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ABSTRACT 
Malaria control relies heavily on the use of insecticides, especially the pyrethroids, for control 

interventions such as Long Lasting Insecticide Nets (LLINs) and Indoor Residual Spraying (ITNs). 
However, widespread resistance to insecticides in major malaria vectors, such as An. funestus is 
threatening to derail these control tools. To design and implement suitable resistance management 
strategies which will ensure the continued effectiveness of these control tools it is necessary to 
elucidate the molecular basis of the resistance. In An. funestus, resistance is mainly metabolic with 
the duplicated P450s CYP6P9a and CYP6P9b implicated as the major pyrethroid resistance genes. 
Despite the detection of these key resistance genes the detailed molecular mechanisms through 
which they confer pyrethroid resistance remain uncharacterised. Because CYP6P9a and CYP6P9b 
were shown to exhibit significant allelic variation between resistant and susceptible mosquitoes, we 
hypothesised that this allelic variation is potentially a key mechanism conferring pyrethroid 
resistance. Here, I characterised the role of these genes in the resistance to pyrethroids and 
identified other candidate genes which confer cross-resistance to non-pyrethroid insecticides. The 
role of allelic variation in pyrethroid resistance was investigated using polymorphism survery and in 
silico prediction of activity. Metabolic activities and efficiencies of allelic variants of CYP6P9a and 
CYP6P9b were investigated using fluorescent probes, metabolism assays and transgenic expression 
in D. melanogaster system. Pyrethroid resistance causative mutations were detected using the site-
directed mutagenesis. Other candidate P450s that confer cross-resistance to pyrethroids carbamates 
and organochlorines were identified and characterised.  

This study revealed that CYP6P9a and CYP6P9b from resistant populations of An. funestus are 
undergoing directional selection with reduced genetic diversity and beneficial mutations selected, 
compared to the alleles from susceptible strain (FANG), which exhibited high genetic variation. 
Modelling and docking simulations predicted the alleles of CYP6P9a and CYP6P9b from the resistant 
strains all across Africa to metabolise pyrethroids with high efficiency while the susceptible alleles 
FANGCYP6P9a and FANGCYP6P9b were predicted to have low activity toward pyrethroids. Validation 
of the docking predictions with probes and metabolism assays established that the resistant alleles 
of CYP6P9a and CYP6P9b possess high activities toward pyrethroids with kinetic profiles significantly 
different (high affinity and catalytic efficiency) from those obtained from the FANG, indicating that 
allelic variation is playing a major role in pyrethroid resistance. These findings were further 
strengthened by results from transgenic expression with GAL4/UAS technology showing that flies 
expressing the resistant alleles of both genes were significantly more resistant to pyrethroids than 
those expressing the susceptible alleles.  

Using mutagenesis, three key residues (Val109, Asp335 and Asn384) from the resistant allele of 
CYP6P9b were established as the important amino acid changes responsible for resistance with 
impact on substrate channelling, possible enhancement of interaction with redox partners and inter-
molecular hydrogen bonding interactions, respectively conferring high metabolic efficiency. The 
finding of these resistance markers make it possible to design a diagnostic tool that can allow 
detection and tracking of the resistant alleles in the field population of An. funestus across Africa.  

Other up-regulated P450s in multiple resistant populations from southern Africa were also 
characterised, revealing that pyrethroid resistance is mediated by other P450s as well: CYP6M7, 
CYP6Z1, CYP9J11 and CYP6AA4 all of which metabolise pyrethroids. CYP6Z1 and CYP9J11 are cross-
resistance genes which metabolise bendiocarb, while CYP6Z1 metabolise DDT in addition.  

In conclusion, allelic variation is a key mechanism conferring pyrethroid resistance in An. 

funestus s.s. from sub-Saharan Africa. Key amino acid changes control pyrethroid resistance factors 

and these molecular markers can be used to design DNA-based diagnostic tests which will allow 

tracking of the resistance alleles in the field. Pyrethroid resistance is multi-genic in the field 

populations of An. funestus with other P450s involved apart from CYP6P9a and CYP6P9b. The finding 

of cross-resistance P450s is of concern to resistance management and should be taken into account 

when designing resistance management strategies. 
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1. LITERATURE REVIEW 

1.1 Background 

Despite the recent decrease in global rates of mortality (42%) due to malaria (WHO, 2013b),  the 

disease steals 627,000 lives in 2012 alone, mostly children under the age of 5. Malaria is caused by 

infection with protozoan parasites belonging to the genus Plasmodium, which are transmitted by 

female Anopheles mosquitoes (Cox, 2010). The major mosquito vectors in sub-Saharan Africa are An. 

gambiae, An. arabiensis and An. funestus (Ranson et al., 2011).  Impediments to malaria control and 

eradication include the absence of a licensed vaccine (Mwangoka et al., 2013), development of and 

spread of parasite resistance to anti-malarial drugs (Packard, 2014) and the mosquito resistance to 

insecticides used in public health as reviewed (Corbel and N’Guessan, 2013). Control of malarial 

vectors relies heavily on the use of insecticide formulations alone or in combination, for wide-

coverage as in conventional Insecticide Treated Nets (ITNs) (WHO, 2013b), Long-Lasting Insecticide 

Treated Nets (LLINs) and indoor residual spraying (IRS) (Hemingway, 2014). Unfortunately, widespread 

emergence and increasing resistance to insecticides especially pyrethroids- the only class fully 

approved by WHO for LLINs and ITNs (WHO, 2013a), in one of the major malaria vector An. funestus 

(Riveron et al., 2014a, Mulamba et al., 2014b, Coetzee and Koekemoer, 2013) is threatening the 

success of these intervention tools (WHO, 2012).  Within the Funestus complex, An. funestus s.s. is the 

most widely, geographically distributed across African continent (Dia et al., 2013) and the specie with 

high vectorial capacity conferred by its unusually high anthropophilic and endophilic behaviour 

(Coetzee and Fontenille, 2004, Gilles and De Meillon, 1968). To date An. funestus populations from 

different regions of Africa have been established to be resistant to three of the four major classes of 

insecticides: pyrethroids, carbamates and organochlorines widely utilized for control of malaria 

vectors (Brown, 1986, Coetzee and Koekemoer, 2013, Dia et al., 2013, Ranson et al., 2011, Wondji et 

al., 2012, Corbel and N’Guessan, 2013). With the knockdown resistance (kdr) type mutation in the 
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voltage-gated sodium channel not yet selected in An. funestus s.l., (Hemingway, 2014, Djouaka et al., 

2011, Morgan et al., 2010, Wondji et al., 2007b) pyrethroid resistance is mainly metabolic and 

mediated fully or partially by P450 monooxygenases (Coetzee and Koekemoer, 2013, Wondji et al., 

2012, Okoye et al., 2008, Corbel and N’Guessan, 2013). In An. funestus resistance to insecticides is 

heterogeneous across Africa, with populations from different regions showing overlapping or 

contrasting resistance patterns (Djouaka et al., 2011, Morgan et al., 2010, Cuamba et al., 2010, Wondji 

et al., 2012). The duplicated CYP450s CYP6P9a and CYP6P9b and other candidate genes detected 

through genome-wide microarray and transcriptomic analysis have been implicated as the major 

pyrethroid resistance genes in An. funestus across Africa (Amenya et al., 2008, Riveron et al., 2013, 

Wondji et al., 2009, Wondji et al., 2012, Gregory et al., 2011). But, despite the remarkable progress so 

far made in detection of such candidate resistance genes in An. funestus and their functional 

characterisation in some cases (Riveron et al., 2013, Riveron et al., 2014b), the exact mechanisms of 

pyrethroid resistance still remains unknown, factors responsible for multiple resistance to different 

insecticide classes are yet to be elucidated and molecular markers are lacking to track resistance in the 

field. Therefore this study was carried out to attempt to fill these gaps. Here, I dissected and assessed 

the impact of allelic variation in two major pyrethroid resistance genes CYP6P9a and CYP6P9b, 

identified molecular markers of pyrethroid resistance and discovered cross-resistance genes.  

1.2 Malaria Vectors  

Malarial parasite is transmitted by mosquitoes from the Anopheles genus which comprises nearly 

500 species of which around 70 have been established as vectors (http://seeg.zoo.ox.ac.uk 

/themes/vectors). The continent of Africa bears the brunt of malaria burden because it has the most 

effective and efficient dominant vector specie (DVS) of human malaria (Gillies, 1987, Sinka et al., 2010) 

An. gambiae s.s. (Guerra et al., 2008) with its sibling An. arabiensis, also of major importance (Gillies, 

1987). The DVS members of the An. gambiae complex also include in addition the salt water tolerant, 

coastal species An. melas and An. merus (Harbach, 2004). Other members of the An. gambiae complex 



3 
 

are either highly restricted in their distribution (e.g. An. bwambae, known to occur only in some 

geothermal springs in western Uganda (White, 1985) or are zoophilic in behaviour and not considered 

vectors of human malaria (e.g. An. quadriannulatus A and An. quadriannulatus B) (Sinka et al., 2010). 

Recently, two species were added to the An. gambiae complex based on molecular and bionomic 

evidences: the An. gambiae molecular "M form" is now named An. coluzzii Coetzee & Wilkerson sp. n., 

while the "S form" retains the nominotypical name An. gambiae Giles (Coetzee et al., 2013). An. 

quadriannulatus is retained for the southern African populations of this species, while the Ethiopian 

species is named An. amharicus Hunt, Wilkerson & Coetzee sp. n., based on chromosomal, cross-

mating and molecular evidences. Beside the An. gambiae s.l. complex, An. funestus s.s. also play a 

major role in malaria transmission and in some parts of the continent has a greater impact on malaria 

transmission than An. gambiae (Coetzee and Fontenille, 2004). Indeed An. funestus is considered to be 

one of the first species to have adapted to human hosts (Charlwood et al., 1995).  

1.2.1 Anopheles funestus 

 An. funestus is one of the major African vectors of malaria. Its distributed across sub-Saharan 

Africa wherever suitable swampy breeding habitats are available (Coetzee and Koekemoer, 2013). An. 

funestus belongs to a group of thirteen species (Dia et al., 2013) that are morphologically very similar 

in the adult stage (Coetzee and Fontenille, 2004). Four species, An. funestus, An. vaneedeni, An. 

parensis and An. aruni, possess identical morphology at all life stages and (Gillies, 1987, Gilles and De 

Meillon, 1968) and together with An. funestus-like, An. confusus and An. longipalpis type C are known 

as the Funestus sub-group (Dia et al., 2013). The second subgroup is designated Minimus subgroup 

and is composed of An. leesoni and An. longipalpis type A. The third is the Rivulorum subgroup which 

comprise An. rivulorum, An. rivulorum-like, An. brucei and An. fuscivenosus. An. leesoni is the most 

distinct at both egg and larval stage, while An. confusus is easily identified on larval characteristics. An. 

rivulorum and An. brucei also have distinctive larvae although these two species are virtually 

indistinguishable from each other (Coetzee and Fontenille, 2004). Apart from An. funestus, which is 
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highly anthropophilic, the rest of the group are mainly zoophilic (Coetzee and Fontenille, 2004). 

Nevertheless, An. rivulorum has been implicated as a minor vector in a locality in Tanzania (Wilkes et 

al., 1996).  The An. Funestus complex is tabulated below (Table 1.1). 

Table 1.1 African An. funestus complex. Adapted from (Dia et al., 2013). 

 

 

 

 
Figure 1.1: Distribution of species of Funestus complex. Adapted from (Dia et al., 2013). 
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An. funestus, An. leesoni and An. rivulorum exhibit the widest geographical distribution (Dia et 

al., 2013). They are traditionally represented throughout the entire sub-Saharan Africa (Gilles and De 

Meillon, 1968, Gillies, 1987). An. funestus is present everywhere across African continent (Figure 1.1), 

while the other species exhibit local distribution across the continent (Dia et al., 2013).  

Whereas An. gambiae typically breeds in small temporary rain-dependent pools and puddles, An. 

funestus exploits large permanent or semi-permanent bodies of water containing emergent 

vegetation (Serazin et al., 2009). An. funestus reaches maximal abundance in the dry season after 

densities of An. gambiae and An. arabiensis have declined, thereby extending the period of malaria 

transmission (Gilles and De Meillon, 1968). An. funestus is the major vector responsible for malaria 

transmission in many places and has been implicated for malaria epidemics in some places (Fontenille 

et al., 1990, Hargreaves et al., 2003). 

Despite its obvious importance as a vector, An. funestus has been neglected for almost half a 

century, with most of the research focusing on members of the An. gambiae complex (Coetzee and 

Fontenille, 2004). This neglect has been attributed to the difficulty of colonizing An. funestus in the 

laboratory setting and adaptability of the An. gambiae complex to laboratory conditions and the ease 

with which species in the group can be colonized.  

1.3 Malaria Control  

Malaria control has been described as  too complex to be addressed by a single approach and as 

such attempt to describe it is fraught with danger (Shiff, 2002). An integrated approach to control 

using vector control strategies based on the biology of the mosquito, the epidemiology of the parasite, 

and human behaviour patterns is needed to prevent continued upsurge in malaria in the endemic 

areas (Mouchet and Carnevale, 1998). For theoretical purpose, malaria control can be considered from 

three major approaches: (i) treatment of infection caused by Plasmodium, (ii) control of the vector 

(mosquito) that spreads the malarial parasite, and (iii) antimalarial vaccines. 
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1.3.1 Treatment of Infection: Chemotherapy and Chemoprophylaxis 

Malaria chemotherapy has relied largely on a comparatively small number of chemically 

related drugs belonging to four classes of compounds: 4-aminoquinolines (chloroquine, quinine, 

mefloquine, amodiaquine and halofantrine) or 8-aminoquinolines (primaquine), the antifolate 

compounds (pyrimethamine, proguanil, chlorcycloguanil, dapsone, and sulfadoxine), the artemisinin 

and derivatives (artemisinin, artesunate, artemether, arteether, dihydroartemisinin), and most 

recently, the hydroxynapthoquinone atovaquone (Schlitzer, 2008). Unfortunately, resistance to 

antimalarials usually develops within a few years (Ashley et al., 2014, White, 2014, Alker et al., 2008, 

Foote et al., 1990).  Malaria chemoprophylaxis is the use of anti-malarial medication to prevent the 

occurrence of the symptoms of malaria (Schlagenhauf, 2010) especially in travellers (emigrants) from 

malaria-free regions journeying to endemic areas.  

1.3.2 Malaria Vaccines 

This is the idea of using vaccine against the malarial parasite Plasmodium. Presently, there are 

38 P. falciparum and two P. vivax candidate malaria vaccines or vaccine components in preclinical or 

clinical progress (Karunamoorthi, 2014). But, the vaccine Repeat region for T-cell epitope surface 

antigen of free S protein (RTS,S) which targets the circumsporozoite stage of malarial parasite (Targett 

et al., 2013) has been described as the most promising. The RTS,S vaccine has already reached the 

Phase III clinical trials and its hoped that it could get licensed soon (Rts et al., 2012). However, the 

vaccine has been shown to reduce episodes of malaria by only 50%.  Other challenges that need to be 

overcome is polymorphism in many key parasite antigens (Greenwood and Targett, 2011). It is 

likely vaccines that are effective enough to block transmission, will need to contain antigens from 

different stages of the parasite's life cycle. 
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1.3.3 Vector control  

Various approaches are used to control vectors. This range from physical, environmental, 

biological and chemical measures, applied independently or in combination, to deter, reduce the 

number or eliminate mosquito vectors. Recent advances has also made it possible to apply a wide 

range of biotechnological techniques for these purposes.  

1.3.3.1 Physical Methods 

The physical approaches include drainage of stagnant water, frequent clearing of puddles, 

screening of windows and other apertures, and use of untreated bed nets. Larval source management 

(LSM) is one of the most important approaches to reducing malaria transmission which is largely 

forgotten (Fillinger and Lindsay, 2011); in the early twentieth century larviciding and environmental 

management were the only tools available to contain malaria. Screening of windows and other 

apertures can be very effective in keeping out mosquitoes, provided the screening is well fitted and 

without tears (Curtis, 1989). Bednets even untreated are also important and in some places have been 

associated with reduced prevalence (51%) of P. falciparum infection (Clarke et al., 2001b) Houses are 

the main places for contact between humans and night biting mosquitos (Gamage-Mendis et al., 

1991). The impact of improved housing on reduction of indoor malaria vector densities and 

transmission is well established in several studies (Lwetoijera et al., 2013).   

1.3.3.2 Biological Methods 

Biological control methods refer to the use of natural enemies such as predatory fish, 

invertebrate predators and toxins produced by microbial agents such as Bti (Imbahale et al., 2011). B. 

thuringiensis var. israelensis, serotype H14 (Bti) has become the most commonly used microbial 

insecticide (biopesticide) to control pest and vector species (Rowe et al., 2003). Bti is non-toxic to 

humans, mammals, birds, fish, plants and most aquatic organisms and has been established to be a 

potent growth deterrant of the field population of Cx. pipiens (Altalhi, 2005). The active ingredient in 



8 
 

the Bt is the Cry protein which is activated in the gut of the mosquito larvae by proteolysis and binds 

to the receptors on the brush border membranes of epithelial cells, forming pores and disrupting 

movements of solutes (Sanahuja et al., 2011). This eventually leads to cell swelling and lysis. 

 The annual killifish (Aphanius dispar dispar) has also been demonstrated as a means of 

eradicating the aquatic stages of mosquitoes in transient pools (Matias and Adrias, 2010), because 

they can maintain permanent populations in such habitats by undergoing suspended animation or 

diapause during the embryonic stages, to survive periodic drought. Matias and colleagues have 

described the potential of annual killifish, Nothorbronchius. guentheri, for mosquito control because of 

its preference for mosquito larvae as prey, the successful demonstration of introducing the fish in the 

ponds in the form of diapausing eggs and the eradication of mosquito larval population in the ponds.   

Another biological approach is introduction of Wolbachia symbionts into mosquito 

populations. For example, introduction of wMel strain of Wolbachia into field populations of Ae. 

aegypti resulted in a decreased dengue virus transmission (Hoffmann et al., 2011) with invasion 

almost reaching fixation in a few months following releases of wMel-infected Ae. aegypti adults.  The 

wAlb strain of Wolbachia has also been established in the laboratory populations of An. stephensi and 

shown to confer resistance in mosquitoes to P. falciparum (Bian et al., 2013). Wolbachia spreads 

through cytoplasmic incompatibility rendering insects resistant to a variety of human pathogen. 

1.3.3.3  Modern Biotechnological Approaches 

Transgenic mosquitoes are a potential tool for the control or eradication of vectors of diseases 

like malaria (Boete et al., 2014). The idea behind this is to transform mosquitoes with genes that could 

render them refractory to infection by malaria, and then release them, thus making mosquito 

populations incapable of transmitting malaria. Sterile insect technique (SIT) is also increasingly utilised 

for control of malaria vectors. In this technique, reproductive cycles of mosquito vectors are interfered 

with using radiation-induced sterility, as described in the review (Oliva et al., 2014). The SIT conceived 
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by E.F. Knipling in 1937 relies on compromising the integrity of the hereditary machinery and fertility 

(Knipling, 1959) through mutagenic activity of irradiation, and mass release of the competitive, sterile 

insects into natural populations. In a review (Helinski et al., 2009), SIT was described as successfully 

used for the elimination of the New World screwworm Cochliomyia hominivorax from the USA and 

Central America, as well as the tsetse fly Glossina austensi. The technique had been tested in An. 

arabiensis Patton with negative correlation between insemination and dose (Helinski et al., 2006). 

However, in mosquitoes the technique is still in experimental phase with one of the major challenges 

being decreased mating competitiveness of the irradiated males (Helinski et al., 2009).  

1.3.3.4 Chemical Methods 

These are measures which include the use of chemicals in ITNs, LLINs, indoor residual sprays, 

pyrethroid-based coils or repellents, the letter which are applied topically to deter biting mosquitoes. 

1.3.3.4.1 Indoor Residual Spray (IRS)  

 Many malaria vectors  rest inside houses after taking a blood meal (endophily) and thus effective 

indoor residual spraying depends on whether mosquitoes rest indoors (Pates and Curtis, 2005). IRS 

involves spraying the walls and other surfaces of a house with a residual insecticide 

(http://apps.who.int/iris/bitstream/10665/80126/1/9789241505123_eng.pdf). For many months the 

insecticide will kill mosquitoes and other insects that come in contact with these surfaces. IRS kills 

mosquitoes after they have fed, when they come to rest on the sprayed surface. IRS prevents 

transmission of infection to other persons, has the advantage of being able to make use of a much 

wider range of insecticide products in comparison to LLINs and/or ITNs, for which pyrethroids are the 

only class of insecticide currently used (Pluess et al., 2010).    

1.3.3.4.2 Insecticide Treated Bed Nets (ITNs) 

ITNs are the most prominent malaria preventive measure for large-scale deployment in highly 

endemic areas (Lengeler, 2000). An ITN is a mosquito net that repels, disables and/or kills mosquitoes 

http://apps.who.int/iris/bitstream/10665/80126/1/9789241505123_eng.pdf
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coming into contact with insecticide on the netting material (World Health Organization, 2007). These 

are conventionally treated mosquito nets that have been treated by dipping in a WHO-recommended 

insecticide. To ensure its continued insecticidal effect, the nets are usually re-treated after three 

washes, or at least once a year. Relatively modest coverage with ITNs (around 60%) of all adults and 

children have been described as able to achieve equitable community-wide benefits (Killeen et al., 

2007). ITNs have been shown to hinder around 50% of malaria cases, making its protective efficacy 

significantly higher than that of untreated nets which, under ideal conditions (such as those found in 

research settings), usually provide about half the protection of nets treated with an effective 

insecticide (World Health Organization, 2007, Clarke et al., 2001a). 

1.3.3.4.3 Long-Lasting Insecticide Treated Bed Nets (LLINs) 

Large-scale use of insecticide treated nets has a short-coming in that the impregnation and the re-

impregnation needs technical skills and materials which may not be available (Lines, 1996), especially 

in remote areas. LLINs are developed because of these reasons and it is a factory-treated mosquito net 

made with netting material that has insecticide incorporated within or bound around the fibres (World 

Health Organization, 2007). The nets have been shown to retain its effective biological activity without 

re-treatment for at least 20 WHO standard washes under laboratory conditions and three years of 

recommended use under field conditions.  

1.3.3.4.4 Repellents  

Protection against arthropod bites is best achieved by avoiding infested habitats, wearing 

protective clothing, and applying insect repellent (Curtis, 1992). Commercially available insect 

repellents can be divided into two categories — synthetic chemicals and plant derived essential oils 

(Fradin and Day, 2002). The most widely marketed chemical-based insect repellent is N, N-diethyl-3-

methyl-benzamide (DEET), which has been used worldwide (Fradin and Day, 2002, Karunamoorthi and 

Sabesan, 2009).  
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1.4 Insecticides 

Insecticides are agents of chemical or biological origin that control insects (Ware and Whitacre, 

2004). Insecticides may be natural or manmade and are applied to target pests in a myriad of 

formulations and delivery systems (sprays, baits, slow-release diffusion, etc). There are four major 

classes of insecticides used in public health sector: pyrethroids, organochlorines, carbamates and 

organophosphates (Krieger, 2010).  

1.4.1 Pyrethroids 

1.4.1.1 Introduction 

The term "pyrethrum" refers to the dried and powdered flower heads of a daisy-like plant 

belonging to the Chrysanthemum genus (Schleier III and Peterson, 2011). Pyrethrins, the insecticidal 

ingredient occurring in the flowers of Tanacetum cinerariaefolium (also known as Chr. cinerariaefolium 

or Pyr. cinerariaefolium), have been used widely for human and animal health protection by 

controlling indoor pest insects such as cockroaches, houseflies, and mosquitoes since ancient times 

(Krieger, 2010). Pyrethrum extract contains six closely related insecticidal esters (Figure 1.2) 

collectively referred to as the pyrethrins, which differ only in the terminal substituents in the side 

chains of the acid and alcohol components. The acid is a substituted cyclopropanecarboxylic acid and 

the alcohol a substituted cyclopentenolone. The commercial limitations of pyrethrum extracts 

(pyrethrins), which are a mixture of six lipophilic esters were recognized because of their high rate of  

photodegradation and a short "knockdown" (rapid paralysis) effect (Schleier III and Peterson, 2011).  

After the discovery of the constituents of pyrethrins, researchers searched for derivatives of pyrethrins 

that had a higher resistance to photodegradation; this led to the synthesis of pyrethroids. The 

advantages of pyrethrins and pyrethroids are that they are highly lipophilic, have a short half-life in the 

environment, have low toxicity to terrestrial vertebrates and do not biomagnify like older chemical 

classes, such as organochlorines.  
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Pyrethroids have wide application in agriculture and public health control of vectors, and have 

been described in a review by Gupta to account for approximately 25% of the world insecticide market 

(Gupta, 2014). For the public health market, they are used as indoor residual house sprays, to 

impregnate bednets, curtains and screens, and in coils, mats and aerosols (Hemingway et al., 2004). 

Synthetic pyrethroids can be classified into the first- and second-generation pyrethroids. First-

generation pyrethroids, which are esters of chrysanthemic acid derivatives and alcohols having furan 

ring and terminal side chain moieties, are highly sensitive to light, air, and temperature (Krieger, 

2010). Therefore, these pyrethroids have been used mainly for control of indoor pests, for example 

the chrysanthemates, resmethrin and phenothrin are used against household, veterinary, and stored-

products pests, as reviewed in (Casida et al., 1983). The second-generation pyrethroids, which 

commonly have 3-phenoxybenzyl alcohol derivatives in the alcohol moiety, have excellent insecticidal 

Figure 1.2: The chemical structure of the six constituents of pyrethrum extracts which are 
collectively known as pyrethrins. Adapted from (Schleier III and Peterson, 2011).  



13 
 

activity as well as sufficient stability in outdoor conditions conferred by substitution of photolabile 

moieties with dichlorovinyl, dibromovinyl substituent, and aromatic rings. Thus, the second-

generation pyrethroids have been used worldwide for agricultural pests; for example permethrin and 

deltamethrin (Schleier III and Peterson, 2011). Pyrethroids are also grouped according to their 

structure (Figure 1.3) and toxicology, including those lacking α-cyano group (Type I, e.g. permethrin) 

and those with α-cyano group on the phenoxybenzyl moiety (Type II, e.g. deltamethrin) (Schleier III 

and Peterson, 2011). Type I pyrethroids differ from type II based on the distinct symptoms they evoke 

in insect targets and effects on sodium channel gating (Du et al., 2009).  

 

 

 

 

1.4.1.2 Mechanism of Action 

The binding site of pyrethroid in voltage-gated sodium channel (VGSC) is located within a long, 

narrow hydrophobic cavity, delimited by the IIS4-S5 linker and the IIS5/IIIS6 helices (Figure 1.4), which 

Figure 1.3: Chemical structure of type I (resmethrin and permethrin), type II (fenvalerate 
and cypermethrin) and pseudopyrethroid etofenprox. Adapted from (Schleier III and 

Peterson, 2011).  
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is accessible to lipid-soluble insecticides (Davies et al., 2007). During an action potential the sodium 

channel undergoes transitions between closed-resting, activated and inactivated functional states, and 

toxins binding to specific sites on the channel either alter the equilibrium between these functional 

states or block the channel pore (O'Reilly et al., 2006). The lipid soluble and pyrethroid insecticides 

preferentially target the open state of the voltage-gated sodium channel and their binding stabilize the 

open state, inhibiting the transition to the non-conducting deactivated or inactivated states. 

Consequently, the inward conductance of sodium is prolonged. The persistent depolarization of the 

plasma membrane resulting from the prolonged inward sodium conductance induces repetitive nerve 

firing and hyper-excitability, leading to paralysis and death of the insect. 

 

 

 

 

 

Type I pyrethroids (e.g., permethrin) are generally good knockdown agents due to their ability 

to induce repetitive firing in axons, resulting in restlessness, un-coordination and hyperactivity 

followed by prostration and paralysis. Type II pyrethroids significantly prolong channel open time (i.e. 

Figure 1.4: Diagram of the extended transmembrane structure of voltage-sensitive sodium 
channel a subunits showing the four internally homologous domains (labelled I–IV), each 
having six transmembrane helices (labelled S1–S6 in each homology domain), and the identities 
and locations of mutations associated with knockdown resistance. Adapted from (Soderlund and 

Knipple, 2003). 



15 
 

sodium tail currents of 200 milliseconds to minutes), resulting in an increased resting membrane 

potential, inducing a depolarization dependent block of action potentials (Schleier III and Peterson, 

2011) and causes a pronounced convulsive phase that results in better kill because depolarization of 

the nerve axons and terminals is irreversible (Bloomquist, 1996b).     

1.4.1.3 Structure-Activity Relationships 

Though there is no specific substructure, or reactive entity that can be identified as the 

toxophore that confers pyrethroid-like insecticidal activity (Krieger, 2010), there is a small group of 

essential features that pyrethroids require to possess high insecticidal activity, irrespective of the rest 

of the molecule or the nature of the target species (Schleier III and Peterson, 2011). The active esters 

of pyrethroids are 3-substituted cyclopropanecarboxylic acids which all have a 1R-configuration and a 

gem-dimethyl substitution at the C-2 of the cyclopropane ring (Schleier III and Peterson, 2011). 

Pyrethroids have three asymmetric carbon atoms and therefore could have as many as eight possible 

stereoisomers. The presence of two chiral centers in the cyclopropane ring of chrysanthemic acid 

produces two pairs of diastereomers as well, designated cis and trans on the basis of orientation of 

the C-1 and C-3 substitutions in relation to the plane of the cyclopropane ring; however, only isomers 

with the R configuration at the cyclopropane C-1 are insecticidally active (Schleier III and Peterson, 

2011, Soderlund et al., 2002) (Figure 1.5).  

In permethrin the methyl groups of the acid side chain was replaced with chlorine atoms, 

which block photochemical degradation on the adjacent double bond (Elliott et al., 1973). After the 

discovery of permethrin, researchers searched for compounds with a higher insecticidal activity and 

this led to the discovery of the cyano substitute at the benzylic carbon of the 3-phenoxybenzyl group.  

Stereoisomerism is a less common feature of pyrethroid alcohol moieties. Nevertheless, when 

a chiral centre is present in the alcohol moiety at the carbon bearing the hydroxyl group, as in esters of 

α-cyano-3-phenoxybenzyl alcohol (e.g., deltamethrin), only one epimer has high insecticidal activity 

even when esterified to an acid moiety that contains the appropriate stereochemical configuration for 
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high insecticidal activity. In deltamethrin with 2 rings (3-phenoxybenzyl alcohol) the 1R-cis isomers are 

generally more active than the trans isomers (Gilbert and Gill, 2010). With alcohol moieties that 

contain only a single ring (e.g. pentafluorobenzyl group of fenfluthrin and cyclopentenone of allethrin) 

the trans isomers are more active. Also, contrary to the generalization for pyrethroids containing 3-

phenoxybenzyl alcohol, theta-cypermethrin (trans isomer) is more potent in control of Lepidopteran 

than the cis isomer. In essence, the selective potency of pyrethroid isomers on insects depends on 

several factors one of which is the selective metabolic processes. For example, Pap and colleagues 

(Pap et al., 1996) tested pure optical isomers of phenothrin, permethin and cypermethrin on a wide 

spectrum of insects (Blattella germanica, Leptinotarsa decemlineata, T. confusum, Oncopeltus 

fasciatus, Musca domestica, Ae. aegypti) and discovered that the S isomer was more effective than R 

in all species. However, in the presence of metabolic inhibitors, the R isomer had comparable activity 

to the S towards mosquitoes but not the other species (Gilbert and Gill, 2010).   

 

 

1.4.1.4 Metabolism of Pyrethroids 

The pyrethroids are detoxified by through attack by either esterases at the central ester bond, 

or by P450 monooxygenases at one or more of the acid or alcohol moieties (Schleier III and Peterson, 

Figure 1.5: Structure-Activity Relationship in pyrethroids: (A) insecticidal and non-insecticidal 

isomers of resmethrin. Adapted from (Krieger, 2010).  
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2011). However, presence of a cis-substituted acid moiety and a secondary alcohol moiety makes 

hydrolytic metabolism of pyrethroids limited (Soderlund and Knipple, 2003).  

Analysis of the metabolic pathways of pyrethroid degradation in insects, including cockroach, 

housefly and cabbage looper (Shono et al., 1978) identified forty-two metabolites (including 

conjugates) from permethrin metabolism which occurred by ester cleavage to 3-phenoxybenzyl 

alcohol (3-PBA) and 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid (DCVA). 

Hydroxylation has also been described to occurr at the 4ʹ- and 6- positions of the phenoxybenzyl 

moiety and the cis or trans methyl groups of the DCVA (Gilbert and Gill, 2010).  

In mosquitoes, metabolism of Type II pyrethroids may involve the oxidation of phenoxybenzyl 

ring as reported for An. gambiae CYP6M2 (Stevenson et al., 2011). CYP6M2 metabolised deltamethrin 

into 4ʹ-hydroxydeltamethrin and incubation of HPLC-purified 4ʹ-hydroxydeltamethrin (M4) with 

CYP6M2 produced cyano(3-hydroxyphenyl) methyl deltamethrate (M2), which in turn was found to be 

metabolized by the same enzyme to deltamethric acid (M1) (Figure 1.6). CYP6M2 thus, predominantly 

metabolizes deltamethrin by hydroxylation of the 4ʹ position, cleavage of the ether bond between the 

aromatic rings, and hydrolysis into deltamethric acid.  

 
Figure 1.6: Metabolism of deltamethrin by recombinant An. gambiae CYP6M2. 

Adapted from (Stevenson et al., 2011). 
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1.4.2 Organophosphates (OPs) 

 The toxicity of insecticidally active organophosphorus and carbamate esters to animals is 

attributed to their ability to inhibit acetylcholinesterase (AChE), a class of enzymes which catalyzes the 

hydrolysis of the neurotransmitter acetylcholine (ACh) (Fukuto, 1990). The binding of OPs to AChE 

results in disruption of nerve impulses, killing the insect or interfering with normal activities. OPs are 

normally esters, amides, or thiol derivatives of phosphoric, phosphonic, phosphorothioic, or 

phosphonothioic acids (Singh, 2012). The OPs are a very important group of compounds that vary 

tremendously in chemical structure and chemical properties (Bloomquist, 1996a). The OP compounds 

can be miscible with water, but more typically are miscible in organic solvents. Generally, OPs react 

with a serine hydroxyl group within the enzyme active site, phosphorylating the serine hydroxyl group 

and yielding a hydroxylated "leaving group”. This process inactivates the enzyme and blocks the 

degradation of the neurotransmitter, acetylcholine. There are at least about 13 types of OPs (Gupta, 

2011); of these malathion belongs to phosphorodithioates, sarin belongs to phosphornofluoridates, 

diazinon, parathrion and pirimiphos-methyl belong to phosphorothioates, and dichlorvos belongs to 

phosphonates. OPs used in mosquito control programmes include: fenthion (bytex), temephos 

(abate), chloropyrifos (dursban), fenithrothion (sumithion), pirimiphos-methyl (actelic), malathion, etc. 

1.4.3 Carbamate  

Carbamates are N-substituted esters of carbamic acid (Gupta, 2011). The inhibition of AChE by 

a carbamate insecticide occurs by a mechanism identical to that described for an organophosphates 

(Fukuto, 1990). The first step in the inhibition process involves the formation of the enzyme-inhibitor 

complex with subsequent carbamylation of the serine hydroxyl group and inhibition of the enzyme 

(Metcalf, 1971). Examples of carbamates are carbaryl (SEVIN), oxamyl (VYDATE), carbofuran 

(FURADAN), thiodicarb (LARVIN) (Singh, 2012), bendiocarb (Turcam), propoxur (BAYGON), etc. 
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1.4.4 Organochlorines (OCs) 

Organochlorine pesticides are chlorinated hydrocarbons used extensively from the 1940s 

through the 1960s (Matsumura, 1985). Representative compounds in this group include DDT, 

methoxychlor, dieldrin, chlordane, toxaphene, mirex, kepone, lindane, and benzene hexachloride. 

Since the 1970s, DDT and most other chlorinated hydrocarbon compounds have been restricted or 

banned for agricultural use in most countries, due in part to their unacceptably long persistence in the 

environment and also because of increased concerns arising from their fat solubility (having a high 

partition coefficient in lipids versus water) and resultant long-term accumulation in fatty tissues of 

non-target organisms (Mellanby, 1992). However, DDT continues to be used in limited quantities in 

the control of insect vectors for public health purposes, as its approved by WHO in 2006 for IRS 

(Sadasivaiah et al., 2007). DDT affects the peripheral nervous system; initial contact with the 

insecticide causing neurons to fire spontaneously causing muscles twitch, with resulting tremors 

throughout the body and appendages, the so-called ‘DDT jitters’ (Davies et al., 2007). Over the course 

of a few hours or days, DDT exposure leads to excitatory paralysis and consequent death of the insect.   

1.4.5 Other insecticides 

Other compounds with insecticidal activities used for control of insect pests include 

neonicotinoids and ryanoids. Neonicotinoids, possess either a nitromethylene, nitroimine or 

cyanoimine group (Matsuda et al., 2001) and important neonicotinoids, such as imidacloprid, 

nitenpyram and acetamiprid, all contain a 6-chloro-3-pyridyl moiety and therefore resemble nicotine 

and epibatidine, both of which are potent agonists of nicotine acetylcholine receptors (nAChRs). 

Imidacloprid and other nitromethylene compounds like 1-(pyridine-3-yl-methyl)-2-nitromethylene-

imidazoline (PMNI) are increasingly used worldwide as an insecticides (Bai et al., 1991).  

Ryania insecticide is the powdered stem wood of Ryania speciosa Vahl., a small shrub growing 

extensively in South America, and noted for its pest control properties (Crosby, 1971). The major 
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insecticidal and toxic constituents are ryanodine (Jefferies et al., 1992) and 9,12-didehydroryanodine 

(Waterhouse et al., 1984), which have attracted much attention as natural but expensive insecticides 

and for their action on the Ca2+-ryanodine receptor complex of muscle (Lai and Meissner, 1989). 

Ryanodine has been described from several studies to induce paralysis in insects and vertebrates by 

causing a sustained contracture of skeletal muscle without depolarizing the muscle membrane 

(Bloomquist, 1996a). 

 

1.5  Insecticide Resistance  

1.5.1 Introduction 

The term resistance is defined as the ability of an insect (population) to withstand the effects of 

an insecticide by becoming resistant to its toxic effects by means of natural selection and mutations 

(Davidson, 1957). Repeated exposure to insecticides can select individuals possessing biochemical 

machineries that can detoxify the insecticides more rapidly or are less sensitive to it (Gilbert and Gill, 

2010). These individual survivors could then pass the resistance traits to the succeeding generations 

resulting in pest populations more resistant, until ultimately a situation is reached whereby the pests 

become completely resistant to the insecticide. In a recent review (Corbel and N’Guessan, 2013) 

resistance has been described to be present in more than 500 insect species worldwide and that to 

date malaria vectors have developed resistance to the main chemical classes used in public health, the 

pyrethroids, organochlroines, carbamates and organophosphates.  

1.5.2 Types of Insecticides Resistance Mechanisms 

The various mechanisms that enable insects to resist  insecticides can be grouped into four 

distinct categories including metabolic resistance, target-site resistance, reduced penetration and 

behavioural avoidance, as aptly reviewed in (Corbel and N’Guessan, 2013) (see Figure 1.7). However, 

increased excretion of the insecticides by some pests is also termed another mechanism of resistance.  
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1.5.2.1 Behavioural Resistance 

Continues exposure to an insecticide may trigger changes in behavioural response of insect 

pests (Corbel and N’Guessan, 2013) leading to the avoidance of lethal doses of an insecticide (Chandre 

et al., 2000). This type of response can be divided into direct contact excitation (sometimes referred to 

as ‘irritancy’) and non-contact spatial repellency that is used when insects move away from the 

insecticide-treated area before making direct contact (Roberts et al., 1997). Behaviouristic resistance 

has been established in An. funestus; a shift from indoor to outdoor biting preferences in Tanzania in 

relation to increasing coverage of pyrethroid-impregnated net (Russell et al., 2011b) as well as 

significant changes in the host-seeking behaviour of the An. funestus population from Benin (West 

Africa) where scaling up of LLINs at community level induced a change from night biting to early-

morning biting behaviour (Moiroux et al., 2012). 

Figure 1.7: Scheme of potential behavioural and physiological changes associated with 

insecticide resistance in malaria vectors; (a) susceptible insect; (b) resistant insect. Adapted from 

(Corbel and N’Guessan, 2013). 
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1.5.2.2 Penetration Resistance (Reduced penetration) 

Modifications in the insect cuticle or digestive tracts can prevent, slow the absorption or  

reduce penetration of insecticides (Corbel and N’Guessan, 2013). Reduced uptake of insecticide 

(cuticular resistance) has been observed in some insect pests especially ones where the major route of 

exposure is through ingestion. For mosquito control, where insecticides are applied onto bed nets or 

on wall surfaces, uptake is primarily through the appendages. Therefore, increase in the thickness of 

the tarsal cuticle, or a reduction in its permeability to lipophilic insecticides, could have a major impact 

on the bioavailability of an insecticide in vivo (Corbel and N’Guessan, 2013). Decreased penetration of 

insecticides would allow sufficient time for detoxifying enzymes to metabolize the chemical and 

therefore make it less effective (Plapp, 1976). Microarrays studies have identified two genes encoding 

cuticular proteins that were upregulated in pyrethroid resistant strains of An. stephensi (Vontas et al., 

2007) and An. gambiae (Awolola et al., 2009b).  Also,  it has been established using scanning electron 

microscopy that in a laboratory strain of An. funestus the mean cuticle thickness was significantly 

greater in pyrethroid tolerant mosquitoes than their susceptible counterparts (Wood et al., 2010). 

 

1.5.2.3 Increased excretion 

This is one of the mechanisms of resistance developed by insects. It was shown that larvae of  

Trinidad resistant strain of Ae. aegypti respond to DDT by excreting the insecticide into the 

perithrophic matrix, the production of which was sometime increased so much that it protruded from 

the anus (Abedi and Brown, 1961). This behaviour was more evident in some resistant strains than 

others and occurred to a much lesser extent in larvae of strain that are susceptible. It appeared to 

constitute a resistance mechanism for removing DDT from the alimentary canal. 
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1.5.2.4 Biochemical Resistance 

Biochemical resistance mechanisms are divided into metabolic (alterations in the levels or 

activities of detoxification proteins) and target site (mutations in the sodium channel, AChE and 

gamma-aminobutyric receptor (GABA) genes, etc). Alone or in combination these mechanisms confer 

resistance, sometimes at an extremely high level, to all of the available classes of insecticides. 

1.5.2.4.1 Metabolic-Based Resistance  

Several reviews defined metabolic resistant (Corbel and N’Guessan, 2013, Russell et al., 

2011a) as a resistance which is based on the detoxification enzymes which all insects possess and 

which help them to clear naturally occurring xenobiotics. As reviewed by Schuler and Berenbaum 

(Schuler and Berenbaum, 2013) overexpression of enzymes capable of detoxifying insecticides or 

amino acid substitutions within these enzymes, which alter the affinity/activity of the enzyme for the 

insecticide, can result in high levels of insecticide resistance. Overexpression of detoxification enzymes 

can occur as the result of gene amplification (e.g. duplication), or due to changes in either trans-acting 

regulatory elements or in the promoter region of the gene. The consequence is a significant increase 

of enzyme production/activity in resistant insects that enables them to metabolize or degrade 

insecticide before it exerts its toxic effect. Three major enzyme groups esterases, cytochrome P450s 

(CYP450s) and glutathione S-transferases (GSTs) have been described as being responsible for 

metabolically-based resistance to organochlorines, organophosphates, carbamates and pyrethroids 

(Hemingway and Ranson, 2000, Brooke et al., 2001, Aizoun et al., 2013).  

 

1.5.2.4.1.1 Esterases-Based Metabolic Resistance 

Over-production of non-specific carboxylesterases as an evolutionary response to 

organophosphate and carbamate insecticide selection pressure has been documented in numerous 

arthropod species including mosquitoes, cattle ticks, aphids and cockroaches (Hemingway et al., 

2004). Several reviews have described esterases as responsible for hydrolysis of ester bonds of 
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insecticides or sequesteration (Corbel and N’Guessan, 2013) with the most widely studied mosquito 

species demonstrating this resistance mechanism are members of the Culex genus (Prato et al., 2012). 

In organophosphate-susceptible insects, the active oxon analogues of the insecticides act as esterase 

inhibitors, because they are poor substrates with a high affinity for the enzymes (Karunaratne et al., 

1995). Esterases from susceptible insects exhibited lower activity towards xenobiotics (including 

insecticides) than their counterparts from resistant insects, which sequester the oxon analogues and 

thus protect the AChE target site. Enhanced esterase activities have been described in mosquitoes, for 

example, in permethrin resistant An. gambiae and in resistant Ae. aegypti  (Hemingway et al., 2004, 

Vulule et al., 1999, Mourya et al., 1993) 

In contrast to the situation in Culex, several reviews (Corbel and N’Guessan, 2013, Hemingway 

et al., 2004) reported a number of Anopheles species (ie An. culicifacies, An. stephensi and An. 

arabiensis) having a non-elevated esterase mechanism which confers resistance specifically to 

malathion through increased rates of metabolism. Malathion resistance in Anopheles had been 

associated with an altered form of esterase that specifically metabolizes the molecule at a much faster 

rate than that in susceptible counterparts (Herath et al., 1981, Hemingway, 1983). Recently, Gly137Asp 

and Try251Leu mutations in the active site of the Cotton Bollworm Helicoverpa armigera esterase have 

been shown to increase the OP-hydrolase activity of the enzyme 14- and 6-folds, respectively (Li et al., 

2013). In multiple resistant populations of An. funestus from southern Africa, genome-wide microarray 

analysis have identified candidate carboxylesterases overexpressed (Riveron et al., 2014a). However, 

the role of these esterases in hydrolysis of OPs, carbamates or pyrethroid insecticides have not been 

validated.  

 

1.5.2.4.1.2 Glutathione S-Transferases (GSTs)-Mediated Resistance 

GSTs are dimeric, multifunctional enzymes that play a role in detoxification of a large range of 

xenobiotics by catalyzing the nucleophilic attack of reduced glutathione (GSH) on the electrophilic 

centres of lipophilic compounds (Sherratt and Hayes, 2001). Conjugation of glutathione (GSH) to 
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organic molecules enhances solubility, thus facilitating their eventual elimination (Corbel and 

N’Guessan, 2013). Elevated GST activity has been implicated in resistance to at least four classes of 

insecticides in insects (Hemingway et al., 2004). Higher enzyme activity is usually due to an increase in 

the amount of one or more GST enzymes, either as a result of gene amplification or more commonly 

through increase in transcriptional rate, rather than qualitative changes in enzyme structures until 

recent findings, e.g. see (Riveron et al., 2014b). At least six classes of insect GSTs have been identified 

in An. gambiae (Ranson et al., 2000), found in several large clusters on all three chromosomes. The 

Delta and Epsilon classes found exclusively in insects are the largest classes of insect GSTs. Members 

of both these classes have been implicated in resistance to all the major classes of insecticide.  

It has been suggested that GSTs may play a role in pyrethroid resistance by detoxifying lipid 

peroxidation products induced by pyrethroids and/or by protecting from insecticide exposure induced 

oxidative stress rather than direct metabolism of the pyrethroids (Vontas et al., 2001).  

However, in the case of An. funestus overexpression and qualitative changes in the amino acid 

sequence have been described as the reasons behind extreme DDT resistance and cross-resistance to 

permethrin (Riveron et al., 2014b). A single mutation in GSTe2 gene (Leu119Phe) was found to confer 

both high resistance to DDT and a cross resistance to pyrethroid permethrin in mosquito populations 

from Benin, West Africa. 

1.5.2.4.1.3 P450-Monooxygenases-Mediated Resistance 

Cytochrome P450 monooxygenases (CYP450s) are diverse family of hydrophobic, heme 

containing enzymes involved in the metabolism of numerous endogenous and exogenous compounds 

(Sridhar et al., 2012). P450s are important in adaptation of insects to toxic chemicals in their host 

plants and have been shown to be  involved in the metabolism of virtually all insecticides (Hemingway 

and Ranson, 2000). The action of P450 monooxygenases usually result in the detoxification of the 

substrate, although the OP insecticides from the phosphorothionate are also activated to the more 

toxic oxon form (Bharate et al., 2010). 



26 
 

Insect P450s belong to four major clans: CYP3, CYP4, CYP2 and the mitochondrial clan 

(Feyereisen, 2012) and increased transcription of genes belonging to the CYP4 (from CYP4 clan), CYP6 

and CYP9 families (both from CYP3 clan) has been observed in various insecticide-resistant species 

from different taxa (Feyereisen, 2005). Elevated monooxygenase activity is associated with pyrethroid 

resistance in An. stephensi, An. gambiae, Cx. quinquefasciatus, Ae. aegypti  and An. funestus (Brogdon 

and McAllister, 1998, Vulule et al., 1994, Kasai et al., 1998, Stevenson et al., 2012, Cuamba et al., 2010, 

Djouaka et al., 2011). However, higher activity of enzymes and/or expression of detoxification genes in 

insecticide resistant populations do not necessarily correlate with resistance (Corbel and N’Guessan, 

2013); for example elevated transcript levels of an adult-specific P450 gene, CYP6Z1, in pyrethroid-

resistant strain of An. gambiae was reported (Nikou et al., 2003), though the enzyme does not 

metabolise pyrethroids (Chiu et al., 2008).  

 

1.5.2.4.2  Target-site insensitivity 

Insecticides generally act at a specific site within the insect, typically within the nervous 

system (e.g. OPs, carbamates, DDT and pyrethroid insecticides) (Corbel and N’Guessan, 2013) and 

modification in resistant strains of insects of such targets result in insecticide no longer binding 

effectively, rendering it ineffective (Ranson et al., 2000). Reduced sensitivity of the target receptors to 

insecticide results from non-synonymous point mutations in the gene encoding the protein.  

1.5.2.4.2.1 Knockdown Resistance (kdr) 

Mutations in the amino acid sequence in VGSC channels of nerve cell membranes leads to a 

reduction in the sensitivity of the channel to the binding of DDT and pyrethroids (Davies et al., 2007). 

Alterations in the target site that cause resistance to insecticides are often referred to as kdr in 

reference to the ability of insects with these alleles to withstand prolonged exposure to insecticides 

without being ‘knocked-down” (Corbel and N’Guessan, 2013)(see Figure 1.4).    
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kdr was first recognised in houseflies by Busvine in 1951 (Busvine, 1951) and the kdr factor is 

now known to be a recessive allele conferring cross resistance to the entire class of pyrethroids as well 

as to DDT and its analogues (Davies et al., 2007). More than 20 unique sodium channel sequence 

polymorphisms have been identified in association with pyrethroid resistance. kdr has been reported 

in many important pest species and in many cases is accompanied by a second recessive resistance 

trait designated super-kdr which confers much greater resistance to pyrethroids (Farnham et al., 1987) 

One of the most common amino acid replacements associated with pyrethroid resistance in 

malaria vectors especially An. coluzzii, An. gambiae Giles and An. arabiensis is a substitution of the 

leucine residue found at codon 1014 with either phenylalanine (1014F) (Martinez-Torres et al., 1998) 

or serine (1014S) (Ranson et al., 2000) in  the sodium channel. To date, no kdr mutation has been 

discovered in the VGSC of An. funestus and associated with insecticide resistance. 

1.5.2.4.2.2 Insensitive Acetylcholinesterase 

Several mutations in the gene encoding AChE have been found in insects (Fournier, 2005) and 

the mutations result in reduced sensitivity to inhibition by insecticides (Weill et al., 2003). Gly119Ser 

mutation responsible for carbamate and OP resistance has been reported in An. gambiae and Cx. 

pipiens (Weill et al., 2004). Elevated expression of the AChE gene, due in part from gene duplication of 

Gly119Ser copies confer carbamate resistance in  An. gambiae from West Africa (Edi et al., 2014). 

1.5.2.4.2.3 GABA Receptor Rdl Mutation 

The insect GABA receptor is implicated as a site of action for cyclodienes (Hemingway and 

Ranson, 2000). Several mutations in this receptor which lead to resistance have been described for 

insects (Corbel and N’Guessan, 2013). In An. gambiae substitution of conserved Ala302 in the Rdl locus 

with serine or glycine have been associated with resistance to dieldrin (Du et al., 2005). 

Dieldrin resistance was detected in An. funestus populations from West (Burkina Faso) and 

Central (Cameroon) Africa (Wondji et al., 2011). The Ala296Ser mutation in An. funestus has been 
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associated with dieldrin resistance and is largely distributed in West and Central Africa (Wondji et al 

2011) but absent in southern African populations. East (Uganda) and Southern (Malawi and 

Mozambique) populations were fully susceptible to dieldrin. 

1.5.3 Interaction of Resistance Mechanisms 

The co-presence of multiple resistance mechanisms exist in various insect species such as the 

house fly (Liu and Yue, 2000)  and the mosquitoes Cx. quinquefasciatus (Xu et al., 2005), etc, and can 

confer onto some insect species high levels of resistance. Cross-resistance occurs when a resistance 

mechanism which allows insects to resist one insecticide, also confers resistance to another 

insecticide. Cross-resistance can occur between insecticides from different chemical classes (Ranson et 

al., 2011). Multiple resistance is a situation which occurs when insects develop resistance to several 

compounds by expressing multiple resistance mechanisms. The different resistance mechanisms can 

combine to provide resistance to multiple classes of insecticide products.  

Multiple resistance in Anopheles mosquitoes have been described in several studies. For example, 

co-occurrence of metabolic resistance mechanisms and kdr in a population of An. gambiae s.s. from 

Nigeria was established by Awolola and colleagues (Awolola et al., 2009a). For cross-resistance, the 

gene CYP6M2 from resistant strain of An. gambiae was found to metabolize Type I and Type II 

pyrethroids as well as organochlorine, DDT (Stevenson et al., 2011, Mitchell et al., 2012). Cross-

resistance mechanism conferred by P450s (CYP6P3 and CYP6M2) and ace-1 duplication have been 

described in multiple resistant population of An. gambiae from Côte d’Ivoire (Edi et al., 2014). In An. 

funestus we (Riveron et al., 2014b) have dissected the mechanism of cross-resistance to DDT and Type 

I pyrethroid (permethrin) in multiple resistance populations from Benin Republic, and established that 

the GSTe2 gene can confer cross-resistance between these insecticides. 
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1.6  Cytochrome P450-Dependent Monooxygenases (P450s) 

1.6.1 Introduction 

P450s are ubiquitous, heme-thiolate, 45- to 55-kDa enzymes (Feyereisen, 2012) important in 

oxidative, peroxidative and reductive metabolism of numerous and diverse endogenous compounds 

such as steroids, bile acids, fatty acids, prostaglandins, leukotrienes, biogenic amines, retinoids and 

phytoalexins (Nelson et al., 1996, Bergé et al., 1998). They embody one of the largest family of genes 

that are found in all organisms in all domains of life (Munro et al., 2013). The proteins, named for the 

absorption band of their FeII-CO complex (carbon-monoxide bound form) at 450nm (Omura and Sato, 

1964), are one of the largest superfamilies of enzyme proteins. The P450 genes (also called CYP) are 

found in the genomes of virtually all organisms (Werck-Reichhart and Feyereisen, 2000), from bacteria 

to protists, plants, fungi, and animals (Feyereisen, 2012). Human genome carries about 57 CYP genes 

and insect genomes can carry from 48 as in honeybee Apis mellifera (Scott, 2008) to 170 as found in 

mosquito Cx. quinquifasciatus (Arensburger et al., 2010).  

  As mixed function monooygenases, P450s catalyse the transfer of one atom of molecular 

oxygen to a substrate, reducing the other to water (Equation 1.1), but they also show activity as 

oxidases, reductases, desaturases, isomerases, etc., and collectively are known to catalyse at least 60 

chemically distinct reactions (Feyereisen, 2012, De Montellano, 2005).  

RH + O2 + NADPH + H+ → ROH + H2O + NADP+  Equation 1.1 

There are soluble forms of P450 (in bacteria), and membrane-bound forms (in microsomes 

and mitochondria of eukaryotes) (Feyereisen, 2012). Most animal P450s are dependent on redox 

partners for their supply of reducing equivalents (NADPH cytochrome P450 reductase and cytochrome 

b5 in microsomes; a ferredoxin and a ferredoxin reductase in mitochondria). 
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1.6.2 Classes and Structural Features of P450s 

P450s can be divided into four classes depending on how electrons from NAD(P)H are 

delivered to the catalytic site (Werck-Reichhart and Feyereisen, 2000): Class I proteins require both an 

FAD-containing reductase and an iron sulphur redoxin; Class II proteins require only an FAD/FMN-

containing P450 reductase for transfer of electrons; Class III enzymes are self-sufficient and require no 

electron donor; while P450s from Class IV receive electrons directly from NAD(P)H. This classification 

of the interactions with redox partners is unrelated to P450 evolutionary history.   

Sequence identity among P450 proteins is often extremely low and there is only one 

absolutely conserved amino acid (Feyereisen, 2012). Highest conservation in the structure of P450s is 

found in the core of the protein around the heme and reflects a common mechanism of electron and 

proton transfer and oxygen activation. The conserved core is formed of a four-helix (D, E, I and L) 

bundle, helices J and K, two sets of β sheets, and a coil called the 'meander'. These regions comprise: 

motif WxxxR located in the C-helix and easily discernible in multiple alignments; the Arg is thought to 

form a charge pair with the propionate of the heme (Feyereisen, 2012); the heme-binding loop, 

containing the most characteristic P450 consensus sequence (Phe-X-X-Gly-X-Arg-X-Cys-X-Gly), located 

on the proximal face of the heme just before the L helix, with the absolutely conserved cysteine that 

serves as fifth ligand to the heme iron; the conserved Glu-X-X-Arg motif in helix K, also on the proximal 

side of heme and probably needed to stabilize the core structure through a set of salt bridge 

interactions (E–R–R) with the fourth conserved motif, PxxFxPE/DRF (often PERF, but R is sometimes 

replaced by H or N), which is located after the Kʹ helix in the “meander” facing the ExxR motif; and 

finally, the central part of the I helix, containing another consensus sequence considered as P450 

signature (Ala/Gly-Gly-X-Asp/Glu-Thr-Thr/Ser), which corresponds to the proton transfer groove on 

the distal side of the heme (Werck-Reichhart and Feyereisen, 2000). This final conserved motif 

surrounds a conserved threonine in the middle of the long helix I that runs on top of the plane of the 

heme, over pyrrole ring (Feyereisen, 2012). The description of the structure essentially follows the 
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nomenclature of the P450cam protein, the camphor hydroxylase of Pseudomonas putida (Poulos et 

al., 1985) and typical outline of structural arrangement is given in Figure 1.8. 

The most variable regions of P450s are associated with either amino-terminal anchoring or 

targeting of membrane-bound proteins, or substrate binding and recognition; the latter regions are 

located near the substrate-access channel and catalytic site and are often referred to as substrate-

recognition sites (SRSs) as described by Gotoh (Gotoh, 1992). SRSs are described as flexible, moving 

upon binding of substrate so as to favour the catalytic reaction. Other variations reflect differences in 

electron donors, reaction catalysed or membrane localization. Most eukaryotic P450s are associated 

with microsomal membranes, and very frequently have a cluster of prolines (Pro-Pro-X-Pro) that form 

a hinge, preceded by a cluster of basic residues (the halt-transfer signal) between the hydrophobic 

amino-terminal membrane anchoring segment and the globular part of the protein (Werck-Reichhart 

and Feyereisen, 2000). The hinge slaps the globular domain of the P450s onto membrane surface and 

is important for heme incorporation and assembly. Additional membrane interaction seems to be 

mediated essentially by a region, located between the F and G helices that shows increased 

hydrophobicity (Williams et al., 2000). This region is thought to create a hydrophobic environment 

through which substrate can enter the active site.  
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1.6.3 Insects Cytochrome P450s 

The first insect P450s cloned and sequenced were CYP6A1 from Musca domestica (Feyereisen 

et al., 1989). Since then progress has been made in identification of insect P450s especially boosted 

with the successful sequencing of insect genomes including those of the fruit fly D. melanogaster and 

An. gambiae (Feyereisen, 2006, Claudianos et al., 2006, Feyereisen, 2012).  Insect genome sequencing 

projects, starting with that of D. melanogaster in 2000, finally revealed the cast of P450 characters in 

insects (Tijet et al., 2001, Feyereisen, 2012). The cytochrome P450 complement size of an insect 

genome is not a definite number (Feyereisen, 2011); insects can survive with small genomic P450 

complement even in toxic environments and larger number of P450s does not necessarily mean ability 

Figure 1.8: (A) Primary structures of P450 proteins. (a) Typical features of an ER-bound P450 

protein (class II enzyme), (b) Variants of this canonical structure most commonly found: 1, soluble class 

I, 2, mitochondrial class I; 3, membrane-bound or plastidial class III: (B) A ribbon representation of 
the distal face of the folded CYP2C5 showing its putative association with the ER membrane 
(purple), helices and sheets. Heme is in orange and the substrate in yellow. Adapted from 

(Feyereisen, 2012). 
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to resist insecticides. However, insects do have large number of P450s due possibly to one of these 

two reasons (Scott, 2008): (i) detoxification of the numerous environmental and dietary toxins which 

constitutes the primary selective force for presence of P450s in each specie and maintenance of its 

diversity between species; (ii) or alternatively,  the majority of P450s in insect are not involved in 

detoxification of xenobiotics, but rather in the metabolism of other compounds. 

Insect CYP genes fall into four major clans (Feyereisen, 2006), named after the founding family 

in vertebrates (CYP3, CYP4, CYP2 clans) or their subcellular location (mitochondrial CYP clan) 

(Feyereisen, 2012). This classification is given in brief in Table 1.2. Though insect P450s are distributed 

across 48 major CYP families (Amenya et al., 2008) majority of the P450 genes implicated in resistance 

to insecticides are from three main families: CYP4, 6 and 9 (Feyereisen et al., 1989). Insect 

monooxygenases can be detected in a wide range of tissues. Highest activities are usually associated 

with the midgut, fat bodies and Malpighian tubules (Hodgson, 1983) but the expression of individual  

P450s can vary between these tissues (Scott et al., 1998a). Also, dramatic variation in monooxygenase 

activities and P450 levels occur during the development of most insects (Scott, 2008). In general, total 

P450 levels are undetectable in eggs, rise and fall in each larval instar, are undetectable in pupae and 

are expressed at high levels in adults. 

Table 1.2 Four clans of CYP genes in insects, with CYP family numbers. Numbers as in 2010. Adapted 

from (Feyereisen, 2012).  
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1.6.4 Genomic Variation of Insects P450s 

1.6.4.1  Allelic Variants, Copy Number Variation and Alternative Splicing 

Allelic variants of cloned P450 cDNAs and genes are very frequent and were described in the 

earliest studies of insect P450 (Cohen et al., 1994). Examples of this variation were most striking in An. 

gambiae genome found to be  highly polymorphic, with a single nucleotide polymorphism (SNP) 

frequency of 1 every 26bp in CYP genes (Wilding et al., 2009) and An. funestus in which, on average 7 

SNPs per kilobase were observed in DNA fragments from 50 genes (Wondji et al., 2007a). In An. 

funestus CYP gene duplications have been reported in mosquitoes (Wondji et al., 2009, Irving et al., 

2012). Using positional cloning technique, Wondji and colleagues have established that the An. 

funestus CYP6P9 is duplicated into CYP6P9a and CYP6P9b while CYP6M1 is triplicated into CYP6M1a, 

CYP6M1b and CYP6M1c.   

Allelic variants of P450s were also described for P. polyxenes (Wen et al., 2006). Of the two 

paralogous genes CYP6B1 and CYP6B3, the former has three variants (CYP6B1v1, CYP6B1v2 and 

CYP6B1v3) which differ significantly in their linear and angular-furanocoumarin metabolising 

properties compared to the two variants from the CYP6B3. 

There is little evidence for alternative splicing of insect P450 transcripts as additional means of 

generating diversity (Feyereisen, 2012). But, a typical example is the Cyp4d1 gene from D. 

melanogaster which utilizes two alternate first exons, and expressed sequence tags (ESTs) for each 

transcript. The first cDNA cloned   (Gandhi et al., 1992) uses a proximal first exon and corresponds to 

transcript Cyp4d1-PA, whereas several ESTs of transcript Cyp4d1-PB use a more distal first exon 

instead.  

1.6.5 Mechanism of Action of CYP450s 

CYP450s occupy central position in biological system for their ability to activate inert C-H 

bonds (Shaik et al., 2005). The ability to catalyse regiospecific and stereospecific oxidative attack on 
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non-activated hydrocarbons at physiologic temperatures make these enzymes to be compared to a 

nature’s ‘blowtorch’ (Werck-Reichhart and Feyereisen, 2000). As a nanomachine P450 uses dioxygen 

and two reducing equivalents to catalyse a variety of stereospecific and regioselective oxygen 

insertion into diverse organic compounds (Shaik et al., 2005, De Montellano, 2005). There are some 

structural features that are common to all P450 isoforms. The active species of the enzyme is an iron 

ion ligated to a protoporphyrin IX macrocycle and two additional axial ligands: one, called proximal, is 

a thiolate from a cysteinate side residue of the protein, and the other, called distal, is a variable ligand 

which changes during the catalytic cycle of the enzyme and thereby activates the enzyme’s main 

function (Shaik et al., 2005).  

The oxidized P450 is a mixture of a low spin (FeIII) form with water as the sixth coordinated 

ligand on the opposite side of the Cys thiolate ligand and a high spin (FeII) pentacoordinated form 

(Feyereisen, 2012). P450 cylce has a multi-step and cyclical nature comparable to a ticking clock 

(Munro et al., 2013). In a resting state (Figure 1.9, 12 o’clock) the ferric form has distal water ligand. 

Substrate binding displaces water from the sixth liganding position, leading to a shift to high spin 

(1:00h-1:30h). This shift can be observed at 390-435nm (Type I spectrum) and is accompanied by a 

decrease in the redox potential of P450. The P450–substrate complex receives a first electron from a 

redox partner (P450 reductase or adrenodoxin at 2:00h), and the ferrous P450 (FeII) then binds O2 

(3:30h) to form ferric superoxo intermediate (4:30h). At this step carbonmonoxide can compete with 

O2 for binding to P450; its binding leads to a stable complex, with an absorption maximum at 450nm 

which is catalytically inactive. The P450–O2–substrate complex then accepts a second electron (from 

P450 reductase or in some cases cytochrome b5, or from adrenodoxin) to form a ferric peroxide anion 

(6:00h). This second reduction is believed to be, though not always, the rate-determining step in the 

catalytic cycle (Shaik et al., 2005). 

After consecutive protonation, a ferric hydroperoxo complex (the so-called Compound 0 

specie, 7:30h) then leads to the activated oxygen form(s) of the enzyme (Feyereisen, 2012). 

Compound 0 is a good Lewis base and can abstract an additional proton to generate Compound I 
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(Shaik et al., 2005). This intermediate (Compound I, 9:00h) is an iron (IV) oxo species with a delocalized 

oxidizing equivalent. Hydroxylation of an un-activated C–H bond therefore follows a “rebound” 

mechanism, where hydrogen is abstracted from the substrate forming an iron (IV) hydroxide that then 

recombines quickly with the substrate radical (Feyereisen, 2012). This species then transfers an 

oxygen atom to the substrate; in this case the alkane is converted thereby to an alcohol (11:00h). After 

this catalytic reaction the alcohol exits the pocket, water molecules enters and the enzyme is restored 

to the resting state by binding a water molecule (12 o’clock).  

 

 

 

 

 

 

The efficiency of the catalytic cycle is dominated by a few key factors (Shaik et al., 2005). First 

is the donor ability of the thiolate ligand, which is referred to as the “push” effect (Dawson et al., 

1976), and which seems to be crucial for the operation of the catalytic cycle. Second is the protonation 

and hydrogen-bonding machinery of the distal side that converts Cpd 0 into Cpd I and prevents the 

Figure 1.9: The P450 catalytic cycle clock and peroxide shunt pathway. The peroxide shunt 

pathway is depicted by the clock hands and uses H2O2 or related oxygen donors to directly generate 
compound 0 (7:30h) from the ferric substrate-bound form (1:30h). The oxygen rebound mechanism is in 
the base of the clock. This is an expansion of the highlighted portion between 9:00h (compound I) and 
11:00h (hydroxylated product formation and release), and shows hydrogen abstraction from the substrate 
by compound I to form compound II (central image), prior to rebound of the hydroxyl to the substrate 
radical to form the hydroxylated product. Adapted from (Munro et al., 2013). 
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generation of hydrogen peroxide and other oxygen wasting species (“uncoupling” processes that 

result in a loss of the reducing equivalents, NADH or NADPH) (Shaik et al., 2005). Third is the access of 

water molecules into the pocket, which needs to be well controlled. On one hand, water molecules 

seem to be important for protonation (Vidakovic et al., 1998), but on the other hand, too much of it 

leads to uncoupling (Raag et al., 1991). Finally, interaction of amino residues within the active site with 

the sulphur atom of the distal cysteinate ligand may enhance stability and activity (Shaik et al., 2005). 

1.6.6 Redox Partners of Cytochrome P450s 

The monooxygenation catalysed by P450s reaction requires a coupled and stepwise supply of 

electrons, which are derived from NAD(P)H and supplied via a redox partner (Paine et al., 2005). P450s 

can be divided into two major families (Class I and Class II) according to the different types of electron 

transfer systems they utilise (Figure 1.10). P450s in the Class I include bacterial and mitochondrial 

P450s, which use a two-component shuttle system consisting of an iron-sulfur protein (ferredoxin) and 

ferredoxin reductase. The Class II enzymes (microsomal P450s) receive electrons from a single 

membrane-bound enzyme, NADPH cytochrome P450 reductase (CPR), which contains FAD and FMN 

cofactors. Cytochrome b5 may also couple with some members of the Class II P450s family to enhance 

the rate of catalysis. Although P450 redox partners are usually expressed independently, "self-

sufficient" P450 systems have also evolved through the fusion of P450 and CPR genes. These fusion 

molecules are found in bacteria and fungi, e.g., the P450 BM3, a fatty acid ω-2 hydroxylase from 

Bacillus megaterium, which comprises a soluble P450 with a fused carboxyl terminal CPR module.  
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1.6.6.1 NADPH Cytochrome P450 Oxidoreductase (CPR) 

P450 reductase (EC 1.6.2.4) belongs to a family of flavoproteins utilizing both FAD and FMN as 

cofactors (Feyereisen, 2012). The P450 diflavin reductases emerged from the ancestral fusion of a 

gene coding for a ferredoxin reductase with its NADP(H) and FAD binding domains, with a gene coding 

for a flavodoxin with its FMN domain. The insect P450 reductases sequenced to date are orthologous 

to the mammalian P450 reductases, with an overall amino acid sequence identity of 54% for the house 

fly P450 reductase, first cloned and sequenced in 1993 (Koener et al., 1993).  

Apart from plants, which contain multiple CPR genes (Benveniste et al., 1991) most organisms 

contain a single CPR gene (Urban et al., 1997). There is a single CPR gene in insect genomes, although 

Figure 1.10: Electron transfer partners of cytochrome P450. In Class I systems, electrons are 

shuttled from NAD(P)H through an FAD-containing ferredoxin reductase and an iron-sulfur 
containing ferredoxin to P450; in prokaryotes these are typified by putidoredoxin reductase (PdR) 
and putidoredoxin (Pdx), and in eukaryotes by mitochondrial membrane associated adrenodoxin 
reductase (AdR) and adrenodoxin (Adx). Class II systems are driven by electrons delivered from 
NADPH through diflavin (FMN- and FAD-containing) reductases. In eukaryotes these are bound to 
the endoplasmic reticulum, while fused systems such as P450 BM3 exist in bacteria and fungi. Novel 
systems now include P450RhF, which contains an FMN-containing reductase fused with a 
ferredoxin-like centre and a P450. Adapted from (De Montellano, 2005, Paine et al., 2005). 
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there are other diflavin reductases (Feyereisen, 2012). The housefly CPR gene codes for a protein of 

671 amino acids and mapped to chromosome III and is 82% identical to the D. melanogaster CPR 

(Hovemann et al., 1997) and 75% identical to the CPR from An. gambiae (Nikou et al., 2003), which in 

turn is 96% identical to An. funestus CPR.  

The insect, mammalian, and yeast enzymes are functionally interchangeable in reconstituted 

systems of the purified proteins or in heterologous expression systems (Feyereisen, 2012). CPR is 

responsible for transferring electrons to many naturally occurring electron acceptors, including P450 

enzymes and cytochrome b5 (Murataliev et al., 2004), as well as  other redox proteins including  

cytochrome c (Williams and Kamin, 1962), heme oxygenase (Schacter et al., 1972), etc.  

 The microsomal P450 monooxygenase complex is localized to the endoplasmic reticulum 

membrane. Like P450, CPR contains an N-terminal hydrophobic region that spans the lipid membrane 

and anchors it to the surface (Paine et al., 2005). On membrane surface it is thought that CPR lies in 

such an orientation so that both the FMN and FAD/NADPH domains lie close to the membrane 

surface, which would allow optimal communication between the FMN and the P450 heme (Wang et 

al., 1997). Transient monooxygenase complexes are formed on the membrane surface as a result of 

collisions between P450s and CPR as each moves within the endoplasmic reticulum membrane with 

the phospholipid component of the membrane affecting intermolecular interactions of the 

monooxygenase complex and influencing  substrate binding (Paine et al., 2005). Protein-protein 

interactions are also essential to enable electron transfer from the reduced FMN of the flavoprotein to 

the substrate-bound ferric form of the P450. Electrons are transferred from NADPH through the FAD 

and FMN coenzymes of CPR to the iron atom in the prosthetic heme group of the CYPs (Vermilion et 

al., 1981).  The enzymes of  diflavin reductases family have two tightly bound cofactors, FAD and FMN 

(Murataliev et al., 2004). These flavins participate in the transfer of the reducing equivalents from 

NADPH to the terminal electron acceptor (Figure 1.11). Two reducing equivalents are transferred from 

NADPH as a hydride ion, with FAD serving as the acceptor. Electrons are then transferred from FAD 

hydroquinone to the isoalloxazine ring of FMN, which in turn serves as a donor for one-electron 



40 
 

terminal acceptors. Diflavin reductases therefore serve to couple a two-electron donor (NADPH) with 

one-electron acceptors.  

 

 

 

 

 

 

Since P450 is present in a 10-25-fold molar excess over CPR in the liver microsome (Estabrook 

et al., 1971, Paine et al., 2005, Backes and Kelley, 2003) and CPR orchestrates the recognition and 

reduction of not only multiple P450 isoforms but cytochrome b5, cytochrome c and heme oxygenase 

as well (Kenaan et al., 2011), rapid association and dissociation of P450:CPR complexes is important 

for the system to work effectively (Paine et al., 2005). Several studies have found electrostatic 

interactions being the driving force behind the binding of P450 with CPR. Charge-pairing interactions 

between a small cluster of positively charged amino acid residues located on the surface of the side at 

which the prosthetic heme ligated to the P450 (proximal) and another cluster of negatively charged 

Figure 1.11: Domain architecture of microsomal P450 reductase. Top: Fusion of the 

genes of flavodoxin and ferredoxin reductase led to a flavoprotein containing both FAD and FMN 
cofactors bound to a single polypeptide chain. The N-terminal membrane anchor of P450 
reductase is shown in yellow. Bottom:  Domains of P450 reductase in the 3D structure. 
FAD/NADPH domain, green; FMN domain, blue; connecting domain, grey. Flavin cofactors are 
shown in yellow, NADP

+
 in red. Adapted from (Murataliev et al., 2004, Feyereisen, 2012). 
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amino acid residues located on the FMN domain of CPR is thought to drive the interaction between 

the P450s and CPR (Kenaan et al., 2011). A number of studies have established critical amino acid 

residues important for coupling of P450 with the CPR and transfer of electrons (Murataliev et al., 

2004, Im and Waskell, 2011, Kenaan et al., 2011, Feyereisen, 2012).  

1.6.6.2 Cytochrome b5 (b5) 

Originally called cytochrome m (for microsomes) (Strittmatter and Ball, 1954) cytochrome b5 

was shown very early to be present in microsomes (Schenkman and Jansson, 2003), to contain 

protoporphyrin IX, not to bind CO, and to possibly serve as an electron transfer link between NADH 

and cytochrome c (Strittmatter and Ball, 1952). Cytochrome b5 was originally discovered in cecropia 

silkworm larvae by Sanborn and Williams (Paine et al., 2005, Sanborn and Williams, 1950). b5  is a small 

polypeptide (~17kDa) containing 129-134 residues, which are divided into an amino-terminal 

hydrophilic heme domain and a carboxyl-terminal hydrophobic membrane-binding region (Paine et al., 

2005, Hlavica and Lewis, 2001, Mitoma and Ito, 1992). Like cytochromes P450 and CPR, b5 is an 

integral membrane protein located on the cytosolic side of the endoplasmic reticulum where it is 

principally involved in lipid biosynthesis (Figure 1.12). It functions along with another ubiquitous 

electron transport protein cytochrome b5 reductase (b5R) as the electron donor to microsomal 

desaturases that synthesize unsaturated fatty acids, plasmalogens, and sterols (Vergeres and Waskell, 

1995). b5R is responsible for transferring electrons from NADH to b5 in these reactions although 

NADPH can also be used as the electron donor in some cases (Gan et al., 2009); for b5 can also accept 

electrons from an alternative reductase, CPR (Guengerich, 2005). 

There is a single cytochrome b5 gene in insect genomes (Feyereisen, 2012). An. gambiae 

cytochrome b5 gene encodes 129 amino acids (Nikou et al., 2003) and its sequence is 58.1%, 53.5% 

and 94% identical with amino acid sequences of D. melanogaster (Kula et al., 1995), Musca 

domestica (Guzov et al., 1996) and An. funestus (Matambo et al., 2010) cytochrome b5. In the 

endoplasmic reticulum, P450 and  b5 are found in approximately equal amounts (Dürr et al., 2007). 



42 
 

 

 

 

 

 

 

 b5 is important for P450 catalysis. After binding oxygen, the oxyferrous protein of CYP2B4 

accepts a second electron which is provided by either CPR or b5. When the second electron is donated 

by b5 product formation is ∼10 to 100-fold faster (Im and Waskell, 2011) (Figure 1.13). Presence of  b5 

allows less time for side products formation (hydrogen peroxide and superoxide) and improves by 

∼15% the coupling of NADPH consumption to product formation. Cytochrome b5  thus acts as obligate 

electron donor (Schenkman and Jansson, 2003). 

However, depending on the P450 enzyme and on the reaction catalysed, b5 may be inhibitory, 

or without effect, or its presence may be obligatory (Feyereisen, 2012). Cytochrome b5 can have a 

quantitative effect on overall reaction rates, and/or a qualitative role on the type of reaction catalysed 

and the ratio of the reaction products. 

 

Figure 1.12: Topology and structure of b5. (A) Topology of full-length b5. (B) Structural elements of 

the soluble form of rabbit b5, as seen in the solution-state NMR structure determination 1DO9. Shown in 
red is the heme prosthetic group which is held in the cleft between two helix–turn–helix motifs. These 
are ‘tied together’ by a three-stranded β-sheet (green). The C-terminal residues (lower right) are 
disordered in this structure; in full-length b5 they form the link to the transmembrane anchor domain. 
Adapted from (Dürr et al., 2007). 
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The role of b5 may or may not depend on its electron transfer properties. It can influence the 

overall stoichiometry of the P450 reaction, in particular the “coupling rate” (the utilisation and fate of 

electrons from the NADPH). b5 has been shown to compete with the CPR for the binding site on the 

proximal face of CYP2B4 (Im and Waskell, 2011). In this respect, at low molar ratios (<1) of b5 to CPR, 

the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios 

(>1) of b5 to CPR, b5 inhibits activity by binding to the proximal surface of the P450s, preventing the 

reductase from reducing ferric cytochrome P450 to the ferrous protein effectively. 

  Cytochrome b5 can also have effector role in the cytochrome P450 monooxygenase reaction 

(Imai and Sato, 1977, Hlavica, 1984). The b5 binds and causes structural changes to human CYP3A4 

which impact upon the redox changes of the P450 (Schenkman and Jansson, 2003). In reconstituted 

system, in the presence of testosterone or nifedipine, input of the first electron from NADPH to the 

monooxygenase (ferric to ferrous state) and product formation were negligible in the absence of b5 

(Yamazaki et al., 1995). Also, apo-b5 was as effective as the holoprotein in supporting reduction of 

Figure 1.13: Catalytic cycle of P450s; role of CPR and b5. Adapted from (Im and Waskell, 2011). 
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CYP3A4 and product formation indicating that the role of b5 did not require it to undergo redox 

changes or to transfer an electron to the P450 (Yamazaki et al., 1996). Like CPR, it is generally 

accepted that charge-pair interactions drive the formation of P450:b5 complexes (Paine et al., 2005). 

Indeed, b5 and CPR were discovered to bind to the basic, positively-charged residues on the proximal 

surface of CYP2B4 on unique but overlapping sites (Im and Waskell, 2011).  

 

1.7  Molecular Basis of Monooxygenase-mediated Insecticide Resistance  

1.7.1 Introduction 

Metabolic resistance like moonoxygenase-mediated ones is more important than target-site 

insensitivity, for the detoxification has the potential to confer cross-resistance to toxins independent 

of their target sites (Scott, 1999, Dadd et al., 1985). Overexpression of a particular P450 is not 

necessarily an indicator of the involvement of same P450 in resistance. A typical P450 should only be 

considered to be involved in resistance if the following two criteria are met (Scott et al., 1998b): (1) 

the P450 must be shown to detoxify (or sequester) the compound to which the strain has resistance 

to, and (2) the resistant strain should have a greater amount of this P450, or the protein coded for by 

the resistant strain allele should be shown to have a greater catalytic activity (i.e. detoxification) 

compared to the protein coded for by the susceptible strain allele. In essence, there should be 

overexpression of the protein and increased detoxification of the insecticide (Liu and Scott, 1998) 

which can occur by cis- and trans- regulation of the transcription process. Thus, it is possible that 

insecticide resistance as a trait could map to a location in the genome that is different from the P450, 

which is involved in the detoxification (Scott, 1999). It is also noteworthy that the factor(s) responsible 

for trans- regulation of the P450(s) involved in resistance also appear capable of regulating the 

expression of other P450s that are not necessarily involved in resistance (at least in house flies). 

Knowing which subsets of P450s are elevated by the same regulatory factor(s) may help to understand 

cross-resistance patterns.  
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P450s operate in concert with redox partners, CPR and b5 and thus enhancement of 

metabolism can potentially be acquired via multiple pathways (Schuler and Berenbaum, 2013). Schuler 

and Berenbaum summarised different resistance mechanism that could function at the transcriptional 

level: (i) higher constitutive production of transcripts due primarily to mutations in promoter 

sequences, (ii) higher inducible expression of transcripts due primarily to mutations in trans-acting 

factors or their signalling cascades (iii) and/or greater responsiveness to transcriptional inducers in 

food sources and/or environment; at the protein level: (iv) mutations in catalytic site residues which 

affect the range or rate of substrate metabolism, (v) mutations in the substrate access channel 

residues that affect substrate entry, (vi) mutations in the proximal surface residues that affect electron 

transfer from CPR and/or b5, (vii) mutations in these interacting partners that affect coupling and 

electron delivery.  

1.7.2 Distribution of Insecticide Resistance in An. funestus across Africa 

To date, An. funestus has been shown resistant to major insecticides used in public health 

across Africa (Dia et al., 2013, Brown, 1986, Ranson et al., 2011, Coetzee and Koekemoer, 2013, 

Wondji et al., 2009, Wondji et al., 2012) (See Table 1.3 and Figure 1.14). However, pattern of 

resistance to insecticides differ across regions of Africa and this may have impact on insecticide 

resistance management strategies, because variation in the resistance pattern makes extrapolation 

from one locality to another, one region to another,or one country to another not feasible.  

1.7.2.1 Southern Africa:  

First report of pyrethroid resistance in An. funestus was in South Africa. After ~40 years of 

annual spray with DDT and eradication of An. funestus from South Africa, a switch to pyrethroid 

deltamethrin in Kwazulu/Natal (KZN) Province of South Africa in 1996 resulted in six-fold increase in 

malaria incidence by 1999 (Hargreaves et al., 2000). The surge in malaria incidence in KZN was due to 

a highly endophilic An. funestus, established to be resistant to pyrethroid insecticides. Thereafter, in 
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2001 Brooke (Brooke et al., 2001) reported high Type II pyrethroids and propoxur resistance in An. 

funestus from southern Mozambique, and in 2006 An. funestus highly resistant to Type II pyrethroids 

deltamethrin and ʎ-cyahalothrin were described from southern Mozambique (Casimiro et al., 2006). 

The population from Mozambique were also resistant to permethrin and marginally resistant to 

bendiocarb and propoxur, but fully susceptible to malathion and DDT.  

Since then rapidly growing resistance to pyrethroids insecticides (Coetzee et al., 2013) as well 

as multiple resistant populations of An. funestus have been continuously reported in southern Africa.  

For example, Cuamba and colleagues in 2010 reported highly pyrethroid resistant populations of An. 

funestus from Chokwe, Mozambique (Cuamba et al., 2010), a region from which pyrethroid 

susceptibility have been described by Casimiro (Casimiro et al., 2006). In Malawi, high and multiple 

resistance to pyrethroids permethrin and deltamethrin as well as carbamates bendiocarb and 

propoxur were reported in 2010 (Hunt et al., 2010) in An. funestus population that are in turn fully 

susceptible to malathion, fenitrothion, pirimiphos methyl, dieldrin and DDT. A contrasting pattern of 

resistance was observed in Zambian populations of An. funestus (Chanda et al., 2011) that were found 

to be pyrethroid and DDT-resistant but susceptible to malathion consistent with other southern 

African populations. The Zambian population were also susceptible to bendiocarb in contrast to the 

Malawian and Mozambican populations described above.  

The increase in pyrethroid resistance in An. funestus became finally selected: “pyrethroid 

resistance has been selected in Malawi over the last 3 years  in the two major malaria vectors An. 

gambiae and An. funestus, with a higher frequency of resistance in the latter” (Wondji et al., 2012). 

Wondji and colleagues found that An. funestus from the Chikwawa, Malawi are resistant to the 

carbamate, bendiocarb and three pyrethroids (permethrin, deltamethrin and λ-cyhalothrin) and 

susceptible to DDT and pirimiphos methyl. This pattern of pyrethroid resistance for permethrin and 

deltamethrin was further confirmed in An. funestus population from Malawi and Mozambique, with 

Mozambican population exhibiting higher resistance with no mortality recorded after 1h, 30 minutes 

exposure to discriminating dose of pyrethroids (Riveron et al., 2013). 
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Table 1.3 Mechanism of resistance in An. funestus to main insecticide used in public health 

Country Insecticides Resistance Mechanism Reference 
South Africa Pyrethroids, Type II N.D. (Hargreaves et al., 2000) 

Mozambique Pyrethroids, Type I and II, propoxur Mixed function oxidases (Brooke et al., 2001) 

Mozambique 
Pyrethroids, Type I and II, bendiocarb, 

propoxur 
Mixed function oxidases (Casimiro et al., 2006) 

Mozambique Pyrethroids, Type I and II P450 monoxygenases: CYP6P9a, CYP6P9b (Cuamba et al., 2010) 

Malawi 
Pyrethroids, Type I and II, bendiocarb, 

propoxur 
N.D. (Hunt et al., 2010) 

Zambia Pyrethroids, Type I and II, DDT N.D. (Chanda et al., 2011) 

Malawi Pyrethroids, Type I and II, bendiocarb P450 monoxygenases: CYP6P9a, CYP6P9b (Wondji et al., 2012) 

Uganda Pyrethroids, Type I and II, DDT P450 monoxygenases: CYP6P9a, CYP6P9b (Morgan et al., 2010) 

Kenya Pyrethroids, Type I and II, DDT Mixed function oxidases 
(McCann et al., 2014), 
(Kawada et al., 2011) 

Uganda Pyrethroids, Type I and II, DDT P450 monoxygenases: CYP6P9a, CYP6P9b (Mulamba et al., 2014b) 

Ghana Pyrethroids, Type I, DDT Mixed function oxidases (Okoye et al., 2008) 

Ghana Bendiocarb, DDT N.D. (Hunt et al., 2011) 

Burkina Faso Dieldrin Rdl mutation 
(Dabire et al., 2007), (Wondji 

et al., 2011) 

Benin 
Pyrethroids, Type I and II, DDT, 

bendiocarb 
P450 monoxygenases: CYP6P9a, 

CYP6P9b, CYP6Z1; GSTs: GSTδ1_5, GSTe2 
(Djouaka et al., 2011) 

Benin Pyrethroids, Type I, DDT GSTe2 (Riveron et al., 2014b) 

N.D. Resistance mechanism not determined.  

 

 

 

Figure 1.14: Insecticide resistance in An. funestus in Africa. Symbols indicate the 

presence of resistance in a country, and their position is not representative of actual 

geographical sites. Abbreviation: DDT, dichlorodiphenyltrichloroethane; DR Congo, 

Democratic Republic of the Congo. Adapted from (Coetzee and Koekemoer, 2013). 
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These and other studies not cited established that southern African An. funestus (from 

Malawi, Mozambique and Zambia) are resistant to pyrethroids and the resistance had been steeply 

increasing. While Malawian and Mozambican populations were resistant to carbamates bendiocarb 

and propoxur but susceptible to DDT, in contrast, Zambian population were resistant to DDT but 

susceptible to bendiocarb (Coetzee and Koekemoer, 2013). And all populations from these three 

countries were fully sensitive to organophosphate malathion and organochlorine dieldrin.  

1.7.2.2 East Africa 

Prior to 2010 there was no in-depth report on the resistance status of An. funestus to major 

insecticides used in public health in Uganda. In 2010, pyrethroid resistance was described in An. 

funestus from Uganda (Morgan et al., 2010). The population from Tororo was highly resistant to 

pyrethroids, marginally resistant to DDT, but fully susceptible to carbamate bendiocarb and 

organophosphates malathion and organochlorine dieldrin. Pyrethroids (permethrin and deltamethrin) 

and DDT resistance was reported as well in some populations of An. funestus from Masindi, north-

western Uganda (Mulamba et al., 2014a) confirming the observations of Morgan and colleagues. This 

pattern of resistance was confirmed as increasing across Uganda and in Kisumu, western Kenya.  

Widespread resistance to Type I and Type II pyrethroids and DDT was recently confirmed by Mulamba 

and colleagues (Mulamba et al., 2014b) in An. funestus from several localities across Uganda, as well 

as populations from Kisumu, Kenya. However, as observed in the previous studies full susceptibility to 

bendiocarb, malathion and dieldrin was reported in these Ugandan and Kenyan populations.   

After long term implementation of insecticide treated bed nets in western Kenya, An. funestus 

re-emerged as a major malarial vector in 2008 (McCann et al., 2014) with high infection rate and 

resistance to permethrin and deltamethrin, with mortalities lower than obtained with An. gambiae 

from the same locality.  
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1.7.2.3 West and Central Africa 

Reliable literature on resistance status of An. funestus from West and Central Africa is only 

published from studies carried out in Benin, Ghana, Burkina Faso and Cameroon (Coetzee and 

Koekemoer, 2013).  

In Ghana, in 2006 An. funestus and An. gambiae were described as the major vector species in 

Obuasi gold mine (Coetzee et al., 2006) with the An. funestus  from the study resistant to DDT and 

bendiocarb but susceptible to pyrethroids and malathion. A follow up study in this locality (Okoye et 

al., 2008) confirmed DDT resistance and discovered in addition resistance to permethrin. Further 

studies documented pyrethroid resistance in other regions of Ghana including Kassena-Nankana 

district (Anto et al., 2009) and four other localities were resistance to bendiocarb and DDT was 

discovered (Hunt et al., 2011). However, the populations tested from all localities by Hunt and 

colleagues were 100% susceptible to deltamethrin and malathion.  

In contrast, in Burkina Faso study carried out in three sites confirmed that An. funestus 

populations were resistant to dieldrin but susceptible to pyrethroids and DDT (Dabire et al., 2007). 

Few years later another study published a result in agreement with the previous observation. In An. 

funestus populations from Burkina Faso and Cameroon, Wondji and colleagues (Wondji et al., 2011) 

reported high dieldrin resistance while Southern (Malawi and Mozambique) and East African 

(Ugandan) populations were fully susceptible to this insecticide. However, within the last few decades 

few researches have been conducted in Burkina Faso, Cameroon and other neighbouring West African 

countries to establish resistance status of An. funestus populations toward pyrethroids and other 

insecticides used in public health.  

In 2011 multiple resistant populations of An. funestus were reported in Pahou, southern 

Benin, West Africa (Djouaka et al., 2011). In contrast with the findings in most southern African 

populations (susceptibility to DDT and high resistance to Type I and Type II pyrethroids), the 
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population from Benin were highly resistant to DDT with no mortality in females at all after one hour 

exposure. The population were also resistant to permethrin and deltamethrin (moderate), as well as 

bendiocarb. In line with the observations from Burkina Faso and Cameroon, the population from Benin 

exhibited moderate resistance to dieldrin as well. Full susceptibility to malathion was observed in line 

with the observation all across Africa. Further study in population of An. funestus from Kpome, Benin 

Republic and Gounougou, Cameroon confirmed that the populations from Kpome were highly 

resistant to DDT (just like in Pahou), and revealed moderate resistance to the organochlorine in the 

population from Gounougou, Cameroon (Riveron et al., 2014b).  

In essence, across Africa, insecticide resistance in An. funestus show contrasting pattern and is 

increasing (Nkya et al., 2013), possibly due to selection pressure from agricultural practices and 

escalated usage of insecticides used in public health related vector controls.  

1.7.3 Role of Cytochrome P450s in Insecticide Resistance in An. funestus 

To date no kdr mutation has been detected in An. funestus (Hemingway, 2014, Coetzee and 

Koekemoer, 2013); rather, metabolic resistance caused by increased activity of P450s appears to be 

the major resistance mechanism both in laboratory and field populations of An. funestus (Corbel and 

N’Guessan, 2013, Coetzee and Koekemoer, 2013). In the beginning synergist assays and biochemical 

analyses were used to identify involvement of P450 resistance mechanisms (see Table 1.3); however, 

within the last ten years molecular analyses are increasingly used for identification and confirmation 

of P450 involvement in resistance especially to pyrethroids, in addition to other mechanisms.  

In Southern Africa (Mozambique), synergist assays with piperonyl butoxide (PBO) and 

biochemical analysis suggested elevated levels of mixed function oxidases in An. funestus from 

Mozambique that are highly resistant to Type II pyrethroids and propoxur (Brooke et al., 2001). 

Thereafter, biochemical analysis revealed high levels of mixed function oxidases in multiple resistant 

populations of An. funestus from southern Mozambique (Casimiro et al., 2006). Since the population 

studied by Casimiro and colleagues were highly resistant to pyrethroids and marginally resistant to 
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bendiocarb and propoxur, monooxygenases were suspected to confer cross resistance to more than 

one class of insecticide. Further studies linked pyrethroid resistance to elevated levels of 

monooxygenases in Mozambique a year later (Casimiro et al., 2007).   

 Molecular tools were also applied to unveil the mechanism of pyrethroid resistance in An. 

funestus populations. Quantitative trait locus (QTL) mapping using resistant (FUMOZ-R) and pyrethroid 

susceptible (FANG)  strains identified three pyrethroid resistance locus on chromosomes 2R, 2L and 3L 

(Wondji et al., 2007b) with the major one named rp1 (resistance to permethrin 1) spanning a cluster of 

CYP6 genes. The rp1 locus explained the bulk of pyrethroid resistance phenotype in FUMOZ-R An. 

funestus (Wondji et al., 2007a, Amenya et al., 2008). In 2009, Wondji and colleagues reported that the 

rp1 QTL compose of 14 proteins coding genes of which 10 are P450s from CYP6 family and four of 

these genes (CYP6P9, CYP6P4, CYP6AA4 and CYP6P1) are overexpressed in pyrethroid resistant An. 

funestus in comparison with the fully susceptible laboratory strain, FANG (Wondji et al., 2009). These 

findings suggested that P450 genes and their duplication could contribute to pyrethroid resistance in 

An. funestus adding another twist to the already complex pyrethroid resistance pattern in An. 

funestus. Another positional cloning approach was used by Wondji and colleagues (Irving et al., 2012) 

to identify genes conferring resistance in the uncharacterised rp2 (resistance to pyrethroids 2) QTL in 

An. funestus. Apart from high number of SNP and triplication of CYP6M1 observed in the rp2 locus, 

gene expression profiling and validation indicated significant overexpression in the resistant FUMOZ-R 

strain of P450s CYP6Z1, CYP6Z3 and CYP6M7.  

Using An. gambiae ‘detox chip’ Christian and colleagues (Christian et al., 2011) investigated 

the genes up-regulated in male and female pyrethroid resistant An. funestus from southern Africa 

(Mozambique) and discovered three genes CYP6P9,  cytochrome oxidase I (COI) and CYP6M7 as 

significantly, differentially overexpressed compared with FANG. This confirmed the observations made 

by Wondji and colleagues.  

Meanwhile in 2010 Cuamba and colleagues reported involvement of CYP6P9a and CYP6P9b in 

resistance in a highly pyrethroid resistant populations of An. funestus from Chokwe, Mozambique 
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(Cuamba et al., 2010). Transcription profiling revealed CYP6P9a and CYP6P9b as overexpressed 

compared with the susceptible laboratory colony KELA from Mali. The same year in Uganda (East 

Africa) biochemical and transcriptional analysis of the Tororo Anophele funestus revealed the P450 

CYP6P9b 12 times overexpressed compared with the FANG (Morgan et al., 2010). The Tororo 

population studied were highly resistant to pyrethroids but fully susceptible to carbamate bendiocarb 

and malathion and dieldrin. Still in Uganda, recently (Mulamba et al., 2014b) synergist assays and 

transcriptional analysis implicated metabolic resistance through elevated P450 monooxygenases in 

play, with CYP6P9a and CYP6P9b overexpressed in An. funestus resistant to Type I and Type II 

pyrethroids as well as DDT, compared with the FANG. In neighbouring Kenya (Kawada et al., 2011) 

widespread pyrethroid resistance was also reported in An. funestus with the involvement of metabolic 

resistance suspected from synergy assay with PBO.  

In West Africa biochemical and transcriptional analysis of An. funestus from Benin (Djouaka et 

al., 2011) implicated CYP6P9a, CYP6P9b as well as CYP6Z1 from resistant individuals as overexpressed 

compared with the laboratory susceptible strain, FANG. The CYP6P9a and CYP6P9b were found to be 

overexpressed in pyrethroid and DDT resistant mosquitoes compared with FANG, but with lesser 

overexpression compared with resistant populations from Southern Africa.  

In 2012, Wondji and colleagues (Wondji et al., 2012) reported multiple resistance to 

pyrethroids and bendiocarb in An. funestus from Malawi and described the pyrethroid resistance in 

Malawi and Mozambique as metabolically-based. Biochemical assays in these resistant mosquitoes 

revealed that the pyrethroid resistance was metabolically-based and together with the transcription 

analysis implicated CYP6P9a and CYP6P9b overexpressed, as the major pyrethroid resistance genes in 

An. funestus from Southern Africa.  

Further studies using genome-wide transcription analysis (microarrays) established consistent 

overexpression of duplicated P450s CYP6P9a and CYP6P9b in southern African (Malawi and 

Mozambique) populations of An. funestus compared with FANG (Riveron et al., 2013). The 

involvement of these P450s in pyrethroid resistance was validated via in vitro and in vivo functional 
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characterisation (Riveron et al., 2013, Riveron et al., 2014a). Analysis of sequences of CYP6P9a and 

CYP6P9b cDNA sequences Malawi and Mozambique revealed that the southern African alleles 

possessed significantly lower polymorphisms with reduced nucleotides substitutions compared with 

sequences from FANG which are highly polymorphic. Haplotypes from the southern African alleles 

formed clade together excluding sequences from FANG. The resistant alleles from southern Africa 

were described as undergoing directional selection with beneficial mutations selected and as such 

Malawi and Mozambique sequences of CYP6P9a and CYP6P9b share a group of intra-allelic amino acid 

substitutions in common which makes them different from FANG. Thus, in addition to overexpression 

and duplication, allelic variations in the coding regions of these major pyrethroid resistance genes 

could also impact on pattern of resistance in An. funestus populations from Africa.   

Even though DDT and carbamate resistance observed across Africa is suspected to be 

monooxygenase mediated, in An. Funestus, to date, no single P450 has been characterised and 

validated as responsible for the resistance to either of these insecticides. For carbamate resistance 

PBO synergist assays have been used to show the potential role of monoxygenase, and for DDT 

resistance as well,  no P450 has been confirmed as responsible for it, though CYP6P9a, CYP6P9b and  

CYP6Z1 has been shown to be overexpressed in Benin populations that are resistant to DDT, 

carbamates as well as pyrethroids (Djouaka et al., 2011).   

1.8  Hypothesis 

The duplicated P450s CYP6P9a and CYP6P9b are overexpressed in resistant strains of An. funestus 

across Africa compared to the corresponding genes from the insecticide-susceptible strain, FANG. The 

two genes from southern African populations of An. funestus exhibited extensive allelic polymorphism 

in their coding regions compared with the FANG. The significant polymorphism patterns observed 

suggests that allelic variation in both genes could be one of the main mechanisms conferring 

resistance in these populations. Our hypothesis is that such allelic variations, in addition to 

overexpression is one of the main factors driving pyrethroid resistance. Specifically, variation in the 



54 
 

amino acid sequences in the coding regions of these genes may confer higher pyrethroids 

metabolizing efficiency. A handful of candidate P450s from the other well characterised QTLs, were 

also suspected to be able to metabolise pyrethroids and possibly confer cross-resistance to other 

classes of insecticides, especially DDT and bendiocarb. These include CYP6M7 from rp2 QTL in the light 

of its being overexpressed in multiple resistant An. funestus s.s. from southern Africa and CYP6Z1 

overexpressed in southern and West African populations. Other genes commonly overexpressed in 

southern African populations that are resistant to pyrethroids, carbamate and organochlorine 

insecticides include CYP9J11 from rp3 and CYP6AA4 from the rp1 QTLs. The potential role of these 

genes in pyrethroid metabolism and cross resistance to other insecticides used in public health will be 

elucidated in this study. 

1.9  Aim and Objectives  

 The main aim of this study is to elucidate the molecular mechanisms through which P450 

genes confer pyrethroid resistance or cross resistance to other insecticides, in the major malaria 

vector An. funestus s.s., using  functional characterisation approaches. 

More specifically, the objectives of this study were: 

 (i) to investigate the impact of allelic variation in two genes (CYP6P9a and CYP6P9b) on pattern of 

pyrethroid resistance in An. funestus through polymorphism survey and in silico prediction of activity;  

(ii) to assess the metabolic efficiency of the alleles of CYP6P9a and CYP6P9b using heterologous 

expression and functional characterisation in order to find out if allelic variation is impacting their 

metabolic activities; (iii) to detect causative mutation(s) linked with pyrethroid resistance, with the 

aim to design a DNA-based diagnostic tools that will allow detection of the mutation(s) in the field 

population of An. funestus, and (iv) to identify candidate cross-resistance detoxification genes that can 

metabolize Type I and Type II pyrethroids as well as other non-pyrethroid insecticides, for example 

carbamates (bendiocarb and propoxur) and organochlorine (DDT).   
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2. POLYMORPHISM SURVEY AND PREDICTION OF IMPACT BY MODELLING 

AND DOCKING SIMULATIONS 

2.1 Background 
 

With the kdr type mutation in the VGSC not yet selected in An. funestus s.s. (Amenya et al., 2008, 

Hemingway, 2014), resistance to pyrethroids is mainly metabolic and mediated by detoxification 

enzymes-P450 monoxoygenases (Coetzee and Koekemoer, 2013, Wondji et al., 2012). QTL mapping  

(Wondji et al., 2007b) identified a major pyrethroid resistance locus on chromosome arm 2R which 

coincides with cluster of CYP6 genes (Amenya et al., 2008). This rp1 QTL which explained 87% of 

genetic variance in pyrethroid susceptibility in two families from reciprocal crosses between 

susceptible and resistant strains (Wondji et al., 2009), encoded 14 protein coding genes, 10 of which 

are cytochrome P450s. Two of these P450s CYP6P9 and CYP6P4, which were found to be 25 and 51 

times overexpressed in resistant females An. funestus s.s., were also found to be tandemly duplicated 

in the BAC clone as  well as laboratory and field samples, suggesting that this P450 duplication could 

contribute to pyrethroid resistance. Since then, the duplicated CYP6P9 (CYP6P9a and CYP6P9b) were 

found to be highly overexpressed in resistant populations of An. funestus s.s. compared with the fully 

insecticide susceptible population (FANG), in southern Africa: including Mozambique (Cuamba et al., 

2010, Christian et al., 2011, Riveron et al., 2013);  Malawi (Wondji et al., 2012, Riveron et al., 2013)  

and Zambia (Riveron et al., 2014a). The genes were also found to be overexpressed in resistant 

populations of An. funestus s.s. from Benin, West Africa (Djouaka et al., 2011) and Uganda, East Africa 

(Morgan et al., 2010), compared with FANG, though with lower fold change. Overexpression of 

CYP6P9a and CYP6P9b was described as the major mechanism driving pyrethroid resistance in 

southern Africa (Riveron et al., 2013). The two genes from resistance strains were discovered to be 

undergoing  directional selection in the southern African population of An. funestus s.s. (Riveron et al., 

2013, Wondji et al., 2012) and exhibited extensive allelic polymorphisms (Riveron et al., 2013). The 

copy number variation in the coding regions of CYP6P9a and CYP6P9b could be impacting metabolic 

activity of the genes toward pyrethroid insecticides, augmenting resistance. Pyrethroid resistance 
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profiles in An. funestus s.s. varied across African continent (Cuamba et al., 2010, Djouaka et al., 2011, 

Riveron et al., 2013, Morgan et al., 2010) and it possibly mirrors the polymorphism variation in the 

major resistance genes CYP6P9a and CYP6P9b. 

 In silico homology modelling and docking simulations could be utilised to predict the potential 

impact of such polymorphisms in the activity of these P450s. This is because three-dimensional (3D) 

structure prediction using modelling and molecular docking of ligand insecticides into the active site of 

the models can help elucidate potential  binding sites (Zhou and Johnson, 1999) and predict substrate 

specificity (De Rienzo et al., 2000), as well as key amino acid residues within contact distance of the 

substrate. Narrowing down the potential amino acid replacements that could impact on pyrethroid 

activity can help tailor the next set of experiments (e.g. functional characterisation and site-directed 

mutagenesis) to be done for fast validation and facilitate design of proper diagnostic tools that could 

allow for the detection of such mutations in the field. In terms of structure-activity relationship 

predictions modelling and docking simulations have been applied to predict interaction of pyrethroid 

insecticides with the insect P450s, including An. gambiae CYP6M2 (Stevenson et al., 2011), An. 

minimus CYP6AA3, CYP6AA7 and CYP6AA8  (Lertkiatmongkol et al., 2011), as well as Ae. aegypti  

CYP6Z8 (Chandor-Proust et al., 2013).  

2.2 Objectives 

 

This chapter aims at describing sequence characterisation of CYP6P9a and CYP6P9b and to map 

across Africa the polymorphisms and mutations that make the CYP6P9a and CYP6P9b genes from 

resistant and susceptible strain of An. funestus different. It also aims at predicting the potential impact 

of such polymorphism in the ability of these genes to confer pyrethroid resistance using homology 

models of these genes, molecular docking simulations and prediction of substrate access/products 

egress channels.   
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2.3 Methods 

2.3.1 Mosquito Strains 

 

Mosquito strains from different regions of Africa with different resistance profiles and the fully 

susceptible, laboratory strain, FANG (An. funestus from Angola) were used in this study. The FANG 

strain originated from Calueque, southern Angola: 16˚45ʹS, 15˚7ʹE and had been colonised in 

laboratory since 2002 (Hunt et al., 2005, Wondji et al., 2005). The field strains were collected from 

Pahou (6˚23ʹN, 2˚13ʹE), southern Benin Republic (Djouaka et al., 2011), Tororo district (0˚45ʹN, 34˚5ʹE), 

eastern Uganda (Morgan et al., 2010), Tihuquine, Chokwe district (24˚33ʹS, 33˚01ʹE), in southern 

Mozambique (Cuamba et al., 2010), Chikwawa (12˚19ʹS, 34˚01ʹE), Malawi (Wondji et al., 2012) and 

Katete (14˚11ʹS, 31˚52ʹE), Zambia (Riveron et al., 2014a). Details of resistance profile of these 

mosquitoes and transcriptional analysis of CYP6P9a and CYP6P9b alleles were already established in 

the studies cited above. The field populations from southern Africa were resistant to pyrethroids and 

carbamate insecticides, while those from East Africa were pyrethroid- and DDT-resistant, but 

susceptible to carbamates. West African populations were resistant to pyrethroids and carbamates 

and highly resistant to DDT, several magnitude compared with the levels observed in East Africa. 

Levels of pyrethroids resistance has been consistently higher in southern African populations of An. 

funestus compared to populations from other regions of Africa, with the highest resistance observed 

in populations from Mozambique (no mortality observed up to 1.5 hours). The variations in resistance 

profile could be due to differences in the underlying mechanisms or the same type of resistance 

mechanisms subtly changed; for example, polymorphism in the alleles of CYP6P9a and CYP6P9b could 

be impacting the pyrethroid resistance. Also, other candidate P450 genes, GSTs and carboxylesterases 

could independently or in concert with CYP6P9a and CYP6P9b be responsible for this widespread 

resistance to the three major classes of insecticides used in public health. No resistance to 

organophosphorus malathion was observed in all the field populations of An. funestus across Africa 

consistent with the reported absence of Gly119Ser mutations in the acetylcholinesterase gene.      
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2.3.2 Amplification of full length CYP6P9a and CYP6P9b Alleles 

2.3.2.1 RNA Extraction 
 

All mosquitoes used for RNA extraction were previously confirmed to be An. funestus s.s. using 

cocktail PCR (Koekemoer et al., 2002). Total RNA was extracted from pools of 10 females from 

resistant populations, as well as from FANG using the PicoPure RNA Extraction Kit from Arcturus (Life 

Technologies, CA, USA) according to manufacturer’s protocol. RNA was extracted using Extraction 

Buffer (XB) and Conditioning Buffer (CB); isolated using 70% methanol, Wash Buffers W1 and W2 and 

eluted using Elution Buffer (EB). To enhance quality, RNA was DNase-treated following washing with 

W1. Quantity and quality of isolated RNA were determined with NanoDrop ND1000 Spectrophoto- 

meter (Thermo Fisher) and Agilent 2100 Bioanalyzer.  

2.3.2.2 cDNA Synthesis (RT-PCR) 
 

1µg of total RNA from resistant and susceptible (FANG) mosquitoes was used as a template for 

cDNA synthesis using the SuperScript® III First Strand Synthesis Kit (Invitrogen) according to the 

manufacturer’s instructions. 13µl reaction mix consisting of 1µl (1µg) RNA diluted in 8µl DEPC-treated 

water, 1µl of Oligo(dT)20 (50mM), 3µl DEPC-treated water and 1µl of 10mM dNTP mix was initially 

incubated for 5 mins at 650C. 4µl of 5X first strand buffer, 1µl of 0.1M DTT, 1µl of RNase Out (40U/µl) 

and 1.5µl of SuperScript® III Reverse Transcriptase (200U/µl) was added to make the total volume to 

20.5µl. The mix was then incubated at 250C for 5 mins, and then 500C for 60 mins, followed by 700C for 

15 mins. 1µl of E. coli RNase H was added to the newly synthesized cDNA and incubated at 370C for 20 

mins to remove residual RNA. Quantity and quality of the DNA was finally assessed using NanoDrop 

ND1000 Spectrophotometer (Thermo Fisher).  
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2.3.2.3 Cloning and Sequencing of An. funestus CYP6P9a and CYP6P9b full-length from cDNA 
 

(i) Amplification of CYP6P9a and CYP6P9b alleles 

The full length coding sequences of CYP6P9a and CYP6P9b alleles were amplified from cDNA 

sets from Benin, Uganda, Malawi, Mozambique, Zambia, and the FANG, using the primers listed in 

Table 2.1. To 14µl PCR mix made up of 3µl 5X Phusion HF Buffer (with 1.5mM MgCl2 in final reaction), 

0.12µl dNTP mix (85.7µM), 0.51µl each of forward and reverse primers (0.34µM), 0.15µl (0.015U) of 

Phusion High-Fidelity DNA Polymerase (Fermentas) and 10.71µl of dH20, 1µl cDNA was added. 

Amplification was carried out using the following conditions: one cycle at 95°C for 5 mins; 35 cycles of 

94°C for 20s (denaturation), 57°C for 30s (annealing), and extension at 72°C for 90s; and one cycle at 

72°C for 5mins (final elongation). 3µl PCR products were separated on 1.5% agarose gel stained with 

ethidium bromide (0.5μg/μl) and visualised using transilluminator to confirm products size.  

Table 2.1: Primers used for gene amplification and plasmid sequencing 

Primer Forward Sequence Reverse Sequence 
 Size 
(bp) 

CYP6P9a_Full ATGGAGCTCATTAACGTGGTGTTGGC TCA CAA TTT TTC CAC CTT CAA GTA 
ATT ACC CGC 

1527 

CYP6P9b_Full ATGGAGCTCATTAACGTGGTGTTGGC TTA CAC CTT TTC TAC CTT CAA GTA 
ATT ACC CGC 

1527 

pJET1.2 CGACTCACTATAGGGAGAGCGGC AAGAACATCGATTTTCCATGGCAG ~1727 
pJET725 CCGAAAAGTGCCACCTGAACGTCTAA TCCTGTCTCAGTTTCCTGAAGCTTGCTC ~2277 

 

(ii) Purification of PCR Product Ligation into pJET1.2 Blunt Vector 

  PCR products were cleaned individually with QIAquick® PCR Purification Kit (Qiagen) 

according to the manufacturer's instructions and cloned into pJET1.2/blunt cloning vector using the 

CloneJET PCR Cloning Kit (Fermentas) as described in Table 2.2.   
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Table 2.2: pJET1.2/Blunt ligation protocol 

Component 
Volume (µl) = 10 

Blunting Reaction 
2X Reaction Buffer 5 
Purified PCR Product  3.5 
DNA Blunting Enzyme 0.5 
Vortex briefly and microfuge for 5 seconds - 
Incubate blunting mix at 70°C for 5 mins  - 
Chill on ice - 
Ligation Reaction  
pJET1.2/Blunt Cloning Vector (50ng/ µl) 0.5 
T4 DNA Ligase 0.5 
Vortex briefly and microfuge for 5 seconds  - 
Incubate mix at 22°C for 30 mins  - 

 

(iii) Transformation and small-scale plasmids isolation 

4µl (~5-10ng) of ligation product was added to 40µl Subcloning EfficiencyTM DH5α Competent 

Cell (Invitrogen), chilled in sterile 1.5ml microcentrifuge tube. Reaction was mixed by gently flicking 

the bottom of the tube and left on ice for 30 mins. The cells were shocked for 45s at 42°C and then 

chilled immediately on ice for 2 mins. 950µl of pre-warmed S.O.C. medium was added and the tubes 

incubated at 37°C and 200 rpm for 1 hour. 50-100µl of transformants were spread onto LB plates 

containing 100mg/ml ampicillin and allowed to grow overnight at 37°C. Colonies were suspended 

separately in 20µl dH20 and screened for presence of the gene in a PCR reaction using Kappa Taq DNA 

Polymerase (KAPABIOSYSTEMS) and the pJET1.2 primers listed in Table 2.1. 1.5µl of 10X Taq Buffer A, 

0.75µl of MgCl2 (25mM), 0.12µl of dNTP mix (10mM), 0.4µl each of forward and reverse primers, 

0.12µl of 5U/µl KAPA Taq DNA Polymerase and 10.71µl dH20 were mixed in total volume of 14µl, to 

which 1µl of colony was added. PCR was conducted using the following conditions: one cycle of 95°C 

for 3 mins; 25 cycles each of initial denaturation (94°C for 30 seconds), annealing (57-60°C for 30 

seconds) and extension (72°C for 90 seconds); one cycle of final extension for 90 seconds at 72°C. PCR 

product was run on 1.5% agarose gel stained with ethidium bromide to confirm products size.  

4µl of positive colonies were grown (miniprep) at 37°C for 16 hours in a 6ml LB medium 

containing 3µl ampicillin (100mg/ml), with shaking at 200 rpm. Plasmids were isolated using the 
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QIAprep® Spin Miniprep Kit (QIAGEN) according to the manufacturer’s protocol. Quantity and quality 

of plasmid DNA was determined using NanoDrop ND1000 Spectrophotometer (Thermo Fisher).  

The isolated plasmids were sequenced on both strands using the pJET725 primers (Table 2.1).  

2.3.3 Sequence Analysis and Mapping of Polymorphisms 

 

Analysis of sequences was conducted by detection of polymorphic positions through manual 

examination of sequence traces using BioEdit version 7.2.3.0 (Hall, 1999) and nucleotides differences 

in multiple alignments using CLC Sequence Viewer 6.8 (http://www.clcbio.com/).  

DnaSP 5.10.01 (Librado and Rozas, 2009) was used to analyse intra-allelic genetic variation such as 

nucleotides and haplotypes diversity. Phylogenetic neighbour-joining trees of all haplotypes of 

CYP6P9a and CYP6P9b alleles were constructed using MEGA 6.0 (Tamura et al., 2013).  After sequence 

analyses, the predominant haplotype of each gene from each country was selected for further 

analysis. Amino acids sequences were generated in silico using the CLC Sequence Viewer nucleotides 

analysis module and used for further analyses and identification of mutations.   

2.3.4 Modelling of CYP6P9a and CYP6P9b alleles by Satisfaction of Spatial Restraints  

 

Homology modelling (HMM) is simply a computational approach for 3D prediction of protein 

structure. It involves construction of an atomic-resolution model of the "target" protein (query) from 

its amino acid sequence using experimental, 3D structure of a related homologous protein ("template" 

also referred to as a reference). The profound success of HMM is because the 3D structure of proteins 

from the same family is more conserved than their primary sequences (Lesk and Chothia, 1980) and 

proteins that share low sequence similarity often possess similar structures (Fiser and Sali, 2003).  

(i) Template Selection 

The program BLASTp (Altschul et al., 1990) from NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

was used to search for the best template structure available in the protein data bank (PDB) database 

(Berman et al., 2002). A pairwise sequence alignment with the query protein sequences of CYP6P9a 

http://www.clcbio.com/
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Primary_structure
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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and CYP6P9b recovered as top hit a crystal structure of human microsomal 450 CYP3A4 (PDB:1TQN), 

with sequence similarities of 33% and 32% and lowest expectation value (E-value) of 1.0e-67 and 6.0-69 

respectively for CYP6P9a and CYP6P9b. 1TQN is a crystal structure of CYP3A4 resolved to 2.05Å 

without the N-terminal transmembrane leader sequence amino acids 3-23 (Yano et al., 2004) and 

deposited in protein database (http://www.rcsb.org/pdb/).  

(ii) Template-Target Alignment 

In order to maximise the alignment score between the template and the queries, pair-wise 

alignment of protein sequences (FASTA format) was done using T-Coffee (Notredame et al., 2000). The 

3D-Coffee Expresso (http://tcoffee.crg.cat/apps/tcoffee/do:expresso) algorithm (Armougom et al., 

2006) using sequence-structure threading (Fugue) generated a multisequence alignment by identifying 

template structure using a BLAST and substitution matrix of scores for each aligned pair of residues 

minus the penalties assigned to gaps, as explained elsewhere (Pierri et al., 2010). Residues present in 

the template and absent in the query were deleted, because misalignment of even a single residue can 

result in an error of about 4.0Å in the final model generated (Fiser and Sali, 2003).  

(iii) Model Building 

MODELLER is a standalone computer program that models 3D structures of proteins and their 

assemblies by satisfaction of spatial restraints (Sali and Blundell, 1993). The alignment files of a 

sequence to be modelled with known related structures is used by the MODELLER to automatically 

calculate a model with all non-hydrogen atoms. The input to the program are restraints on the spatial 

structure of the amino acid sequence(s) and ligands to be modelled and the output is a 3D structure 

that satisfies these restraints as well as possible. CYP6P9a and CYP6P9b models were created using the 

MODELLER 9.0v2 (https://salilab.org/modeller/) and human CYP3A4 (PDB:1TQN) as a template. 

MODELLER uses its SALIGN3D module to carry out template-query alignments and then extract spatial 

restraints from two sources: (i) homology-derived restraints on the distances and dihedral angles in 

http://www.rcsb.org/pdb/
http://tcoffee.crg.cat/apps/tcoffee/do:expresso
https://salilab.org/modeller/
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the target sequence extracted from its alignment with template structure (Sali and Blundell, 1993); (ii) 

stereochemical restraints such as bond length and bond angle preferences are obtained from the 

molecular mechanics force field of CHARMM-22 (MacKerell et al., 1998). Statistical preferences of 

main chain dihedral angles and non-bonded atomic distances are calculated by comparing the 

sequences of the target to the template, and a model calculated by optimisation employing methods 

of conjugate gradients and molecular dynamics (Braun and Go, 1985) with simulated annealing in 

Cartesian space. The loop-module in the MODELLER automatically models all the loops in the query by 

energy optimisation approach as well (Fiser et al., 2000). The software refines the models by tuning 

alignments and side chains automatically and then relaxes the backbone. The script used for template-

query alignments and model building is given in Appendix 2.1B. 

2.3.5 Models Assessment (Validation) 
 

Models generated using the MODELLER were assessed by comparing the PROSAII Z score of the 

models and the template structure(s) (Sippl, 1993). The PROSAII Z score (scoring function) of a model 

is a measure of compatibility between its sequences and the structure and ideally the Z score of the 

model should be comparable to that of the template. One of the shortcomings of the Z score is that it 

is an internal evaluation between the modelled structure and the template to determine whether or 

not the model satisfies the spatial restraints imposed. Because of this an independent assessment 

tool, Errat was used to further validate the models.   

2.3.5.1 Errat 

For each query sequence 50 models were iteratively generated and externally assessed 

individually using Errat v2.0 (http://nihserver.mbi.ucla.edu/ERRAT/) in order to determine incorrectly 

determined structures. Errat analyses the statistical patterns of non-bonded interactions between 

different atom types (Colovos and Yeates, 1993). A single output plot is produced that gives the value 

of the error function vs position of a 9-residue sliding window of 96 reliable, high-resolution protein 

http://nihserver.mbi.ucla.edu/ERRAT/
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structures. Regions of candidate protein structures that are mis-traced or mis-registered were then 

identified by analysis of the pattern of non-bonded interactions from each window. Out of 50 models 

generated from each query sequence, one model is selected based on Errat scores for molecular 

docking. Errat scores for the all the models with the lowest incorrectly folded regions selected for 

further analysis, as well as the score of the template (1QTN) could be found in Appendix 2.2.  

2.3.6 Ligand Structures 

 

Virtual datasets of ligand insecticides: permethrin (ZINC01850374), bifenthrin (ZINC02516821), 

deltamethrin (ZINC01997854), λ-cyhalothrin (ZINC01843672), etofenprox (ZINC02558051), DDT 

(ZINC01530011) and bendiocarb (ZINC02015426) were retrieved from the library of ZINC12 

(https://zinc.docking.org/) database in MOL2 format (Irwin and Shoichet, 2005).  

2.3.7 Preparation of Receptors (Models) and Ligands for Molecular Docking  
 

MODELLER generates a model of main chain and side chain atoms devoid of hydrogen atoms and 

before docking simulation models were prepared by adding hydrogen atoms. This was done using 

using the Molegro Molecular Viewer 2.5 (MMV) software from CLC bio (http://www.clcbio.com/) and 

both receptor and ligands were prepared in PDB format following the assigning of chirality to some of 

the insecticide ligands, e.g. permethrin.   

2.3.8 Molecular Docking with GOLD 
 

Molecular docking is basically a conformational sampling procedure in which various docked 

conformations are explored to attempt to predict the potential right one (Wang et al., 2003).  

Conformational sampling must be guided by a scoring or energy function (Warren et al., 2006) that is 

used to evaluate the fitness between the protein and the ligand. The final docked conformations are 

usually selected according to their scores and/or productive poses. The accepted hypothesis is that 

lower energy scores represent better protein-ligand bindings compared to higher energy values. A 

number of approaches for the choice of scoring functions have been reported and can be roughly 

https://zinc.docking.org/
http://www.clcbio.com/
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grouped into three approaches: force field methods (Goodsell et al., 1996), empirical scoring functions 

(Wang et al., 2007) and knowledge-based potentials (Gohlke et al., 2000).  

Genetic algorithm for ligand docking (GOLD) is an automated ligand docking program which uses 

genetic algorithm to perform protein docking (Jones et al., 1997). GOLD utilises evolutionary strategy 

to explore the conformational variability of a flexible ligand while simultaneously sampling available 

binding modes of the ligand into a partially flexible protein active site. Hydrogen bond motifs have 

been encoded into the GOLD algorithm in order to search the spaces of available binding modes 

efficiently. Also, a simple scoring function is used to rank generated binding modes. The program has 

been documented to achieve up to 71% success rate of predicting correct binding mode of a ligand 

onto a protein when compared with the results from X-ray crystals of protein-ligand complexes (Jones 

et al., 1997, Verdonk et al., 2003). GOLD employs artificial mimicry to simulate nature (CCDC, 2011); 

each potential docking mode (solution) is considered as a chromosome and is assigned a specific 

score. The chromosome contains information about the mapping of a ligand H-bond atom onto 

(complementary) protein H-bond atoms, mapping of hydrophobic points on the ligand onto protein 

hydrophobic point and the conformation around flexible ligand bonds and protein -OH groups. Sets of 

solutions are termed a population and corresponding chromosomes ranked according to fitness. Two 

individual chromosomes share the same niche if the r.m.s.d. between the coordinate of their donor 

and acceptor is less than 1.0Å (1.0Å = 0.1nm) apart. The population of chromosomes is iteratively 

optimised so that at each step of the run, a point mutation may occur in the chromosome, or two 

chromosomes may mate to produce a child (crossover) and migration of a population member from 

one island to another can take place. The optimised chromosome then becomes a parent and 

selection of parent chromosome is biased towards the fitter members of the population (ligand 

dockings with better fitness score). 

For docking with GOLDv3.2, ChemScore fitness function was chosen for it has been trained by 

regression against binding affinities data (Eldridge et al., 1997). The function was derived empirically 
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from a set of 82 protein-ligand complexes for which measured binding affinities were available (Baxter 

et al., 1998). ChemScore estimates the total free energy change as the ligand binds to its respective 

receptor. Docking was performed using the genetic algorithm (GA) protocol as implemented on the 

user-friendly Hermes graphical user interface of GOLD. The active site of the protein was defined as a 

binding cavity (sphere) of 20Å radius centred on the heme-iron atom. 50 docking solutions (poses) of 

each ligand with respective receptor protein ranked according to their ChemScore fitness were 

generated. Solutions with the highest scores (best-ranked docking poses) which are in potentially 

productive orientations were selected for further analysis. Visualisation and preparation of figures 

from the docking were carried out using the PyMOL 1.7 and MMV.  

2.3.9  In silico Analysis of Protein Pockets and Cavities  
 

To investigate how the pyrethroid ligand could enter the active site of two models each from 

CYP6P9a (MALCYP6P9a and FANGCYP6P9a) and CYP6P9b (MOZCYP6P9b and FANGCYP6P9b) and how 

product could egress, a search of channels leading into and out of the  the active site to the surface of 

the protein (bulk solvent) was conducted using the algorithm tool CAVER 3.1 (Petrek et al., 2006). 

CAVER models protein body on a discrete 3-dimensional grid space with all grid nodes clustered into 

two classes: inside nodes (inside atomic vdW radii) and outside nodes (nodes located outside the 

protein body). CAVER then spans the grid nodes avoiding nodes that are located in the convex hull in 

its calculation and then find channels by evaluating a cost-function every time a new grid node is 

reached (Cojocaru et al., 2007). Settings were set as described in CAVER PyMOL plugin v3.0 

(http://www.caver.cz/fil/download/manual/caver_plugin_userguide.pdf): (i) maximum Java heap size 

~6000; (ii) maximum probe radius  which species the minimum radius a tunnel must have to be 

identified was set as 0.9; (iii) shell depth (the maximal depth of a surface region) was set as 4; (iv) shell 

radius (the radius of the shell probe which will be used to define which parts of the Voronoi diagram 

represent the bulk solvent) was set as 3; (v) clustering threshold which specify the level of detail at 

which the tree hierarchy of tunnel clusters will be cut was set as 3.5; (vi) number of approximating 

http://www.caver.cz/fil/download/manual/caver_plugin_userguide.pdf
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balls which specify the number of balls that will be placed right under the surface of each larger atom 

to represent individual atoms in the input structure was set as 12. Starting points were set as x (-16.4), 

y (-22.6) and z (-9.6) using the input PDB file with search centre above the heme iron, and with a 

maximum distance of calculation starting point set as  3.0Å and desired radius of 5.0Å.  

2.4 Results 

2.4.1 Sequence Characterisation of CYP6P9a and CYP6P9b Alleles   

To establish the genetic distances between African populations of An. funestus based on CYP6P9a 

and CYP6P9b DNA sequences, phylogenetic trees of predominant haplotypes of CYP6P9a and CYP6P9b 

alleles were constructed using MEGA 6.06. A best-fit substitution model was tested based on Bayesian 

information criteria using four haplotypes each of CYP6P9a and CYP6P9b and Kimura-2 model best 

described the haplotypes dataset. The model was then used with 500 bootstrap replicates and a 

maximum likelihood tree generated (Appendix 2.1A). Haplotypes from the same country form clade 

with one another. However, in both CYP6P9a and CYP6P9b haplotypes from Uganda clustered closer 

to southern African haplotypes followed by haplotypes from FANG. Benin haplotypes were the most 

distant from southern African haplotypes and the closest to the haplotypes of the susceptible FANG.  

2.4.1.1 CYP6P9a Alleles 

Thirty one cDNA sequences of CYP6P9a from across Africa were analysed for nucleotide 

variations and haplotypes diversity. CYP6P9a has 17 haplotypes (Appendix 2.8) and 71 polymorphic 

sites of which 21 were established as non-synonymous (Table 2.3). Highest polymorphism was 

observed with Benin alleles and the susceptible strain FANG, both of which show high nucleotides 

diversity  with 34 and 23 polymorphic sites respectively of which 32 and 19 were synonymous. Uganda  

and Zambia alleles portrayed lowest diversity with only 2 haplotypes and one non-synonymous 

mutation each. Malawi and Mozambique also portrayed reduced nucleotides variations (4 and 5 

nucleotides substitution respectively) of which 3 and 5 led to amino acids mutation respetively. This 

established that the East and southern African alleles of CYP6P9a with reduced diversity and high 
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number of amino acids mutations per substitution site were undergoing directional selection as 

documented for Malawi and Mozambique alleles of CYP6P9a and CYP6P9b (Riveron et al., 2013).  

Table 2.3: Summary statistics for polymorphism of CYP6P9a  between FANG and the resistant strains 
from Malawi and Mozambique, Zambia, Uganda and Benin 

Samples N h S Syn NonSyn π (k) D (Tajima) 
D* 

(Fu and Li) 
Malawi 5 4 4 1 3 0.010 (1.60) -1.09

ns
 -1.09

ns
 

Mozambique 5 4 5 0 5 0.0013 (2.0) -1.12
ns

 -1.12
ns

 

Zambia 5 2 1 0 1 0.00039 (0.60) 1.22
ns

 1.22
ns

 

Fang 6 3 23 19 4 0.0053 (8.13) -1.209
ns

 -1.25
ns

 

Uganda 5 2 1 0 1 0.00026 (0.4) -0.816
ns

 -0.816
ns

 

Benin 5 3 34 32 2 0.0090 (13.80) -1.157
ns

 -1.157
ns

 

Total 31 17 71 50 21 0.0142 (21.80) 0.853
ns

 0.140
ns

 
N= number of sequences (n); h = number of haplotypes; S = number of polymorphic sites; Syn = synonymous mutations; Nsyn = non-
synonymous mutations; π = nucleotide diversity; k = mean number of nucleotide differences; D and D* = Tajima’s and Fu and Li’s statistics; ns 
= not significant; s = significant (p<0.05). 

 
 

With amino acid sequences, alleles from different regions formed clades unique to their 

origins; however  the predominant alleles of FANG cluster between the East (Uganda) and southern 

African alleles reflecting its distance from West African alleles (Figure 2.1A and B) and closer coding 

sequences similarity to East and southern African alleles.  

 

 

Figure 2.1: Schematic representation of haplotypes of CYP6P9a genes between the resistant 
mosquitoes from Malawi, Mozambique, Zambia, Uganda, Benin and the susceptible FANG. (A) 

The polymorphic amino acid positions with the  column Nb indicating the number of individuals sharing the 
haplotype, (B) Neighbor-joining tree of CYP6P9a showing clades specific to each phenotype and origin 
(region). A number has been given to each haplotype preceded by MAL, MOZ, ZMB, UGA, BEN or FANG if it is 
unique to Malawi, Mozambique, Zambia, Uganda, Benin or FANG strains, respectively.  
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However, three mutations were found to be shared by resistant alleles from two or more 

regions across Africa compared with the susceptible FANG (Table 2.4). Polymorphic positions of these 

important mutations in DNA sequences of CYP6P9a, country of origin, amino acid changes, its location 

in the protein sequence and possible impact on enzyme activity are outlined in the Table below.   

Table 2.4: Nucleotide polymorphism and amino acid substitutions between resistant alleles of 
CYP6P9a and CYP6P9b compared with FANG 

Amino acid 
substitution 

Mutation Countries Location and potential Impact 

CYP6P9a 

Ala
51

Ser 151:G->T Benin and Uganda 
Possibly located within the hydrophobic domain targeting 

the endoplasmic reticulum membrane 

Gln
52

Leu 153: C->T Benin and Uganda 
Possibly located within the hydrophobic domain targeting 

the endoplasmic reticulum membrane 

Phe
63

Leu 189: T->G 
Malawi, Mozambique, 

Zambia 
Within the highly variable αA region 

Gln
66

Lys 196: C->A 
Malawi, Mozambique, 

Zambia 
Within the highly variable αA region 

His
301

Gln 903: A->C 
Uganda, Malawi, 

Mozambique, Zambia 
Two residues upstream the substrate recognition site 4  

(SRS4) 

Tyr
320

Ser 959: A->C 
Benin, Uganda, Malawi, 
Mozambique, Zambia 

Middle of the αI helix and within SRS-4; one residue 
downstream the oxygen binding pocket (AGFETS) in 

CYP6P9a 

Ser
431

Phe 1292: T->C 
Benin, Uganda, Malawi, 
Mozambique, Zambia 

Within the loop joining the meander with the cysteine 
pocket; the loop is purported to house the reductase 

interaction site 2 (RIS-2) 

CYP6P9b 

Ser
32

Asn 95: G->A 
Benin, Uganda, Malawi, 
Mozambique, Zambia 

Within the hydrophobic residues anchoring the protein to 
membrane. May impact on protein stability 

Ile
109

Val 325: A->G 
Benin, Uganda, Malawi, 
Mozambique, Zambia 

Within the SRS-1 and the BʹC loop purported to be involved 
in substrate access and channelling 

His
169

Arg 506: A->G 
Benin, Uganda, Malawi, 
Mozambique, Zambia 

C-terminus of D helix 

Gln
171

Pro 512: A->C 
Benin, Uganda, Malawi, 
Mozambique, Zambia 

N-terminus of the E helix 

Glu
172

Asp 516: G->T 
Benin, Uganda, Malawi, 
Mozambique, Zambia 

N-terminus of the E helix 

Glu
335

Asp 
1005: A->C 

Benin, Uganda, Malawi, 
Mozambique, Zambia 

In the –COOH terminus of the αI helix, possible impact as 
RIS-1 residues mediating  interaction with P450 reductase 

Ser
384

Asn 
1151: G->A 

Uganda, Malawi, 
Mozambique, Zambia 

In the  β1_4 (αKʹ) and within the highly conserved SRS5, 
with possible impact on substrate recognition 

Ala
401

Pro 
12001: G->C 

Benin, Uganda, Malawi, 
Mozambique, Zambia 

Within the β2_2 domain; pyrrolidine ring can restrict 
conformational space 

 

2.4.1.2 CYP6P9b Alleles 

CYP6P9b has 15 haplotypes (Appendix 2.9) and 138 polymorphic sites (Table 2.5) the bulk of 

which were contributed from variations of Benin and FANG alleles compared with Uganda and 
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southern African alleles. Nucleotide diversities between all alleles of CYP6P9b were statistically 

significant (p<0.05; D* Fu and Li). Highest diversity was observed with FANG which has 38 polymorphic 

sites compared with 1 polymorphic site each for Uganda and Zambia alleles. Malawi, Mozambique and 

Benin alleles have 5, 2 and 3 polymorphic sites, respectively. 49 of the 138  polymorphisms in CYP6P9b 

alleles were non-synonymous with FANG alleles having only 7 non-synonymous mutations out of its 38 

polymorphic positions. Unlike BENCYP6P9a, the CYP6P9b allele from Benin (BENCYP6P9b) exhibited 

reduced polymorphism and seems to be undergoing directional selection (3 polymorphic positions all 

of which are non-synonymous) just like the Uganda and southern African alleles of CYP6P9b.  

Table 2.5: Summary statistics for polymorphism of CYP6P9b  between FANG and the resistant strains 
from Malawi and Mozambique, Zambia, Uganda and Benin 

Samples N h S Syn NonSyn π (k) D (Tajima) D* 
(Fu and Li) 

Malawi  5 4 5 4 1 0.0013 (2.00) -1.123ns -1.123ns 

Mozambique 5 3 2 1 1 0.0006 (1.00) 0.243ns 0.243ns 

Zambia 5 2 1 0 1 0.00039 (0.6) 1.224ns 1.224ns 

Fang 5 3 38 31 7 0.010(15.40) -1.169ns -1.169ns 

Uganda 5 2 1 0 1 0.00039(0.60) 1.224ns 1.224ns 

Benin 6 2 3 0 3 0.00065(1.00) -1.233ns -1.260ns 

Total 31 15 138 89 49 0.029(44.625) 0.945ns 1.424s 
N= number of sequences (n); h = number of haplotypes; S = number of polymorphic sites; Syn = synonymous mutations; Nsyn = non-
synonymous mutations; π = nucleotide diversity; k = mean number of nucleotide differences; D and D* = Tajima’s and Fu and Li’s statistics; ns 
= not significant; s = significant (p<0.05) 

 

As in CYP6P9a alleles of CYP6P9b (amino acid sequences from different regions) formed clades 

unique to their origins; however, alleles of FANG cluster between the East (Uganda) and West (Benin) 

African alleles and away from the Malawi, Mozambique and Zambia (Figure 2.2A and B). Up to eight 

amino acids shared by the haplotypes from resistant alleles make them different from the alleles from 

the major haplotypes of FANG. Countries sharing such polymorphism, polymorphic positions in cDNA 

and amino acid sequences, as well as location on the protein sequence and potential impact on 

functional activity are summarised in  Table 2.4. 
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2.4.1.3 Candidate Resistance Mutations 

 

2.4.1.3.1 CYP6P9a 

Comparison of the sequences of predominant haplotypes of CYP6P9a from FANG with those 

of the resistant strains revealed that only two substitutions Ser431Phe and Tyr320Ser are relatively fixed 

all across Africa (see Figure 2.1 and Figure 2.3). His301Gln present in southern African and Ugandan 

alleles is absent in alleles from Benin. The Tyr320Ser mutation replaces a bulky, polar, aromatic side 

chain with a smaller, polar, neutral serine. Prediction of structurally conserved regions of CYP6P9a 

using CYPED (Sirim et al., 2010) placed this mutation within the well-conserved αI helix that forms the 

heme-binding structural core and one residue downstream the oxygen-binding pocket of CYP6P9a. 

The mutation also mapped to the substrate recognition site number 4 (SRS4) determined by 

comparing the CYP6P9a amino acid sequences with that of the CYP101A from Pseudomonas putida 

Figure 2.2: Schematic representation of haplotypes of CYP6P9b genes between the resistant 
mosquitoes from Malawi, Mozambique, Zambia, Uganda, Benin and FANG. (A) The polymorphic 

amino acid positions with the  column Nb indicating the number of individuals sharing the haplotype (B) 
Neighbor-joining tree of CYP6P9b showing clades specific to each phenotype and origin (region).  
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(P450cam), whose substrate-binding residues have been identified by x-ray crystallography of a 

substrate-bound form (Gotoh, 1992). In Ser431Phe mutation polar, neutral serine is replaced with non-

polar, aromatic phenylalanine. This substitution occured within the loop joining the meander (position 

421-429) to the cysteine pocket (position 446-456). This loop consisting of 16 residues in CYP6P9a has 

been previously proposed to house the reductase interacting site 2 (RIS2) of the P450s (Hasemann et 

al., 1995) in three crystal structures of P450s (P450cam, P450terp and P450BM-3). In His301Gln polar 

positive (basic) side chain of histidine is replaced with polar, neutral, amido side chain of glutamine. 

This mutation in the αI helix is located two residues from the putative SRS4. Other substitutions of 

particular interest include Ala51Ser and Gln52Leu observed in Benin and Uganda alleles and Phe63Leu 

and Gln66Lys (αA region) present in southern African alleles. However, analysis of CYP6P9a and also 

CYP6P9b sequences using DAS (Dense Alignment Surface) transmembrane prediction server 

(http://www.sbc.su.se/~miklos/DAS/) revealed that residues around these regions are not involved in 

contact with the membrane (Appendices 2.3 and 2.4 respectively). 

 

 

Figure 2.3: Comparison An. funestus CYP6P9a amino acid sequences from resistant and 

susceptible strains. Red solid lines represent helices A-L, while blue dashed lines correspond with 

the substrate recognition sites 1-6. Different residues are highlighted in pink.  

http://www.sbc.su.se/~miklos/DAS/
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2.4.1.3.2 CYP6P9b 

CYP6P9a from southern Africa was described as more polymorphic than CYP6P9b with more DNA 

haplotypes (9 vs 5) and amino acid sequences of 11 vs 5 (Riveron et al., 2013) compared with FANG. 

Here, its confirmed  with more sequences from Benin (West) and Uganda (East) Africa. CYP6P9a with 

17 haplotypes has 15 different sequences across Africa, while CYP6P9b with 15 haplotypes possess 

only 11 different sequences (Figure 2.2). The His301Gln mutation absent in BENCYP6P9a appears in 

CYP6P9b in addition to the Ala51Ser, Gln52Leu, Phe63Leu and Gln66Lys replacement (Figure 2.4). With 

the exception of BENCY6P9b all the haplotypes of CYP6P9b possess Ser384Asn mutation, a replacement 

of a polar neutral amino acid, serine with another (asparaine). This mutation present in the N-

terminus of the highly-conserved β1-4 domain of CYP6P9b in FANGCYP6P9b mapped to the  SRS5.  

Seven amino acid substitutions (Ser32Asn, Ile109Val, His169Arg, Gln171Pro, Glu172Asp Glu335Asp 

and Ala401Pro) (Table 2.4) are fixed in all the dominant haplotypes of CYP6P9b alleles from resistant 

individuals across Africa compared with the FANG. The Ile109Val mutation replaced nonpolar, larger 

side chain of isoleucine with a corresponding non-polar, hydrophobic side chain of smaller valine. This 

mutation is within the Bʹ-C loop described as being highly variable (Sirim et al., 2010) and can result in 

an increase in the radius of the binding cavity and/or enhanced substrate access or product egress. In 

all CYP6P9b sequences the mutations His169Arg (C-terminus of D helix), Gln171Pro and Glu172Asp (the N-

terminus of the E helix) are linked. In position 169 basic imidazole containing side chain of histidine 

was replaced with a basic side chain of arginine possessing guanidinium moiety. In position 171, polar, 

neutral glutamine was replaced with non-polar, aliphatic proline with its secondary imino group that 

could be held in rigid conformation which can reduce structural flexibility. The Glu335Asp replacement 

occurred in the last residue in the C-terminus of the αI helix downstream SRS4. The Ala401Pro mutation 

in β2-2 domain resulted in replacement of non-polar alanine with non-polar proline. The bulky 

pyrrolidine ring of proline can restrict the conformational space and affect backbone dihedral angles 

and side chain rotations (MacArthur and Thornton, 1991). 
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2.4.2 Modelling and Molecular Docking Simulation Analyses 

2.4.2.1 Models Production and Assessment 
 

CYP6P9a and CYP6P9b models were generated with heme already in place and verifications with 

Errat v2.0 indicated that the models have reasonably good scores with highest overall quality factor 

obtained from UGANCYP6P9b and FANGCYP6P9b models (Appendix 2.2). For CYP6P9a models, regions 

with high disorderliness (backbone deviation from the crystal structure of the template used) shown in 

Figure 2.4: Structurally-conserved regions of An. funestus CYP6P9b sequences from resistant 

and susceptible strains. Red solid lines represent WxxxR motif, O2-binding pocket/proton transfer 

group, ExxR motif, meander and cysteine pocket/heme-binding region; blue solid lines correspond with 

the protein β-sheets. Amino acids substitution is highlighted in pink.  
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black (Figure 2.5A and B) include amino acids 20-40 corresponding to the hydrophobic terminal 

domains that anchor the P450 to the surface of the membrane and residues preceding the αA helix, 

amino acids 60-120 encapsulating αA helix, β1-1, β1-2, αB helix and β1-5 containing the putative SRS1, 

amino acids 280-300 corresponding to the loop joining the C-terminus of αH to the N-terminus of αI.  

 

 

 

Regions with high disorder (backbone deviation from the folding pattern of the template) in 

CYP6P9b models (Figure 2.5C and D) include amino acids 10-40 corresponding to the sequences that 

constitute the hydrophobic membrane anchor, amino acids 70-90 corresponding to β1-1 and β1-2, 

amino acids 110-120 mapped to β1-5 containing the putative SRS1, as well as amino acids 195-220 

which corresponds to the part of the F-G loop. 

Figure 2.5: Errat plot for the lowest energy model. Disordered regions are identified on the error 

axis*, where 2 lines are drawn to indicate the confidence with which it’s possible to reject regions that 
exceed the error value. The Overall Quality Factor represents the percentage of the protein within which the error 

value is below 95% rejection limit as given in Appendix 2.2. A and B are plots from MALCYP6P9a and FANGCYP6P9a 
models, while C and D represent plots of models of MOZCYP6P9b and FANGCYP6P9b respectively. 
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CYP6P9b models exhibited lesser backbone deviation compared with CYP6P9a models, though the 

models were created from the same 1TQN template which shares 32% and 33% identity respectively. 

2.4.2.2 Molecular Docking Simulations 
 

  Binding energy of a ligand is defined as the difference in free energy of the protein plus the 

unbound ligand, and their complex; ChemScore estimates the total free energy change that occurs on 

ligand binding (Jones et al., 1997). Docking scores along with other relevant regression terms for 

binding of insecticide structure to CYP6P9a and CYP6P9b models are given in Tables 2.6 to 2.10 

respectively. The general atom type parameters assigned to both atoms of ligand and that of receptor 

in contact with the ligand include Slipo (lipophilic term: chlorine, bromine and iodine atoms which are 

not ions; sulphurs which are not acceptor or polar types; carbons which are not polar type); Hbond (H 

bond donor: nitrogens with hydrogens attached, hydrogens attached to N or O; H-bond 

donor/acceptor: oxygens attached to hydrogens, imine nitrogen; H-bond acceptor: oxygens not 

attached to hydrogens, N with no hydrogens and one or two connections, halogens that are ions, 

sulphurs with one connection); SPolar(non-H bond: nitrogens with no hydrogens attached and more 

than two connections, phosphorus, sulphurs attached to one or more polar atoms (including H-

bonding atoms and not including polar carbon atoms or fluorine atoms), carbons attached to two or 

more polar atoms (including H-bonding atoms and not including polar carbon atoms or fluorine 

atoms), carbons in nitriles or carbonyls, nitrogen atoms with no hydrogens and four connections, 

fluorine atoms); ΔEclash (clash penalties between ligand atoms and receptor heavy atoms); SMetal 

(contact between acceptor and/or donor atom in the receptor with the metal atom of the ligand, if 

any)(Verdonk et al., 2003, Eldridge et al., 1997, Baxter et al., 1998).  

Detoxification of pyrethroids in insects follow two principal routes: ester hydrolysis catalysed 

by esterases and P450s, and hydroxylation of aromatic rings or methyl groups by P450s (Gilbert and 

Gill, 2010). Infra-red and NMR spectroscopy and TLC analysis established that housefly P450s 

preferentially hydroxylate permethrin isomers at position 4ʹ or 6 of the phenoxybenzyl ring and the 
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trans-methyl group (Shono et al., 1979), while trans-permethrin can be hydroxylated in position 6 of 

the benzyl ring and cis-permethrin in cis-methyl group as well as hydroxylation at 2ʹ position. Other 

spectroscopic analysis, for example an LC-MS determined metabolism of deltamethrin by An. gambiae 

CYP6M2 to proceed preferentially via 4ʹ hydroxylation (Stevenson et al., 2011).    

Docking solutions obtained from this study were manually analysed, and productive poses 

with highest scores and lowest free binding energy selected for further analysis.  

 

Docking of Permethrin: Permethrin docked in BENCYP6P9a with 2ʹ position exposed for 

hydroxylation at  a distance of 4.2Å (Figure 2.6A).  In UGANCYP6P9a, FANGCYP6P9a and MALCYP6P9a, 

permethrin docked with the trans methyl group oriented toward the heme at a distance of 2.6Å,  5.7Å 

and 3.6Å respectively (Figure 2.6B, C and D) indicating that with the exception of BENCYP6P9a 

permethrin metabolism is predicted to proceed via trans methyl group hydroxylation. However, the 

pose with resistant models has the lower clash penalty and higher score (Table 2.6) indicating that the 

resistant alleles possibly possess the higher activity, compared with FANGCYP6P9a allele whose model 

produced lowest score and highest clash penalty. 

 

Table 2.6: ChemScores of the productive binding of permethrin in CYP6P9a and CYP6P9b models 

Models 
 

Rank 
 

ChemScore 
(kJ/mol) 

 

ΔG 
(kJ/mol) 

S(hbond) 
 

S(metal) 
 

S(lipo) 
 

ΔE(clash) 
 

ΔE 
(int) 

 

BENCYP6P9a 2
nd

 44.14 -45.60 0.00 0.00 374.66 0.24 1.22 

UGANCYP6P9a 1
st

 45.77 -47.54 0.00 0.00 391.27 0.50 0.27 

FANGCYP6P9a 1
st

  37.91 -38.91 0.00 0.00 317.47 0.90 0.19 

MALCYP6P9a 2
nd

 40.79 -43.49 0.00 0.00 356.63 0.15 2.55 

BENCYP6P9b 1
st

 43.44 -44.22 1.01 0.00 362.91 0.22 0.57 

UGANCYP6P9b 1
st

 43.32 -44.04 0.21 0.00 332.92 0.23 0.50 

FANGCYP6P9b 1
st

  41.25 -42.88 1.00 0.00  346.85 1.94 1.68 

MOZCYP6P9b 1
st

  46.07 -47.82 0.76 0.00 393.69 0.81 0.94 

ΔG = free energy of binding, S(hbond) = contribution from hydrogen bonds, S(lipho) = lipophilic term, ΔE(clash) = clash penalties between 
ligand and receptors heavy atoms, and ΔE(int) = internal energy of the ligand or receptor. 
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In BENCYP6P9b permethrin docked productively with the 4ʹ spot of the phenoxy ring oriented 

above the heme at a distance of 3.3Å (Figure 2.7A), while in the active site of UGANCYP6P9b the 

insecticide docked with the 6 position of the phenyl ring at a distance of 3.7Å (Figure 2.7B).   

Permethrin docked to the active site of FANGCYP6P9b with dihalovinyl groups approaching the heme 

and the possible sites of attack away from the catalytic centre; trans-methyl group located 9.1Å from 

heme iron (Figure 2.7C) and 2ʹ spot of phenyl ring at a 11.8Å distance. This unproductive conformation 

is the only pose in the ten top ranked solutions which exhibited a very high clash penalty.  

In MOZCYP6P9b model the pyrethroid approached the heme with 4ʹ spot of the phenoxy 

group docked above the heme iron, at a respectful distance of 3.1Å (Figure 2.7D). This binding mode 

Figure 2.6: Binding modes of permethrin in (A) BENIN, (B) UGANDA, (C) FANG and (D) MALAWI 

CYP6P9a models. Permethrin is in stick format and hot pink. Heme atoms are in spectrum. Possible sites 

of metabolism are indicated with yellow arrows. 
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has the highest score and lowest free energy of binding, and thus MOZCYP6P9b was predicted to have 

highest activity for permethrin compared with all the other CYP6P9a and CYP6P9b alleles.  

 

 

 

 

Docking of Deltamethrin: P450-mediated biotransformation of deltamethrin  possessing an α-

cyano group have been shown to proceed via ester cleaved products and the 4ʹ-hydroxy metabolites 

in the bulb mite Rhizoglyphus robini (Ruzo et al., 1988). Sequential metabolism of deltamethrin by An. 

gambiae CYP6M2 was revealed (Stevenson et al., 2011). Using in silico modelling and docking, LC-MS 

and NMR spectroscopy, Stevenson and colleagues have shown that CYP6M2 preferentially hydrolyses 

deltamethrin to initial product at 4ʹ position, with trans-methyl hydroxylation being a minor route.  

Analysis of the binding conformation of BENCYP6P9a and UGANCYP6P9a docked with 

deltamethrin revealed that the insecticide docked with the 2ʹ position at a distance of 1.7Å and 4.0Å 

Figure 2.7: Binding modes of permethrin in (A) BENIN, (B) UGANDA, (C) FANG and (D) 

MOZAMBIQUE CYP6P9b models. Permethrin is in stick format and hot pink. Heme atoms are in stick 

format and spectrum. Possible sites of metabolism are indicated with red arrows.  
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respectively from the heme iron, with high score, very low binding energy and low clash penalties 

(Table 2.7, Figure 2.8A and B). The 4ʹ spot however pointed away from the heme iron in both these 

solutions.  

In contrast, in FANGCYP6P9a and MALCYP6P9a deltamethrin docked with the trans methyl 

group above the heme at a distance of 6.4Å and 3.4Å respectively (Figure 2.8C and D). These binding 

modes shared by these two alleles make them different from Benin and Uganda models in that cis 

and/or trans methyl hydroxylation is predicted in the top ranked poses for Malawi and FANG alleles. 

However, the trans methyl group in MALCYP6P9a was positioned closer to the heme compared with 

the situation in FANGCYP6P9a in which the deltamethrin is away for productive contact. Also, 

FANGCYP6P9a exhibited the highest clash penalty and MALCYP6P9a exhibited the lowest penalty 

compared with the other alleles. The high clash score for FANG may reflect steric hindrance/clashes 

with heavy atoms of the protein, restricting access to the catalytic hotspot and reducing catalysis.  

 

Table 2.7: ChemScores of the productive binding of deltamethrin in CYP6P9a and CYP6P9b models 
Models 

 
Rank 

 
ChemScore 

(kJ/mol) 
ΔG 

(kJ/mol) 
S(hbond) 

 
S(metal) 

 
S(lipo) 

 
ΔE(clash) 

 
ΔE 

(int) 

BENCYP6P9a 1st  43.31 -46.31 0.00 0.00 384.88 0.79 2.03 

UGANCYP6P9a 3rd 42.82 -44.14 0.00 0.00 366.31 0.76 0.75 

FANGCYP6P9a 5th 41.01 -42.47 0.00 0.00 333.00 1.69 0.77 

MALCYP6P9a 2nd 43.21 -45.81 0.00 0.00 380.88 0.32 3.87 

BENCYP6P9b 1st  44.02 -45.31 0.00 0.00 347.54 0.25 0.74 

UGANCYP6P9b 1st  42.90 -44.47 0.00 0.00 369.16 0.09 1.49 

FANGCYP6P9b 1st  39.77 -41.38 1.97 0.00 307.33 0.98 0.69 

MOZCYP6P9b 1st  45.90 -49.76 0.49 0.97 364.36 0.23 1.43 

 

 

 



81 
 

 

 

 

 

With BENCYP6P9b and UGANCYP6P9b deltamethrin docked productively with 4ʹ spot above 

the heme iron at a distance of 3.5Å and 4.1Å respectively (Figure 2.9A and B), with UGANCYP6P9b 

exhibiting low clash penalty (Table 2.7). Though, the insecticide docked in the active site of 

FANGCYP6P9b productively but in contrast the target 4ʹ spot of the phenoxy ring is 8.9Å from heme 

iron catalytic hotspot (Figure 2.9C) with lower chances of optimal metabolism. Equally also, the 

binding mode of this model has the lowest scores and portrayed a very high contribution of hydrogen 

bonds than obtained with the other models.  

Figure 2.8: Binding modes of deltamethrin in (A) BENIN, (B) UGANDA, (C) FANG and (D) MALAWI 

CYP6P9a models. Deltamethrin is in stick format and magenta. Heme atoms are in spectrum. Possible 

sites of metabolism are indicated with yellow arrows.  
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The insecticide docked into MOZCYP6P9b in a perfect pose with the 4ʹ position exposed for 

hydroxylation at reasonable distance of 3.6Å from the heme iron and 2’ position, 4.0Å away (Figure 

2.9D). This mode has the highest score of all the CYP6P9b models and lowest binding energy 

predicting highest activity toward deltamethrin compared with the results from models from FANG, 

and other models from resistant alleles. The fifth and sixth ranked solution with CYP6P9b model has 

the gem dimethyl moiety close to the heme at a distance of about 4-5Å (figure not provided). Thus 

cis/trans-methyl hydroxylation is predicted to occur from MOZCYP6P9b-mediated metabolism of 

deltamethrin, leading to multiple primary metabolites. 

 

Figure 2.9: Binding modes of deltamethrin in (A) BENIN, (B) UGANDA, (C) FANG and (D) 

MOZAMBIQUE CYP6P9b models. Deltamethrin is in stick format and purple. Heme atoms are in 

spectrum. Possible sites of metabolism are indicated with yellow arrows.  
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Docking of Etofenprox: Docking scores with etofenprox were comparable to values obtained 

with permethrin and deltamethrin (Table 2.8) with BENCYP6P9a having highest score, while 

FANGCYP6P9a exhibited lowest scores and largest clash penalty. In BENCYP6P9a, UGANCYP6P9a and 

MALCYP6P9a etofenprox docked in the top ranked solutions with aromatic groups above the heme 

and 2ʹ spot of phenoxy ring 3.3Å, 3.1Å and 2.2Å respectively from the heme (Appendix 2.5). In 

contrast, the insecticide docked in FANGCYP6P9a with ethoxy group positioned 5.7Å above the heme. 

In this posture sites of attack are predicted as the ether group or methyl groups (the closest being 

3.5Å from heme iron), but etofenprox has been shown to be metabolised through aromatic ring 

hydroxylation, specifically in rats and dogs via 4ʹ hydroxylation (Hawkins, 1985) and these postures 

may not support optimal metabolism. Etofenprox is thus predicted to be metabolised by all the 

resistant alleles of CYP6P9a but not by FANGCYP6P9a. 

In  BENCYP6P9b and MOZCYP6P9b etofenprox docked possibly productively with 2ʹ spot of 

phenoxy ring oriented above the heme catalytic center at a distance of 3.4Å and 3.7Å respectively 

(Appendix 2.5). Though the insecticide docked in the same productive fashion in FANGCYP6P9b the 2ʹ 

spot is 6.6Å from the heme and this placed the insecticide away from the catalytic center and possibly 

reflect lower activity compared with the alleles from resistant strains. In UGANCYP6P9b the insecticide 

docked with 6 position of the benzyl ring at a distance of 5.5Å from the heme in all the top ranked 

solutions. A characteristic feature of docking with etofenprox is the unusually high clash penalty 

obtained from all models of CYP6P9b, indicating that this insecticide may not fit optimally in the active 

site of CYP6P9b for metabolism compared with the prediction the software made for the other 

pyrethroids. 
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Table 2.8: ChemScores of the productive binding of etofenprox in the  CYP6P9a and CYP6P9b models 
Models 

 
Rank 

 
ChemScore (kJ/mol) 

 
ΔG 

(kJ/mol) 
S(hbond) 

 
S(metal) 

 
S(lipo) 

 
ΔE(clash) 

 
ΔE (int) 

 

BENCYP6P9a 1
st

 51.73 -54.38 0.00 0.00 449.12 0.65 0.74 

UGANCYP6P9a 1
st

 50.84 -52.15 0.19 0.00 430.07 0.42 0.89 

FANGCYP6P9a 1
st

  47.60 -49.88 0.83 0.00 386.99 0.95 1.32 

MALCYP6P9a 1
st

  49.13 -50.93 0.00 0.00 419.62 0.06 1.73 

BENCYP6P9b 5
th

 46.18 -47.34 0.89 0.00 363.42 1.36 0.98 

UGANCYP6P9b 1
st

 51.07 -53.21 0.91 0.00 413.30 1.24 0.90 

FANGCYP6P9b 1
st

  48.49 -49.51 0.00 0.00 407.52 1.38 0.64 

MOZCYP6P9b 1
st

  52.41 -55.41 0.00 0.00 457.95 1.61 1.61 

 

Docking of DDT: DDT is converted to dichlorodiphenyldicholoroethane (DDD) by reductive 

dechlorination in insects and higher animals (Kitamura et al., 2002), for example the reaction effected 

by CYP6G1 in D. melanogaster (Joussen et al., 2008).  However, DDT is mainly converted to DDE by 

dehydrochlorination in mammals and insects (Gold and Brunk, 1983, Smith, 2012) though dicofol 

(kelthane) is also generated. Mitchell and colleagues (Mitchell et al., 2012) have reported An. gambiae 

CYP6M2 capable of metabolizing DDT to dicofol, in presence of solubilising factor sodium cholate.  

DDT exhibited good but lower docking scores with CYP6P9a and CYP6P9b models compared 

with values obtained from docking with pyrethroids (Table 2.9). But in all alleles of CYP6P9a p,pʹ-DDT 

docked  away from heme iron for productive metabolism to take place. In the case of BENCYP6P9a, 

UGANCYP6P9a and FANGCYP6P9a the best ranked poses have target C-2 at a distance of 10.1Å, 8.5Å 

and 9.2Å respectively from heme (Appendix 2.6), away for metabolism to be effected. The second 

ranked DDT pose in MALCYP6P9a has chlorine group of the benzyl ring pointing unproductively at the 

heme and the C-4ʹ at a distance of 4.5Å. 

In BENCYP6P9b and UGANCYP6P9b DDT docked unproductively, away from  the heme with C-

2 at a distance of 8.7Å and 5.5Å respectively from heme iron. In Benin model the second benzyl ring of 

DDT clashes with the heme ring while in Uganda model its the trichloroethyl group that clashes with 
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the heme ring with a high penalty. The second ranked pose in FANGCYP6P9b has C-2 of DDT 

positioned at 9.8Å from heme iron, while in MOZCYP6P9b DDT docked away from heme iron with C-2 

at 16.6Å distance.  

The potentially unproductive binding conformation of DDT in all CYP6P9a and CYP6P9b models 

from field resistant populations, as well as the susceptible strain (FANG) suggests that these P450s are 

poor binders and/or poor metabolizers of this organochlorine insecticide.  

Table 2.9: ChemScores of the productive binding of DDT in CYP6P9a and CYP6P9b models 
Models 

 
Rank 
 

ChemScore (kJ/mol) 
 

ΔG 
(kJ/mol) 

S(hbond) 
 

S(metal) 
 

S(lipo) 
 

ΔE(clash) 
 

 ΔE (int) 

BENCYP6P9a 1
st

 36.20 -37.47 0.00 0.00 295.30 0.33 0.95 

UGANCYP6P9a 2
nd

 38.36 -39.71 0.00 0.00 314.43 0.24 0.61 

FANGCYP6P9a 2
nd

 35.46 -36.43 0.00 0.00 286.40 0.78 0.18 

MALCYP6P9a 2
nd

 35.59 -39.20 0.00 0.00 284.48 2.55 0.19 

BENCYP6P9b 1
st

 31.89 -32.91 0.00 0.00 256.36 0.65 0.37 

UGANCYP6P9b 1
st

 29.23 -31.03 0.00 0.00 240.24 1.67 0.13 

FANGCYP6P9b 2
nd

 33.20 -33.40 0.00 0.00 260.55 0.17 0.03 

MOZCYP6P9b 1
st

 29.20 -31.75 0.00 0.00 246.38 0.85 1.69 

 

Docking of Bendiocarb: In animals including man, rats and insects bendiocarb can be 

metabolised in several ways; these include hydrolytic cleavage to generate benzodioxol-4-ol, 

hydroxylation of the phenyl ring  and hydroxylation of the N-methyl moiety (Roberts and Hutson, 

1999). Ester hydrolysis to generate bendiocarb phenol has been described as the major pathway of 

metabolism of bendiocarb in the maize pest D. undecimpunctata howardi (Hsin and Coats, 1987). 

Recently Edi and colleagues (Edi et al., 2014) have reported a recombinant CYP6P3 from An. gambiae 

able to metabolise bendiocarb in vitro but more needs to be done to functionally characterise the 

mechanism of bendiocarb metabolism in Anopheline mosquitoes, especially An. funestus.  

Binding scores of bendiocarb in CYP6P9a and CYP6P9b models were the lowest of all the 

insecticides screened. The insecticide docked in BENCYP6P9a and BENCYP6P9b in unproductive mode, 

in a tight embrace with heme in BENCYP6P9a and the phenyl ring clashing with the heme ring in 
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BENCYP6P9b (Appendix 2.7). The insecticide docked in UGANCYP6P9a with the C-5 of the phenyl ring 

pointing towards the heme iron at a distance of 5.4Å. In this mode, metabolism is possible through 

aromatic ring hydroxylation but the Chemscore as in the rest of docked poses with all alleles is very 

low (Table 2.10). In FANGCYP6P9a bendiocarb docked away with the C-5 of the phenyl ring 12.9Å from 

heme iron, while in MALCYP6P9a it docked with 2,2-dimethyl carbon atom pointing to the heme iron 

at a distance of 7.6Å. This potentially productive pose makes it possible for N-methyl hydroxylation 

were it not for the very low scores obtained.  

Bendiocarb docked to UGANCYP6P9b unproductively with phenyl ring and N-methyl moiety 

clashing with the heme ring. For FANGCYP6P9b only the 10th ranked pose did not clash with the heme 

ring. In this pose the phenyl ring is located 14.7Å from heme iron and thus away for catalysis to take 

place. The insecticide docked unproductively, way from the heme in MOZCYP6P9b with 2,2-methyl 

group positioned 8.7Å from heme iron. Thus, the software predicted that CYP6P9a and CYP6P9b from 

both resistant and susceptible alleles do not bind bendiocarb and possibly have no activity towards the 

representative carbamate insecticide.  

 

Table 2.10: ChemScores of the productive binding of bendiocarb in CYP6P9a and CYP6P9b models 
Models 

 
Rank 

 
ChemScore (kJ/mol) 

 
ΔG 

(kJ/mol) 
S(hbond) 

 
S(metal) 

 
S(lipo) 

 
ΔE(clash) 

 
ΔE (int) 

 

BENCYP6P9a 1
st

 22.49 -23.37 1.73 0.00 132.91 0.82 0.05 

UGANCYP6P9a 1
st

 21.13 -22.17 0.98 0.00 144.16 0.53 0.52 

FANGCYP6P9a 8
th

 13.57 -14.03 0.88 0.00 77.50 0.22 0.24 

MALCYP6P9a 1
st

 21.02 -21.19 0.99 0.00 135.48 0.00 0.16 

BENCYP6P9b 1
st

 20.53 -20.97 2.16 0.00 100.29 0.07 0.38 

UGANCYP6P9b 1
st

 23.20 -23.34 1.95 0.00 126.39 0.00 0.13 

FANGCYP6P9b 10
th

 11.53 -11.91 0.93 0.00 57.89 0.00 0.37 

MOZCYP6P9b 1
st

 21.74 -22.04 1.81 0.00 119.45 0.07 0.23 
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2.4.3 Active Site Residues and Enzymes-Substrates Interactions 

The majority of enzymes combine several strategies to enhance the rate of catalysis (Nelson et al., 

2012). These include (1) covalent catalysis: acid-base catalysis involving key active sites amino acid 

residues, catalysis involving side chain(s)/cofactor(s) nucleophile, as well as the metal ion catalysis 

(metal taken up from the solution or tightly bound to the enzyme); (2) weak, non-covalent 

interactions: hydrophobic interactions, hydrogen bonds, vdW forces and electrostatic attractions. 

Evidences have shown that P450-mediated metabolism is carried out using the weak, non-covalent 

intra- and inter-molecular/atomic interactions to boost up the binding energy several orders of 

magnitude (Kenaan et al., 2011, Szklarz and Paulsen, 2002, Yoshioka et al., 2002, Paine et al., 2003).   

To understand the key amino acid residues lining the active/binding sites of CYP6P9a and CYP6P9b 

models pattern of non-bonded interaction in the binding cavities were compared between southern 

African alleles and FANG using the productive poses of pyrethroids in the binding cavity of the models. 

The southern African alleles were chosen because highest resistance to pyrethroids were observed in 

southern Africa, where the two genes CYP6P9a and CYP6P9b are highly overexpressed compared with 

same genes from Benin (West Africa) and Uganda (East Africa), because of the highest signature of 

selection from them, and because the docking with pyrethroids predicted the southern African alleles 

of CYP6P9a and especially CYP6P9b to possess the highest activities compared with the FANGCYP6P9a 

and FANGCYP6P9b. 

2.4.3.1 Deltamethrin 

2.4.3.1.1 Active site residues of CYP6P9a models 

Within MALCYP6P9a deltamethrin is surrounded by eleven nonpolar, aliphatic side chains notably 

from SRS1 (Ala113, Leu118, Ala124 and Leu125) and Ile310, Leu313 and Ala314 all from SRS4. Bulky, 

hydrophobic residue within 5.0Å of deltamethrin include Phe110 of the SRS1 which  π-stack in T-shaped 

fashion with the phenoxy ring of deltamethrin at a distance of 4.31Å, Phe123 of SRS-1 which π-stack 
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face to face with the benzyl ring of deltamethrin at 3.7Å distance, Phe216 (SRS2), which π-stack in T-

fashion with the phenoxy ring, as well as Phe309 positioned  at a distance of 4.6Å from the phenoxy 

ring, two histidine residues, His107 and His121 both from SRS1 (Figure 2.10A). This cluster of 

phenylalanine forms a roof above the active site maximizing hydrophobicity and together with the 

large number of nonpolar, aliphatic side chains, make the binding site of deltamethrin highly 

hydrophobic. The aromatic residues may also contribute to catalysis via resonance stabilisation of 

aromatic rings of deltamethrin as it approached the heme. 

 

 

 

Though the cavity contains polar side chains including Ser119 of SRS1, Glu215 of SRS2, Thr242 and 

Thr318 of SRS4 (oxygen binding pocket) all of which could participate in a network of hydrogen 

bonding, MMV analysis predicted no hydrogen bonds between deltamethrin and amino acid residues 

Figure 2.10: Binding modes of deltamethrin in MALCYP6P9a (A) and (C) and FANGCYP6P9a (B) 
and (D) models, showing residues involved in hydrophic contact, within 5.0Å radius (A and B) 
and residues from the predicted inter-molecular hydrogen bonds (C and D). Amino acid residues 

are annotated with numbers and heme atoms in red.  
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of MALCYP69a (Figure 2.10C) in agreement with the docking parameters with deltamethrin. This 

suggests that distal residues are not fully exploited in hydrogern bonding machinery to optimise 

conversion of Cpd O into Cpd I. For CYP6P9a, hydrogen bonds and ionic interactions might be 

secondary in importance compared with hydrophic and aromatic group interaction and π-anchorage. 

In FANGCYP6P9a deltamethrin is  surrounded within 5.0Å radius by seven nonpolar, aliphatic 

residues notably from SRS4 (Leu313 and Ala314) and SRS5 (Val380 and Leu383) (Figure 2.10B). This is in 

sharp contrast to the nonpolar residues in the binding site of deltamethrin within MALCYP6P9a the 

majority of which belong to SRS1. However, six phenylalanine residues surrounded deltamethrin in 

FANGCYP6P9a, four of which are less than 6.0Å from the aromatic rings. These include Phe110 (SRS1) 

which is in face to face π-stacking with benzyl ring (3.98Å), Phe123 (SRS1) which π-stack in sandwich 

fashion with phenoxy ring (distance of 3.63Å), as well as Phe216 (SRS2) and Phe225 both of which π-

stack in a T-fashion with the benzyl ring (distances of 3.80Å and 5.86Å, respectively). The presence of 

large number of aromatic residues surrounding the insecticide indicated that FANGCYP6P9a employs 

hydrophobic interactions and resonance stabilisation as well, to effect catalysis.  

Though the binding site harbors residues that could be involved in hydrogen bonding with 

deltamethrin ( e.g. Glu215 (SRS2), Thr318 (SRS4) and Ser384 (SRS5), as obtained from analysis with 

MALCYP6P9a, no inter-molecular hydrogen bond was predicted between FANGCYP6P9a and 

deltamethrin (Figure 2.10D).  

The absence of hydrogen bonding in the docking of deltamethrin these allele models is in line 

with the docking parameters obtained (no hydrogen bonding score for CYP6P9a with pyrethroids) and 

further strengthen the assumption that hydrophobic contacts, resonance stabilisation and π-π 

interactions are the major mechanisms for catalysis in CYP6P9a. However, from this analysis, no clue 

was found to substantiate the differences in the other binding parameters (ChemScore and free 

energy of binding) obtained from the resistant MALCYP6P9a and susceptible FANGCYP6P9a models.  
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2.4.3.1.2 Active site residues of CYP6P9b models 

 Deltamethrin in MOZCYP6P9b is surrounded within 5.0Å radius by eight nonpolar, aliphatic side 

chains (Figure 2.11A). There are only three bulky, hydrophobic side chains from Phe316 located 3.27Å 

from phenoxy ring, Phe226 and Phe312. However, the insecticide is surrounded by a network of polar, 

neutral side chains of Ser119, Thr111 , Asn112, Ser319 and Ser320 (all residues from SRS1). These amino 

acids together with Arg114 (SRS1) and Glu247 (SRS3) could create a hydrogen bonding network that 

could bind the acid group allowing the alcohol group to approach the heme. They can also be involved 

in ionic interactions, enhancing catalysis. A hydrogen bond is predicted to be donated by the alcohol 

side chain of Thr111 to the acyl group of the acid moiety of deltamethrin (acceptor) with a distance of 

2.95Å and a maximum binding energy of -2.5kJ/mol (Figure 2.11C).  

 

 

Figure 2.11: Binding mode of deltamethrin in MOZCYP6P9b (A) and (C) and FANGCYP6P9b (B) 
and (D) with residues involved in hydrophobic contact (5.0Å radius) (A and B) and residues 
involved in intermolecular hydrogen bonds (C and D). Amino acid residues are annotated with 

numbers and heme atoms in red. Inter-molecular hydrogen bondings are depicted in broken blue lines. 
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This distal hydrogen –bonding machinery are thought to accelerate formation of Cpd I from 

Cpd O, reducing generation of H2O2 and other O2-wasting species (Shaik et al., 2005), as well as 

regulating the redox potential of the heme. The negatively charged side chain of Glu247 and the 

positive, guanidinium moiety of Arg114 are thought to be involved in ionic interaction stabilizing the 

ligand through electrostatic interactions. In contrast with the MALCYP6P9a and FANGCYP6P9a models, 

the MOZCYP6P9b binding cavity is not crowded with bulky aromatic side chains or proline residues. 

This property is predicted to increase the active site volume of MOZCYP6P9b and the access of 

pyrethroid insecticides to  the heme catalytic center, enhancing catalysis.  

In FANGCYP6P9b deltamethrin is surrounded within 5.0Å radius by eleven aliphatic, 

hydrophobic side chains  (Figure 2.11B) and  three bulky, aromatic rings: Phe224, Phe110 (located 3.40Å 

from phenoxy ring with a possibility of parallel displaced π-stacking) and Phe123 which is positioned at 

3.37Å distance from the phenoxy ring and could π-stack in a T-shape fashion. These two aromatic rings 

are also very close to each and could π-stack with each other to increase resonance stability of the 

phenoxy-benzyl moiety of deltamethrin. Thus, the topology of the binding site of deltamethrin in 

FANGCYP6P9b reflects a highly hydrophobic environment and extensive hydrogen bond networks. 

Two intermolecular hydrogen bonds were predicted (Figure 2.11D): (i) between the alcohol side 

chain of Ser382 (SRS5) and the α-cyano group of the deltamethrin; within a distance of 2.96Å and 

contributed a maximum of -2.5kJ/mol binding energy; (ii) between the acyl oxygen of the acid group 

and the peptide bond between Arg107 and Gly108 (3.06Å and -1.86kJ/mol energy). In addition the 

binding site contains the His121 of SRS1, the Glu215 of SRS2 as well as Met493 which maps to SRS6 which 

could also be involved in hydrogen bonding network and ionic interactions enhancing catalysis. 

Though additivity of hydrogen bonds is beneficial, presence of so many hydrogen bonding interactions 

could be one of the mechanism which stabilised the insecticide a considerable distance (8.9Å away) 

from the heme catalytic center and possibly resulted in lower ChemScore towards deltamethrin as 

compared with the docking solutions from the resistant models, especially of MOZCYP6P9b.  
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2.4.4  Identification of Substrate Access Channel pw2a  

Substrate access/product egress channels have been described as one of the most important 

factors that determine P450 activity toward substrates (Wade et al., 2004). Possible routes through 

which substrate can enter the active site or product egresses were searched in two models each from 

resistant (MALCYP6P9a and MOZCYP6P9b) and susceptible (FANGCYP6P9a and FANGCYP6P9b) strains.  

 For MOZCYP6P9b model a total of 30 substrates access and/or products egress tunnels were 

predicted from the interior active site of the protein to the bulk solvent. Of these channels the first 

ranked with highest throughput (0.86) (Figure 2.12A), lowest energy cost (0.27), and which is longest 

(21.42Å) has its gorge lined with about 41 residues. These tunnel-lining residues of which none is more 

than 3.0Å from the tunnel include those from the SRS1 (Arg107, Gly108, Val109, Thr111, Ser119, Leu122, 

Phe123, Leu125), those from SRS2 (Phe214, Glu215, Leu216, and Asp217), residues from SRS3 (Asp245, Val246 

and Glu247), residues from SRS4 and O2-binding pocket (Phe316, Ser319, Ser320 and Ser324), residues from 

SRS5 including Arg385, Val386, Val387, Ser388, Asp390, Tyr391 and residues from  heme-binding region 

including  Arg452, Val453, Cys454. These tunnel-lining residues from BC loop, F/G loop, β1_4 (SRS5), αI 

helix (SRS4) correspond to the channel pw2a described for many P450s (Wade et al., 2004, Cojocaru et 

al., 2007). Channel pw2a has been found to be common to many proteins studied by simulation; has 

been established to be the most energetically favourable of all the pathways observed in CYP101 

(Wade et al., 2004) and is proposed to be common to all P450s. It was also established as a product 

egress route for CYP101 and CYP2B4. This later property was described as possible because the pw2a 

is a holey channel, made possible due to the potential motion in the FG loop and/or the BC loop.  

CAVER computed 23 possible tunnels for FANGCYP6P9b of which the first ranked (Figure 

2.12B) with lower throughput (0.74) and higher cost (0.30) than the one from MOZCYP6P9b, is almost 

half short in length (13.91Å). Only 24 amino acid residues lined the tunnel gorge including those from 

SRS1 (Arg107, Phe110, Thr111, Leu118, His121, Phe123 and Ala124); residues from the SRS2 (Phe214, Glu215, 

Leu216), residues from FG loop (Phe224, Lys240, Ile241); one residue from SRS3 (Phe243); residues from 



93 
 

SRS4 (including Gly315 and Thr318, Phe309, Val310 and Leu313); Val380 of the SRS5 as well as Cys454 of the 

cysteine pocket. The corresponding Ile109 of FANGCYP6P9b is not part of any of the channels predicted 

for FANGCYP6P9b model. Another important difference observed is that deltamethrin docked in active 

site of MOZCYP6P9b is surrounded by this tunnel, the same insecticide in the model of FANGCYP6P9b 

is not enshrouded by the substrate access channel.  

CAVER computed 27 channels for MALCYP6P9a and 22 channels for FANGCYP6P9a; however 

the first five top ranked tunnels for two alleles were not different in their composition and 

parameters.  

These findings suggest that substrate access maybe playing a great role in the resistant alleles 

from CYP6P9b with tunnel lining residues for example the Val109 playing a critical role in proper 

positioning and affinity/specificity toward pyrethroids.  

 

 

Figure 2.12: Trajectory of the substrates access channel pw2a in (A) MOZCYP6P9b and (B) 

FANGCYP6P9b models docked with deltamethrin. Helix I and BC loops are annotated; pw2a is in blue; 

deltamethrin is in stick format and pink; heme atoms are presented in stick format and spectrum. Val
109

 and 

Ile
109 

are annotated respectively.  
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2.5 Discussion and Conclusion 

 

CYP6P9a with 17 haplotypes across Africa and 15 amino acid sequences is more polymorphic than 

CYP6P9b which posseses only 15 haplotypes and 11 different sequences. This is as observed in 

previous studies with alleles of CYP6P9a and CYP6P9b from southern Africa (Malawi and Mozambique) 

compared with the susceptible strain, FANG (Riveron et al., 2013). The East and southern African 

alleles of CYP6P9a exhibited reduced nucleotide variatins and seem to be undergoing directional 

selection while the West African BENCYP6P9a and the susceptible FANGCYP6P9a show high nucleotide 

diversity and are not undergoing directional selection.  

CYP6P9b from FANG portrayed high polymorphic variations compared with the resistant alleles all 

across Africa (East, West and southern Africa). However, in contrast to West African CYP6P9a, 

BENCYP6P9b allele which portrayed extensive inter-allelic variation compared with the other resistant 

alleles of CYP6P9b is undergoing intra-allelic directional selection in its unique way. This phenomenon 

suggests a central importance of CYP6P9b over CYP6P9a within the context of directional selection 

and possibly pyrethroid resistance in general.  

Comparison of the predominant haplotypes of CYP6P9a and CYP6P9b from resistant strains with 

corresponding sequences from FANG revealed that CYP6P9a has only two amino acids replacement 

that seem to be relatively fixed, while CYP6P9b possess seven mutations that are fixed in all the 

resistant strains compared with FANG. These 7 mutations in addition to Ser384Asn substitution (absent 

in BENCYP6P9b) map to catalytically important domains of CYP6P9b and are predicted to impact on 

the catalytic property of CYP6P9b from resistant alleles, making it possibly different from 

FANGCYP6P9b in terms of metabolic activity.   

ChemScore of less than -30 was described as a predictor of tight binding ligands (Marechal et al., 

2006), and based on this, pyrethroids etofenprox, permethrin and deltamethrin were predicted to be 

the tightest binders in order of listing. Docking analyses revealed dramatic differences in regio-
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selectivity of different CYP6P9a and CYP6P9b models toward pyrethroid insecticides. The southern 

African models have the highest scores on average and all the models from resistant strains exhibited 

productive poses with pyrethroids, consistent with the established docking solution with other P450s. 

The FANG models have lower scores, docked away from the heme catalytic centre for optimal 

metabolism, or unproductively as observed with permethrin in FANGCYP6P9b (dihalovinyl group 

approaching the heme) and etofenprox in FANGCYP6P9a (ethoxy group above the heme).  

While etofenprox docked into the active site of both CYP6P9a and CYP6P9b from resistant alleles 

with 2ʹ spot of phenoxy ring oriented for attack (suggesting that these two genes may not differ in 

their activities toward etofenprox and primary product generated), remarkable differences were 

observed in the conformations of permethrin and deltamethrin within the active site of CYP6P9a and 

CYP6P9b. For example, the top ranked solutions of permethrin in UGANCYP6P9a, FANGCYP6P9a, 

MALCYP6P9a and deltamethrin in FANGCYP6P9a and MALCYP6P9a predicted trans methyl 

hydroxylation as the preferential mode of metabolism, while in BENCYP6P9b and MOZCYP6P9b with 

permethrin, as well as all CYP6P9b models (BEN-, UGAN-, FANG- and MOZCYP6P9b) with deltamethrin 

it’s the 4ʹ spot of the phenoxy ring which is oriented for metabolism. This established that CYP6P9a 

and CYP6P9b differ in their regio-selectivity toward permethrin and deltamethrin, with gem dimethyl 

attack favoured by CYP6P9a while 4ʹ spot of phenoxy is the most preferred site of attack by CYP6P9b. 

The only exception is MOZCYP6P9b which produced multiple bound conformations with permethrin 

and deltamethrin (trans methyl group oriented for attack in some top ranked solutions) indicative of 

more than one primary metabolite.  

The 4ʹ spot has been described as the major site of attack on deltamethrin by insect P450s 

(Stevenson et al., 2011) and this productive pose is the one obtained especially with CYP6P9b from 

resistant alleles, and was predicted to have high activity towards pyrethroids. Its possible that 

CYP6P9b alleles are more efficient in pyrethroid metabolism compared with their CYP6P9a 

counterparts.  
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CYP6P9a and CYP6P9b models were also discovered to differ considerably in the composition of 

their pyrethroid binding sites, and this is reflected in the topology and geometry of their respective 

active sites. While the binding site of pyrethroids in CYP6P9a contains large number of aromatic 

(bulky) residues and possibly utilizes hydrophobic interactions, π-stacking, vdW interactions and 

resonance stabilization to drive catalysis, the active site of CYP6P9b especially from southern Africa 

contains few bulky residues and thus hydrophobic interaction is secondary in importance to ionic 

interactions and hydrogen bonding. The active site of CYP6P9b is rich in polar charged and neutral side 

chains with possibility of ionic attractions and hydrogen bonds driving catalysis. Ionic interactions have 

been described as the important non-bonded phenomena through which residues Glu216 and Asp301 

exert substrate specificity and product region-selectivity in CYP2D6 (Paine et al., 2003). Thus, 

hydrogen bondings are predicted to be the most important factor for non-bonded interactions within 

the active site of both resistant MOZCYP6P9b and susceptible FANGCYP6P9b models, while its 

predicted to be of secondary importance in MALCYP6P9a and FANGCYP6P9a which showed no 

intermolecular hydrogen bonds with both permethrin and deltamethrin.  

Analysis of the substrate access channels predicted that MOZCYP6P9b differs considerably in 

its topology compared with FANGCYP6P9b. The MOZCYP6P9b possesses a wide open channel pw2a 

which may enhance access of pyrethroids to the binding site and catalysis. The MOZCYP6P9b channel 

pw2a housed the Val109 residue predicted to be involved in affinity/specificity toward pyrethroids.  

Analysis of nucleotide diversities and amino acid sequences of alleles of CYP6P9a and CYP6P9b 

coupled with modelling and docking simulations predicted that allelic variation is  impacting on the 

activity of CYP6P9a and CYP6P9b toward pyrethroid insecticides with the alleles from resistant strains 

(especially from southern Africa) having high activity compared with alleles from susceptible strain 

(FANG) which were predicted to have lowest activity.  

Allelic variation has been shown to impact on the catalytic activity of other P450s. For 

example, comparison of allelic variants CYP6AB3v1 and CYP6AB3v2 (a difference of only five amino 



97 
 

acid residues) of D. pastinacella (parsnip webworm) established that only a single amino acid 

difference Val92 in CYP6AB3v1 and Ala92 in CYP6AB3v2 makes the latter able to metabolize 

imperatorin, a toxic furanocoumarin with a high rate (Mao et al., 2007). It was also recently shown 

that a single mutation in the GSTe2 gene (Leu119Phe substitution) from resistant strain of An. funestus 

from Benin resulted in an increased binding cavity making the Phe119 variant capable of metabolizing 

DDT and conferring resistance in this specie.  

DDT has ChemScore of less than -30 but the fact that DDT produced unproductive poses in all 

the docking solutions with alleles from the resistant strains as well as FANG suggests that even if this 

organochlorine insecticide binds to the pyrethroid, it may not be metabolized. DDT is established from 

several studies to be metabolized by CYP450s by dehalogenation of trichloromethyl group (Chiu et al., 

2008, Amichot et al., 2004) and thus the docking results obtained here predicted DDT docking in either 

unproductive mode or away from the heme catalytic center for optimal metabolism.  

Bendiocarb produced very low docking scores on average half or three-fold less than values 

obtained with the pyrethroid insecticides. The docking parameters and conformation of bendiocarb in 

the active sites of CYP6P9a and CYP6P9b indicated no activity toward this carbamate insecticide.  

 Docking simulations predicted CYP6P9a and CYP6P9b models from resistant alleles from southern 

Africa as having high activity towards pyrethroid insecticides. This is consistent with the widespread 

pyrethroid resistance in An. funestus strains where these genes are the most overexpressed. The 

docking software predicted no activity towards DDT predicting that these genes are not involved 

directly in DDT resistance observed in East and West African population of An. funestus. For DDT 

resistance in West Africa, it has been established that CYP6P9a and CYP6P9b are not involved; rather a 

GSTe2 variant is responsible for the extreme resistance in An. funestus from Benin, West Africa 

(Riveron et al., 2014b). The software predicted no activity toward bendiocarb as well, suggesting that 

these P450s are not involved in carbamate resistance observed in West and southern African 



98 
 

population of An. funestus. Factors responsible for carbamate resistance in these regions need to be 

found urgently.  

Molecular docking predictions are subject to experimental validation and thus pyrethroid-

metabolizing activity predicted by the docking algorithm and inactivity toward DDT and bendiocarb 

must be validated with laboratory experiments including probes assay to assess binding affinities and 

metabolism assays to determine catalytic activities toward these insecticides screened.  
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3. ASSESSMENT OF METABOLIC EFFICIENCY OF ALLELIC VARIANTS USING 

FLUORESCENT PROBES, METABOLISM ASSAY AND TRANSGENIC 

EXPRESSION OF CYP6P9a and CYP6P9b ALLELES 

 

3.1 Background 

Modelling and docking analyses predicted that the CYP6P9a and CYP6P9b alleles from resistant 

strains of An. funestus are capable of metabolizing Type I and Type II pyrethroids with higher efficiency 

compared with corresponding alleles from susceptible strain. Even between the resistant alleles, 

variations in metabolic activities were predicted with the southern African alleles especially of 

CYP6P9b anticipated to have highest activity of all the alleles screened. The docking software also 

predicted that recombinant CYP6P9a and CYP6P9b possess no enzymatic activity toward non-

pyrethroid insecticides DDT and bendiocarb. However, docking is in silico simulations and not enough 

evidence in itself and therefore subject to experimental validations. In vitro heterologous expression 

and estimation of P450 activity as established using mammalian cells (COS cells), yeast cells like S. 

cerevisiae, insect cells (Baculovirus sf9 cells), as well bacterial (E. coli) expression systems (Gonzalez 

and Korzekwa, 1995, Waterman and Johnson, 1991, Pritchard et al., 2006a) have been widely applied 

to characterise the metabolic activity of candidate P450s. Heterologous expression of P450s and 

functional characterisation using fluorescent probes assays have been  used for functional validation 

of modelling predictions. For example: (i) modelling analysis, heterologous expression in E. coli, probes 

assay and metabolism assays revealed that An. gambie CYP6Z2 can bind pyrethroids permethrin and 

cypermethrin but cannot metabolize them (McLaughlin et al., 2008), (ii) in silico modelling and 

heterologous expression of Ae. aegypti CYP6Z8 (ortholog of An. gambiae CYP6Z2) in recombinant 

yeast cells coupled with fluorescent probes assay, HPLC metabolism assays and MS/MS identification 

of metabolites have revealed that this P450 is capable of metabolizing primary products of pyrethroid 

metabolism from carboxylesterases, including 3-phenoxybenzoic alcohol and 3-phenoxybenzaldehyde  

into 3-phenoxybenzoic acid (Chandor-Proust et al., 2013).  
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Site-directed mutagenesis (SDM) have evolved into a powerful approach that allows molecular 

biologists to unveil the protein-structure function relationships. It is an invaluable tool that makes it 

realisable to modify DNA sequences for desired end (Zheng et al., 2004) with random or target 

mutations introduction in the protein coding sequence followed by screening the mutant library for 

functional activity changes. SDM has been used extensively to identify key amino acid residues that 

are involved in catalysis. For example, (i) Glu216Leu/Gln/Phe mutation of CYP2D6 have been shown to 

result in 100-fold decrease in affinity in the KM of bufurarol and dextromethorphan (Paine et al., 2003); 

(ii) Asp293Ala replacement in human CYP2C9 resulted in 90% decrease in activity and 3-10 times 

increased KM for diclofenac, dextromethorphan and tolbutamide (Flanagan et al., 2003); (iii) Val92Ala 

substitution in D. pastinacella CYP6AB3v1 caused quantitative changes making the P450 as efficient as 

CYP6AB3v2 in metabolizing plants allelochemical imperatorin (Mao et al., 2007).  

Several other insect P450s implicated as insecticides metabolisers have been functionally 

characterised by various approaches, including liquid chromatography (Stevenson et al., 2012, 

Duangkaew et al., 2011, Mitchell et al., 2012) as well as combination of LC/MS and NMR-spectroscopy 

(Stevenson et al., 2011). On Anopheles funestus, we have already functionally characterized the role of  

duplicated P450s (CYP6P9a and CYP6P9b alleles from southern Africa: see Appendix 5 for list of 

publications derived from this study). Both CYP6P9a and CYP6P9b recombinant proteins metabolize 

Type I and II pyrethroids (Riveron et al., 2013, Riveron et al., 2014a).  

In vivo transgenic expression of candidate genes has also been used in several studies to establish 

the role of P450s in metabolism of insecticides and resistance. For example, D. melanogaster CYP6G1 

has been implicated as the cause of DDT resistance using transgenic overexpression (Daborn et al., 

2007), and transgenic expression of T. castenaum CYP6BQ9 in D. melanogaster established its 

involvement in deltamethrin resistance (Zhu et al., 2010). Using transgenesis, we have also established 

that the southern African CYP6P9a and CYP6P9b, as well as CYP6M7 confer resistance to Type I and 

Type II pyrethroids in An. funestus, in vivo (Riveron et al., 2013, Riveron et al., 2014a) (Appendix 5).  
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3.2 Aim and Objectives 

The main aim of this section was to establish whether the allelic variation observed in the major 

pyrethroid resistance genes- the cytochrome P450s CYP6P9a and CYP6P9b, impacts their metabolic 

efficacy as predicted by modelling and thus could be the key factor responsible for pyrethroid 

resistance in field populations of An. funestus.  The specific aims of this  study were to: 

1-Assess the metabolic activity of various alleles using fluorescent probes followed by kinetics with 

diethoxyfluorescein and inhibition assays; 

2-Establish the activity of various alleles of both genes with pyrethroids, organochlorine and 

carbamate insecticides, followed by kinetics analyses with permethrin and deltamethrin; 

3- Identify the key amino acid change(s) which confer pyrethroid-metabolizing efficiency in the 

resistant alleles of these genes using site-directed mutagenesis; 

4-  Predict in silico the mechanism by which such amino changes modify metabolic activity of CYP6P9b. 

4- Validate the role of allelic variation of CYP6P9a and CYP6P9b in pyrethroid resistance by comparing 

resistant and susceptible alleles with in vivo transgenic expression in D. melanogaster using the GAL4-

UAS system. 

 

3.3  Methods 

3.3.1  Cloning and Co-Expression of Recombinant CYP6P9a and CYP6P9b cDNA with An. 

gambiae Cytochrome P450 Reductase (CPR) 

3.3.1.1 Construction of pB13::ompA+2-CYP6P9a and pB13::ompA+2-CYP6P9b Plasmids 

Six alleles each from CYP6P9a and CYP6P9b (were selected for cloning and heterologous 

expression (Table 3.1).  
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Table 3.1: Country of origin, CYP6P9a and CYP6P9b alleles selected for functional characterisation  

Country Allele Amino Sequence Replacement Mutations 
CYP6P9a 

Benin BENCYP6P9a Ala51Ser, Gln52Leu, His301Gln, Tyr320Ser, Ser431Phe 

Uganda UGANCYP6P9a Ala51Ser, Gln52Leu, His301Gln, Tyr320Ser, Ser431Phe 

Malawi MALCYP6P9a Phe63Leu, Gln66Lys, His301Gln, Tyr320Ser, Ser431Phe 

Mozambique MOZCYP6P9a Phe63Leu, Gln66Lys, His301Gln, Tyr320Ser, Ser431Phe 

Zambia ZMBCYP6P9a Phe63Leu, Gln66Lys, His301Gln, Tyr320Ser, Ser431Phe 

Angola FANGCYP6P9a Ala51, Gln52, Phe63, Gln66, His301, Tyr320, Ser431 

 CYP6P9b 

Benin BENCYP6P9b Ser32Asn, Ile109Val, His169Arg, Gln171Pro, Glu172Asp, Glu335Asp, Ala401Pro 

Uganda UGANCYP6P9b 
Ser32Asn, Ile109Val, His169Arg, Gln171Pro, Glu172Asp, Glu335Asp, Ser384Asn, 

Ala401Pro 

Malawi MALCYP6P9b 
Ser32Asn, Ile109Val, His169Arg, Gln171Pro, Glu172Asp, Glu335Asp, Ser384Asn, 

Ala401Pro 

Mozambique MOZCYP6P9b 
Ser32Asn, Ile109Val, His169Arg, Gln171Pro, Glu172Asp, Glu335Asp, Ser384Asn, 

Ala401Pro 

Zambia ZMBCYP6P9b 
Ser32Asn, Ile109Val, His169Arg, Gln171Pro, Glu172Asp, Glu335Asp, Ser384Asn, 

Ala401Pro 

Angola FANGCYP6P9b Ser32, Ile109, His169, Gln171, Glu172, Glu335, Ser384, Ala401 

 

Full-length, unmodified cDNA of CYP6P9a and CYP6P9b alleles were expressed as microsomal 

proteins using ompA+2 strategy (Pritchard et al., 2006a). cDNA fragment encoding the bacterial outer 

membrane protein A (ompA) leader sequence (21 amino acids) and 2 additional spacer residues (Ala-

Pro linker) were introduced as signal peptide ompA+2 to the NH2-terminus of the P450 cDNAs in frame 

with the P450 initiation codon as shown in scheme in Figure 3.1. The signal peptide directs the P450 to 

the membrane surface (Pritchard et al., 1997) and is thereafter cleaved upon expression in a fashion 

enhanced by the Ala-Pro spacer residues.  

 
Figure 3.1: General scheme for the PCR-mediated fusion of bacterial leader sequences to P450 

cDNAs. Adapted from  (Pritchard et al., 1997). 



103 
 

3.3.1.1.1 Construction of ompA+2-CYP6P9a and ompA+2-CYP6P9b cDNA 

Initially, a short DNA fragment was synthesized in a fusion PCR using 50ng E. coli JM109 gDNA 

as a template with a leader sequence-specific forward primer ompA+2F: GGAATTCCATATGAAAAAG 

ACAGCTATCGCG (EcoRI and NdeI sites are underlined in green and purple respectively) and a reverse 

linker primer: ompA+2CYP6P9a/bR: CAACACCACGTTAATGAGCTCCATCGGAGCGGCCTGCGCTACGGTAG 

CGAA which is complementary to the first 24 nucleotides 5ʹ end of CYP6P9a and CYP6P9b cDNA, 

underlined in  dark red, joined to the last 21 bases linker of the leader sequence. This reverse primer is 

common to both CYP6P9a and CYP6P9b that have identical NH2-terminus. PCR reaction mix is given in 

Table 3.2 and the High-Fidelity PCR conditions were as follows: 1 cycle at 95°C for 5 min; 35 cycles 

each of 94°C for 20s, 58°C for 30s, and elongation at 72 °C for 45s; and 1 cycle of final extension at 

72°C for 5 min. The PCR product, an intermediate fragment (linker) of less than 100bp (containing the 

ompA+2 signal sequence and the first 24 nucleotides  was confirmed using gel electrophoresis (Figure 

3.2), cleaned with QIAquick® PCR Purification Kit (Qiagen) as explained in section 2.3.2.3(ii) and its 

quality and quantity assessed with Nanodrop Spectrophotometer (Thermo Fisher).  

Table 3.2: PCR reaction mix for ompA+2 intermediate linker fragment synthesis 

Reagent Final Concentration Volume (µl) 

10x  Qiagen Buffer (containing 5mM MgCl2) 1x 5 
dNTP mix (25mM) 0.66mM 0.4 
ompA+2F (10µM) 1µM 1.5 

ompA+2CYP6P9a/bR (10µM) 1µM 1.5 
JM 109 gDNA template 50ng 1.0 

dH2O - 39.6 
HotStar Taq Polymerase 1U/µl 1.0 

Total Volume - 50 

 

 

 

 

Figure 3.2: ~100 bp intermediate linker product resolved on 1.5% agarose gel stained 

with Ethidium Bromide. 
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Next, cDNA minipreps of CYP6P9a and CYP6P9b alleles prepared in section 2.3.2.3(iii) were 

used as templates with limiting concentrations of the linker prepared above for second PCR, using the 

leader sequence-specific forward primer (ompA+2F) and reverse primers:- ompA+2CYP6P9aR: TCTAGA 

GAATTCTCACAATTTTTCCACCTTCAAG and ompA+2CYP6P9bR: TCTAGAGAATTCTTACACCTTTTCTACCTTC 

AAG. These reverse primers designed with XbaI and EcoRI restriction sites underlined in red and green 

respectively are complementary to the 3ʹ-terminus of CYP6P9a and CYP6P9b cDNA. PCR reaction mix is 

given in Table 3.3 and the High-Fidelity conditions were as follows: 1 cycle at 95°C for 15 mins; 35 

cycles each of 94°C for 20s, 50°C for 30s, and elongation at 72 °C for 90s; and 1 cycle of final extension 

at 72°C for 5 mins. The PCR product, a cDNA containing the ompA+2 signal peptide joined to the full 

length cDNA (~1600bp) was confirmed using agarose gel electrophoresis, cleaned with QIAquick® PCR 

Purification Kit (Qiagen) and its quality and quantity assessed with Nanodrop Spectrophotometer 

(Thermo Fisher). 5-7ng of these PCR products were ligated into pJET1.2/blunt cloning vector using 

the CloneJET PCR Cloning Kit (Fermentas) as described in Table 2.2 and transformed into DH5α 

(section 2.3.2.3). Positive colonies screened with pJET1.2 primers listed in Table 2.1 were miniprepped 

overnight and sequenced using the pJET725 primers for presence of ompA+2 signal peptide sequence 

and restriction sites.   

 Table 3.3: PCR reaction mix for fusion of ompA+2 leader sequence to CYP6P9a/b cDNA  

Reagent Final Concentration Volume (µl) 

10x  Qiagen Buffer (containing 15mM MgCl2) 1x 5 
dNTP mix (25mM) 0.66mM 0.4 
ompA+2F (10µM) 1µM 1.5 

ompA+2CYP6P9aR/ ompA+2CYP6P9bR (10µM) 1µM 1.5 
Linker fragment 1ng/µl 0.5 

dH2O - 40.1 
HotStar Taq Polymerase 1U/µl 1.0 

Total Volume - 50 
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3.3.1.1.2 Restriction Digestion of pJET1.2::ompA+2-CYP6P9a/CYP6P9b Construct  

The pJET1.2::ompA+2-CYP6P9b plasmids were double-digested with restriction enzymes NdeI 

and XbaI (Table 3.4) from Fermentas and purified by gel-extraction using the QIAquick® Gel Extraction 

Kit (QIAgen). Efforts to digest pJET1.2::ompA+2CYP6P9a plasmids were unsuccessful and as such the 

cleaned PCR products from section 3.3.1.1.1 were double digested directly and used for the next step. 

Table 3.4: Double digestion of ompA+2CYP6P9a and pJET1.2::ompA+2CYP6P9b products 

Reagent Final Concentration Volume (µl) 

10x  Fast Digest Green Buffer 1x 5 
Fast Digest NdeI - 2 
Fast Digest XbaI - 2 

Plasmid/PCR product 0.1-0.5µg 10-20 

dH2O As required 20-30 
Total Volume - 50 

 Digestion condition: 37
o
C for 2 hours and 65

o
C for 15 mins 

3.3.1.1.3 Ligation of Restriction Digests into pCWOri+ Plasmid and Cloning into DH5α 

The ompA+2-CYP6P9a PCR product and ompA+2CYP6P9b plasmid digests were ligated 

overnight into pCWOri+ expression plasmid already linearized with NdeI and XbaI restriction enzymes 

(Table 3.5). pCWOri+ is one of the most convenient expression vector with two tac promoter cassettes 

upstream of NdeI (CA↓TATG) restriction site coincident with initiation codon ATG (Barnes et al., 1991) 

as well as a gene encoding Lac repressor molecule which prevents transcription from tac promoters 

before addition of inducing agents. A map in Figure 3.3, prepared using the NEB Cutter v2.0 (Vincze et 

al., 2003) shows the strategy for the construction of the expression plasmid: pB13::ompACYP6P9b. 

Table 3.5: Ligation of ompA+2CYP6P9a and pJET1.2::ompA+2CYP6P9b products 

Reagent Final Concentration Volume (µl) 

Restriction Digest 20-50ng 10-25 
pCWOri+ Digest 5-10ng 2-4 

10x  T4 DNA Ligase Buffer 1x 1 
dH2O - As required 

T4 DNA Ligase 1U/µl 1 

Total Volume  50 
 Ligation condition: 16

o
C for 16 hours 
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4µl of the ligation product was used to transform high efficiency DH5α using the protocol 

outlined in section 2.3.2.3. Positive colonies were screened with  forward (seqpCWF) and reverse 

(seqpCWR) primers (Table 3.6) designed within the pCWOri+ sequence approximately 100 nucleotides 

upstream of the NdeI restriction site and downstream of the XbaI restriction site respectively. A band 

of around 1800bp comprising the insert gene (1527bp), the ompA+2 leader sequence as well as the 

~200 nucleotides from pCWOri+ flanking the insert confirm the presence of the candidate genes in the 

expression vector. These colonies were miniprepped overnight and sequenced using the ompA+2F and 

ompA+2CYP6P9a/bR primers as well as the seqpCWF and seqpCWR primers to confirm the presence 

of ompA+2 signal peptide sequence and restriction sites.   

Table 3.6: Primers for sequencing of ompA+2-CYP6P9a/b in pCWOri+ and CPR in pACYC-184 

Primer Forward Sequence Reverse Sequence Product 
Size (bp) 

seqpCW ATCCCCCTGTTGACAATTAATCATC ACCTATAAAAATAGGCGTATCACGA ~1800 

SeqCPR CTACTCGATCCATATGACGACGGTGAACAC TACGGATCCTACAGCACATCCTCGCCCGTGCTC ~600 

 

3.3.1.2 Construction of pACYC-184:: Cytochrome P450 Reductase Plasmid 

pACYC-184 (New England Biolabs) containing  the ancillary protein An. gambiae cytochrome 

P450 reductase (AgCPR) as well as the His-tagged An. gambiae cytochrome b5 (Agb5) used on the 

course of this study were kindly provided by Dr. M.J.I. Paine at LSTM. The P450 reductase expression 

cassette was prepared as described previously (Pritchard et al., 1998, Pritchard et al., 2006a) with 

P450 reductase cDNA modified by fusing it with pelB leader sequence in a strategy similar to that of 

the ompA+2 for P450s but using the plasmid pET-20b as a template for the initial linker PCR. The 

pACYC-184 expression vector encodes gene for chloramphenicol resistance. More details of the 

engineering method of this plasmid could be found in (Pritchard et al., 2006a).  
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3.3.1.3 Construction of pB13 ::( His) 4-Cytochrome b5 and Purification of b5 

Agb5 cDNA isolated by Nikou and colleagues (Nikou et al., 2003) was tagged with histidine 

residues in its NH2-terminus and engineered into pB13 plasmid already linearized with NdeI and HindIII 

restriction sites. Expression of b5 protein was done using A183 E. coli cells, harvested after 24-30 hours 

post-induction with 0.5mM δ-ALA and 1mM IPTG to the final concentration. The protein was prepared 

using the technique outlined by Holmans and colleagues (Holmans et al., 1994) in which the 

solubilized hemoprotein was purified by nickel affinity chromatography. Concentration of 

membranous b5 was measured by determining spectral activity (Omura and Takesue, 1970, Omura 

and Sato, 1964) as difference between reduced and oxidized b5 (OD423 vs OD490) using the extinction 

coefficient of 185mM-1cm-1. Total protein was determined using Bradford assay. The enzyme was 

frozen in aliquot in -80oC until required. 

 

 

 

 

Figure 3.3: Map of pB13::ompA+2CYP6P9b showing expression plasmid construct in 

circular form. a: 21 amino acids of signal peptide plus alanine proline spacer residues, and 

509 amino acids encoded by CYP6P9b cDNA. b: LacI repressor (NCBI: WB_0002485631); c: β-

lactamase (NCBI: WP_000027057.1); d: LacZ-alpha (GenBank: ACA63830.1); e: Ori+. Prepared 

using the NEB Cutter v2.0 (http://tools.neb.com/NEBcutter2/index.php). 

 

http://tools.neb.com/NEBcutter2/index.php
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3.3.1.4 Co-transformation of pB13:: ompA+2CYPP9a and pB13::ompA+2CYP6P9b with 

pACYC-184-An. gambiae CPR 

High Efficiency E. coli JM109 cells (Promega) were co-transformed with plasmid pB13 

containing An. funestus CYP6P9a/CYP6P9b and pACYC-184 bearing AgCPR in a ratio of 2:1. AgCPR was 

used due to the unavailability of An. funestus CPR cloned into pACYC vector; and because AgCPR (96% 

identical to An. funestus CPR) had been used as a surrogate redox partner with other P450s of even 

lower similarity like Ae. aegypti (87% identical) successfully (Stevenson et al., 2012). Co-transformation 

strategy has been described in (McLaughlin et al., 2008). 100µl of JM 109 cells was introduced into 

15ml tube chilled on ice. 4µl of pB13 plasmid bearing candidate P450 and 2µl of pACYC plasmid 

bearing CPR were introduced into the tubes. After 30 mins incubation on ice, cells were heat shocked 

for 90 seconds at 42oC and then chilled on ice for 2 mins. 950µl of S.O.C medium was added and tubes  

incubated at 37oC with shaking at 200rpm for 2 hours. 100µl of the co-transformed cells were spread 

onto LB plates with 100mg/ml ampicillin and 34mg/ml chloramphenicol and allowed to grow at 37oC 

for 16 hours.   

Individual colonies were suspended in 20µl distilled water the next day and screened using KAPA 

PCR (section 2.3.2.3(iii)) using the  primers for pCWori+ (seqpCWF and seqPCWR) to confirm presence 

of candidate P450s and primers seqCPRF and seqCPRR (Table 3.6) for CPR. The seqCPR primers are 

internal primers designed inside the P450 reductase itself and produced a band of around 600bp on 

1.5% agarose gel stained with ethidium bromide.    

3.3.1.5 Heterologous co-expression of pB13:: ompA+2-An. funestus CYPP9a and pB13:: 

ompA+2-An. funestus CYP6P9b with pACYC-184-An. gambiae CPR in E. Coli JM109 

For co-expression of CYP6P9a/-b and CPR, 4µl of co-transformed colony suspended in distilled 

water was introduced into a 15ml tube containing 3ml LB medium, 3µl of 100mg/ml ampicillin and 

5.1µl of 20mg/ml chloramphenicol. Culture was allowed to grow for 12-14 hours at 37oC with shaking 
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at 200 rpm. The next day 1-2ml of this culture was used to inoculate 200ml of pre-warmed (37oC) TB 

medium containing 200µl ampicillin and 340µl chloramphenicol. This culture was allowed to grow for 

3-4 hours at 37oC and 200 rpm orbital shaking until the optical density at 600nm reached 0.6-0.7. The 

log-phased cells was then transferred to 21oC (22oC optimal for CYP6P9a) and 150 rpm orbital shaking 

(155 rpm optimal for CYP6P9a alleles) and allowed to cool for 30 minutes. Induction was carried out 

by adding 1mM IPTG and 0.5mM δ-ALA to the final concentrations. Cultures were monitored for P450 

activity at 6 hours interval starting from 18 hours. Once P450 activity was detected cultures were then 

transferred into 250ml tubes chilled on ice and centrifuged at 2800 rpm and 4oC for 20 minutes. Detail 

of this protocol could be found in (McLaughlin et al., 2008, Pritchard et al., 2006a, Stevenson et al., 

2012) and specifically the procedure for co-expression, harvesting of cells, spheroplast preparation 

and isolation of membranes are given in Appendix 3.1. 

3.3.1.6 Determination of concentration of An. funestus CYP6P9a/CYP6P9b proteins and An. 

gambiae cytochrome P450 reductase activity 

3.3.1.6.1 Measurement of Total Protein, P450 and CPR Activities 

Protein content of the membranes was measured colorimetrically with Bio-Rad Protein Assay 

Kit (Life Science Research) using the Bradford method (Bradford, 1976) with bovine serum albumin 

standard.  

The P450 concentration was quantified through spectral activity as described (Omura and Sato, 

1964) by measuring the size of the peak (absorbance) at 450nm and using the absorbance at 490nm as 

a reference and an extinction coefficient (ecyt450 = 0.091µM-1cm-1) for P450s. 50µl of membrane was 

diluted in 1.5ml of P450 spectrum buffer (80% of 0.1M potassium phosphate buffer, pH 7.5, with 20% 

v/v glycerol). Few grains of sodium dithionate was added and the mix swirled gently and then divided 

(750µL each) into two optical cuvettes labelled E (experimental) and B (blank). After running a baseline 

between 500-400nm, carbon monoxide was bubbled into E for 60s. The extinction coefficient, dilution 

factor and the Fe2+-CO (E) and Fe2+ (B) difference spectra were used to calculate the P450 activity.  
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CPR activity in the prepared membranes was measured by cytochrome c reduction assay (Strobel 

and Dignam, 1978). Details of the protocol for this assay could be found elsewhere (Pritchard et al., 

2006a). Reductase activity was measured spectrophotometrically based on extinction coefficient of 

reduced cytochrome c (21.4 mM-1cm-1) as nmol of cytochrome c reduced/min/mg protein.  

3.3.2 Comparative Assessment of the Activity of Various Alleles of CYP6P9a and CYP6P9b 

Using Fluorescent Probes 

Four membranes each from CYP6P9a (BENCYP6P9a, UGANCYP6P9a, FANGCYP6P9a and  

MALCYP6P9a) and CYP6P9b (BENCYP6P9b, UGANCYP6P9b, FANGCYP6P9b and MOZCYP6P9b) were  

used in a fluorescent probes assay to compare their O-dealkylating catalytic efficiency towards four 

fluorogenic probes (7-ethoxyresorufin: 7-ER, 7-ethoxy-4-trifluoromethylcoumarin:EFC, 7-methoxy-4-

trifluoromethylcoumarin: MFC and diethoxyfluorescein: DEF). ER is an O-alkyl derivative of resorufin 

which undergoes O-deethylation (Burke et al., 1985) with a large Stoke shift which is quantified 

fluorometrically (ʎexc = 544nm, ʎemi = 590nm); EFC and MFC are ethoxy- and methoxy- derivatives of 

coumarin respectively, which undergo deethylation and demethylation to yield fluorescent 7-

hydroxytrifluoromethyl-coumarin (7-HFC) detected at wavelength range ʎexc =410nm and ʎemi = 535nm 

respectively. DEF undergoes deethylation into ethoxyfluorescein and fluorescein (White et al., 1987) 

with excitation and emission wavelength ranges of 485nm and 530nm, respectively.  I conducted the 

probe assay experiments in Cypex BioDundee, Scotland (http://www.cypex.co.uk/intro.htm).  

3.3.2.1 Screening of Probes 

2mM stock of probe substrates in dimethylsulfoxide (DMSO) was prepared and kept at 2-8oC. 

Fresh NADPH regeneration system was prepared using 50mM potassium phosphate buffer (KPi at pH 

7.4) for each experiment. Initially, 1µM of the probe substrates (ER, EFC, MFC and DEF) were screened 

for activity with 45pmol of membranes of CYP6P9a and CYP6P9b (Table 3.7) following the protocols 

previously established (Stevenson et al., 2012, McLaughlin et al., 2008). For each of the four probes 

http://www.cypex.co.uk/intro.htm
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screened, in a total volume of 250µ/well (in an opaque, white 96-well plate) containing 45pmol P450 

membrane buffered with 50mM potassium phosphate buffer (KPi at pH 7.4 with 5mM MgCl2), 1µM 

probe substrate was added. These reactions were carried out in triplicate and one negative control to 

which 25µl KPi buffer was added instead of the NADPH regeneration buffer to allow for determination 

of enzymatic activity due only to dealkylation mediated by the P450 activity. The plate was inserted 

into the fluorescence spectrophotometer Infinite® M200 (TECAN) already set to 37oC. After incubation 

for 5 mins, 25µl of regeneration buffer was added to the experimental wells and product(s) 

fluorescence monitored for 11 cycles with shaking and reading 2 seconds apart. The regeneration 

system contains 1mM glucose-6-phosphate (G6P), 0.25mM MgCl2, 0.1mM NADP and 1U/ml glucose-6-

phosphate dehydrogenase (G6PDH). Rate of fluorescent product formation was determined as relative 

fluorescence per minute by linear regression of measurement between 2- and 8 mins after start of the 

reaction. Results were analysed with MagellanTM v6.2 Wizard. The excitation and emission wavelength 

for the probes used on the course of this research are given in Appendix 3.3. 

Table 3.7: Reaction mix for fluorescence probes assay 

Component Stock 
Concentration 

Final Reaction 
Concentration 

Volume 
 (µl) 

 KPi Buffer (containing 5mM MgCl2) 50mM 50mM Varies 
P450 protein  Varies (nmol/ml) 45pmol Varies 

Probe substrate 2mM 1µM 0.125 
Incubation at 37oC for 5 minutes  

10X Regeneration system 10x 1X 25µl 
                 Total Volume 250 

 

3.3.2.2 Linearity Measurements 

For all membranes highest activities were obtaind with diethoxyfluorescein (DEF). DEF was 

therefore selected for kinetics analysis and inhibition assays to establish respectively the possible 

differences in the steady state kinetic parameters from different alleles and to carry out inhibition 

assays. In order to establish the amount of membranes that produce optimal activity with 1µM DEF 

substrate protein linearity was conducted with two membranes each from CYP6P9a (BENCYP6P9a and 
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MALCYP6P9a) and CYP6P9b (MOZCYP6P9b and UGANCYP6P9b). Time-dependent measurement of 

activity against 1µM DEF was carried out with variable amounts of membranes, prepared by serial 

dilution (90pml, 30pmol, 10pmol, 3.33pmol, 1.11pmol and 0.37pmol) prior to addition of the 

substrate. The final solvent concentration was less than 3% of the total volume of the incubation 

mixture. Plates were read in fluorometer for 30 mins at 30 seconds interval following addition of 

NADPH-regenerating solution.  

3.3.2.3 Kinetic Analysis of  Various CYP6P9a/CYP6P9b proteins with Diethoxyfluorescein 

Kinetic analysis was conducted using all alleles utilised for initial screening of probes. This was 

to establish if there were any differences in the turnover of these alleles with DEF and to establish the 

Michaelis constant (KM values) which could indicate differences in the affinity of the different alleles 

toward DEF substrate. 0-2µM concentrations of DEF (0µM, 0.0009µM, 0.0027µM, 0.0082µM, 

0.0247µM, 0.0741µM, 0.2222µM, 0.6666µM and 2.0µM) were assayed with 10pmol membranes of 

CYP6P9a and 3.33pmol of CYP6P9b proteins in a total volume of 250µl/well. The protocol was as 

outlined in the initial screening for activity (above), only that the substrate concentration varies and 

incubation was done under conditions shown to be linear with respect to time and enzyme 

concentration. Steady-state kinetic parameters were obtained by measuring the rate of reaction under 

linear conditions for 10 mins while varying the substrate concentration from 0 to 2µM. KM and Vmax 

were established from the plot of substrate concentrations against the initial velocities through a non-

linear regression by fitting the data to the Michaelis-Menten equation using GraphPad Prism 6.03 

(GraphPad Software Inc., La Jolla, CA, USA). Catalytic constants (KM and Vmax) were determined from 

the steady-state parameters  efficiencies calculated as the ratio of Kcat to KM. 

3.3.2.4 Inhibition Assay  

Inhibition assay is important as it can establish whether a potential subsrate (e.g. insecticide) 

binds to the candidate enzyme and the degree of binding. It gives information on the affinity but not 
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metabolic activity of candidate enzyme toward substrate of interest. Fluorometric inhibition assay was 

conducted with DEF as the probe substrate, a panel of insecticides (test compounds) as inhibitors, and 

miconazole as positive control inhibitor. Miconazole is a potent polyene azole antifugal agent. It 

contains imidazole group which binds to the iron of heme P450 C14α-lanesterol demethylase) 

preventing the demethylation of lanosterol into demethyl-lanosterol intermediate of the HMG-CoA 

pathway (Lupetti et al., 2002). The ten test insecticides used include pyrethroids: permethrin, 

bifenthrin, deltamethrin, lambdacyhalothrin, cypermethrin and etofenprox; organochlorine: DDT; 

carbamates: bendiocarb and propoxur; organophosphate: chlorpyrifos.  

The assay was carried out as described in previous studies (Kajbaf et al., 2011, Bambal and 

Bloomer, 2006) and as described for An. gambiae CYP6Z2 with benzyloxyresorufin and pyrethroids, 

permethrin and cypermethrin, as well as other conventional substrates (McLaughlin et al., 2008). Two 

96 well plates: opaque-walled (inhibitors plate) and black (assay plate) were set.  

Premix 1: Into well A1 of the inhibitors plate, 200µl of 50mM KPi  (with 5mM MgCl2) was 

added; 200µl of 50mM KPi with MgCl2 containing 2.5mM miconazole prepared in DMSO and dH2O was 

added to well A2; into well A3:A12, 200µl each of 50mM KPi containing 2.5mM test inhibitor 

substrates  were individually added. 150µl of 50:50 (v/v) dH2O:DMSO was added to column B1:H1 for 

blank, B2:H2 for miconazole and B3:H3 through to B12:H12 for the test insecticides. Next, 50µl mix 

from rows A1:A12 (spikes) was serially diluted down to row H1:H12 using multichannel pipette with 

mixing at each row (step). Finally 50µl of mix was removed from rows H1:H12 and discarded. 5µl of 

this premix 1 were aliquot in correct order onto the black assay plate.  

Premix 2: 220µl of 50mM KPi buffer pH 7.4 (with 5mM MgCl2), containing 0.1-0.3µM final 

concentration of probe substrate (KM values) and 10pmol membrane (CYP6P9a) or 3.33pmol 

(CYP6P9b) were aliquoted into the assay plate already containing 5µl (25µM) of miconazole well B2:H2 

and 25µM test insecticides serially diluted into eight-fold concentrations (25µM, 8.33µM, 2.77µM, 

0.92µM, 0.308µM, 0.102µM, 0.034µM and 0.011µM) B3:H3 to B12:H12.  
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After incubation for 5 mins at 37oC, reaction was started by addition of 25µl of regeneration 

system to all wells. The regeneration buffer contains 7.8mg glucose-6-phosphate (G6P), 0.25mM 

MgCl2, 1.7mg NADP, 6U/ml glucose-6-phosphate dehydrogenase and 2% w/v NaHCO3. Fluorescence 

was monitored for 21 cycles at interval of 1 min with shaking at every step. Results were analysed 

using Magellan v6.2 and inhibition at each concentration of inhibitor insecticide was calculated as 

residual control activity observed from the probe.  

 

3.3.3 Comparative Assessment of Metabolic Activity of CYP6P9a/CYP6P9b Alleles on Different 

Insecticide Classes with Reverse-Phase High-Performance Liquid Chromatography (RP-

HPLC) Metabolism Assay 

The same membranes from CYP6P9a and CYP6P9b used for fluorescent probes assay were 

used for metabolism assay with panel of insecticides, including representative pyrethroids 

(permethrin, bifenthrin, deltamethrin, λ-cyhalothrin, etofenprox), organochlorine (DDT) and 

carbamates (bendiocarb and propoxur). Protocols used followed the procedure as described in 

previous studies (Muller et al., 2008, Stevenson et al., 2011) for metabolism assays of pyrethroids with 

An. gambiae CYP6P3 and CYP6M2 recombinant proteins, respectively. 

3.3.3.1 Substrate Depletion Assay 

  Initially, 2mM stock concentration of all insecticides were prepared in HPLC-grade methanol 

and kept in -20oC prior to use. Substrates working solution was prepared by diluting stock to 0.8mM 

with methanol to reduce precipitation of insecticide. The reaction mix for this protocol including the 

membrane expressing P450 and CPR, b5, NADPH-regeneration system as well as the buffer used are 

tabulated below (Table 3.8). 0.2M Tris-HCl and NADPH-regeneration components (1mM glucose-6-

phosphate, 0.25mM MgCl2, 0.1mM NADP+ and 1U/ml glucose-6-phosphate dehydrogenase) were 

added to the bottom of 1.5ml tube chilled on ice. 
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Table 3.8: Reaction mix for HPLC metabolic assay 

Component Stock Concentration Final Reaction 
Concentration 

Volume 
 (µl) 

  Tris-HCL pH 7.4 0.2M 0.2M Varies 
Membrane (CYP450 + CPR) Varies (nmol/ml) 45pmol Varies 

Cytochrome b5 Varies (nmol/ml) ~180-500pmol ~10-20 
NADPH +/- (containing 0.25mM 

MgCl2) 
10X 1x 50 

Incubation at 30oC and 1200 rpm for 5 mins 
Substrate (Working) 0.8M 20µM 5.0 

                 Total Volume 200 
 DDT analysis: with or without 1mM sodium cholate as previously described (Mitchell et al., 2012). 

Membrane expressing P450 and CPR, and the b5 proteins were added to the side of the tube 

and pre-incubated for 5 mins at 30oC, with shaking at 1200 rpm to activate the membrane. 20µM of 

test insecticide was then added into the final volume of 0.2ml (less than 2.5% v/v methanol in final 

volume of reaction mix) and reaction started by vortexing at 1200 rpm and 30oC for 1 hour. Reactions 

were quenched with 0.1ml ice-cold methanol and incubated for 5 more mins at 1200 rpm and 30oC, to 

dissolve all residual insecticide. Tubes were then centrifuged at 16400 rpm and 4oC for 12 mins and 

150µl of supernatant transferred into HPLC vials for analysis. All reactions were carried out in 

triplicates with experimental samples (+NADPH) and negative control (-NADPH) not containing NADP. 

100µl of sample was loaded into an isocratic mobile phase of Agilent 1260 Infinity with a flow rate of 

1ml/min and peaks separated with a 250mm C18 column (Acclaim TM 120, Dionex) at 23oC. Details of 

the mobile phase composition, column temperatures, and wavelength of detection and retention time 

of  insecticides used in this study are given in the Table 3.9. 

Enzyme activity was calculated as the percentage depletion (the difference in the amount of 

insecticide(s) remaining in the +NADPH tubes compared with the –NADPH) and a paired t-test was 

used for statistical analysis.   
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Table 3.9: Conditions used for Reverse-Phase HPLC Analysis 

Insecticides 
 

 

Mobile Phase (v/v) 
 
 

Column 
Temperature  (oC) 

 

UV-Vis Wavelength 
(nm) 

 

Retention Time 
(min) 

 

Permethrin MeOH:H2O (90:10) 23 226 cis ~12, trans ~ 14 

Bifenthrin MeOH:H2O (90:10) 23 226 ~16 

Deltamethrin MeOH:H2O (90:10) 23 226 cis ~9, trans ~11 

λ-cyhalothrin MeOH:H2O (90:10) 23 226 ~8 

Etofenprox MeOH:H2O (90:10) 23 226 ~17.5 

DDT MeOH:H2O (90:10) 23 232 ~11 

Bendiocarb ACN:H2O (65:35) 40 205 
cis ~13, trans ~15 

 

Propoxur ACN:H2O (60:40) 40 270 ~6 

MeOH = Methanol and ACN = Acetonitrile 

3.3.3.2 Steady-State Kinetic Parameters Analysis 

Establishment of kinetic parameters for CYP6P9a and CYP6P9b protein variants will provide 

important information on turnover (the speed with which the different alleles metabolise and clear 

pyrethroid insecticides) and KM (the affinity of the different alleles toward different insecticides). This 

will help establish differences in the catalytic efficiencies of the different alleles from resistant strain 

and identify whether the alleles from resistant strains differ in their pyrethroid-metabolising activity 

compared to alleles from susceptible strain. Enzyme response to variation in substrate concentration 

was determined using the pyrethroids permethrin and deltamethrin. Steady-state kinetic parameters 

were obtained by measuring the rate of reaction under linear conditions for 10 minutes while varying 

the substrate concentration from 2.5 to 20µM (2.5, 5.0, 7.5, 10, 12.5, 15, 17.5 and 20µM). Reactions 

were performed in triplicates with +NADPH (experimental tubes) in parallel with –NADPH (negative 

control). KM and Vmax were established from the plot of substrate concentrations against the initial 

velocities and fitting of the data to the Michaelis-Menten equation using the non-linear regression as 

implemented in the GraphPad Prism 6.03. Catalytic constants and efficiencies were automatically 

predicted from the steady-state parameters by the software. 
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3.3.4 Detection of Key Amino Acid Changes Conferring Pyrethroid Resistance Using Site-

Directed Mutagenesis  

Modelling and docking analyses of the allele variants of CYP6P9a and CYP6P9b as well as  

fluorescent and metabolism assays established  profound differences  in the metabolic profiles of the 

resistant alleles compared with the susceptible ones. It becomes apparent that amino acid differences 

may be the driving force behind such differences. As such finding out which amino acid(s) is/are 

responsibe for these difference is of paramount importance. Such information will shed light on the 

mechanism of resistance at molecular level and make it possible to design appropriate diagnostic tool 

that can allow detection of the mutation(s) in the field. For example, a PCR diagnostic tool for the 

single mutation Leu119Phe in GSTe2 gene in highly DDT-resistant strain of An. funestus from Benin 

allows for a fast detection and tracking of such type of resistance across Africa (Riveron et al., 2014b). 

3.3.4.1 Selection of Candidate Amino Acids 

A hypothesis-driven approach was used to select candidate amino acids that may impact on 

catalytic activity of the resistant alleles. Characterisation of amino acid sequences of CYP6P9a and 

CYP6P9b, as well modelling and docking analyses of alleles with pyrethroid insecticides (Chapter Two) 

helped in the choice of candidate mutations to investigate. For both CYP6P9a and CYP6P9b alleles, list 

of amino acids selected for mutagenesis, their polymorphic positions, as well as the potential 

contribution of the substitution are summarised in Table 3.10, below. Details of the potential impact 

of these mutations have been discussed in details in Chapter Two.  

Candidate amino acids were substituted individually with amino acid variant present in the allele 

from susceptible individual (FANGCYP6P9a and FANGCYP6P9b, respectively). The mutant proteins 

were then expressed and used alongside wild type proteins to screen fluorescent probes for activity, 

as well as metabolism assay with permethrin and deltamethrin to assess the impact of each mutation. 
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Table 3.10: Nucleotide polymorphism and amino acid substitutions between resistant alleles of 
CYP6P9a and CYP6P9b and FANG: the amino acid substitutions selected for mutagenesis 

Amino acid 
substitution 

Mutation Countries Location and potential Impact 

CYP6P9a 

Phe
63

Leu 189: T->G 
Malawi, Mozambique, 

Zambia 
Within the highly variable αA region, possible membrane 

targeting increasing stability 

Gln
66

Lys 196: C->A 
Malawi, Mozambique, 

Zambia 
Within the highly variable αA region, possible membrane 

targeting increasing stability 

His
301

Gln 903: A->C 
Uganda, Malawi, 

Mozambique, Zambia 
Two residues upstream the substrate recognition site 4  

(SRS4) 

Tyr
320

Ser 959: A->C 
Benin, Uganda, Malawi, 
Mozambique, Zambia 

Middle of the αI helix and within SRS4; one residue 
downstream the oxygen binding pocket in CYP6P9a 

Ser
431

Phe 1292: T->C 
Benin, Uganda, Malawi, 
Mozambique, Zambia 

Within the loop joining the meander with the cysteine 
pocket; the loop is purported to house the reductase 

interaction site 2 (RIS-2) 

CYP6P9b 

Ile
109

Val 325: A->G 
Benin, Uganda, Malawi, 
Mozambique, Zambia 

Within the SRS1 and the BʹC loop purported to be involved 
in substrate access and channelling 

Glu
335

Asp 
1005: A->C 

Benin, Uganda, Malawi, 
Mozambique, Zambia 

In the –COOH terminus of the αI helix, possible impact as 
RIS-1 component mediating  interaction with CPR 

Ser
384

Asn 
1151: G->A 

Uganda, Malawi, 
Mozambique, Zambia 

In the  β1_4 (αKʹ) and within the highly conserved SRS5, 
with possible impact on substrate recognition 

Ala
401

Pro 
12001: G->C 

Benin, Uganda, Malawi, 
Mozambique, Zambia 

Within the β2_2 domain; pyrrolidine ring can restrict 
conformational space and 3D folding 

 

3.3.4.2 Primer Design 

Mutagenic sense and antisense oligonucleotide primers were designed to incorporate the 

desired mismatch into the template DNA in a double-stranded DNA-plasmid constructs. Primer pair 

incorporates at least 10 oligonucleotide residues upstream and downstream of the target nucleotide 

to mutate. With the exception of primer pair for MALCYP6P9a Leu63Phe_Lys66Gln double mutant, all 

primers contain no more than 30 nucleotides so as to narrow the Tm to less than 70oC to avoid primer 

dimer formation (Zheng et al., 2004) becoming more favourable than primer-template annealing. Care 

was also taken to avoid GC content of more than 50% though unavoidable in some of the primers. 

Though primers were  designed using an automated web tool PrimerX (http://www.bioinformatics.org 

/primerx/), CYP6P9a mutants PCR amplifications did not work over several attempts. List of all primers 

used are given in Table 3.11 with mutagenised positions  in red.  
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Table 3.11: List of mutagenic primer pairs with respective Tm 

Primer  Sequence Tm (oC) 

MALCYP6P9a_L63F_K66Q_F CTGGAATTTTACAAACAATTCAAGCAGCGCCGTG 69.09 

MALCYP6P9a_L63F_K66Q_R CTTGAATTGTTTGTAAAATTCCAGATGGATGTCGG 65.33 

MALCYP6P9a_Q301H_F GAATGACACACCGAGAACTTGCGG 64.38 

MALCYP6P9a_Q301H_R GTTCTCGGTGTGTCATTCCTACTTC 61.36 

MALCYP6P9a_S320Y_F GACATCATACACGACGCAAAGCTTC 62.88 

MALCYP6P9a_S320Y_R GCGTCGTGTATGATGTCTCGAAACC 64.09 

MALCYP6P9a_F431S_F GATCGCTCCTCACCGGAGGAAGTGAAG 68.15 

MALCYP6P9a_F431_R CTTCACTTCCTCCGGTGAGGAGCGATCC 69.66 

MOZCYP6P9b_V109I_F GATCGCGGTATTTTCACTAATGCAAG 61.26 

MOZCYP6P9b_D335E_F GAACCCTGAAATCCAGGAGCGCCTTAG 67.06 

MOZCYP6P9b_D335E_R CCTGGATTTCAGGGTTCTTTGCCAGC 66.28 

MOZCYP6P9b_N384S_F GAATCGTTGAGTCGTGTGCCGTC 64.29 

MOZCYP6P9b_N384S_R CACGACTCAACGATTCTACCGGG 63.09 

MOZCYP6P9b_P401A_F CACGTGATTGCCAAACGAACGTTAG 63.47 

MOZCYP6P9b_P401A_R CGTTTGGCAATCACGTGTTTCG 61.71 

 

 

3.3.4.3 Construction of Mutant ompA+2-CYP6P9a and ompA+2-CYP6P9b Plasmids 

3.3.4.3.1 Primer Extension PCR 

Efforts to introduce mutations using the plasmidic expression vector pB13::ompA+2CYP6P9a/ 

pB13::ompA+2CYP6P9b were not fruitful due possibly to the larger size of pCWOri+ (5030bp) over the 

pJET1.2 (2974bp). Full length pJET1.2::ompA+2CYP6Pb mutants were successfully amplified via primer 

extension PCR (Zheng et al., 2004) using as a template pJET1.2 miniprep from section 2.3.2.3(ii). This 

one-step approach involved linear amplification of whole plasmid with the mutagenic primers as 

described by Rabhi and colleagues (Li and Wilkinson, 1997) followed by self-ligation at the 

transformation step. Primers annealed back-to-back on the opposite strands of the target template 

and through primer extension amplified the whole plasmid without need for introduction of 

restriction sites. Details of the reaction mix are given in Table 3.12 and the strategy of primer 

extension technique depicted in Figure 3.4.  
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The reaction mix contains 5X Buffer HF with 7.5mM MgCl2, dNTP mixes, forward and reverse 

mutagenic primers, 1-4ng/µl plasmidic DNA template, 0.5-1U of High-Fidelity Phusion Hot Start II DNA 

Polymerase (Thermo SCIENTIFIC, MA, USA) and sterile water. The reaction was started by preheating 

the mixture to 98oC for 10 mins; followed by 35 cycles of 94oC for 30 seconds, annealing (at 65oC) for 

30 seconds and extension at 72oC for 2.5 mins. This is followed with final extension at 72oC for 10 mins 

and 4oC hold. 3µl of the PCR product was then electrophoresed on 1.5% (w/v) with visualisation using 

ethidium bromide. Mutagenic amplification from plasmid pB13::ompA+2CYP6P9a failed even with 

QuickChangeTM Site-Directed Mutagenesis Kit (Stratagene). Even though mutagenic PCR worked with 

pJET1.2::ompA+2-CYP6P9a plasmid, the cloned product refused to get digested from the pJET1.2, and 

as such could not be ligated into the expression vector pCWori+. Consequently, efforts were then 

concentrated on cloning, expression and characterisation of  CYP6P9b mutant proteins.  

Table 3.12: PCR reaction mix for mutant pJET1.2-ompA+2-CYP6P9b Amplification 
Reagent Final Concentration Volume (µl) 

5x Buffer HF (containing 7.5mM MgCl2) 1x 10 
dNTP mix (10mM) 80µM 0.4 

Mutagenic Primer_F (10µM) 0.3µM 1.5 
Mutagenic Primer_R (10µM) 0.3µM 1.5 

Plasmidic DNA Template 2-4ng 0.5-1.0 
dH2O - 35.1-34.6 

HotStart Taq Polymerase II 0.04/µl 1.0 

Total Volume - 50 

 

 
Figure 3.4: Schematic diagram of the primer extension PCR. Adapted from (Zheng et al., 2004, 

Reikofski and Tao, 1992). 
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3.3.4.4 Restriction Digestion of the Parental DNA Template 

The parental plasmidic template is Dam+-methylated from transformation into DH5α. This 

makes it possible to cleave the unwanted template by restriction enzyme DpnI (Thermo SCIENTIFIC, 

MA, USA) as described in (Zheng et al., 2004). 2µl of 1X FastDigest Buffer and 1µl of DpnI was added to 

the PCR-amplification product and incubated for one hour at 37oC. The restriction enzyme cut the 

parental template at position 5ʹ…G m6 ↓ATC…3ʹ which is absent in the desired mutant PCR product 

since its newly synthesized and not passed through E. coli DH5α cloning.   

3.3.4.5 Construction of Plasmidic Expression Vector pB13::ompA+2CYP6P9b  

4µl of the digest was transformed into DH5α, positive colonies mini-prepped and sequenced 

on both strands with pJET725 primers to confirm presence of mutations. The PCR product was then 

digested with NdeI and XbaI (see Table 3.4), gel extracted with QIAquick Gel Extraction Kit (QIAGEN) 

and then ligated into pCWOri+ already linearized with the same restriction enzymes (Table 3.5).  

3.3.4.6 Transformation and Co-transformation of Expression Vector with An. gambiae CPR  

The ligation product was then transformed into DH5α as described in section 3.3, positive 

colonies mini-prepped and sequenced on both strands with seqPCW primers to confirm the presence 

of the ompA leader and target mutations again. The miniprep was then co-transformed with AgCPR 

using the protocol outlined in section 3.3 into JM109 cells.  

3.3.4.7 Heterologous Co-Expression pB13::ompA+2-CYP6P9b mutant with An. gambiae CPR 

Expression and preparation of mutant membranes (Val109Ile, Asp335Glu, Asn384Ser and 

Pro401Ala), with the wild type MOZCYP6P9b membrane protein was conducted as previously described 

previously. Membrane concentrations were determined from difference in Fe2+-CO vs Fe2+ spectra.   
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3.3.4.8 Fluorescent Probes Assay  

3.3.4.8.1 Screening for Activity, Linearity and Kinetics 

10pmol of mutant CYP6P9b protein successfully expressed were screened with 1µM of 7-ER, 

resorufin-benzylether: RBE, resorufin methyl ether: RME and resorufin-pentylether: RPE); two 

cuomarin-based probes (7-EFC and MFC) and diethoxyfluorescein (DEF). The initial test of O-

dealkylating activity and protein linearity was as described in sections 3.3.2.1 and 3.3.2.2 respectively.  

Protein linearity was carried out as described previously and steady-state kinetic parameters 

established with 0-2µM DEF and 3.33pmol or 6.66pmol mutant membranes depending on activities 

obtained from test of linearity. This was carried out as  described in section 3.3.2.3. 

3.3.4.9 Metabolism Assay 

3.3.4.9.1 Substrate Depletion Assays and Kinetics 

To determine whether the amino acid substitutions lead to lose of activity or modify kinetic 

parameters, metabolism assay was conducted with the mutant membranes with permethrin and 

deltamethrin. Substrate depletion was carried out as previously described (section 3.3.3.1).  

Steady-state kinetic parameters were established varying the amount of pyrethroid substrates 

from 1-16µM, in a total volume of 200µl incubated for 15 mins for all mutants excepting the Asn384Ser 

mutant, which was assayed with 30 mins incubation following its unusually low activity. The protocol 

used for the experiment and interpretation of the results were as described in section 3.3.3.3. 

3.3.4.10 In silico Analysis of Key Amino Acid Residues 

To establish spatial positioning and role of key amino acid changes with respect to pyrethroid 

activity, MOZCYP6P9b and FANGCYP6P9b models docked with pyrethroids were overlayed and 

analysed using the PyMOL and MMV.  Position of residues Asp335 and Asn384 in MOZCYP6P9b were 

compared with the corresponding variants Glu335 and Ser384 from FANGCYP6P9b. 
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3.3.5 Comparative Assessment of Ability of Allele Variants of CYP6P9a and CYP6P9b to Confer 

Pyrethroid Resistance in D. melanogaster Using GAL4-UAS System 

Predictions of a drug’s in vivo clearance is usually made based on kinetic parameters obtained 

from in vitro estimated intrinsic clearance (Tracy, 2003). However, in vitro-in vivo extrapolation is an 

assumption with some shortcomings, for in vitro experiments discount the influence of other 

metabolizing enzymes and factors within the biological system. Other proteins may be involved in 

binding and/or metabolism of a substrate and as such in vitro results may not reflect the holistic 

pharmacokinetics taking place. In vitro kinetic analyses have revealed differences in kinetic profiles 

between the membrane proteins from resistant and susceptible alleles of CYP6P9a and CYP6P9b. But, 

to further confirm the involvement of the resistant alleles of these genes, a comparative analysis was 

conducted by introducing and expressing these genes in D. melanogaster using GAL4-UAS system. The 

transgenic flies over-expressing the genes were then screened for pyrethroid resistance. GAL4-UAS 

system is a veritable Swiss army knife  (Duffy, 2002) which allows ectopic and targeted expression of 

gene of interest in vivo in a temporal and/or spatial fashion (Elliott and Brand, 2008, Duffy, 2002). The 

technology is increasingly used to validate insecticide resistance genes as described in the background 

to this chapter (Daborn et al., 2007, Zhu et al., 2010, Riveron et al., 2013, Riveron et al., 2014a). GAL4-

UAS system is a bipartite system in which the expression of gene of interest (responder) is controlled 

by the presence of the UAS element, a 5 tandemly arrayed and optimized GAL4 binding sites (Duffy, 

2002). Transcription of the responder requires presence of GAL4, thus the absence of GAL4 in the 

responder lines maintains them in a transcriptionally silent state; to activate transcription, the 

responder lines are mated to flies expressing GAL4 in a particular pattern termed the driver (Duffy, 

2002). The progeny then expresses the responder (target gene) in a configuration that reflects the 

GAL4 pattern of the respective driver (Figure 3.5). The success of this technique is because GAL4 

equivalent is absent in most species, and as such the candidate gene is only expressed in the progeny 

of the crosses between drivers and responder lines, when GAL4 and UAS transgenes are brought 

together in the same genome (Lynd and Lycett, 2012).   
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3.3.5.1 Cloning and Construction of pUASattB::CYP6P9a and pUASattB::CYP6P9b Plasmids 

Forward and reverse primers were designed for CYP6P9a and CYP6P9b with BglII and XbaI 

restriction sites respectively to allow cloning into pUAST vector. Full length cDNA encoding CYP6P9a 

(MALCYP6P9a and FANGCYP6P9a) and CYP6P9b (MOZCYP6P9b and FANGCYP6P9b) were amplified 

using HotStarTaq Polymerase (QIAGEN) and 0.5-1µg miniprep templates prepared in section 2.3.2.3. 

Protocol for amplification (Table 3.13) involves initial denaturation at 95oC for 15 mins followed by 35 

cycles each of 94oC for 30 seconds; 57oC for 30 seconds and 72oC for 90 seconds. This is followed with 

final extension for 5 mins at 72oC and holding at 4oC. The primers for the amplification of these genes 

as well as primers for qPCR validation are given in Table 3.14.  

Table 3.13: PCR reaction mix for amplification of CYP6P9a/CYP6P9b cDNA for transgenic analysis 

Reagent Final Concentration Volume (µl) 

10x  Qiagen Buffer (containing 15mM MgCl2) 1x 1.5 
dNTP mix (25mM) 0.8mM 0.2 

CYP6P9a/CYP6P9b_pUAS_BglII_F (10µM) 0.22µM 0.325 
CYP6P9a/CYP6P9b_pUAS_XbaI_R (10µM) 0.22µM 0.325 

Miniprep Template 0.5-1µg 0.5-1.0 
dH2O variable variable 

HotStarTaq Polymerase 1U 0.2 

Total Volume  15 

Figure 3.5: The GAL4-UAS System for directed gene expression. Adapted from (St 

Johnston, 2002) 
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PCR product was cleaned and cloned into pJET1.2 blunt, transformed into DH5α, as described 

previously (section 2.3.2.3) and screened with the pJET1.2 primers. Positive colonies were 

miniprepped overnight and sequenced on both strands to confirm presence of genes. The minipreps 

were then double-digested with BglII and XbaI restriction enzymes using the protocol as described in 

Table 3.4. Restriction digests were then gel extracted and ligated into pUASattB vector already 

linearised with same restriction enzymes, overnight and at 16oC as described (Table 3.5). 4µl of ligation 

product, a construct of target genes in pUAS vector were transformed into DH5α and screened for 

positive colonies using the KAPPA PCR. 

Table 3.14: Primers used for cloning into pUASattB vector and plasmid sequencing 

Primer Sequences 

CYP6P9a_pUAS_BglII_F AGATCTATGGAGCTCATTAACGTGGTG 
CYP6P9a_pUAS_XbaI_R TCTAGATCACAATTTTTCCACCTTCAAGTAA 
CYP6P9b_pUAS_BglII_F AGATCTATGGAGCTCATTAACGTGGTGTT 
CYP6P9b_pUAS_XbaI_R TCTAGACTACAAAAACCCCTTCCGCT 

CYP6P9a_qPCR_F CAGCGCGTACACCAGATTGTGTAA 
CYP6P9a-qPCR_R TCA CAA TTT TTC CAC CTT CAA GTA ATT ACC CGC 
CYP6P9b_qPCR_F CAGCGCGTACACCAGATTGTGTAA 
CYP6P9b_qPCR_R TTA CAC CTT TTC TAC CTT CAA GTA ATT ACC CGC 

RPL11_F CGATCCCTCCATCGGTATCT 
RPL11_R AACCACTTCATGGCATCCTC 

BglII restriction site is in green and underlined and XbaI is in red and underlined.  

Medium scale plasmid preparation (Midiprep) was carried out using HiSpeed Plasmid Midi Kit 

(QIAGEN) according to manufacturer’s protocol. 5ml TB medium starter culture containing 5µl of 

100mg/ml ampicillin, 5µl colony in dH2O was allowed to grow at 37oC and 300 rpm for 6 hours. 4ml of 

the starter was transferred into a 1L flask with 150ml pre-warmed TB medium and 150µl of ampicillin 

and allowed to grow at 37oC and 220 rpm for 14-16 hours. Bacterial culture was then harvested and 

divided into three 50ml tubes chilled on ice and centrifuged for 10 mins at 4oC and 5000 rpm. Pellets 

were miniprepped and sequenced to confirm presence of the genes. Midiprep was sent to Genetic 

Services, MA, USA (http://www.geneticservices.com/) for injection into flies. Using PhiC31 system 

clones were transformed into germ line of a D. melanogaster strain carrying the attP40 docking site on 

http://www.geneticservices.com/
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chromosome 2[“y1w67c23; P attP40”, “1; 2”]. Four transgenic lines, UAS-MALCYP6P9a, UAS-

FANGCYP6P9a, UAS-MOZCYP6P9b and UAS-FANGCYP6P9b were constructed successfully. 

3.3.5.2 Crossing and Preparation of Flies 

GAL4 lines were purchased from Bloomington Stock Centre (http://flystocks.bio.indiana.edu/).  

Ubiquitous expression of candidate genes in the transgenes in adult F1 progeny (the experimental 

group) was achieved after crossing homozygote males (UAS line with gene of interest) with virgin 

females from the driver strain Actin5C-GAL4 ["y [1] w[*]; P(Act5C-GAL4-w)E1/CyO","1;2"]. For control 

group, flies with the same background as the experimental group but devoid of the UAS and the 

candidate genes were crossed with the driver Actin5C-GAL4 lines to generate null-Actin5C-GAL4 lines 

without insertion. All flies were maintained at 25oC in plastic vials with food.   

3.3.5.3 Drosophila Insecticides Contact Assay 

Insecticide papers  (2% permethrin and 0.15% deltamethrin-impregnated ) filter papers were 

prepared in acetone and Dow Corning 556 Silicone Fluid (BDH/Merk, Germany) and kept at 4oC prior 

to bioassay. These papers were rolled and introduced into 45cc plastic vials. The vials were then 

plugged with cotton wool soaked in 5% sucrose. 20-25 (2-4 days old post-eclosion females) were 

selected for the bioassays and introduced into the vials. Mortality plus knockdown was scored after 1 

hr, 2hrs, 3hrs, 6hrs, 12hrs and 24hrs post-exposure to the discriminating doses of the insecticides. For 

each assay, at least six replicates were performed and t-test was used to carry out statistical analysis 

of mortality plus knockdown obtained between experimental groups and control.  

3.3.5.4 qRT-PCR validation of Overexpression  

In order to confirm relative expression of the candidate genes in the experimental flies and 

absence of expression in the control groups qRT-PCR was carried out as described previously (Riveron 

et al., 2014a, Riveron et al., 2013). RNA was extracted from three pools of 5 F1 experimental and 

control flies separately and cDNA synthesized as described in section 2.3.2. qPCR for both CYP6P9a 

http://flystocks.bio.indiana.edu/


127 
 

and CYP6P9b was conducted using the qPCR primers given in Table 3.14, with normalization using the 

housekeeping gene RPL11. A serial dilution of cDNA was used to establish standard curves for each 

gene in order to validate PCR efficiencies of the target and endogenous control(s) and assess 

quantitative differences between samples. qPCR ampilification was carried using MX 3005 real-time 

PCR system (Agilent Technologies) with Brilliant III Ultra-Fast SYBR® Green qPCR Master Mix. 10ng of 

cDNA was utilised as a template in a 3-steps thermocycling involving denaturation at 95oC for 3 mins, 

followed by 40 cycles each of 10 seconds at 95oC and 10 seconds at 60oC; this is then followed with 1 

min at 95oC, 30 seconds at 55oC and 30 seconds 95oC. The relative expression and fold-change of each 

target gene from the resistant and experimental and control samples was calculated using the 

comparative CT Method (2-ΔΔC
T) as described (Schmittgen and Livak, 2008).  

 

3.4 Results 

3.4.1 Pattern of Co-expression of ompA+2CYP6P9a/ompA+2CYP6P9b  Alleles with CPR 

 

Recombinant CYP6P9b proteins were successfully expressed as we did previously (Riveron et 

al., 2013) with optimal expression at 48-56 hours post-induction. For CYP6P9a, I obtained optimal 

expression at 36-40 hours with modifications of growth conditions and concentrations of δ-ALA and 

IPTG as I described in this paper (Riveron et al., 2014a) (Appendix 5). The two P450s differ in their 

expression patterns  in that CYP6P9a show consistently higher expression than CYP6P9b (Figure 3.6). 

On average for CYP6P9a lowest expression was observed from ZMBCYP6P9a (4.35nmol/ml±0.12, n =2) 

and highest with FANGCYP6P9a (16.28nmol/ml±3.53, n = 3); while for CYP6P9b, lowest expression was 

obtained from ZMBCYP6P9b (7.05nmol/ml±0.25, n= 2) and highest with UGANCYP6P9b (12.02nmol/ml 

± 9.29)(Figure 3.7).  
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Membranes contain comparable amount of CPR with BENCYP6P9a on average exhibiting the 

lowest reductase activity (119.6nmol cytochrome c reduced/min/mg protein±20.01) and MOZCYP6P9b 

having the highest activity (205.29nmol cytochrome c reduced/min/mg protein±19.19) (Figure 3.8B). 

Figure 3.7: Amount of P450 expressed by CYP6P9a and CYP6P9b recombinant proteins. Error bars 

are variations in the amount of membrane independently expressed from same allele at different times. n 

(number of  replicates = 3 for all alleles except ZMBCYP6P9a and ZMBCYP6P9b in which n = 2) 

Figure 3.6: Fe2+-CO vs Fe2+ difference spectrum obtained from some of An. funestus CYP6P9a 

and CYP6P9b recombinant proteins.  Soret peak at 450nm shown in red spectra. 
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No statistically significant differences were obtained when reductase content of the membranes from 

resistant alleles were compared to those from susceptible individuals (p>0.05). The total protein 

content of all membranes were also within same range (Appendix 3.2) with few differences. For 

CYP6P9a lowest protein content was obtained from UGANCYP6P9a (15.79mg/ml±1.58) and highest 

with MALCYP6P9a (19.49mg/ml±1.74). CYP6P9b produced slightly higher protein content with the 

lowest observed from FANGCYP6P9b (24.54mg/ml±1.95) and highest obtained from BENCYP6P9b 

(27.72mg/ml±3.23). Membrane content was calculated as the ratio of P450 yield (amount expressed) 

to the total protein content. On average CYP6P9a show higher membrane content than CYP6P9b 

(Figure 3.8A). Protein concentration was not quantified for ZMBCYP6P9a and ZMBCYP6P9b alleles and 

as such membrane content and CPR activity were not determined for these alleles. This is because 

MALCYP6P9a and MOZCYP6P9b alleles were already pre-selected for analysis as representative alleles 

from southern Africa and were to be used in subsequent experiments.  

 

 

 

 

Figure 3.8: Membrane content (A) and CPR activity (B) of CYP6P9a and CYP6P9b proteins. 

Error bars represent (A) variation in the amount of membrane and/or total protein; (B) variations in the 

CPR activities determined independently from membranes expressed from the same allele. Number of 

replicates, n = 3. 
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3.4.2 Comparative Analysis of Metabolic Activity of Various Alleles of CYP6P9a and CYP6P9b 

Using Fluorescent Probes 

3.4.2.1 Probe Substrates Metabolism 

Four probe substrates: ER, EFC, MFC and DEF were screened with membranes from variants of 

CYP6P9a (BENCYP6P9a, UGANCYP6P9a, MALCYP6P9a and the susceptible FANGCYP6P9a) and 

CYP6P9b (BENCYP6P9b, UGANCYP6P9b, MOZCYP6P9b and the susceptible FANGCYP6P9b).  

CYP6P9a: Lowest fluorescent activities were observed with 7-ER and MFC, while higher 

activities were obtained with 7-EFC and especially DEF. However, in all cases FANGCYP6P9a has lowest 

activity for all test probes. For example, with DEF, FANG has the lowest activity (0.13RFU/min/pmol± 

0.01), followed by UGANCYP6P9a and MALCYP6P9a with 0.50RFU/min/pmol±0.02 and 0.76 

RFU/min/pmol±0.11, respectively (Figure 3.9). BENCYP6P9a exhibited the highest activity towards DEF 

with an average activity  of 0.92RFU/min/pmol±0.16. This initial test of dealkylation clearly reveals the 

resistant alleles as having several fold higher activity than the allele from FANG. However, lower 

activities toward all probes were obtained with CYP6P9a alleles compared with CYP6P9b though 

MALCYP6P9a has a very high activity towards 7-ER, compared with the rest of the proteins screened.   

CYP6P9b: The same pattern of activity was observed with CYP6P9b proteins with lowest 

activity obtained from 7-ER and MFC, and highest with 7-EFC and DEF. However, lowest activity with 

DEF was obtained from FANGCYP6P9b (0.49RFU/min/pmol±0.001), followed by West African 

(BENCYP6P9b) and southern African (MOZCYP6P9b) proteins with activities of 4.36RFU/min/pmol±1.2 

and 5.61RFU/min/pmol±0.8 respectively (Figure 3.9). East African (UGANCYP6P9b) exhibited the 

highest activity with DEF with turnover of 7.93RFU/min/pmol±1.33. Thus, the activities obtained from 

recombinant proteins from resistant alleles range from 11-fold higher for BENCYP6P9b to 16-fold 

higher for UGANCYP6P9b compared with the susceptible FANGCYP6P9b protein.  
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Both FANGCYP6P9a and FANGCYP6P9b proteins exhibited lowest activity toward all the 

probes tested reflecting their low efficiency of O-dealkylation compared with proteins from resistant 

strains (especially CYP6P9b) which exhibited high turnover (O-dealkylation) for ER, EFC, MFC and DEF. 

Higher activities were obtained from CYP6P9b, on average 4 to 8-folds than obtained with CYP6P9a 

reflecting the possible higher enzymatic activity of CYP6P9b gene over CYP6P9a.  

 

 

 

3.4.2.2 Test for Linearity and Enzymes Kinetics  

In order to establish optimal conditions for linear activity with respect to time and enzyme 

concentrations, 1µM diethoxyfluorescein (DEF) was incubated with varying amount of CYP6P9a and 

CYP6P9b membranes proteins (Appendix 3.4). Increase in activity  was measured up to 30 minutes. 

Higher activities were obtained from CYP6P9b  compared with CYP6P9a proteins. 

 Figure 3.10 depicts the  plot initial velocities of O-deethylation of DEF by the P450 proteins screened. 

Reactions followed Michaelis-Menten fashion with proteins expressed from resistant strains having 

higher activities compared with those from the susceptible strain, FANG.  

Figure 3.9: Metabolism of probe substrates by variants of recombinant CYP6P9a and CYP69b. 

The solid bars indicate average of significant turnovers of three experimental replicates (n =3) compared to 

negative controls (NADPH-). FG = FANG, BN =Benin, UG = Uganda, MAL = Malawi, and MOZ = Mozambique.  
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CYP6P9a Alleles: Membranes expressed from resistant alleles (BENCYP6P9a, UGANCYP6P9a 

and MALCYP6P9a) showed higher maximal catalytic activity (Kcat) and affinity (lower KM) with DEF 

compared with that from FANG (FANGCYP6P9a) (Table 3.15 and Figure 3.11). These KM values are 

statistically significant (p<0.05) compared with KM from FANGCYP6P9a, with the lowest KM value 

obtained from BENCYP6P9a (0.091µM±0.006) and highest KM produced by FANGCYP6P9a 

(0.34µM±0.035). The catalytic activity (Kcat) for BENCYP6P9a and MALCYP6P9a were also statistically 

significantly different from that of FANGCYP6P9a, with values  from MALCYP6P9a being more than 

two-fold the Kcat from FANGCYP6P9a. Therefore, UGANCYP6P9a protein was calculated as more than 

two-fold as catalytically efficient than FANGCYP6P9a while BENCYP6P9a and MALCYP6P9a were more 

than six-fold more efficient than FANGCYP6P9a. These differences in catalytic efficiencies were 

established as statistically significant using ANOVA Tukey’s multiple comparison test (p<0.05) 

 

 

 

Figure 3.10: Michaelis-Menten plots for (A) CYP6P9a and (B) CYP6P9b  recombinant proteins 

metabolism of diethoxyfluorescein. 
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Table 3.15: Kinetic constants for CYP6P9a- and CYP6P9b proteins-mediated DEF metabolism 

Recombinant Proteins Membrane (pmol) KM (µM) Kcat (min-1) Kcat/KM (min-1 µM-1) 

BENCYP6P9a 10 0.091±0.006a 14.16±0.23c 155.60±10.56* 

UGANCYP6P9a 10 0.226±0.035a 12.98±0.61 57.43±9.29* 

FANGCYP6P9a 10 0.34±0.035 9.52±0.33 27.99±3.04 

MALCYP6P9a 10 0.14±0.013a 22.84±2.21c 163.1±22.24* 

BENCYP6P9b 3.33 0.13±0.01b 135.43±3.12d 1049.84±84.92$ 

UGANCYP6P9b 3.33 0.13±0.01b 171.86±3.76d 1301.96±102.66$ 

FANGCYP6P9b 3.33 0.24±0.02 14.93±0.500 62.20±5.58 

MOZCYP6P9b 3.33 0.12±0.01b 156.27±3.306d 1220.85±98.81$ 

Values are  mean ±S.D. of three  replicates 
Apparent Kcat was calculated as pmol fluorescein produced/min/pmol P450; Catalytic efficiency was calculated as Kcat/KM 
a,b

 Significantly different KM values compared with FANGCYP6P9a and FANGCYP6P9b respectively.  
c,d

 Significantly different Kcat values compared with FANGCYP6P9a and FANGCYP6P9b respectively. 
*

,$
 Significant differences between Kcat/KM values respectivelycompared with FANCYP6P9a and FANGCYP6P9b  

 

 

CYP6P9b Alleles:  The same pattern of O-deethylation of DEF was also evident from alleles of 

CYP6P9b in which the Kcat of BENCYP6P9b, UGANCYP6P9b and MOZCYP6P9b with DEF were on 

average ten-fold higher than obtained with FANGCYP6P9b protein (p<0.05) (Table 3.15 and Figure 

3.11). The affinities of the resistant CYP6P9b proteins towards DEF were also within the same ranges 

and on average twice the affinities (half the KM values, p<0.05) obtained from FANGCYP6P9b. Thus, 

the catalytic efficiency of BENCYP6P9b with DEF was established as sixteen-fold higher than that of 

FANGCYP6P9b (p<0.05) and values from UGANCYP6P9b and MOZCYP6P9b were approximately 

twenty-fold higher (p<0.05) than those obtained from FANGCYP6P9b.  

These results supported initial testing of O-dealkylation that CYP6P9b proteins from resistant 

alleles are more enzymatically efficient than the corresponding enzymes from susceptible strain. 

Equally also, in agreement with the initial testing of O-dealkylation, the turnover with CYP6P9b 

proteins from resistant strains were more than ten-fold higher than values obtained with CYP6P9a, 

demonstrating the central role of CYP6P9b as more efficient P450 in comparison with CYP6P9a.  
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3.4.2.3 Inhibition Assays 

In order to investigate the enzymatic affinity of various recombinant proteins of CYP6P9a and 

CYP6P9b towards different classes of insecticides: pyrethroids, carbamates (bendiocarb and 

propoxur), DDT and chlorpyrifos were used in an inhibition assay with diethoxyfluorescein (DEF). The 

mean values of IC50 for the test inhibitors for the fluorogenic probe DEF used in this study is shown in 

Figure 3.12. Lowest IC50 was obtained with the positive control inhibitor miconazole, a potent 

reversible inhibitor shown from several studies to have very low IC50 against several recombinant, 

human CYP450s including CYP3A4, CYP1A2, CYP2D6, CYP2E1 and CYP2B6  (Yan et al., 2002, Niwa et al., 

2005, Zhang et al., 2002). Type II pyrethroids deltamethrin, λ-cyhalothrin and α-cypermethrin showed 

the most potent inhibitory activity against CYP6P9a/CYP6P9b-mediated deethylation of DEF, with IC50 

of less than 0.5µM of  which the lowest IC50 was produced by MOZCYP6P9b. This trend of low IC50 was 

followed by Type I pyrethroids, the pseudo-pyrethroid etofenprox and the organophosphate, 

Figure 3.11: 4D plot of the kinetic constants and catalytic efficiencies of 

recombinant CYP6P9a and CYP6P9b dealkyaltion of DEF.  
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chlorpyrifos. MALCYP6P9a exhibited the lowest IC50 with bifenthrin and MOZCYP6P9b lowest with 

permethrin and etofenprox. The IC50 for  chlorpyrifos was found to be lower than values obtained from 

Type I pyrethroids. It’s possible that this organophosphate binds more tightly to these P450s than the 

Type I pyrethroids. With DDT, IC50 values were on average 10µM for all proteins except UGANCYP6P9b 

(IC50 >25µM) suggestive of low affinity of these P450s to  DDT, even though the low potency of DDT 

maybe caused by its low partitioning in water when compared with pyrethroids (Laskowski, 2002).  

IC50 values greater than 25µM of the test insecticides  were obtained with bendiocarb and propoxur 

indicating that the carbamate insecticides are weak binders to the recombinant P450s CYP6P9a and 

CYP6P9b. This low affinity toward these P450s is in line with the docking prediction for bendiocarb 

which produced the lowest score.  

 

 

 

All the pyrethroids insecticides tested and chlorpyrifos showed reversible inhibitory trend 

towards CYP6P9a and CYP6P9b-mediated dealkylation of DEF; the IC50 increased though not sharply 

with increase in incubation time. In theory, IC50 value of a reversible inhibitor does not change 

significantly with incubation time if the inhibitor strictly follows simple Michaelis-Menten kinetics (Yan 

Figure 3.12: Mean IC50 of the test insecticide inhibitors against CYP6P9a and CYP6P9b 

dealkylation of DEF. Data represent mean IC50 at eight concentrations of each insecticide ±S.D. Error bars 

variation in the values of the IC50 between different concentrations.  
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et al., 2002). As such non-Michaelis-Menten kinetics for pyrethroids cannot be ruled out with the 

alleles tested. However, IC50 with the positive control inhibitor miconazole was found to be non-time 

dependent. It remained consistent with little variation throughout the incubation time (regression 

coefficient, r2 = 0.18). The summary of IC50 for all the insecticides tested as well as miconazole are 

given in Appendix 3.5 and Figure 3.13 depicts the plot of the effect of incubation time on IC50 of the 

test insecticides and miconazole for MOZCYP6P9b, with the highest activity towards DEF and highest 

affinity toward permethrin and deltamethrin from this assay. A good correlation was observed 

between increase in IC50 with time in the case of the following insecticides: cypermethrin (r2 = 0.94), 

deltamethrin (r2 = 0.98), lambda-cyhalothrin (r2 = 0.96), etofenprox (r2 = 0.98), chlorpyrifos (r2 = 0.98), 

permethrin (r2 = 0.7) and bifenthrin (r2 = 0.8). Bendiocarb and propoxur both have a perfect fit with r2 

= 1, because these insecticides exhibited a very low affinity towards CYP6P9a and CYP6P9b. DDT 

exhibited poor correlation with r2 of 0.24 indicative of possible low affinity which decreased with time. 

 

 

To determine the robustness of docking software, ChemScore values obtained with the model 

of MOZCYP6P9 with insecticide ligands were compared with the IC50s from the same insecticides.  A 

good correlation (Figure 3.14) was observed between IC50 and Chemscores in the case of the following 

Figure 3.13: Effect of increase in incubation time on IC50 of test insecticide inhibitors on 

MOZCYP6P9b dealkylation of diethoxyfluorescein.  
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insecticides: permethrin (r2 = 0.55), deltamethrin (r2 = 0.85) and etofenprox (r2 = 0.93). No correlation 

was observed from bendiocarb (r2 = 1), while DDT produced a very poor correlation (r2 = 0.06).  

 

 

 

 

 

3.4.3 Comparative Assessment of Metabolic Activity of Various Alleles of CYP6P9a and 

CYP6P9b on Different Insecticide Classes Using  Metabolism Assay 

3.4.3.1 Metabolism of Insecticides 

To assess the metabolic profiles of the different CYP6P9a and CYP6P9b proteins with different 

classes of insecticides (Types I and II pyrethroids, etofenprox, bendiocarb, propoxur, DDT and 

malathion), metabolism assay was conducted using HPLC. Both CYP6P9a and CYP6P9b metabolizes 

Type I and Type II pyrethroids, with statistically significant depletion (+NADPH vs –NADPH) obtained 

from all proteins from resistant alleles compared with corresponding proteins from FANG. No 

significant activities were obtained against DDT, bendiocarb, propoxur and malathion), consistent with 

the molecular docking predictions as well as probes substrates analysis, in which no activities were 

respectively predicted and/or obtained against bendiocarb, propoxur and DDT.  

Figure 3.14: Correlation between IC50 of test insecticide inhibitors on MOZCYP6P9b bmetabolism 

of DEF and the ChemScore values from docking with GOLD.  IC50 values vs Chemscore for 

MOZCYP6P9b with (I) permethrin, (II) deltamethrin, (III) etofenprox, (IV) DDT, and (V) bendiocarb.  
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CYP6P9a Alleles:  

Recombinant proteins expressed from alleles of resistant strains produced higher activities 

against pyrethroid insecticides compared with FANGCYP6P9a. These differences were statistically 

significant (p<0.05) for all pyrethroid insecticides. Highest activities were obtained from MALCYP6P9a 

which deplete 65.38%±1.5, 60.48%±2.65, 68.38%±1.83, 75.41%±1.72 and 46.04%±1.26 each of 

permethrin, bifenthrin, deltamethrin, λ-cyhalothrin and etofenprox, respectively (Table 3.16 and 

Figure 3.15A). In contrast, FANGCYP6P9a with lowest activities deplete only 29.0%±1.42, 16.6%±5.41, 

18.11%±2.5, 15.46%±4.43 and 7.28%±1.53 each  of permethrin, bifenthrin, deltamethrin, λ-cyhalothrin 

and etofenprox, respectively. This clearly indicated that the protein from the susceptible allele, FANG 

is a poor metaboliser of pyrethroid insecticides compared with those from the resistant alleles.  

Table 3.16: Percentage depletion of pyrethroid insecticides by recombinant CYP6P9a and CYP6P9b 

Recombinant Proteins Permethrin Bifenthrin Deltamethrin λ-cyhalothrin Etofenprox 

FANGCYP6P9a 29.0±1.42 16.6±5.41 18.11±2.15 15.46±4.43 7.28±1.53 
UGANCYP6P9a 60.71±0.92* 50.31±3.8* 57.9±2.74* 47.74±1.5* 42.55±1.03* 
BENCYP6P9a 66.42±2.23* 51.02±0.75* 59.54±5.11* 52.45±1.74* 41.22±1.54* 
MALCYP6P9a 65.38±1.5* 60.48±2.65** 68.38±1.83** 75.41±1.72* 46.04±1.26* 

FANGCYP6P9b 13.7±4.23 22.38±5.08 6.2±1.5 15.49±3.13 16.88±3.06 
UGANCYP6P9b 88.58±3.48** 88.8±1.61** 62.53±4.04** 78.76±1.31** 57.91±1.55* 
BENCYP6P9b 89.63±0.63** 89.19±1.01** 62.03±1.14** 49.35±4.41* 37.15±4.15* 
MOZCYP6P9b 91.6±2.5** 81.6±0.25** 81.69±2.27** 86.51±1.14** 71.59±1.42** 

Values are mean ± S.D. of three replicates compared with negative control (-NADPH);  
* and **Significantly different from FANGCYP6P9a or FANGCYP6Pb at p<0.05 or p<0.01 respectively.  

 

CYP6P9b Alleles: 

Recombinant proteins from CYP6P9b of resistant strains metabolizes pyrethroid insecticides 

with higher activities several fold more than the protein from susceptibe allele, FANGCYP6P9b (Table 

3.16 and Figure 3.15B). These differences were statistically significant with the southern African allele 

MOZCYP6P9b having highest activity: 91.6%±2.5, 81.6%±0.25, 81.69%±2.27, 86.51%±1.14, 

71.59%±1.42 depletion, respectively for permethrin, bifenthrin, deltamethrin, λ-cyahalothrin and 

etofenprox, compared with FANGCYP6P9b which depleted only 13.7±4.23, 22.38%±5.08, 6.2%±1.5, 
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15.49%±3.13 and 16.88%±3.03 of these insecticides. The differences between the resistant and 

susceptible alleles possibly explained the reason why FANG strain is susceptible to pyrethroids.  

As observed with CYP6P9a, recombinant protein from the southern African allele of CYP6P9b 

(MOZCYP6P9b) has the highest activity consistent with the highest pyrethroid resistance reported in 

this region. However, as in fluorescent probes assay, CYP6P9b proteins exhibited higher activities 

against pyrethroids compared with CYP6P9a, confirming that CYP6P9b is more efficient metaboliser 

than CYP6P9a. MOZCYP6P9b has the highest activity of all the alleles screened with pyrethroids is not 

surprising for MOZCYP6P9b protein was predicted to have the highest activity of all alleles, and has 

been established as having high activity with probe substrates and portrayed the tightest binding to 

Type I and Type II pyrethroids from inhibition assay.   

 

 

 

 

3.4.3.2 Kinetics Analysis with Permethrin and Deltamethrin  

Kinetics analysis  was carried out with recombinant protein variants of four alleles each of 

CYP6P9a and MOZCYP6P9b, in order to establish the catalytic constant (Kcat) and Michaelis constant 

Figure 3.15: Percentage depletion of 20µM pyrethroids by  recombinant CYP6P9a (A) and 

CYP6P9b (B). Results are average of three replicates (n = 3) compared with negative control (-NADPH).  
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(KM) for permethrin and deltamethrin. The Kcat provides information on the speed with which different 

protein variants metabolise (clear) insecticide toxicant in vitro, while the KM will highlight the affinity of 

each allele toward the insecticides tested. These parameters can help in assessing any differences in 

metabolic efficiencies between the alleles from resistant strains and those from FANG. Steady-state 

kinetic parameters for CYP6P9a and CYP6P9b with permethrin and deltamethrin are given in Table 

3.17. Reactions followed Michaelis-Menten pattern (Figure 3.16) with KM values within ranges (1-

50µM) described for binding and metabolism of pyrethroids by insect cDNA-expressed P450s 

(Stevenson et al., 2012, Stevenson et al., 2011) and lower than KM values obtained from An. minimus’ 

CYP6P7 and CYP6AA3 with pyrethroids (Duangkaew et al., 2011). Kcat values obtained were also within 

the broad ranges recorded in the literature (1-20min-1)  for the activities of insect P450s with 

pyrethroids (Stevenson et al., 2012) but higher than established for some cDNA-expressed P450s, 

including An. gambiae CYP6M2, Ae. aegypti CYP9J families, as well as An. gambiae CYP6P3 with 

permethrin (Stevenson et al., 2011, Stevenson et al., 2012, Muller et al., 2008). 

 

Figure 3.16: Michaelis-Menten plot of permethrin (A) and (B) and deltamethrin (C) and (D) 

metabolism by recombinant CYP6P9a and CYP6P9a. Each point is a mean±S.E.M. of three replicates. 
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CYP6P9a Alleles:  

Kinetic parameters obtaind revealed that CYP6P9a proteins from the resistant alleles possess 

higher Kcat and higher affinity (low KM) compared with proteins expressed from the susceptible FANG. 

The Kcat of UGANCYP6P9a and MALCYP6P9a with permethrin are two- and three-fold higher than 

values obtained from FANGCYP6P9a, respectively (Table 3.17), and that of BENCYP6P9a and 

MALCYP6P9a with deltamethrin are as well two- and three-fold higher compared with the Kcat 

obtained from FANGCYP6P9a. These differences were statistically significant (p<0.05) for BENCYP6P9a 

and MALCYP6P9a compared with FANGCYP6P9a. In terms of KM, for permethrin, statistically significant 

differences were also obtained with FANGCYP6P9a on average having half the affinity (KM values two-

fold higher) compared with the CYP6P9a from resistant alleles. This translated into statistically 

significant differences (ANOVA Tukey’s test of significant at p<0.05) in terms of efficiency with 

BENCYP6P9a and UGANCYP6P9a having catalytic efficiencies for permethrin (three-fold higher) than 

FANGCYP6P9a while MALCYP6P9a exhibited catalytic efficiency for permethrin six-fold higher than 

FANGCYP6P9a. While FANGCYP6P9a exhibited higher affinity for deltamethrin than permethrin, the 

CYP6P9a from resistant alleles showed comparable KM for both permethrin and deltamethrin. As a 

result of these differences the catalytic efficiencies of BENCYP6P9a and UGANCYP6P9a for 

deltamethrin were on average three-fold the values from FANGCYP6P9a while the Kcat for 

deltamethrin from MALCYP6P9a was four-fold higher than values from FANGCYP6P9a (Figure 3.17). 

CYP6P9b Alleles: 

For permethrin CYP6P9b alleles from resistant individuals produced higher Kcat values 

compared with FANGCYP6P9b; these statistically significant differences ranged from twice the Kcat of 

FANGCYP6P9b as obtained from UGANCYP6P9b, to three-fold higher Kcat as observed from 

MOZCYP6P9b, to four-fold higher Kcat as obtained from BENCYP6P9b (Table 3.17). 
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Table 3.17: Kinetic Constants for Recombinant CYP6P9a- and CYP6P9b Permethrin and Deltamethrin 
Metabolism 

Recombinant Proteins Kcat (min
-1

) KM  (µM) Kcat/KM (min
-1

 µM
-1

) 

  Permethrin  

BENCYP6P9a 9.37±3.32
a 

19.02±3.13
c 

0.49±0.19* 

UGANCYP6P9a 7.35±1.02 20.11±3.91
c 

0.37±0.08* 

FANGCYP6P9a 4.95±1.92 36.25±15.22 0.14±0.07 

MALCYP6P9a 15.41±6.30
a
 18.77±11.76

c 
0.82±0.06* 

BENCYP6P9b 15.91±5.45
b 

21.94±7.97
 

0.73±0.36
$
 

UGANCYP6P9b 8.61±3.40
b 

21.22±10.32 0.41±0.3
$
 

FANGCYP6P9b 4.5±1.35 20.47±8.31 0.21±0.11
$
 

MOZCYP6P9b 12.38±4.5
b 

12.68±2.68
d 

0.97±0.41
$
 

  Deltamethrin  

BENCYP6P9a 8.78±2.62
a 

15.67±4.64
c
 0.56±0.23* 

UGANCYP6P9a 7.96±3.62 14.48±3.58
c 

0.54±0.28* 

FANGCYP6P9a 4.87±2.06
a 

24.03±3.12 0.20±0.08 

MALCYP6P9a 14.65±4.12
a 

18.26±6.97 0.80±0.38* 

BENCYP6P9b 13.63±5.40
b 

15.98±5.63 0.85±0.45
$
 

UGANCYP6P9b 10.44±4.00
b 

12.97±4.96
d 

0.80±0.35
$
 

FANGCYP6P9b 4.92±0.82 19.5±5.53 0.25±0.08 

MOZCYP6P9b 12.09±1.44
b 

9.9±1.65
d 

1.22±0.25
$
 

BENCYP6P9a 8.78±2.62
a 

15.67±4.64
c
 0.56±0.23* 

Values are  mean ±S.D. of three  replicates 
Apparent Kcat was calculated as pmol/min/pmol P450; Catalytic efficiency was calculated as Kcat/KM 
a,b

 Significantly different Kcat values compared with FANGCYP6P9a and FANGCYP6P9b respectively, p<0.05.  
c,d

 Significantly different KM values compared with FANGCYP6P9a and FANGCYP6P9b respectively, p<0.05. 
*

,$
 Significant differences between Kcat/KM values, respectively compared with FANCYP6P9a and FANGCYP6P9b, p<0.05.  

 
 

Same pattern was obtained with deltamethrin, with UGANCYP6P9b having two-fold Kcat 

compared with FANGCYP6P9b, while BENCYP6P9b and MOZCYP6P9b exhibited Kcat values on average 

three-fold that of FANGCYP6P9b. No major difference in terms of KM for permethrin and deltamethrin 

were observed between recombinant proteins from susceptible and resistant alleles of CYP6P9b, with 

the exception of UGANCYP6P9b with deltamethrin, and the southern African MOZCYP6P9b which 

consistently exhibited lowest, reproducible KM both for permethrin and deltamethrin). These low KM 

values from MOZCYP6P9b protein showed that the MOZCYP6P9b allele occupies a central position in 

terms of pyrethroid metabolism and the high affinity it exhibited, which is consistent with the 

molecular docking simulations in which the MOZCYP6P9b portrayed multiple, productive binding 

conformations, as well as fluorescent probes assay from which recombinant MOZCYP6P9b portrayed a 
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very high activity with the probe substrate diethoxyfluorescein, as well as tightest binding with 

pyrethroids, especially the Type II class, as obtained from inhibition assay.  

For permethrin, UGANCYP6P9b, BENCYP6P9b and MOZCYP6P9b were calculated as having 

two-fold, three-fold and five-hold higher catalytic efficiencies respectively compared with 

FANGCYP6P9b (Figure 3.17). With deltamethrin, BENCYP6P9b and UGANCYP6P9b possess catalytic 

efficiencies more than three-fold higher than FANGCYP6P9b, while MOZCYP6P9b with the highest 

catalytic efficiency of 1.22 min-1µM-1±0.25 is five times more efficient in deltamethrin metabolism than 

the recombinant FANGCYP6P9b from the susceptible allele.  

 

 

 

In agreement with the results from fluorescent probes assays and initial testing of depletion of 

pyrethroids, recombinant CYP6P9b exhibited higher activities compared with their corresponding 

CYP6P9a, reflecting the central position of CYP6P9b in pyrethroid metabolism and resistance, 

especially MOZCYP6P9b with highest intrinsic clearance (CLint) for both permethrin and deltamethrin.  

Figure 3.17: 4D plot of the kinetic constants and catalytic efficiencies of recombinant 

proteins of CYP6P9a and CYP6P9b with  (A) permethrin and (B) deltamethrin.  x-axis is the 

Kcat (min
-1

); y-axis is the KM (µM); catalytic efficiency is calculated as  x/y (min
-1

 µM
-1

). 
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3.4.4 Detection of Key Amino Acid Changes Conferring Pyrethroid Resistance  

To assess the potential role of key amino acids in metabolism of pyrethroids, amino acid variants 

from MOZCYP6P9b were mutagenized into residues present in FANGCYP6P9b. Proteins were 

expressed and used in probe susbtrates and metabolism assays with pyrethroids, to establish the 

impact of the replaced amino acids on catalysis. Efforts to amplify mutant sequences from CYP6P9a 

were not successful on several attempts and several approaches. As resistant CYP6P9b alleles possess 

higher potential mutations compared with FANGCYP6P9b, seems to be undergoing more directional 

selection than CYP6P9a alleles, has portrayed higher activities with probes substrates and pyrethroids 

insecticides, it was decided to proceed with the mutagenesis using the resistant allele, MOZCYP6P9b.  

3.4.4.1 Sequence Characterisation of CYP6P9b of Mutant Libraries 

The mutant libraries were screened with pJET1.2 primers, sequenced on both strands and 

manually analysed using the BioEdit to confirm presence of desired nucleotides substitutions. The 

sequencing results confirmed presence of the desired mutations and absence of any unwanted 

substitutions in the mutated DNA sequence  of CYP6P9b. 

3.4.4.2 Pattern of Expression of Mutant CYP6P9b Membranes 

Recombinant proteins of the mutant membranes of MOZCYP6P9b along with the wild type were 

expressed successfully at 21oC and 150 rpm using JM109 cells as described previously. The only 

exception was the Val109Ile mutant that was successfully expressed rather using E. coli DH5α by 

lowering the orbital shaking speed to 120 rpm after induction of the log-phased cells with 0.5mM each 

of δ-ALA and IPTG to the final concentration in 200ml culture. With the exception of Pro401Ala mutant 

all the mutants have lower expression (<3.0 nmol/ml) compared with the wild type MOZCYP6P9b 

(Table 3.18). Specifically, the Val109Ile mutant produced functional P450 with concentrations of less 

than 1.0nmol/ml in all the three successful attempts. Pro401Ala mutant consistently produced higher 

functional protein than all the other mutants as well as the wild type MOZCYP6P9b. Time to optimal 
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expression for all the mutants is around 40-48 hours with the exception of Pro401Ala mutant which 

expresses optimally before 30 hours after induction and  the Val109Ile mutant which as a result of low 

concentration of IPTG and/or different E. coli system (DH5α cells) expressed more slowly with optimal  

expression between  60 to 72 hours.  

Table 3.18: Pattern of expression of MOZCYP6P9b mutants 

Recombinant Proteins 
Time to optimal 
expression (hr) 

n Yield (nmol/ml) 

Val109Ile-MOZCYP6P9b 60-72 3 0.85±0.28 
Asp335Glu-MOZCYP6P9b 40-48 3 2.97±0.47 
Asn384Ser-MOZCYP6P9b 40-48 4 2.77±0.41 

Pro401Ala-MOZCYP6P9b 24-30 3 5.31±1.81 
MOZCYP6P9b (Wild Type) 36-40 4 4.89±0.46 

  Yield of P450 presented as means ± S.D. of concentrations of membranes independently expressed.  
  n = number of times membrane is expressed. 

 
 
 

3.4.4.3 Comparative Assessment of Role of Amino Acids Replacement on Metabolic 

Activities Using Fluorescent Probes Assays 

Seven fluorogenic probe substrates were tested for O-dealkylating activity with the mutant 

CYP6P9b membranes alongside the wild type MOZCYP6P9b. More probes were screened with the 

mutants because of availability and for replacement of key amino acid residues is known to change 

both qualitative and quantitave activities of some P450s (Szklarz and Halpert, 1997). Highest activity 

was observed with DEF and lowest with the resorufin and coumarin-based substrates (Figure 3.18). 

However, significant reduction in  activity towards DEF was observed in all the mutants compared with 

MOZCYP6P9b. This reduction in activity is most profoundly significant (p<0.001) with Asp335Glu mutant 

as well as the Asn384Ser mutant (p<0.05) compared with MOZCYP6P9b. Val109Ile acquired some 

quantitative activity towards RME, values which are statistically significant compared with Pro401Ala 

and MOZCYP6P9b, while the other mutants exhibited no activity at all towards RME. The Asp335Glu 

mutant exhibited lowest activity towards all probes tested with no detectable of even low activity 

toward all the resorufin-based probes. The mutants and the wild type allele exhibited some activity 
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toward 7-EFC and MFC as described previously, but with sharp decline in activity within seconds of  

initial burst of activity which makes it unwise to use these probes for kinetic analysis.  

 

 

 

Kinetic analysis was carried out with DEF which produced highest and more consistent 

activities from the initial test of dealkylation. For all mutants and MOZCYP6P9b proteins fluorescein 

formation follows Michaelis-Menten pattern (Figure 3.19) but kinetic parameters of MOZCYP6P9b-

mediated O-dealkylation of DEF differed greatly from that of the mutant proteins. In terms of 

turnover, the Kcat produced by MOZCYP6P9b is 19-fold, 14-fold and five-fold higher than obtained with 

Asn384Ser, Val109Ile and Asp335Glu mutants, respectively (Figure 3.20 and Appendix 3.6A) reflecting a 

quantitative decrease in the catalytic activity of these mutants. No major difference was observed 

between the wild type MOZCYP6P9b and the Pro401Ala mutant in terms of Kcat.      

Figure 3.18: Metabolism of probe substrates by mutant CYP6P9b membranes. The solid bars 

indicate average of  activity in three experimental replicates compared to negative control (NADPH-).       

* and **statistically significant at p<0.05 and p<0.01 compared with MOZCYP6P9b; †statistically 

significant compared with Val
109

Ile mutant. 
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While no major shift in KM was observed between the wild type MOZCYP6P9b and the mutants 

Val109Ile and Asn384Ser, the affinity for DEF is halved (KM values doubled) with Asp335Glu and Pro401Ala 

replacements suggesting that modification in this position reduces affinity to DEF. This is in opposition 

to the observation made from in CYP1A2 Glu318Asp substitution, shown to increase the Kcat of O-

dealkylation of 7-ethoxycoumarin 13-fold without affecting the KM. Hiroya and colleagues (Hiroya et 

al., 1994) reported that conservative replacement of glutamate to aspartate resulted in the large 

increase in the Kcat without any apparent change in KM, because the aspartate carboxyl group is better 

positioned for oxygen activation than the glutamate carboxyl moiety. Neutralization of Glu216 and 

Asp301 have also been shown to result in both qualitative and quantitative changes in catalysis by 

human CYP2D6 protein (Paine et al., 2003) with the negatively charged group of Asp and Glu playing a 

role in electrostatic attraction, enhancing binding of basic substrates.  

The catalytic efficiency of the wild type MOZCYP6P9b is established as more than two-fold, eight-

fold, ten-fold and fifteen-fold greater than values from Pro401Ala, Asp335Glu, Val109Ile and Asn384Ser 

mutants, respectively, suggesting that each of this amino acid change impact the metabolic efficiency 

Figure 3.19: Michaelis-Menten plots of mutant CYP6P9b proteins 

dealkylation of DEF. 
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of CYP6P9b. However, the Asn384Ser mutant has the lowest catalytic efficiency among all the mutant 

proteins tested.  

 

 

 

3.4.4.4 Comparative Assessment of Role of Amino Acids Replacement on Metabolic 

Activities of Mutant Proteins  Using Pyrethroids Metabolism Assays 

Significant differences in the metabolic profiles of the mutant membranes compared with the wild 

type MOZCYP6P9b were discovered using metabolism assay with permethrin and deltamethrin. Initial 

depletion assay repeated three times consistently established that the mutants Asp335Glu and 

Asn384Ser, as well as Val109Ile have low activity against pyrethroid insecticides especially deltamethrin.  

Deltamethrin:  With the exception of Pro401Ala mutant, profound quantitative decrease in the 

activity towards deltamethrin was observed in all the mutants (Figure 3.21A). Asp335Glu mutant has 

the lowest activity with only 4.15%±1.41 depletion on one hour of incubation; a loss of 96% activity 

Figure 3.20: 4D plot of the kinetic constants and catalytic efficiencies from 

dealkylation of diethoxyfluorescein by mutant recombinant proteins CYP6P9b. 
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which is statistically significant (p<0.01) compared with the wild type MOZCYP6P9b with depletion of 

92.04%±0.34. Asn384Ser and Val109Ile mutants with depletions of 18.15%±0.42 and 17.88%±1.00 

respectvely, have lost on average 80% of activity compared with MOZCYP6P9b (p<0.01). This loss of 

activity clearly reflects that these three amino acid variants (Asp335, Asn384 and Val109) in MOZCYP6P9b 

are critical for catalysis. Of course, analysis of substrate access channel in Chapter Two have identified 

Val109 residue as a pw2a tunnel lining residue important for  pyrethroids affinity. Its not surprising that 

replacement of this amino acid into isoleucine variant of FANG resulted in a drastic loss of activity. 

Lowest activities were observed with Asp335Glu mutant with only one-fourth activity compared with 

Asn384Ser and Val109Ile mutants. Only 12% loss of activity was observed when depletion of Pro401Ala 

mutant (81.25%±0.17) was compared with MOZCYP6P9b, indicating that replacement of prolyl residue 

with aliphatic side chain did not modify the activity of the enzyme significantly towards deltamethrin. 

This is not surprising as of all the four mutations, Pro401Ala replacement is the least expected to have 

the most significant impact from sequence characterisation and mapping of mutations to critical 

domains of the P450. The percentage depletion from this mutant was also found to be statistically 

significant compared with the other mutants (Asp335Glu, Asn384Ser and Val109Ile).   

 

 

Figure 3.21: Percentage depletion of 20µM deltamethrin (A) and permethrin (B) by CYP6P9b 
mutants. Results are an average of three replicates (n = 3) compared with negative control.  

** and *** Significantly different at p<0.05 and p<0.01 compared with MOZCYP6P9b and Pro
401

Ala mutant. 
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Permethrin: Surprisingly, the mutants Val109Ile exhibited higher activity with depletions for 

permethrin doubled the values from deltamethrin, while Asn384Ser mutant exhibited comparable 

depletion for both permethrin and deltamethrin and Asp335Glu activity for permethrin was nine-fold 

higher than obtained with deltamethrin. However, these depletions were statisitically significantly 

lower (p<0.05) compared with the values from wild type MOZCYP6P9b and the mutant Pro401Ala, 

which show comparable depletions (Figure 3.21B and Appendix 3.6B). Compared with MOZCYP6P9b 

(depletion of 82.59±3.15 for permethrin), Asp335Glu, Asn384Ser and Val109Ile mutants with percentage 

depletion of 35.65%±1.55, 18.33%±0.64 and 46.02%±1.43 respectively, have lost 57%, 78% and 43% of 

their enzymatic activities. This clearly established that the three mutations resulted in a drastic loss of 

activity and the amino acids knocked down are critical for affinity and/or activity towards permethrin. 

Unlike the case of deltamethrin, Pro401Ala replacement was found not to modify activity towards 

permethrin.  

From the inhibition assays MOZCYP6P9b was established to have highest affinity towards Type 

II pyrethroids especially deltamethrin and its assumed that the profound loss of activity observed in 

the mutants reflects the loss of affinity due to the change of the critical amino acid residues into the 

variants present in FANG.  

To establish kinetic constants for all the mutants alongside the reference MOZCYP6P9b, 

kinetic analysis was conducted with permethrin. The decision to use permethrin was because 

experiments with deltamethrin and Asp335Glu, Val109Ile and Asn384Ser produced no reasonable activity 

for calculation of KM and Kcat. Reactions follow typical Michaelis-Menten pattern with differences 

observed between the mutants and wild type enzyme (Figure 3.22A and Appendix 3.6C). Remarkable, 

statistically significant differences were observed when the Kcat of the four mutants were compared 

with the values obtained from the wild type MOZCYP6P9b. Lowest Kcat was obtaind with the Asn384Ser 

(0.98min-1 ±0.12) compared with MOZCYP6P9b in line with the lowest activity towards permethrin in 

this mutant as obtained from the initial depletion assay. The Kcat of MOZCYP6P9b with permethrin was 
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two-fold that of Pro401Ala mutant and, on average six-fold, eight-fold and nine-fold the Kcat from 

Val109Ile, Asp335Glu and Asn384Ser mutants respectively. Significant increase (p<0.05) in KM for 

permethrin were observed when Pro401Ala, Asn384Ser and Val109Ile mutants were compared with the 

wild type MOZCYP6P9b. This established that the wild type amino acid variants in MOZCYP6P9b are 

important for affinity towards permethrin. Surprisingly, Asp335Glu mutant exhibited lowest KM (highest 

affinity) with values half those obtained from the wild type MOZCYP6P9b. This demonstrates that 

whatever was the catalytic attribute conferred by Asp335 in MOZCYP6P9b has no effect on affinity 

towards permethrin, but rather via another mechanism which could quantitatively modify the Kcat.  

The differences of the mutant alleles’ kinetic constants reflected in their catalytic efficiencies 

compared with MOZCYP6P9b which was established to be three-fold, four-fold, thirteen-fold and 

nineteen-fold more catalytically efficient towards permethrin, than the mutants Pro401Ala, Asp335Glu, 

Val109Ile and Asn384Ser, respectively (Figure 3.22B).  

 

 

 

 

Figure 3.22: (A) Michaelis-Menten plot of mutant CYP6P9b proteins metabolism of permethrin (B) 
4D plot of kinetic constants and catalytic efficiency of CYP6P9b mutants with for permethrin.  
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3.4.4.5 Comparative Assessment of Spatial Positioning of Criticial Amino Acid Residues in 

MOZCYP6P9b and FANGCYP6P9b Models 

Overlay of MOZCYP6P9b and FANGCYP6P9b revealed striking differences in the overall 3D 

folding and backbone of the proteins though models were generated from identical template (Figure 

3.23). Ser384 in FANGCYP6P9b is located within the β-1_4 placing the guanidinium group of Arg385 away 

(within 9.6Å from 4’ spot of deltamethrin), while the peptide bond between Asn384 and Arg385 in 

MOZCYP6Pb (~120o) positioned Asn384 and Arg385 within the loop joining β-1_4 with β-2_1. The amido 

group of Asn384 is thus situated within 6.6Å distance from guanidinium group of Arg385 which in turn is 

within 6.9Å of the 4’ spot of the phenoxybenzyl group of deltamethrin oriented towards the heme.  

 

 

 

These subtle difference may account for the reason why Arg385 is a pw2a tunnel lining residue 

in MOZCYP6P9b and involved in substrate accessing the heme catalytic centre, while the 

corresponding residue is absent in pw2a from FANGCYP6P9b. The Asn384-Arg385 peptide bond 

positioned guanidinium moiety of Arg385 within 5.0Å distance of Ser324 (Figure 3.24). Its assumed that 

Figure 3.23: Overlay of MOZCYP6P9b model (helices A-L in spectrum and cartoon format) and 

FANGCYP6P9b (helices A-L in purple cartoon) with deltamethrin (spectrum lines) docked in 

productive conformation. Ser
384

: yellow stick; FANGCYP6P9b_Arg
385

: green stick; Asn
384 

: blue stick; 

MOZCYP6P9b_Arg
385

: red stick; heme atoms: cyan lines. 
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catalysis may be effected in MOZCYP6P9b through hydrogen bonding network involving polar residues 

arrayed round the binding site, including Asn384 and Arg385 (SRS5), Arg452 and Cys454 (heme-binding 

region), Asn502, Asp217 (of SRS2), Ser320 (O2-binding pocket), Ser324 as well as Gln323 (αI). 

 

 

In contrast, in the productive pose of deltamethrin in FANGCYP6P9b, residues Ser384 and Arg385 

located within the β-1_4 are not within 9.0Å of deltamethrin or heme (Figure 3.25). 

 

Figure 3.24: Active site residues of MOZCYP6P9b docked with deltamethrin. Asn
384

 is in green, 

Arg
385

 in yellow, distance between its guanidium group to Ser
324

 and 4ʹ spot of deltamethrin annotated. 

Figure 3.25: Active site residues of FANGCYP6P9b docked with deltamethrin, showing residues 

within 9.0Å.  
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The same pattern of differences in the backbone folding of CYP6P9b models affected the 

positionin of residue 335. In this respect Glu335 residue in the FANGCYP6P9b is located in the N-

terminus of αJ helix and within a distance of 30.7Å from the heme (Figure 3.26), while the smaller 

Asp335 in MOZCYP6P9b is positioned in the C-terminus of helix I and within 20.3Å from heme. Glu335 in 

FANGCYP6P9b mapped to the putative reductase interaction site 1 (RIS-1) (Sirim et al., 2010) and its 

assumed that the presence of this residue in the αJ helix may result in ionic repulsion with the 

corresponding negatively charged residues at the FMN face of CPR reducing optimal interaction with 

the redox partner and by that the overall catalysis.  

Each of the residues in MOZCYP6P9b implicated as critical are assumed to contribute towards 

catalysis either through channeling and/or affinity (Val109 and Asn384), hydrogen bonding network 

(Asn384 through proper positioning of Arg385) or interaction of the proximal residues with CPR (absence 

of Asp335 in the MOZCYP6P9b RIS-1, which optimizes interation with the FMN binding domain of CPR).  

 

 

 

Figure 3.26: Overlay of MOZCYP6P9b models (helices A-L in spectrum and cartoon format) and 

FANGCYP6P9b (helices A-L in purple cartoon) with deltamethrin (spectrum stick) docked in 

productive conformation. Asp
335

: blue stick; Glu
335

: green stick; heme atoms: magenta lines. 
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3.4.5 Comparative Assessment of Ability of CYP6P9a and CYP6P9b Alleles to Confer Pyrethroid 

Resistance in D. melanogaster Using GAL4-UAS System 

3.4.5.1 Insecticides Contact Bioassay 

To find out whether the allelic variation observed between the resistant and susceptible alleles of 

CYP6P9a and CYP6P9b alone was sufficient to confer pyrethroid resistance in vivo, transgenic D. 

melanogaster overexpressing these genes from resistant and susceptible populations were 

constructed separately, using the GAL4-UAS System. Bioassays with permethrin and deltamethrin 

revealed that the flies overexpressing CYP6P9a and CYP6P9b from resistant individuals were 

significantly more resistant to both pyrethroids, resulting in a reduced mortality and knockdown 

compared with the flies overexpressing same genes from susceptible strain, (FANG) and control flies.   

Permethrin: With permethrin, lower mortality was observed in flies expressing CYP6P9b than 

those expressing CYP6P9a (Figure 3.27A and B). However, transgenic Actin5C-UAS-MALCYP6P9a flies 

showed statistically significant (p<0.05), lower mortalities (less than 10%, 30% and 45% in the first 

2hrs, 3hrs and 6hrs, respectively) from permethrin exposure, compared with Actin5C-UAS-

FANGCYP6P9a (30%, 60% and 70% mortalities respectively, at the same time). The same pattern was 

observed with CYP6P9b with flies overexpressing the gene from resistant strain (Actin5C-UAS-

MOZCYP6P9b) showing significantly lower mortalities compared with the flies overexpressing gene 

from susceptible strain (Actin5C-UAS-FANGCYP6P9b) in the following exposure times: 12hrs (30% vs 

55%, p<0.05), 24hrs (30% vs 60%, p <0.01). This demonstrated that MALCYP6P9a and MOZCYP6P9b 

alleles from resistant strains can confer higher resistance to permethrin compared with corresponding 

genes from susceptible, FANG (FANGCYP6P9a and FANGCYP6P9b) and the control flies. Nevertheless, 

the mortalities from MALCYP6P9a flies in the first 12 hours reached 70% compared with only less than 

30% mortality from MOZCYP6P9b flies. MOZCYP6P9b conferring higher tolerance to permethrin is in 

keeping with the higher in vitro activities of recombinant CYP6P9b with pyrethroid insecticides 

compared with results from CYP6P9a protein variants.  
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Deltamethrin: The Actin5C-UAS-MALCYP6P9a flies showed lower mortalities with deltamethrin 

compared to Actin5C-UAS-FANGCYP6P9a (Figure 3.27C); however these mortalities were only 

statistically significant at 3 different hours of exposure: 3 hours (28% vs 53%, p<0.05); 12 hours (55% 

vs 78%, p<0.05) and 24 hours (62% vs 88%, p<0.05). Highest tolerance to deltamethrin was obtained 

with flies overexpressing Actin5C-UAS-MOZCYP6P9b, compared with the flies expressing susceptible 

alleles of CYP6P9a and CYP6P9b, as well as those expressing the resistant allele MALCYP6P9a. The 

Actin5C-UAS-MOZCYP6P9b flies exhibited lowest mortality, of less than 21% up to 12 hours after 

exposure to discriminating dose of deltamethrin (Figure 3.27D). Specifically compared with flies 

overexpressing gene from susceptible strain (Actin5C-UAS-FANG-CYP6P9b), significant differences 

were obtained at every hour of exposure: 1 hour (1.5% vs 20%, p <0.05), 2 hours (7.5% vs 53%, p 

<0.001), 3 hours (12.5% vs 62%, p <0.001), 6 hours (16% vs 70%, p <0.001), 12 hours (21% vs 81%, p 

<0.001) and 24 hours (41% vs 93%, p <0.001).  

Figure 3.27: Bioassay results with transgenic strains of (A) Actin5C-UAS-CYP6P9a flies with 

permethrin; (B) Actin5C-UAS-CYP6P9b flies with permethrin; (C) Actin5C-UAS-CYP6P9a flies 

with deltamethrin, and (D) Actin5C-UAS-CYP6P9b flies with deltamethrin. Results are mean 

±S.E.M. significantly different: * p<0.05, ** p<0.01 and *** p<0.001 
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These results strengthened the pattern obtained from in vitro metabolism assay and kinetics in 

which highest Kcat and efficiencies were obtained with deltamethrin compared with permethrin and 

especially with MOZCYP6P9b allele. Also, from the site-directed mutagenesis analysis it was observed 

that mutants have higher activities toward permethrin than deltamethrin; a result which is consistent 

with lower mortalities obtained with permethrin (62% at 24 hours) from the FANGCYP6P9b flies 

compared with the higher mortalities obtained with deltamethrin (93% at 24 hours). In conclusion, 

overexpression of MALCYP6P9a and MOZCYP6P9b from resistant populations of An. funestus confer 

spermethrin and deltamethrin resistance to naive transgenic flies, with the latter conferring higher 

tolerance to these insecticies, reflecting once more its central position in pyrethroids resistance.  

 

3.4.5.2 qPCR Confirmation of Expression of  CYP6P9a and CYP6P9b Transgenes in Flies  

To validate the overexpression of the candidate genes (CYP6P9a and CYP6P9b) in the experimental 

flies, qPCR was carried out using the flies expressing both resistant alleles (Actin5C-UAS-MALCYP6P9a 

and Actin5C-UAS-MOZCYP6P9b) and susceptible alleles (Actin5C-UAS-CYP6P9a and Actin5C-UAS-

CYP6P9b), as well the control flies (Actin5C-UAS-null flies).  

Both CYP6P9a and CYP6P9b were found to be expressed only in the transgenic F1 progenies from 

the crosses with Actin5C, used for the contact bioassays, and not expressed in the control flies (Figure 

3.28A and B).  The CYP6P9a mRNA were found to be overexpressed with a fold change of 22% and 

24% respectively, in the flies overexpressing the gene from Malawi (Actin5C-UAS-MALCYP6P9a) and 

gene from FANG (Actin5C-UAS-FANGCYP6P9a). CYP6P9b was also found to be overexpressed in the 

transgenic flies but in contrast, the fold change of the gene from flies expressing susceptible gene 

(Actin5C-UAS-FANGCYP6P9b) was four times higher compared with the flies expressing the resistance 

gene (Actin5C-UAS-MOZCYP6P9b).  
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3.5 Discussion and Conclusions 

The membrane contents and reductase activity obtained with both recombinant CYP6P9a and 

CYP6P9b were comparable to those reported from several studies, including respectively the amounts 

reported from An. gambiae CYP6M2 (0.5-1.0nmol/mg and 100-200nmol cytochrome c 

reduced/min/mg) (Stevenson et al., 2011),  CYP6Z2 (0.9-1.5nmol/mg and 100-120 nmol cytochrome c 

reduced/min/mg  (McLaughlin et al., 2008), as well as Ae. aegypti CYP9J sub-family (0.3-1.56nmol/mg 

protein and 32-157 nmol cytochrome c reduced/min/mg)(Stevenson et al., 2012).  Measurement of 

reductase activity is important for differences in its content may possibly influence its interaction with 

the P450 and enhance/diminish catalysis and thus making it difficult to compare different metabolic 

activities in case of significant difference between membrane preparations. However, the ratio of CPR 

to P450 in endoplasmic reticulum was estimated to be 1:20 (Kenaan et al., 2011), and thus even small 

amount of the reductase may be sufficient to drive the P450-mediated catalysis. Both membrane 

contents of P450 and reductase contents were within the same ranges for both recombinant CYP6P9a 

and CYP6P9b from resistant and susceptible strains. In fact FANGCYP6P9a exhibited the highest P450 

Figure 3.28: Quantitative PCR Results:  Fold change of CYP6P9a (A) and CYP6P9b (B) mRNA from 

transgenic flies relative to house-keeping gene RPL11.  
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content of all the CYP6P9a proteins and thus its safe to assume that whatever differences observed in 

terms of P450 activities between the resistant and susceptible proteins does not stem from variation 

in P450 contents and/or reductase activities.  

Recombinant CYP6P9a and CYP6P9b from resistant strains are capable of dealkylating fluorogenic 

probes particularly DEF with consistently high efficiency. The proteins from resistant alleles exhibited 

very low KM (high affinity) towards DEF compared with corresponding ones from susceptible FANG. 

The KM values obtained with CYP6P9a and CYP6P9b from resistant alleles were comparable to the KM 

established for An. gambiae CYP6Z2- and Ae. aegypti CYP6Z8-mediated de-benzylation of 

benzyloxyresorufin (KM ~0.13µM)(McLaughlin et al., 2008, Chandor-Proust et al., 2013) while the KM 

from FANGCYP6P9a and FANGCYP6P9b are three-fold and two-fold higher than these values, 

respectively. The dealkylation of DEF proceeds with high turnover, greater than established for some 

probes with insect P450s; e.g. An. gambiae CYP6Z2 with benzyloxyresorufin (Kcat ~1.5 min-1) 

(McLaughlin et al., 2008) and Ae. aegypti CYP6Z8 with benzyoxyresorufin and ethoxyresorufin 

(0.097min-1 and 1.19min-1), respectively. This resulted in higher catalytic efficiency obtained from the 

resistant CYP6P9a and CYP6P9b compared with FANGCYP6P9a and FANGCYP6P9b, and above the 

values from the studies cited above. The CYP6P9a and CYP6P9b from resistant strains are in essence 

more efficient as probe substrate metabolisers compared with the corresponding proteins from 

susceptible alleles. For example, MOZCYP6P9b with catalytic efficiency of 1220.85 min-1µM-1 is roughly 

20-fold more efficient than FANGCYP6P9b. Allelic variation seems to be impacting on enzymatic 

activity towards fluorescent probes, modifying kinetic constants and efficiency of O-dealkylation of  

the probe substrates.   

Pyrethroids, especially of Type II class, pseudo-pyrethroid etofenprox, as well as the 

organophosphate chlorpyrifos diminished the catalytic activity of both CYP6P9a and CYP6P9b with 

DEF, while DDT, bendiocarb and propoxur were established not to inhibit the O-dealkylation of DEF. 

Tight-binding inhibitors have been defined as compounds with a ChemScores of < -30 kJ/mol and an 
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IC50 values of <10µM (Kemp et al., 2004). Based on this Type II pyrethroids (cypermethrin, 

deltamethrin and λ-cyhalothrin can be described as the most potent binders (inhibitors) of CYP6P9a 

and CYP6P9b of all test insecticides screened. Type I pyrethroids and chlorpyrifos also show very low 

IC50 indicating tight binding. DDT, bendiocarb and propoxur with high IC50 displayed very low affinity 

and were expected not to be metabolised by CYP6P9a and CYP6P9b screened. These findings were 

confirmed with substrate metabolism assays with pyrethroids, DDT, bendiocarb and propoxur.  

Metabolism assay established that the recombinant CYP6P9a and CYP6P9b metabolise 

permethrin and deltamethrin insecticides with a very high turnover (depletion) compared with the 

proteins from susceptible alleles, which exhibited low depletion. Highest activities were obtained from 

southern African alelles consistent with the highest pyrethroid resistance recorded in this region 

(Riveron et al., 2013, Riveron et al., 2014a). Very low (insignificant) activities were obtained from DDT, 

bendiocarb, propoxur and malathion metabolism consistent with the results from molecular docking 

simulations and probe assays. DDT is interesting in this case for it exhibited an IC50 on average of less 

than 10µM for both CYP6P9a and CYP6P9b and its assumed that it could be metabolised but as stated 

above binding of substrates to the P450 enzyme does not necessarily reflect metabolism.  

Kinetic constants (parameters) also differ significantly between recombinant CYP6P9a and 

CYP6P9b from resistant and the susceptible alleles. The proteins from resistant alleles exhibited high 

turnover (high Kcat) and high affinity (lower KM) compared with those from susceptible alleles, 

translating into a very high efficiency of pyrethroid metabolism several fold in the former compared 

with the latter. The KM values obtained for both permethrin and deltamethrin  from resistant CYP6P9a 

and CYP6P9b were very close to the KM values established for An. gambie CYP6M2 with permethrin 

(12.0µM) and higher than with deltamethrin (2.0µM) (Stevenson et al., 2011). The Kcat values obtained 

from the resistant recombinant CYP6P9a and CYP6P9b, for both permethrin and deltamethrin are 

higher than values established in the study cited above (6.1min-1 and 1.1min-1, respectively).  
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The differences observed in activities resulted in a very high catalytic efficiency in the resistant 

CYP6P9a and CYP6P9b, especially those from southern Africa compared with FANGCYP6P9a and 

FANGCYP6P9b, as well as other P450s. For example, MOZCYP6P9b exhibited catalytici efficiency of 

0.97min-1µM-1 and 1.22min-1µM-1 respectively, for permethrin and deltamethrin, compared with 

FANGCYP6P9b (0.21min-1µM-1 and 0.25min-1µM-1), An. gambiae CYP6M2 (0.5min-1µM-1) (Stevenson et 

al., 2011) and some CYP9J P450s from Ae. aegypti (<1min-1µM-1) (Stevenson et al., 2012). This 

established that the resistant CYP6P9a and CYP6P9b (especially those from southern African strains) 

are efficient metabolisers of pyrethroids (permethrin and deltamethrin) compared with corresponding 

enzymes from the susceptible strain (FANGCYP6P9a and FANCYP6P9b), and also compared with some 

insect 450s functionally characterised. If its assumed that the only differences between the resistant 

and susceptible alleles of these genes is in the coding region its safe to reason that the amino acid 

variations are responsible for these differences in the metabolic profile; and that the allelic variation 

alone modify the enzymatic activities, impacting on catalysis, making the alleles from resistant strains 

more efficient in terms of pyrethroid metabolism and conferring pyrethroid resistance to resistant 

populations of An. funestus.  

With allelic variation impacting on pyrethroid metabolism successfully established, the next 

task was to identify the potential amino acids that are critical to high efficiency pyrethroids 

metabolism. Site-directed mutagenesis identified three key residues (Val109, Asp335 and Asn384) whose 

replacement in MOZCYP6P9b with variants from FANGCYP6P9b correlated with significant loss of 

metabolic efficiency towards permethrin and deltamethrin. The three mutants above exhibited 

significant, quantitative reduction in activity towards probe substrate DEF compared with recombinant 

MOZCYP6P9b, with the lowest activity towards all 7 probes screened produced by Asp335Glu mutant, 

while Val109Ile mutant acquired quantitative enhancement in activity towards RME compared with the 

rest of the alleles. The maximum catalytic rate of MOZCYP6P9b metabolism of DEF was several-fold 

higher than the three mutants Val109Ile, Asp335Glu and Asn384Ser; mutants Pro401Ala and Asp335Glu 

portaryed a shift in KM (reduced affinity for DEF). This resulted in higher catalytic efficiency several 
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folds from the wild type MOZCYP6P9b compared with all the four mutants, Val109Ile, Asp335Glu, 

Asn384Ser and Pro401Ala, with Asn384Ser having the lowest efficiency. This phenomena established the 

fact that mutants have lost significant potency for O-dealkylation of probe substrates and the reason is 

because the amino acids replaced are critical for catalysis toward DEF. This kind of phenomenon was 

reported before in several studies, including the Glu318Asp substitution in CYP1A2 that has been shown 

to increase the Kcat of O-dealkylation of 7-ethoxycoumarin 13-fold without affecting the KM. Hiroya and 

colleagues (Hiroya et al., 1994) reported that conservative replacement of glutamate to aspartate 

resulted in the large increase in the Kcat without any apparent change in KM, because the aspartate 

carboxyl group is better positioned for oxygen activation than the glutamate carboxyl moiety. 

Leu209Ala replacements in CYP2B1 has been established to result in qualitative changes in activity, 

allowing progesterone to bind in a new orientation (Szklarz et al., 1995). The larger Leu hinders the 

substrate from assuming productive orientation due to vdW overlaps. This maybe the case in Val109Ile 

mutant in which the smaller side chain of valine is replaced with the larger isoleucine.  

With pyrethroids, same pattern of metabolic profiles were observed. Initial depletion assay 

revealed that the mutants with the exception of Pro401Ala have lost activities compared with 

MOZCYP6P9b, with Asp335Glu mutant having lowest activity for deltamethrin while Asn384Ser 

portrayed lowest activity with permethrin. Kinetic analysis revealed that with the exception of 

Asp335Glu which exhibited low KM with permethrin, the mutants have lost significant affinities toward 

permethrin. Maximal catalytic rate also fell compared with MOZCYP6P9b and as a result of that the 

wild type protein was several fold more efficient than all the four mutants. This is in line with the 

probes assays and reflect the importance of the amino acids knocked down in MOZCYP6P9b. This kind 

of lose or gain of function due to single amino acid change has been described in several studies. For 

example, Val92Ala replacement in CYP6AB3v1 makes this allelic variant capable of metabolising plant 

allelochemical imperatorin nearly as effective as CYP6AB3v2 furanocoumarins metaboliser (Mao et al., 

2007). Neutralization of Glu216 and Asp301 have also been shown to result in both qualitative and 

quantitative changes in catalysis by human CYP2D6 (Paine et al., 2003). Replacement of Asp293 to Ala293 
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in human CYP2C9 has been shown to result in decrease in activity by more than 90%, as well as 3-10 

fold increase in KM for tolbutamide, dextromethorphan and diclofenac (Flanagan et al., 2003). Thus, 

replacement of even a single amino acid can have profound effort on regio-selectivity, specificity, 

affinity and/or activity towards particular substrate or broad range of substrates.  

With the exception of Pro401 (amino acid located neither in the active site of MOZCYP6P9b nor 

near the putative RIS), the three residues Val109, Asp335 and Asn384 could be described as important 

residues which confer pyrethroid-metabolising efficiency to recombinant CYP6P9b from resistant 

alleles (strains). Val109 is assumed to exert its effect by the virtue of being part of substrate access 

channel pw2a and as such important for accessibility, specificity and/or affinity; Asp335 exert its effect 

by being present in the tip of helix I and thus away from the putative RIS-1, reducing ionic repulsion as 

the FMN-binding domain of CPR approaches the P450; while Asn384 by the virtue of its location within 

the loop joining β-1_4 with β-2_1 placed itself and guanidinium group of Arg385 within vdW contact 

with the heme and other polar charged and neutral side chain with possibility of hydrogen bonding 

networks, enhancing catalysis several fold. These three amino acids are assumed to be working in 

concert each one contributing in its way to catalysis, efficient metabolism of pyrethroids, especially 

deltamethrin, conferring pyrethroids resistance.  

Expression of alleles of CYP6P9a and CYP6P9b from resistance strains in D. melanogaster 

alone, confers resistance to pyrethroids permethrin and deltamethrin, in vivo. Flies overexpressing 

CYP6P9a and CYP6P9b from susceptible FANG have higher mortalities (values which are statistically 

significant) for permethrin and deltamethrin compared with transgenes overexpressing MALCYP6P9a 

and MOZCYP6P9b from the resistant alleles. The experiments with the flies further confirmed the 

pattern observed from the in silico and in vitro analysis that CYP6P9b is more potent P450 than 

CYP6P9a, able to confer higher tolerance to pyrethroids, in vivo. As confirmed from qPCR validation of 

expression of transgenes, FANGCYP6P9b was overexpressed four-fold higher than MOZCYP6P9b, but 
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even that failed to make the susceptible allele match MOZCYP6P9b in conferring resistance to 

transgenic D. melanogaster.  

Transgenic expression of candidate P450s and bioassays with insecticides have been 

conducted in several studies. For example, transgenic expression of T. castenaum CYP6BQ9 

responsible for deltamethrin resistance in D. melanogaster resulted in tolerance of a diagnostic dose 

of 10µg deltamethrin with a survival rates of 40% at 25oC compared with control flies (survival rates of 

less than 10%) (Zhu et al., 2010). Transgenic expression of CYP6G1 and CYP12D1 in D. melanogaster 

was also reported to result in an resistance to chemically unrelated insecticides (DDT, nitenpyram and 

dicyclanil in the case of CYP6G1) and DDT and dicyclanil in the case of CYP12D1 (Daborn et al., 2007). 

Also, we have used transgenic analysis (Appendix 5) to show that a single mutation  Leu119Phe in 

GSTe2 gene from An. funestus population is responsible for extreme resistance to DDT and cross-

resistance to permethrin. Thus, transgenic analysis allow for establishment of cross-resistance genes. 

In conclusion, allelic variation is impacting pyrethroid resistance, with the resistant alleles of 

CYP6P9a and especially CYP6P9b able to metabolise pyrethroid insecticides with a significantly, very 

high efficiency compared with the corresponding alleles from susceptible strain, FANG. These 

pyrethroid-metabolising efficiency is as a result of differences in amino acid sequences between 

resistant and susceptible alleles. Specifically, in CYP6P9b three amino acid Val109, Asp335 and Asn384 in 

the resistant alleles accounted for these metabolic differences. Replacement of these residues into 

variants from susceptible allele (FANGCYP6P9b) resulted in profound loss of activity towards 

pyrethroid insecticides as well as probe substrates. The resistant alleles from CYP6P9b all across Africa 

are undergoing directional selection in their coding regions with these and possibly other beneficial 

mutations not characterised becoming fixed. These three amino acids could be used to design a 

diagnostic tool that can allow detection of the resistance alleles in field populations of An. funestus 

across Africa, which will make possible tracking the spread of the resistant alleles and helping the 

selection of appropriate insecticide intervention tools.  
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4. FUNCTIONAL CHARACTERISATION OF ADDITIONAL An. funestus 

CYTOCHROME P450s 

 

4.1  Background 

The tandemly duplicated An. funestus CYP6P9a and CYP6P9b have been implicated as the major 

pyrethroid resistance genes across Africa, but several candidate genes have always appeared also as 

top up-regulated genes from genome-wide transcriptional analysis. Irving and colleagues reported two 

genes CYP6M7 and CYP6Z1 from resistant An. funestus (FUMOZ-R) significantly overexpressed, with a 

fold change of a 2.4 and 2.82 respectively, compared with same genes from the susceptible strain 

FANG (Irving et al., 2012). These genes were located within the pyrethroid resistance rp2 QTL. 

Genome-wide transcription analysis using microarrays and validation of up-regulation through qRT-

PCR revealed that the most commonly overexpressed genes from pyrethroid resistant An. funestus 

from Malawi and Mozambique were CYP6P9a and CYP6P9b, as well as CYP6Z1, CYP9J11 and CYP6Z3 

(Riveron et al., 2013). However, the Zambian population of An. funestus from the northern range of 

the pyrethroid resistance front were recently found to be multiple resistant to pyrethroids, bendiocarb 

and DDT (Riveron et al., 2014a). Synergist assays with piperonyl butoxide (PBO) restored susceptibility 

to permethrin, bendiocarb and to some extent (though moderately) DDT, suggesting possible 

involvement of P450s in resistance to these insecticides, in the absence of kdr mutation in the VGSC 

(Riveron et al 2014a). The pre-eminent role of P450s even in DDT resistance was  further strengthened 

by the absence in the southern African An. funestus population of the GSTe2 Leu119Phe mutation 

shown to confer extreme DDT resistance in West/Central Afican An. funestus (Riveron et al., 2014b). 

Transcriptional profiling of the multiple resistant, Zambian An. funestus along with Malawi and 

Mozambique, using  new custom Agilent microarray chip with 60, 000 probes (60mer) revealed that 

the CYP6M7 was more overexpressed than the duplicated CYP6P9a and CYP6P9b, indicating that this 

gene could play a bigger role in pyrethroid resistance in this population. But no evidence exist that it 

could actually metabolise pyrethroid and if it does it remain to be known how it compares to the 
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duplicated P450s CYP6P9a and CYP6P9b. Additionally, beside CYP6M7 and CYP6P9a and CYP6P9b, the 

top 10 up-regulated genes also included other P450 genes, such as CYP6AA4, CYP9J11, CYP6Y2, 

CYP6Z1, CYP6AG1 and CYP6P2 (Riveron et al., 2014a). Their ability to confer pyrethroid resistance 

remain unclear in these populations of An. funestus. In addition, the contribution of these various 

P450s to the multiple resistance observed in these populations has not yet been investigated. It is 

possible that some of these P450s could be conferring cross-resistance between pyrethroids and 

carbamates as previously suggested by (Brooke et al., 2001) or even confer DDT resistance. It is crucial 

to address these questions in order to help design suitable resistance management strategies in the 

region as suggested by the Global Programme of insecticide Resistance Management (WHO, 2012). 

4.2  Aim and Objectives 

The aim of this section was to validate the role of other overexpressed cytochrome P450 genes in 

the resistance to insecticides in southern African populations of An. funestus. 

More specifically, this chapter aims to: 

1-Validate the role of the overexpressed P450s: CYP6M7, CYP6Z1, CYP9J11 and CYP6AA4 in the 

resistance to pyrethroids, and compare them to the duplicated CYP6P9a and CYP6P9b; 

2-Assess the contribution of these additional P450s to the multiple resistance observed or to possible 

cross-resistance between pyrethroids and other insecticide classes. 

4.3  Methods 

4.3.1 Cloning and Heterologous Co-expression of CYP6M7, CYP6Z1, CYP9J11 and CYP6AA4 

Proteins with An. gambiae Cytochrome P450 Reductase 

Cloning and plasmid preparation for these candidate genes follow the ompA+2 strategies 

(Pritchard et al., 1997). Plasmids pB13::ompA+2-CYP6M7, pB13::ompA+2-CYP6Z1, pB13:ompA+2-

CYP9J11 and pB13::ompA+2-CYP6AA4 were constructed as described for CYP6P9a and CYP6P9b in 
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Chapter 3. The primer pairs used for amplification of each gene with the ompA+2 leader for optimal 

expression is given in Table 4.1. Plasmid bearing An. gambiae P450 reductase (pACYC-184-CPR) was 

also constructed as described previously. Each P450 construct was individually co-transformed 

together with CPR into JM109 cells as described in Chapter 3. CYP6M7 (Afun007663), CYP6Z1 

(Afun012197), CYP9J11 (Afun007469) and CYP6AA4/CYP6AA1(Afun008614) are orthologs of An. 

gambiae CYP6M3 (AGAP008213-PA), CYP6Z1 (AGAP003066-PA), AGAP012296-PA and AGAP002862-

PA, respectively. Functional membranes of these P450s were co-expressed with ompA+2 modifications 

together with CPR at 21oC and 150 rpm as described previously (Pritchard et al., 1997, Pritchard et al., 

2006b) to produce recombinant CYP6M7 (rCYP6M7), rCYP6Z1, rCYP9J11 and rCYP6AA4. Optimal 

expression was obtained 36-40 hours post-induction with 0.5mM δ-ALA and 1mm IPTG for all the 

genes. P450 activity was measured using the spectral analysis (Omura and Sato, 1964). Total protein 

content was measured using the Bradford assay (Bradford, 1976) and CPR activity determined using 

cytochrome c reduction assay (Strobel and Dignam, 1978).  

Table 4.1: Primers used for amplification of candidate P450s with ompA+2 modifications 
Primer Sequences 

ompA+2F GGAATTCCATATGAAAAAGACAGCTATCGCG 
ompA+2CYP6M7_F CAAAATGTCTAGCGGCTCCATCGGAGCGGCCTGCGCTACGGTAGCGAA 

ompA+2CYP6M7_R TCTAGAGAATTCTCATGTGCTCAGCTTTTCCACC 

ompA+2CYP6Z1_F CACCGCGATAGCGTAAAGGATCATCGGAGCGGCCTGCGCTACGGTAGCGAA 

ompA+2CYP6Z1_R TCTAGAGAATTCTCACACTCTTCTTTCAATCCTC 

ompA+2CYP9J11_F AACCATCAAATCGATCTCCATCGGAGCGGCCTGCGCTACGGTAGCGAA 

ompA+2CYP9J11_R TCTAGATCTAGATTACATACTAACTTCGTTATCTTTC 

ompA+2CYP6AA4_F CACCACGTTGACGTAACCCATCGGAGCGGCCTGCGCTACGGTAGCGAA 

ompA+2CYP6AA4_R TCTAGAGAATTCCTACAGCTTAGTGCCATTCAGCCAGAT 

 Restriction site (s) are underlined; EcoRI: green, XbaI: red. NdeI for common primer ompA+2F: purple.  

 

4.3.2 Preparation of Cytochrome b5 

The ancillary protein b5 from An. gambiae was expressed and prepared as described (Stevenson et 

al., 2011, Holmans et al., 1994) and quantified through spectral activity (Omura and Takesue, 1970).  
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4.3.3 Insecticides Metabolism Assays 

Pyrethoids permethrin and deltamethrin, carbamates bendiocarb and propoxur, organochlorine 

DDT and organophosphate malathion were tested with the recombinant protein of CYP6M7, CYP6Z1, 

CYP9J11 and CYP6AA4 in a metabolism assay reconstituted with b5.  

4.3.3.1 Substrate Depletion Assay and Kinetics Analysis 

Substrate depletion assays and kinetics analysis were carried out as described in Chapter 3 with 

conditions as outlined in Table 3.8, section 3.33. Enzyme activity was calculated as the percentage 

depletion (the difference in the amount of insecticide(s) remaining in the +NADPH tubes compared 

with the –NADPH) and a paired t-test was used for statistical analysis.  

4.3.3.2 Fluorescent Probes Assay with Recombinant CYP6Z1 

Probes assay was conducted only with rCYP6Z1, partly because evidences from metabolism assay 

with bendiocarb suggests it to be a cross resistance gene, and also for the ortholog of this gene, An. 

gambiae CYP6Z1 (83%) identity had been established as DDT dechlorinase (Chiu et al., 2008); as such 

An. funestus CYP6Z1 is suspected to metabolise DDT as well, unless otherwise established.  

In order determine potential O-dealkylating property CYP6Z1 a battery of test was conducted with 

seven fluorescent probes (the same probes utilised to assay mutant membranes of CYP6P9b in 

Chapter 3). Protocol for initial test of dealkyaltion as well as kinetic was as described  in Chapter 3. For 

kinetics, 0 to 2µM DEF, RBE and RME was assayed with 3.33pmol rCYP6Z1 in a total volume of 250µl. 

Assay was was carried out under conditions shown to be linear with respect to time. 

In order to find out if the results from metabolism assays with pyrethroids, bendiocarb and DDT 

can be consistent with binding parameters of these insecticides (IC50) inhibition assay was conducted 

with DEF, test inhibitors (permethrin, deltamethrin, etofenprox, bendiocarb, propoxur, DDT, 

malathion and chlorpyrifos) and miconazole as positive inhibitor. The assay was carried out as 

described in section 3.3.2 with 0.13µM DEF (KM  with CYP6Z1) and 3.33pmol rCYP6Z1 membrane.  
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4.3.4 In silico Analysis of CYP6Z1 

In order to establish the binding free energy and binding conformations of CYP6Z1 with pyrethroid 

insecticides, bendiocarb and DDT, 3D model of this P450 was created using the crystal structure of 

human CYP3A4 (PDB:1TQN) (as described in Chapter 2) and molecular docking simulation carried out 

with the GOLD software. The docking parameters and conformations of insecticide ligands were 

analyzed using PyMOL and MMV and compared with results from established literature and those  

from dockings with CYP6P9a and CYP6P9b models.  

 

4.4 Results 

4.4.1 Pattern of Co-xpression of  Recombinant CYP6M7, CYP6Z1, CYP9J11 and CYP6AA4  

On average CYP6Z1 consistently expressed at low concentration (0.10±0.05nmol/mg protein) 

compared with CYP9J11 (0.13±0.007nmol/mg protein), CYP6M7 (0.15±0.0nmol/mg protein) and 

CYP6AA4 (0.17±0.02nmol/mg protein). For all proteins however, membrane content of P450 were 

lower than obtained for CYP6P9a (0.42-1.0 nmol/mg) and CYP6P9b (0.35-0.42nmol/mg), respectively. 

CYP9J11 and CYP6Z1 exhibited higher reductase content (91.29- and 77.68 nmol cytochrome c 

reduced/min/mg protein, respectively), higher than reductase contents obtained from  CYP6M7 (44.93 

nmol cytochrome c reduced/min/mg protein) and CYP6AA4 (31.46 nmol cytochrome c reduced/min/ 

mg protein) recombinant proteins.   

4.4.2 Assessment of Insecticide Activities Using Metabolism Assays  

4.4.2.1 Pyrethroids 

Disappearance of 20µM insecticides substrates was determined after one hour of incubation with 

the recombinant enzymes, in the presence of reconstituted cytochrome b5 and NADPH-regeneration 

buffer. All the recombinant enzymes screened metabolise permethrin and deltamethrin (Figure 4.1).  
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CYP6M7 is of special importance for we have recently discovered that its highly overexpressed in 

southern African populations of An. funestus (Riveron et al., 2014a). Specifically, from microarray 

studies, this gene was found to be the most consistenly overexpressed in Zambian population of 

multiple resistant An. funestus with a higher fold change (FC = 37.7) compared with CYP6P9a (FC = 

12.5) and CYP6P9b (FC =25.7). CYP6M7 metabolizes permethrin and deltamethrin with significant 

depletions of 68.28%±0.16 (p<0.001) and 53.60%±3.5 (p<0.001), respectively. The depletion obtained 

for permethrin is slightly higher than values from CYP6P9a-mediated metabolism (60-66% depletion), 

but lower than obtained from CYP6P9b (89-92%). However, both CYP6P9a and CYP6P9b have slightly 

higher depletion for deltamethrin (57-68% and 63-82%, respectively) compared with CYP6M7.    

The other three genes studied are also of field importance for they are as well overexpressed 

across southern Africa in the resistant populations of An. funestus, compared with susceptible strains 

(Riveron et al., 2014a, Riveron et al., 2013) with relatively high fold change: CYP6AA4 (FC = 5.2, 5.3 and 

13.2, for Malawi, Zambia and Mozambique, respectively); CYP6Z1 (FC = 2.8, 2.9 and 3.9 for Zambia, 

Malawi and Mozambique, respectively) and CYP9J11 (FC = 4.0, 4.1 and 4.8, respectively for Malawi 

and Mozambique).  

 

 

 

Figure 4.1: Percentage depletion of permethrin and deltamethrin by various 

recombinant P450s. Results are mean±S.E.M. of 3 replicates. Error bars: variation in the 

depletion between replicates. 
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CYP6Z1 depleted 96.28%±1.002 (p<0.001) of permethrin and 99.21%±0.11 (p<0.001) of 

deltamethrin after one hour of incubation. CYP9J11 metabolize permethrin and deltamethrin with 

significant depletions of 88.05%±3.23 (p<0.0001) and 95.05%+0.74 (p<0.0001) respectively. This is 

comparable to the depletion obtained with permethrin (83.48%±4.64, p<0.0071 and deltamethrin 

(92.77%±1.23, p<0.0001) from CYP6AA4-mediated metabolism. These depletions were higher than 

obtained with recombinant proteins from CYP6P9a and CYP6P9b.  

 

4.4.2.2 Carbamates and Organophosphate 

Carbamates, bendiocarb and propoxur, as well as the organophosphate malathion were screened  

in order to investigate potential cross-resistance phenomenon. None of the recombinant enzymes 

screened (CYP6M7, CYP6Z1, CYP6AA64 and CYP9J11) depleted more than 5% of malathion incubated 

for up to 90 minutes; same results not as obtained from recombinant CYP6P9a and CYP6P9b. This 

result is consistent with malathion susceptibility across Africa. CYP6Z1 and CYP9J11 significantly 

depleted bendiocarb (Figure 4.2); particularly, CYP6Z1 depleted more than 50% bendiocarb incubated 

(54.72%±0.45, p<0.05), while CYP9J11 and CYP6AA4 with lower depletion consumed 38.34%±7.01 (p = 

0.05) and 17.72%±4.84 (p=0.07) of this carbamate, respectively. In constrast with results from 

CYP6M7, CYP6P9a and CYP6P9b (less than 10% depletions), CYP6Z1, CYPJ11 and CYP6AA4-mediated 

metabolism of bendiocarb proceeded with polar metabolites eluting in the beginning of the HPLC 

chromatogram (Figure 4.3). Of course, initial reaction of carbamate metabolism has been described to 

produce very polar products that remain at the origin of the chromatogram (Kuhr, 1970).  
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Figure 4.2: Percentage depletion of 20µM carbamate insecticides with An. funestus CYP450s. 

Results are an average of three replicates (n = 3) compared with negative control. *Significantly different 

from negative control (-NADPH) at p<0.05. 

 

Figure 4.3: Overlay of HPLC chromatogram of the CYP6Z1 metabolism of bendiocarb with 

–NADPH in red and +NADPH in blue. Bendiocarb peaks are designated B1 and B2 and putative 

metabolites peaks from +NADP samples designated M1-M7 (4.396-7.75 mins) and M8 (18.026 mins). 
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These findings implicated CYP6Z1 as well as CYP9J11 and CYP6AA4 as cross-resistance genes 

that can confer resistance to Type I and Type II pyrethroids as well as bendiocarb. 

However, only CYP6M7 showed significant depletion of propoxur (22.22%±7.08, p = 0.05) but with 

no polar metabolites different from the control (-NADPH). Possibly, recombinant CYP6M7 sequester 

this carbamate insecticide. 

4.4.2.3 DDT 

With DDT, metabolism assay was conducted with CYP6Z1, CYP9J11, CYP6AA4, CYP6M7. Only 

CYP6Z1 was established to be capable of oxidative attack on DDT to produce kelthane with depletion 

of 46.04% ±2.34 (p<0.05). Though CYP6M7 could significantly deplete 37.46%±0.52 of DDT (p<0.05) 

the absence of metabolite peaks make it difficult to ascertain the nature of metabolism. Its assumed 

that like the case of propoxur, CYP6M7 sequesters DDT. The southern African CYP6P9a and CYP6P9b 

also depleted 25.79%±2.96 and 26.32%±2.34 of DDT respectively, but with no metabolite peaks. This is 

somehow consistent with the results from probes inhibition assay in which recombinant CYP6P9a and 

CYP6P9b portrayed an IC50  value of averagely less than 10µM for DDT. Possibly DDT can bind to these 

P450s but is not metabolised. CYP9J11 and CYP6AA4 depleted only less than 10% of the DDT following 

90 minutes incubation. 

4.4.2.4 Establishment of Kinetic Constants with  Metabolism Assay 

4.4.2.4.1 Pyrethroids: Permethrin and Deltamethrin 

 CYP6M7: CYP6M7 metabolism of permethrin and deltamethrin follows Michaelis-Menten pattern 

(Figure 4.4) with Kcat, KM and catalytic efficiency respectively of 6.6±0.24min-1, 13.81±7.08µM and 

0.45±0.034 min-1µM-1 for permethrin and 7.035±0.204min-1, 19.64±10.69µM and 0.36±0.04 min-1µM-1 

for deltamethrin (Appendix 4.1A). Compared with CYP6P9a and CYP6P9b this enzymes is less efficient, 

especially with deltamethrin to which it exhibited high KM. However, it has KM values for pyrethroids 

and catalytic efficiencies closer to those described for An. gambie CYP6M2 (Stevenson et al., 2011).  
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CYP6Z1: CYP6Z1 metabolism of pyrethroids also followed Michaelis-Menten pattern with a 

high affinity toward permethrin and deltamethrin (Figure 4.5 and Appendix 4.1A); KM in magnitude 

almost three-fold lower than values we established for the An. funestus CYP6P9a and CYP6P9b 

(Riveron et al., 2014a). This sharp difference in terms of KM possibly reflects a contrasting pattern of 

mechanism of metabolism in which CYP6P9a, CYP6P9b and CYP6M7 with high catalytic rate portrayed 

lower affinity for pyrethroids while CYP6Z1 with low turnover bind pyrethroid insecticides more tightly 

leading to comparable efficiencies. Thus, the catalytic efficiencies of CYP6Z1 towards permethrin and 

deltamethrin are comparable to values we have established with CYP6P9a and CYP6M7 but lower than 

values from southern African CYP6P9b (Riveron et al., 2014a).   

 

 

Figure 4.4: Michaelis-Menten plot of CYP6M7 metabolism of permethrin and 

deltamethrin. Results are average of 3 replicates (n = 3) compared with control (-NADPH).  
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CYP9J11: The CYP9J11 metabolism of permethrin and deltamethrin follows Michaelis-Menten 

pattern, but sharp decline in activity was observed with deltamethrin, above 12.5µM concentration 

(Figure 4.6). This is attributed to substrate or product inhibition especially as evident from the apparen 

KM of the enzyme toward deltamethrin. The Kcat with permethrin was higher than with deltamethrin, 

but the high KM obtained with permethrin makes the enzyme exhibit catalytic efficiency towards 

deltamethrin almost two-fold the value obtained with permethrin (Figure 4.6 and Appendix 4.1A). 

CYP9J11 exhibited high Kcat and high KM with permethrin and low Kcat and a very low KM for 

deltamethrin, leading to catalytic efficiency for deltamethrin approximately two-fold the efficiency 

with permethrin, but lower than obtained from CYP6P9a and CYP6P9b metabolism.  

 

Figure 4.5: Michaelis-Menten plot of CYP6Z1 metabolism of permethrin and deltamethrin. 

Results are an average of three replicates (n = 3) compared with negative control (-NADPH).  
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CYP6AA4: Pyrethroids metabolism by recombinant P450s followed Michael-Menten pattern 

Recombinant (details of kinetic profile of this P450 coud be found in Kayla et al., 2015, the title which 

is given in the list of publications: Appendix 5). CYP6AA4 exhibited high turnover for permethrin 

(Appendix 4.1A), comparable to ranges obtained with CYP6P9a and CYP6P9b and two-fold higher than 

the Kcat obtained from CYP6M7 and CYP9J11. It showed higher activity towards deltamethrin with a 

very high Kcat  double the values obtained with CYP6M7 and eight-fold higher than the Kcats 

respectively from CYP6Z1 and CYP9J11. The KM values obtained from CYP6AA4 are comparable to 

those from CYP9J11 with permethrin and approximately double the values from CYP6M7 with both 

pyrethroids. Thus, CYP6AA4 exhibited catalytic efficiencies for permethrin and deltamethrin, 

respectively of 0.36- and 0.52min-1 µM-1, values which are comparable to those obtained from CYP6Z1 

and CYP6M7 but lower than CYP6P9a and CYP6P9b from resistant alleles.   

 

Figure 4.6: Michaelis-Menten plot of CYP9J11 metabolism of permethrin and 

deltamethrin. Results are average of three replicates (n = 3) compared with  control (-NADPH). 
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4.4.2.4.2 Bendiocarb 

CYP6Z1 and CYP9J11 were tested with 20µM bendiocarb and both enzymes were discovered 

to behave in allosteric fashion with this carbamate insecticide, with positive cooperativity (h = 

5.82±0.34 for CYP6Z1) and for CYP9J11 (h = 2.29±0.38) (Appendix 4.1B). Allosteric enzymes exhibit 

positive cooperativity, which refers to the binding of the substrate at one site of the enzyme which 

affects the affinity of the other sites for the substrates (Atkins, 2004). Presence of multiple substrate 

binding sites increase affinity for the substrate with a rapid but coordinated increase in velocity until 

maximal rate is achieved. Allosteric enzymes are modulated by the presence of effectors which can be 

the substrate itself, a coenzyme or a cofactor. For example, in the case of reconstituted P450 system 

for metabolism assays, substrate concentrations and presence and concentrations of cytochrome b5 

can change the whole kinetic profile of the reaction leading to varying catalytic output. Degree of 

cooperativity is measured by the Hill coefficient (h); when h<1 there is a negative cooperativity, when 

h = 1 there is no cooperativity and when h>1 there is a positive cooperativity.  

CYP6Z1 and CYP9J11 portrayed sigmoidal curve with low Khalf (lower than KM obtained with 

pyrethroids) and low maximal catalytic rate (Figure 4.7) (Appendix 4.1B). Dose-response curve was 

thus modelled using the GraphPad prism with relevant module as described (Copeland, 2004). The 

catalytic efficiencies for bendiocarb were very low compared with the values obtained with pyrethroid 

insecticides.  

Various P450s that exhibit allosteric phenomenon have already being documented, including 

the promiscuous CYP3A4 (Wang et al., 2000) and CYP2C9 (Tracy et al., 2002). Functional allostery using 

distributive catalysis, has been described for some P450s that exhibit atypical kinetics to minimize 

toxicological effect of substrates (Atkins et al., 2002). Its been described that at low substrate 

concentrations, the slower substrate turnover afforded by cooperative CYPs compared with Michaelis-

Menten enzymes can be a significant toxicological advantage, when toxic thresholds exist. Possibly, 
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bendiocarb is highly toxic to CYP6Z1 and CYP9J11, though the two P450s can metabolise it, and this is 

why the enzyme employ distributive catalysis to effect catalysis. 

These results revealed that CYP6Z1 and at some extent CYP9J11 confer a cross-resistance between 

pyrethroids and carbamates, using different mechanisms to effect catalysis. 

 

 

 

4.4.2.4.3 DDT 

In line with the established literature on insects P450s from CYP6 family metabolizing the 

organochlorine, DDT (Chiu et al., 2008, Mitchell et al., 2012), we tested the P450 candidates with DDT. 

An. funestus CYP6Z1 metabolizes DDT, generating dicofol (kelthane) with a minor peak around 7th 

minute on HPLC chromatogram. Unlike An. gambiae CYP6M2, DDT metabolizer which breaks down 

DDT into dicofol and DDE (as a minor metabolite) (Mitchell et al., 2012), An. funestus CYP6Z1 oxidized 

DDT into dichlorodiphenyltrichloroethanol (dicofol). The dicofol formation also portrayed atypical 

Figure 4.7: Sigmoidal curve of CYP6Z1 and CYP9J11 metabolism of bendiocarb. Results 

are  average of three replicates (n = 3) compared with negative control (-NADPH).  
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kinetics with cooperativity (h = 2.603±0.67) (Figure 4.8 and Appendix 4.1B). The Vmax for DDT 

metabolism is several fold higher than obtained with bendiocarb and thus catalytic efficiency for DDT 

metabolism was 100-fold higher than with bendiocarb. This result reveals that CYP6Z1 is possibly 

involved in the cross-resistance to carbamates and DDT observed in southern Africa populations of An. 

funestus such as those from Zambia, as well as populations from Benin where this gene is 

overexpressed. 

 

 

 

 

4.4.3 Assessment of O-dealkylating Properties and Insecticides Binding Affinities of 

Recombinant CYP6Z1 using Fluorescent Probes Assays  

In order to establish more information that can implicate CYP6Z1 as a  potential cross-resistance 

gene, the recombinant CYP6Z1 was used to screen fluorescent probes, establish kinetic profiles and 

affinity toward pyrethroid, carbamate, organochlorine and organophosphate insecticides using 

Figure 4.8: Sigmoidal curve of CYP6Z1 metabolism of DDT. Results are average of three 

independent replicates (n = 3) compared with negative control (-NADPH).  
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inhibition assay. It was hoped that the inhibition assay can shed light on affinity of the CYP6Z1 to 

different insecticide classes, the ones it could metabolise (permethrin and deltamethrin, bendiocarb 

and DDT) and those it could not metabolise (propoxur, malathion, etc).   

4.4.3.1 Screening of Probes and Kinetics with Diethoxyfluorescein 

CYP6Z1 showed preferential activity toward diethoxyfluorescein especially and resorufin-based 

probe RME and RBE, as well (Figure 4.9). Dealkylation of DEF followed Michaelis-Menten pattern 

(Figure 4.10) with kinetic constants different from values obtained with CYP6P9a and CYP6P9b. The 

P450 portrayed strong affinity toward DEF with KM comparable with CYP6P9b, but a maximal catalytic 

activity three fold higher than obtained with CYP6P9b (Appendix 4.1C). Therefore, the catalytic 

efficiency of CYP6Z1 toward DEF was almost three-fold higher the values from CYP6P9b. This shows 

that CYP6Z1 is more efficient O-dealkylating enzyme compared with CYP6P9a and CYP6P9b.  

 

  

 

RME and RBE were also used for kinetics analysis. CYP6Z1 exhibited highest maximal catalytic rate 

with RBE (two-fold higher than values from DEF), but with a very high KM which resulted in low 

Figure 4.9: Metabolism of probe substrates by CYP6PZ1. The solid bars indicate average of 

significant activity in three experimental replicates compared to negative controls (-NADPH). 
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catalytic efficiency, six-fold and four-fold lower than the efficiency obtained with DEF and RME, 

respectively (Appendix 4.1C). The KM of An. funestus CYP6Z1 with RBE is 15-fold higher than the KM 

established for RBE with Ae. aegypti CYP6Z8 (Chandor-Proust et al., 2013)  and An. gambiae CYP6Z2 

(McLaughlin et al., 2008). However, the Kcat of de-benzylation of RBE from the above researchers are 

way too low compared with the Kcat obtained from An. funestus CYP6Z1.   

 

 

 

4.4.3.2 Determination of Affinity of CYP6Z1 to Insecticides Using Inhibition Assays  

In order to establish the affinity of recombinant CYP6Z1 towards different insecticide classes, 

inhibition assay was conducted with DEF and a panel of insecticides. The mean values of IC50 for the 

test inhibitors for the fluorogenic probe DEF used in this study is shown in Figure 4.11. Lowest IC50s 

were obtained with miconazole, a potent P450 inhibitor (Lupetti et al., 2002) used in various inhibition 

studies (Niwa et al., 2005). CYP6Z1 shows lower affinity for both permethrin (IC50 = 6.80µM±0.18) and 

deltamethrin (IC50 = 4.98µM±0.07) compared with CYP6P9a and CYP6P9b respectively, with IC50s 

Figure 4.10: Michaelis-Menten plots of CYP6Z1 dealkylation of probe substrates DEF, 

RBE and RME.  
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slightly lower with deltamethrin than permethrin. The enzyme shows comparable affinity towards 

etofenprox and stronger affinity to chlorpyrifos (IC50 = 0.7µM±0.01). It exhibited low affinity towards 

malathion (IC50 = 16.9µM±3.9. In contrast with CYP6P9a and CYP6P9b, IC50 values of 9.5µM±0.9 and 

8.9µM±0.9 respectively, were obtained for bendiocarb and DDT, with CYP6Z1, indicative of binding 

especially toward bendiocarb to which IC50s for CYP6P9a and CYP6P9b were greater than 25µM. Tight-

binding inhibitors have been defined as compounds with a  IC50 values of <10µM (Kemp et al., 2004) 

and thus bendiocarb and DDT are considered good binders of CYP6Z1. The IC50 values increased 

drastically with decrease in the concentration of those insecticides that show strong inhibition toward 

the CYP6Z1-mediated dealkylation of DEF (Figure 4.11B). The high IC50 obtained with propoxur is 

consistent with the inability of CYP6Z1 to metabolise this insecticide as established from substrate 

depletion assays.  

 

 

 

 

 

 

 

Figure 4.11: (A) Mean IC50 of the test insecticide inhibitors against CY6Z1 dealkylation of DEF. 

Data represent mean IC50 at eight concentrations of each insecticide ± S.D. Error bars represent variation in 

the values of the IC50 between different concentrations; (B) Effect of test insecticides on the CYP6Z1-

mediated metabolism of DEF. Results are mean ± S.D. of three independent replicates. 
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4.4.4 Comparative Modelling  and Molecular Docking Simulation of CYP6Z1 with Insecticides 

 

In order to shed more light on the possible pattern of binding of insecticides to CYP6Z1 model 

virtual insecticide structures were docked to its active site. It was hoped that the docking simulation 

could shed light on what makes the gene able to metabolise non-pyrethroid insecticides, conferring 

cross-resistance in contrast with CYP6P9a and CYP6P9b pyrethroid-metabolism specialists. Here 

docking results with deltamethrin, bendiocarb and DDT were analysed.  

  The docking parameters of CYP6Z1 with permethrin, deltamethrin, bendiocarb and DDT were 

summarized in Appendix 4.2. ChemScore values lower than observed with CYP6P9a and CYP6P9b were 

obtained with permethrin and deltamethrin. In contrast, docking with DDT produced higher 

ChemScore values and lower free binding energy than obtained with CYP6P9a and CYP6P9b, though 

no hydrogen bonding contribution was predicted for all 50 solutions. Another exception is the 

ChemScore values for docking with bendiocarb; these values were consistently higher than those 

obtained with  CYP6P9a and CYP6P9b models.  

Within the active site of CYP6Z1 permethrin docked above the heme plane with 4ʹ spot of the 

phenoxy group positioned at a distance of 3.6Å. Two of the ten top docking solutions in CYP6Z1 have 

gem dimethyl group at close proximity to the heme, thus, just like MOZCYP6P9b, multiple metabolites 

can be generated with permethrin. Deltamethrin also docked with the 4ʹ spotof the phenoxy ring at a 

distance of 3.54Å. One of the top ten ranked poses has the gem dimethyl group facing the heme, 

implying possibility of more than one primary metabolite, as well. It has been established that 

recombinant An. gambiae CYP6M2 preferentially hydrolyses deltamethrin to initial product at 4ʹ 

position, with trans-methyl hydroxylation being a minor route (Stevenson et al., 2011); thus its 

interesting that CYP6P9b and CYP6Z1 which metabolise deltamethrin docked with the same 

conformation multiple conformations.  
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Within the active site of CYP6Z1 deltamethrin is surrounded within 5.0Å radius by nonpolar 

aliphatic residues Val101 (SRS1), Ile216(SRS2),  Lue295 and Ala299 (SRS4), Ala364, Leu365, Ala366 and Leu368 

(SRS5), all of which makes the binding site highly hydrophobic (Figure 4.12A). Bulky hydrophobes 

include Phe212 (SRS2) and Phe115 (SRS1), the latter which point toward and could π-stack with the 

phenoxybenzyl ring of deltamethrin at a distance of 3.8Å (Figure 4.13A). The catalytic importance of 

this Phe together with other critical residues (Leu295, Leu365, Ala366, Leu368, Asn369 and Arg99) has been 

described for An. gambiae CYP6Z1 model (Chiu et al., 2008).   

The polar neutral residues Asn208 (SRS2), Thr303 (SRS4) and Asn369 (SRS5) could possibly be 

important residues involved in hydrogen bonding network with Tyr102 while the positive guanidinium 

group of Arg99 could be involved in electrostatic interactions or form a salt-bridge with the propionate 

moiety of the heme stabilizing the binding cavity. This residue is conserved between CYP6Z1 and 

CYP6P9b, and occupies the same spacial position. A hydrogen bonding was predicted between the ɛ-

amino group of Lys48 and the acyl carbon atom of the acid moiety (Figure 4.14A). This hydrogen bond 

within 2.98Å alone is predicted to contribute -2.5kJ/mole of energy and possibly is networked to. The 

hydrogen bonding network is predicted to Glu210 and Ser211 both residues from the SRS2.  

 
Figure 4.12: Predicted residues within 5.0Å of (A) deltamethrin, (B) bendiocarb and (C) DDT in 

the active site of CYP6Z1. 
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Bendiocarb docked into the active site of CYP6Z1 above the heme with the C-4 of the phenyl 

ring and the carbamate ester located 3.73Å and 6.33Å respectively, from the heme iron (Figure 4.12B). 

In this posture, ring hydroxylation product (4- or 5-hydroxybendiocarb) are predicted to be the major 

metabolites, with ester cleavage to generate benzodioxol-4-ol being of minor priority. The dimethyl 

group are pointed away from the heme catalytic site. Phe115 of SRS1 and occupying the same position 

as Phe123 of CYP6P9a and CYP6P9b is located at a distance of 4.17Å from the phenyl ring of 

bendiocarb, with the possibility of a face-to-face π-stacking. Critical residues within 5.0Å radius of 

bendiocarb (Figure 4.13B) include: (i) non-polar aliphatic side chains important for hydrophobicity: 

Met110 and Ala116 of SRS1, Ala235, Ala237, Leu236 all three belonging to SRS3, Leu295 and Ala298 both from 

SRS4 as well as Ala299 which belongs both to the SRS4 and the O2-binding pocket, as well of Leu365 from 

the SRS5; (ii) polar residues that could be involved in ionic interaction and/or hydrogen bonding 

include two residues from SRS1, His106 and Tyr102; (iii) polar neutral side chains that could be involved 

in hydrogen bonding include Asn104 and Asn113 both from SRS1, Thr207 and Asn208 both from SRS2.  

The residue Arg99 of SRS1 which was found to be within close contact with the propionate 

moiety of heme in docking with pyrethroids also appeared in the same position with the docked pose 

of bendiocarb. As with docking with deltamethrin we hypothesize that this residue forms a salt-bridge 

with the propionate moiety of the heme stabilizing the active site and enhancing catalysis.    

Two hydrogen bonding were predicted: (i) the alcohol side chains of Thr207 to the N-methyl 

group of the carbamate moiety (2.94Å and -2.5kJ/mol) (ii) the phenyl oxygen of Tyr102 (2.89Å and -

2.5kJ/mol) (Figure 4.14B). Both this intermolecular hydrogen bonding appeared to have  no acceptor 

group from bendiocarb; possibly they were meant for the N-dimethyl group of bendiocarb which was 

out of reach as the insecticide docked closer to the heme.  
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All the 50 predicted bound conformation on DDT in the active site of CYP6Z1 were not 

optimally productive. One of the benzyl rings approached the heme obstructing access to the 

trichloromethyl group. Though ChemScore values were higher than obtained with deltamethrin, with 

all the poses with DDT no hydrogen bonding contribution was predicted by GOLD (see Figure 4.14C). 

Individual residues within 5Å of DDT include the non-polar aliphatic Ala116 of SRS1, Leu206 of SRS2, 

Leu236 of SRS3, Leu295 and Ala299 both of which belong to SRS4, as well as Leu365 of SRS5 (Figure 4.12C). 

Other polar residues include Thr303 of SRS4, Tyr102 of SRS1, His106 of SRS1, and two polar, neutral 

asparagine residues (Asn208 of SRS2 and Asn113 of SRS1). The binding site of DDT in CYP6Z1 contains 

many bulky hydrophobes including Phe115 of SRS1 which point toward the benzyl group approaching 

heme at a distance of 3.52Å with possibility of π-stacking leading to stabilization, Phe294 and Phe296 

both of which belong to SRS4. Arg99 of SRS1 is also located as usual close to the propionate moiety of 

the heme with possibility of forming a salt-bridge. Residues predicted to be in hydrophobic contact 

Figure 4.13: Predicted residues in hydrophobic contact with substrates within 5.0Å of (A) 

deltamethrin, (B) bendiocarb and (C) DDT in the active site of CYP6Z1 
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with the substrate include Phe431, Gly440 and Ile439 (both of heme-binding domain), Phe296, Leu295, 

Gly300, Ala299 (all four from SRS4) Lue365 as well as Phe115 (Figure 4.13C). No residue within 5.0Å residue 

of DDT was predicted to be involved in intermolecular hydrogen bonding with the substrate. Results 

from docking with DDT just like the case of CYP6P9a and CYP6P9b was not conclusive. It opened more 

questions than it answered, for none of the first top ten ranked poses seems to be reliably productive.  

 

  

 

 

4.5 Discussion and Conclusion 

 

Molecular docking simulations predicted CYP6Z1 to have activities toward pyrethroid insecticides 

comparable to CYP6P9a and CYP6P9b. The gene was also predicted to have activity against bendiocarb 

and to some extent DDT. Fluorescent probes and inhibition assays, and pyrethroid metabolism assays 

have implicated CYP6Z1 as cross-resistance gene that binds to pyrethroids, bendiocarb and DDT. This 

is in contrast with CYP6M7, CYP6P9a and CYP6P9b, established to specialize only on pyrethroids 

metabolism, with no activity towards organochlorine DDT, and carbamate, bendiocarb. I have 

Figure 4.14: Predicted residues within 5.0Å of (A) deltamethrin, (B) bendiocarb and (C) DDT in 

the active site of CYP6Z1. Hydrogen bonds between insecticide atom (s) and amino acids residue (s) are 

shown as blue dotted lines. 
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established herein that CYP6Z1 can metabolise pyrethroids, bendiocarb and DDT, but has no 

significant activity towards propoxur and malathion. The presence of benzodioxol- ring in bendiocarb 

and simpler phenyl ring in propoxur, or the presence of isopropoxy- group in propoxur and its absence 

in bendiocarb may account for the incapability of the CYP6Z1 and CYP9J11 to metabolize propoxur. I  

also discovered another gene CYP6M7 which was highly overexpressed in multiple resistant 

populations from Zambia, able to metabolise Type I and Type II pyrethroids with high efficiency. While 

the gene has no significant activity towards bendiocarb and DDT, based on the data obtained I suspect 

it to sequester propoxur and possibly DDT.  Other pyrethroid metabolisers discovered include CYP9J11 

and CYP6AA4 both which also exhibited low activity towards bendiocarb. 

Its now apparent that in An. funestus resistance to pyrethroid is mediated by more than  P450s 

CYP6P9a and CYP6P9b as previously thought. Pyrethroid resistance is mediated by all these P450s 

studied: CYP6P9a, CYP6P9b, CYP6M7, CYP6Z1, CYP9J11 and CYP6AA4, and possibly other P450s yet to 

be characterized. All these genes fall within the originally described three QTLs: rp1 (2R chromosomal 

arm for CYP6P9a, CYP6P9b and CYP6AA4), rp2 (2L in the case of CYP6M7 and CYP6Z1) and rp3 (3L in 

the case of CYP9J11) (Wondji et al., 2009, Wondji et al., 2007b, Irving et al., 2012) associated with 

pyrethroid resistance. In addition to the ability to metabolise pyrethroids and confer resistance to An. 

funestus  by all of these genes, we found that some of these genes, CYP6AA4, CYP9J11 and especially 

CYP6Z1 are cross-resistance genes, meaning that they can metabolise non-pyrethroid insecticides used 

in public health using subtler kinetic mechanisms. An important property observed with CYP9J11 and 

CYP6Z1 with bendiocarb and also CYP6Z1 with DDT is that the metabolism of these insecticides 

proceed allosterically with positive cooperativity, while metabolism of pyrethroids followed canonical 

Michaelis-Menten fashion. As described earlier, functional allostery using distributive catalysis has 

been described for some P450s that exhibit atypical kinetics to minimize toxicological effect of 

substrates (Atkins et al., 2002). These genes possibly utilize this mechanism in the face of challenge 

from highly toxic insecticides. This makes establishment of the catalysis by the P450s conferring 
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resistance difficult and parameterization and extrapolation of kinetics from resistance P450s all the 

more difficult to easily interprete. 

Cross-resistance had been described for many resistant insect populations. For example, a 

multiple resistance An. gambiae  populations from Tiassaleʹ, Coˆte d’Ivoire, West Africa, was recently 

described (Edi et al., 2014). Two P450s CYP6P3 and CYP6M2 were implicated via microarray and 

transgenic studies as responsible for the pyrethroid resistance and cross-resistance to bendiocarb in 

these populations from Tiassaleʹ, while CYP6M2 was also fingered as responsible for DDT resistance. In 

the same study, recombinant CYP6P3 was shown to be able to metabolize bendiocarb in vitro.  An. 

gambiae CYP6M2 however, had already been established as pyrethroid and DDT metaboliser from 

several studies (Mitchell et al., 2012, Stevenson et al., 2011). In D. melanogaster, transgenic 

expression of two P450s CYP6G1 and CYP12D1 conferred cross-resistance to chemically unrelated 

insecticides (DDT, nitenpyram and dicyclanil in the case of CYP6G1) and DDT and dicyclanil in the case 

of CYP12D1 (Daborn et al., 2007), clearly confirming that presence of cross-resistance gene can confer 

resistance to more than one class of insecticide.  

The impact of many genes conferring resistance and cross-resistance to multiple resistant 

populations of An. funestus in sub-Saharan African is a source of concern. This phenomenon makes the 

resistance highly heterogenous and complex, making design of appropriate diagnostic tools 

operationally challenging. Equally, also the flow of these resistance genes can introduce resistance 

hitherto unknown into new environments confounding problems; for example, underlying resistance 

could shift according to region as observed with the highly overexpressed CYP6M7 from Zambia which 

can metabolise Type I and Type II pyrethroids and possibly sequester propoxur. There is thus an urgent 

need to find newer tools to combat insecticide resistance. Also, there is an overwhelming need for 

newer classes of insecticides that are safe (low mammalian toxicity) but potent enough to control 

mosquito vectors of malaria, and other diseases effectively. But caution must be exercised because 

the number of new enzymes classes that can confer cross-resistance is in increase and a new 
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insecticide may already be doomed before being deployed if resistance genes can already metabolise 

it. There is a need to also find more of the new chemical entities (synergists) that can be incorporated 

into the insecticides formulation so that they can block the enzyme systems from breaking down the 

insecticides in question.   
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5. DISCUSSION, CONCLUSION AND FUTURE PERSPECTIVES 

5.1 Discussion  

An. funestus s.s. is a major malaria vector in the African continent, and it is the most widely, 

geographically distributed amongst all vectors from the An. funestus complex. It has high vectorial 

capacity, an attribute conferred by its highly anthropophilic and endophilic behaviours, and in some 

localities its ability to transmit malarial parasite (parasite infection rates) exceed those of An. gambiae. 

Several studies across Africa have documented An. funestus becoming increasingly resistant 

especially to three of the four classes of insecticides used in public health (pyrethroids, carbamates 

and organochlorines) with resistance patterns being heterogeneous. The pyrethroid resistance in 

particular is threatening to derail the effectiveness of malaria intervention tools, e.g. ITNs and LLINs. In 

the absence of kdr and AChE-type mutations in An. funestus, evidences have implicated a handful of 

monooxygenases (especially from CYP6 family) as mediators of pyrethroid resistance, while GSTs 

(especially GSTe2) have been shown to be responsible for DDT resistance, especially in some regions 

of Africa (Riveron et al., 2014b). Despite the progress made, there is an overwhelming need to 

elucidate the actual molecular mechanisms of metabolic resistance because the bulk of the studies so 

far carried out involves analysis of overexpression of candidate genes, which neither establish the 

ability of the genes in question to metabolise the insecticide(s) of interest nor does it pinpoint the 

factors responsible for the resistance. Presence of polymorphism in the main candidate genes 

established as metabolisers of pyrethroids suggested a role of allelic variation in resistance pattern. 

Equally also the role of other candidate genes overexpressed in the multiple resistance populations of 

An. funestus still needed to be confirmed, for such information can identify other genes that confer 

pyrethroid resistance, as well as cross-resistance to different insecticide classes used in public health.  

The continued effectiveness of vector control through insecticide-based tools require design and 

implementation of suitable resistance management strategies, to limit the negative impact of  
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resistance (WHO, 2012). One prerequisite that can help is the development of appropriate resistance 

diagnostic tools to facilitate the monitoring of insecticide resistance at an early stage, in order to 

inform control programs of the best course of action to take, to minimise the impact of the resistance. 

However, the design of DNA-based diagnostic tools requires a thorough understanding of the 

molecular basis of pyrethroid resistance especially in major malaria vectors such as An. funestus in 

which resistance is mainly metabolic. To date, efforts to characterise pyrethroid resistance in An. 

funestus have revealed metabolic resistance through elevated expression of cytochrome P450s as the 

underlying mechanism playing the major role (Wondji et al., 2012, Riveron et al., 2013, Coetzee and 

Koekemoer, 2013). Despite the numerous reports of implications of P450s in pyrethroid resistance, 

the detailed molecular mechanisms through which P450s confer pyrethroid resistance in mosquitos 

remain largely uncharacterised. Overexpression of several P450s is commonly reported in association 

with resistance, however, it remains unclear what drives the overexpression or whether other 

mechanisms in addition to overexpression are involved. These other factors may include variation in 

the coding sequences through substitutions of catalytically important amino acid which could modify 

the activity of the enzymes or cis and/or trans mutations that could impact the up-regulation of the 

candidate P450s linked with resistance. Previous works have reported that allelic variations through 

amino acid changes in the CYP6A2 gene variants in D. melanogaster impacted DDT metabolism with 

striking quantitative changes in catalytic activity, and recently, in An. funestus, a single point mutation 

detected in resistant populations was established to alone confer DDT resistance. However, little was 

known on the impact of allelic variation of P450 genes on pyrethroid resistance. Observation of 

important polymorphism variation for the two most important pyrethroid resistance genes CYP6P9a 

and CYP6P9b (Riveron et al., 2013, Wondji et al., 2009) in An. funestus suggested that this mosquito 

species is an excellent candidate to assess the impact of allelic variation on insecticide resistance.  

The goal of this study was to assess whether allelic variation is impacting pyrethroid resistance 

and if causative mutation(s) could be identified for pyrethroid resistance mediated by P450 genes, 

which will facilitate the design of DNA-based diagnostic tools to easily detect and track such resistance 
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in field populations. Additionally, several other candidate P450 genes previously associated with 

pyrethroid resistance or cross resistance to other insecticides, still needed to be validated to confirm 

their role in respective resistance in the field.  

In this study, molecular basis of monooxygenase-mediated resistance to pyrethroid in An. 

funestus was dissected. Exisence of cross-resistance genes that metabolise bendiocarb and DDT was 

also established. The major findings of this study include: (i) Allelic variation is a key mechanism 

conferring pyrethroid resistance in An. funestus, (ii) Key amino acid changes in pyrethroid metabolising 

P450 CYP6P9b, from resistant populations are responsible for pyrethroids-metabolising efficiency; this 

finding could help create DNA-based diagnostic tools that can allow for detection of such mutations in 

the field, (iii) Pyrethroid resistance is multi-genic in field populations of An. funestus; in addition to 

CYP6P9a and CYP6P9b (the major pyrethroid resistance genes in An. funestus), other genes 

overexpressed in resistant populations were functionally validated for ability to metabolise 

pyrethroids and non-pyrethroid insecticides,  (iv) Validation of these other genes led to the discovery 

of P450s that confer cross-resistance to pyrethroids, as well as DDT and bendiocarb in An. funestus. 

These findings are discussed in detail below:   

5.1.1 Allelic Variation is a Key Mechanism Conferring Pyrethroid Resistance in An. funestus 

The fact that the predominant haplotypes of the pyrethroid resistance genes CYP6P9a and 

CYP6P9b from resistant mosquito populations across Africa share key amino acid variants in common 

compared with the haplotypes from FANG suggested that allelic variation in these genes is impacting 

their ability to metabolise the pyrethroids, and confer resistance. This was also supported by in silico 

simulation of the activities of these P450s towards different classes of insecticides which predicted the 

allelic variants from the resistant populations to metabolise pyrethroids with high efficiency compared 

with the susceptible alleles. In silico predictions have been applied in several studies to predict the 

ability of insect P450s to metabolise pyrethroids and other substrates (Stevenson et al., 2011, 

Chandor-Proust et al., 2013, Schuler and Berenbaum, 2013). Validation of in silico predictions 
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confirmed that allelic variation is conferring pyrethroid-metabolising efficiency in the CYP6P9a and 

CYP6P9b alleles from resistant populations of An. funestus compared with the corresponding genes 

from FANG which has lower metabolic activities toward pyrethroid insecticide and probe substrates. 

The robustness of the in silico prediction was also strengthened by the inability of the recombinant 

proteins of these genes to metabolise non-pyrethroid insecticides, including bendiocarb, propoxur and 

DDT. These findings were further strengthened through in vivo analysis; with presence of alleles from 

resistant populations (MALCYP6P9a and MOZCYP6P9b) alone conferring pyrethroid resistance to 

transgenic D. melanogaster. This established that CYP6P9a and CYP6P9b gene products which are 

overexpressed in resistant populations of An. funestus across Africa, compared with FANG are 

specialist pyrethroid metabolising P450s. The findings of these genes especially CYP6P9b undergoing 

directional selection all across Africa is in line with the previous observations from several studies 

(Riveron et al., 2013, Wondji et al., 2012). Important polymorphisms in the resistant alleles of CYP6P9a 

and CYP6P9b were mapped to catalytic domains (active sites) of these genes with potential impact on 

activity and substrates specificity. This is an important finding that identifies markers of resistance in 

An. funestus which can allow for tracking of these pyrethroids metabolically-mediated resistance 

alleles across Africa, with special operational applications towards management of insecticides 

resistance. It also set a pace for studies of this kind to be carried out on other organisms, e.g. major 

malaria vectors (An. gambiae and An. arabiensis), dengue vector Ae. aegypti, as well filarial worm 

vector Cx. quinquefasciatus. These insects have been shown to be resistant to a wide variety of 

insecticides, and like An. funestus and the major enzyme systems which confer the resistance to them 

may possess allelic variants that need to be investigated. Markers of resistance and diagnostic tools 

can be established in these insect species helping towards implementation of well-informed resistance 

management strategy. To establish whether allelic variation in pyrethroid/insecticide resistance genes 

is multi-genic, further studies need to be carried out to find out whether allelic variants exist in the 

other overexpressed P450s from resistant populations across Africa. 
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However, the mechanism of pyrethroid resistance in An. funestus is complex and non-uniform. 

For example, allelic variation may not explain all the pyrethroid resistance, for it was not observed in 

the other major pyrethroid metabolising P450, CYP6M7 (Riveron et al., 2014a).  

Another important frontier to investigate is the role of overexpression compared with allelic 

variation in An. funestus. Which one amongst these two phenomena is more important to insecticide 

resistance?  Overexpression is obviously important for higher turnover of a particular candidate gene, 

which can make it more abundant to detoxify insecticides, but if and only if the gene product can 

metabolise the insecticide in question, then activity can be several-fold higher. Coupled with allelic 

variation through replacement of key residues, the activity can become sharpen via several 

mechanisms which can modify catalytic activity toward range of substrates, enhancing catalysis.   

5.1.2 Key Amino acid Changes Control Pyrethroid Resistance and Could Lead to DNA-based 

Diagnostic Tools  

Site-directed mutagenesis implicated three major amino acid residues in the resistant allele 

(MOZCYP6P9b) which explained high metabolic activity toward pyrethroids, especially the Type II 

class. These amino acid variants differ in their spatial positioning in the resistant allele compared with 

the corresponding residues in the allele from the susceptible strain, with different impact on 

specificity toward pyrethroids. One of these amino acids from resistant allele, a non-polar aliphatic 

residue (Val109) is a component of pw2a tunnel lining residue and involved in substrate-access 

channelling and enhanced specificity toward pyrethroid insecticides; the second residue, Asp335 is 

positioned away from the putative reductase interacting site 1 at the proximal face of the P450 from 

resistant strain reducing ionic repulsion with the negatively charged FMN residues involved in 

electrons transfer; the third residue Asn384 located within the loop joining β-1_4 with β-2_1 with 

Asn384-Arg385 position both Asn384 and Arg385 in closer proximity to the pyrethroid insecticide and heme 

catalytic centre, with the possibility of extensive hydrogen bonding, enhancing catalysis. Knocking 

down these amino acid variants into residues present in the susceptible strain (Ile109, Glu335 and Ser384) 
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resulted in drastic reduction in catalytic activity and affinity towards pyrethroids, especially Type II 

class, indicating that each of these mutations alone is important for efficient metabolism of 

pyrethroids. However, it’s thought that the presence of these three amino acids in the resistant allele 

harnessed several mechanisms to optimise catalytic efficiency, through substrate channelling, affinity, 

enhanced coupling to redox partners and maximal hydrogen bonding interactions.  

As this is the first marker of metabolic resistance to pyrethroids involving P450s in the An. 

funestus and/or even other mosquito species, DNA-based diagnostic test was sought to be created for 

these mutations to allow for tracking them in the field. However, unlike the case of  DDT-resistance 

gene  An. funestus GSTe2 (Leu119Phe substitution) recently described, and the Central and West 

African An. funestus Rdl mutation, CYP6P9a and CYP6P9b are duplicated genes; these makes it difficult 

to create a simple diagnostic test like RFLP based on polymorphic site(s).  

5.1.3 Pyrethroid Resistance is Multigenic in Field Populations of An. funestus 

Other candidate genes especially from CYP6 family (CYP6M7 and CYP6Z1) belonging to rp2 QTL, 

rp1 (CYP6AA4), rp3 (CYP9J11) and overexpressed in multiple resistant population of An. funestus from 

southern Africa were found to metabolise pyrethroids as well. This clearly established that pyrethroid 

resistance is more complex than previously thought. The finding of these pyrethroid metabolisers fits 

the presence of 3 QTLs described previously (Wondji et al., 2009). The impact of multiple genes 

involved in pyrethroid resistance added another twist to the already complex pattern and makes it 

difficult to implement resistance management based on straightforward evidences. Examples of these 

complexities include overexpression as in the case of all the genes from the three QTLs, duplication as 

in CYP6P9 and CYP6P4, allelic variation as established in CYP6P9a and CYP6P9b and yet to be 

investigated in other candidate P450s, and absence of allelic variation explaining resistance as in 

CYP6M7. Nevertheless, P450s from rp1 QTL occupy a central position in terms of pyrethroid resistance 

for two reasons: (i) the major resistance genes CYP6P9a and CYP6P9b, in addition to CYP6AA4 and 

other P450s yet to be validated are component of this QTL; (ii) CYP6P9a and CYP6P9b are the most 
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consistently overexpressed P450 genes in pyrethroid resistant populations of An. funestus across 

Africa, and (iii) The rp1 QTL (CYP6P9a and CYP6P9b) explained 87% of pyrethroid resistance in the 

FUMOZ lab strain. Thus, decisions on pyrethroid resistance management could be made based on the 

features of rp1 QTL genes than attribute of genes from the other two QTLs.  

Involvement of multiple P450s in pyrethroid metabolism is not unique to An. funestus; it has been 

described for other mosquito species including Ae. aegypti and An. gambiae (Stevenson et al., 2012, 

Edi et al., 2014). For An. funestus it remains to be known if these multiple genes are all part of the 

same pyrethroid resistance network and coordinated via the same mechanism or if they operate 

independent of one another. Future study notably metabolomics and fingerprinting can help sort this 

puzzle.  

5.1.4 CYP450 Genes Confer Cross Resistance to Bendiocarb and DDT in An. funestus 

Multiple resistances in An. funestus from southern Africa have been documented with CYPs 

involvement described through synergist assays, biochemical analysis and genome-wide transcription 

analysis. On the basis of this some of the top upregulated genes were functionally characterised to 

find out if they can metabolise non-pyrethroid insecticides. It was discovered that CYP6Z1, CYP9J11 

and to some extent CYP6AA4 are bendiocarb metabolisers, while CYP6Z1 metabolises DDT. These 

findings are of tremendous importance for it shows that the use of non-pyrethroid insecticides in 

malaria control as in IRS has great limitations. These P450s especially CYP6Z1 were found to adapt 

different mechanism of catalysis for different insecticide substrates in order to achieve optimal 

detoxification. For example, for bendiocarb and DDT the cross-resistance genes CYP6Z1 exhibited 

atypical, allosteric kinetics with distributive catalysis. This kind of allostery has also been described for 

several CYPs as a strategy to minimize the toxic effect of the toxophore like insecticides. However, the 

lower up-regulation of these cross-resistance genes (CYP6Z1, CYP9J11 and CYP6AA4) and the non-

involvement of the top upregulated candidates (CYP6P9a, CYP6P9b and CYP6M7) in metabolism of 

bendiocarb and DDT indicated that cross resistance is of secondary priority to the pyrethroid 
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resistance; at least in southern Africa. Cross-resistance P450s have been described for several insect 

species as well, including An. gambiae and D. melanogaster (Mitchell et al., 2012, Daborn et al., 2007).  

5.2 Conclusion 

Drawing from the findings accrued on the course of this study, the following conclusions could be 

made: (i) the duplicated P450s CYP6P9a and CYP6P9b are the major pyrethroid resistance genes in An. 

funestus across Africa; (ii) the two genes differ extensively in their active site topology and 

composition and these differences are responsible for the variation observed in their metabolic 

profiles; (iii) allelic variation in these genes is impacting their pyrethroid-metabolizing capability, with 

specific mutations selected and fixed in resistant populations, able to confer high activity towards 

pyrethroids; (iv) the genes CYP6P9a and CYP6P9b cannot metabolise representative carbamate 

(bendiocarb and propoxur), organochlorine (DDT) and organophosphate (malathion) insecticides; the 

genes are directionally selected specialist enzymes involvedin pyrethroid metabolism. This makes it 

possible to use non-pyrethroid insecticide as alternative insecticides, for IRS, even when CYP6P9a and 

CYP6P9b are overexpressed in An. funestus, although other P450s should be taken into consideration; 

(v) the highly polymorphic CYP6M7 gene, also a pyrethroid metabolizer, and suspected to sequester 

propoxur (though evidences are not conclusive) partners with CYP6P9a and CYP6P9b to confer 

pyrethroid resistance across southern Africa; (vi) other candidate genes, overexpressed in An. 

funestus, including CYP6Z1, CYP6AA4 and CYP9J11 metabolises pyrethroid insecticides as well, making 

the resistance multi-genic; (vii) these second group of genes especially CYP6Z1 confer cross-resistance 

to bendiocarb and DDT in the multiple resistant An. funestus populations from southern Africa, where 

other important non-monooxygenase mechanisms like Leu119Phe GSTe2 mutation is absent; (vii) the 

finding of cross-resistance genes make pyrethroid resistance phenomena in the major malaria vector, 

An. funestus more complex confounding the problem of resistance management.  
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5.3  Future Perspectives  

The results obtained on the course of this research are in no way exhaustive within the 

context of monooxygenase-mediated resistance mechanism. Overexpression of the protein of the 

detoxification gene can be due to changes at transcriptional level, e.g. higher constitutive production 

of transcripts, due to mutation in promoter sequences, higher inducible expression due to mutations 

in the trans-acting factors or greater responsiveness to transcriptional inducers. This is a frontier that 

needs to be explored in An. funestus detoxification genes, especially in CYP6P9a and CYP6P9b in order 

to elucidate what, why and how these genes are switched on and off in relation to the environmental 

response. Factors responsible for cis- or trans-regulation of P450s involved in detoxification may also 

be capable of regulating expression of other P450s that are not necessarily involved in the said 

resistance (this has been shown to be the case in housefly). Knowing which subsets of P450s are 

elevated by the same regulatory factors may help to elucidate cross-resistance phenomena.  

Herein, we studied mutations at the protein level which can impact on metabolism, e.g. 

mutations at the catalytic sites that may affect range (qualitative) or rate (quantitative) of substrate 

metabolism, and mutations in the proximal surface residues that may affect electron transfer from 

cytochrome P450 reductase and/or cytochrome b5.  

Throughout this research we adopted as surrogates electron transfer partners (cytochrome 

P450 reductase and cytochrome b5) from An. gambiae. It is possible that the interaction of An. 

funestus-specific electron transfer partners may affect the qualitative and quantitative activity of its 

CYP450s. Potential mutations in such partners may also possibly alter their coupling with the 

respective An. funestus CYP450s. 

The whole picture of the resistance phenomena can only be obtained using metabolomics 

studies. There is an overwhelming need to find out which subsets of genes are switched on and/or off 

in response to insecticide exposure, and which intermediates and products are generated from 
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insecticide metabolisms. These could be achieved using targeted transcriptomics, proteomics and 

MS/MS.  LC/MS could also be utilised to identify the metabolites generated by these P450s, and this 

could help in piecing together the pyrethroid resistance network.  

Modelling simulation has great shortcoming, there is an urgent need to create a crystal 

structure of the P450s involved in pyrethroids metabolism with the insecticides in its active site. This 

will greatly facilitate our understanding of the mechanism of action of these P450s, as well as help in 

design and production of potential synergists that could be used in combination with the insecticide to 

block the resistance P450s.  

Successful site-directed mutagenesis of resistant allele of CYP6P9a could potentially reveal the 

identity of the amino acids responsible for the ability of this gene to metabolize wide range of Type I 

and Type II pyrethroids. This is important, for the amino acid substitutions that could potentially 

impact on catalytic activity of CYP6P9a mapped to different domains of the P450 compared with those 

mutations characterised for CYP6P9b.  

CYP6P9a and CYP6P9b are duplicated genes, a phenomenon which makes it challenging to 

design an easy DNA-based diagnostics, such as PCR-RFLP. More efforts are needed to achieve this goal 

in order to track CYP6P9a and CYP6P9b mutations in the field population of An. funestus across Africa.  
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APPENDIX 2.1 

A: Maximum likelihood tree of An. funestus CYP6P9a and CYP6P9b; B: 

Python scripts used for model building. 
 

 

 A: Maximum likelihood tree of An.  funestus CYP6P9a (i) and CYP6P9b (ii) cDNA across Africa showing clades 
relationship. A number is given to each haplotype preceded by BEN, MAL, MOZ, UGA or FANG if it is unique to BENIN, MALAWI, 

MOZAMBIQUE, UGANDA or FANG  strains, respectively. 

 

(B) Python script used to build models using the MODELLER 9v2.0 

from modeller import *    # Load the automodel class 

from modeller.automodel import *  

log.verbose()    # request verbose output 

env = environ()  # create a new MODELLER environment to build this model in 

env.io.atom_files_directory = '/directory/folder/subfolder' 

env.io.hetatm = True 

a = automodel(env, 

              alnfile  = '/directory/folder/subfolder/alignment.ali',  

              knowns   = ( '1TQN' ), # codes of the templates 

              sequence = 'SEQUENCE NAME' 

       )              # code of the target 

a.starting_model= 1                 # index of the first model  

a.ending_model  = 50               # index of the last model 

a.make()                            # do the actual homology modelling  
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APPENDIX 2.2 

Errat profiles of CYP6P9a and CYP6P9b models and CYP3A4 (PDB:1TQN) 
Serial Number Model Name Overall Quality Factor (%) 

1 BENCYP6P9a.pdb 55.876 

2 FANGCYP6P9a.pdb 52.731 

3 MALCYP6P9a.pdb 51.527 

4 MOZCYP6P9a.pdb 51.527 

5 ZMBCYP6P9a.pdb 55.441 

6 UGANCYP6P9a.pdb 52.749 

7 BENCYP6P9b.pdb 55.072 

8 FANGCYP6P9b.pdb 59.175 

9 MALCYP6P9b.pdb 55.230 

10 MOZCYP6P9b.pdb 55.464 

11 ZMBCYP6P9b.pdb 53.992 

12 UGANCYP6P9b.pdb 62.134 

13 CYP3A4 (1TQN.pdb) 93.696 
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APPENDIX 2. 3 

Transmembrane domain prediction for CYP6P9a using DAS 
(a) Potential transmembrane segments of CYP6P9a protein sequence 

Start Stop Length ~ Cutoff 
6 20 15 ~ 2.2 
6 21 16 ~ 1.7 
80 89 10 ~ 1.7 
84 86 3 ~ 2.2 
186 187 2 ~ 1.7 
217 228 12 ~ 1.7 
219 226 8 ~ 2.2 
307 315 9 ~ 1.7 
309 313 5 ~ 2.2 
466 471 6 ~ 1.7 
495 498 4 ~ 1.7 
 
The 2.2 strict cut off is informative score in terms of matching segment while the loose score of 1.7 gives the 
actual location of the transmembrane segment. 
 
 

(b) DAS plot of transmembrane domains of CYP6P9a protein sequence 
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APPENDIX 2.4 

Transmembrane domain prediction for CYP6P9b using DAS 
(a) Potential transmembrane segments of CYP6P9b protein sequence 

Start Stop Length ~ Cutoff 
6 21 16 ~ 1.7 
7 20 14 ~ 2.2 
79 89 11 ~ 1.7 
81 86 6 ~ 2.2 
186 187 2 ~ 1.7 
218 228 11 ~ 1.7 
219 225 7 ~ 2.2 
305 315 11 ~ 1.7 
308 314 7 ~ 2.2 
466 471 6 ~ 1.7 
 
The 2.2 strict cut off is informative score in terms of matching segment while the loose score of 1.7 gives the 
actual location of the transmembrane segment. 
 
 

(b) DAS plot of transmembrane domains of CYP6P9b protein sequence 
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APPENDIX 2.5 

Binding modes of etofenprox in 1.0 CYP6P9a and 2.0 CYP6P9b models. 

 

 

 

 

 

1.0 Binding modes of etofenprox in (A) BENIN, (B) UGANDA, (C) FANG and (D) MALAWI 

CYP6P9a models. Etofenprox is in stick format and blue colour. Heme atoms are in stick and 

spectrum. Possible sites of metabolism are indicated with yellow arrows.  

 

2.0 Binding modes of etofenprox in (A) BENIN, (B) UGANDA, (C) FANG and (D) 

MOZAMBIQUE CYP6P9b models. Etofenprox is in stick format and green. Heme atoms 

are in stick format and spectrum.  
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APPENDIX 2.6 

 Binding modes of DDT in 1.0 CYP6P9a and 2.0 CYP6P9b models. 

 

 

 

 

 

 

 

1.0 Binding modes of DDT in (A) BENIN, (B) UGANDA, (C) FANG and (D) MALAWI 

CYP6P9a models. DDT is in line format and purple. Heme atoms are in green. C-2 is indicated 

with yellow arrow. 

 

2.0 Binding modes of DDT in (A) BENIN, (B) UGANDA, (C) FANG and (D) MOZAMBIQUE 

CYP6P9b models.  DDT is in line format and violet. Heme atoms are in green. C-2 is indicated 

with yellow arrow. 
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APPENDIX 2.7 

Binding modes of bendiocarb in 1.0 CYP6P9a and 2.0 CYP6P9b models. 

 

 

 

 

 

 

1.0 Binding modes of bendiocarb in (A) BENIN, (B) UGANDA, (C) FANG and (D) MALAWI 

CYP6P9a models.  Bendiocarb is in line format and purple. Heme atoms are in green. Probable 

sites of metabolism are indicated with yellow arrow. 

 

2.0 Binding modes of bendiocarb in (A) BENIN, (B) UGANDA, (C) FANG and (D) MOZAMBIQUE 

CYP6P9b models. Bendiocarb is in line format and purple. Heme atoms are in green. Probable sites 

of metabolism are indicated with yellow arrow. 
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APPENDIX 2.8 

Haplotype Diversity and Nucleotide Variations of CYP6P9a cDNA Sequences Across Africa. 

 

 

 

 

 
 

 

Schematic representation of CYP6P9a haplotypes for the coding region among resistant and 
susceptible mosquitoes. FANG is highlighted in red. Polymorphic positions are indicated by numbers 

above the nucleotides and the haplotypes identity reflected with a number in front of the country it belongs. 
MAL = MALAWI, MOZ = MOZAMBIQUE, ZMB = ZAMBIA, UGAN = UGANDA, BEN = BENIN. 
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APPENDIX 2.9  

Haplotype Diversity and Nucleotide Variations of CYP6P9b cDNA Sequences 

Across Africa. 

 

 

 

 

 

 

 
 

Schematic representation of CYP6P9b haplotypes for the coding region among resistant and 
susceptible mosquitoes. FANG is highlighted in red. Polymorphic positions are indicated by numbers 

above the nucleotides and the haplotypes identity with a number in front of the country it belongs.  
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APPENDIX 3.1 

Preparation of CYP450 Expressing Bacterial Membranes 
 

MATERIALS 

 50 mgl/ml ampicillin in water (filter-sterilized and stored in aliquots at -20ºC). 

 34 mg/ml chloramphenicol in ethanol (if expressing P450 reductase as well: co-

transformation). 

 2 X Tris-Sucrose –EDTA (TSE) buffer: 0.1M Tris-acetate at pH 7.6 with 0.5M sucrose and 0.5mM 

EDTA-filter-sterilize and store at 4ºC. 1X TSE is equivalent quantity of 2X TSE + equivalent 

quantity of distilled water. 

 Spheroplast Resuspension (SR) buffer: 0.1M potassium phosphate at pH 7.6, 6mM magnesium 

acetate and 20% (v/v) glycerol-filter-sterilized. Add dithiothreitol immediately before use for a 

final concentration of 0.1mM using a 100mM filter-sterilized stock solution stored in aliquots 

at -20ºC. 

CULTURES FOR P450 EXPRESSION 

1. Transform JM109 cells with the plasmid that express the P450 and the plasmid which express 

the P450 reductase. You need to have fresh LB+AMP+Chloramphenicol plates.  

2. Pick a single colony from the transformation and inoculate 3ml of LB with antibiotics (50μg/ml 

ampicillin and 34μg/ml chloramphenicol). 

3. Incubate this culture overnight (16 hours) at 37ºC with 150-200 rpm shaking. 

4. Use 2 ml of the overnight culture to inoculate 200ml of Terrific Broth in a 1L flask. The media 

should be pre-warmed to 37ºC, to avoid shocking cells, and include antibiotics as for the 

overnight culture.  

5. Incubate the culture at 37ºC with 200 rpm shaking. 

6. Monitor the absorption at of the culture at 595-600 nm (plate reader) and when this value has 

reached about 0.7-0.8, after ~4 hours, transfer the culture to a 21 or 25ºC incubator and 

continue with 150 rpm shaking. 

7. After 30 min at 21/25ºC (allowing for the culture to cool) add IPTG for a final concentration of 

1mM and ALA for 0.5mM (16,759 mg ALA and 47,66 mg IPTG). 

8. Continue incubating at 25ºC until the culture is ready for harvesting.  
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Note: several variables can be optimised for P450 expression: incubation time, incubation 

temperature, induction time (adding IPTG/ALA), and IPTG or ALA concentration. Cultures should be 

monitored daily for P450/P420 production using CO difference spectra. Some P450 require only 1 day 

at 25ºC whereas others need 3-4 days.  

SPHEROPLAST PREPARATION  

1. Pour the 200 ml bacterial culture into a 250 ml centrifuge bottle. Chill the bottles on ice for at 

least 10 minutes while checking and preparing the centrifuge and rotor. Centrifuge the 

cultures at 2800 x g for 20 minutes at 4ºC. 

2. Discard the supernatant and retain the pellet 

3. Re-suspend the cell pellets in 20 ml of 1x TSE with a 25ml transfer pipette while keeping the 

bottles on ice (use automatic machine for the pipetting). 

4. Add 10 ml dH20 and mix and mix again (on ice) 

5. Prepare a solution of 20mg/mL lysozyme in dH20 and store on ice. Add 250μl of this lysozyme 

solution to give 0.25 mg/mL lysozyme in 20 ml of cell suspension. 

6. Pipette the mix into 50ml Nalgene centrifuge tube (already chilled on ice) 

7. Keep the centrifuge bottles in a polystyrene container with ice, and place the container on a 

rocking platform to allow gentle mixing for 60 minutes while the cell walls are degraded to 

allow spheroplast to form.  

8. Load the 50mL bottles into the JA 25.50 rotor (Beckman) and centrifuge at 2800xg for 25 

minutes at 4ºC. Discard supernatant and retain pellet. 

9. Add 8mL of spheroplast re-suspension buffer and 8μl of 0.1M DTT. 

10. Proceed to the next step  or  store the spheroplast in -80 ºC 

FROM SPHEROPLASTS TO MEMBRANES 

1. Remove the spheroplast from -80ºC   and thaw it on ice. Add the following items to 8 mL of 

spheroplasts: 

a. 40 μl of 0.2 M PMSF (dissolved in ethanol and usually stored in the freezer) 

b. 0.8 μl of 10 mg/mL aprotinin (make aliquots and keep in freezer and use each aliquot 

only once.  

c. 0.8 μl of 10 mg/mL leupeptin ( usually stored in the freezer) 

2. Sonicate the suspension three times for 30 seconds with the sonicator (30 seconds on and 30 

seconds off/intervals) at about 70% power (this may need optimising) and tip should be kept 

submerged in the suspension to avoid frothing. Keep the sample on ice between the bursts of 
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sonication. The sample will initially become viscous during sonication as DNA is released, but 

this viscosity should drop as the DNA is sheared by the sonication.  

3. Dry and balance the weight of the tubes with dH20. 

4.  Load the 50 ml Nalgene tube with the sonicated sample into the JA 25.50 rotor (Beckman 

Avanti TM JM 25) along with a balance tube (+/-0.01g). Centrifuge at 30,000 x g for 20 minutes 

at 4ºC. 

5. Transfer the supernatant to a 26.3 ml ultracentrifuge bottles (transparent) on ice. Theses 

bottles must not be centrifuged when less than half full, can only be used up to 50000 rpm 

when over half full, and can only be centrifuged at their maximum rate, 60000 rpm, when full. 

Therefore, add 8 ml of ice-cold water to the 8 ml sample and make sure the bottles are not full 

to the neck. Prepare a balanced tube (+/-0.005 g) with ice-cold water. 

6. Dry and load the balanced ultracentrifuge bottles in the 70Ti rotor and centrifuge at 49600 

rpm (180000 x g), for 1 hour at 4ºC.   

7. Remove the tubes and discard the supernatant using a transfer pipette. The membranes 

should appear as a translucent red-brown pellet. Transfer the majority of this pellet to a 1mL 

Dounce homogeniser on ice using a glass Pasteur pipette to lightly scrape the pellet. Avoid 

blocking up the pipette with the membrane pellet by using the side of the tip to scrape and 

transfer bits of the pellet into the Dounce homogeniser. Once most of the pellet has been 

transferred, add 0.5 ml of ice-cold 1 X TSE buffer and 0.5ml of water and use the same Pasteur 

pipette to re-suspend the remaining pellet and transfer this to the Dounce homogeniser. Load 

the liquid from the bottom of the homogeniser to avoid bubbles.  Alternatively, 250uL of both 

1X TSE and 250uL of ddH20 should be used and then later the same amounts to wash the 

homogeniser and transfer the contents into the Eppendorf. 

8. Aliquot the homogenised membrane into small plastic tubes (100-200μl) and store at -80ºC. 
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APPENDIX 3.2 

CYP450s concentration, total protein and CPR activity of recombinant CYP6P9a 

and CYP6P9b 

  

n: Number of independent membranes expressed; P450 Yield: nmol/ml; CPR Activity: nmol of cytochrome c 

reduced/minutes/mg protein; Total protein: mg/ml.  

 

 

 

 
 

 

 

 

 

 

 

Recombinant Proteins n  P450 Yield Std Dev  CPR Activity Std Dev Total Protein Std Dev 

BENCYP6P9a 2 14.70 1.36 119.6 20.01 16.30 1.56 

UGANCYP6P9a 2 12.77 2.62 163.1 21.98 15.79 1.58 

FANGCYP6P9a 2 16.28 3.54 156.1 17.03 16.56 0.93 

MALCYP6P9a 2 13.79 1.41 151.0 18.88 19.49 1.74 

MOZCYP6P9a 3 7.24 0.59 157.0 20.65 17.62 0.70 

ZMBCYP6P9a 1 4.35 0.00 N.D. N.D. N.D. N.D. 

BENCYP6P9b 2 10.88 3.50 154.2 23.71 27.72 3.23 

UGANCYP6P9b 2 12.02 11.29 154.3 12.74 26.14 1.89 

FANGCYP6P9b 2 11.16 3.20 168.9 18.60 24.54 1.95 

MALCYP6P9b 2 7.40 2.13 161.5 16.48 21.08 1.69 

MOZCYP6P9b 4 7.59 2.13 205.3 19.19 21.17 3.17 

ZMBCYP6P9b 1 7.05 0 N.D. N.D. N.D. N.D. 
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APPENDIX 3.3 

Excitation and Emission wavelength of fluorescent probe substrates 
 

S/No Probe Substrate Excitation 

Wavelength (nm) 

Emission 

Wavelength (nm) 

1 7-ethoxyresorufin (ER) 544 590 

2 Benzyloxyresorufin (BR) 544 590 

3 Methoxyresorufin (MR) 544 590 

4 Pentoxyresorufin (PR)  544 590 

5 7-ethoxy-4-trifloromethyl-coumarin (EFC) 410 535 

6 7-methoxy-4-trifloromethyl-coumarin (MFC) 410 535 

7 Diethoxyfluorescein (DEF) 485 530 
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APPENDIX 3.4 

Time-course for CYP6P9a and CYP6P9b dealkylation of diethoxyfluorescein 
 

 

 

 

 

 

 

 

 

 

 

Time course for diethoxyfluorescein metabolism. Panel A: BENCYP6P9a; panel B: MALCYP6P9a; panel 

C: MOZCYP6P9b and panel D: UGANCY6P9b. Blue line: 90pmol; red line: 30pmol; yellow line: 10pmol and 

purple lines: 3.33pmol. 
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APPENDIX 3.5 

Summary of IC50 by time for insecticides with recombinant CYP6P9a and 

CYP6P9b 
      Time (min) 
 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5 18.0 19.5 21.0 22.5 24.0 25.5 

MOZCYP6P9b 

Miconazole 0.028 0.025 0.023 0.022 0.022 0.021 0.021 0.020 0.020 0.021 0.022 0.021 0.023 0.024 

Cypermethrin 0.080 0.089 0.093 0.100 0.110 0.110 0.140 0.150 0.160 0.180 0.190 0.20 0.230 0.270 

Cyhalothrin 0.080 0.096 0.100 0.110 0.120 0.130 0.150 0.170 0.180 0.230 0.250 0.270 0.300 0.300 

Chlorpyrifos 0.690 0.810 0.920 0.970 0.950 1.100 1.200 1.300 1.400 1.500 1.600 1.600 1.800 1.800 

Bendiocarb >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 

Bifenthrin 1.800 2.200 2.400 2.400 2.300 2.400 2.500 2.500 2.700 2.900 2.900 2.800 3.000 3.000 

Etofenprox 0.360 0.460 0.560 0.600 0.670 0.720 0.750 0.760 0.830 0.920 0.970 1.000 1.100 1.100 

Propoxur >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 

Deltamethrin 0.065 0.079 0.090 0.100 0.120 0.130 0.150 0.170 0.190 0.210 0.230 0.240 0.280 0.300 

4,4ʹ-DDT 7.100 8.200 9.400 11.00 11.00 13.00 15.00 11.00 8.400 8.000 8.400 9.800 13.00 24.00 

Permethrin 2.400 2.500 2.500 2.500 2.400 2.300 2.500 2.60 2.600 2.800 2.800 2.600 2.700 3.000 

UGANCYP6P9b 

Miconazole 0.020 0.020 0.020 0.020 0.021 0.021 0.021 0.023 0.022 0.022 0.022 0.021 0.020 0.020 

Cypermethrin 0.110 0.120 0.130 0.140 0.160 0.180 0.200 0.230 0.250 0.280 0.280 0.280 0.310 0.310 

Cyhalothrin 0.120 0.130 0.140 0.160 0.170 0.180 0.200 0.220 0.220 0.240 0.250 0.250 0.260 0.260 

Chlorpyrifos 1.100 1.200 1.200 1.200 1.300 1.400 1.700 1.800 2.000 2.000 2.100 2.100 2.000 2.200 

Bendiocarb >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 

Bifenthrin 3.200 3.100 2.400 2.500 2.800 3.000 4.000 4.000 3.800 3.700 3.900 3.900 4.100 3.900 

Etofenprox 0.710 0.750 0.810 0.860 0.760 0.850 0.920 1.100 1.100 1.300 1.400 1.500 1.500 1.400 

Propoxur >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 

Deltamethrin 0.120 0.120 0.130 0.150 0.170 0.210 0.210 0.220 0.240 0.270 0.290 0.270 0.280 0.290 

4,4ʹ-DDT >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 

Permethrin 3.000 3.000 2.800 2.700 2.800 3.000 3.000 3.100 3.100 3.000 3.000 3.200 3.400 3.600 

MALCYP6P9a 

Miconazole 0.013 0.021 0.013 0.023 0.029 0.011 0.026 0.013 0.025 0.022 0.017 0.018 0.013 0.016 

Cypermethrin 0.024 0.066 0.140 0.110 0.140 0.150 0.190 0.160 0.091 0.160 0.170 0.130 0.280 0.330 

Cyhalothrin 0.087 0.140 0.160 0.097 0.130 0.360 0.550 0.460 0.270 0.170 0.150 0.240 0.350 0.410 

Chlorpyrifos 0.670 0.250 1.600 3.700 4.400 1.500 2.700 1.700 2.500 3.600 2.200 1.700 1.200 3.000 

Bendiocarb >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 
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Bifenthrin 0.230 0.320 0.820 1.500 2.100 1.300 2.000 1.300 1.800 1.200 1.700 0.490 1.000 1.600 

Etofenprox 0.330 0.420 0.660 1.400 1.200 1.700 2.300 2.500 3.000 2.700 2.000 1.600 0.800 2.500 

Propoxur >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 

Deltamethrin 0.05 0.040 0.063 0.099 0.140 0.380 0.520 0.880 1.000 1.100 0.680 0.400 0.310 0.210 

4,4ʹ-DDT 0.450 2.500 >25 >25 >25 >25 >25 >25 20.00 6.600 6.800 8.700 9.300 >25 

Permethrin 2.200 2.800 3.800 6.700 4.200 4.000 5.800 4.900 7.400 3.600 6.800 4.200 4.000 4.600 

BENCYP6P9a 

Miconazole 0.023 0.024 0.021 0.021 0.019 0.023 0.022 0.024 0.024 0.024 0.029 0.026 0.023 0.029 

Cypermethrin 0.064 0.099 0.130 0.140 0.150 0.160 0.160 0.130 0.180 0.210 0.230 0.260 0.270 0.330 

Cyhalothrin 0.097 0.110 0.150 0.160 0.160 0.150 0.160 0.230 0.280 0.320 0.320 0.290 0.220 0.230 

Chlorpyrifos 1.400 1.700 2.100 2.300 2.100 2.300 3.800 3.800 3.800 3.500 3.600 3.100 2.500 3.100 

Bendiocarb >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 

Bifenthrin 1.200 2.000 2.000 2.000 2.400 2.300 3.900 3.600 4.400 3.600 3.500 3.700 3.000 3.500 

Etofenprox 0.850 1.100 1.300 1.500 1.900 2.400 2.500 2.700 3.000 3.000 2.500 2.200 2.300 2.300 

Propoxur >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 >25 

Deltamethrin 0.085 0.130 0.180 0.230 0.290 0.380 0.470 0.530 0.670 0.530 0.360 0.460 0.380 0.430 

4,4ʹ-DDT 0.540 0.650 0.800 0.830 1.200 5.900 10.00 7.100 4.700 3.700 23.00 14.00 15.00 22.00 

Permethrin 3.100 4.200 4.700 4.100 3.500 3.400 3.600 3.400 3.700 5.000 4.500 3.800 4.500 4.900 
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APPENDIX 3.6 

Kinetic Parameters of CYP6P9b Mutants Recombinant Proteins With DEF and 

Pyrethroids 
 

(A): 
 

Table 1: Kinetic Constants for mutant CYP6P9b-mediated metabolism of DEF 
Recombinant Proteins Kcat (min-1) KM  (µM) Kcat/KM  (min-1 µM-1) 

Val109IleCYP6P9b 7.32±0.13*** 0.10±0.007 72.47±5.18$$ 

Asp335GluCYP6P9b 21.82±3.13** 0.23±0.10† 94.86±43.43$$ 

Asn384SerCYP6P9b 5.46±0.32*** 0.10±0.023 54.05±12.71$$ 

Pro401AlaCYP6P9b 88.32±7.57 0.25±0.07† 353.28±103.44$ 

MOZCYP6P9b 103.4±5.86 0.13±0.003 820.63±49.72 

Values are as mean ± S.E.M. of three independent replicates 
Apparent Kcat given as disappearance of pmol DEF/min/pmol P450. Catalytic efficiency was calculated as Kcat/KM 
** and *** statistically significant Kcat values at p<0.01 and p<0.001 respectively compared with MOZCYP6P9b 
$
 and 

$$
 statistically significant Kcat values at p<0.05 and p<0.01 respectively compared with MOZCYP6P9b 

 
 

(B): 

 
Table 2: Percentage depletion of pyrethroid insecticides by mutant CYP6P9b recombinant proteins 

Recombinant Proteins Deltamethrin Permethrin 

Val109IleCYP6P9b 17.88±1.00** 46.03±1.43* 
Asp335GluCYP6P9b 4.15±1.41*** 35.65±1.55* 
Asn384SerCYP6P9b 18.15±0.42** 18.33±0.63** 
Pro401AlaCYP6P9b 81.25±0.17 80.45±0.28 

MOZCYP6P9b 92.04±0.34 82.59±3.15 
Values are mean ± S.D. of three replicates compared with negative control (-NADPH);  
* and ** and ***Significantly different from FANGCYP6P9a or FANGCYP6Pb at p<0.05, p<0.01 or p<0.001, respectively.  

 
 
(C) Table 3: Kinetic constants for mutant CYP6P9b-mediated permethrin metabolism  
Recombinant Proteins Kcat (min

-1
) KM  (µM) Kcat/KM (min

-1
 µM

-1
) 

Val
109

Ile_CYP6P9b 1.35±0.57** 20.5±1.35
†
 0.06±0.03

$$$
 

Asp
335

Glu_CYP6P9b 0.98±0.12*** 5.19±1.89
†
 0.19±0.07

$$
 

Asn
384

Ser_CYP6P9b 0.87±0.08*** 17.85±0.87
†
 0.04±0.005

$$$
 

Pro
401

Ala_CYP6P9b 4.21±0.96* 15.38±6.50 0.27±0.13
$
 

MOZCYP6P9b(Wild Type) 7.902±0.83 10.33±2.38 0.76±0.19 

Values are as mean ± S.E.M. of three independent replicates. Significantly different from negative control  (-NADPH). 
 *, ** and *** Kcat significantly different  from MOZCYP6P9b at p<0.05, 0.01 and 0.001, respectively.  
†
KM significantly different  from MOZCYP6P9b at p<0.05. 

$
, 

$$
 and 

$$$
 Catalytic efficiency significantly different  from MOZCYP6P9b at p<0.05, 0.01 and 0.001, respectively. 
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APPENDIX 4.1 

Kinetic Constants of Recombinant P450s CYP6M7, CYP6Z1, CYP9J11 and 

CYP6AA4 With Pyrethroids, Bendiocarb and DDT 
 

A. Kinetic Constants for Recombinant CYP6M7, CYP6Z1, CYP9J11 and CYP6AA4 Metabolism of  
Permethrin and Deltamethrin 

Recombinant Proteins Kcat (min
-1

) KM  (µM) Kcat/KM (min
-1

 µM
-1

) 

  Permethrin  

CYP6M7 6.06±0.24
 

13.81±7.08
 

0.45±0.03 

CYP6Z1 1.90±0.08 4.37±0.62
 

0.44±0.06 

CYP9J11 5.39±0.69 31.04±5.79 0.17±0.04 

CYP6AA4 11.99±2.17 33.62±9.18
 

0.36±0.12 

  Deltamethrin  

CYP6M7 7.04±0.24
 

19.64±10.65 0.36±0.04 

CYP6Z1 1.74±0.07 2.89±0.52
 

0.60±0.11 

CYP9J11 1.94±0.45
 

6.08±2.01 0.32±0.13 

CYP6AA4 15.65±2.64
 

30.01±7.92 0.52±0.16 

Values are  mean ±S.D. of three  replicates 
Apparent Kcat was calculated as pmol/min/pmol P450; Catalytic efficiency was calculated as Kcat/KM 

 
B. Kinetic Constants for Recombinant CYP6Z1 and CYP9J11 Metabolism of  Bendiocarb and DDT 

Recombinant 

Proteins 
Vmax (min

-1
) Khalf  (µM) h Vmax/Khalf (min

-1
 µM

-1
) 

  Bendiocarb   

CYP6Z1 0.46±0.009
 

6.22±0.17
 

5.82 0.074±0.0025 

CYP9J11 0.53±0.044 8.30±0.83
 

2.29 0.06±0.0084 

  DDT   

CYP6Z1 101.7±25.5 13.38±2.99
 

2.60 7.60±2.55 

 

C. Kinetic Constants for Recombinant CYP6Z1 Metabolism of DEF, RBE and RME  
Recombinant Proteins Kcat (min

-1
) KM  (µM) Kcat/KM (min

-1
 µM

-1
) 

Diethoxyfluorescein (DEF) 390.3±21.21
 

0.13±0.03
 

2983.94±630.32 

Resorufin benzylether (RBE) 980.2±32.27 1.99±0.11
 

491.57±32.43 

Resorufin methylether (RME) 395.7±19.90 0.19±0.03 2056.65±367.63 
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APPENDIX 4.2 

Binding parameters of the productive mode of permethrin, deltamethrin and 

bendiocarb docked to the active sites of CYP6Z1 model 
 

 Rank ChemScore 
(kJ/mol) 

ΔG 
(kJ/mol) 

S(hbond) S(metal) S(lipo) ΔE(clash) 

Permethrin 2
nd

   39.19 -41.12 1.00 0.00 307.87 0.22 
Deltamethrin 3

rd
  36.14 -37.15 0.97 0.00 278.77 0.01 

Bendiocarb 1
st

  24.69 -24.32 1.93 0.00 135.46 0.07 
DDT 1

st
  36.81 -38.01 0.00 0.00 299.93 0.91 
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