the larger absorbed power reduces the antenna radiated power and radiation 

efficiency, correspondingly. The absorbed power is normally large and much larger than the 

reflected power for the case of implantable antennas. As explained above, this is due to the 

near field coupling with the human body tissues which causes larger power absorption. 

Therefore, the radiation efficiency for implantable antennas is usually small. The effect of 

the electric near field on the antenna radiated power and specific absorption rate (SAR) can 

be explained using Eqs. (2.17-2.18). The larger electric near field increases the absorbed 

power which reduces the overall radiated power. Moreover, it increases the SAR [3, 39]. 
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where E (V/m) is the electric field and  (kg/m
3
) is the mass density. 

The radiation efficiency of an antenna is defined in terms of its radiated and loss 

resistances [37]: 

                                           
Lrad

rad

RR

R


                                                      (2.19) 

where radR (Ω) is the radiation resistance and LR (Ω) is the loss resistance.  

The radiation efficiency links the antenna gain to directivity (D) as: 

DG                                                            (2.20) 
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 Directivity is a measure of the concentration of the radiated power in a particular direction. 

It is defined as the ratio of the radiation intensity in a given direction from the antenna to the 

radiation intensity averaged over all directions. The average radiation intensity is equal to the 

total radiated power divided by 4π. If the direction is not specified, the direction of the 

maximum radiation is implied. Mathematically, the directivity (dimensionless) can be 

written as:  
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                                    (2.21) 

The antenna radiation efficiency increases as the radiation resistance increases. The radR  can 

be calculated using Eq. (2.22) [40]: 
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This shows that the radiation resistance directly depends on the radiated power. However, 

unlike the radiated power in free space, the radiated power of a small loop antenna in a non-

magnetic lossy medium depends on the radial distance in close proximity (the radius of the 

sphere) around the antenna [41].  
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where I dA (A. m
2
) is the current area element, R (m) is the radius of the enclosing sphere 

around the loop antenna. This radial dependency implies that the near field contributes to the 

antenna loss and radiation [3]. This dependency becomes stronger for the case of a short 

dipole antenna which is of an electrical type as shown in Eq. (2.24) [41].  
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where Idl  (A. m) is the current length element and δ is the skin depth. The detailed 

derivation of Eqs. (2.23-2.24) is provided in Appendix A. 

It is shown from the equation that the radiation resistance and radiated power of the 

short dipole antenna decay with (
3/1 R ) rather than ( R/1 ). Therefore, it is less efficient 

than the magnetic loop antenna in the human body. That is why loop antennas are selected 

for the designs in this thesis.  

For the cases when the receiver is placed in close proximity to the human body such as 

the case of wearable receivers (e.g. capsule receivers), other definitions of the radiation 

efficiency could be more appropriate [3, 42]. However, this is beyond the main scope of this 

thesis. The free space or propagation losses do not contribute to the overall path losses for 

this case. On the other hand, reflections at the boundary between skin or clothes and free 

space still exist and count for the overall loss.   

It is clear now that the antenna radiation efficiency of implantable antennas is mainly 

degraded because of the strong near field coupling between the radiator and surrounding 

body tissues. Therefore, insulation layers help in reducing this coupling by confining most of 

the losses in an area of low losses [3]. They also minimize the lossy area around the antenna 

and thus increasing the radiation efficiency. This effect has thoroughly studied in [3]. 

However, these layers are not very effective on magnetic type antennas which are selected 

for the designs and investigations in this thesis. This is due to the following: 

 In agreement with [3], the effect of dielectric properties of real insulation 

layers on magnetic sources such as loop is negligible.  

 In order to keep the overall implant size small, insulation layers are normally 

thin. Therefore, their beneficial effect on increasing the radiation efficiency is 

small in accordance with the findings in [3]. 
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2.2.2 The Effect of the Human Body on the Antenna Bandwidth 

Although, implantable antennas are ideally small in size and thus are expected to be of 

a narrow bandwidth, the losses which are introduced by the surrounding tissues widen the 

antenna bandwidth. This is because small portion of the radiated power is reflected back to 

the source (most of the radiated power from the source is absorbed by the human body 

tissues) [3]. The analysis in this thesis focuses on the design of wide bandwidth antennas to 

obtain the following: 

 Overcome the frequency detuning which happens at different body tissues. 

 Overcome the frequency detuning which happens at different positions in the 

same organ.  

 Overcome the frequency detuning which happens at different orientations 

(around the same axis and different axes).  

However, this wide bandwidth has to be obtained with good radiation efficiency. 

Therefore, this thesis suggests using flexible antennas which are wide in bandwidth and at 

the same time of relatively large radiation efficiency. The methodology of obtaining these 

contradicting conditions will be explained in the following chapter.  

The effect of the antenna implantation inside the human body on its bandwidth is 

compared in a lossy and lossless human body model in Fig. 2.1. For an accurate comparison, 

both body models are of the same characteristics except for conductivity. The lossy body 

model mimics muscle at 403 MHz. Therefore, its conductivity is 0.79 S/m. On the other 

hand, conductivity of the lossless body model is zero. The antenna of investigations is a 

flexible U-shaped loop antenna. More details about it will be provided in the following 

chapter. 
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Fig. 2.1: The reflection coefficient of an implantable antenna in a lossless and lossy human body 

models. 

The figure shows that the lossy human body tissues around the antenna widen the 10 

dB bandwidth to be around 20 times the corresponding bandwidth in the lossless body 

model. At the same time, the resonant frequency in the lossy body model is lower by 110 

MHz than in the lossless body model. It can also be seen from the figure that the flexible 

antenna bandwidth is around 240 MHz which is wide enough to overcome the frequency 

detuning in the real human body (more details will be provided in Chapter 4). 

To investigate the source of its wide bandwidth, a comparison with other antennas is 

conducted. The comparison comprises both of rigid and embedded antennas. The flexible 

implantable antennas in [17, 42] are of wider bandwidth than the antennas in [3, 12, 14, and 

27] although they are used for implants of the same size. It is worth mentioning that for more 

accurate comparison the antennas should be of almost the same size. However, general 

characteristics can be formulated for both types of antennas which can be used for the same 
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implantable device. This is attributed to the conformity of the flexible antennas; because the 

antenna is flexible, it exploits the entire wall of the implant. Therefore, much larger 

dimensions can be exploited for the antenna over the same implant size. The direct 

relationship between the antenna physical size and its bandwidth is well known to antenna 

designers. For example, a conformal rigid antenna which was embedded in an implant of 5 

mm in radius and 30 mm in [3] was of a very narrow bandwidth (< 20 MHz). This is around 

13 times narrower than the bandwidth of the conformal antenna that is presented in this 

thesis despite of the smaller implant size (half in length) and the same radiation efficiency 

for the proposed antenna in this thesis.  

2.2.3 The Effect of the Human Body on the Antenna Radiation 

Pattern 

The antenna radiation of an antenna is a plot of the radiated field as a function of the 

angle at a fixed distance, which should be considered large enough to be considered farfield 

[37]. The effect of the lossy medium on the antenna radiation pattern is investigated in [38]; 

it was found that the lossy medium broaden the radiation pattern in comparison with air as 

shown in Fig. 2.2. 

 

Fig. 2.2: Effect of the lossy medium on the polar radiation pattern [38].  
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This effect was studied in an unlimited lossy medium. Another important effect that is 

investigated in this work is the antenna position effect. While the radiation pattern is 

expected to change for different positions in the asymmetric anatomical body model, our 

investigations show that the radiation pattern differs even in the symmetric body model. To 

show this effect in the simplified body models, the position of the implantable antenna and 

device is changed inside the same simplified body model. It is worth mentioning that an 

elliptic cylindrical simplified body model of a muscle equivalent dielectric material and the 

dimensions of (180, 100 and 50 mm) are used in all of the previous investigations. However, 

to emphasize this effect even in a more symmetrical body structure, a body model of a 

cylindrical shape which is 100 mm in diameter and height is used as shown in Fig. 2.3. 

The polar radiation patterns when the antenna is placed at the origin, 40 mm from the 

origin on the x and y axes are shown in Fig. 2.4. It can be seen from the figure that the main 

lobe direction differs totally when the antenna is simulated at the origin from the cases when 

the antenna is simulated at x and y = 40 mm. Around 149 and 159 degrees difference from 

the case at origin is obtained at x and y = 40 mm, respectively).  

The main lobe magnitude for the cases at x= 40 mm and origin is almost the same (-

16.3 dBv/m) while 5 dBv/m smaller main lobe magnitude is obtained for the case at y = 40 

mm. The 3 dB angular widths are 149, 234.9 and 213.1 degrees at origin, x= 40 mm and y = 

40 mm, respectively. The difference in the maximum field intensities is due to the following 

reason; the most effective antenna part is around the feeding point. When the antenna parts 

around it are surrounded by thicker lossy tissues, more absorption occurs and this reduces the 

overall far field strength (smaller radiation). The antenna parts around the feeding point are 

surrounded by the same thickness of the body tissue at x= 0 and x= 40 mm. Therefore, 

almost the same magnitude of the main lobe is obtained for both of them. On the other hand, 

much thicker tissue layer surrounds them when the antenna is at y= 40 mm. Therefore, a 
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smaller main lobe magnitude is obtained at this case. The antenna orientation in the body 

model and its parts are shown in Fig. 2.3. This shows the importance of evaluating the 

radiation pattern for implantable antennas at a position that exactly represents the actual case 

in the real human body. Moreover, additional effects such as the orientation are expected in 

the actual human body which is investigated in a following chapter. 

 

Fig. 2.3: The simplified cylindrical body model to study the effect of the implantable antenna position 

on the radiation pattern; dimensions are not to scale. 
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Fig. 2.4: The polar radiation pattern in the azimuth plane (around the body) when the antenna is 

placed at different positions: (a) origin (x= 0, y= 0 mm) (b) x = 40 mm (c) y = 40 mm. 

2.3 Literature Review 

The most significant work that was conducted in the subject areas of the thesis is 

reviewed in the following sections:  

2.3.1 Implantable Antenna Design  

Existing implantable antennas can be categorized into flexible and rigid antennas.  

Each of these groups is reviewed as the following: 

2.3.1.1 Rigid Embedded Implantable Antennas 

These antennas are made of rigid copper and can be only placed inside the implantable 

device (cannot be bent around it because of its non-flexibility). Many antennas under this 

category were proposed; a spiral meandered Planar Inverted-F Antenna (PIFA) was proposed 

in [12]. That antenna is shown in Fig. 2.5. It is of a large size (24×32×8) mm
3
 for real 

implants. Moreover, its shape is not conformal to cylindrical implants; the edges leaves an 

unexploited space around them which waists a considerable internal space. Furthermore, 

despite of the antenna relatively large size, it obtained a narrow bandwidth of around 50 

MHz as shown in Fig. 2.6. A much wider bandwidth is desirable in order to guarantee 

coverage of the bands of interest at different implantations locations and orientations. This 

will be further discussed in a following chapter. 
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Fig. 2.5: A spiral PIFA antenna proposed in [12]; top and side views. 

 

Fig. 2.6: The reflection coefficient of the spiral PIFA in [12]. 

The PIFA designs in [43] had also the same problem of the large size and non-

conformity as shown in Fig. 2.7. They also had a bandwidth narrower than 50 MHz around 

the MedRadio band. A (19.5×10.8×2.5) mm
3
 PIFA was also proposed in [44] for implantable 

applications at 868 MHz. The attenuation in the human body tissues and free space loss at 

this frequency are larger than that at the MedRadio band.  

Radiating layer 

 Superstarte layer 
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                     (a)                                                                                     (b) 

Fig. 2.7: The antennas in [43]: (a) Meandered PIFA, (b) Spiral PIFA. 

The PIFA is selected for those designs due to several reasons; it can resonate at a 

frequency around 400 MHz over small physical dimensions and low profile. It also has a 

smaller electric near field in comparison with other electrical type antennas. A single (915-

928 MHz), dual (356- 610 MHz and 2.45 GHz ISM) and triple (433 MHz ISM, WTMS a 

1430 MHz, and 2.45 GHz ISM) band slot PIFA antennas were also proposed in [45, 46, and 

47]. Those antennas were of (12×12×4), (19.4×19.8×1.27) and (19×30×1.6) mm
3
 in sizes, 

respectively which are relatively large for rigid structures for implantable applications. 

Those antenna structures and reflection coefficient are shown in Figs. 2.8 and 2.9, 

respectively. The slot was exploited in those designs to control the matching level, 

miniaturize the antenna and improve the antenna magnetic properties. This is reflected on 

larger radiation as explained in Chapter 2. 

                            

(a) 
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(b) 

 

(c) 

Fig. 2.8: Slot PIFA antennas in: (a) [45], (b) [46], and (c) [47]. 

 

(a) 
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(b) 

 

(c) 

Fig. 2.9: The reflection coefficient of the slot PIFA antennas in: (a) [45], (b) [46], and (c) [47].  

Slot antennas were also proposed in [32, 48] for bone and arm implantation at 

frequencies of 20 and 2.45 GHz, respectively which were of much larger attenuation and free 

space loss than at MedRadio band. A stripline-fed slot antenna was also designed for muscle 

implants in [49]. That design was composed of two Rogers RT 6010 substrates as shown in 

Fig. 2.10 which probably made the implant heavy. Although the antenna worked for the 2.45 

GHz ISM band as shown in Fig. 2.11, it obtained a relatively large size of (12.5×14.7×2.54) 

mm
3
. 
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(a) 

 

(b) 

Fig. 2.10: The stripline-fed slot antenna in [49]: (a) Top view, (b) Side view 

 

Fig. 2.11: The reflection coefficient of the stripline-fed slot antenna in [49]. 

A slot line between a low-dielectric medium and a high-dielectric medium-like skin 

was used in [15] to work for the MedRadio and 433 MHz ISM bands and obtained a small 

size of (10×12×1.5 mm
3
). The antenna structure and reflection coefficient are shown in Figs. 

2.12 and 2.13, respectively. 
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Fig. 2.12: The antenna in [15]. 

 

Fig. 2.13: The reflection coefficient of the antenna in [15]. 

A slot antenna was proposed in [50] as shown in Fig. 2.14 to work for the MedRadio 

(401-406 MHz) and 433 MHz ISM bands with a size of (10×11×1.27 mm
3
). A good 

matching between the simulation in skin and measurement in skin gel was obtained. 

However, a much narrower bandwidth was obtained when that antenna was simulated in the 

human model as shown in Fig. 2.15. 
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Fig. 2.14: The slot antenna in [50].  

 

Fig. 2.15: The reflection coefficient of the slot antenna in [50]. 

Loop antennas were also popular for implantable designs as they are magnetic and of 

many attractive characteristics in general [39]. A meandered loop antenna was designed in 

[51] as shown in Fig. 2.16. It was designed on a circular Rogers 3010 substrate of 5.5 mm in 

radius and 0.635 mm in height to cover the (401-406) MedRadio and 902-928 MHz bands as 

shown in Fig. 2.17. That antenna had been coated both on the top and bottom with a 

biocompatible material called SU8 with the thickness of 50 um. The maximum gain values 

of the proposed antenna in the arm of the CST Gustav body model were -35.6 and -26.3 dBi 

at 402 MHz and 902 MHz, respectively. Those gain values were much smaller than most of 



Chapter 2: Implantable Antennas: Basics and Literature Review                            Page | 35                                                 

__________________________________________________________________________ 

 

the previous mentioned designs such as in [3]. This shows that the relatively wide bandwidth 

of that antenna was obtained due to the large coupling with the human body tissues rather 

than the antenna structure itself. Another rigid loop antenna was proposed in [52] for 

implantation in the head. The details of its radiation characteristics were not provided.      

 

Fig. 2.16: The loop antenna in [51].  

 

Fig. 2.17: The reflection coefficient of the antenna in [51]. 

Monopole antennas were also proposed in [53, 54] as shown in Fig. 2.18.  

                                            

                                    (a)                                                                       (b) 

Fig. 2.18: The monopole antenna in: (a) [53], (b) [54]; units: mm. 
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Those antennas worked for the 2.45 GHz ISM band and at 686 MHz. However, these 

antennas were large in size.   

A dual band (MedRadio and 2.45 GHz ISM) antenna was proposed in [11] as shown 

in Fig. 2.19. That design obtained 20.4 and 35.3% simulated and measured 10-dB bandwidth 

around the MedRadio band as shown in Fig. 2.20. However, it had narrower simulated and 

measured bandwidth of only 4.2 and 7.1%, respectively around the 2.45 GHz ISM band. 

More accurate evaluation should be conducted to validate performance and matching for the 

2.45 GHz ISM band in the more realistic multilayer body model. 

 

Fig. 2.19: The antenna in [11]. 

 

Fig. 2.20: The reflection coefficient of the antenna in [11]. 

Another dual band (MedRadio and 2.45 GHz ISM) antenna was proposed in [27] 

which is shown in Fig. 2.21. The design utilized a split ring resonator that was coupled to a 
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spiral to obtain dual band coverage and miniaturize the design to a size of (13.5×13.5×5.1) 

mm
3
. However, both bands were very narrow as shown in Fig. 2.22.  

                  

              (a)                                (b)                             (c)                                         (d) 

Fig. 2.21: The antenna in [27]: (a) Superstrate (b) SRR radiant layer (c) Feeding layer (d) Side view. 

 

Fig. 2.22: The reflection coefficient of the antenna in [27]. 

All of the previous designs used the 2.45 GHz ISM band to save power consumption 

by exploiting a wake up receiver as the device transmits data only when is needed. 

Multilayer stacked designs also obtained small sizes of (10×10×1.9) and (8×8×1.9) 

mm
3
 for the antennas in [55, 56], respectively as shown in Fig. 2.23. Those designs obtained 

wider than 50 MHz bandwidth around 400 MHz as shown in Fig. 2.24. However, that design 

utilized more than one rigid layer which probably increased the overall weight of the antenna 
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and implantable device. Moreover, the rectangular shape was not conformal to cylindrical 

implants.  

              

                                         (a)                                                                           (b) 

Fig. 2.23: The proposed antenna in: (a) [55], (b) [56]. 

                 

                                      (a)                                                                                 (b) 

Fig. 2.24: The reflection coefficient of the antenna in: (a) [55], (b) [56]. 

Another multilayer antenna of circular patch was proposed in [57] for intra-cranial 

pressure (ICP) monitoring. The antenna is shown in Fig. 2.25.  

                                 

                                           (a)                                                                  (b)  

Fig. 2.25: The proposed antenna in [57]: (a) Top view, (b) Side view. 
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Although the antenna had a diameter of 24 mm, it had a very narrow bandwidth as 

shown in Fig. 2.26. 

   

Fig. 2.26: The reflection coefficient of the antenna in [57] 

Multilayer design that works for triple bands (MedRadio, 433 MHz and 2.45 GHz 

ISM) was proposed in [21] as shown in Fig. 2.27.   

 

Fig. 2.27: The triple band antenna in [21]. 

Despite of the wide band coverage of almost 200 MHz around the MedRadio band as 

shown in Fig. 2.28, the frequency band around 2.45 GHz was very narrow.  
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Fig. 2.28: The reflection coefficient of the triple band design in [21]. 

A multilayer S-shaped quad-band antenna for (401–406 MHz) MedRadio, (1427–1432 

MHz) WMTS, and (433-434MHz and 2.4–2.4835 GHz) ISM bands was proposed in [58]. 

That antenna revealed a compact size of (10×10×2.45 mm
3
) as shown in Fig. 2.29. However, 

that antenna was composed of three substrates and one superstrate of Rogers 3210 which 

made the implant relatively heavy. Moreover, although the bandwidth of 200 MHz was 

obtained around the MedRadio band as shown in Fig. 2.30, narrow bandwidths were 

obtained around the other bands. 

 

Fig. 2.29: The quad band antenna in [58]. 
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Fig. 2.30: The reflection coefficient of the quad band antenna in [58]. 

Antennas were also proposed for other frequencies; a three dimensional dipole 

antenna was proposed in [59] for retinal applications at 1.41 GHz. Another antenna was 

proposed in [60] for implantable applications at 1.575 GHz Global Positioning System 

(GPS) frequency band. The dimensions of both of these designs were (1.6×4× 2.8) and (20× 

10 ×4.7) mm
3
, respectively. Antennas at much higher frequencies of 6.7, and 31.5 GHz were 

reported in [61, 62] for muscle/beneath skin and bone implants. However, it is obvious that 

much larger attenuations in the human body tissues are obtained at these frequencies in 

comparison with the MedRadio band. 

Designs that are conformal to the implant structure were rarely proposed. A dual band 

antenna (the MedRadio and 2.45 GHz ISM) of a conformal ground was discussed in [7]. The 

design provided a good exploitation of the structure. However, the implant size was still 

large (5 mm in radius and 30 mm in length) and the antenna exploited a considerable internal 

space. Moreover, the antenna bandwidth was very narrow (< 20 MHz) around the MedRadio 

band and disagreement between simulations and measurements was obtained around the 2.45 

GHz ISM band. That design and its reflection coefficient are shown in Figs. 2.31 and 2.32, 

respectively. 
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Fig. 2.31: The dual band conformal antenna in [7]. 

         

                                (a)                                                                    (b)  

Fig. 2.32: The reflection coefficient of the conformal antenna in [7] for the: (a) MedRadio band, (b) 

2.45 GHz ISM band. 

Other conformal designs obtained conformity using a slot such as the antennas in [32, 

48]. These antennas are shown in Fig. 2.33. 

Some conformal designs for pacemaker applications were proposed in [63, 64] as 

shown in Fig. 2.34. A 3D ground is considered to allocate the necessary electronics. 
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(a) 

 

(b) 

Fig. 2.33: The conformal slot antenna in: (a) [48], (b) [32]. 

 

Fig. 2.34: The conformal slot antenna in: (a) [63], (b) [64]. 

It should be mentioned that the above mentioned designs were proposed for far field 

bio-telemetric applications where the receiver was placed in free space at a distance of over 

two meters. Other embedded antennas were also proposed for near field applications where 

the external receiver is worn by the human or placed somewhere on the body. A popular 
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example of those applications is the wireless capsule endoscopy. The capsule has a 

cylindrical shape as shown in Fig. 2.35 [65] of (5-5.5) mm in radius and (14-17) mm in 

length. It also has two hemispheres on its top and bottom. The camera which takes photos or 

videos from the human body is placed in one of them. Several designs were proposed for 

wireless capsule endoscopy and most of them were conformal to its structure. Examples 

were provided in [65-67] as shown in Fig. 2.36. The reflection coefficients for these designs 

are shown in Fig. 2.37.  

 

Fig. 2.35: A layout structure of a wireless capsule and its components [65]. 

                                 

                          (a)                                                                            (b) 

 

(c) 

Fig. 2.36: The capsule antennas in:  (a) [65], (b) [66], and (c) [67] 
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                                              (a)                                                             (b) 

 

(c) 

Fig. 2.37: The reflection coefficient of the capsule antennas in: [65], (b) [66], and (c) [67]. 

            Although the antennas in [66, 67] were conformal to the capsule structure, they were 

of a relatively narrow bandwidth that is around 100 MHz. This bandwidth is not enough to 

overcome the detuning which happens when the capsule passes through different organs of 

the digestive tract (the stomach, small intestine and colon). On the other hand, the dielectric 

resonator in [65] was of a heavy weight. Moreover, its ultra wide bandwidth was obtained 

over a band of high frequencies which are susceptible to larger attenuations in the human 

body tissues. Many other designs of similar radiator shapes were also proposed which were 

of the same main shortcomings. For example, a printed spiral antenna was proposed in [68] 

for gastrointestinal applications over short ranges (receiver in close proximity to the body) at 

low frequencies. Another capsule shaped printed antenna for short range communication was 

designed in [69] for relatively high frequencies (3.5-4.5 GHz).   
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              As explained above, most of the proposed designs were heavy in weight and narrow 

in bandwidth. They also exploited a considerable space inside the implant. This stricts the 

battery size and implant life accordingly. Moreover, it restricts the number of sensors inside 

the implant and the variety of the implant applications accordingly (more sensors provide 

more functions). These problems also exist for the conformal embedded designs. However, 

they can be mitigated with the use of flexible designs which are thin and can be bent around 

the implant wall leaving extra space of internal components or reduce the implant size for the 

same components. Obviously, they can also reduce the implant weight significantly. Most of 

the existing flexible designs in literature are summarized in the following section. 

2.3.1.2 Flexible Implantable Antennas 

In order to facilitate bending, implantable antennas need to be thin which strict the 

techniques of miniaturizing them. While PIFA was a good option for rigid embedded designs 

as explained above, it cannot be easily obtained for flexible designs of a very thin substrate 

and radiator. This makes meandered and spiral radiators suitable for such flexible designs. 

However, spiral radiator is difficult to design over a loop structure that is preferred for 

magnetic applications as this requires a thick third dimension (the substrate thickness).  

Few flexible designs were proposed for bio-telemetric applications. A folded slot 

dipole was proposed in [16] to work for the 2.4 GHz ISM band. Although that design was 

surrounded fully by a biocompatible layer, it was large for real implants. That design and its 

reflection coefficient are shown in Figs. 2. 38 and 2. 39, respectively. 

Another folded dipole antenna was proposed in [70]. The proposed antenna in that 

design was fabricated from a narrow strip with a width of 0.1 mm and bent into a folded 

structure; the whole size was of (20.3×0.8×0.8) mm
3
 in size and the gap was 0.5 mm as 

shown in Fig. 2.40. 
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Fig. 2.38: The folded slot dipole antenna in [16]. 

 

Fig. 2.39: The reflection coefficient of the folded slot dipole in [16] for planar and bent structures 

around cylinders of 4 and 8 cm. 

 

Fig. 2.40: The folded dipole antenna in [70]. 



Chapter 2: Implantable Antennas: Basics and Literature Review                            Page | 48                                                 

__________________________________________________________________________ 

 

         The antenna worked for the UHF (0.951-0.956 GHz) as shown in Fig. 2.41. Therefore, 

it obtained a maximum gain of -23.5 in a human arm. It should be pointed out here that 

although the attenuation is larger at around 0.95 GHz, a larger gain value is obtained due to 

the larger antenna electrical size at this frequency [3]. However, the free space loss is much 

larger at this frequency than at around 400 MHz. The antenna matching was much better 

without a glass coating. Therefore, a more accurate evaluation at different tissues of 

implantation in the multilayer anatomical body models was supposed to be conducted to 

evaluate matching robustness with the glass coating. 

 

Fig. 2.41: The reflection coefficient of the folded dipole in [70] with and without coating. 

  A broadband UHF implanted 3D conformal antenna for implanted central venous 

catheters (CVC) was designed in [17]. The antenna was used for a truncated cone of 16 and 

10 mm base and upper radii, respectively and 10 mm in height. The antenna around the cone 

implant is shown in Fig. 2.42. The antenna worked for a broadband range from below the 

(401-406 MHz) MedRadio to above the 2.45 GHz ISM band as shown in Fig. 2.43. It is 

obvious that the broad bandwidth is obtained due to the larger physical dimensions of the 

antenna in comparison with other implantable antennas. The measured gain is -28.95 dBi  

and -36.9 dBi in vertical  and horizontal polarization, respectively in the MedRadio band and 

-25.5 dBi and -19.9 dBi, respectively at 2.45 GHz in a simplified body model of rectangular 

shape and the following size (355×255×160) mm
3
. The antenna broad bandwidth was 
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attributed to its large dimensions. Although that antenna had obtained good characteristics in 

general, the antenna was not evaluated in the anatomical body model.  

 

Fig.  2.42: The broadband 3D conformal design in [17] around a cone implant. 

 

Fig. 2.43: The reflection coefficient of the broadband 3D conformal design in [17]. 

A hybrid of Archimedean spiral and Hilbert based curve 3D-folded antenna was 

designed in [71] and fabricated on ceramic denture (ZrO2) to work for the MedRadio band 

for the purposes of health monitoring. That design structure and reflection coefficient is 

shown in Figs. 2.44 and 2.45, respectively. 

 

Fig. 2.44: The conformal antenna in [71]. 
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 Fig.2.45: The reflection coefficient of the antenna in [71]. 

The antenna exploited the structure efficiently to maximize the antenna bandwidth and 

obtain a maximum gain of -6.78 dBi at around 400 MHz. However, the small size of the 

human body part of implantation which is the mouth helped in obtaining this gain value as 

the losses of the smaller human body tissue are smaller. Therefore, the antenna radiation 

efficiency and gain were larger in this case. 

Flexible designs were also proposed for capsule endoscopy. An outer wall loop 

antenna was proposed in [42] for  a capsule of 5.5 mm in radius and 28 mm in length as 

shown in Fig. 2.46. The antenna had an ultra-wide bandwidth (370-630 MHz) for S11 < -10 

dB as shown in Fig. 2.47. That antenna obtained a robust performance at different organs of 

the digestive tract due to its ultra-wide bandwidth. Despite of the good characteristics and 

robust performance of that antenna, the communication link between that antenna and an 

external antenna was only evaluated over a short distance of 15 cm. Moreover, it cannot be 

used for children capsules which should be much smaller in size. 

Fig. 2.48 shows another flexible antenna which was proposed in [72]. The antenna 

was a meandered dipole with an offset feed as shown in Fig. 2.47. The offset feed worked to 
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improve that antenna matching to cover the 1935-1400 MHz WMTS band as shown in Fig. 

2.49. 

 

Fig. 2.46: The outer wall loop capsule antenna in [42].  

 

Fig. 2.47: The reflection coefficient of the outer wall loop capsule antenna in [42]. 

 

Fig. 2.48: The conformal meandered capsule antenna in [72].  

A conformal design with a CSRR top loading layer was proposed in [18]. However, it 

was of a single and narrow band (2.45 GHz). 
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Fig. 2.49: The reflection coefficient of the conformal meandered capsule antenna in [72]. 

A zigzag dipole capsule antenna for medication compliance monitoring was realized 

by inkjet printing in [73]. That antenna worked for a large frequency at around 6 GHz. The 

design structure and its reflection coefficient are shown in Figs. 2.50 and 2.51, respectively. 

                   

Fig. 2.50: The Zigzag antenna in [73] printed directly onto surface of 00 size gelatin capsule. 

                                               

Fig. 2.51: The reflection coefficient of the Zigzag capsule antenna in [73]. 
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The summary shows that although some conformal and flexible designs were 

proposed, they did not satisfy all the conditions for a successful implantable antenna design. 

The wide and broad bandwidth has been obtained at the cost of a small radiation efficiency 

and large size. Moreover, a study of the structure optimization for maximizing radiation over 

a broad bandwidth was not investigated for all of these designs. Therefore, new designs that 

can overcome the shortcomings of the previous flexible designs are needed. 

2.3.2 Evaluations in the Anatomical Body Model 

  The antenna design usually begins in a simplified body model of a small size. This is 

to save the simulation time and accelerate the overall design process. However, these body 

models do not represent the asymmetric and multilayer structure of the real body. The 

reliability and validity of using simplified body models to evaluate overall antenna 

characteristics are studied in Chapter 4. However, it is important at this stage to review the 

simplified body models which were used for the design and evaluation of implantable 

antennas. Different simplified body models of different shapes, structures and dimensions 

were used in literature. Cylindrical and rectangular body models of a single layer were used 

to evaluate muscle, beneath skin and bone implantable devices [7, 16, 17, and 42]. These 

body models were homogeneous and mainly of skin and muscle equivalent materials. These 

body models showed a good tool of evaluating the reflection coefficient of antennas in the 

arm and chest where a slight frequency detuning was obtained after the actual implantation 

in the real human body [3]. This is because antennas were placed in muscle or beneath skin 

in both cases. However, it is important to point out that these body models are not reliable 

for evaluating the radiation characteristics of implantable antennas (this will be further 

explained in Chapter 4). Multilayer (skin, fat, muscle and bone) simplified body models 

were also used in [12, 16]. However, they were still far from the actual multilayer structure 

of the body model which is of random distributions of tissues. Moreover, small thicknesses 
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of skin and fat layers were used for these body models [16] representing the external layers 

around the muscle. A single layer, elliptic body model was also used in [74] to evaluate 

capsule antennas due to its better resemblance of the trunk structure. On the other hand, 

spherical body models were used to evaluate antennas in the head [12, 75]. Some of those 

body models are shown in Fig. 2.52. An elliptic cylindrical body model is used in this thesis. 

This model is specifically selected for this work because of its intermediate performance 

between the cylindrical and rectangular body models. While the reflection coefficient is 

found to be almost the same for different body models, the radiation efficiency can be 

overestimated in the rectangular body models (more details will be provided in Chapter 4). 

Although, the reflection coefficient is unaffected by the body shape, it is influenced by its 

equivalent material. The large relative permittivity of the human body tissues shifts the 

resonant frequency down in comparison with the case of free space according to equation 

(2.25): 

                                                 

r

r

f
f



0                                                    (2.25) 

where 0f  is the resonant frequency in free space (Hz). This equation shows that the resonant 

frequency will differ in the different body tissues based on their relative permittivity. While a 

large variation between the muscle, bone and fats are expected because of the large 

difference in their dielectric properties [31], less difference is expected between muscle and 

skin. Although, the relative permittivity in the simplified body model mainly refers to the 

tissue in which the antenna is directly implanted, the value of the effective relative 

permittivity is difficult to be exactly determined in the anatomical body model which has 

different asymmetric layers.  

It should be pointed out that the comparison between the antenna performance in 

different body models is inaccurate. This is mainly due to the different radiation 

characteristics in different simplified body model. The simplicity, uniformity and 
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homogeneity of simplified body models result in inaccurate evaluation. Therefore, an 

accurate evaluation in the more realistic anatomical body models should be conducted. 

Anatomical body models provide the optimum vehicle to study and explain the 

internal and external structures of the human body. Different simulation tools (CST [76], 

HFSS [77], etc) provide these anatomical body models. The CST Voxel family will be used 

in this thesis. It is a group of seven human model voxel data sets created from seven persons 

of different gender, age and stature [78] as shown in Fig. 2.53 and their characteristics are 

summarized in Table 2.1   

                                                     

                               (a)                                                                                (b) 

                                                                     

                           (c)                                                                                 (d) 

 

(e) 

Fig. 2.52: Examples of simplified body models: (a) Cylindrical in [42], (b) Rectangular in [17], (c) 

Spherical in [75], (d) Elliptic cylindrical in this work, and (e) Multilayer in [16]. 

    ɛr = 57.1, σ = 0.79 S/m 
50 

mm 

180 mm 
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Human body tissues are age and gender dependent. In addition, the structure of the 

human bodies and their tissues differ from one person to another. For example, Laura has a 

smaller fat layer thickness in comparison with Emma. This affects the overall effective 

permittivity around the antenna and thus different resonance and radiation characteristics of 

the antenna are expected in these body models.  

 

Fig. 2.53: The CST Voxel body models  [78]. 

These body models need a license to be imported for use. The appropriate frequency 

which defines the material properties of the voxel data model tissues can also be selected. 

Special simulation specifications are required to guarantee a good performance inside them. 

For example, point ports have to be used instead of the face ports. In addition, to overwrite 

voxel material which replaces all other (even PEC) material of any priority, its mesh priority 

should be set to -1 and the priority for all other material to greater or equal zero [79].  

A cross section of the internal structure of two positions inside these body models is 

provided in Fig. 2.54. The figure shows the complicated structure of the human body model 

and the difficulty of determining an exact equivalent relative permittivity around the 

implantable antenna. Therefore, the exact positioning of the antenna in a logical practical 

position (beneath skin directly) is not an easy task. This multilayer structure makes the 
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antenna performance affected by its position and the surrounding material. Further 

investigations will be provided in Chapter 4. 

Table 2.1: Main characterestics of the CST Voxel family memebers [78] 

Model Age/Sex Heigh (cm) Mass (Kg
3
) Resolution (mm

3
) 

Baby 8-week female 57 4.2 0.85×0.85×4.0 

Child 7y female 115 21.7 1.54×1.54×8.0 

Donna 40y female 176 79 1.875×1.875×10 

Emma 26y female 170 81 0.98×0.98×10 

Gustav 38y male 176 69 2.08×2.08×8.0 

Laura 43y female 163 57 1.875×1.875×5.0 

Katja 43y pregnant, 

24w 

163 62 1.775×1.775×4.84 

 

Most of the previous studies aimed at validating the implantable antenna design in a 

more realistic body model. The implantable antennas in [3, 70] were evaluated in the area 

above the left and hip and arm, respectively of an anatomical body of an adult. On the other 

hand, the design in [72] was evaluated in the area above the hip and in the digestive tract, 

respectively. Another antenna was also evaluated in an anatomical head model [14]. 

However, in all those studies simulations and evaluations were only conducted at a single 

position. The performance of two different antennas (dipole and spiral PIFA) was evaluated 

in [12] at two positions (the head and beneath chest, respectively). However, the 

performance of each antenna performance was not compared at the two positions. Therefore, 

the effect of the different tissues on each antenna performance was not studied and 
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generalized. The characteristics of the dipole antenna in that reference were also compared in 

spherical and real head models at a single position. The shoulders effect on the radiation 

pattern was also studied in that reference. The study only compared the near and far electric 

field intensities and the radiation pattern between the two cases.  

                                 

Fig. 2.54: A cross sectional top view of a cylindrical implantable device (encircled in blue) in the: (a) 

Area above the left hip, (b) Arm of an anatomical CST adult model. 

The general effect of implantation in the anatomical body model on the radiation 

pattern was highlighted in [80]. However, that effect was only indicated and not investigated 

for a specific antenna type.  

The frequency detuning and impedance mismatch of implantable antennas were 

studied and quantified inside the human body in [81]. Four anatomical models of two adults 

and children were used. The resonant frequency and reflection coefficient were compared at 

different organs and tissues of implantation. They were also compared between the adult and 

child body models. The maximum frequency shifts in the different body tissues and models 

were derived. However, that study was only conducted on the reflection coefficient. Further 

evaluation of the overall antenna radiation characteristics should be conducted. 

As the human body tissues are asymmetric, the implantable device is surrounded by 

different body tissues. The thickness of each tissue also differs around them even for the 

same tissue material. Therefore, the antenna performance and characteristics are expected to 

differ for different orientations. This was briefly indicated in [19] for a rotating capsule 



Chapter 2: Implantable Antennas: Basics and Literature Review                            Page | 59                                                 

__________________________________________________________________________ 

 

antenna. However, investigations about the SAR only were conducted in that reference. The 

influence of antenna rotation on the in-out body path loss was also studied in [30]. However, 

the rotation around two perpendicular axes on the capsule cylinder was investigated in that 

reference. The orientation effect around the same axis should be investigated to select the 

optimum orientation of implantable device during the surgery process.   

2.3.3 Metamaterials for Implantable Antennas 

Metamaterials are of many attractive characteristics. They can be used to miniaturize 

antennas and improve the overall radiation from some of them [54, 82]. They were used for 

different biomedical applications such as medical imaging and microwave hyperthermia. 

Due to a higher focusing resolution, the left-handed metamaterial (LHM) lens had the 

potential to acquire higher imaging resolution and easy in-depth scanning, which will 

simplify the detection system design [83]. The most prominent property of metamaterial lens 

is the ability of negative-refractive index (NRI) to focus the electromagnetic field of a 

source. Hence it can generate appropriate focusing spot in biological tissue as required in 

microwave hyperthermia treatment [84]. However, these applications were in the near field 

of the antenna. Metamaterials were rarely used for biomedical telemetry (in the far field 

antenna region). The design in [27] used a split ring resonator (SRR) to miniaturize the 

antenna. It also obtained resonance at another frequency band by coupling the SRR to a 

spiral.  However, that design was rigid and of very narrow bandwidths. A conformal design 

with a CSRR top loading layer was proposed in [18]. However, it was of a single and narrow 

band (2.45 GHz) design. A series of fully implantable and resorbable metamaterial devices 

resonant at terahertz frequencies was fabricated in [85] by patterning SRRs made of 

electrically conductive biocompatible and biodegradable magnesium onto a silk substrate 

composed solely of protein and water with controllable degradation rate. It should be pointed 
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out here that biodegradable implants and exploiting terahertz frequencies for implantable 

applications are beyond the focus of this work. 

Performance of an insulated electric dipole antenna that was coated with a layer of a 

double negative (DNG) metamaterial operating in a lossy medium was considered in [86]. 

That antenna bandwidth was significantly improved with that coating. However, that was 

obtained for the cost of reducing the radiation resistance. Moreover, the effect of the coating 

with DNG on the overall antenna characteristics was not thoroughly investigated. 

A study of using metamaterials to reduce the SAR in the human head was performed 

in [32]. It was found that the specific absorption rate (SAR) in the head can be reduced by 

placing the metamaterials between the antenna and head. The SRR was designed to display a 

stop band at the frequencies of interest for SAR reduction. 27.57 and 37.62% SAR reduction 

was obtained at 900 and 1800 MHz bands, respectively for the cellular phone. That was 

obtained at the cost of reducing the radiated power from the antenna by 13.5 and 4.87% at 

these bands, respectively.  

An interesting feature of metamaterials or metamaterials modified structures is their 

ability to control the electromagnetic near fields of the antenna [24, 82]. This could be very 

useful for implantable applications as the radiated power is increased by reducing the electric 

near field of the implantable antenna. All these features of metamterias or metamaterials 

modified structures have motivated the investigations in Chapter 5 about using them for 

implantable applications.  

2.3.4 Estimation of Body Path Losses 

The implantable antenna plays a major role in different wireless communication 

channels. The previous investigations in this area are reviewed in the following sub-sections: 
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2.3.4.1 In-In Body Communications 

        A wireless body area network (WBAN) is a network, consisting of nodes that 

communicate wirelessly and are located on or in the body of a person. There are various 

applications for such a network in the areas of medicine, sports and multimedia [28]. 

Considering a multi-implant case, the implants can communicate with the pacemaker/central 

hub present in the body which then can communicate with a receiver placed outside the 

body. Because of the human body complexity, not too many studies were conducted to 

estimate the in-body channel and path losses.  An experimental investigation into the in-body 

channel in 400 MHz MICS Band was conducted in [87] by taking into account the joint 

effect of human movement and multipath effects, the measurements have been conducted in 

a populated office at very short distances. The channel path loss in homogeneous body 

models was characterized in [88-90] at 2.45 GHz. Those investigations were conducted in a 

homogeneous body phantom of a large (equivalent to an adult) size and muscle equivalent 

properties. However, the homogeneous body model does not provide an accurate 

resemblance of the real human body which is heterogeneous. Moreover, the homogeneous 

muscle equivalent body model overestimates the overall loss in comparison with the 

heterogeneous body model [3]. This is because it is mainly composed of muscle. Muscle has 

much larger losses than other tissues such as fat. The performance of an implantable antenna 

in a homogeneous and heterogeneous human body shaped model is compared in Appendix 

B. Although paths and channels were characterized in [28] in a heterogeneous body model at 

2.45 GHz, the orientation effect of the implantable antenna and device on its performance 

was not evaluated and quantified. Moreover, up to the author's best knowledge no losses 

were estimated at 403 MHz inside a heterogeneous body model.  
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2.3.4.2 In-On Body Communications 

For the case of in-on body communications such for the wireless capsule endoscopy, 

the implantable antenna communicates with a wearable or on-body receiver. The path loss 

and its variation in terms of system frequency and location of the capsule were presented in 

[20] along with guidelines about the optimum system frequency for WCE. The difference 

between the maximum and minimum path loss at different anatomical regions was also 

quantified in that reference. However, (10×10×D (up to 17 cm (varying))-shaped, sliced 

tissues from the selected locations were only used rather than using the whole body. This is 

expected to underestimate the path losses. Our investigations show that losses may be 

underestimated by more than 1 dB when only some parts of the body model are used in 

simulations.  

         The communication between an implantable dipole and a receiving loop antenna was 

evaluated and compared with and without a buffer layer in [91]. The buffer layer has a 

dielectric constant between air and human body model. Therefore, it reduces the reflections 

at the boundary between them. The benefit of using a loop antenna is highlighted in that 

reference. However, the performance between a loop and a more directive antenna was not 

compared to generalize a conclusion about the optimum antenna type for such investigations.  

         An investigation about the advantages, disadvantages and tradeoffs of applying 

directive antennas to implant-on boy ultra wideband (UWB) communications was conducted 

in [92]. It was concluded that directive antennas can reduce unnecessary exposure of human 

body tissues to electromagnetic radiation, reduce exposure to near band interference and save 

energy. However, when directive antennas are used, receive/transmit beam direction needs to 

be guaranteed. It is important to point out that directive antennas such as log periodic or horn 

are non-conformal to the body surface. On the other hand, planar antennas such as a patch 

which can be designed to have relatively large gain values than loop antennas are electrical 
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in type. This means that they are much susceptible to losses than magnetic type antennas. 

This will be further investigated in Chapter 6.  

A communication link between a capsule meandered loop antenna and an on-body 

receiver over 15 cm was experimentally evaluated in [42] at 500 MHz. However, a 

simplified body model of an equivalent homogeneous muscle material was used.   

2.3.4.3 In-Off Body Communications 

The implantable antenna works with an external device that is normally controlled by 

a physician. Most of the proposed implantable antennas were designed and evaluated to 

obtain this function at a distance of over 2 meters [3, 17]. Numerical and experimental 

investigations of biotelemetry radio channels and wave attenuation in human subjects with 

ingested wireless implants were introduced in [29]. The study covers commonly used 

frequencies in telemedicine applications: ultrahigh frequencies at 402 MHz, 868 MHz and 

the industrial, scientific and medical (ISM) band frequency at 2.45 GHz. A numerical 

electromagnetic analysis is applied to model in/off-body radio propagation channels and the 

resulted parameters demonstrated the importance of digital phantom accuracy in the 

characterization of wave absorption and attenuation with regards to organ contents, 

specifically for the digestion system. Path gain variations of biotelemetry radio channels, in 

the close vicinity of the subject, with wireless implants were measured using a near field 

scanner. Simulation results were verified with measurement in good agreement.  

The signal propagation characteristics for mm-size neural implants were modeled in 

[93]. Animal tests were carried out, proving the validity of the simulation model of the 

neural radio link over a wide range of frequency from 100 MHz to 6 GHz. This is due to the 

much more symmetry around the implant for this case in comparison with other channels 

such as from the arm. Both of these studies in [29, 93] were conducted with a receiving 
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antenna which is placed in the near field region of the implantable antenna. Further work is 

required to quantify and highlight the effect of changing orientation and polarization of the 

wireless implant and body on the overall telemetry system performance.  

          Wireless power transfer between the implantable antenna and an external receiving 

one represents an important example on the in-off body communications in the near field. 

The 433 MHz ISM band is normally used for these applications [21]. A distance of up to 50 

cm is preferred to guarantee an efficient power transfer. Many antennas were proposed for 

wireless power transfer [21, 94]. In all these designs, overall estimation of the path losses 

between both antennas was not provided, although such estimation is very important to 

quantify the required input power that should be provided to the antenna to satisfy the link 

budget at a specific distance.  

2.3.5 Models and Methods of Measurements 

                Measurements of implantable antennas are very challenging. A body mimicking 

phantom is required to conduct the measurements. Moreover, the cable contributes to the 

antenna radiation. Two types of measurements are normally conducted: 

 In Vitro test; using simplified body phantoms and pork. 

 In Vivo test, using living animals such as rats and pigs. 

2.3.5.1 In Vitro Test 

           It is very risky to implant the antenna directly into the human and animal body 

without an accurate and full evaluation of the implantable antenna and device. Therefore, the 

implantable antenna is normally measured firstly in simplified body phantoms. These 

phantoms can be realized from liquid, gel and pork. Liquid body phantoms are of the 

following characteristics: 
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 Homogeneous. 

 Easy to prepare from distilled water, sugar and NaCl (commonly available as 

dishwasher salt [3]). The percent of each component is controlled to obtain the 

dielectric properties of a specific body tissue. For example the following percentages 

of 51.3, 47.3 and 1.4% for water, sugar and salt, respectively obtain the dielectric 

properties of muscle at 403 MHz (ɛr = 57.1, σ = 0.79 S/m). However, the resultant 

dielectric properties should be measured using some equipments such as Agilent 

87050E dielectric probe [95]. This is to check the resultant value and add more 

percentages of these ingredients if needed. An example is illustrated in Fig. 2.55.  

 Conformal to any container shape. 

         Most of the previous designs [3, 42] used these body models due to their easy and 

quick realization.  

 

Fig. 2.55: An example illustrates the measurement of liquid body phantom dielectric properties [3] 

       Gel phantoms can be prepared by adding toxic Hy- droxylEthylCelulose (HEC) (1% of 

it to the above percents mimics muscle at the MedRadio band [3]) to provide rigidity for a 

tissue mimicking structure. The following characteristics are common for gel body 

phantoms: 
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 Of a longer preparation time than liquid body phantoms. 

 Homogeneous. 

  Rigid, easy to move and fix.  

         An example of a skin mimicking gel was presented in [11] and shown in Fig. 2.56.  

Water, sugar and NaCl salt were used for its preparation. The recipe was provided for the 

MedRadio and 2.45 GHz ISM bands in that reference.  

 

Fig. 2.56: A skin mimicking gel [11]. 

Pork was also used in some references [21]. Pork has the following features: 

 Heterogeneous. This saves the required time to prepare different phantoms for 

different frequencies. 

 Of asymmetric tissues distribution which is of better resemblance of the real human 

body. 

 Can be used directly without a preparation. This saves the time and effort which are 

needed to prepare liquid and gel phantoms.  

An example that illustrates using pork for measurements is shown in Fig. 2.57. 
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Fig. 2.57: Pork for implantable antennas measurement [21] 

Pork can be used as slices or mince. Both of liquid body phantom and pork are used in 

this thesis. 

          For accurate overall measurements, the implantable antenna should be isolated from 

the surrounding body phantom. This is to reduce the cable effect. In fact, the currents present 

on the external surface of the outer conductor are dissipated in the high loss materials 

(constituting the simulating body tissues) [96]. This contributes to further radiation and 

variations of the reflection coefficient.  This effect will be further discussed and evaluated in 

Chapter 3. 

2.3.5.2 In Vivo Test 

         Another test that is usually performed before actual long term implantation in the 

human body is the In Vivo test. This test provides a facility to evaluate the effect of in body 

temperature. Rats were used in [93, 97]. Examples are illustrated in Fig. 2.58. Two antennas 

of two different sizes were evaluated in [97] in different rats of different ages. It was found 

that the antenna of the smaller size was more sensitive to frequency detuning.  
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                                                    (a)                                                     (b) 

Fig. 2.58: X-ray fluoroscopy images indicating the implantable antenna site inside the rats: (a) Face 

view (b) Profile view [97]. 

             Pigs were also used in [3, 93]. An entire implantable device was developed in [3] 

and implanted at different depths in the pig as shown in Fig. 2.59.  

 

Fig. 2.59: An implantable device implanted at two different depths inside a pig [3]. 

           Some physical parameters of that pig such as temperature were monitored by 

establishing communication with an external BSN unit at 2.5 meters above the cage over 15 

days as shown in Fig. 2.60. It is worth mentioning that less detuning inside pig was obtained 

in comparison with the case inside rats.  
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Fig. 2.60: Monitoring of pork in-body temperature [3]. 

2.4 Summary 

In this chapter, the general effect of the lossy human body on the implantable antenna 

performance has been reviewed and summarized. The lossy and multilayer structure of the 

human body: 

 Absorbs most of the antenna radiation. 

 Widens the antenna bandwidth.  

 Changes the antenna radiation pattern shape and main lobe direction and 

magnitude at different positions.  

The subject areas of the thesis were also reviewed in this chapter. The following 

points can be summarized: 

 To guarantee a robust performance in the human body, the implantable antenna 

should be of a small size, light in weight, of a wide bandwidth, of good matching 
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and conformal to the implant structure. However, most of the previous implantable 

antennas satisfied some of these conditions only. Therefore, new antennas that 

satisfy all the requirements for a successful design and robust performance in the 

human body are required. 

  Most of the previous antennas were either evaluated in simplified body models or at 

only one position or orientation in the anatomical body model. This not enough for 

an accurate validation of the implantable antenna performance. Therefore, thorough 

investigations in the anatomical body model should be conducted.  

 New structures that may reduce the power absorption by the human body tissues 

around the antenna should be investigated. Therefore, metamaterials based structure 

which can reduce the electric near field and power absorption correspondingly is 

suggested and reviewed.  

 The implantable antenna plays an important role in different body communication 

paths. Some previous studies investigated the overall losses of such communication 

paths. However, the loss of some application specific paths should be estimated and 

studied. The optimum on-body antenna type that improves the overall near field 

communication with the implantable antenna should also be investigated.   
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Chapter 3 

 Design of Flexible Implantable Antennas  

3.1 Introduction 

One of the most effective ways to minimize the weight and size of the implantable 

device is to use flexible antennas. The flexible antenna can be bent around the implant wall 

leaving most space for the internal components. This allows the use of bigger batteries for a 

longer implant life or more sensors for multiple applications. Flexible designs are of larger 

physical dimensions which enable a better structure utilization. For example, an antenna of 

wider parts is of a larger radiation efficiency (this will be further explained in this chapter). 

Moreover, larger antenna is of a wider bandwidth and gain [96]. Although, some flexible 

implantable antennas were proposed, they were of a large size and/or for the 2.45 GHz ISM 

bands where in-body attenuations and free space loss are larger than at the MedRadio (401-

406 MHz) band [16, 17]. Because of the added values of flexible antennas in general and the 

shortcomings of the few existing designs (up to the author best knowledge, only one design 

at 2.45 GHz [16] for bio-telemetric applications in the far-field before this work was started), 

this thesis focuses on the design of efficient flexible antennas for bio-telemetric (far field) 

applications that satisfy all the requirements for a successful design (small size, light weight, 

large radiation efficiency and gain, wide bandwidth, performance robustness against material 

variations and long term implantation in the real human body). This chapter is mainly 

focused on the following objectives: 
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  Developing a general methodology to design flexible implantable antennas. 

The methodology considers the aspects of optimizing the antenna structure to 

maximize the antenna radiation. It also considers optimizing the antenna 

structure for a robust performance in the anatomical body model.   

 Developing and designing several flexible antennas for implantation in 

different body tissues and sites (muscle, beneath skin and bone) which have 

the following desired characteristics: 

- Small size. 

- Cover the 401-406 MHz MedRadio band for data transmission and the 

433-434 MHz ISM for wireless power transfer. 

- Have a wide bandwidth with good radiation characteristics. This wide 

bandwidth guarantees coverage of both bands of interest in the actual human 

bodies of different ages, gender and structures. 

 Presenting the In vitro test results and a simple method in the lab to measure 

the robustness of the antenna perfromance against material and temperature 

variations. 

To achieve these purposes, this chapter is arranged as the following: Firstly, 

the two-step design methodology is presented. This methodology is used to design 

several antennas for muscle/ beneath skin and bone implantation. In a following 

section of this chapter, different in vitro measurements are presented to evaluate 

and validate the performance of the proposed antennas in a human body 

mimicking liquid and pork.  
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The main achievements in this chapter are: 

 A general methodology to design implantable antennas is developed. In 

comparison with the few proposed methodologies such as in [97], it is the only 

one that provides details about optimizing the antenna structure to achieve the 

maximum radiation and guarantees a robust performance in the anatomical 

human body.  

 The smallest flexible implantable antenna that works for the MedRadio and 433-

434.8 MHz ISM bands for S11 < -10 dB with a bandwidth of over 200 MHz are 

designed. 

 A total knee replacement implantable antenna that works for the MedRdaio band 

for S11 < -10 dB is designed for the first time. 

 A bone implantable antenna that works for the MedRadio and 433 MHz ISM 

bands for S11 < -10 dB is designed for the first time. 

 A simple procedure in the lab is used to measure the antenna performance 

robustness against material and temperature variations after an actual and long-

term implantation in the human body. 

3.2 A Methodology to Design Implantable Antennas 

An efficient implantable antenna design requires the satisfaction of many requirements 

which combine conformity, light weight, wide bandwidth and robust performance. The 

antenna is also preferred to be of a magnetic type such as a loop which is of many attractive 

characteristics and more efficient in the nonmagnetic human body as explained before. To 

achieve these purposes, a general design methodology is formulated at this section. The
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 proposed methodology comprises two steps, the first step is the optimization in the 

simplified body model; this allows the selection of the optimum design structure and 

parameters within a relatively short time. The second step is the evaluation of the antenna in 

an anatomical body model for different orientations which allows refinement if needed and 

an accurate evaluation in the non-uniform human body. The optimization in the simplified 

body model takes the effect of the internal components and insulation layers into 

considerations. A schematic diagram of the methodology is shown in Fig. 3.1 and its  

parameters are discussed in the following sections. 

 

Fig. 3.1: The proposed design methodology. 

Step 1: 

Step 2: 
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3.2.1 The Methodology Parameters 

 The optimum parameters are defined and specified based on the pre-mentioned 

requirements and as the following: 

 Antenna bandwidth of wider than 200 MHz for S11 < -10 dB around each 

band of interest in the simplified body model: this wide bandwidth is 

preferred to guarantee coverage of the targeted bands (MedRadio and 433 

MHz ISM bands) for different positions and orientations in the more realistic 

human bodies. S11< -10 dB is preferred as the antenna reflection coefficion 

coeefiicient is expected to be altered inside the anatomical body model and in 

different human body models. Hence, a good antenna matching will be 

always guarnteed. For example, if the antenna is optimized for S11< -6 dB 

inside the simplified body model at this step, it migh be disturbed to be S11 < 

-2 dB inside the anatomical body model which results in a large power 

reflection. On the other hand, if the antenna is optimized for S11 < -10 dB in 

the simplified body model, a good matching will be obtained for most cases 

even if the reflection coefieint is altered in the anatomical body model or in 

different body models.      

 Antenna radiation  efficiency and gain: it is found that wider parts of loop and 

meandered antennas lead to larger radiation efficiency. However, this is 

found to be accompanied with an up-shift of the resonant frequency. When 

the width of the vertical parts increases (W), the spacing (S). between them 

decreases (look at Fig. 3.2). This reduces the effective capacitance at the feed 

point and the resonant frequency is therefore increased [98]. Therefore, the 

optimum radiation efficiency is defined as the maximum one that can be
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obtained for wider parts that allows the coverage of all bands of interest for   

S11 < -10 dB over the available physical space.  

The first step is finished when the following conditions are all satisfied:               

       1. The maximum possible radiation efficiecny is obtained.                  

                 2. S11< -10 dB for the bands of interest (MedRadio band mainly).  

3. A bandwidth of wider than 200 MHz around the resonant frequency (around 

403 MHz mainly). 

Although the simplified body model provides a reliable tool to evaluate the antenna 

general characteristics (the reflection coefficient and largest radiation efficiency and gain for 

a specific structure), it cannot be relied upon to provide an accurate and exact values of the 

antenna radiation characteristics as explained in Chapter 2. Therefore, the targeted gain 

values which are directly proportional to the antenna radiation efficiency are specified in the 

anatomical body model which is of much larger size and asymmetric. A realized gain (the 

implantable antenna gain and the body losses) of larger than or equal to -37 and -20 dBi are 

aimed at 403 MHz and 2.45 GHz, respectively in the arm of an adult anatomical body model 

which is enough to build a communication link of 20, and 2 meters at 403 MHz and 2.45 

GHz, respectively considering the link budget in Eqs. (2.8-2.10). 

It is worth mentioning that only step one is provided and discussed in this chapter 

while the evaluation step in the anatomical body model is presented and discussed in Chapter 

4. The methodology parameters can be specified based on requirements and objectives of 

each system. Therefore, this methodology can be generalized for different systems. It has 

been used in the following sections to propose antennas for different implantable 

applications. 
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3.3 Flexible Antennas for Muscle/Beneath Skin and 

Bone Implants 

3.3.1 U-Shaped Loop Antenna 

As explained above, a loop antenna has been selected for the designs in this thesis. To 

make an antenna resonate at a relatively low frequency such as the case of implantable 

antennas, miniaturization is needed. To achieve this objective, the radiator of the proposed 

antenna is designed as a meandered structure so a longer current path is realized for the same 

available physical space. Meandered structure represents a good choice for loop and flexible 

antennas where only a very thin substrate layer can be exploited. In addition to meandering, 

the large dielectric permittivity of the human body tissues which surround the antenna will 

further reduce the resonant frequency of the antenna. The designs in this chapter consider the 

use of cylindrical structure of implantable devices which is a popular structure for many 

reasons (more conformal to the tissues and facilitate the surgery process). The first structure 

aims for implants of 5 mm in radius and 30 mm in length which are the dimensions of 

theimplant in [7]. The benefit of using flexible substrate and radiator is very obvious at this 

stage where a total width of 30 (≈ 2×π×5) mm is exploited for this antenna. This is  much 

larger than the dimensions of rigid antennas that need to be embedded inside an implant of 5 

mm in radius.  Following the proposed strategy, the antenna is firstly optimized in a 

simplified body model of an elliptic cylindrical shape which is shown in Fig. 2.52 of the 

following size (180×100×50 mm
3
) and of a muscle equivalent material to achieve the 

maximum radiation efficiency (0.21%) for this case and at the same time to work for the 

MedRadio and 433 MHz ISM bands for S11 < -10 dB. The antenna forms a loop when bent 

around the implant. The flat and bent structure views of the proposed antenna are shown in 

Fig. 3.2 and its dimensions are summarized in Table 3.1. The reflection coefficient is shown
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in Fig. 3.3. The antenna has a broad band of around 250 MHz which is wider than the 

targeted 200 MHz bandwidth. 

  

LxLx

LyLy

Wb

S

W

 

(a) 

                                                                                        

(b) 

Fig. 3.2: 30 mm in length U-shaped loop antenna: (a) Flat structure (b) Bent structure. 

 

Table 3.1:  Dimensions of the proposed 30 mm length U-shaped loop antenna 

Parameter Symbol Dimension (mm) 

Length of the horizontal top arm Lx 9 

Length of the vertical arm Ly 28 

Spacing between the two parallel vertical arms S 12 

Width of the bottom part Wb 7.5 

Width of the horizontal top and vertical arms W 2 
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Fig. 3.3: The reflection coefficient S11 of the proposed 30 mm in length U-shaped loop antenna.  

Following the same methodology and exploiting the effect of the width of the 

meandered parts on the resonant frequency and radiation efficiency, the same structure is 

optimized for a smaller implant of half the length (15 mm only). The new antenna structure 

is shown in Fig. 3.4. The width of the bottom part is minimized to 0.5 mm to compensate for 

the shorter distance between the horizontal meanders. For further down-shift of the 

resonantfrequency, the spacing distance between the two parallel vertical arms is increased 

by 2 mmwhich is reflected on shorter horizontal top arms (1 mm less of each). The width of 

the other parts (excluding the bottom part) is kept the same.  

The effect of this spacing distance on the antenna resonant frequency is further 

illustrated in Fig. 3.5 where simulations have been conducted with two different values of 

(S) (2 and 8 mm). It can be seen from the figure that the resonant frequency is shifted 

downwards from 490 to 423 and then 402 MHz but the bandwidth is increased with the 

spacing S from 2 to 8 and then 14 mm, respectively. 
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                     Lx                    Lx

Ly LyS

W

Wb

W

 

(a) 

                                                                       

(b) 

Fig. 3.4: 15 mm in length U-shaped loop antenna : (a) Planar view, (b) Bent view.  

The structure has other important parameters, such as the spacing (Ly-Wb) between 

the horizontal meanders. The effect of this spacing on the resonant frequency of meandered 

antennas has been also discussed in [98]. It is found that increasing this spacing increases the 

self-inductance, and therefore, decreases the resonant frequency significantly. This effect is 

shown in Fig. 3.6 where the resonant frequency has been shifted down from 504 MHz to 402 

MHz by increasing this spacing from 12 mm to 12.5 mm. It is also shown that the bandwidth 

is increased by around 50 MHz when (Ly-Wb) is increased by only 0.5 mm. 

Based on the results, the final dimensions of the antenna are selected and summarized 

in Table 3.1 to provide resonance at 402 MHz and at same time to cover the 433 MHz ISM 

band with good frequency margins about both bands (the solid line in Figs. 3.5 and 3.6, 

respectively). The wide bandwidth (300-600 MHz) behaviour of this antenna is desired in 

order to cover both bands regardless of any frequency shift which may happen in reality due
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to changes of the human body environment. The maximum obtained radiation efficiency and 

gain in the simplified body model (the elliptic cylindrical that is mentioned above) which 

achieves the design targets are 0.136% and -26 dB, respectively.  

100 200 300 400 500 600 700
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency (MHz)

R
e
fl

e
c
ti

o
n

 c
o

e
ff

ic
ie

n
t 

(d
B

)

 

 

S = 14 mm

S = 8 mm

S = 2 mm

 

Fig. 3.5: The effect of spacing distance between antenna symmetrical halves (S) on the resonant 

frequency of the proposed 15 mm U-shaped loop antenna. 

It is shown that almost the same matching and resonant frequency of both of these U-

shaped loop antennas are obtained. However, a wider bandwidth is obtained for the 15 mm 

in length U-shaped loop antenna. This is wider bandwidth is obtained because S is larger for 

the 15 mm in length antenna as explained above. The exact (S) values are selected for each 

antenna to obtain the design targets as explained above. 

 



Chapter 2: Implantable Antennas: Basics and Literature Review                            Page | 82                                                 

__________________________________________________________________________ 

 

100 200 300 400 500 600 700
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Frequency (MHz)

R
e
fl

e
c
ti

o
n

 c
o

e
ff

ic
ie

n
t 

(d
B

)

 

 

(Ly-Wb) = 12.5 mm

(Ly-Wb)= 12 mm

 

Fig. 3.6: The effect of the spacing (Lv-Wb) on the resonant frequency of the proposed 15 mm in 

length U-shaped loop antenna. 

3.3.2 A Small Meandered Loop Antenna  

Another antenna is proposed following the same strategy for a smaller implant that 

can be used for capsules for children [99]. Because the antenna and implant size is small, a 

smaller radiation efficiency and gain are expected. However, children bodies and organs 

present smaller losses because of their smaller sizes. The antenna size is minimized by 

adding more meanders and thus introducing a longer current path which results in a 

newstructure. This antenna can be bent around implants of 3.2 mm in radius and 10 mm in 

length. This represents 56 and 50% smaller than the radius and length of the 15 mm U-

shaped loop antenna. The antenna has also a wide bandwidth which covers both bands of 

interest. 
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(a) 

                                                                     

(b) 

Fig. 3.7:  10 mm meandered loop antenna: (a) Planar view, (b) Bent view. 

The antenna parameters have a similar effect to the proposed U-shaped loop antenna 

parameters and this is exploited very well to optimize the antenna design to cover both of the 

MedRadio (401-406 MHz) and 433 MHz ISM bands for S11 < -10 dB as shown in Fig. 3.8. 

The final dimensions are summarized in Table 3.2 to obtain resonance at around 403 

MHz and cover both bands of interest with a radiation efficiency of 0.074%. The maximum 

3D gain is -28.4 dBi. 

S controls the feed capacitance in a direct relationship for this antenna (the feed 

pointsand S are at the same plane unlike the case of the U-shaped loop antenna). This means 

that a narrower S will increase the feed capacitance and shifts the resonant frequency down 

(to obtain resonance at 402 MHz). Furthermore, it increases the antenna bandwidth in 

comparison with the case of smaller S values. As S is very small for this structure, the 

antenna has obtained almost the same bandwidth of the larger U-shaped loop antennas.
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Fig. 3.8:  The reflection coefficient S11 of the proposed 10 mm meandered loop antenna 

Table 3.2: Dimensions of the proposed 10 mm meandered loop antenna 

Parameter Symbol Dimension 

(mm) 

Length of the horizontal top meander Lh2 9 

Length of the horizontal bottom meander Lh 20 

Spacing between the two parallel vertical meanders Sm 2 

Width of the horizontal meanders W1, W2, W3, W4 1 

Width of the vertical meanders Wv 1 

Spacing between horizontal meanders Sh 2 

3.3.3  Antennas for Bone Implants 

  The position of implantation is based on the application of the implantable antenna. 

Muscle or beneath skin implants can be proposed for many applications such as cardiac 
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pacemakers, glucose and health monitoring [14, 11, and 100]. Implants in bone have also 

many important functions such as bone healing, growth and checkups of artificial joints [32, 

101]. The dielectric properties of bones differ from muscle; ( 1.13r , 09.0 S/m) and 

( 43.22r , 24.0 S/m) for bone cortical and chancellors at 403 MHz, respectively. 

Because these values are smaller than the corresponding values for muscles, further 

miniaturization is needed to allow resonance at the MedRadio band. However, bone implants 

are normally used to replace actual parts of bones and thus have normally large dimensions 

in order to achieve their functions [32]. Based on these characteristics and following the 

same strategy of designing flexible implantable antennas, a flexible loop antenna for bone 

implants is designed [102] at the centre of a multilayer cylindrical body model of bone 

( 1.13r , σ= 0.09 S/m), muscle ( 1.57r , σ= 0.79 S/m), fat ( 6.5r , σ= 0.04 S/m) and 

skin ( 7.46r , σ= 0.69 S/m) at the MedRadio (401-406 MHz) band as shown in Fig. 3.9. 

The antenna is placed at the centre of the bone layer (the inner cylinder colored in black in 

Fig. 3.9). A multilayer structure is considered this time because muscle layers around bone 

are normally thick which affects the value of equivalent dielectric permittivity and 

conductivity around the implants. 

 

(a)
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(b) 

Fig. 3.9: The multilayer body model: (a) Top view, (b) Side view. 

The antenna aims for implants of 5 mm in radius and 40 mm in length which is 30 mm 

shorter than the implant in [32]. Circular meander shapes are used for the design. The 

spacing distance between the vertical symmetric parts S is 2 mm, the width of each part (W) 

is 1 mm and the total radiator length is 137 mm. The antenna flat and bent structures are 

shown in Fig. 3.10. 

            

  (a) 

                                                                       

  (b)
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Fig. 3.10: Circular meandered loop antenna for bone implants: (a) Flat structure (b) Bent structure. 

 

The structure and length of the radiator are selected to work for the (401-406) MHz 

MedRadio and 433 MHz ISM bands for S11 < -10 dB as shown in Fig. 3.11. The antenna 

radiation efficiency and gain are 0.08% and -27.6 dBi, respectively at 403 MHz. This 

antenna is the first proposed flexible bone antenna that covers these bands. 
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Fig. 3.11:  The reflection coefficient S11 of the proposed bone implantable antenna. 

One of the popular implants which work in bone is the total knee replacement implant 

which is usually composed of two parts, one part replaces the knee itself and another part 

which is used to fix the implant in the thigh bone [103]. A simplified structure of such an 

implant is shown in Fig. 3.12. In order to check up the functionality of the implanted knee 

after surgery an implanted sensor is placed in the cylindrical fixation part (coloured in 

green). The antenna exploits the entire external wall of the sensor that is surrounded by a 

biocompatible (Polyethylene (Ԑr= 2.26, tanδ = 0.0002) layer of 2 mm in thickness which 

represents the outer shell of the part of fixation, this is a popular material for knee 
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replacement implants [104]. This thickness is selected in order to support the main function 

of this part that is fixation. Because of this thick insulation layer, the effective permittivity 

around the antenna is reduced and thus a longer radiator is needed to achieve almost the 

same resonance. Therefore, a new structure is exploited as shown in Fig. 3.13 with a total 

radiator length of 217 mm this time. A longer meandered parts are botained by exploiting a 

circular shape. A longer radiator is needed because of the smaller effective relative 

permittivity around the antenna this time as a thicker insulation layer is used [105] and is 

placed at the same position of the circular meandered loop antenna that is proposed for bone 

implants in the previous section. The antenna bandwidth is narrowed because of the smaller 

effect of losses this time as explained in Chapter two. The reflection coefficient is shown in 

Fig. 3.14. 

 

Fig. 3. 12:  A simplified structure of a total knee replacement implant 

.  

   (a) 

The knee 

replacement 

part 

The fixation 

part 
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   (b) 

Fig. 3.13: Circular meandered loop antenna for total knee replacement implants: (a) Flat structure, (b) 

Bent structure. 
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Fig.  3.14:  The reflection coefficient S11 of the proposed antenna for total knee replacement implant. 

 

The antenna has now got a narrower bandwidth (not covering the 433 MHz ISM for 

S11 < -10 dB) because of the smaller coupling with the human body tissues due to the use of 

a thick insulation layer (the losses effect on widening the antenna bandwidth is smaller). This 

is also reflected on larger radiation efficiency and gain which are 0.4% and -21 dBi, 

respectively at 403 MHz for this structure. 
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3.3.4 A Comparison between the Design Considerations of Bone and 

Muscle Implantable Antennas  

  As the design of implantable antennas is strongly influenced by the dielectric 

properties of body tissues, different design considerations and parameters have to be taken 

into account when designing implantable antennas in different tissues. The following main 

points have to be considered for bone implantable antennas in comparison with muscle or 

beneath-skin implantable antennas.  

 The dielectric permittivity of the muscle and skin in the MedRadio band is much 

larger than that of bone as shown previously. This requires more miniaturization for 

bone implantable antennas of small sizes which results in a narrower bandwidth and 

thus mistuning difficulties in the actual time-variant human bodies.  

 Bone implants have generally larger dimensions than muscle implants in order to 

achieve their functionalities of replacing some supportive parts of bones. This helps 

in obtaining a resonance at around 400 MHz despite of the small value of bone 

permittivity in comparison muscle and skin permittivity.  

 More losses are added for the case of propagation from bone to the external receiver 

outside the body because of the attenuation in an extra layer which is bone and 

reflections at the boundary between the muscle and bones. This means that for the 

same transmitter and receiver and under the same link conditions for the case of 

muscle implants, bone implantable devices can communicate over a shorter distance.  

 The specific absorption rate for the case of bone implants is much smaller than the 

corresponding rate for muscle or beneath skin implants. This is because of the larger 

mass density of bone in comparison with the mass densities of muscle and skin. An
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  investigation about the SAR values for all of the proposed antennas will be provided 

in a following section. 

3.4 The Effect of the Insulation Layer on the 

Performance of Loop Antennas 

It is important to use an insulation layer in order to prevent the direct contact between 

the antenna and body tissues [16]. However, the presence of insulation layers affects the 

performance of implantable antennas in the human body. These layers reduce the power 

dissipation due to absorption in the biological tissue which increases the radiated power. On 

the other hand, their presence decreases the effective permittivity around the antenna which 

shifts the resonant frequency up. Therefore, these layers have to be carefully considered in 

the design process.  

The increase of the insulation thickness improves the benefit of its presence. However, 

most of implants are of a small size and this thesis focuses on using thin insulation layers 

which are placed around loop antennas. On the other hand, the thicker insulation layer shifts 

the resonant frequency up. The effect of the insulation layer thickness on the performance of 

the 15 mm U-shaped loop antenna is shown in Fig. 3.15. 

It can be seen from the figure that the resonant frequency is shifted up from 403 to 425 

MHz by increasing the thickness from 0.25 to 0.4 mm, respectively. The same antenna 

bandwidth is almost obtained for both cases. A good antenna matching (s11 < -10 dB) is 

obtained for both cases.  
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A thickness of 0.25 mm

A thickness of 0.4 mm

 

Fig. 3.15: Simulated S11 when the antenna is surrounded by insulation layers of 0.25 and 0.5 mm in 

thickness, respectively. 

3.5 The Effect of the Internal Components of the 

Implant on the Antenna Performance 

The antenna has to do an integral role with other components inside the implantable 

device to transmit the signal from inside the human body to the external receiver. These 

components are the battery, sensors which sense the bio- signals such as the temperature and 

pressure and electronics, etc. These components are expected to affect the antenna 

performance and therefore, their effect should be evaluated. To enable this evaluation, the 

internal components are classified into two groups; conducting and dielectric components.
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For example, the battery is a conducting component while the sensor is a dielectric. In this 

work, a coppercylinder is used to mimic battery while FR-4 substrate is used to mimic 

sensors and other dielectrics [3]. A suggested layout structure of the internal components can 

be shown in Fig. 1.3. 

Simulations with different copper cylinders of 4 mm and 8 mm in length inside the 

implant around which the 15 mm U-shaped loop antenna is wrapped are shown in Fig. 3.16.  
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Battery of 4 mm length

Battery of 8 mm length

 

Fig. 3.16: Simulated S11 of the 15 mm U-shaped loop antenna with batteries of 4 and 8 mm in length, 

respectively. 

   The figure shows that the batteries tend to shift the resonant frequency up from 400 

MHz to 444 and 460 MHz, respectively. However, both bands of interest are still covered 

with frequency margins of more than 30 MHz, maximum gain variations are only about 0.4 

dB with these batteries. This shows another benefit of the broad bandwidth of implantable 

antennas which is the robustness against the frequency shift that may happen with internal 

components.
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3.6 The Specific Absorption Rate (SAR) Results 

The 1-g SAR is computed for all of the proposed antennas in this chapter because its 

regulation is much stricter than the corresponding 10-g SAR regulations. Computations are 

conducted using CST at 403 MHz in the simplified homogeneous elliptic body model which 

is used in this chapter. Although, homogeneous body models tend to overestimate the SAR, 

it is better for worst case considerations [3]. For more reasonable results, SAR is evaluated in 

the anatomical body model in Chapter 4. For further worst case considerations, computations 

are also conducted without insulation layers around the antenna. The results of the maximum 

RMS 1-g AVG SAR and the maximum allowed input power to the antenna are summarized 

in Table 3.3.  

The maximum input power to the antenna is determined based on the 1-g SAR 

specifications. All of the maximum input power values are larger than 0 dBm which is 

normally provided to implantable antennas [2, 15]. It is important to ensure that the 

maximum input power does not exceed these values in order not to harm the human body 

tissues.  

The results in the table show that the larger antennas are of smaller SAR values. This 

is actually due to the smaller lossy area around them. The larger implantable device replaces 

more lossy tissues. Therefore, the lossy area around it becomes smaller. When the losses are 

smaller (this is indicated by a smaller conductivity value in Eq. (3.4) [38]), a smaller power 

absorption and thus SAR (W/kg) are obtained. 

                                       




 2

2
EP

SAR                                                      (3.4)
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where P  (W/m
3
) is the power loss density,  (kg/m

3
) is the mass density,  (S/m) is the 

conductivity and E (V/m) is the electric field intensity. 

Table 3.3: SAR results for the proposed antennas in this chapter at 403 MHz 

The antenna Max RMS 1-g SAR (W/kg) 

for an input power of 1 W 

Max input power 

(mW)/dBm 

30 mm U-shaped loop 242 3.3/5.19 

15 mm U-shaped loop 301 2.66/4.25 

10 mm meandered loop 343 2.33/3.67 

Circular meandered loop 

antenna for bone implant 

 

39.77 

 

20.12/13.04 

Circular meandered loop 

antenna for total knee 

replacement implant 

 

30 

 

26.67/14.26 

Much smaller SAR values are obtained for bone implantable antennas as shown in the 

table. This is due to the larger mass density of bone (1810 kg/m
3
) in comparison with muscle 

(1041 kg/m
3
), skin (1010 kg/m

3
) and fat (950 kg/m

3
) at 403 MHz [31]. Moreover, bone has 

much smaller conductivity than muscle and skin as explained in Section 3.3.3. The larger 

mass density (ρ) and smaller conductivity ( ) of bone in comparison with muscle reduce
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the SAR values for antennas implanted in bone in comparison for antennas implanted in 

muscle. 

3.7  In Vitro Measurements  

As mentioned in Chapter 2, liquid body models and pork are used in this work to 

evaluate the proposed antenna performance. The recipe in [3] was used to prepare the liquid 

body model, gradual quantities of salt and sugar were added to water while heating it up to 

guarantee good melting of the overall ingredients (more details about the percents of these 

ingredients are provided in Chapter 2). The resultant mixture is cooled down and its 

dielectric properties are measured using Agilent dielectric probe. More rough quantities of 

salt and sugar are added to optimize the properties. The preparation procedure is shown in 

Fig. 3.17 and the resultant relative permittivity and conductivity are summarized in Table 

3.4. 

Different pieces of pork of different structures are used (both of them are shown in a 

following figure). One of them contains more muscle than fat while the another one contains 

more fat than muscle. This is to measure the performance robustness against variations in the 

dielectric properties and structures of the body phantoms. While minced pork can be used, 

multilayer pork is used to reflect the actual non-uniform body structure. The dielectric 

properties of pork is measured using the same probe. The probe is placed at muscle layer and 

fat layer each time. The conductivity and relative permittivity for these pieces are 

summarized in Table 3.5. 

Each antenna is bent around a cylinder of the biocompatible material Propylene and 

surrounded by an insulation layer. It is then connected by a coaxial cable to the network  

analyzer and placed in the liquid body or pork phantoms. The results are presented in the 

following sub-sections: 
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Fig. 3.17: The liquid body phantom during the preparation process. Material weight scale and a 

lab liquid boiler are used. 

Table 3.4: The measured electromagnetic properties of the liquid body phantom 

Frequency (MHz) Relative permittivity Conductivity (S/m) 

403 57 0.79 

433 56.86 0.812 

Table 3.5: The measured electromagnetic properties of pork 

 

Freq 

(MHz) 

 

Relative permittivity Conductivity (S/m) 

Piece 1 Piece 2 Piece 1 Piece 2 

Muscle Fat Muscle Fat Muscle Fat Muscle Fat 

403 59 6 59.2 6.4 0.82 0.04 0.77 0.061 

433 58.7 5.8 59 6.1 0.85 0.042 0.84 0.062 

2450 53.5 5.5 52.7 5 1.7 0.11 1.74 0.012 
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3.7.1 Measurements of the Reflection Coefficient  

Some of the proposed antennas were realized by cutting a piece of a copper sheet as 

shown in Fig. 3.18 (dimensions are not for the same scale at each photo). 

                                        

(a)                                                                                (b) 

             

                                      (c) 

Fig. 3.18: Realized prototypes of the proposed antennas: (a) The 30 mm U-shaped loop antenna, (b) 

The 15 mm U-shaped loop antenna, and (c) The 10 mm meandered antenna. 

The realized antennas have a very light weight and can be bent around different 

implants of different shapes. Measurements are conducted while the antenna is bent around 

cylindrical tubes. The measurements of the reflection coefficient are conducted by placing 

the antenna under test at the centre of the body model which has the same shape and 

dimensions (180 ×100×50 mm
3
) of the elliptic cylindrical body model and filled once with 

the liquid body phantom and once with pork. The body phantoms that are used in 

measurements are shown in Fig. 3.19. Results inside Piece 1 of pork of the more muscle is 

firstly attempted. The results for the U-shaped loop antennas are shown in Fig. 3.20. The 
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figures show that both measurements and simulations match very well. The antenna covers 

both bands of interest and maintaining the same broad bandwidth. The results of the 

reflection coefficient for the small meandered antenna in these body phantoms are shown in 

Fig. 3.21. Matching is also obtained for this case. The variations in the reflection coefficient 

from one position to another are found to be negligible in the homogeneous body model and 

phantom. 

Therefore, the centre position is selected for all the measurements in the liquid body 

phantom. 

 

(a) 

                                 

(b) 

Fig. 3.19: Body phantoms of measurements: (a) The liquid body model (b) Pork Piece 1 and  Piece 2, 

respecrively. 
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Measurement in the liquid body model

Measurement in the pork

Simulation in the liquid body model

Simulation in the pork
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Measurement in the liquid body model

Measurement in the pork

Simulation in the liquid body model

Simulation in the pork

 

(b) 

Fig. 3.20: The simulated and measured reflection coefficient in liquid body phantom and pork of the: 

(a) 15 mm U-shaped loop (b) 30 mm U-shaped loop antenna. 
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Measurement in the liquid body model

Measurement in the pork

Simulation in the liquid body model

Simulation in the pork

 

Fig. 3.21: The simulated and measure reflection coefficient of the 10 mm meandered loop antenna 

Measurements are conducted at the centre of pork phantom. However, other 

measurements at different positions inside of it are attempted. Small variations are obtained 

from one position to another and both bands of interest were always covered for S11 < -10 

dB. This is because the used pork phantoms have more muscle than fat. This means that the 

equivalent effective permittivity around the antenna is still close to its corresponding value in 

the liquid body phantom. 

3.7.1.1 The Effect of the Insulation Layer on Measurements 

  It is well known that electrically small antennas (ESAs), when fed by a coaxial cable 

(unbalanced feed), can give rise to radiating currents on the outer part of the cable affecting 

the measurement results. Although, implantable antennas have the required electronics 

always integrated in the radiator itself, the problem may still apply when performing 

prototypes measurement. In this case the coaxial cable interferes with the radiation 
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characteristics due also to the presence of the body phantom [90]. In fact, the currents 

present on the external surface of outer conductor are dissipated in the high loss materials 

(constituting the simulating body tissues) as is well known in microwave hyperthermia 

applications [106, 107, 108, 109]. This effect is investigated for the 15 mm in length U-

shaped loop antenna with and without an insulation layer. A comparison between 

measurement of both of these cases are shown in Fig. 3.22. The antenna is expected to 

resonate at 403 MHz. However, an initial measurement obtains resonance at 360 MHz.   
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Fig. 3.22: The effect of insulation layer on measurements 

This is mainly due to the cable effect as explained above. In particular, the conducting 

parts of the feeding cable cause the problem as they contribute in the radiation and shift the 

frequency down. It is pointing out that the effect of the other parts of the cable is mitigated 

by reducing the implant depth in the body phantom. Although the main bands of interest 

(MedRadio and 433 MHz ISM) are still covered, this could be a problem for the evaluation 

of narrowband antennas. To achieve more accurate measurements, the radiating parts which 

are in main contact with the body phantom are isolated using an insulation layer. This layer 
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extends from the conducting soldering parts of the antenna to cover all parts of the antenna 

itself. The measurements after insulating the antenna and the conducting parts of the cable 

are shown in Fig. 3.22. The expected resonant frequency is exactly obtained. 

3.7.2 Measurements of the Antenna Radiation Pattern and Gain 

While measuring the radiation efficiency is a difficult task, the gain is measured in the 

anechoic chamber using the three antenna method. The gain reflects a very clear image about 

the radiation capability of the antenna which is small and of an expected directivity [42]. The 

measurement setup is shown in Fig. 3.23.  

                                                          

(a)                                                                                     (b) 

 

(c) 

Fig. 3.23: Measurement setup for gain and radiation pattern measurements: (a) Log periodic receiving 

antenna, (b) Log periodic transmitting antenna, and (c) The implantable transmitting antenna.
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Two log-periodic antennas are used as the transmitting and reference antennas. The 

third antenna is the implantable antenna (at the centre of a body model when is filled up with 

pork). The measured gains at 403 MHz are -25.5 and -31.4 dBi for the vertical and horizontal 

polarizations. The measured gain values at 433 MHz are -24.9 and -29.1 dBi for both 

polarizations, respectively which are avout 0.5 dB larger than simulations. The larger gain at 

433 MHz is due to the larger electrical size of the antenna. This measured gain value 

matches very well with the simulations results. The radiation pattern is measured as shown in 

Fig. 3.24. 

The antenna has shown an omnidirectional pattern which is due to the almost 

symmetric structure of the used pork layers. When the antenna is surrounded by the same 

tissue layers, the same radiation is almost absorbed from the different antenna parts. 

Therefore, an omnidirectional radiation pattern is obtained.  

  

Fig. 3.24: The Xoy measured and simulated normalized far field patterns (vertical polarization) at 403 

MHz. Maximum value corresponds to 0 dB. A top view of the body phantom and antenna around the 

implant are indicated at the center of the diagram. 
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3.7.3 Meaurements of the Antenna Performance Robustness  

The robustness of the antenna performance is measured against the following: 

 Existence of the internal components.  

 Insulation layer.  

 Variations in the dielectric properties and structure of the body materials. 

For the first case (robustness against the internal components), a copper cylinder of 8 

mm in length is used to mimic the battery while different pieces of FR-4 is used to mimic the 

sensors and other non conducting components as shown in Fig. 3.25. The antenna is bent 

around the same cylinder/tube and measurement is conducted at the centre of the same body 

phantom. The result shows a very good matching with simulations. However, a smaller up-

shift in the resonant frequency is obtained (from 403 to 443 MHz in comparison with from 

403 to 460 MHz which was obtained by simulation).  To measure the effect of the insulation 

layer thickness, an insulation layer of 0.4 mm in thickness of different dielectric materials 

(PTFE, PVC, tape [110-117]) is used. The results of the reflection coefficient for the case 

when an insulation layer of tape is used can be seen in Fig. 3.26. It can be seen from the 

figure that good matching with simulation is obtained. It is worth mentioing that almost the 

same results are obtained for all the other materials. To measure the robustness against 

different structure and tissues, measurements are conducted in the other piece of pork (piece 

2) which has more fat layers as shown in Fig. 3.26. The reflection coefficient for the three 

cases is shown in Fig. 3.26. The figure shows that the resonant frequency is shifted up as 

expected because fat has a smaller relative permittivity than muscle which is only 5.6. This 

reduces the overall effective permittivity around the implantable antenna and device and thus 

shifts the resonant frequency up.  
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Fig. 3.25: Top view of the implant with the internal components. 

No considerable effect is obtained on the radiation pattern for all of these cases as the 

pattern is mainly attributed to the surrounding human body tissues which is very similar for 

the two pieces of pork.     
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Fig. 3.26: The reflection coefficient of the proposed 15 mm  U-shaped loop antenna with the internal 

components , insulation layer of 0.4 mm thickness and in pork with more fat layers. 

After implantation in the actual human body, temperature and other parameters are 

expected to change the effective electromagnetic properties around the antenna and resonant 

frequency correspondingly. This could be evaluated by implanting the device with the 
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antenna and actual components over the targeted period of implantation and measuring its 

performance using the in vivo test. However, it is difficult to conduct the in vivo test which 

needs a license. Moreover, conducting the in vivo test with a direct implantation of the 

antenna in an animal over a short period of time is not very beneficial to evaluate the long-

term antenna performance and could be obtained with other simpler methods. A simple tool 

of measuring the reflection coefficient over a large range of frequencies is developed. It is 

based on adding salt, water or sugar to pork to change the relative permittivity and 

conductivity (water increases the relative permittivity while sugar and salt decreases the real 

part of permittivity and increases the conductivity, respectively [16]). Then measurements of 

the new dielectric properties can be conducted with Agilent probe or other measuring 

procedures. Four new combinations of different electromagnetic properties are measured 

which are summarized in Table 3.6. 

Table 3.6: New electromagnetic properties after adding salt, water or sugar 

Sample Relative permittivity Conductivity (S/m) 

1 51 1 

2 61 3.5 

3 63 4.1 

4 53 1.8 

The reflection coefficient of  the new electromagnetic properties are shown in Fig. 

3.27.  

It is shown from the figure that different matching levels, bandwidth and resonant 

frequencies are obtained as expected for different dielectric properties. Nonetheless, both 

bands ((401-406) MHz MedRadio and 433 MHz ISM band are still covered for  S11 < -10 

dB for all these cases. This is due to the broad bandwidth of the proposed antenna. This 
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confirms the robust performance of the proposed antenna against material variations after 

long term implantation and in-body temperature effect. 

It should be indicated that measurements for other antennas are also conducted and the 

following results are obtained: 

 All of these antennas obtained the bands of interest for S11 < -10 dB.  

 The measured gain values match simulated values very well. 

 The radiation pattern of all of them is omnidirectional as expected for small 

antennas in homogeneous/almost homogeneous body model.  

 Robustness against materials variation is obtained. 
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Fig. 3.27: The reflection coefficient of the proposed 15 mm  U-shaped loop antenna with different 

electromagnetic properties. 



Chapter 3: Design of Flexible Implantable Antennas                                              Page | 109 

__________________________________________________________________________ 

   

3.8 Summary 

A methodology to design implantable antennas design is formulated in this chapter. 

The methodology suits different design applications. It also deals with structure optimization 

to maximize power radiation. The methodology comprises the following two steps: 

Step 1:  Optimiziation of the antenna structure in the simplified body model. This is obtained 

by widening the loop antenna parts to reduce the loss resistance and thus increase the 

antenna radiation efficiency. However, this is accompanied with optimizing the spacing 

distance between the antenna vertical and horizontal parts which control the total 

effectivecappaciatnce and inductance to obtain resonance at the frequency of interest (at 

around 400 MHz) and a wide bandwidth (> 200 MHz). The optimization at this step is 

finished when the maximum possible radiation effecieincy is obtained at around 400 MHz. 

This antenna design is optimized within a relatively short time in the simplified body model 

which have much samller size and simpler structure than the anatomical body models. 

Step 2: Evaluation of the antenna perfromance in an anatomical body model. The anatomical 

body model is either an adult or a child depending on the antenna application. The antenna 

gain at the intended position of actual implantation is compared to a threshold gain value that 

is specified based on the design requirement. If the antenna gain overcomes this threshold 

value while covering the bands of interest with good matching, the design is stopped and the 

final antenna is obtained. Otherwise, some techniques such as using metamterials to increase 

the antenna gain are used and the design procdedure is repeated through Steps 1 and 2.  

Only Step 1 is discussed and applied in this chaptetr. The evaluation through Step 2 

requires careful simulation and the consideration of different parameters which is to be 

investigated in depth in the next chapter. The proposed  methodology is used to design U-

shaped and meandered loop antennas for both of muscle and bone implants. The proposed 

antennas have the following desirable features: 
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 Wide bandwidth (> 200 MHz). 

 A relatively large radiation efficiency for the design structure. 

 Robust performance against internal components, insulation layers and 

material variations. 

 Light weight 

 Flexibility and conformity which could reduce the implant size or enable 

using more sensors for multi functions of the implant. 

Small antennas such as the meandered 10 mm loop antenna are designed for small 

implants such as capsules for children. On the other hand, the larger antennas are designed 

for implants of adults.  

The proposed antennas are realized by cutting a copper conducting sheet. In Vitro 

measurements are then conducted in a liquid body phantom and pork to evaluate and validate 

the proposed designs. The antenna perfromance is found to be robust against internal 

components, insulation layers and material variations. Measurements obtained the simulated 

bandwidth and realized gain values. The radiation pattern is found to be omnidirectional 

because the body phantoms are almost homogeneous. The cable effect during measurements 

is evaluated and mitigated to provide more accurate measurements.  

A simple procedure to measure the antenna robustness against materials variation is 

used by adding salt, sugar or water to pork. Different electromagnetic properties are obtained 

and the proposed antennas are measured inside these materials. Despite of the different 

matching levels, resonant frequencies and bandwidths, the antennas have obtained a robust 

performance covering all the bands of interest for S11 < -10 dB.  
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Chapter Four 

 Evaluation in the Anatomical Body Model 

4.1 Introduction 

The anatomical body models are of much better resemblance to the real human body 

than the simplified body models. They also provide a reliable tool to evaluate the 

implantable antenna performance as variations happen from one simplified body model to 

another (this will be further explained in this chapter). Furthermore,  they  provide a unique 

tool to evaluate some parameters such as the implant orientation. Therefore, it is very 

important to evaluate the implantable antenna performance inside these models. However, 

such an evaluation should be accurate and many related parameters should be well 

understood. For example, simulations should include enough body area around the antenna; 

where considering only the specific organ of implantation could lead to inaccurate results 

especially about the radiation pattern, radiation efficiency and gain. This chapter of the thesis 

aims at the following objectives: 

  Investigating the effect of simplified body models on the implantable antenna 

design and performance. 

 Providing general guidelines for accurate and quick evaluations of implantable 

antennas inside the anatomical body models. 
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 Evaluating the performance of the 15 mm U-shaped loop antenna that was proposed 

in Chapter 3 at different positions and orientations in an adult human body (the CST 

Katja voxel) model.  

 Evaluating the performance of the 10 mm meandered loop antenna that was 

proposed in Chapter 3 inside an anatomical body model of a child for the 

applications of wireless capsule endoscopy for children. 

 Emphasizing the effect of the implantable antenna and device orientation on their 

performance. 

 Comparing the orientation effect at different implantation positions. The orientation 

and position at which the antenna obtain the largest antenna radiation efficiency and 

gain are recommended for the applications of glucose monitoring. 

To achieve these purposes, this chapter is arranged as follow:  

Firstly, the main effect of simplified body models; shape, dimensions and aspect ratios 

are investigated and discussed. The 15 mm U-shaped loop antenna is then simulated in the 

arm of the CST Katja adult body model. Simulations comprise the following areas each time: 

the hand only, the trunk, the longitudinal half and the full body. The same analysis is also 

conducted for the case of hip implantation. The case that obtains the same  performance of 

the full body over a shorter time is recommended for accurate and quick future simulations. 

After that, the performance of that antenna is simulated at three positions of implantation 

(the left arm, thigh and hip). Four orientations are also evaluated at each position. Finally, 

the antenna performance and orientation effect are evaluated for the small meandered loop 

antenna in a child anatomical body model for a potential application of ingestible capsule 

endoscopy for children. 
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The achievements of this chapter can be summarized as the following: 

 The robustness of the performance of the proposed antennas in Chapter 3 is 

validated against different positions and orientations. The overall performance of 

implantable antennas is totally evaluated against these parameters for the first time. 

 Investigations on the accurate evaluation of implantable antennas in the anatomical 

body models are conducted for the first time; the validity of the evaluation of some 

previous antennas is discussed. A specific part of the anatomical body model is 

recommended to be used for an accurate evaluation of implantable antennas which 

can save half of the simulation time and memory. 

 A full analysis of the orientation effect on the performance of implantable antennas 

is performed. SAR dependence on the implant orientation is only and briefly 

indicated in [19]. However, the orientation effect on the reflection coefficient, 

radiation efficiency and gain is investigated in-depth in this work for the first time. 

 A capsule antenna for children at 403 MHz and for different positions and 

orientations has been evaluated inside the digestive tract of an anatomical child body 

model. 

4.2 The Effect of the Shape, Dimensions and Aspect Ratios 

of the Simplified Body Models on the Antenna Performance 

It is very important to start the design of implantable antennas in a simplified body 

model. This is to save simulation time and memory [113]. In addition, this helps in selecting 

the antenna structure of the optimum characteristics (the largest radiation efficiency 



Chapter 4: Evaluation in the Anatomical Body Model                                           Page | 114 

__________________________________________________________________________ 

   

and gain and wider bandwidth) within a relatively short time.  However, different simplified 

body models lead to different antenna radiation characteristics. The validity and accuracy of 

simplified body models are discussed at this section. The effect of the simplified body shape, 

dimensions and aspect ratio (length to width, length to depth ratio, etc.) on the overall 

antenna performance is particularly investigated.  

4.2.1 The Effect of the simplified Body Shape on the Antenna 

Performance. 

In this section the effect of the simplified body model shape on the antenna resonant 

frequency, bandwidth and radiation pattern is investigated. Three different shapes 

(cylindrical, elliptic cylindrical and rectangular) are studied. In all of these body models the 

antenna is placed at the origin and a single orientation for the implantable antenna and device 

is selected. The body models of investigations are: 

 Of a cylindrical shape, 90 mm in radius and 50 mm in height and muscle 

equivalent dielectric material. 

 Of an elliptic cylindrical shape, the following dimensions (180×100×50 

mm
3
) and muscle equivalent dielectric material.  

 Of a rectangular shape, the following dimensions (180×100×50 mm
3
) and 

muscle equivalent dielectric material.  

 The top view of these body models are shown in Fig. 4.1. A negligible difference in 

the resonant frequency and bandwidth between the cylindrical and elliptic cylindrical body 

models is obtained while exactly the same reflection coefficient (S11) characteristics are 

obtained for the elliptic cylindrical and rectangular body models. This is because the elliptic 

cylindrical and rectangular body models  have the same dimensions. 
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                         (a)                                          (b)                                                (c) 

Fig. 4.1: Top and side views of the simplified body models of different shapes: (a) Cylindrical (b) 

Elliptic cylindrical (c) Rectangular.   

  The radiation patterns in these body models are obtained. To clarify the antenna 

radiation pattern around the body model, the pattern axes around the cylindrical body model 

is shown in Fig. 4.2. The azimuth radiation patterns are obtained at θ= 90
o
 as shown in Fig. 

4.3. 14 dB difference in the main lobe magnitude is obtained between the largest value in the 

rectangular body model and the smallest value in the cylindrical body model.   

 

Fig. 4.2: the cartesian and polar coordinates around the simplified cylindrical body model 
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Fig. 4.3: The azimuth radiation pattern (at θ= 90
o
: perpendicular to the top view direction of the 

simplified body model)  in simplified body models of different shapes.  

The largest radiation efficiency is achieved in the rectangular body models. It is 1.55 

times the radiation efficiency in the elliptic cylindrical body model although these body 

models have the same dimensions. It is 8.85 times the radiation efficiency in the cylindrical 

body model. The main lobe direction differs by 24 degrees between the elliptic cylindrical 

and rectangular body models. However, much larger degrees differences of 83 and 107 are 

obtained between the (cylindrical and the elliptic cylindrical) and (cylindrical and 

rectangular body models), respectively.  

It can be concluded from this analysis that the shape of the simplified body model 

does not affect the reflection coefficient (S11) characteristics (the resonant frequency and 10 

dB bandwidth). However, the radiation efficiency, gain and radiation pattern are strongly 

affected by the shape of the simplified body model. This confirms the importance of 

evaluating the overall performance of implantable antennas in the anatomical body models. 

4.2.2 The Effect of the Body Dimensions and Aspect Ratio on 

the Antenna Performance 

A top view of the cylindrical  

body model. 
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It is expected that body models of a smaller size provide larger gain and radiation 

efficiency [3]. However, the gain and radiation efficiency may totally differ when the 

samebody model of the same overall size has different aspect ratios (width to length, width 

to height and length to height). This effect is investigated at this section using the elliptic 

cylindrical body model that is used in this thesis. The initial (180×100×50) mm
3
 dimensions 

are interchanged to be (180× 50× 100) and (50×100×180) mm
3
. The same U-shaped loop 

antenna is simulated at the centre of the each body model and always oriented parallel to the 

longitudinal axis of the body model as shown in Fig. 4.4. 

A negligible change in the resonant frequency and bandwidth is also obtained this 

time. 

            

                                   (a)                                        (b)                                   (c) 

Fig. 4.4: An elliptical body model of different aspect ratios: (a) (180×100×50) mm
3
 (b) (180× 50× 

100) mm
3
 (c) (50×100×180) mm

3
. 

The radiation efficiency and realized gain in the body model of the second aspect ratio 

are 5 and 27.8% larger than in the body model of the first aspect ratio. The smallest radiation 

efficiency and realized gain are obtained for the body model of the maximum longitudinal 

length. They are 0.19 and 0.14 times the maximum obtained values in the body model of the 

second aspect ratio.  

The polar radiation pattern of these cases are shown in Fig. 4.5. 

The position of the antenna 
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Fig. 4.5: The azimuth radiation pattern (perpendicular to the top view of the body model which is 

indicated in the figure) for different elliptic cylindrical body models of different aspect ratios.  

The main lobe direction of the radiation pattern from the body of the first aspect ratio 

differs by 180 and 92 degrees from the case of the second and third aspects ratios, 

respectively. The main lobe magnitude differs by 8.9 dBV/m between the cases of the 

minimum and maximum field intensities. The maximum electric field intensity is obtained 

for the second case which differs by 1.2 dBV/m from the first case. 

4.3 Performance of the Conformal U-shaped Loop Antenna 

in the Anatomical Body Model of an Adult 

4.3.1 Performance for Different Body Parts of Simulation  

The performance of the proposed 15 mm in length U-shaped loop antenna is evaluated 

in the arm of the CST Katja body model. The CST Katja voxel body model represents a 43-

year old female with a height of 163 cm and weight of 62 kg [78]. It is understood that 

simulations with the full anatomical body model is time consuming. Therefore, simulations 

are firstly attempted while considering only some parts of the full Katja body model (hand 

only, trunk, longitudinal half of the body) and the performance is then compared with that in 

the full body. The same position of implantation in the hand is kept for all the cases of 

A top view of the elliptic cylindrical 

body model of the first aspect ratio 

(180×100 × 50 mm
3
) 
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investigations. The purpose of this analysis is to find if the performance in only some parts 

of the body model can provide accurate results while saving lots of time and memory. On the 

other hand, some designs rely on the use of only some parts of the anatomical body models 

such as in [20]. The validity of that consideration and use has to be investigated. 

The parts which are included in each simulation are shown in Fig. 4.6.  

                                             

Fig. 4.6: The CST Katja voxel body parts of simulations. 

The reflection coefficient for all these cases is shown in Fig. 4.7. It can be seen from 

the figure that the resonant frequency differs between some of these cases. Generally, the 

resonant frequency is shifted up from the case of hand only to the full body by 41 MHz. This 

is because the effective permittivity around the antenna for the case of the hand only is larger 

(the percent of muscle to the overall material of simulation is larger than for the case of the 

full body). However, the resonant frequencies for the cases of the upper and longitudinal 

halves of the human body are the same and equivalent to the case of the full body. The 

antenna bandwidth is over 200 MHz for all these cases. However, the smaller part of the

The hand only 

 The longitudinal half 

 The trunk 

 The full body 
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hand only tends to provide a slightly narrower bandwidth (30 MHz for this case of 

investigation). 
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Fig. 4.7: The reflection coefficient for different parts of simulations for the 15 mm U-shaped 

implantable antenna at 10 mm beneath fat in the arm of the CST Katja voxel body model. 

The antenna radiation characteristics at 403 MHz (radiation efficiency, gain and SAR) 

are also evaluated for these cases. The results are provided in Table 4.1. 

It is indicated from the results in the table that the case of the hand only overestimates 

the gain by around 1.72 dB in comparison with the case of the full body. When the lossy area 

around the implantable antenna becomes larger (the case of the full body), the total effective 

conductivity increases and thus more losses are obtained. This decreases the antenna 

radiation effeciency and gain. However, a negligible difference in gain and radiation 

efficiency is obtained between the cases of the half parts (the longitudinal and upper (trunk)) 

and the full body model. 
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Table 4.1: The radiation characteristics for different parts of simulations for the U-shaped 

implantable antenna in the arm of Katja 

 Radiation 

efficiency 

(%) 

Maximum 3D-

realized gain 

(dBi) 

Maximum 1-g 

(RMS) SAR 

(W/kg) for an 

input power 

of 1W  

Maximum 10-g 

(RMS) SAR 

(W/kg) for an 

input power of 

1 W  

The hand only 0.051 -28.12 317 48.8 

The upper half 

(the trunk) 

0.046 -29.8 226 44.8 

The longitudinal 

half 

0.048 -29. 23 226 44.8 

The full body 0.045 -29.84 226 44.8 

The same 1g and 10g average SAR values are obtained for the three cases of the 

longitudinal, upper half (trunk) and full anatomical human body model. However, they are 

40.3 and 9% smaller than the corresponding 1-g and 10-g SAR values, respectively for the 

hand only. This is becasue the percentage of bone to muscle and fat for the case of hand only 

is much smaller than for the case of the full antaomical body model. As long as bone has 

much larger mass density than muscle and fat, it reduces the overall SAR. Therefore, smaller 

SAR is obtained for the case of hand only (the equation to calculate SAR can be found in 

previous chapters). 

It is known that the body aperture is very effective on the far-field radiation pattern. 

Therefore, the far field radiation pattern has been simulated for all these cases. The cartesian 
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and polar coordinates around the anatomical body model is shown in Fig. 4.8. The 

results are shown in Fig. 4.9. 

 

Fig. 4.8: The cartesian and polar coordinates around the CST Katja voxel body model.  

                                       A top view of the anatomical body model 

 

Fig. 4.9: The azimuth radiation pattern for different parts of simulation in the arm of the CST Katja 

voxel body model. 

The antenna in the arm 
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  The same direction of the main lobe is obtained for the cases of the trunk and full 

body models while a difference of 20 degrees is obtained between the longitudinal half and 

the full body. It can be concluded that using the upper part (the trunk) of the Katja voxel 

body model provides a reliable source of data while saving a considerable time and memory. 

The required simulation time, maximum memory and number of mesh cells for each 

case of simulation are summarized in Table 4.2. The table shows that the simulation time and 

physical memory inside the full body model are around 50 % higher than their corresponding 

values in the upper half of the body model. A high percentage of time and memory can be 

saved when the upper half of body model is only used while almost the same results about 

the antenna performance can be obtained. On the other hand, a considerable difference in the 

overall characteristics is obtained when only small parts of the body are used in the 

simulations in comparison with the full body model. 

Table 4.2: Simulation time and memory for different parts of simulations for an antenna implanted in 

the left arm 

 Total 

simulation 

time 

(s) 

Peak memory used 

(kB) 

Number of 

mesh cells 

Physical Virtual 

The upper half (trunk) of 

the body model 

2244 5255936 5470960 28571028 

The full body model 4187 9410736 9631012 51672138 

This shows that evaluation in only small part of simulation such as in [20] was not 

accurate enough to evaluate the overall antenna characteristics precisely. Larger gain values
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are obtained when only a small part is included in comparison with the full body case and 

this underestimates the overall path losses. 

The same analysis is performed in the area above the left hip in order to confirm and 

generalize the results. Simulations with the area above the hip only is firstly conducted, then 

with the trunk, longitudinal half and compared with the simulations in the full anatomical 

body model. The resultant reflection coefficient for the different parts of simulations when 

the antenna is implanted in the area above the left hip is shown in Fig. 4.8 and their radiation 

characteristics are summarized in Table 4.3. 

Similar to the case when the antenna is placed in the arm, the largest difference of 13  

MHz in the resonant frequency is obtained between the smallest part (the hip only) and the 

full body as shown in Fig. 4.10. The same resonant frequency is obtained for all the other 

cases. However, the gain value is also overestimated by 1 dB for the case of the hip only and 

longitudinal half in comparison with the trunk and full body. 
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Fig. 4.10: The reflection coefficient for different parts of simulations for an implanted antenna in the 

are above the left hip. 

The polar radiation pattern around the body model is shown in Fig. 4.11. The pattern 

is obtained in a normal direction to the top view of the area above the left hip. This direction 

is selected because the antenna is intended to transmit in this direction away from the human 

body towards the receiver in the free space. The main lobe direction is obtained in a 

preferred direction that is transversal and off the body for all of these cases. A phase 

difference of 86 degrees is obtained between the cases of the hip only and the full body 

model while almost the same direction of the main lobe  is obtained for all the other cases. It 

can be concluded that using the upper part (trunk) of the Katja voxel body model can also 

provide a reliable source of data while saving around half the simulation time and memory. 

The required simulation time, maximum memory and number of mesh cells are summarized 

in Table 4.4. 

Table 4.3: Radiation characteristics for different parts of simulations for the 15 mm U-shaped 

implantable antenna in the area above the left hip of Katja 

 Radiation 

efficiency 

(%) 

Maximum 

3D-gain 

(dBi) 

Maximum 1-g 

(RMS) SAR 

(W/kg) /Pin = 

1 W  

Maximum 10-g 

(RMS) SAR 

(W/kg) /Pin = 1 

W 

The hip only 0.03 -32.4 302 48.1 

The upper half 

(the trunk) 

0.012 -33 267 46 

 

The longitudinal half 0.019 -32. 4 266 45.7 

The full body 0.018 -33.2 267 46, 0.046 
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Fig. 4.11: The azimuth radiation pattern for different parts of simulation in the area above the left hip 

of the CST Katja voxel body model. The origin of the radiation pattern is at the centre of the 

cylindrical implant 

Table 4.4: Simulation time and memory for different parts of simulations for an antenna implanted in 

the area above the left hip 

 Total 

simulation 

time 

(s) 

Peak memory used 

(kB) 

Number of 

mesh cells 

Physical Virtual 

The upper half 

(the trunk) 

2122 5390892 5618828 29329776 

The full body model 3900 9463672 9673536 313469677 

 

Table 4.4 shows that the simulation time and physical memory inside the full body 

model are also around 50% larger than their corresponding values in the upper half of the 

body model. A large percent of time and memory can be saved when the upper half (trunk) 

A top view of the area above the left hip 

A top view of the 

cylindrical implant 
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of the body model is only used in comparison with the full body while almost the 

same results about the antenna charaterestics and perfromance can be obtained. 

This confirms the importance of evaluating the antenna performance with enough 

body area around the antenna (not only the small part of implantation). Consideration of only 

small parts may lead to inaccurate data especially about the gain values. 

4.3.2 Performance Evaluation at Different Positions and 

Orientations  

For the purposes of general health monitoring such as glucose monitoring, the device 

is usually implanted beneath skin in the arm, leg and the area above the hips [115]. 

Therefore, the performance of the proposed implantable antenna is compared in these areasin 

order to recommend the optimum position of implantation for these purposes from antenna 

and propagation point of view. The optimum position is the position inside which the 

antenna obtains the largest radiation efficiency and  gain and smallest SAR. The flexible 15 

mm in length U-shaped loop and smaller meandered loop antenna inside an adult and a child 

body model, respectively are selected for these investigations. The radiation characteristics 

are compared for four orientations (around the same axis parallel to the longitudinal 

bodyaxis) for the U-shaped loop antenna and around different axes for the case of the 

meandered antenna. Firstly, the orientation effect at each position is summarized and a 

comparison of the overall performance between the four positions is then conducted.  

It should be pointed out here that the evaluations at this chapter represents the second 

step of the design methodology which was proposed in Chapter 3. Simulations are conducted 

to evaluate the resultant realized gain values and compare them with the targeted gain value 

(> -37 dBi) as explained in Chapter 3. 
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A cross section of the body at all the positions of implantation is shown in Fig. 4.12. 

The antenna is intended for muscle or beneath skin implants. Therefore, it has been placed 

ina muscle layer beneath fat [38]. Muscle or beneath-skin implants are normally placed 

beneath fat due to the following reasons:  

 The fat layer is susceptible to great variations such as the body weight. 

 Full encapsulation of the implantable device in the thin fat layer is 

impossible. 

 Detuning normally happens when the antenna is implanted in fat because of 

the large difference between its electromagnetic properties from muscle [31]. 

A layout of the antenna for the four orientations is shown in Fig. 4.13. Each 

orientation is obtained by rotating the antenna 90 degrees counter clockwise. The reflection 

coefficient in the left arm at the four orientations around the z-axis is shown in Fig. 4.14. 

                    

                                   (a)                                                                                    (b)  

      

                                     (c) 

Fig. 4.12: The implantable antenna at: (a) the left arm (b) the left thigh (c) above the left hip inside the 

CST Katja voxel body model. 
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                        (a)                                 (b)                            (c)                             (d) 

Fig. 4.13: The different four orientations of the 15 mm U-shaped loop antenna: (a) First orientation, 

(b) Second orientation, (c) Third orientation, and (d) Fourth orientation. 

The resonant frequencies for the first, second, third and fourth orientations are 373, 

331, 322 and 331MHz, respectively. Although almost the same 10 dB bandwidth of 200 

MHz is obtained for all the orientations, 51 MHz difference in the resonant frequency is 

obtained between the first and the fourth orientations. Different matching levels are also 

obtained.     
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Fig. 4.14: The reflection coefficient at different orientations of the 15 mm in length U-shaped loop 

antenna inside the arm of the CST Katja voxel body model. 

The overall radiation characteristics are summarized in Table 4.5. 
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The largest radiation efficiency and gain are obtained for the first orientation. The 

smallest maximum SAR is also obtained for this orientation. This can be linked to the 

equivalent relative permittivity around the different parts of the antenna. When the antenna 

longest parts are close to a thick muscle layer which are the layer of the largest conductivity 

for this case, losses and absorption around the antenna at this position increase. This reduces 

the overall radiation efficiency and gain and increases the SAR for this orientation. 

The results show that the radiation efficiency and realized gain for the first orientation 

is 4.45 and 3.63 times the corresponding efficiency and realized gain values for the fourth 

orientation. The radiation efficiency and realized gain of the second orientation is relatively 

small. However, they are 16 and 21.34% larger than the radiation efficiency and realized 

gain of the fourth orientation. On the other hand, the radiation efficiency and realized gain of 

the third orientation are relatively large and are 14.65 and 24.65% smaller than the 

radiationefficiency and realized gain, respectively of the first orientation. The smallest 

computed maximum 1-g average SAR values are obtained for the first orientation which is 

44.7, 23.5 and 39.4% smaller than the corresponding values of the second, third and fourth 

orientations, respectively. 

The radiation patterns for all the four orientations are also computed and are shown in 

Fig. 4.15. The pattern is obtained in a normal direction to the top view of the area above the 

left hip in order to show the radiation pattern of interest around the body model. The main 

lobe direction is obtained at different angles of  62, 60, -74 , and 92 degrees for the first, 

second, third and fourth orientations, respectively. Different field strength intensities are also 

obtained where a difference of up to 7.8 dBV/m between the best and worst cases is 

obtained.  
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Table 4.5: Radiation characteristics of the 15 mm U-shaped loop antenna at different orientations in 

the left arm of the CST Katja voxel body model. 

             Radiation           

                characteristic 

 

 Orientation 

Radiation 

efficiency 

(%) 

Maximum 

3D-gain (dBi) 

Maximum 1-g 

(RMS) SAR 

(W/kg)/Pin = 1 

W  

Maximum 10-

g (RMS) SAR 

(W/kg)/Pin = 1 

W  

First 

 

0.045 -29.84 226 44.8 

Second 0.0116 -34.34 327 49 

Third 0.04 -30.8 279 46.7 

Fourth 0.01 -35.4 315 49 

 

   

Fig. 4.15: The azimuth radiation pattern of the 15 mm U-shaped loop antenna at different orientations 

inside the arm of the CST Katja voxel body model. The centre of the radiation pattern is at the centre 

of the cylindrical implantable device. 

A top view of 

the cylindrical 

implantable 

device 

A top view of the CST Katja voxel body model 
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The same analysis is repeated in the left thigh and the reflection coefficient for all the 

orientations are shown in Fig. 4.16. The resonant frequencies for the first, second, third and 

fourth orientations are 363, 327, 373 and 506 MHz, respectively. Larger difference of 179 

MHz between the resonant frequencies for the different orientations is obtained for this case 

(in the thigh) than for the case in the arm. 100 MHz wider 10 dB bandwidth is obtained for 

the fourth orientation than for the other orientations. Different matching levels are also 

obtained. The deepest matching is obtained for the case of the second orientation. 

The radiation characteristics are summarized in Table 4.6. The largest radiation 

efficiency is obtained for the third orientation which is 86.7, 115.4, 64.7% larger than the 

corresponding efficiency for the first, second and fourth orientations, respectively. The 

realized gain value for this orientation are 121, 204 and 161.8% larger than the 

corresponding gain values for the first, second and fourth orientations, respectively. The 

percentage of realized gain difference between the different orientations is different from the 

obtained percentages of radiation efficiency due to the difference in directivity for 

theseorientations.The largest radiation efficiency and realized gain for the third orientation is 

due to the smallest effective conductivity for it in comparison with the other cases. This is 

also reflected on reducing the 1-g SAR for this orientation in comparison with other 

orientations which is 74, 76 and 17.8% smaller than the corresponding 1-g SAR values for 

the first, second and fourth orientations, respectively. It is obvious that all these 

characteristics differ from the case in the arm due to the difference in the overall structure 

and materials around the antenna. 

The main lobe magnitudes are -17.9, -17.4, -14.9 and -18.3 dB, respectively which are 

obtained at the directions of 60, -146, 35 and 84 degrees, respectively. This shows a large 

difference between the magnitudes and main lobe direction of some orientations which 

requires a careful consideration of the optimum direction of the implantable device for the 

intended application during the evaluation and implantation processes. 
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Fig. 4.16: The reflection coefficient at different orientations of the 15 mm U-shaped loop antenna 

inside the thigh of the CST Katja voxel body model 

Table 4.6: Radiation characteristics of the 15 mm U-shaped loop antenna at different orientations in 

the left thigh of the CST Katja voxel body model 

                      Radiation                         

                  characteristic 

  

     Orientation 

Radiation 

efficiency 

(%) 

Maximum 

3D-gain 

(dBi) 

Maximum 1-

g (RMS) 

SAR (W/kg)/ 

Pin = 1 W 

Maximum 10-g 

(RMS) SAR 

(W/kg)/Pin = 1 

W 

First 0.03 -31 383 50.3 

Second 0.026 -32.4 387 44.7 

Third 0.056 -27.6 220 43.5 

Fourth 0.034 -31.8 186.8 40.3 
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The radiation patterns at different orientations in the thigh is shown in Fig. 4.17.  

   

Fig. 4.17: The azimuth radiation pattern for different orientations inside the left thigh of the CST 

Katja voxel body model. The centre of the radiation pattern is at the centre of the cylindrical 

implantable device (encircled in the blue box). 

The results for the area above the left hip are shown in Fig. 4.18.  
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Fig. 4.18: The reflection coefficient at different orientations inside the area above the left hip of the 

CST Katja voxel body model 

A top view of the thigh of the CST Katja 

voxel body model 
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The resonant frequencies for the first, second, third and fourth orientations are 321, 

338, 391and 337 MHz, respectively. It can be seen from the figure that the resonant 

frequency is shifted down from the third to first orientation by 70 MHz. The frequency band 

margin above the MedRadio (401-406 MHz) band is only 50 MHz for the first three 

orientations. On the other hand, 150 MHz above this band is obtained for the third 

orientation.  This is due to the same reason that is explained above; when the longest antenna 

parts are in close proximity to the tissue of the largest relative permittivity, the resonant 

frequency is shifted down. The radiation characteristics are computed for all orientations and 

summarized in Table 4.7. 

The largest gain and radiation efficiency are obtained for the third orientation. The 

resonant frequency is also shifted up to around 400 MHz for this case. This is because most 

of the antenna parts are surrounded by a thinner muscle layer than that surrounds the 

antennaparts for the cases of other orientations. This reduces the overall loss and effective 

permittivty around the antenna for this orientation.  

The radiation patterns of the these orientations are shown in Fig. 4.19. The main lobe 

direction is obtained at -48, -66, -56 and -64 degrees for the first, second, third and fourth 

orientations, respectively. 

It can be concluded from the previous results that the maximum realized gain and 

radiation efficiency are obtained for the third orientation in the thigh. Therefore, it is 

recommended for glucose monitoring. Although, maximum frequency deviations of 179 

MHz between some orientations are obtained at this position in the thigh, the bandwidth is 

centred at around 400 MHz for the third orientation which is recommended for a long term 

implantation (guarnatee the bands of interest coverage if frequency detuning occur). The
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smallest 1-g and 10-g AVG SAR are also obtained at this orientation due to the smallest 

losses around the antenna at this position. The overall results show that the realized gain 

values at all the positions and orientations are > - 37 dBi which is the targeted realized gain 

value as indicated by the design methodology in Chapter 3 except for the second and fourth 

orientations which obtain a communication over a shorter range. The  gain values for the 

second and fourth orientations are enough to satisfy a link budget over 17 and 19 meters only 

for the second and fourth orientations, respectively. Referring to the proposed design 

methodology, further modifications or techniques have to be applied to increase the antenna 

radiation efficiency and gain to satisfy a link over 20 meters for the second and fourth 

orientations. This will be obtained using metamaterials based layers around the antenna as 

will be explained in Chapter 5. 

Table 4.7: Radiation characteristics of the 15 mm U-shaped loop antenna at different orientations in 

the area above the left hip of the CST Katja voxel body model 

                Radiation 

                characteristic 

 

     Orientation 

Radiation 

efficiency 

(%) 

Maximum 

3D-gain 

(dBi) 

Maximum 1-g 

(RMS) SAR 

(W/kg) for an 

input power 

of 1W 

Maximum 10-g 

(RMS) SAR 

(W/kg) for an 

input power of 

1 W 

First 0.0183 -33.16 267 46.5 

Second 0.005 -39.33 333.5 50.35 

Third 0.032 -31.1 255.76 46 

Fourth 0.00812 -37.61 340 51 
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Fig. 4.19: The azimuth radiation pattern for different orientations inside the area above the left hip of 

the CST Katja voxel body model. The origin of the radiation pattern is at the centre of the cylindrical 

implantable device (encircled in teh blue box). 

4.4 Performance of the 10 mm Meandered Loop 

Antenna in the Child Voxel Body Model 

The small meandered antenna that we proposed in Chapter 3 is also evaluated in an 

anatomical body model. The small size of this antenna reduces its gain value in the adults 

anatomical body models such as Katja [118]. However, as long its size facilitates 

implantation in the small children bodies which are of much smaller losses than adults [81], 

this antenna is evaluated in a small child body model [3] for a potential application of 

capsule endoscopy for children. The antenna is simulated at three different organs inside the 

CST child anatomical model which are the stomach, colon and small intestine. The dielectric 

properties of these organs are summarized in Table 4.8. The resultant reflection coefficient 

when this antenna is simulated in theses organs is shown in Fig. 4.20.

A top view of the area above the hips 

of the CST Katja voxel body model 
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Table 4.8: Electromagnetic properties of the digestive tract organs [31] 

The organ The relative permittivity  

(
r ) 

The conductivity 

  (S/m) 

Colon 62.5 0.86 

Stomach 67.5 1 

Small intestine 66 1.9 

 

It can be seen from the figure that a bandwidth of 200 MHz which covers all bands of 

interest is always maintained. The resonant frequencies are around 360 MHz for both of the 

stomach and the small intestine because they have almost the same relative permittivity 

asindicated in the table. The slight 15 MHz upshift of the resonant frequency inside the colon 

is due to its smaller relative permittivity which is around 62.5.  

All the resonant frequencies are lower than the resonant frequency inside the 

simplified body model that is composed of muscle and this is mainly because of the larger 

relative permittivity of the stomach, small intestine and colon in comparison of muscle. 

However, muscle is still valid and preferable for the simplified body model 

equivalentmaterial because the digestive tract could be empty sometimes (filled in air 

without contents). When the empty organs are filled up with air, their relative permittivity 

areexpected to be smaller than when they are filled with contents. On the other hand, 

antennas that were evaluated in muscle equivalent simplified body model (including the 

antennas in this thesis) proved to provide a good performance in the anatomical body models 

[7, 99]. Therefore, it is selected for all the equivalent material of simplified body models in 

this thesis. 
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Fig. 4.20: The radiation pattern of the proposed 10 mm meandered loop antenna in different organs of 

the digestive tract of the CST child body model. 

The 3D radiation pattern of the proposed antenna in these different organs of the 

accurate CST child voxel body models are shown in Fig. 4.21. Although the radiation pattern 

is symmetric and omnidirectional in the simplified body models, it becomes more directional 

and asymmetric in the accurate CST child body model because of its asymmetric structure. 

The radiation pattern in each of these organs is different from the others. However, the 

largest radiation is always obtained in a direction that is away from the body towards free 

space. This shows that more directive patterns is expected for most of implantable 

andingestible antennas after their actual implantation in the real body models in 

correspondence with [80]. It also shows the importance of having an array of receiving on-

body antennas forthis case. Therefore, it is very important to evaluate the performance of 

capsule antennas in the anatomical body model. The gain and radiation efficiency in all these 

organs are summarized in Table 4.9. Different orientations of the capsule are attempted (the 

capsule is rotating while passing through the digestive tract) and the values in this table 

represent the smallest obtained values. 
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(a)                                            (b)                                             (c) 

Fig. 4.21: Radiation pattern of the proposed 10 mm meandered loop antenna in the: (a) Colon, (b) 

Stomach, and (c) Small intestine of the CST child voxel body model. 

Larger gain values and radiation efficiency are achieved in the organs of the smaller 

conductivity. Therefore, the largest gain value is obtained in the colon which is followed by 

the gain in the stomach and small intestine, respectively. 4.1 dB difference between the 

largest gain value in the colon and the smallest gain value inside the small intestine is 

obtained because of the 1.04 S/m difference between their conductivities. 

Table 4.9: The realized gain of the proposed 10 mm meandered loop antenna inside the 

digestive tract of the CST child voxel body model at 403 and 433. 

Organ 403 MHz 433 MHz 

Gmax(dBi) ηr (%) Gmax (dBi) ηr (%) 

Colon -33.2 0.0146 -32.1 0.0189 

Stomach -34. 5 0.0132 -33.9 0.016 

Small intestine -37.3 0.0055 -35.8 0.0057 

In order to save the simulation time, simulation of the SAR is only conducted in the 

small intestine as it has the largest conductivity and expected to obtain the largest RMS 1-g 

AVG SAR value. A computed value of 280 W/kg is obtained which means that the antenna 

can be provided by up to 2.86 mW (4.56 dBm) to satisfy the SAR limitations. This power is 

larger than 0 dBm which is normally provided to implantable devices and chips.
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4.5 Summary 

In this chapter an in-depth investigation has been conducted on the performance of 

implantable antennas in the anatomical body model. The investigation has shown the 

importance of evaluating the implantable antenna performance inside these body models. 

Unlike the case of simplified body models, the asymmetric structure of the anatomical body 

models change the overall antenna performance at different positions and orientations. While 

variations in the radiation efficiency and gain only are obtained at different positions of 

implantations in the simplified body model, the overall characteristics even the reflection 

coefficient vary from position to another inside the anatomical body model. The antenna 

resonant frequency is shifted down when the antenna longest parts are surrounded by tissues 

of large permittivity. A smaller radiation efficiency and gain and larger SAR are obtained 

when the antenna longest parts are surrounded by tissues of larger conductivity. The 

different positions and orientations also change the radiation pattern main lobe magnitude 

and direction. Up to 52.9, 340, 458.3 and 82% difference in the resonant frequency, radiation 

efficiency, gain and 1-g SAR are obtained from one position (arm, thigh and hip for this 

work) to another at the same antenna orientation. On the other hand, 15.7,540, 347 and 

30.4% difference in the resonant frequency, radiation efficiency, gain and 1-g SAR 

areobtained between the second and third orientations in the area above the left hip. This 

makes it very important to evaluate the antenna performance in  these body models. On the 

other hand, this shows the importance of the wide bandwidth of implantable antennas to 

maintain 10 dB band coverage of the frequency ranges of interest. The investigations in this 

chapter also show the importance of the anatomical body model on  the accurate evaluation 

of radiation pattern. The symmetric structure of the simplified body model makes the 

radiation pattern omni or almost omni-directional. This is due to the symmetrical absorption 

from the same material that surround the different antenna parts. On the other hand, the
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different absorption from the different surrounding body tissues in the anatomical body 

model make the pattern more directive into some directions.   

Because of the importance of the anatomical body models, different factors that lead 

to an accurate evaluation in these models are studied. The results show that simulations 

should include at least the trunk of the anatomical body model to obtain accurate results 

about the different antenna characteristics in the arm and above the hip. The same results are 

obtained when the full anatomical body model and trunk is taken in simulations. However, 

using the trunk only saves half the simulation time and memory. 

The performance of the 10 mm meandered loop antenna that is proposed in Chaptr 3 is 

also validated in this chapter. Due to the antenna small size, evaluations are conducted at 

different orientations and organs of the digestive tract of an anatomical body model of a 

child for the applications of a wireless capsule endoscopy for children. The antenna good 

radiation characteristics make it a good candidate for these applications. 
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Chapter Five 

Metamaterials Inspired-Structures for 

Implantable Applications 

5.1 Introduction 

It has already been shown that most of the input power that is fed to implantable 

antennas is absorbed by the surrounding human body tissues. It has also been shown that a 

magnetic type antenna such as a loop which has a smaller electric field than an electric type 

antenna in the near field region, is more efficient inside the human body. This is becasue the 

smaller electric near field reduces the absorbed power and increases the radiated power 

correspondingly. Metamaterials is an artificial material in which electromagnetic properties 

(µ, ɛ) can be controlled [122]. Metamaterials are of many attractive features in general. They 

can improve the overall matching and thus radiation from small antennas [123] and reduce 

the specific absorption rate (SAR) in the head [23]. They can also control the 

electromagnetic near fields around the antenna which can be exploited to reduce the 

absorbed power in the human body tissues. All of these characteristics could be very 

beneficial to improve the overall radiation from implantable antennas. Because of the 

attractive features of metamaterials and the potential radiation improvement of implantable 
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antennas by using them, their use for implantable applications is investigated in this chapter. 

This chapter aims at the following aspects:  

1. Investigating the use of complementary split ring resonators (CSRRs) to obtain the 

following functions: 

 Increase the overall radiation from the implantable antenna. 

 Decrease the specific absorption rate (SAR) in the human body tissues 

around the implantable antenna. 

2. Investigating the use of multiple split ring resonators (MSRRs) based layer around 

the implantable antenna and device to obtain the following: 

 Improve the overall radiation from the implantable antenna. 

 Good matching which causes a robust performance in the anatomical and 

real bodies.  

 Decrease the specific absorption rate (SAR) in the human body tissues 

around the implantable antenna. 

   To achieve these purposes, this chapter is organized into two parts: CSRRs 

structures are first integrated to a loop antenna. The benefits of  the CSRRs on the overall 

antenna performance are discussed. In the second part, a MSRRs based layer is designed and 

its performance around the 15 mm in length U-shaped loop and reported patch [12] antennas 

is studied. The principle of operation of the proposed layers and their effect on the overall 

antenna radiation and performance are then investigated and discussed.  

The achievements of this chapter can be summarized as: 

 New investigations about utilizing CSRR to improve the radiation and safety 

performance of implantable antennas are conducted. This is an interesting path of 
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investigations since normally the CSRR is introduced to reduce the antenna size, 

here it has been shown that it can reduce the electric near field hence the power loss. 

Such an investigation is very beneficial to boost more related research and open the 

doors to more efficient implantable antennas based on metamaterial structures. 

 New investigations about utilizing a MSRRs based layer to improve the overall 

radiation and 10 dB matching of implantable antennas are conducted. The radiated 

power of the proposed 15 mm in length U-shaped loop antenna is increased by 

52.14% at 403 MHz when a MSRRs based layer is bent around it.  

 

5.2 A Broadband Implantable Loop Antenna 

Inspired by Complementary Split Ring Resonators  

5.2.1 Design and Performance 

  Split Ring Resonators (SRR) are metamaterial structures that can produce negative 

relative permeability while complementary split ring resonators (CSRRs) are metamaterial 

structures that can produce negative relative permittivity [18, 124, 125, 126]. A loop antenna 

based on CSRRs is firstly designed and investigated at this section.  

  The antenna under investigations is shown in Fig. 5.1. It is a simple flexible loop 

antenna of an overall width and length of 30 and 15 mm, respectively which can be bent 

around an implant of 5 mm in radius and 15 mm in length. The antenna is designed 

following the design methodology proposed in Chapter 3. It is optimized initially in the same 

simplified elliptic cylindrical structure to obtain the largest radiation efficiency of 0.09, 0.15, 

0.22, 0.26 and 0.46% and maximum realized gain of -27.9, -27.21, -25.21, -22.8 and -17.52 

dBi in the off body direction at 403, 433, 868, 915 MHz and 2.45 GHz, respectively with a 
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good matching for S11< -10. The antenna main parameters are the spacing between its 

vertical and horizontal parts which are affected by the width of the vertical and horizontal 

parts (wx and wy, respectively). The wider vertical and horizontal parts shift the resonant 

frequency up as shown in Fig. 5.2. This is because they decrease the effective feed 

capacitance and inductance, respectively [98]. The optimum widths of the vertical and 

horizontal parts are selected as: wx= 4 mm and wy= 5.5 mm.  

                                                      

                               (a)                                                                                             (b) 

Fig. 5.1: The loop antenna of investigation (a) Flat structure (unit: mm),  (b) Bent structure. 
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Fig. 5.2: The effect of the loop antenna parameters (wx and wy) on the reflection coefficient in a 

simplified body model. 
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CSRRs are added to the loop antenna as shown in Fig. 5.3 of the paramteres in Table 

5.1 to obtain the following two functions: 

1) To improve the antenna impedance matching over the frequencies of interests (especially 

around 400-450 MHz band) as shown in Figs. 5.4 and 5.5. This is achieved because the 

CSRRs introduce negative permittivity (capacitance) [18, 124] and thus work to reduce the 

large inductive part of the loop antenna as shown in Fig. 5.5. This results in less reflection 

and thus a larger radiation. Fig. 5.4 shows that the loop antenna without CSRRs resonates at 

456 MHz in the simplified body model. The antenna bandwidth is around 300 MHz which is 

obtained by controlling the antenna parameters based on the design methodology in Chapter 

3. When this antenna is simulated in the arm of the CST katja voxel anatomical body model, 

the resonant frequency is shifted up as shown in the same figure. This is because the 

effective electromagnetic parameters (relative permittivity and conductivity) are different in 

the anatomical body model in comparison with the simplified body model. In addition to 

muscle, fat and bone which are of much smaller relative permittivity and conductivity than 

muscle [31] surround the antenna in the arm of the anatomical body model. This reduces the 

effective relative permittivity around the antenna which shifts the resonant frequency up as 

explained at Chapter 4. Nonetheless, the results the anatomical body model is close to the 

results in the simplified body model which confirms the validity of the simplified model. 

Table 5.1: The final dimensions of the CSRRs unit cell (Units: mm) 

G X1 X2 X3 X4 Y1 Y2 

2 1 1 3 8 0.5 1 
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15

30

4 4

5.5

G

2

                 

(a) 

 

   
(b)  

Fig. 5.3: The loop antenna with the CSRRs: (a) Flat structure (b) Bent structure 

The loop antenna without the CSRRs has an overall inductive reactance as indicated in 

Fig. 5.5. When the CSRRs are used, a capacitive reactance is added. The overall structure 

forms an LC tank circuit of the following resonant frequency [22]: 

                                              

effeff

r
CL

f
2

1
                                                  (5.1) 

Where effL  (H) is the equivalent effective inductance and effC  (F) is the equivalent effective 

capacitance of the circuit. 
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Fig. 5.4: The reflection coefficients of the proposed loop antenna with and without CSRRs inside a 

simplified and anatomical body models. 
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Fig. 5.5: The real (Re(Z)) and imaginary (Im(Z)) parts of the antenna input impedance with and 

without CSRRs. 
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The equivalent circuit structure of the proposed loop antenna with and without the 

CSRRs is shown in Fig. 5.6. The equivalent circuit parameters are summarized in Table 5.2. 

The parameters with and without CSSRs are the same except for C2 which increases from 30 

to 50 pF when the CSRRs are added to the antenna structure. This is because CSRRs add 

capacitance to the circuit which shifts the resonant frequency down referring to Eq. (5.1) as 

shown in Fig. 5.4. The down-shift of the resonant frequency is limited due to the limitations 

of the physical dimensions of the antenna and CSRRs. 

 

Fig. 5.6: The equivalent circuit for the proposed  loop antenna with and without CSRRs 

Table 5.2: The equivalent circuit parameters with and without CSRRs 

Component Without CSRRs With CSRRs 

C2 (pF) 30 50 

R2 (Ω) 30 30 

L2(nH) 2 2 

C1 (pF) 20 20 

R1 (Ω) 25.44 25.44 

L1 (nH) 13 13 
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2) To increase the antenna radiation efficiency and gain. In addition to the improvement on 

the impedance matching, the CSRRs reduce the electric near field of the antenna as shown in 

Fig. 5.7. When the electric near field is reduced, the absorbed power is also reduced as 

explained in Chapter 2. Thus the radiated power as defined in Eq. (5.2) [3] is increased 

accordingly. As a result, the antenna radiation efficiency and gain are increased. The SAR is 

also decreased as explained in Section 2.2.1.  

                                  absrefradin PPPP                                                    (5.2) 

where Pin (W) is the input power to the antenna, refP  (W) is the reflected power and radP  

(W) is the radiated power. 

The CSRR unit cell dimensions are mainly restricted by the available physical 

dimensions of the structure. However, they are carefully selected to obtain the maximum 

possible improvement of the matching and radiation efficiency and gain with S11< -10 dB 

for all the bands of interest. A parametric study was conducted and the final dimensions are 

selected as given in Table 5.1. When the spacing (G) shown in Fig. 5.3 is smaller than the 

selected value in the table, it confines a larger electric near field which is undesired as it 

increases power loss [3, 19]. This also shifts the resonant frequency above the MedRadio 

band as shown in Fig. 5.8. When (X1and X2) are larger than the values in the table, they 

reduce the overall capacitance and thus shift the resonant frequency up. Y1 and Y2 are 

restricted by the available dimension of the lower part which is only 5.5 mm. The effect of 

some of the CSRR unit  parameters are shown in Fig. 5.8. 
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(a) 

                                           

(b) 

                                                 

(c) 

                                               

(d) 

                                             

                                       Without CSRRs                                 With CSRRs 

Feeding 

point 

A CSRR at the front Two CSRRs at the back 



Chapter 5: Metamaterials for Implantable Applications                                        Page | 153                                                 

__________________________________________________________________________ 

 

(e) 

 

Fig. 5.7: The electric near field intensity with and without CSRRs in a simplified body model at: (a) 

403 MHz, (b) 433 MHz, (c) 868 MHz, (d) 915 MHz, and (e) 2.45 GHz. The scale is the same for all 

above results in the figure. 
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Fig. 5.8: The effect of the CSRRs unit parameters on the reflection coefficient S11.  

The computed total radiation efficiency and realized gain with and without CSRRs in 

the simplified body model are summarized in Table 5.3. The results in the table show that 

the antenna radiation effeiciency and gain are increased by around 2 dB in average when the 

CSRRs are used. 
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Table 5.3: The total radiation efficiency and maximum realized gain of the proposed loop antenna 

with and without CSRRs in the simplified body model. 

 

Frequency 

(MHz) 

Radiation efficiency (%) Max realized gain (dBi) 

 

With 

 

CSRRs 

 

Without 

 

CSRRs 

 

With 

 

CSRRs 

 

Without 

 

CSRRs 

403 0.12 0.09 -26 -27.9 

433 0.2 0.15 -25.1 -27.21 

868 0.3 0.22 -24 -25.21 

915 0.35
 

0.26
 

-21 -22.8 

2450 0.53 0.46 -15 

 

-17.52 

 

 

Simulations are also conducted in the full anatomical body model which provides 

more accurate data than the simplified body model. The far-field pattern is shown in Fig. 5.9. 

The radiation becomes directional in the anatomical body model because of the different 

absorption levels from different tissues around the different parts of the antenna. However, 

the maximum radiation is obtained in the off-body direction toward free space. Larger field 

intensities are obtained at the higher frequencies because of the larger electrical size of the 

antenna at these frequencies [3]. The main lobe direction at 403 and 433 MHz is obtained at 

the same angle which is 0 deg. This differs by 90 degrees from the main lobe direction at 868 

and 915 MHz. The main lobe direction at 2.45 GHz is obtained at around 23 degrees. 
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Fig. 5.9: The far-field polar radiation pattern of the proposed loop antenna with CSRR in the 

anatomical body model.  

The radiation efficiency and gain are also computed in the anatomical body model.  

The results are summarized in Table 5.4. 2 dB improvement of the realized gain is obtained 

in the anatomical body model when the CSRRs are used. This confirms the benificial effect 

of the CSRRs on improving the radiation from the human body. 

The 3D far-field gain pattern around the anatomical body model for the antenna 

orientation and position which are shown in Fig. 5.10. The direction of the maximum gain is 

obtained at 281, 274, 15, 19 and 254 degrees for the above frequencies, respectively. The 

radiation becomes directional in the anatomical body model. This is because this body model 

is asymmeric. Different absorption levels are obtained from the different human body tissues 

that surround the antenna parts. 

It should be pointed out that for an accurate and full evaluation, different orientations 

of the antenna are examined at this position in the arm. The largest radiation efficiency and 

gain and smallest 1-g average SAR at this position are obtained for the first orientation 

(when the antenna in Fig. 5.10 is rotated 90 degrees clockwise around the z-axis). The results 

are summarized in Table 5.5  

A top view of the anatomical body model 

 The position of the antenna in the 

left arm 
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Table 5.4: The smallest total radiation efficiency and 3D realized gain of the proposed loop antenna 

with and without CSRRs in the arm of the CST Katja voxel body model for the implant orientation 

that is shown in Fig. 5.10 

 

Frequency 

(MHz) 

Radiation efficiency (%) Max 3D realized gain (dBi) 

 

With 

 

CSRRs 

 

Without 

 

CSRRs 

 

With 

 

CSRRs 

 

Without 

 

CSRRs 

403 0.013 0.009 -36 -38.1 

433 0.017 0.013 -35.3 -37.1 

868 0.11 0.09 -34 -35 

915 0.13
 

0.1
 

-29 -31 

2450 0.17 0.14 -19.8 

 

-22.24 

 

 

It is indicated from the results in the table that the antenna radiation efficiency and 

gain are also increased when the CSRRs are used by around 2 dB in the anatomical body 

model at all the frequencies of interest. The smallest gain value at this orientation (shown in 

Fig. 5.10) is -36 dB. This value is larger than the targeted -37 dBi value for robust 

communication at a distance of 20 m (as explained in the section about the design 

methodology).  

The average RMS 1-g SAR is computed in the anatomical body model. The 

simulation results are summarized in Table 5.6 and compared without CSRRs.  
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                                  (a)                                                                                  (b) 

        
                                        

                                 (c)                                                                                 (d) 

 

 (e) 

Fig. 5.10: The 3D far-field gain radiation patterns of the proposed antenna with CSRRs in the 

anatomical body model at (a) 403 MHz, (b) 433 MHz, (c) 868 MHz, (d) 915 MHz, and (e) 2.45 GHz. 
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Table 5.5: The largest total radiation efficiency and maximum 3D realized gain of the proposed loop 

antenna with CSRRs for the first implant orientation in the arm of the CST Katja voxel body. 

 

Frequency (MHZ) 

 

Total radiation efficiency (%) 

 

Realized gain (dBi) 

403 0.04 -30.2 

433 0.051 -29 

868 0.33 -28 

915 0.39
 

-25 

2450 0.51 -17 

 

Table 5.6: The maximum 1-g averaged SAR of the proposed loop antenna with and without 

CSRRs in the anatomical body model for an input power of 1 W. 

 

Frequency (MHz) 

SAR (W/kg) 

 

With 

CSRRs 

 

 

Without 

CSRRs 

1-G AVG 1-G AVG 

403 115 180 

433 112.5 178 

868 108 175 

915 101 170 

2450 99       166 
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The results show that the maximum 1-g SAR can be decreased significantly when the 

CSRRs are used. The maximum input power to the antenna to satisfy the SAR limits of 1.6 

W/kg with CSRRs at the frequency (403 MHz) in which the implantable device acts as a 

transmitter can be up to 13.9 mW (11.43 dBm).  

5.2.2 Realization and Measurements 

The structure is realized by cutting a piece of copper sheet and measurements are 

conducted in pork while the antenna is bent around the implant as shown in Fig. 5.11. Pork is 

selected because it provides a good heterogeneous medium to measure the implantable 

antenna performance over a broad range of frequencies. A small cylindrical tube of 

Propylene is used as the implant [3]. However, simulations are conducted to evaluate the 

effect of the dielectric properties of the implant material on the antenna performance and a 

negligible effect on both of the reflection coefficient and radiation efficiency is obtained. 

The dielectric properties of the used pork is measured using Agilent 85070E dielectric probe 

and dielectric properties of ((ɛr= 59.2, 59, 56.7, 56 and 51.9) and (σ= 0.77, 0.84, 0.96, 1 and 

1.74 S/m)) for muscle and ((ɛr= 6.4, 6.1, 5.8, 5.75 and 5) and (σ= 0.061, 0.062, 0.055, 0.058 

and 0.12 S/m)) for fat are recorded at 403, 433, 868, 915 MHz and 2.45 GHz, respectively. 

The antenna inside the pork phantom is shown in fig. 5.12. 

 

Fig. 5.11: Antenna prototypes.  
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Fig. 5.12: The antenna inside a pork phantom. 

Measurements of the reflection coefficient are conducted while the antenna is 

surrounded by non-uniform layers of both fat and muscle and the results are shown in Fig. 

5.13. For comparison purposes, simulation in a non-uniform piece of the anatomical body 

model that mimics the pork phantom is conducted. Both the simulated and measured results 

are well below -10 dB and in good agreement at the frequencies of interest, but there are 

discrepancies which are mainly due to the fabrication errors and the connector which was not 

taken into account in the simulation.  

To emphasize the benefits of using the CSRRs, the transmission coefficient between 

the proposed antenna and an external meandered loop antenna is compared for the cases with 

and without CSRRs at the same conditions (spacing of 2.5 meters to meet the far field 

condition, same input power, antenna position and orientation). The results are shown in Fig. 

5.14. Over 2 dB larger transmission coefficient is obtained when the CSRRs are etched on 

the antenna. This is because of the larger radiation efficiency and gain are obtained when 

CSRRs are used. 

The network analyzer 

The coaxial cable 

A body 

phantom 

of pork 



Chapter 5: Metamaterials for Implantable Applications                                        Page | 161                                                 

__________________________________________________________________________ 

 

    

400 800 1200 1600 2000 2400
-30

-25

-20

-15

-10

-5

0

Frequency (MHz)

R
e
fl

e
c
ti

o
n

 c
o

e
ff

ic
ie

n
t 

(d
B

)

 

 

Simulation

Measurement

 

Fig. 5.13. The measured and simulated reflection coefficient S11 for the proposed antenna in pork 
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Fig. 5.14: The measured and simulated transmission coefficient for the proposed antenna in pork with 

and without CSRR. 



Chapter 5: Metamaterials for Implantable Applications                                        Page | 162                                                 

__________________________________________________________________________ 

 

5.3 Layers Based on Multiple Split Ring Resonators 

(MSRRs) around the Implantable Antenna  

This section investigates the use of layers based on MSRRs around the implantable 

antenna to improve its performance and radiation. Similar to CSRRs, the proposed layer 

works to improve the antenna matching and overall radiation. However, this layer is used 

around the antenna and not integrated to the antenna structure itself. 

The proposed layer is mainly influenced by the designs in [82, 127, 128]. The layer is 

constructed by printing MSRRs on the top of a dielectric layer of a relative permittivity of 3 

(ɛr = 3). Each unit cell of the MSRRs unit is composed of two rings which are printed at 

broad directions on the top and bottom of a dielectric layer as shown in Fig. 5.15. The 

number of the unit cells on each layer is mainly influenced by the antenna size around which 

the proposed layer is placed. 

                                                                    

0.3 6.5

6.5

0.3

 

Fig. 5.15: The unit cell of the proposed MSRR based layer  



Chapter 5: Metamaterials for Implantable Applications                                        Page | 163                                                 

__________________________________________________________________________ 

 

The main objective of using this layer is to decrease the antenna electric near field and 

increase its magnetic field. This will decrease the absorbed power accordingly as explained 

before. As long as the rings are printed on the dielectric layer, MSRRs are used instead of 

CSRRs. 

5.3.1 Perfromance around the 15 mm U-shaped Loop Antenna 

   The performance of the proposed layer around the 15 mm flexible U-shaped 

implantable loop antenna which was proposed in Chapter 3 is evaluated at this section. The 

proposed layer has an overall width of 30 mm and length of 15 mm to fit around an implant 

of 5 mm in radius and 15 mm in length. An array of (2×3) SRRs are printed on each side of 

the layer as shown in Fig. 5.16.  The proposed layer is bent around the implantable antenna 

and wrapped around a cylinder of 5 mm in radius and 15 mm in length as shown in Fig. 5.16. 

Simulations are then conducted in the elliptic cylindrical body model of relative permittivity 

of 57.1 and conductivity of 0.79 S/m which resemble the dielectric properties of a human 

muscle in the MedRadio band. Simulations are repeated with a normal dielectric layer 

(without MSRRs) of the same relative permittivity and dimensions for the purposes of 

comparison. The reflection coefficients for both cases are shown in Fig. 5.17. The antenna 

resonates at 414 MHz and have a bandwidth of 230 MHz. 

Dimensions of each cell, number of cells and spacing between them are carefully 

selected to obtain the following targets: 

 A good matching. This is desired to overcome the frequency detuning which may 

happen after implantation in the real human body [1, 81, 129]. The good matching 

will also reduce the overall reflections and thus increase overall radiation.  
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 A broad 10 dB bandwidth of wider than 200 MHz to guarantee coverage of the 

bands of interest regardless of any frequency shift that may happen in the real human 

body. 

 The largest possible increase of radiation efficiency, gain and overall radiated power 

in comparison with the case without the MSSRs based layer. 

 Keep a light weight and small overall size of the implantable device. 

 

                                                                    (a) 

   

   (b) 

Fig. 5.16: The MSRRs based layer to bend around the 15 mm U-shaped loop antenna: (a) Flat 

structure (b) Bent around a cylindrical implant; (units: mm). 

  Both bands (MedRadio and 433 MHz ISM) of inertest are still obtained for S11< -10 

dB when the MSRRs based layer is used. However, a better matching is obtained when the 

MSRRs based layer is used. 

h= 0.4 2 

2 

Lx=  30 
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Fig. 5.17: The reflection coefficient S11with and without MSRRs based layer in the simplified body 

model 

The overall structure with the MSRRs can be modelled as an LC circuit as shown in 

Fig. 5.18.  

                                                                             

Fig. 5.18: The concept of matching the U-shaped loop antenna using MSRRs based layer 

   While the reactance of the U-shaped loop antenna of investigation in free space is 

zero, it becomes negative in the human body model. This is due to the capacitive loading of 

the surrounding human body tissues that have large effective permittivity. This contributes to 

increase the total effective capacitance in the circuit. To compensate for this capacitive 

 

Loop antenna 

 

MSRRs based 

layer 

+ 
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reactance, an inductive reactance is added by the MSRRs based layer. The resultant overall 

structure has a real part of 50 Ohms and a zero reactive component as shown in Fig. 5.19. 
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Fig. 5.19:  The real (Re(Z)) and imaginary (Im(Z)) parts of the antenna input impedance with and 

without MSRRs in the simplified body model. 

The simulations show that the radiated power is increased when this MSRRs based 

layer is used. The percentage of power improvement of the radiated power improvementP (%) is 

defined in Eq. (5.3). 

                                   
NoMSRRst

NoMSRRstMSRRst

timprovemen
P

PP
P

,

,,
%


                                    (5.3) 

where MSRRstP ,  is the radiated power when the MSRRs based layer is used and NoMSRRstP ,  is 

the radiated power when no MSRRs based layer is used. 

   Using the simulated results by CST in to Eq. (5.3), an improvement percentage of 

52.14% is obtained. This is actually obtained because the MSRRs based layer decreases the 
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electric near field and increases the magnetic field as shown in Figs. 5.20 and 5.21, 

respectively which is reflected on a smaller absorbed power as explained above.  

 

                                 (a)                                                                      (b) 

Fig. 5.20:  The electric field around the antenna in the simplified human body at 403 MHz: (a) 

Without MSRRs, (b) With MSRRs 

 

                         (a)                                                          (b) 

Fig. 5. 21:  The magnetic field around the antenna (shown in a top view) at the centre of the simplified 

human body at 403 MHz: (a) Without MSRRs, (b) With MSRRs 

The radiated power is increased in the lossy human body due to the reduction of the 

absorped power when the MSRRs based layer is used. To verify this special behaviour of the 

MSRRs based layer and verify its special behaviour in the lossy human body, both structures 

(with and without MSRRs) are simulated in a lossless simplified body model of the same 

shape and dimensions of the lossy body model that is used above. The MSRRs based layer 
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improves the antenna matching as shown in Fig. 5.22 even in a lossless body model. The 

resonant frequency in the lossless body model is higher than the resonant frequency in the 

lossy body model in correspondence with the results in [7]. The radiation efficiency at a 

frequency of comparison is found to be the same for both structures in the lossless body 

model. This agrees very well with the proposed concept about the special behaviour of the 

proposed layer around the loop antenna inside the lossy human body in correspondence with 

magnetic sources.  
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Fig. 5. 22: The reflection coefficient of the proposed antenna with and without the MSRRs based 

layer in a lossless simplified body model. 

The following points should be indicated: 

1. The control of the permittivity and permeability is  indicated by the change of the electric 

and magnetic fields, respectively which is found to be obtained when the suggested 

structures in this chapter are used.  
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2. The benificial effect of the proposed structures is mainly obtained due to the reduction of 

the electric field in close proximity to the antenna which is reflected on a smaller absorbed 

power and larger radiated power as indicated above. This is confirmed by the reduction of 

SAR which will not be obtained if theses structures contribute by other means of 

improvement such as improving the radiation pattern in a specific direction.  

3. The radiation pattern with and without the proposed structures is almost the same. This 

confirms that the proposed structures have no effect on the radiation pattren for the cases of 

investigation.  

4. The magnetic field increases when the proposed structures are used as shown in Fig. 5.21. 

This is reflected on increasing the antenna gain referring to Eqs. (2.13-2.15)  and as indicated 

in the results of Table 5.4.  

5.3.1.1 Performance with Different Layer Thicknesses 

   Different layer thicknesses are simulated to study the effect of the layer thickness on 

the overall radiation improvement and band coverage. The layers of smaller thicknesses 

(thinner than 0.4 mm) have almost the same effect of the same radiated power, matching and 

bandwidth. However, a desirable effect of an extra band coverage for important implantable 

applications is obtained with an insulation thickness of 0.5 mm. The performance with a 

layer of 0.5 mm in thickness is shown in Fig. 5.23. When the thickness of the insulation layer 

becomes 0.5 mm, the resonant frequency of the antenna is shifted up. This is due to the 

smaller effective permittivity around the antenna as the thicker insulation layer replaces 

more body tissues. This frequency up-shift has the advantage of covering the 2.45 GHz. 

However, this is accompanied with mismatching (S11 > -10 dB) over the MedRadio (401-

406 MHz) band when a normal dielectric layer is used. As the MSRR based layer improves 

the antenna matching over the MedRadio band, it manages to maintain coverage of the entire 
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MedRadio and 433 MHz bands and at same time to cover the 2.45 GHz ISM band for S11 < 

-10 dB which support the functionality of power saving by using a wakeup receiver.  
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Fig. 5.23: The reflection coefficient of the proposed antenna with and without the MSRRs based layer 

of 0.5 mm in thickness. 

5.3.1.2 Performance in the Anatomical Body Model 

  To verify the results in the anatomical body model which has a multilayer and 

heterogeneous structure of much better resemblance of the real human body, simulations are 

conducted in the arm of the CST Katja body model as shown in Fig. 5.24.  
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Fig. 5.24: The antenna in the arm of an anatomical body model of an adult. 

 

  It is worth mentioning that for an accurate evaluation in these body models which are 

asymmetric, different orientations should be examined even at the same position. However, 

the objective of the investigation at this section is to verify the improvement on the overall 

antenna characteristics when the MSRRs based layer is used. Therefore, the results are only 

compared for one orientation at the same position. The resultant reflection coefficient with 

and without MSRRs for an insulation thickness of 0.4 mm is shown in Fig. 5.25. In 

agreement with the results in the simplified body model, a better matching is obtained when 

the MSRR based layer is used. 1.8 dB of power improvement is obtained for this case at 403 

MHz. This matches with the results in the simplified body model. The resonant frequency is 

slightly shifted up for this orientation where most of the antenna and layer parts are 

surrounded by more fat than muscle. It is also worth mentioning that simulation with an 

insulation thickness of 0.5 mm is also examined. The entire matching is disturbed when 

MSRR based layer is not used over this thickness in agreement with the results in the 

simplified body model. 

The 3D far-field gain radiation patterns with and without the anatomical body model 

are shown in Fig. 5.26. The maximum radiation is obtained at the same direction for both 

The implantable device  
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cases. However, 52.4% larger 3D maximum gain is obtained when the MSRRs based layer is 

used.  

As the 1-g AVG SAR is more restricted than the 10-g SAR, it is computed inside this 

model and is shown in Fig. 5.27. The figure shows that 23.81% smaller 1-g AVG SAR is 

obtained when the MSRRs based layer is used. Stronger SAR distributions are also seen in 

close proximity to the antenna when the MSRRs based layer is not used. 
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Fig. 5.25: The reflection coefficient with and without MSRRs in the arm of an anatomical body model 

of an adult. 
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                                         (a)                                                                         (b) 

Fig. 5.26: The 3D far-field gain radiation patterns of the antenna at 403 MHz: (a) With MSRRs, (b) 

Without MSRRs. 

 

(a) 

 

(b) 

Fig. 5.27: The max 1-g AVG SAR at 403 MHz in the arm of an anatomical body model of an adult: 

(a) With MSRRs, (b) Without MSRRs. 
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5.3.1.3 Investigations about Biocompatibility 

The existence of the conducting MSRRs on the top of the insulation layer in direct 

contact with the human body requires further actions to satisfy biocompatibility in 

comparison with the case without them. Therefore, it should be used under the following two 

conditions:  

 The layer is obtained using biocompatible conductors such as Titanium and gold 

[130-133]. 

 The layer top is surrounded by a thin biocompatible insulating layer. For example, a 

layer of 0.4 mm in thickness is surrounded by an extra layer of 0.1 mm in thickness 

(the performance should be compared with an insulating layer of 0.5 mm in 

thickness for this case to verify the advantage of its use).   

Both of these cases are investigated at this section. Firstly, simulations with Titanium 

instead of copper is conducted. The reflection coefficient and radiation improvement is 

found to be almost the same. This is also verified for gold. 

  For a cheaper option, the second condition is also attempted. The improvement on 

the reflection coefficient and radiation characteristics is also obtained for this time when the 

MSRR based layer is used due to the following two reasons: 

 A smaller lossy area of the human body is obtained around the antenna when a 

thicker MSRR based layer is used. 

 The same improvement that is obtained over the same thickness as discussed in this 

work.  
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5.3.1.4  Realization and Measurements    

5.3.1.4.1 The Reflection Coefficient  

   A measurement of the MSRR based layer effect is conducted. The layer is realized 

by cutting a copper sheet of MSRR shapes and printing them on the top of a layer of 0.4 mm 

in thickness. It is worth pointing out that two layers are attempted, Polyvinyl chloride (PVC) 

and a normal tape layer. The overall results are found to be almost the same. This agrees 

with the findings in [3] (the dielectric properties of the real layers around loop antenna in the 

lossy human body has no effect on the overall loop performance). This is also verified by 

simulations. A prototype of the proposed layer when bent around the implant is shown in 

Fig. 5.28.  

   Two sets of measurements are conducted; with and without the MSRR based layer. 

Measurements are conducted in pork that is shown in Fig. 5.12.  

 

                                                            

Fig. 5.28: The realized MSRR based layer around the 15 mm in length U-shaped loop antenna. 

  

  The antenna reflection coefficient for the 15 mm U-shaped loop antennna with the 

proposed MSRR based layer is measured at the centre of the body phantom. Measurements 

are then conducted without MSRR based layer over the same layer thickness. The results are 

shown in Fig. 5.29. A good matching with the simulation results is observed. A better 10 dB 

matching is always obtained when the MSRR based layer is used as desired. 

Coaxial feeding 

cable 
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It is worth pointing out that the effect of the antenna position inside the pork on the 

measured reflection coefficient is found to be negligible. To verify this, simulations are 

conducted at different positions inside a symmetrical simplified body model. In agreement 

with measurements, a negligible difference in the overall reflection coefficient characteristics 

is obtained. This is because the body model of simulations is symmetric and pork which is 

used in measurements is almost symmetric (mostly composed of muscle). 
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Fig. 5.29: The measured reflection coefficient S11 with and without MSRRs. 

5.3.1.4.2 The Percent of Power Improvement 

The power received from the proposed antenna by an external antenna was measured 

with and without the MSRR based layer. The antenna was placed at the centre of the 

phantom inside the anechoic chamber. Chokes were clamped to the cable near the antenna to 

reduce the cables effect. The distance between the implantable and the external antenna was 

around 2.5 meters in order to guarantee reception in the far field. 53% of power 
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improvement was measured. This matches with the simulations very well with an error of 

only 1.65%. 

5.3.1.4.3 Gain Measurements 

The gain of the proposed antenna with and without the MSRRs based layer is 

measured using the three antenna method. The measurement setup is the same as the gain 

measurement setup in Chapter 3. 

 

The measured maximum gain values at 403 and 433 MHz with and without the 

proposed layer are summarized in Table 5.7. 

Table 5.7: The measured gain (dBi) with and without MSRRs based layer in a simplified body model 

of pork. 

Frequency (MHz) With MSRRs Without MSRRs 

Simulated Measured Simulated Measured 

403 -24.5 -23.7 -26 -25.5 

433 -23.35 -22.92 -25.5 -25 

 

The simulation and measurement results are matched very well. 1.5 and 1.8 dB larger 

gain values are obtained at 403 MHz in simulations and measurements, respectively when 

the MSRR based layer is used. A larger improvement on the antenna gain is obtained at 433 

MHz when this layer is used where 2.15 and 2.05 dB larger gain values are obtained in 

simulations and measurements, respectively.  

The benifit of using MSRRs based layers is also verified for a patch antenna that is 

already existing in literature. The effect of using a MSRR based layer on the antenna 

reflection coefficient and radiation efficiency and gain is investigated at the following 

section. 
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5.3.2 Performance around an Implantable Patch Antenna 

3×4 unit cells of the MSRRs are printed on both sides of the dielectric layer as shown 

in Fig. 5.30. The layer is placed on the top of a patch antenna in [12] and its performance is 

compared with a normal superstrate layer around it. The antenna structure is shown in Fig. 

5.31. 

 

Fig. 5.30: The proposed MSRRs based layer which is to bend around the patch antenna in [6]  

                                

Fig. 5.31: The antenna based on the design in [6]:  (a) The radiating layer, (b) The superstrate layer; 

units in mm. 

The reflection coefficients with and without the proposed layer are shown in Fig. 5.32. 

The figure shows clearly that the MSRRs based layer improves the antenna matching (S11 < 

-10 dB) and shifts the resonant frequency down to 340 MHz. Although there are many ways 

to shift the antenna resonant frequency down, this method improves the antenna radiation 

efficiency. Because the antenna is of a narrow bandwidth, the resonance at the MedRadio 

band completely disappears. Therefore, the antenna is redesigned over smaller physical 
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dimensions (20×16 mm). The same number of (3×4) unit cells is used. However, the 

dimensions of each ring is minimized to the half. This has the advantage of minimizing the 

antenna size as desired for implantable applications and at the same time tune the antenna to 

work at the MedRadio band. The antenna length and width are decreased by 100% and the 

antenna covers the overall MedRadio band with a very good matching (S11 < -20 dB). When 

the antenna size and area become smaller, More losses are introduced because of the larger 

lossy body area  around the antenna and thus its radiation efficiency are expected to 

decrease. Despite of this, the antenna maintains 10% larger radiation efficiency although its 

size is deceased (and thus the surrounding lossy area is increased) by 100%. 
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Fig.  5.32: The reflection coefficient S11 of the antenna in reference [12] with and without the 

proposed MSRR based layer. 

5. 4 Summary 
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Due to the attractive features of metamaterials, this chapter has investigated the use of 

them for implantable applications. CSRRs have been integrated to a loop antenna while 

MSRRs are proposed as a top layer around the 15 mm U-shaped loop antenna. For both 

cases, metamaterialas have been found to improve the antenna performance as the following: 

 Improved the antenna matching (S11much less than -10 dB). The overall 

structure with the metamaterial works as an LC tank circuit. The CSRRs 

introduce additional capacitance while MSRRs introduce inductance which 

compensates for the antenna inductive or capacitive reactance, respectively. 

This has the effect of reducing the reflected power to the source and 

increasing the radiated power.  

 Reduced the near field intensity. This reduces the absorbed power and thus 

increases the radiation efficiency (up to 44.4% when CSRRs are added to the 

loop antenna of investigation and 52.14% when MSRRs are added around the 

15 mm U-shaped loop antenna).  

 Reduced the specific absorption rate (SAR). 

Overall, the investigations in this chapter have provided a beneficial insight 

into the use of metamaterials to improve the overall radiation, matching and 

safety levels of implantable antennas. This is very beneficial to boost new 

implantable antennas of a larger radiation efficiency and robust performance. 
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Chapter Six 

Path Loss Estimation for Implantable 

Applications 

6.1 Introduction 

The communication link from the implantable device to an external receiver in free 

space comprises two paths; inside the human body and from the human body to the external 

receiver in free space. This is reduced to almost one path for the case of a wearable receiver 

where communication occurs from the human body to the wearable or on body receiver that 

is attached directly to the skin or clothes [134]. In correspondence with the free space, the 

overall path losses for telemetric links are distance and frequency dependent. However, the 

case is much more complicated in the human body; more parameters such as the orientation, 

position and tissue of implantation affect the overall path losses. This is mainly due to the 

different effective relative permittivity and conductivity of the different tissues which result 

in different attenuation and absorption levels. Different reflection levels also occur at the 

boundary between the tissues. Overall, the in body path loss contributes to the overall losses 

of in-in, in-on and in- off body communications. Therefore, an accurate estimation of the 

path loss will enable accurate design considerations and boost more applications for the 

Implantable Body Sensor Network (IBSN), wireless power transfer and bio-telemetric health 

monitoring. This estimation should be conducted in the anatomical body models which are 
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of much better resemblance of the actual human bodies or small simplified body models that 

mimic small animals.  

 As indicated in Chapter 2, although some path losses were estimated for body 

comunication channels, they have the following shortcomings: 

 Underetimation of the overall in-in path loss because of using antennas of 

large physical sizes [134]. 

 Lack of an accurate in-in body path loss estimation at 403 MHz in the 

anatomical body models. Moreover, the effect of the orientation and position 

of the implantable antenna and device on the overall path loss was not 

quantified at that frequency [134]. 

 Lack of investigating the overall body orientation effect on the in-off body 

path losses [20]. 

 Lack of in-off body path loss estimation at 433 MHz for the applications of 

wireless power transfer (most of the existing estimations are at much lower 

frequencies for near field coupling). 

 Lack of deep investigations of the optimum antenna type for in-on or on-in 

body communication.  

To overcome the existing shortcomings, this chapter aims at the following objectives: 

 Evaluating the communication between two U-shaped loop antennas which were 

presented in Chapter 3 for the applications of IBSN.  

 Estimating the in-off path losses at 433 MHz for the applications of wireless power 

transfer. 
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 Quantifying the overall human body orientation effect around the external receiver 

on the overall path loss. 

 Investigating the optimum on-body antenna type for reception from or transmission 

to the human body. 

To obtain these objectives, this chapter is organized as the following: Firstly, the 

communication path loss between some implantable U-shaped loop antennas at 403 MHz is 

characterized inside an anatomical body model of an adult. The antennas are placed at a 

common position of implanting pacemakers and glucose monitoring devices. The orientation 

effect of the implantable device and antenna on the overall path loss is estimated and 

quantified. Then, the effect of the overall body orientation around the external receiver is 

quantified at 403 MHz. This is followed by estimating the path loss between an implantable 

and external antenna at a distance of up to 50 cm and a frequency of 433 MHz. Finally, a 

study about the optimum wearable/on body antenna type to communicate with implantable 

antennas is conducted.   

The main contributions in this chapter can be summarized as the following: 

 A new set of data about the overall path loss and link budgets between some 

implantable antennas of a small size at 403 MHz in the anatomical body model for 

communications between a pacemaker and glucose health monitoring implant is 

provided. This provides a valuable source of data about the overall path loss between 

such areas of implantation and for doctors about the optimum position of 

implantation. 

 The variations of in-body path losses for different orientations of implantable 

antennas are investigated. This helps in selecting the orientation of the optimum 

performance for in-in body communications and provides the link margins for the 

case of rotating capsule antennas. 
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 The loss of a wireless power transfer path link over a distance of up to 50 cm and a 

frequency of 433 MHz is estimated. This provides an important data for power 

transfer system designers and evaluates its actual possibility for adults and small 

animals. 

 The optimum antenna type for on-in body communication or in close proximity to 

the human body is investigated. The results show that loop antennas are of a better 

performance than patch antennas and improve the overall communication with 

implantable antennas in the near field. This study is very important to select the 

antenna type that improves such type of communication. 

6.2 Communication between Implantable Antennas 

 In IBSN, implantable sensors coexist with each other (e.g. pacemaker with organ 

monitoring sensor or glucose sensor) [134]. To investigate the possibility of using our 

proposed antennas to communicate with an implantable pacemaker, a communication link is 

established between the proposed 15 mm U-shaped loop antenna at the position of a 

pacemaker [135] and a glucose monitoring device in the arm, hip and thigh which are 

possible positions of implantation for glucose monitoring devices [136]. The position of 

implantations of both devices are shown in Fig. 6.1. The pacemaker implant is placed 

directly beneath shoulder and its orientation is fixed at the first orientation for all the 

investigations. The orientation of the glucose monitoring implant is changed by rotating the 

implantable device 90 degrees counter clock wise each time at the same position. Each 

orientation is shown in Fig. 6.2. 

The link budget is estimated based on the link parameters in Table 6.1 [134]. The path 

loss is an important link parameter. It is computed at three different positions (the arm, hip 

and thigh) and four orientations at each position as shown in Figs. 6.3-6.5.  
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The distance which determines the position is measured from beneath the fat layer 

directly. For example, a distance of 0 mm means that the implant longitudinal edge (E) 

shown in Fig. 6.2 is directly beneath fat and  a distance of 5 mm means that this edge is 5 

mm beneath fat.  

   

Fig.6.1: The positions of pacemaker and glucose monitoring devices in the human body 

                                                       

            (a)                                        (b)                                    (c)                                    (d)  

Fig. 6.2: The orientation of the pacemaker and glucose monitoring implantable antennas: (a) First (b) 

Second (c) Third (d) Fourth. 

Pacemaker 
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monitoring 
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E
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Table 6.1 : Parameters of a communication link between pacemaker and glucose monitoring devices 

Link parameter Value 

Transmitted power, PTX (µW) 25 

Ambient temperature, AT (K) 310 

Bit rate, Br (Kb/s) 7 

Boltzmann's constant, KB (J/K) 1.38 × 10
-23

 

Coding gain, Gc (dB) 0 

Fixing or deterioration gain, Gd (dB) 2.5 

Energy per bit to noise power spectral density ratio, 

Eb/N0 (dB) (ideal PSK) 

9.6 

Noise spectral density, N0 (dBm/Hz) -173 

Bit error rate 1×10
-5

 

 

The Path loss ( LP ) is defined as the ratio of input power at port 1 (Pin) to the power 

received at port 2 ( RXP ) in a two-port setup. LP  is defined as 1/|S21|
2
 with respect to 50 Ω 

when the generator at the transmitter has an output impedance of 50 Ω and the receiver is 

terminated with 50 Ω [134] The setup is regarded as two-port circuit for which the |S21| dB 

with reference impedances of 50 Ω at both ports. 

                        
2

10 21 2110login
L

Rx

P
P dB S S dB

P

 
     
 

                       (6.1) 

It should be pointed out that this path loss takes the gain of both antennas into 

considerations. This is due to the difficulty of estimating the implantable antenna gain values 

separately from the human body losses. However, the overall antenna gain values with the 

human  body model is very reliable for such antennas with this small size (over-estimation 
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is impossible). The path loss is computed for a distance of up to 25 cm for the considerations 

of beneath-skin and deep implantations. 
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Fig. 6.3: The path loss between a pacemaker and glucose monitoring device in the left arm at 403 

MHz 
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Fig. 6.4: The path loss between a pacemaker and glucose monitoring device in the area above the left 

hip at 403 MHz. 
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Fig. 6.5: The path loss between a pacemaker and glucose monitoring device in the left thigh at 403 

MHz. 

The dashed lines in Fig. 6.3 represnts the bone area in the arm. Results are not 

provided for this region because the implantable device is usually placed in muscle or 

beneath skin for the intended applications. Although the distance between the implantable 

devices is decreased for the case of the deep implantation (longer distances benath the skin), 

the overall path loss increases. This is mainly due to misalignment between the antennas. 

The smallest path loss is obtained for the case of implantation in the left arm because of the 

close proximity between the organs of implantation (the left arm and beneath the left 

shoulder). When the organs of implantation are close to each other, smaller path losses are 

obtained because of the smaller number of tissue layers. This causes smaller reflection and 

attenuation losses. This also explains that the  largest path loss is obtained for the case 

between the left thigh and beneath the left shoulder. 
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The communication happens when the link carrier to noise density ( 0/ NC ) exceeds 

the required ( 0/ NC ) referring to Eqs. (6.2-6.3) [70, 134]. 

                           0 , 0/ TX L organLink C N dB P P N                                       (6.2) 

           0 0 10e / / 10logb r c dR quired C N dB E N B G G                       (6.3) 

Considering the link parameters in Table 6.1, the ( 0/ NC ) is calculated as 50.55 dB. 

The link ( 0/ NC ) should be larger than 50.55 dB for this communication to build up. To 

satisfy this, the path loss should be samller than 106.45 dB. 

This shows that communication between the pacemaker and glucose monitoring 

devices cannot be built up for the following cases which have losses that are larger than 

106.45 dB: 

 For all the cases of investigations in the left thigh. 

 At the third orientation in the area above the left hip at distances of 0, 10 and 20 cm. 

 At the second orientation in the area above the left hip at distances of 10 and 20 cm. 

This is because of the long distance and misalgnment between the antenna at these 

positions and orientations and the antenna below the left shoulder. The largest link margin is 

obtained for the second orientation in the arm at a distance of 5 mm beneath fat. It should be 

pointed out that a communication is always built up bewteen the antenna in the left arm and 

below the left shoulder. 

Figs. 6.3-6.5 show that a path loss of 32 dB can be obtained for only 20 mm difference 

in the distance at the same organ such as the case for the first orientation at the arm. The 

alignment between the maximum radiation of both antennas changes at these positions. The 
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largest path loss is obtained when the two antennas are misaligned. The results in the figures 

can be used as a source of data for other designers about the path loss for such a channel. 

The smallest path loss is obtained between the glucose monitoring implant in the arm 

beneath fat directly and the pacemaker. This is because the antennas are very close to each 

other and their main beams are pointed to each other. 

6.3 The Effect of the Body Model Orientation on the 

Overall Path Loss 

  One of the most important requirements of the wireless health monitoring devices is 

the friendly use and free motion ability of users. Therefore, implantable antennas should be 

of a robust performance to guarantee communication for different body rotations around the 

receiver. The effect of different body orientations around the receiver on the overall path 

losse and link budget should also be quantified and estimated. Some physical parameters 

should be monitored during sleeping time [137]. This means that a minimum signal level 

should be received for that case which differs from the case of standing or sitting up. To 

estimate the variations of the body orientation on the overall path loss, the communications 

between the conformal 15 mm U-shaped loop antenna in a simplified body model that 

represents a small animal (such as a rabbit or cat) and an external meandered loop antenna at 

a distance of 2.5 m is built up in simulations. The simplified body model isused for this 

investigation because of the difficulty of conducting measurements in the full real body 

model. Moreover, this body model provides a good resemblance of the body shape. In 

addition, average gain values are obtained inside this body model (for example, the 

maximum gain value of the proposed antenna inside of it differs by only 1.8 dB from the 

maximum gain value in the left thigh as shown in Chapters 3 and 4. The structure of the 

receiving meandered antenna and its reflection coefficient are shown in Figs. 6.6 and 6.7,
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respectively. Its design parameters are optimized to resonate at 403 MHz in free space with a 

realized gain value of 2.15 dBi.  

100
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                                                      (a) 

           

                                                     (b) 

Fig. 6.6: The receiving meandered loop antenna: (a) Structure (unit: mm)  (b) Fabricated prototype 

 

The variation of the path loss is evaluated for different body orientations which 

represent both cases of sleeping and standing. The antenna is placed at the centre of the body 

model as shown in Fig. 6.8. The receiving antenna is always kept at the same orientation 

which is shown in Fig 6.9. 

The simulated and measured values for different body orientations are summarized in 

Table 6.2. 
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Fig. 6.7: The reflection coefficient of the external meandered receiving antenna. 

 

 

 

6.8: The implantable antenna inside the simplified human body 

       

Fig. 6.9: The setup of the communication link between the implantable antenna inside the simplified 

human body and external loop antenna. 

Feed points at the back 
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Table 6.2: The path loss of different body orientations  

Body orientation The simulated 

path loss value 

(dB) 

The measured 

path loss value 

(dB) 

 

1 

 

 

 

78.3  

 

78  

 

 

2 

 

 

61.7  

 

63  

 

3 

 

 

 

71.9  

 

71.7  

 

4 

 

 

61.8  

 

60.88 

 

5 

 

 

69.9 

 

70.7  

Towards 

the receiving antenna 

Towards 

the receiving antenna 

Towards 

the receiving antenna 

Towards 

the receiving antenna 

Towards 

the receiving antenna 
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A good matching between simulations and measurements is always obtained. The 

variations for different body orientations are due to the misalignment and polarization 

variations for different orientations. The smallest path loss is obtained when the main lobes 

of both antennas are aligned to each other. 16.6 dB path loss difference is obtained between 

the worst and optimum cases of some body orientations. The received power for most of 

implantable devices should be larger than -99 dBm. 

As long as the largest path loss value is 78.3 dB, communication will be always 

guaranteed over 2.5 m for an input power of 0 dBm. A significant difference is obtained for 

different orientations. This shows the importance of estimating and quantifying this effect for 

the intended in-off body path of investigation in order to estimate the required margin for the 

communication path loss. 

6.4 Path Loss Estimation of a Wireless Power 

Transfer Channel 

    One of the important requirements for implantable antennas is to consume small 

power and to be of a rechargeable battery or passive. This enables a longer life time of the 

implantable device and avoid surgeries to replace the battery [138]. To enable these 

functionalities, many antennas that cover the 433 MHz which is mainly allocated for the 

purposes of wireless power transfer are proposed in this thesis. The wireless power is 

normally transmitted by an external antenna which is placed outside the body at a distance of 

up to 50 cm [42]. This distance represents a good choice as the free space loss is increased at 

longer distances which reduces the received power by the implantable device. This section is 

aiming at estimating these path losses from an anatomical body model and a simplified body 

model of an animal for distances up to 50 cm at 433 MHz. The simulation results from inside 

a simplified and anatomical body are shown in Fig. 6.10. Measurements in the
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anechoic chamber are also conducted between the implantable antenna in a simplified body 

model of pork and external receiving antenna. Measurements are compared with simulations. 

The figure shows that the path loss increases at longer distances which is because the 

free space loss is larger at these distances. On the other hand, the larger path loss for the case 

of the antenna in the anatomical body model in comparison with that in the simplified body 

model (5 dB in average) is because the anatomical model has larger dimensions than the 

simplified body model. It is also non-uniform and hence additional losses due to attenuations 

and reflections between body tissues are obtained inside of it. 15 dB larger path losses are 

obtained at 50 cm in comparison with it at 5 cm for the case of the antenna in the anatomical 

body model. This shows that power transfer is preferred at closer distances to the human 

body especially for short term power transfer.  
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Fig. 6.10: The path loss between U-shaped implantable and meandered loop antennas at 433 MHz.

 

 



Chapter 6: Path Loss Estimation for Implantable Applications                             Page | 196 

__________________________________________________________________________ 

   

Measurements in pork are in good agreement with the simulation results in the 

simplified body model in general with an average difference of 1-1.5 dB at each position. 

This difference is due to the following reasons: 

 Measurements are conducted in pork which is of multilayer (muscle and fat). The 

measured relative permittivity of its muscle and fat are 59 and 5.2, respectively 

while the measured conductivity of its muscle and fat are 0.84 and 0.062 S/m, 

respectively at 433 MHz. These values are larger than the corresponding values for 

liquid body models. This causes larger attenuations losses.  

 Pork is asymmetric of different tissues and thus larger reflection losses at the 

boundary between them are obtained than in the simplified symmetric body model of 

simulation. 

 However, it is always better to consider the worst case which is the case of 

measurements in pork. Moreover, pork provides more realistic structure of the body of 

humans and small animals. 

6.5 Investigations about the Optimum Antenna Type 

for Near Field Communications with Implantable 

Antennas 

One important branch of communications is the on-in body communications where an 

antenna on the human body communicates with the implantable antenna. Such 

communications comprise transmitting to the implantable antenna for stimulation 

functionality [139] or reception from the implantable antenna such as the case for ingestible 

capsule receiver. In both cases, communication occurs in the near field region of the
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antennas. Therefore, both antennas (transmitting and receiving) are affected by the losses of 

the human body tissues. It is very important to study the optimum antenna type that 

improves the overall communications. In this section the performance of loop and patch 

antennas is compared. These antennas are specifically selected because of the following: 

 Loop antennas have shown a preferred performance in the lossy human body 

because they have a smaller electric near field than electrcial type antennas. 

 Patch antennas have shown a good performance for on-body communications 

because of their ground which reflects the body effect [140, 141]. The ground also 

serves to increase the gain in comparison with the corresponding antennas without 

ground.  

Two flexible, loop and patch antennas are designed as shown in Fig. 6.11. Both 

antennas are assumed to bend around a simplified body model of a cylindrical shape, muscle 

equivalent material and following dimensions (radius 80 and length 140 mm). A clothing 

layer (ɛr= 3) of  10 mm in thickness is placed between the body model and antenna.  

To provide an accurate comparison, both antennas are simulated firstly around a 

lossless human body of a relative permittivity of 57.1 and a conductivity of zero. Then 

around the same body model of the same dimensions but when the conductivity is 0.79 S/m. 

The 15 mm in length U-shaped loop implantable antenna is placed at the centre inside the 

model. This allows an accurate evaluation of the effect of losses on the on-body antenna gain 

and thus the overall path loss. The reflection coefficient of both antennas around the lossless 

and lossy human body is shown in Fig. 6.12. 
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Fig. 6.11: Antennas on a simplified human body model: (a) Loop antenna, (b) Patch antenna; units in 

mm. 

The realized gain, efficiency and transmission coefficient between both of these 

antennas and an implantable U-shaped loop antenna at the centre of the human body are 

provided in Table 6.3. 436 MHz is selected for the comparison because S11 is less than -10 

dB for both antennas at it. It is also very close to both of 403 and 433 MHz which are the 

frequencies of interest in this thesis. 
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Fig. 6.12: The reflection coefficient (S11) of the wearable loop and patch antennas of comparison. 

Table 6.3: Gain, Radiation efficiency and transmission coefficient of  loop and patch antennas in 

close proximity to the human body 

 Realized gain  

(dB) 

Total radiation efficiency 

(%) 

Transmission 

coefficient (dB) 

Loop 

Lossless body 

-2.4 0.27 -14  

 

Patch 

Lossless body 

-7 0.071 -42  

Loop 

Lossy body 

-8.83 0.045 -24  

 

Patch 

Lossy body 

-19.8 0.0038 -62 
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The purpose of this section is to compare the change in the gain and transmission 

coefficient for each antenna between the lossless and lossy human body. It can be noticed 

from the results in the table that the reduction in the gain and transmission coefficient for the 

case of patch antenna is larger than that for the case of loop antenna on the human body (10 

dB for loop whereas 20 dB for patch). This is mainly due to the stronger electric near field of 

electrical type antennas such as patch in close proximity to the human body. When the 

electric near field is larger, larger power is absorbed and this reduces the overall radiated 

power as explained in Chapters 2 and 5. Unlike the case of the on-body patch antenna that 

communicate with an off-body receiver, the radiator of the on-body antenna that 

communicates with an implantable antenna is placed on the human body. Therefore,  most of 

its radiation is absorbed by the human body. The ground of the patch is placed at some 

distance away from the human body and therefore, it has no effect in reflecting the human 

body losses. Although the ground works generally to direct the patch antenna radiation and 

improve its gain, its effect is small at relatively low frequencies such as around 400 MHz 

which is not enough to overcome the near field coupling loss with the radiator. 

6.6 Summary  

Due to the importance of in-in body and some related communications, the path loss 

of some in-in and in-off body channels has been estimated in this chapter. In particular, the  

loss of the path between the 15 mm U-shaped loop antenna for pacemaker and glucose 

monitoring devices at the hip, arm and thigh are estimated. The results in this chapter show 

that the communication between the pacemaker and glucose monitoring implantable 

antennas for the cases of invetigations in this chapter is always built when the glucose 

monitoring implant is in the left arm. However, it cannot  be built up for the following cases: 

 For all the orientations of the glucose monitoing implant in the left thigh at distances 

up to 20 cm from beneath the fat layer. 
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 At the third orientation of the glucose monitoring implant in the area above the left 

hip at distances of 0, 10 and 20 cm. 

 At the second orientation of the glucose monitoring implant in the area above the left 

hip at a distance of 10 and 20 cm. 

The path loss is found to be dependent on the implantable device orientation even 

around the same axis. It also depends on the following factors: 

 The distance between antennas. 

 The structure and number of layers between antennas. When more tissues lie 

between the antennas, more attenuations and reflections are obtained.  

 The tissue of implantation, larger losses are obtained when the antenna 

radiates from tissues of larger conductivity. 

 Polarization and alignment between both antennas. 

The variation in the path loss for different body orientations should be quantified for 

in-off body communication for link margin considerations. More than 16.6 dB larger path 

losses are obtained when the simplified body model rotates around the antenna receiver at 

2.5 meters. 

Another important link which is related to implantable applications is the wireless 

power transfer link. Therefore, the path loss of a wireless power transfer channel from an 

external meandered loop antenna to an implantable antenna in a simplified and an anatomical 

body models over 50 cm is estimated. 2.5 to 5 dB difference of the path loss is obtained 

between the simplified and anatomical body models at distances o f 5 to 50 cm, respectively. 

On the other hand, 1-1.5 dB larger path loss is obtained at each position of measurements in 

pork in comparison with simulations in the simplified body model. This is due to the larger
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reflection between muscle and fat tissues in pork and the larger size of the anatomical body 

model.  

The optimum antenna type for more efficient on-in body communications is also 

investigated. Loop antennas are found to be more efficient for such type of communication. 

When the transmission coefficient from on-body loop and patch antennas to an implantable 

antenna is compared between lossless and lossy body models, 10 dB smaller transmission 

coefficient is obtained when an on-body patch is used. Therefore, loop or magnetic type 

antennas are preferred for such type of communications. 
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Chapter 7 

 Conclusions and Future Work  

7.1 Conclusions 

The interest in biomedical telemetry for medical applications has significantly 

increased which is mainly due to its beneficial applications. The applications involve capsule 

endoscopy, cardiac care and  health parameters (i.e. heart rate, glucose, temperature and 

pressure) monitoring, etc. which are facilitated by different wearable and implantable 

devices. In comparison with wearable devices, the implantable device provides a unique tool 

to access some vital signals from inside the human body at critical times. However, the 

design of implantable devices is very challenging and comprises the integration of many 

small components. Although that most of the implant's sub-components can be efficient for 

small sizes, this is not the case for the implantable antenna. Normally, the size reduction 

causes a degradation of the electromagnetic antenna performance. Therefore, new techniques 

and structures are presented at this work  to tackle these contradictory conditions. The main 

contributions and achievements in this regard are discussed in each chapter of this thesis 

which can be summarized as: 

1. New flexible implantable antennas of the following characteristics are developed:
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 Light weight. 

 Wide bandwidth  

 Relatively large radiation efficiency 

 Can be used for small implants 

 Work for multiple bandwidths which enable the functionalities of power 

saving and wireless power transfer. 

              Although some of these conditions are contradictory, they are satisfied because 

of the antenna flexibility which enables the exploitation of larger sizes for the same 

implant dimensions. The larger physical dimension leads to a wide bandwidth and 

gain. To enable flexibility, light conducting and dielectric materials are used. This 

reduces the overall antenna weight. While some flexible antennas were presented 

before, the proposed antennas in this thesis outperform them. This is because the 

proposed antennas are optimized through a two step design methodology for a larger 

radiation efficiency, wide bandwidth and robustness in the anatomical bodey model. 

2. New investigations about the effect of the simplified body shape, structure and     

aspect ratios on the  performance of implantable antennas are investigated for the 

first time. The results show that the simplified body model can only be relied upon to 

give an initial indication about the reflection coefficient characteristics and antenna 

radiation capability.  

3.  The validity of the evaluating parameters of the implantable antenna performance in 

the anatomical body model is investigated in this thesis. New effective parameters 

such as the implantable antenna and device orientation and the body part that is 

taken in simulations on the overall antenna performance are thouroghly investigated 
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      and quantified. Such investigations are very important and contribute to the 

following: 

 Give a beneficial insight into the accurate evaluation and validation of 

implantable antennas in the anatomical body model.  

 Confirm the necessity of selecting the optimum antenna and device orientation 

during the surgery process. 

3.  For the experimental work, a new simple method in the lab is developed to measure 

the performance robustness of the implantable antenna performance against material 

variations and in-body temperature variations after the actual implantation in the 

human body. The method is based on adding salt, sugar and water to pork to change 

its electromagnetic properties. This enables measuring the antenna performance in 

different media of different effective electromagnetic properties in the lab.  

4.  New investigations about using metamaterias to improve the overall radiation from 

implantable devices are conducted for the first time. A significant improvement in 

the radiated power and SAR reduction is obtained when CSRRs and MSRRs based 

layer are integrated to and bent around loop antennas. A new function of the CSRRs 

and MSRRs in the lossy human body is illustrated for the first time. The CSRRs are 

found to reduce the near field intensity and thus power absorption in the human 

body. This is reflected on a larger overall radiated power and a smaller SAR. Such  

investigations provide a beneficial insight into the use of Metamaterials to improve 

the overall radiation, matching and safety levels of implantable antennas. 

5.  Due to the importance of implantable antennas in different body communications (in-

in, in-on, and in-off body), different related path losses are estimated and quantified. 

The following contributions in this regard are obtained: 
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 The effect of the implantable antenna and device orientation on the overall 

path loss between a pacemaker and glucose monitoring implantable antennas 

is estimated and quantified between implantable antennas in the full 

anatomical body model at 403 MHz for the first time. The results show the 

importance of quantifying this effect for an accurate estimation of link budget 

and margin. 

 The orientation effect of the overall body on the communication path loss 

between an implantable and external receiving loop antenna is estimated at a 

frequency of 403 MHz and a distance of 2.5 m. The results show that a 

significance difference in the overall path loss is obtained for some 

orientations. Therefore, it is very important to quantify this effect for an 

accurate estimation of the link budget.  

 The overall path loss between an implantable loop and external meandered 

loop antennas at 433 MHz are evaluated at a distance of up to 50 cm. The 

results obtain a path loss of around 28 dB in a simplified body model that 

mimics a small animal at a distance of 5 cm between the implantable and 

external antenna. 4 dB larger loss is obtained at the same distance when the 

antenna is implanted in the anatomical body model. An overal path loss of 

around 46.5 dB is obtained at 50 cm when the antenna is implanted in the 

anatomical body model. Therefore, it is recommended to work at short 

distances for an efficient wireless power transfer to the implantable antenna.  

 The optimum wearable/on body antenna type to communicate with 

implantable antennas is investigated. The results show that a loop antenna 

outperforms patch antenna in the near field region of an implantable loop 

antenna.
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6.   A planar meandered loop antenna is designed in free space for the applications of 

off-body comunications (transmission or reception from the implantable anetnna). 

The antenna works for the MedRadio (401-406 MHz) and 433 MHz ISM bands. 

7.2   Future Work 

Many issues related to implantable antennas have been addressed in this thesis. 

However, other issues under the following categories may be considered for further 

investigations: 

 The antenna design: More antennas based on new materials such as biodegradable 

materials should be designed. The main attraction of a biodegradable device and 

antenna, to both surgeons and patients, is  that it harmlessly degrades over time. This 

means that there is no need for an additional removal operation. Although, some 

implantable antennas based on biodegradable silk have been recently proposed, 

much more designs are still required. Organic based materials would also be more 

biocompatible over long term of implantation. Another issue with the implantable 

antenna design is that most of the proposed designs were of linear polarization. This 

is because most of the implantable devices are fixed at a single position. However, 

circularly polarized implantable antennas which receive power while rotating inside 

the human body are also required. 

 Metamaterials for implantable applications: While valuable results about using 

metamaterials for implantable antennas are obtained at this work, more related 

structures could be developed. The recommended structures should be optimized to 

reduce the electric field intensity around the most effective radiating parts and 

increase the magnetic field. This can be another future path for implantable antennas 
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 of further larger radiation. It could also be benifcial to investigate the effect of 

metamaterials on the radiation pattern of implantable antennas in the human body. 

 Body path losses: Although the losses of the communication path  between an 

implantable pacemaker and a glucose monitoring device are quantified in this thesis, 

the path losses of other important links such as between pacemaker and bone 

implants should be estimated and quantified. Communication between the 

implantable antenna and mobile phone is another important path that should be 

estimated and characterized. The challenge of the latter path is that different sub-

paths  (the mobile in the hand, close to head, in free space or multipath) should be 

estimated.  

 Wireless power transfer: This is a hot research area which is very beneficial to 

develop passive implants. Such implants save the pain and cost of replacing or 

charging the implant battery. Therefore, a very beneficial future path is to develop an 

overall rectanna system to power the implantable device and antenna. 

 Development of an entire implantable device: The realization of an entire 

implantable device to transfer data from inside the human body to an external 

receiver is an important future research line. This requires working on different sub 

areas which combine medicine and engineering.  It would be also very beneficial for 

such a device to support the functionality of wireless power transfer and wake up 

receiver.
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Appendix A 

Electromagnetic Fields and Power 

Considerations for Electric and Magnetic 

Dipoles in a Dissipative Medium   

It should be pointed out the content of this appenidx is taken from [37]. 

A.1 Electromagnetic Fields of Infintesimal Radiating Sources in a 

Lossy Medium 

Infintesimal electrcic and magnetic dipoles are evaluated when the dipoles are 

embedded in an infinite homogeneous medium of electrcic constants:   is the conductivity, 

  is the permeability, and   is the dielectric permittivity. The cases will be considered 

when the dipole sources vary as 
j te 

and also for various transient sources.  

Considering the case of a small current element of length dl  which represents an 

electric dipole is oriented in the z direction and is situated at the origin of a spherical 

coordinate system ( r , , ) as indicated in Fig. A.1. The current in the element is I .  

The electric and magnetic field components for this source are: 
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where   is the propagation constant.  

 

Fig. A.1: Electric dipole and coordinate systems [37].  

When the current element is embeded in a lossy medium, the displacement currents 

are then very much smaller than the conduction currents, i.e. the total current density is:  

                                                       ( )J j E E                                                   (A.4) 

The propagation constant then becomes: 

                                            
2 2j j                                            (A.5)               

This approximation is valid for frequencies such that   . For this case, the fields of 

the current element can be written as: 
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where 
1/2( )j  .  

A small loop of current of area dA and circulating current I is equivalent to a linear 

element of magnetic current mJ dl oriented in the direction of the loop axis. The two are 

related in magnitude by the following:  

       mJ dl j IdA                                                  (A.9)                

where the dipole axis (loop axis) is oriented in the z direction and is situated at the origin.  

The magnetic dipole field components are: 
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The energy crossing an enclosing spherical surface around the source is calculated in 

the follwing section. The displacement currents are considered to be negligible. 

A.2 The Rdaiated Power around Sources in a Lossy Medium 

The mean Poynting vector in the radial direction is:  

   
1 1

( )
2 2

r rS E H E H 

                                              (A.13) 
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The values of E and H : 
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where 

1/2

2
m r
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  
 

   

Now, the average real power propagated in the rdial direction is given by:  
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r r
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The asterisk denotes the complex conjuagte. Using Eqs. (A.14-A.15), it is found that:  
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where

1/2

2




 
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 

. 

The total power radP  crossing an enclosing sphere of radius r = R can be calculated by 

integrating rP over the surface of the sphere; thus,  
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0 0
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Near the dipole, the first term in 1/R
3
 predominates and the total power is:  
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An expression similar to (A.17) is obtained for the magnetic dipole: 
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For small values of r :                 
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The total power crossing a spherical surface of radius R  near the dipole is then: 
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Appendix B 

 Comparison between Homogeneous and 

Heterogeneous Human-Shaped Body Models 

A homogeneous human-shaped body model is shown in Fig. B.1. The homogeneous 

body model is defined to be composed of muscle at 403 MHz. Laura body model is used as 

the heterogeneous body model. The multilayer structure of the Laura voxel body model was 

shown in Chapter 4. The antenna is placed in the chest.  

                 

 

                                (a)                                                                               (b) 

Fig. B. 1: A human-shaped body model: (a) Homogeneous, (b) Heterogeneous. 
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Four parameters for the small meandered loop antenna which was proposed in Chapter 

3 are compared: 

 The resonant frequency 

 The antenna radiation efficiency 

 The antenna gain 

 The specific absorption rate (1-g SAR) 

The results are summarized in Table B.1.  

Table B. 1: The radiation characteristics of the meandered  loop antenna in homogeneous and 

heterogeneous human-shaped body models 

 Homogeneous human-

shaped body models 

Heterogeneous human-

shaped body model 

Resonant frequency (MHz) 338 413 

Radiation efficiency (%) 0.0028 0.005 

Max 3D gain (dBi) -48.8       -45 

Max 1-g SAR (W/kg) / 

Pin =1 W 

740 580 

 

The resonant frequency is shifted from 413 MHz in the heterogeneous human-shaped 

body model to 338 MHz in the homogeneous human-shaped body model. This is because of 

the larger effective permittivity in the homogeneous body model which is composed of 

muscle only. The antenna obtained a small radiation efficiency and gain of 0.005% and -45 

dBi, respectively in the adult Laura body model because of its small size. These radiation 
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efficiency and gain values are decreased to 0.00283% and -48.8 dBi in the homogeneous 

human-shaped body model. The 1-g SAR for an input power of 1 W in Laura and the 

homogeneous body-shaped model is computed as 580 and 740 W/kg, respectively.  

From the results, it can be concluded that the homogeneous human-shaped model 

exagerrates the overall body losses in comparison with anatomical body models. This is 

because it is composed of muscle only which have larger conductivity than fat as explained 

in Chapter 4. This is reflected on smaller radiation efficiency and gain and larger SAR.  

 

 

 

 

 


