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Abstract

Optimization techniques are widely applied in various engineering areas, such as model-

ing, identification, optimization, prediction, forecasting and control of complex systems.

This thesis presents the novel optimization methods that are used to control Photo-

voltaic (PV) generation systems.

PV power systems are electrical power systems energized by PV modules or cells.

This thesis starts with the introduction of PV modeling methods, on which our re-

search is based. Parameter estimation is used to extract the parameters of the PV

models characterizing the utilized PV devices. To improve efficiency and accuracy,

we proposed sequential Cuckoo Search (CS) and Parallel Particle Swarm Optimization

(PPSO) methods to extract the parameters for different PV electrical models. Simu-

lation results show the CS has a faster convergence rate than the traditional Genetic

Algorithm (GA), Pattern Search (PS) and Particle Swarm Optimization (PSO) in se-

quential processing. The PPSO, with an accurate estimation capability, can reduce at

least 50% of the elapsed time for an Intel i7 quad-core processor.

A major challenge in the utilization of PV generation is posed by its non linear

Current-Voltage (I-V ) relations, which result in the unique Maximum Power Point

(MPP) varying with different atmospheric conditions. Maximum Power Point Tracking

(MPPT) is a technique employed to gain maximum power available from PV devices.

It tracks operating voltage corresponding to the MPP and constrains the operating

point at the MPP. A novel model-based two-stage MPPT strategy is proposed in this

thesis to combine the offline maximum power point estimation using the Weightless

Swarm Algorithm (WSA) with an online Adaptive Perturb & Observe (APO) method.

In addition, an Approximate Single Diode Model (ASDM) is developed for the fast

evaluations of the output power. The feasibility of the proposed method is verified

in an MPPT system implemented with a Single-Ended Primary-Inductor Converter

(SEPIC). Simulation results show the proposed MPPT method is capable of locating

v



the operating point to the MPP under various environmental conditions.
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Chapter 1

Introduction

This chapter first presents the background and motivation of the thesis work, which is

followed by this project’s aims and objectives. We highlight the main contributions on

the topic of the application of artificial intelligence algorithms to parameter estimation

and maximum power point tracking methods. A conclusion and future work of the

thesis are provided at the end of the chapter.

1.1 Background

In 1839, a French experimental physicist Edmund Becquerel discovered the creation of a

weak electrical current when exposing certain materials to sunlight [1,2]. He named this

phenomenon the “Photovoltaic (PV) effect”. Owing to the growing worldwide demand

for electricity and increasing urgent need to tackle the global challenges of energy

security, climate change and sustainable development, significant amount of research

effort has been made on developing PV cells, which are basically semiconductors capable

of converting the energy of light directly into electricity by the PV effect. Since the

output power of PV cells is limited at high voltage levels, PV module, a connected

assembly of PV cells, is usually used as an elementary component in large PV systems.

Today’s PV technologies are more sophisticated than ever. A variety of silicon (Si)

materials have been explored to increase the energy conversion efficiency and reduce

production cost. The commercially available PV technologies can be grouped into two

categories: wafer-based Crystalline Silicon (C-Si) and Thin-Flim (TF). The conversion

efficiency of C-Si made PV modules is around 13-20%, while the conversion efficiency

of TF made PV modules is around 6-12 % [3]. TF technologies use small amounts of
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active materials and can be manufactured at a lower cost than the C-Si [4]. Recently,

many emerging and novel PV technologies, such as Concentrating Photovoltaics (CPV),

organic solar cells, advanced inorganic thin-films, Thermo-Photovoltaics (TPV), are

already under investigation.

PV markets expand with advances of PV technologies. In light of the IEA-PVPS

1 report, the global PV market grew to at least 36.9 gigawatt (GW) in 2013 [3, 5]. As

seen in Figure 1.1, the annual installed capacity has kept increasing over the last decade

(from 2003 to 2013).

Figure 1.1: Evolution of annual PV installations.

Despite governmental incentives and technological advances, current PV deploy-

ment cost cannot compete with the initial installed cost of fossil sources of electrical

generation in most cases [2]. This motivates the research for maximizing possible power

generation from the PV plants over the entire time of operation as well as developing

performance estimation tools.

1.2 Motivation

PV power generation not only can help power producers meet the future energy needs,

but also can do so without producing much noise, toxic-gas emissions, or greenhouse

gases [6].

1The International Energy Agency (IEA) is an autonomous organization working on energy research,
forecasts, publications and statistics. Their photovoltaic power systems program is named the IEA-
Photovoltaic Power Systems (IEA-PVPS) program.
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From the point of view of power electronics, one goal can be addressed by maximiz-

ing the energy output of a given PV device. However, due to the varying atmospheric

conditions, namely temperature T and irradiance G, the output power of a typical PV

cell or module changes as a function of its operating point [7–10]. In addition, the entire

or a part of the PV system might be wholly or partly shaded by trees, passing clouds,

high building, etc., which are called partial shading conditions. Under these conditions,

the power-voltage (P -V ) characteristics of the system display multiple peaks (only one

of which is the Global Maximum Power Point (GMPP); the rest are Local Maximum

Power Points (LMPPs) as shown in Figure 1.2) [9,11]. The GMPP is particularly com-

plicated to track when the insolation changes rapidly. These environmental conditions

impose additional challenges for developing parameter estimation and Maximum Power

Point Tracking (MPPT) algorithms. The inherent non-linear I-V relationship make the

modeling work computationally costly. Typically, the process of parameter estimation

takes a long execution time to obtain optimal model parameters from a large-size mea-

sured data. The existing MPPT algorithms are capable of tracking the operating point

efficiently at the MPP under non-uniform solar irradiance level, but their performance

deteriorates under partial shading conditions. Therefore, effective artificial intelligence

optimization algorithms are applied in this work.
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Figure 1.2: Current-voltage-power (I-V -P ) curves of a PV array under uniform irradi-
ance and partial shading conditions.
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1.3 Aims and Objectives

Modern optimization algorithms such as Cuckoo Search (CS) and Particle Swarm Op-

timization (PSO) have demonstrated their power in dealing with various engineering

optimization problems [12–15]. In this work, these optimization algorithms are applied

in simulation and control of PV systems. The overall research objectives are as follows:

i. to study artificial optimization algorithms and to apply them in parameter esti-

mation with serial and parallel programming frameworks,

ii. to estimate an optimization algorithm predicting the approximate GMPP locus

with a simplified single-diode model,

iii. to develop a model-based two-stage MPPT strategy that is suitable for various

environmental conditions (e.g. steady and rapidly changing environmental con-

ditions).

1.4 Original Contribution

In this thesis, a sequential CS algorithm and a Parallel Particle Swarm Optimization

(PPSO) method are designed to extract the parameters of PV models from the ex-

perimental data. The optimization concepts are applied in the task of MPPT as well.

To deliver a good initial value for a conventional direct MPPT method, the proposed

two-stage MPPT strategy combines offline Maximum Power Point Estimation (MPPE)

with an online Adaptive Perturb & Observe (APO) method. Figure 1.3 shows a block

diagram of the proposed PV control system, which consists of a parameter estimator

and a PV-supplied DC-DC converter with the MPPT function block. The parameter

estimator is applied to extract optimal parameters for the model. With the simulated

terminal current and power (I, V ), the MPPE derives an estimated voltage of the

GMPP Vmp. The online MPPT algorithm further improves the tracking accuracy by

small perturbation steps. In the control process, the operating point position is adapted

by the input Pulse Width Modulation (PWM) signal. The current control block de-

fines the duty cycle of the PWM according to the output voltage Vo and the reference

voltage Vref .

The major contributions of this thesis are summarized as follows:
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Figure 1.3: Block diagram of the proposed model-based two-stage PV control system.

i. The CS algorithm based parameter estimation method is proposed to obtain ac-

curate PV system parameters. The CS is invented based on the inspiration of

brood parasitic behavior of some Cuckoo species in combination with the Lévy

flight behavior. With the aim of serving as a thorough evaluation of the CS al-

gorithm in estimating the PV parameters, both single diode model and improved

single diode model are considered. Two case studies are designed to estimate the

CS algorithm in model parameters estimation: 1) a commercial 57mm diameter

solar cell (R.T.C. France [16]) operating at the standard irradiance level; 2) a PV

module (KC200GT multicrystal PV module) operating under varied environment

conditions. The simulation results and experimental data show that the CS al-

gorithm is capable of obtaining all the parameters with extremely high accuracy,

depicted by a low Root Mean Squared (RMS) error. In this study, the proposed

method outperforms Chaos Particle Swarm Algorithm (CPSO) [17], Genetic Al-

gorithm (GA) [18], and Pattern Search (PS) [19].

ii. A parallel computing paradigm is considered to speed up the process of parameter

estimation for the single-diode and double-diode model. The PSO is a derivative-

free method particularly suitable for continuous variable problems and has been

successfully applied to many engineering optimization problems. Its fitness eval-

uation function for a particle is independent of any other particle, and therefore

it is performed in parallel in the proposed Parallel Particle Swarm Optimization

(PPSO) method. The experimental I-V data of a R.T.C. France PV cell and

a Photowatt-PWP 201 PV module comprising of 36 polycrystalline silicon cells
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are used as test examples. The experiment and simulation results demonstrate

the effectiveness of the proposed algorithm over two most common PV electrical

models.

iii. An Approximate Single-Diode Model (ASDM) is developed to simplify the ex-

isting single diode model via function approximation approaches. The ASDM

enables high speed predictions for the electrical characteristics of commercial PV

cells and modules at a variety of atmospheric conditions. The proposed math-

ematical modeling approach is easy, straightforward and does not depend on

iterative procedures to obtain solutions. The simulation results show that the

calculated I-V characteristics fit the measured data with high accuracy. Further-

more, compared with existing modeling methods, our proposed model reduces

the simulation time by approximately 30%.

iv. A novel model-based two-stage MPPT framework is proposed to combine offline

maximum Power Point Estimation (MPPE) using the Weightless Swarm Algo-

rithm (WSA) with an online Maximum Power Point Revision (MPPR) method.

The ASDM is used as a fitness evaluation function in WSA algorithm to predict

the output power of the applied PV array. The feasibility of the method is verified

in an MPPT control system implemented with a Single Ended Primary Induc-

tance Converter (SEPIC). Steady and rapidly changing environmental conditions

are considered in this study. The simulation results suggest that the proposed

model-based two-stage MPPT framework significantly outperforms the conven-

tional Perturb and Observe (P&O) and the PSO-based MPPT method in terms

of both efficiency and capability in tracking the GMPP.

1.5 Thesis Organization

The thesis is organized as follows:

• In Chapter 2, a review of the most widely used PV electrical models is presented.

The research on the parameter estimation for PV electrical models and the MPPT

methods is introduced in Section 2.2 and 2.3.

• Chapter 3 presents the CS algorithm and its application to parameter estimation

for PV electrical models. The proposed approach is evaluated on a PV cell at the

certain irradiance level and on a PV module at the different irradiance levels.
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• In Chapter 4, a PPSO algorithm is presented. The workload of the parameter

estimation algorithm is appropriately distributed to the applied computing de-

vices in parallel mode. The accuracy and computational efficiency of the proposed

method are evaluated by identifying the parameters of two most widely applicable

PV electrical models.

• Chapter 5 describes a model-based two-stage MPPT strategy for varying envi-

ronmental conditions. The first stage is MPPE, in which the voltage at GMPP is

predicted. The tracking performance is enhanced by the variable-step Adaptive

Perturb & Observe (APO) method. The proposed method is further evaluated on

a PV-supplied Single Ended Primary Inductance Converter (SEPIC) constructed

in the PSIM simulator. The simulation results are shown in the last part of this

section.

• Conclusions and future work are outlined in Chapter 6.
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Chapter 2

Literature Review

The primary purpose of this chapter is to review the studies on PV parameter esti-

mation and Maximum Power Point Tracking (MPPT) methods with respect to their

motivation and strategies. To this end, this chapter first introduces the most widely

used electrical models for Photovoltaic (PV) devices which our research is based on. It

then proceeds to present the state and progress of the current literature on the related

work documented in this thesis.

Part of the content of this chapter has been published in the following review paper:

• Jieming Ma, Ka Lok Man, Tiew On Ting, Hyunshin Lee, Taikyeong Jeong, Jong-

Kug Sean, Sheng-Uei Guan, and Prudence W. H. Wong, Insight of Direct Search

Methods and Module-Integrated Algorithms for MPPT of Stand-Alone Photo-

voltaic Systems, Lecture Notes in Computer Science (LNCS2012), vol. 7513, pp.

468-476, 2012.

2.1 A Review of Modeling Methods for Photovoltaic (PV)
Cells

Although PV module prices fell by 74% from 1995 to 2011 [20], the initial cost of a

PV system is still relatively high. An accurate assessment of the electrical character-

istics is therefore indispensable in the system design [21]. PV manufacturers usually

provide typical electrical characteristics of their PV modules, such as the current at

Maximum Power Point (MPP) Imp, the voltage at the MPP Vmp, the power at MPP

Pmax, the open-circuit voltage Voc and short-circuit current Isc. These values are gen-
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erally measured at the Standard Test Conditions (STCs) which correspond to a module

temperature of 25 ℃ and an irradiance of 1000 W/m2 at 1.5 air mass spectral distribu-

tions. The current and voltage (I-V ) characteristic curves under several different test

conditions may also be presented by manufactures. Despite this, the data available

in manufactures’ data sheet are still limited and usually cannot fulfill the engineering

requirements because PV modules always operate under environments far from these

test conditions.

Any PV device can be modeled using the equivalent circuit models [22]. These

electrical models, with the ability to predict I-V characteristics of a PV cell or module

under the working environment other than STCs, are predictive performance tools that

allow PV system designers to understand, optimize, and develop PV power generation

systems. They are broadly applied to estimate whether a PV power generation sys-

tem is economically feasible. Recently, many MPPT techniques have been proposed

to overcome the problems caused by partial shading conditions and rapidly changing

environmental conditions [7,10,11,23,24]. For instance, Chen et al. [10] utilized model-

based Particle Swam Optimization (PSO) to search the Global Maximum Power Point

(GMPP). In [25, 26], the PV array was adaptively reconfigured by a control algorithm

integrated with emulated PV module models. These methods have high-lighted the

need for a reliable PV electrical model with high accuracy but very complex.

Significant research efforts have been made to develop electrical models of PV sys-

tems [27]. These models include analytical models based on PV cell physics, empirical

models, and a combination of these two approaches [22]. Their mathematical expres-

sions formulate the terminal current I with the most crucial technical characteristics

and environment variables, such as terminal voltage V , the ambient temperature T ,

and the irradiance G. Even though the other environment factors (e.g. dust and wind

velocity) may change the electrical characteristics of PV modules, it is quite impossi-

ble to obtain a model that accounts for every single effect on the performance of a PV

model [28]. Among numerous modeling approaches, the Ideal Single-Diode (ISD) model

achieves the lowest computational complexity. The Single-Diode (SD) model is usually

considered to offer a good compromise between simplicity and accuracy [29]. In con-

sideration of the recombination loss in the depletion region, Sah [30] introduced a more

accurate model known as Double-Diode (DD) model. The Three-Diode (TD) model

can be found in [31]. Although it takes into account the influence of grain boundaries

and leakage current through the peripheries, the extra diode increases the number of
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Figure 2.1: Electrical diagram of the ideal single-diode model.

parameters. Accordingly, more computational effort is needed to predict the electrical

characteristics via a TD model. In the next three subsections we will present through

a variety of PV electrical models, including the ISD model, SD model and DD model.

Since the TD model has complex non-linear analytical expressions and not suitable for

fast computation, it is not studied in this thesis.

2.1.1 Ideal Single-Diode Model

The elementary PV device is a PV cell, which is basically a semiconductor diode. It

generates a reverse current when its p-n junction is exposed to light. The current is

termed as photocurrent Iph. In darkness, the PV cell behaves like a diode, and thus its

dark I-V characteristics are usually mathematically expressed by the Shockley diode

equation [32]:

ID1 = Io1(e
VD
A1Vt − 1), (2.1)

where VD represents the electrical potential difference between the two ends of the

diode, Io1 denotes the reverse saturation current, and A1 is the diode ideality factor. Vt

is named as thermal voltage, and its value can be estimated as a function of temperature

T :

Vt =
kT

q
, (2.2)

where k and q represent the Boltzmann constant (1.602176×10−19 C) and the electron

charge (1.602176 × 10−19 C), respectively. Assuming that the superposition principle

holds, the full I-V characteristics are simply the sum of the dark and illuminated I−V

characteristics:

I = Iph − Io1(e
VD
A1Vt − 1). (2.3)

In the literature [33, 34], Equation (2.3) is the mathematical expression of the ISD

model, in which the Iph is modeled as a current source.
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2.1.2 Single-Diode Model

As reported in [32], the output current I is dependent on the contact resistance of the

metal base with the p semiconductor layer, the resistances of the p and n bodies, the

contact resistance of the n layer with the top metal grid, and the resistance of the grid.

These losses are roughly represented by series resistance Rs. In addition, the shunt

resistance Rp exists mainly due to the leakage current of the p-n junction and depends

on the fabrication method of the PV cell [21]. Taking into account the effects of series

resistance, Townsend [35] presented a circuit model assuming that the shunt resistance

is infinite. In this thesis, this model is named Simplified Single-Diode (SSD) model and

its terminal current value is given by:

I = Iph − Io1(e
V+IRs
A1Vt − 1). (2.4)

Duffie and Beckman [36] improved the SSD model by including an additional parallel

resistance in the equivalent circuit model, so called SD model. Its I-V relation is given

by the following equation:

I = Iph − Io1(e
V+IRs
A1Vt − 1)− V + IRs

Rp
. (2.5)

The corresponding electrical diagram of the SD model is shown in Figure 2.2. In the

existing literature, the SD model is frequently used in PV modeling and simulation

[21,37,38].

More recently, these PV models are frequently used to aid real-time optimization

of PV energy [6, 8, 10, 24, 25, 39–43]. The increasing need for high-speed performance

estimation has led to renewed interests in the application of SSD model and ISD model.

However, their accuracy is not guaranteed [43]. Furthermore, tedious iterative root

finding methods (i.e Newton-Raphson method) are still required in the SD model and

SSD model to solve the implicit transcendental I-V relations.

2.1.3 Double-Diode Model

The dark characteristics of PV cells have been intensively studied by many authors. In

the DD model, the second diode, in parallel with the first, is used to model the recom-

bination in the space charge region [44, 45]. Figure 2.3 shows the electrical diagram of
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the double-diode model; its electrical model is expressed in equation (2.6):

I = Iph − Io1(e
V+IRs
A1Vt − 1)− Io2(e

V+IRs
A2Vt − 1)− V + IRs

Rp
, (2.6)

where Io1 and Io2 are the reverse saturation currents of the first and second diode,

respectively. Similarly, the two diodes’ ideality constants are denoted by A1 and A2.

The DD model is considered by many authors being more accurate than the SD model

[46,47], but blamed for being imprecise particularly at low irradiance levels [48].

Table 2.1: Properties of various PV electrical models.

Model Name
Diode

Quantity
Parameters Model Equation

ISD model 1 Iph, Io1 , A1 I = Iph − Io1(e
V

A1Vt − 1)

SSD model 1 Iph, Io1 , A1, Rs I = Iph − Io1(e
V+IRs
A1Vt − 1)

SD model 1
Iph, Io1 , A1,
Rs, Rp

I = Iph − Io1(e
V+IRs
A1Vt − 1)

−V+IRs
Rp

DD model 2
Iph, Io1 , A1,

Io2 , A2, Rs, Rp

I = Iph − Io1(e
V+IRs
A1Vt − 1)

−Io2(e
V+IRs
A2Vt − 1)− V+IRs

Rp

The properties of the aforementioned PV electrical models are specified in Table

2.1. In the literature [49–52], models are also named after the parameter quantity (e.g.
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the SSD model, SD model, and DD model are termed four-, five-, and seven-parameter

models), since they vary with different quantity of parameters.

2.1.4 PV Module Model

In a large PV generation system, PV modules are used as basic components rather than

PV cells, because the output power of PV cells is limited at high voltage levels. Re-

searchers have developed the PV module model so as to predict the I-V characteristics

before modeling the whole system.

PV module is a packaged, connected assembly of PV cells. Assuming there are Ns

cells connected in a module, the module’s output voltage and resistance are scaled in

accordance with the following rules [33]:

V ′ = Ns · V,

I ′ = I,

R′s = Ns ·Rs,

R′p = Ns ·Rp, (2.7)

where V ′, I ′, R′s, and R′p here represent the terminal voltage, series resistance and

shunt resistance of the PV module, respectively. After substituting the scaling rules

from Equation (2.7) into (2.3), (2.4), (2.5) and (2.6), we obtain the following equations

for a PV module:

I ′(ISD) = Iph − Io1(e
V ′

A1NsVt − 1), (2.8)

I ′(SSD) = Iph − Io1(e
V ′+I′R′s
A1NsVt − 1), (2.9)

I ′(SD) = Iph − Io1(e
V ′+I′R′s
A1NsVt − 1)− V ′ + I ′R′s

R′p
, (2.10)

I ′(DD) = Iph − Io1(e
V ′+I′R′s
A1NsVt − 1)− Io2(e

V ′+I′R′s
A2NsVt − 1)− V ′ + I ′R′s

R′p
. (2.11)

In this thesis, only SD model and DD model are considered since the two models are

frequently used in PV modeling and system control. For the convenience of description,

the models for predicting the I-V relation of PV cells and modules are abbreviated as

follows:

i. SDC : Single Diode Cell model,

ii. DDC : Double Diode Cell model,
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iii. SDM : Single Diode Module model,

iv. DDM : Double Diode Module model.

2.2 Research on Parameter Estimation for PV Electrical
Models

As discussed in the previews section, PV electrical models involve a series of parameters.

These models cannot be directly used because of lack of proper model parameters

characterizing the PV cells. Parameter estimation is a discipline that provides tools

for estimating constants appearing in the model [53]. With the parameters obtained

in such a way, the difference between the simulated and experimental data can be

minimized.

In the literature [54, 55], conventional parameter estimation methods are classified

into two categories:

i. Analytical techniques [56–60];

ii. Numerical extraction techniques [16,61–65].

2.2.1 Analytical Techniques

An analytical technique utilizes mathematical equations to describe the parameters of

PV electrical models. There is much research on addressing the parameter estimation

problem by analytical expressions in terms of the physical parameters, such as the

coefficient of diffusion of electrons in the semiconductor, lifetime of minority carriers,

the intrinsic carrier density, etc. [31]. However, the values of these physical parameters

are normally not provided by manufacturers, which impels researchers to explore an

alternative way of formulating the parameters by using the information available in

datasheet (e.g. short circuit current coefficient Ki, open circuit voltage coefficient Kv,

Isc, Voc, Vmp, Imp, etc.). In [21], the Iph is expressed in terms of a linear function as:

Iph = (Iphn +Ki∆T )
G

Gn
, (2.12)

where Iphn, Gn, and Tn are used to denote the photocurrent, solar irradiance, and cell

temperature measured at the STCs, respectively. ∆T is the difference between T and

Tn.
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Based on the diode theory, Messenger and Ventre [2] presented an approximate

linear expression for the diode saturation current Io1 , which can be expressed as

Io1 = Ion1

(
T

Tn

)
e[(qEg/A1k)(1/Tn−1/T )], (2.13)

where Eg is the material band gap. Usually, Eg is set at a reasonable level depending

on the semiconductor materials (Eg = 1.12 eV for the polycrystalline Si at 25 ℃) in

simulation and design tools [66]. De Soto et al. [58] presented an estimation method

for Eg in a wide temperature range:

Eg = Egn(1− 0.0002677∆T ), (2.14)

where Egn is a normal value at the STCs (Egn = 1.12 eV for silicon cells and Egn =

1.6 eV for the triple junction amorphous cells).

The value of ideality factor is empirical. Numerous authors discussed the means

of estimating the correct value of this constant [29, 67]. For simplicity, the A1 can be

assumed to be independent of temperature and set the value in the range 1 ≤ A1 ≤ 2

[21].

A large number of analytical methods have been applied to determine the values

of Rs and Rp over the years. In [28], mathematical formulas are derived to predict

Rs and Rp. However, the slopes at the open-circuit and short-circuit points are not

usually given in I-V datasheets. Iterative process was proposed in [21] and [50] based

on several analytical conditions. This approach may obtain lower absolute error, not at

the expense of increased computation complexity. Considering the fact that Rs and Rp

vary in almost inverse linear mode with the solar irradiance, Brano [50] demonstrated

an improved expression for the series and shunt resistances:

Rs =
Gn
G
Rsn,

Rp =
Gn
G
Rpn, (2.15)

where the values of the resistances Rsn and Rpn are evaluated under the STCs. By

using the aforementioned relations, the model is able to analytically describe the I-V

characteristics of a PV generator for each generic condition of operative temperature

and solar irradiance [58].

The analytical techniques conclude approximate relations with the experimental

data. Albeit simple, they are generally dependent on the key points on the I-V curve.
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Figure 2.4: Block diagram of the parameter estimation method for PV electrical models.

The errors can be significant and cannot be further improved if these key points are

incorrectly specified.

2.2.2 Numerical Techniques

Assisted by a statistical method, numerical extraction techniques fit a great many

operating points on the I-V curves to obtain a more accurate solution [61–63, 65].

These curve fitting methods minimize the Root Mean Square (RMS) error ε given

in [28] as:

ε =

√√√√ 1

N

N∑
d=1

(Id − Îd)
2

(2.16)

where d (d = 1, 2, ..., N) is the number of measured I-V data. The simulated and

measured data are denoted by Id and Îd, respectively.

The numerical extraction techniques are normally considered as accurate approaches

in parameter estimation since all the measured data can be used in calculation. How-

ever, it is axiomatic that their performance is also related to the type of fitting al-

gorithm, the cost function as well as the initial values of the parameters to be ex-

tracted [61]. The non-linear curve-fitting procedures are quite complicated both math-

ematically and in terms of computer code [68]. Moreover, the algorithms can be com-

putationally expensive as the size of required data is considerably large.
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2.2.3 Evolutionary Algorithm Techniques

Evolutionary Algorithm (EA) techniques are very efficient in optimizing real-valued

multi-modal objective functions [12, 13,69, 70]. To date, Genetic Algorithm (GA) [18],

Particle Swarm Optimization (PSO) [17, 71, 72], Bacterial Foraging Algorithm (BFA)

[73], Simulated Annealing (SA) [74] , Pattern Search [19], Differential Evolution [75,76]

have been employed for estimating parameters of various PV electrical models due to

their ability to handle non-linear functions without requiring derivatives information.

PV parameter estimation is basically a process that minimizes the difference be-

tween the calculated and measured data by adjusting the normal PV parameters [77].

Figure 2.4 shows the flow diagram of a typical parameter estimation process for PV

devices. After importing several constants or parameters, the parameter estimation

algorithm starts evaluating possible solutions by using the objective function with the

measured I-V data. In general, the objective function is formulated by the RMS er-

ror which serves to aggregate absolute differences into a single measure of predictive

power. If the number of experimental data is denoted by N , the RMS error can be

mathematically formulated as the following equation:

ε =

√√√√ 1

N

N∑
d=1

(fd(V̂ , Î,X))2, (2.17)

where V̂ and Î denote the measured voltage and current, respectively. fd(x) is the

objective function for the dth data. X is a vector representing the model parameters.

Take the SDC model for example. fd(V̂ , Î,X) is a homogeneous form of Equation (2.5),

namely:

fd(V̂ , Î,X)SDC = Iph − Io1(e
V̂+ÎRs
A1Vt − 1)− V̂ + ÎRs

Rp
− Î . (2.18)

In the above equation, X is a vector involving the model parameters Iph, Io1 , A1, Rs,

and Rp.

The EA techniques may obtain the most accurate solution compared with the other

methods if their initial points and algorithm parameters are set properly. On the other

hand, most of these methods apply multiple agents or particles in random search and do

not provide a significant improvement in computational efficiency. Taking into account

the fact that extraction is the main component of a PV system simulator, the overall

simulation speed would be greatly compromised [75].
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2.3 Research on Maximum Power Point Tracking (MPPT)
Methods

In a P -V characteristic curve of PV cells or modules, there exists only operating point

where the power is maximum. This point is known as the MPP. As shown in Figure

2.5, the MPP locus, denoted by circles, varies with different atmospheric conditions.
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Figure 2.5: Electrical characteristic curves of a MSX60 PV module under different
atmospheric conditions: (a) I-V curves under various irradiance levels; (b) P -V curves
under various irradiance levels; (c) I-V curves under various temperatures; (d) P -V
curves under various temperatures.

PV modules are usually connected in series to scale up the voltage because their

open circuit voltage is independent of the module area and is limited by the semicon-

ductor properties [33]. In an outdoor environment, the whole or some parts of the PV

array may be under a non-uniform irradiance condition caused by passing clouds, high

buildings, trees, etc. In this case, the series connected PV array is in open circuit, which

is known as “hot spot” [33]. To avoid this problem, bypass diodes are normally placed
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across every PV module as shown in Figure 2.6 (a). Suppose that the three modules

receive three different irradiance levels: 1000 W/m2, 750 W/m2, and 500 W/m2. The

shape of the P -V curve, shown in Figure 2.6 (b), becomes more complicated - exhibiting

multiple peaks. In this thesis, the highest peak is named and other peaks are named

GMPP and Local Maximum Power Point (LMPP), respectively.
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Figure 2.6: Operation of a PV array working under partial shading conditions: (a) A
PV array with bypass diodes; (b) I-V and P -V curves of the PV array receiving various
irradiance levels.

Maximum power point tracking (MPPT) is a technique employed to gain maximum

power available from PV devices [78,79]. It varies PV operating voltage corresponding

to MPP, constrains the operating point at MPP, and extracts maximum power from

the used PV devices [80–82]. A large number of MPPT techniques have been presented

in literatures [82]. Based on the function of the methods or control strategies, Salas et

al. [83] proposed to group the MPPT methods into two categories:

i. Direct control [84–89];

ii. Indirect control [90–93].

The two approaches will be presented in the following subsections. The recent

research on evolutionary algorithms and their applications in MPPT techniques will be

discussed at the end of this chapter.
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2.3.1 Direct Control

Direct methods search the optimum operating point online by using PV voltage and

current measurements. The common advantage of such methods is their environment-

independent features. In other words, environmental measurements are unnecessary

in the tracking process of direct methods. A small quantity of measurements of not

only mean the lower cost that can be attained, but also indicate higher accuracy and

reliability that can be achieved [94]. This group of methods include, but not limited

to, Perturb and Observe (P&O) [84–86], Incremental Conductance (IncCond) [87], and

root-finding methods [88,89].

Among these direct control MPPT methods, the P&O is a well-known practical

MPPT algorithm and is presented in the literature as a reference method. Figure

2.7 shows a flowchart of P&O algorithm for the most basic form. Starting from the

measures of the operating voltage and current, the algorithm first obtains the sign of

∆P , which denotes the difference between the current operating power P t and the

power measured in the previous sample P t−1. On the basis of the P -V characteristics

curve of a PV module, the P&O method perturbs the operating point and determines

the change of search direction as summarized below:

• If ∆P = 0, the voltage for the next sample V t+1 will not be changed since the

system is working at the MPP;

• If ∆P > 0 and ∆V > 0, the V t is on the left of the MPP and the V t+1 will be

located on a point with a higher voltage value so as to reach the MPP.

• If ∆P > 0 and ∆V < 0, the V t is on the right of the MPP and the V t+1 will be

located on a point with a lower voltage value so as to reach the MPP.

• If ∆P < 0 and ∆V > 0, the V t is on the right of the MPP and the V t+1 will be

located on a point with a lower voltage value so as to reach the MPP.

• If ∆P < 0 and ∆V < 0, the V t is on the left of the MPP and the V t+1 will be

located on a point with a higher voltage value so as to reach the MPP.

The P&O algorithm takes effect on steady atmospheric conditions. However, under

a rapidly changing environmental condition, the P&O may point out wrong track-

ing direction toward the MPP due to the changes of P -V characteristics. The IncCond

20



Beign

Measure: Vt, It 

Pt = Vt 
× It

DP = Pt - Pt-1

DV = Vt - Vt-1

DP 
> 0

DVt 
> 0 DVt 

< 0

Decrease 
voltage

End

Yes

Yes

Yes NoNo

No

DP 
= 0

Yes

No

Increase 
Voltage

Decrease 
Voltage

Increase 
Voltage

Figure 2.7: Flowchart depicting the P&O algorithm.

method, first introduced by Hussein et al. [87], was implemented to overcome this prob-

lem. It determines the search directions by comparing the instantaneous conductance

I/V with the incremental conductance dI/dV of the PV device. Although the IncCond

method takes into account environment factors, many of the inherent drawbacks, like

oscillation and disability of partial shading conditions [9], limit its application.

Since the conventional P&O and IncCond algorithms vary the operating voltage

towards the MPP with fixed step size, they have certain disadvantages: large pertur-

bations result in significant state oscillations while small perturbations result in slow

tracking speed [83,95,96]. With the aim of resolving the problems caused by fixed steps,

variable step-size MPPT approaches were proposed in the literature [95]. In general,

they start with a large perturbation step and end by acknowledging the achievement of

tolerance. A case in point is Adaptive Perturb & Observe (APO) method [97], where

the perturbation step size is set to a large value when the power changes by a large

amount primarily due to environmental variations. The step size may be set as follows:

at = M
|∆P |
at−1

; (2.19)

where ∆P = P t − P t−1, representing the change of power, at−1 is the historic value of

at (always larger than 0), and M is a constant parameter. In this manner, at is large
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during the transient stage and at becomes small in the steady state.

Based on the fact that the derivative of the output power with respect to the output

voltage dP/dV approaches zero at MPPs, the MPPT issues can be reduced to a root-

finding problem. In digital implementation, dP/dV of an arbitrary operating point O

can be approximated by a backward finite divided difference [88]:

dP

dV

∣∣∣∣
V=VO

≈ ∆P

∆V
=
VO · IO − VO′ · IO′

VO − VO′
(2.20)

where O′ is an operating point sampled immediately after O. The difference between VO

and VO′ is ∆V . The VO and VO′ represent the voltage values at O and O′ respectively.

Similarly, the IO and IO′ are the current values at O and O′ respectively.

Chun [88,89] presented a digital MPPT method by using Bisection Search Method

(BSM). The BSM is a numerical method designed to find a root for function f(x). Its

search processes are summarized as following steps [98,99]:

i. given a function f(x) and initial interval [xl, xu]. The root x∗ of f(x) is in this

interval. Since f(x) has opposite signs in xl and xu , f(xl)f(xu) < 0;

ii. approximate the root to the midpoint xm of the interval, given by:

xm =
xl + xu

2
; (2.21)

iii. if f(xl)f(xm) < 0, then set xu = xm and repeat the previous step. If f(xl)f(xm) >

0, then set xl = xm and repeat the previous step. If the absolute value of f(xm)

is less or equal to the tolerance ε, then take xm as the root or approximation.

The simulation results show the BSM-based MPPT method converges to the MPP

faster and more accurately than the traditional P&O approach at any given environ-

mental condition [88,89].

2.3.2 Indirect Control

Indirect methods use mathematical functions obtained from empirical data to estimate

the MPP, or a database that includes parameters and data, such as I-V curves of the PV

generator for different temperatures and irradiance levels [83]. The following methods

belong to this category: Look Up Table (LUT) [90], Curve Fitting (CF) [91], Fractional
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Open-Circuit Voltage (FOCV) [92], Fractional Short-Circuit Current (FSCC) methods

[93], etc.

In the LUT method, the sensed values of the PV generator’s terminal current and

voltage are compared with the prior stored MPP locations in the control system. The

size of these data is usually large and requires a large memory capacity to store [95,100].

Moreover, the system becomes complex for changing environmental conditions [101].

The CF method is used in [91] to characterize a PV device. It is assumed that the

P -V relations can be expressed Equation (2.22):

P = αV 3 + βV 2 + γV + δ, (2.22)

where α, β, γ, and δ are coefficients that are determined by sampled values of the ter-

minal current and voltage. As long as these coefficients are calculated, the approximate

voltage at the MPP can be estimated by the following formula:

Vmp =
−β ±

√
β2 − 3αγ

3α
. (2.23)

In the tracking process, this estimation repeats every few milliseconds since the P -V

characteristics may rapidly change. This method is simple to implement; however, its

accuracy is dependent on the number of samples. Also, it might require a large memory

capacity as the sample size is large.

The FOCV method is based on the empirical fact that a linear dependency between

the Vmp and open circuit voltage Voc:

Vmp ∼= KmvVoc, (2.24)

where Kmv is called voltage factor and its value ranges from 0.7 to 0.95 depending

upon the characteristics of PV module [92]. Similarly, the FSCC is based on that Imp

is approximately linearly proportional to its short-circuit current. Their relations are

given in Equation (2.25):

Imp ∼= ImvIsc. (2.25)

The Imv is the current factor whose value is around 0.85 [83].

The FOCV and FSCC methods obtain high-speed tracking performance as their

computational complexity is low and the required sensors are less [102]. The main
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disadvantage of both methods is its low accuracy. It is difficult to determine proper

values of Kmv and Imv for PV cells.

2.3.3 Evolutionary Algorithm Techniques

Evolutionary Algorithm (EA) has been attracting more attention. It is a stochastic

method that appears to be very efficient in optimizing real-valued non-linear and multi-

modal objective functions [54, 103]. Recently, GA [104], PSO [10, 23, 24], and CS [105]

algorithms have been suggested as solutions to the problem of MPPT.

The GA method, developed by John Holland and colleagues in the 1960s and 1970s,

is probably the most popular evolutionary algorithm in terms of the diversity of appli-

cations [12]. The GA is based on Charles Darwin’s theory of natural selection. The

optimization function is encoded as arrays of binary character strings representing the

chromosomes. These chromosomes evolve through selection and genetic operators like

crossover and mutation, which drive a better solution to the problem concerned in the

next population. In the selection process, the best fitted chromosomes in the current

population are selected in terms of the elitist strategy. It ensures the offspring chro-

mosomes inherit the best possible combination of the genes of their parents. Crossover

recombines the chromosomes chosen by selection while mutation changes some of the

genes randomly. The new population of chromosomes is formed by combining the

chromosomes from the selection, crossover and mutation. The reason why the GA ap-

plies crossover and mutation may lie in their capability to avoid local optimum in the

searching process.

The PSO method is one of the most successful numerical optimization algorithms

applied in a variety of fields. It is inspired first by general artificial life, the same as

bird flocking, fish schooling and social interaction behavior of human and second by

random search methods of evolutionary algorithms [106]. The birds and fishes, modeled

by particles, travel in a swarm. Each particle adjusts its position and velocity using

the swarm information as it reduces individual’s effort for search of the best position.

The CS algorithm is invented based on the inspiration of brood parasitic behavior

of some cuckoo species in combination with the Lévy flight behavior. In [14,107], Yang

and Deb reported that the CS algorithm outperforms PSO and GA for various standard

test functions.
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These EA-based MPPT methods have the capability of tracking the PV devices

receiving non-uniform irradiance, under which condition the conventional MPPT algo-

rithms like the P&O and FOCV methods may fail [103,104,108,109]. Moreover, these

methods do not prescribe an accurate PV electrical model and are robust in MPPT.

2.4 Summary

This chapter has reviewed the ideal, single-diode, and double-diode electrical models

for PV cells and modules, and discussed the most widely used parameter estimation

methods for these models. Then, the existing MPPT methods, grouped into direct,

indirect and evolutionary algorithm based methods, have been presented.

Having presented the review of relevant literature and the theoretical framework

established for this study, the following chapter will describe the research methodology

including the research methods adopted, the experiments and results.
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Chapter 3

Parameter Estimation of PV
Model via Cuckoo Search

In this chapter, the evolutionary algorithm based parameter estimation methods are

discussed. It is followed by the introduction of the proposed cuckoo search method as

well as the formulation of the objective function. The simulation results are analyzed

in Section 3.5, and Section 3.6 presents concluding remarks.

The content of this chapter has been published in the following paper:

• Jieming Ma, Tiew On Ting, Ka Lok Man, Nan Zhang, Sheng-Uei Guan, and

Prudence W. H. Wong, Parameter Estimation of Photovoltaic Models via Cuckoo

Search, Journal of Applied Mathematics, vol. 2013, no. 362619, 1-8, 2013.

3.1 Introduction

Photovoltaic (PV) cells, normally assembled into modules or arrays on mounting sys-

tems, are capable of producing electrons when photons strike their surfaces. Taking

the advantages of many promising features like renewability, less pollution, and ease of

installation, PV systems are envisaged to be an important energy source for the future.

Due to the high initial cost of a PV-supplied system, predictive performance tools

are used extensively by engineers to optimize the system performance [110, 111]. PV

manufacturers normally provide limited tabular data measured under the Standard Test

Conditions (STCs), which correspond to a cell temperature of 25℃ and an irradiance of

1000 W/m2 at 1.5 air mass spectral distributions. As reported in [50], PV generators
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always operate under environments far from the STCs. Owing to this reason, the

data available in the datasheet usually fail to fulfill the engineering requirements. PV

electrical model, with the ability to predict I-V characteristics of PV generators under

an operating environment other than the STCs, is a predictive performance tool that

allows consumers to maximize the cost effectiveness of the system before installation

[111]. They are generally analytical equations based on physical descriptions that

formulate PV generated current I with the most crucial technical characteristics and the

environmental variables, such as the operating voltage V , the ambient temperature T ,

and the irradiance G. Over the years, significant research efforts have been contributing

to the development of the electrical models [21,44,51,58]. Among numerous modeling

approaches, the Single-Diode (SD) model is the most widely utilized PV model in the

literature. In order to adapt PV model behavior to different operating conditions, de

Blas et al. [60] suggested to apply the procedure described in the International Standard

IEC 891 that relates current and voltage of the PV characteristics at given values of T

andG with the corresponding values at different operating environments. The improved

single-diode model presented by De Soto et al. [58] includes the dependence of the PV

parameters on operating conditions.

Both the SD model and the De Soto’s model obtain unknown parameters. Param-

eter estimation is a tool that estimates the values of these parameters by using the

measured data. In this chapter, we discuss the Cuckoo Search (CS) algorithm and its

application to parameter estimation for the SD model and the De Soto’s model. Simu-

lation and experimental results show superior accuracy and feasibility of the proposed

parameter estimation method.

3.2 Related Work

Analytical methods [48,57,112] are common approaches to estimate the parameters by

mathematical expressions in terms of the physical parameters like the electron charge,

diffusion coefficient for electrons, lifetime of minority carriers, and intrinsic carrier

density, etc [31]. These parameters are normally not provided by the PV manufacturers.

To overcome this problem, De Soto et al. [58] proposed an analytical method that uses

the tabular data available on the datasheets. Although having the merit of simplicity,

it is usually incorrect and the errors are hard to be further reduced.

Recently, PV parameter estimation is considered to be as a multidimensional op-
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timization problem. Several computational intelligence methods, such as Genetic Al-

gorithm (GA) [18], Particle Swarm Optimization (PSO) [17,71,72], Bacterial Foraging

Algorithm (BFA) [73], Simulated Annealing (SA) [74], Pattern Search (PS) [19], Dif-

ferential Evolution (DE) [75, 76], were proposed in the literature. These algorithms

usually extract relevant parameters by minimizing the Root Mean Square (RMS) error

as the objective function in the optimization process. Askarzadeh and Rezazadeh [114]

suggested that the optimization methods normally produce better results than analyt-

ical methods. Reported by [19, 74], the SA and PS show better estimation accuracy

than the results in [115]. Ye et al. [72] compared the convergence speed between the

PSO and GA methods toward the SD model, as well as Double-Diode (DD) model.

The results show that the GA method is not apt to be used in parameter extraction.

Slightly better results can be achieved using the PSO, BFA, and DE algorithms.

The CS is one of the latest nature-inspired meta-heuristic algorithms. It is based on

the fascinating breeding behavior such as brood parasitism of certain species of cuckoos.

The algorithm applies by Lévy flight rather than simple random search. In [14, 107],

Yang and Deb demonstrated that the CS algorithm outperforms the PSO and the GA

for various standard test functions. In the following sections, we discuss its performance

in parameter estimations.

3.3 Formulation of Parameter Estimation Problem

As discussed in Section 2.1, the SDM, predicting the I-V characteristics for a PV device,

is considered. In this chapter, the SD model for a PV cell is named Single-Diode Cell

(SDC) model while the SD model for a PV module is named Single-Diode Module

(SDM) model. Their I-V relations can be mathematically expressed as follows:

I(SDC) = Iph − Io1(e
V+IRs
A1Vt − 1)− V + IRs

Rp
(3.1)

I ′(SDM) = Iph − Io1(e
V ′+I′R′s
A1NsVt − 1)− V ′ + I ′R′s

R′p
. (3.2)

In the above equations, V ′, I ′, R′s and R′p represent the voltage, current, series

and shunt resistance values for a PV module. The five model parameters involved are

photocurrent Iph, saturation current Io1, diode ideality constant A1, series resistance

Rs (or R′s), and shunt resistance Rp (or R′p).

The parameter estimation method for PV electrical models can be implemented
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by various Evolutionary Algorithms (EAs) with experimentally determined I-V curve.

The objective function was the RMS errors ε in the current prediction as calculated

by:

ε =

√√√√ 1

N

N∑
idata=1

(fd(V̂ , Î,X))2, (3.3)

where V̂ and Î denote the measured voltage and current, respectively. N is the number

of measures. fd(x) is the objective function for the dth data. X is a vector representing

the model parameters. fd(V̂ , Î,X) is a homogeneous form of the model expression. As

for the SDC model, fd(V̂ , Î,X) is given as:

fd(V̂ , Î,X)SDC = Iph − Io1(e
V̂+ÎRs
A1Vt − 1)− V̂ + ÎRs

Rp
− Î , (3.4)

where X is a vector involving the model parameters Ipv, Io1, A1, Rs, and Rp.

In a similar way, Equation (3.5) is used as the objective function during the param-

eter estimation process for a PV module.

fid(V̂ ′, Î ′,X)SDM = Iph − Io1(e
V̂ ′+Î′Rs
A1NsVt − 1)− V̂ ′ + ÎR′s

R′p
− Î ′. (3.5)

The original SDM ignores the operating conditions effect on these parameters. How-

ever, some studies have demonstrated that the parameters, such as Iph and Io1, vary

with different environmental conditions. These are due to the changes of temperature

and irradiance. Aiming to evaluate PV behaviors at the environmental conditions other

than the normal values Tn and Gn, the relations between the operating parameters and

the normal parameters are studied by numerous researchers [2, 21,58].

The following dependence of all of the parameters in the model on the operating

conditions is considered:

Iph = (Iphn +Ki∆T )
G

Gn
, (3.6)

Io1 = Ion1

(
T

Tn

)
e[(qEg/A1k)(1/Tn−1/T )], (3.7)

Eg = Egn(1− 0.0002677∆T ), (3.8)

where Iphn, Ion1, Egn, Gn, and Tn, denote the photocurrent, diode saturation current,

material band gap, solar irradiance, and cell temperature measured at STCs, respec-

tively. ∆T presents the difference between T and Tn. Ki represents the short-circuit

current coefficient.
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By using these relations, De Soto et al. [58] proposed a PV electrical model that

is able to analytically describe the I-V characteristics of a PV device for different

temperature and solar irradiance.

3.4 Cuckoo Search

The CS algorithm [12,14,107], proposed by Yang and Deb, is a nature-inspired stochas-

tic global search algorithm that follows three idealized behavior rules:

i. a cuckoo lays an egg and dumps it randomly into other bird species’ nests;

ii. the best nests with high quality eggs will be carried forward to the next generation;

iii. there are a fixed number of available host nests. If a host bird discovers that the

eggs are not its own, it will either throw these alien eggs away, or it may abandon

the nest and build a brand new nest at a nearby location.

Algorithm 1: Cuckoo Search via Lévy Flights

Input: The measured I-V data.
Output: The best solutions in the search space.
Initialization of n host nests (population);
while Stopping criterion is not satisfied do

Choose a cuckoo egg by Lévy flights and evaluate its fitness (Fi);
Choose an egg in others nest randomly and calculate its fitness (Fj);
if Fi > Fj then

replace jth egg by ith egg;
end
A fraction (pa) of worse nests are demolished and replaced by new ones;
Preserve good nests (best solutions).

end

Based on the three rules, the basic steps of CS can be briefly summarized by the

pseudo code shown in Algorithm 1. In the CS algorithm, a pattern corresponds to a

nest while each individual attribute of the pattern corresponds to an egg laid by the

cuckoo. On the basis of random-walk algorithms, the general system equation of the

CS algorithm is given by:

Xg+1;i = Xg;i + α⊗ levy(λ) (3.9)

where g and i denote the generation number (g = 1, 2, 3, ...,MaxGen) and the pattern

number (i = 1, 2, ..., n), respectively. The product ⊗ means entry-wise multiplications.
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Here α > 0 is the step size scaling factor which should be related to the scales of the

problem of interest [107]. The jth attributes of the ith pattern is initiated by using

Equation (3.10):

Xg=0;j,i = rand · (Ubi − Lbi) + Lbi, (3.10)

where Ubi and Lbi are the upper and lower bounds of the jth attributes, respectively.

In each computation step, the CS algorithm checks whether the value of an attribute

exceeds the allowed search range. If this happens, the value of this attribute will be

updated with the corresponding boundary value.

Before the searching process, the CS algorithm detects the most successful pattern

as Xbest pattern. Among the existing algorithms for generating Lévy flights in the

literature, Yang and Deb [14,107] reported that Mantegna’s algorithm [116] works well

in most of the optimization problems. Accordingly the evolution phase of the pattern

is initialized with the detection step of ϕ, which is given by Equation (3.11) [117]:

ϕ =

Γ(1 + β) · sin (π · β/2)

Γ
((

1+β
2

)
· β · 2

β−1
2

)
 1

β

(3.11)

where β is 1.5 in the standard software implementation of the CS algorithm [118]. Γ

denotes the gamma function, expressed by:

Γ(x) =

∫ ∞
0

e−ttx−1dt. (3.12)

After initialization, the evolution phase of the Xi pattern starts by defining the donor

vector V, where V = [X1, X2, ..., Xi]. The required step size of the jth attributes can

be calculated by the following equation:

sj = 0.01 ·
(
uj
vj

) 1
β

· (V −Xbest) (3.13)

where uj = ϕ · randn[D] and vj = randn[D]. The randn[D] function generates a

uniform integer between [1, D] [119]. The donor pattern V is then randomly adjusted

by

V = V + sj · randn[D] (3.14)

The CS algorithm will evaluate the fitness of the random pattern. If a better solution

is taken, the Xbest pattern will be updated. The unfeasible patterns are revised by the

crossover operator given in Equation (3.15) as follows:
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Vi =

{
Xi + rand · (Xr1 −Xr2) , rand > p0
Xi , others

(3.15)

where po is the mutation probability value (po = 0.25 in the standard software imple-

mentation [118]), Xr1 and Xr2 are random permutation of the X1 and X2 respectively.

The final step in a generation is to check if the revised infeasible patterns deliver a

better solution.

3.5 Experiments and Results

In order to provide a thorough evaluation of the CS algorithm in estimating the PV

parameters, both SD and De Soto’s model [58] are considered in this thesis. Three case

studies are designed to estimate the CS algorithm in model parameters estimation:

1. a commercial 57mm diameter solar cell (R.T.C. France [16]) operating at the

standard irradiance level;

2. a PV module (Photowatt-PWP 201 [16]) comprising 36 polycrystalline silicon

cells;

3. a PV module (KC200GT multi-crystal PV module) operating under various en-

vironment conditions.

The electrical models for the three PV devices are named as the SDC model, the

SDM model and the De Soto’s Module model. The measured data of the R.T.C. France

silicon PV cell, Photowatt-PWP 201 PV module, and KC200 GT PV module are given

in Appendix B, C, and D, respectively. During the parameter extraction process, the

objective function f(V, I,X) is minimized with respect to the range of parameters. In

theory, the value of Ipvn is slightly larger than that of Isc. Egn is in a loose range from

1 eV to 2 eV. Ki is around the value provided by the datasheet (normally less than

0.02%/℃). The Ion1 is usually less than 50 µA. As stated in [120], the ideality factor

A1 ranges between 1 and 2. PV modules produced by most manufacturers have Rs less

than 0.5 Ω and Rp between 5 Ω and 170 Ω [28, 38]. As for PV cell, the ranges of Rs

and Rp can be scaled by simply dividing Ns [75].

Statistical analysis is performed to evaluate the quality of the fitted models to

the experimental data. Besides RMS error, other two fundamental measures, namely,
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Individual Absolute Error (IAE) and the Mean Absolute Error (MAE), are applied

to evaluate in this paper. Equations (3.16) and (3.17) represent the IAE and MAE,

respectively:

IAE = |I − Î|, (3.16)

MAE =
1

N

N∑
d=1

IAEd. (3.17)

where I is the simulated data and Î is the measured data.

The optimization algorithms applied in this paper are programmed in MATLAB.

Similar simulation conditions, including population size, maximum generation number,

and search ranges, are set to ensure a fair evaluation (population size = 25; maximum

generation number = 5000).

3.5.1 Case Study 1: Parameter Estimation for a PV Cell at The Cer-
tain Irradiance Level

Table 3.1 lists the model parameters of the R.T.C France PV cell at 33 ℃, which are

extracted from the experimental data in [16]. The parameters obtained from the CS

algorithm is compared with three different parameter estimation approaches: CPSO

[17], GA [114], and PS [19]. From the RMS errors of these methods, which are listed in

the last row of Table 3.1, the CS algorithm outperforms the other three optimization

methods. The CS obtained slightly lower RMS error, recording 9.86E-04 in numerical

value.

Table 3.1: Estimated parameters of the SDC model using various methods.

Parameter CS CPSO [17] GA [114] PS [19]

Ipv 0.7608 0.7607 0.7619 0.7617
Io 3.23E-07 4.00E-07 8.09E-07 9.98E-07
n 1.4812 1.5033 1.5751 1.6000
Rs 0.0364 0.0354 0.0299 0.0313
Rp 53.7185 59.0120 42.3729 61.1026

RMS error 9.86E-04 2.65E-03 1.91E-02 1.49E-02

During the parameter estimation process for the SDC model, the values of the

objective function in different optimization algorithms are shown in Figure 3.1. The

function “ga” in MATLAB [121], whose crossover rate Pc = 0.8 and mutation rate Pm =

0.2, is utilized for the convergence process test. As for the CPSO implementation [122],
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Figure 3.1: Convergence process of different optimization algorithms during the pa-
rameter estimation process of the SDC model.

the algorithm parameters are set as learning factors c1 = c2 = 2, inertia factors wmax

= 0.9, wmin = 0.4, and velocity clamping factor Vmax = 0.5. In Figure 3.1, no further

improvement by GA is observed after 500 iterations. On the contrary, the CS algorithm

shows continuous improvement until the maximum generation. The CS algorithm,

whose convergence speed is slightly faster than the CPSO, shows the most accurate

result in the minimization task after 5000 iterations.

To evaluate the goodness of fit of the obtained solution, these parameters are substi-

tuted into the SDC model. The PV terminal current I is solved by the Newton-Raphson

method [98], as the I-V relations demonstrate non-linear characteristics. In Table 3.2,

the calculated results IAEs are shown. Although the CS show higher error in the 2nd,

3rd, 5th, 6th, 8th, 15th and 23rd measurements, the majority of the simulated results

show the most accurate solutions. The MAE of the CS is 20.82 % lower than that of

CPSO.

3.5.2 Case Study 2: Parameter Estimation for a PV Module at The
Certain Irradiance Level

By using the same parameter setting, the parameters of the SDM are extracted from the

measured data of the Photowatt-PWP 201. Table 3.3 lists the estimated parameters of

the SDM using diverse methods. The absolute errors of the simulated terminal current

34



Table 3.2: Absolute errors of the simulated terminal current for the SDC model.

No AECS AECPSO [17] AEGA [114] AEPS [19]

1 8.7644E-05 2.7202E-04 2.2146E-03 6.7575E-04
2 6.6264E-04 4.3069E-04 2.4081E-03 1.4227E-03
3 8.5473E-04 7.3998E-04 2.2499E-03 1.7724E-03
4 3.4577E-04 3.5310E-04 7.2753E-04 7.1577E-04
5 9.4415E-04 8.5370E-04 1.6653E-04 2.4622E-04
6 9.5699E-04 7.7812E-04 4.5523E-04 3.4363E-04
7 9.1588E-05 3.4850E-04 3.2720E-04 1.4730E-03
8 8.5793E-04 5.3601E-04 8.9998E-04 5.5044E-04
9 4.1268E-04 4.6071E-05 7.7422E-04 9.2199E-04
10 3.3553E-04 4.4991E-05 1.1130E-03 7.4835E-04
11 8.8806E-04 1.2371E-03 4.6442E-04 1.4421E-03
12 8.4834E-04 1.1065E-03 1.3052E-03 4.7600E-04
13 1.5969E-03 1.7007E-03 1.6054E-03 1.7571E-04
14 6.0323E-04 6.9924E-04 5.0507E-03 4.2440E-03
15 4.5325E-04 1.6865E-04 5.2366E-03 5.2996E-03
16 2.0514E-04 5.9467E-04 6.9379E-03 8.0583E-03
17 1.1157E-03 1.4518E-03 8.4983E-03 1.0665E-02
18 9.1800E-04 1.0170E-03 8.6153E-03 1.1602E-02
19 4.9155E-04 7.7379E-04 7.4815E-03 1.0825E-02
20 4.9344E-04 1.2195E-03 8.1890E-03 1.1247E-02
21 7.1936E-04 1.8449E-03 9.5808E-03 1.1613E-02
22 1.0301E-04 1.5005E-03 1.3112E-02 1.3352E-02
23 7.7884E-04 7.0380E-04 1.8327E-02 1.6105E-02
24 7.5094E-04 2.1142E-03 2.2553E-02 1.7299E-02
25 1.3816E-03 3.4688E-04 3.1906E-02 2.3090E-02
26 8.0668E-04 1.4752E-03 3.5821E-02 2.4138E-02

MAE 6.8091E-04 8.5990E-04 7.5393E-03 6.8654E-03

for the SDM are shown in Table 3.4. From the simulation results, the proposed CS

method shows the best capability of estimating parameters. Its RMS error is up to

2.43E-03 while the MAE is 1.7284E-04. Both the MAE and RMS error show the lowest

value in the tests.

Table 3.3: Estimated parameters of the SDM using various methods.

Parameter CS CPSO [17] PS [19]

Iph 1.0305 1.0286 1.0313
Io1 3.48E-06 8.30E-06 3.18E-06
A 1.3512 1.4512 1.3414
Rs 1.2013 1.0755 1.2053
Rp 981.9824 1850.1000 714.2857

RMS error 2.43E-03 6.24E-03 1.18E-02
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Table 3.4: Absolute errors of the simulated terminal current for the SDM.

No AECS AECPSO [17] AEPS [19]

1 2.3922E-03 3.5763E-03 2.1175E-03
2 2.6299E-03 3.0301E-03 2.9946E-03
3 2.7210E-04 1.4440E-05 1.2192E-03
4 2.0899E-03 2.9404E-03 6.1614E-04
5 4.2697E-03 5.5153E-03 2.3269E-03
6 4.4044E-03 5.8087E-03 2.0562E-03
7 2.3396E-03 3.5866E-03 3.4007E-04
8 4.8357E-04 1.1943E-03 2.4398E-03
9 2.8229E-03 3.0278E-03 5.8902E-03
10 3.3380E-03 4.7214E-03 6.4455E-03
11 3.2778E-03 5.8455E-03 6.3349E-03
12 2.4035E-03 5.8080E-03 5.3532E-03
13 1.6569E-04 3.4060E-03 2.6676E-03
14 7.6688E-05 3.0079E-03 2.8320E-03
15 1.6103E-03 6.0438E-06 1.1359E-03
16 2.1594E-03 2.2452E-03 6.5327E-04
17 1.4291E-03 3.1777E-03 1.5129E-03
18 1.5867E-03 4.6373E-03 1.5264E-03
19 4.7370E-04 4.2541E-03 2.8309E-03
20 3.0675E-04 3.5412E-03 3.8061E-03
21 2.2819E-03 9.7757E-04 5.9677E-03
22 2.1913E-04 2.3020E-03 3.6377E-03
23 4.4178E-04 8.5170E-04 3.5680E-03
24 3.1187E-04 1.3409E-03 3.8318E-03
25 1.4241E-03 2.5758E-03 2.8346E-03

MAE 1.7284E-03 3.0957E-03 2.9976E-03

3.5.3 Case Study 3: Parameter Estimation for a PV Module under
Different Environmental Conditions

Table 3.5: Parameters of the KC200GT PV module obtained by the CS algorithm.

Iph Ion1 A1 Rsn Rpn ki Egn
8.1847 5.12E-10 1.017 0.2574 117.9224 0.0028 1.2474

In this section, the validity of the CS algorithm is evaluated using KC200GT PV

module operating under different environmental conditions. The estimated parameters

of De Soto’s model is shown in Table 3.5. As illustrated in Section 3.1, the main ap-

plication of the parameter extraction is to predict the I-V characteristics for design

purpose. It is worth noting that the SDM can be accurate with the parameters ex-

tracted from the data at a uniform test condition. Significant errors may occur when

the experimental data are measured under different environmental conditions. In the

commercial simulation tool like PSIM [66], the parameters of the SDM are firstly es-
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Figure 3.2: The simulated I-V characteristic curves of the KC200GT PV module: (a)
under different irradiance levels; (b) under different temperature levels.
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Figure 3.3: A comparison of the individual absolute errors among different PV modeling
methods: (a) under different irradiance levels; (b) under different temperature levels.
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timated at the STCs, then the equations (given in the Appendix A) are applied to

calculate the electrical characteristics of different operating conditions. In a similar

way, the parameter estimation, based on the De Soto’s model, can be performed by

the data measured under any condition. Figure 3.2 displays the I-V curves generated

using the parameters obtained by the CS algorithm. The simulated results are com-

pared with the experimental data, which are collected at five different irradiance levels

(1000 W/m2, 800 W/m2, 600 W/m2, 400 W/m2, and 200 W/m2) and three different

temperature levels (25 ℃, 50 ℃, and 75 ℃). It can be seen that the I-V curves of the

De Soto’s model fit the whole range of the experimental dataset.

Figure 3.3 shows the absolute current errors of three performance predicting meth-

ods under different operating conditions. The three modeling methods are the Villalva’s

model [21], PSIM model, and De Soto’s model with the parameters obtained by the

CS algorithm. It is evident the CS-based De Soto’s model is more accurate than other

analytical models. The PSIM model does not exhibit a good prediction performance

under varying environmental conditions. The Villalva’s modes show high errors at low

temperature or high irradiance levels.

To further validate the accuracy of the CS-based parameter estimation method, the

extracted parameters is compared with the ones obtained by the GA in Figure 3.4.

In general, the CS algorithm gives the better performance than the GA for all cases.

The Maximum Power Point (MPP), usually locating around 74% of the open circuit

voltage, is an important technical data in PV modeling. However, a negative point of

the GA-based ISDM is that the errors in the high voltage range are relatively high.

The maximum absolute error of the GA-based ISDM is up to about 0.8 A, while the

absolute error of the CS is kept below 0.2 A.

3.6 Summary

In this work, the Cuckoo Search (CS) algorithm has been implemented to estimate the

parameters of two PV models, namely, Single Diode (SD) model and its improved ver-

sion (De Soto’s model). The feasibility of the proposed method has been validated by

estimating the parameters of two commercial PV devices. The simulation and experi-

mental results showed that the CS algorithm is capable of not only extracting all the

parameters of the SD model under a certain condition but also successfully estimating

all the parameters of De Soto’s model under different environmental conditions. In
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statistical analysis, the CS algorithm recorded the lowest RMS error value compared

with the other algorithms such as the GA, CPSO and PS.
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Figure 3.4: A comparison of the individual absolute errors between CS- and GA- based
ISDM: (a) under different irradiance levels; (b) under different temperature levels.
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Chapter 4

Parameter Estimation of PV
Model via Parallel Particle
Swarm Optimization Algorithm

Recently, bio-inspired metaheuristic algorithms have been proven to be powerful opti-

mization tools and are widely utilized to estimate crucial parameters of Photovoltaic

(PV) model. However, the computation cost increases as data size or the complexity

of the applied PV electrical model increases. To overcome these limitations, this chap-

ter presents Parallel Particle Swarm Optimization (PPSO) algorithm implemented in

Open Computing Language (OpenCL) to solve the parameter estimation problem for

a wide range of PV electrical models.

This chapter is structured as follows. The first section presents the problem of pa-

rameter estimation. Section 4.2 discusses the related works. The parameter estimation

problem is formulated in Section 4.3. Section 4.4 sketches the SPSO process, and this is

followed by implementation of the proposed PPSO method. Extensive experimental re-

sults obtained from the computation on Central Processing Units (CPUs) and Graphic

Processing Units (GPUs) are discussed in Section 4.5. Finally, Section 4.6 concludes

the work with proposed insights for future work.

The content of this chapter has been published in the following paper:

• Jieming Ma, Ka Lok Man, Tiew On Ting, Nan Zhang, Sheng-Uei Guan, and Pru-

dence W.H. Wong, Accelerating Parameter Estimation for Photovoltaic Models

via Parallel Particle Swarm Optimization, IEEE International Symposium on

Computer, Consumer and Control, pp. 175-178, 2014.
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4.1 Introduction

Since the initial silicon PV cell was developed by using the single crystal, varieties of sil-

icon materials have been applied to develop PV cells. For examples, polycrystalline and

amorphous silicon cells are designed to be less energy intensive. Thin silicon cells make

a compromise between crystalline and amorphous cell. They are reported to achieve

better efficiency and stability [2]. With numerous PV cells made of various semiconduc-

tor materials using different manufacturing processes, a general performance estimation

tool, known as PV electrical model, is crucial to predict the electrical characteristics

of these cells before installation. Unfortunately, the PV electrical model cannot be di-

rectly utilized because of the lack of proper model parameters characterizing PV cells.

The term parameter estimation refers to the process of using sample data to calculate

parameters of the selected PV electrical model [53]. With the parameters obtained in

such a way, the differences between simulated and experimental data can be minimized

considerably.

The bio-inspired metaheuristic algorithms are quite flexible. They do not neces-

sitate the gradient information to guide their search process nor do it impose certain

characteristics on the objective function such as convexity or continuity. In the litera-

ture [17, 71, 72] and [38], the Particle Swarm Optimization (PSO) was implemented in

C-program or MATLAB script to extract the parameters for numerous PV cells and

modules. The simulation results show the cohort of methods are capable of extracting

the parameters in a high accuracy rate.

Today’s programing environments, such as Open Computing Language (OpenCL),

are more multifaceted and enable an algorithm to execute in a range of Central Process-

ing Units (CPUs), Digital Signal Processors (DSPs), Field Programmable Gate Arrays

(FPGAs), and Graphic Processing Units (GPUs) [123]. These programing environ-

ments or Application Programming Interfaces (APIs) exploit the computing capabil-

ities of devices using the languages that only require the highest-level descriptions of

parallel process management [124].

With the aim of distributing the workload of a parameter estimation algorithm

appropriately to computing devices in parallel mode, a form of computation, in which

the PSO-based parameter estimation algorithm is carried out simultaneously, is pre-

sented. The parallel program is named Parallel Particle Swarm Optimization (PPSO)

in this chapter. It is implemented in OpenCL, which is a heterogeneous programming
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framework that supports a wide range of levels of parallelism and efficiently maps to a

variety of computing devices [125].

It is desirable that the PPSO outperforms its sequential version, Sequential Particle

Swarm Optimization (SPSO), in two aspects:

i. the computational speed tends to be faster than the SPSO with the same amount

of work load;

ii. more computational units can be utilized in optimization, and thus it is scalable.

The accuracy and computational efficiency of the proposed method are evaluated

by identifying the parameters of two most widely applicable PV electrical models.

4.2 Related Work

As discussed in Chapter 2, the conventional parameter estimation methods are classified

into two categories: analytical and numerical techniques. The former represents model

parameters mathematically by a series of equations, while the latter extracts parameters

utilizing numerical methods to minimize the error of the applied model. Feasible as

they are, both of them have inevitable defects. The analytical technique addresses the

parameter estimation problem by analytical expressions in terms of the key points on

the PV current-voltage (I-V ) curve (e.g. the Maximum Power Point (MPP), short-

circuit current Isc, and open-circuit voltage Voc, etc). Its errors can be significant

and cannot be further reduced if these fundamental elements are incorrectly specified.

Numerical parameter extraction is normally considered as an accurate approach in

parameter estimation as all the measured data can be used in the calculation. It

is axiomatic that its performance depends on the type of fitting algorithm, the cost

function as well as the initial values of parameters to be extracted [61]. Moreover,

many algorithms can be computationally expensive as the size of the required data is

considerably large.

More recently bio-inspired metaheuristic algorithms, such as Genetic Algorithm

(GA) [18], Particle Swarm Optimization (PSO) [17,38,71,72], Bacterial Foraging Algo-

rithm (BFA) [73], Pattern Search (PS) [19], Simulated Annealing (SA) [74], Differential

Evolution [75, 76], and Cuckoo Search (CS) [77] have been proposed to determine the

values of PV model parameters. Albeit accurate, most of these methods apply multiple
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agents or particles in random search and do not facilitate a meaningful improvement

in computational efficiency.

4.3 Problem Formulation

Based on an optimization algorithm, the parameter estimation method minimizes the

differences between calculated current and measured data by adjusting parameters of

the PV models [77]. Normally, the parameter estimation process, the fitness value of a

trial solution is evaluated by the Root-Mean-Square (RMS) error frms which serves to

aggregate absolute differences into a single measure of predictive power. If the size of

experimental data is denoted by N , the RMS error can be mathematically described

by the following equation:

frms =

√√√√ 1

N

N∑
d=1

(
fd(V̂ , Î,X)

)2
, (4.1)

where V̂ and Î denote the measured voltage and current, respectively. The fitness

function frms(X) is the objective function for the dth data, X is a vector representing

the model parameters. Take the SDC for an example, frms(V̂ , Î,X) is a homogeneous

form of (2.5), namely:

frms(V̂ , Î,X) = Iph − Io1(e
V̂+ÎRs
A1Vt − 1)− V̂ + ÎRs

Rp
− Î , (4.2)

where X is a vector involving the model parameters Iph, Io1 , A1, Rs, and Rp.

4.4 Parameter Estimation Algorithm

4.4.1 Sequential Particle Swarm Optimization

By mimicking the swarm behavior of fishes and birds, Kennedy and Eberhart [15] de-

veloped a nature-inspired metaheuristic algorithm in 1995. This derivative-free method

is particularly suited for continuous variable problems and has been successfully ap-

plied to many engineering optimization problems [71, 126]. In [13], Kennedy et al.

implemented the algorithm in procedure C-program. We name it the SPSO in this

paper.
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Algorithm 2: Pseudocode for the SPSO algorithm

Input: The measured I-V data
Output: The best solutions in the search-space
Initialize SPSO parameters;
Initialize locations xi,j and velocity vi,j of ith particles in jth dimension;
while Stopping criterion is not satisfied do

Load the measured I-V data;
for i = 1 to P (particle) do

for j = 1 to D (dimension) do
Evaluate the model error fd(X);

end
Calculate the fitness value RMS via Equation (4.1);

end
Update the w via Equation (4.5)
Update the pbesti for each particle;
Update the gbest in the swarm;
for i = 1 to P (particle) do

for j = 1 to D (dimension) do
Update the velocity vi,j via Equation (4.4);
if vi,j exceeds the bounds then

Set vi,j to the bounds;
end
Update the location xi,j via Equation (4.3);
if xi,j exceeds the bounds then

Set xi,j to the bounds;
end

end

end

end

The basic idea behind SPSO is to search a space by adjusting the trajectories of

particles, which represent possible solutions to the objective function. The pseudocode

depicting the SPSO is shown in Algorithm 2. Assume that the swarm size is P and the

problem dimension is D. The ith (i = 1, 2, ...P ) particle in jth (j = 1, 2, ...D) dimension

is denoted by xi,j . Similarity, the ith velocity in jth dimension is vi,j .

The PSO firstly initializes the algorithm parameters (e.g. inertia weight, learning

parameters, etc.) as well as the velocity and position of each particle. In an iteration

t (t = 1, 2, ...tmax), the fitness of particles is evaluated individually by its objective

function. When a particle i arrives a location that is better than any positions it

arrived, it records the new position as local best position pbesti. In a swarm of particles,

there are P local best positions. Among them, the one with the best solution is termed

as global best position gbest in the literature. Kennedy and Eberhart proposed that

the movements of particles are mainly attracted toward the pbesti and gbest, and the
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new position of a particle in the iteration t+ 1 can be mathematically expressed in the

following manner:

xt+1
i,j = xti,j + vt+1

i,j , (4.3)

where vt+1
i,j is the velocity, expressed as:

vt+1
i,j = wvti,j + αε1(x

t
i,j − gbestt) + βε2(x

t
i,j − pbestti). (4.4)

In 4.4, the notations α and β are the learning parameters. Typically, α ≈ β ≈ 2.

The two random vectors ε1 and ε2 are in the range between 0 and 1. The inertia weight

w is utilized to balance the global and local search. It can be taken either as a constant

from 0.5 to 0.9 for simplicity, or a linear function in terms of iteration t. In this paper,

the value of w is defined as:

wt = wmax − (wmax − wmin)
t

tmax
, (4.5)

where wmax and wmin represent the maximum and minimum of the w, respectively.

Normally, lower and upper boundaries are set to ensure the particles are within the

predetermined range. If the velocity or position of a particle exceeds the upper bound,

it will be reset to the maximum, and vice versa. The algorithm will then continue to

evaluate the fitness and a new iteration starts. The PPSO will not stop searching for

better solutions until it meets the stopping criterion.

4.4.2 Implementation of Parallel Particle Swarm Optimization

Workload behaviors can be generally classified into two types: data intensive and con-

trol intensive. In fact, there is no best architecture that runs optimally on all types

of workloads. According to [125], control-intensive applications tend to run faster on

super-scalar CPUs, where significant computing efforts have been devoted to branch

prediction mechanisms, while data-intensive applications tend to run fast on vector

architectures, where the same operation is applied to multiple data items concurrently.

The structure of SPSO has a mix of the workload characteristics. Consider the

fitness evaluation function. In a procedure C-program, the RMS errors are computed

particle by particle in a for loop. In order to parallelize this function, a separate

execution instance is generated to perform fitness evaluation for each particle. Fig-

ure 4.1 depicts the concurrent process. With the measured I-V data, the RMS error
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Figure 4.1: Parallel computing framework utilizing a swarm of particles.

can be calculated concurrently in a kernel, which actually is a piece of code execut-

ing tasks on a multi-core processor. The fitness evaluation process for a particle does

not depend on any other particle, and thereby possesses significant data level paral-

lelism. On the other hand, the function updating the swarm’s velocities and positions,

especially the process checking whether the values exceed the predefined bounds, can

be assigned to the category of control-intensive applications since it involves explicit

flow-control constructs such as if -then-else. From these considerations, it is desirable

that a programming framework with the capability of execution across a wide range of

device types so that the workload can be executed most efficiently on a specific style

of hardware architecture.

The OpenCL, managed by the nonprofit technology consortium Khronos Group, is

such a heterogeneous programming framework that supports a wide range of levels in

parallelism and efficiently maps to a variety of computing devices [125]. A host and a

device-side language are both defined in the OpenCL. The former offers a management

layer that supports efficient plumbing of complicated concurrent programs, while the

latter maps the heavy work load into a wide range of memory systems.

In our implementation, the main program was written in OpenCL code. APIs are
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Figure 4.2: Flow chart of the PPSO algorithm: (a) The main program; (b) Parallel
evaluations of RMS error.

used to configure a context which allows commands and data passing to the device.

Figure (4.2) represents the whole algorithmic flow of the proposed PPSO. After ini-

tialization, velocities and positions of particles are transferred from the host to the

device. In the OpenCL kernel function, fitness evaluations are decomposed to perform

the evaluations concurrently on a multi-processor device. Global synchronization or
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barrier function is applied to ensure that all of the fitness evaluations are completed

before they are transferred back to the host. The local best and global best positions

are aided to determine the new velocities and positions of particles. The algorithm will

then return to the parallel process by evaluations through the objective function until

the stopping criterion is satisfied.

4.5 Experiments and Results

Table 4.1: Estimated parameters of SDC and DDC on the R.T. France solar cell using
various methods.

PV model Method Ipv(A) Rs(Ω) Rp(Ω) Io1(µA) a1 Io2(µA) a2

SDC

PPSO 0.7608 0.0364 53.7185 0.3230 1.4812 - -
LSO [16] 0.7608 0.0364 53.7634 0.3223 1.4837 - -
PS [19] 0.7617 0.0313 64.1026 0.9980 1.6000 - -
SA [74] 0.7620 0.0345 43.1034 0.3130 1.5172 - -

DDC
PPSO 0.7608 0.0370 56.5710 0.3230 1.4317 1.1793 2
SA [74] 0.7623 0.0345 43.1034 0.3230 1.5172 1.1793 2

SDM

PPSO 1.0305 1.2013 981.9823 3.4823 1.3512 - -
LSO [16] 1.0318 1.2057 549.4505 3.4823 1.3458 - -
PS [19] 1.0313 1.2053 714.2857 3.1756 1.3414 - -
SA [74] 1.0031 1.1989 833.3333 3.4823 1.3561 - -

DDM PPSO 1.0305 1.2013 981.9845 3.4823 1.3512 0.0001 2

Table 4.2: PPSO’s search ranges for relevant models.

Model Type SDC DDC SDM DDM

Iph [0.7, 1] [0.9, 1.2]
Rs [0.001, 1] [0.001, 1]
Rp [20, 200] [20, 3000]
Io1 [1E-10, 1E-4] [1E-10, 1E-4]
a1 [0.8, 2] [0.8, 2]
Io2 [1E-10, 1E-4] [1E-10, 1E-4]
a2 [0.8, 2] [0.8, 2]

The proposed PPSO is implemented in OpenCL and simulations were performed

under Microsoft Windows 7 64-bit operating system. Its algorithm parameters are set

as learning factors c1 = c2 = 2, the maximum inertia factor wmax = 0.9, the minimum

inertia factor wmin = 0.4.

With the aim of conducting a comprehensive evaluation, both SDM and DDM are
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applied in parameter estimation. The experimental I-V data of a 57 mm diameter

commercial silicon PV cell (R.T.C. France) and a PV module (Photowatt-PWP 201)

comprising 36 polycrystalline silicon PV cells are considered as test examples in this

paper. (The measured data of the R.T.C. France silicon PV cell and Photowatt-PWP

201 PV module are given in Appendix B and C, respectively.) Their values were

obtained under the controlled conditions of an automated measuring system with a

CBM8096 microcomputer demonstrated in [16]. It is assumed that all the silicon cells

in a PV module are identical and work under the same temperature (R.T.C. France

PV cell at 33◦C and Photowatt-PWP 201 PV module at 45◦C).

Extensive simulation results and statistical analysis are presented in the next sec-

tions. Section 4.5.1 studies the parameter estimation capability by evaluating the evo-

lutionary performance and the distribution of fitness values for the proposed PPSO

method. Besides RMS error, the other two fundamental measures, namely, the abso-

lute error e and the mean absolute error ē, are used to evaluate how close simulated

current values I are to the measured data Î. Their mathematical expressions are shown

as follows:

e = |I − Î|, (4.6)

ē =
1

N

N∑
d=1

ed, (4.7)

where Î is the measured terminal current.

In Section 4.5.2, we demonstrate how the PPSO method outperforms its sequen-

tial version in terms of computational speed. Speedup is used to qualify the ratio of

sequential execution time to parallel execution time:

S =
Ts
Tp
, (4.8)

where Ts is the execution time of the sequential algorithm on the host processor and

Tp is the execution time of the parallel algorithm on multi-core devices.

4.5.1 Parameter Estimation Capability

As stated in [127], ‘no free lunch theorems for optimization’, that is to say there is no

universally best algorithm. Among so many optimization algorithms, our purpose is

to find a method that performs the best in the parameter estimation for PV electrical

models.

51



Table 4.1 shows the estimated parameters for different PV electrical models obtained

from the best of 30 runs of the proposed PPSO method, in which the swarm size

and maximum iteration number are set to 2048 and 80000 respectively. It is worth

noting that the objective function is minimized with respect to the range of parameters

throughout parameter extraction process. In this investigation, the search range for

each parameter is tabulated in Table 4.2. In order to make a comprehensive comparison

of the accuracy of these parameter estimation methods, the parameters estimated by

other methods (e.g. Least Square Optimization (LSO) [16], Pattern Search (PS) [19]

and Simulated Annealing (SA) algorithms [74]) are also listed in Table 4.1 for reference.

The LSO is a non-linear algorithm based on the Newton model modified with Levenberg

parameter. Unlike LSO, PS and SA as well as PPSO, they do not require the gradient

information to guide their search process nor do they impose certain characteristics on

the objective function such as convexity or continuity, and thus these methods are quite

flexible and straightforward to implement. The PS finds a sequence of trial solutions

that approach the optimal fitness value. A pattern is a set of vectors used to determine

which trial solution to choose. At each iteration, a set of solutions, called a mesh, will

be polled by evaluating the fitness. If a solution that yields a better fitness value, it

becomes the current point at the next iteration. Otherwise, the poll is unsuccessful

and the solution remains the same at the next iteration. The SA, however, obtains the

optimal value by mimicking the annealing process in material processing when a metal

cools and freezes into a crystalline state with the minimum energy and larger crystal

size [12].

With these parameters, the simulated value of the terminal current is available for

reconstruction. This can be achieved by substituting back into (2.5), (2.6), (2.10), or

(2.11). In this case, terminal voltage V (or V ′), temperature T and solar irradiance G

are known quantities. The terminal current I (or I ′) acts as an unknown and its value

is obtained numerically by Newton method [74].

In Table 4.3 and 4.4, the absolute errors obtained from the PPSO algorithm are com-

pared with three different parameter estimation approaches: LSO, PS and SA methods.

The absolute errors of the PPSO method are in the range [8.7615E-5, 1.5969E-3] for

the SDC, [7.2612E-5, 1.4192E-3] for the DDC, [3.2125E-5, 4.4171E-3] for the SDM, and

[3.3165E-5, 4.4171E-3] for the DDM. The mean absolute errors ē are listed in the last

row of the two table to show the average performance of these algorithms. For all the

applied PV electrical models, the PPSO appears to be the most accurate, followed by
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Table 4.3: Absolute error e of the simulated terminal current on the R. T. C. France
solar cell.

No.
e (SDC) e (DDC)

PPSO LSO [16] PS [19] SA [74] PPSO SA [74]
1 8.7615 E-5 1.09 E-4 5.3700 E-4 9.8000 E-4 7.6234 E-5 2.48 E-3
2 6.6261 E-4 6.8600 E-4 1.3430 E-3 1.71 E-3 5.7046 E-4 2.71 E-3
3 8.5470 E-4 8.7900 E-4 1.7470 E-3 2.04 E-3 8.2803 E-4 2.58 E-3
4 3.4581 E-4 3.2100 E-4 7.3900 E-4 9.70 E-4 3.1332 E-4 1.08 E-3
5 9.4418 E-4 9.1900 E-4 3.1400 E-4 4.90 E-4 8.6004 E-4 2.10 E-4
6 9.5703 E-4 9.3100 E-4 4.5300 E-4 5.80 E-4 8.3090 E-4 5.00 E-5
7 9.1557 E-5 1.2000 E-4 1.6220 E-3 1.72 E-3 2.4571 E-4 7.60 E-4
8 8.5796 E-4 8.2600 E-4 7.3700 E-4 8.40 E-4 6.9610 E-4 4.10 E-4
9 4.1271 E-4 3.6900 E-4 1.1510 E-3 1.32 E-3 2.7078 E-4 2.00 E-4
10 3.3556 E-4 2.6100 E-4 1.0320 E-3 1.38 E-3 2.4619 E-4 3.90 E-4
11 8.8803 E-4 1.0440 E-3 1.8170 E-3 2.50 E-3 8.9503 E-4 5.10 E-4
12 8.4833 E-4 1.1820 E-3 1.0050 E-3 2.25 E-3 7.5708 E-4 6.00 E-5
13 1.5969 E-3 2.3090 E-3 6.2800 E-4 2.66 E-3 1.4192 E-3 3.20 E-4
14 6.0302 E-4 7.7500 E-4 3.0400 E-3 5.00 E-5 8.2221 E-4 2.49 E-3
15 4.5414 E-4 3.0650 E-3 3.4050 E-3 5.50 E-4 2.6122 E-4 1.94 E-3
16 2.0195 E-4 4.3300 E-3 5.2200 E-3 5.60 E-4 3.0525 E-4 3.01 E-3
17 1.1069 E-3 6.1680 E-3 6.5810 E-3 1.77 E-3 1.0954 E-3 4.08 E-3
18 8.9946 E-4 1.0241 E-2 5.7470 E-3 1.48 E-3 7.9575 E-4 3.58 E-3
19 5.1961 E-4 1.6846 E-2 2.4770 E-3 5.50 E-4 6.5768 E-4 1.22 E-3
20 5.2319 E-4 2.2874 E-2 1.1200 E-4 1.11 E-3 6.3240 E-4 2.60 E-4
21 7.3999 E-4 3.0060 E-2 2.6910 E-3 1.91 E-3 7.7866 E-4 1.03 E-3
22 1.1132 E-4 3.6806 E-2 3.9100 E-3 1.23 E-3 7.2612 E-5 8.80 E-4
23 7.7634 E-4 4.3444 E-2 3.5900 E-3 5.00 E-4 8.6343 E-4 2.50 E-4
24 7.5309 E-4 5.4194 E-2 5.4230 E-3 9.40 E-4 6.6895 E-4 1.80 E-3
25 1.3770 E-3 5.9145 E-2 3.3400 E-4 4.53 E-3 1.3931 E-3 3.03 E-3
26 8.3088 E-4 6.9445 E-2 3.3900 E-4 2.50 E-3 9.1210 E-4 5.30 E-4

ē 6.8384 E-4 1.4129 E-2 2.1536 E-3 1.43 E-3 6.6415 E-4 1.38 E-3

SA and PS, and finally LSO. Among these test results, the ē obtained by PPSO with

the DDC achieves the lowest value, recording 6.6415E-4, which is 51.85% lower than

the SA with the same PV electrical model, and is approximately 3 % lower than the

PPSO with the SDC. It is observable that the accuracy can be improved if we apply

the DDC instead of SDC. However, in the simulation results for Photowatt-PWP 201

PV module, the ē cannot be decreased by using the DDM. That indicates the compli-

cated model DDM does not always gives an accurate simulation results in parameter

estimation, and the proposed method behaves more stable on the SDC and SDM.

Figure 4.3 shows the qualitative representation of the average evolutionary per-

formance of the PPSO method for different electrical PV models. The fitness value,
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Table 4.4: Absolute error e of the simulated terminal current on the Photowatt-PWP
201 PV module.

No.
e (SDM) e (DDM)

PPSO LSO [16] PS [19] SA [74] PPSO
1 2.3782 E-3 2.1970 E-3 2.1350 E-3 6.00 E-5 2.3782 E-3
2 2.6159 E-3 3.7830 E-3 3.0300 E-3 6.40 E-4 2.6159 E-3
3 2.5816 E-4 2.6510 E-3 1.2670 E-3 1.41 E-3 2.5815 E-4
4 2.1037 E-3 1.4060 E-3 5.5800 E-4 3.49 E-3 2.1037 E-3
5 4.2831 E-3 2.3600 E-4 2.2620 E-3 5.41 E-3 4.2831 E-3
6 4.4171 E-3 1.0090 E-3 1.9860 E-3 5.29 E-3 4.4171 E-3
7 2.3505 E-3 3.8790 E-3 4.1900 E-4 2.96 E-3 2.3505 E-3
8 4.9114 E-4 6.4210 E-3 2.5280 E-3 8.30 E-4 4.9117 E-4
9 2.8215 E-3 1.0319 E-2 6.0230 E-3 2.82 E-3 2.8215 E-3
10 3.3469 E-3 1.1258 E-2 6.6030 E-3 3.70 E-3 3.3469 E-3
11 3.3028 E-3 1.1449 E-2 6.4990 E-3 4.03 E-3 3.3027 E-3
12 2.4514 E-3 1.0586 E-2 5.4370 E-3 3.50 E-3 2.4513 E-3
13 8.8036 E-5 7.5650 E-3 2.3500 E-3 1.00 E-3 8.8240 E-5
14 1.8993 E-4 7.4220 E-3 2.3080 E-3 1.52 E-3 1.8964 E-4
15 1.4578 E-3 4.7070 E-3 1.1900 E-4 4.40 E-4 1.4582 E-3
16 1.9663 E-3 3.0930 E-3 1.2550 E-3 1.22 E-3 1.9668 E-3
17 1.1963 E-3 3.0740 E-3 6.1700 E-4 3.60 E-4 1.1969 E-3
18 1.3164 E-3 1.7300 E-3 1.1540 E-3 8.00 E-4 1.3171 E-3
19 1.6901 E-4 2.3410 E-3 3.9000 E-4 7.40 E-4 1.6978 E-4
20 6.4246 E-4 2.5470 E-3 1.6150 E-3 1.89 E-3 6.4161 E-4
21 2.6453 E-3 5.0520 E-3 5.2050 E-3 5.34 E-3 2.6444 E-3
22 1.6880 E-4 6.6900 E-4 5.6100 E-4 5.90 E-4 1.6782 E-4
23 3.2125 E-5 2.2830 E-3 5.1000 E-5 6.00 E-5 3.3165 E-5
24 1.1699 E-4 3.1850 E-3 2.4400 E-4 5.23 E-4 1.1590 E-4
25 9.7829 E-4 6.7500 E-3 2.2670 E-3 2.62 E-3 9.7942 E-4

ē 1.6715 E-3 4.6245 E-3 2.2753 E-3 2.0288 E-3 1.6716 E-3

namely the RMS error, is averaged over 30 runs of the applied parameter estimation

methods. In general, the average fitness of PPSO drops dramatically in the conver-

gence traces, especially before the first 2000 iterations. The average fitness of the SDM

reaches the lowest value after 10000 iterations by using the PPSO with 2048 particles

as seen in the plots. Whichever model we use, the algorithm with larger swarm size

tends to be faster in terms of convergence speed.

Based on the above analysis, the PPSO shows its consistent performance of ex-

tracting the parameters from the experimental data with a relatively high accuracy.

Figure 4.4 further demonstrates the distribution of the fitness values obtained from the

PPSO method after 20000 iterations. The swarm size is respectively set to 16, 64, 256,
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Figure 4.3: Average evolutionary performance of the PPSO with various PV electrical
models: (a) SDC; (b) DDC; (c) SDM; (d) DDM.

512, 1024 and 2048. It is observed that the intermediate values tend to decrease with

the increasing of the particle number, which agrees well with the simulation results

in Figure 4.3. The decreasing trend implies that the PPSO with a large swarm size
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Figure 4.4: Distribution of the fitness values obtained by the PPSO with various PV
electrical models: (a) SDC; (b) DDC; (c) SDM; (d) DDM.

has a higher possibility of achieving good fitness value without changing the iteration

number. In this sense, the PPSO can improve the accuracy in an unit time on a speci-

fied device. From another perspective, the PPSO executes particle evolution processes

concurrently with the applied computing device, and in such a way, the efficiency of

parameter estimation can be improved. The speedup, as well as the parallel efficiency

of the proposed PPSO method, will be discussed in the subsequent subsection.
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Figure 4.5: The execution time and average fitness of the sequential parameter esti-
mation for PV electrical models on Intel i7-4770k: (a) SPSO with the SDC; (b) SPSO
with the DDC; (c) SPSO with the SDM; (d) SPSO with the DDM.

4.5.2 Speedup and Parallel Efficiency

Parameter estimation is an optimization problem for a multi-variable objective function

with a huge amount of measured data, and its computational speed are becoming more

crucial.

In the implementation of PPSO, we follow a hybrid approach whereby the fitness

is evaluated in the kernel and the other processes (e.g. position updating and velocity

updating) are performed in the host device. The results averaged over 30 trials of the
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Figure 4.6: The execution time and average fitness of the parallel parameter estimation
for PV electrical models on Intel i7-4770k: (a) PPSO with the SDC; (b) PPSO with
the DDC; (c) PPSO with the SDM; (d) PPSO with the DDM.

PPSO with 20000 iterations. To show how much the parallel processing speed up the

fitness evaluation function, the execution time on the host and the device are denoted

by bars with light and dark colors separately. A comparison of the total execution time

and fitness values, both measured in the proposed parallel based parameter estimation

and its sequential counterpart for PV electrical models, is made in Figure 4.5. From

Figure 4.5 (a), (b), (c) and (d), we observe that the execution time on the fitness eval-

uation makes up much larger percentage than that on the other functions in sequential

processing. Except for the fitness evaluation, the codes of the PPSO and SPSO are
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Table 4.5: PPSO’s speedup on heterogeneous computing platforms.

Model Host Device
Swarm Size

64 256 512 1024 2048

SDC

Intel i3-3220 Intel i3-3220 1.5096 1.6758 1.7496 1.8583 2.0677
Intel i5-3470 Intel i5-3470 2.0728 2.4171 2.5966 2.7715 2.9036
Intel i7-4770k Intel i7-4770k 2.1304 2.7308 2.7962 2.8049 2.9263
Intel i7-4770k Nvidia GT620 0.8506 1.8118 1.9429 1.9841 2.0632
Intel i7-4770k Nvidia GTX760 0.5653 1.5336 1.9491 2.1169 2.6899
Intel i7-4770k AMD R9 200 1.3445 1.8870 2.6606 3.2312 3.7191

DDC

Intel i3-3220 Intel i3-3220 1.4597 1.7764 2.1751 2.1785 2.8261
Intel i5-3470 Intel i5-3470 2.2487 2.5149 2.7594 2.8424 2.8292
Intel i7-4770k Intel i7-4770k 2.2467 2.6223 2.6979 2.8540 2.9135
Intel i7-4770k Nvidia GT620 0.7211 1.6203 1.7543 1.7729 1.8523
Intel i7-4770k Nvidia GTX760 0.4404 1.2430 1.7674 1.9659 2.6038
Intel i7-4770k AMD R9 200 1.4033 2.0470 2.6382 2.9913 3.4426

SDM

Intel i3-3220 Intel i3-3220 1.5789 1.7464 1.7713 1.8096 2.1682
Intel i5-3470 Intel i5-3470 2.6659 2.8683 3.0358 3.3117 3.4434
Intel i7-4770k Intel i7-4770k 1.1599 2.5349 3.5339 3.5531 3.5648
Intel i7-4770k Nvidia GT620 0.8162 1.7427 1.9607 1.9665 2.0687
Intel i7-4770k Nvidia GTX760 0.5962 1.7892 2.3770 2.8178 3.5182
Intel i7-4770k AMD R9 200 1.3656 2.0887 3.1276 4.0524 4.6062

SDM

Intel i3-3220 Intel i3-3220 1.7309 1.7893 1.9980 2.2967 2.5823
Intel i5-3470 Intel i5-3470 2.3141 2.5749 2.7770 2.8632 3.0007
Intel i7-4770k Intel i7-4770k 2.2467 2.6979 2.7100 2.9685 3.1185
Intel i7-4770k Nvidia GT620 0.7483 1.6447 1.7981 1.9169 1.9219
Intel i7-4770k Nvidia GTX760 0.4585 1.2852 1.8869 2.1498 2.7097
Intel i7-4770k AMD R9 200 1.3460 1.9324 2.8139 3.3412 3.6521

exactly the same, and therefore their execution time on the host is similar. As seen in

Figure 4.5 (e), (f), (g) and (h), the computation time takes in fitness evaluation func-

tion can be significantly reduced by the PPSO. In addition, the total execution time

for the DDC is longer to the one for SDC. This happens because the computational

complexity of the DDM is higher than that of the SDM as seen in (2.10) and (2.11).

To further evaluate the parallel performance of the proposed PPSO algorithm, We

evaluate the speedup of PPSO on a number of multi-core computing devices, which

includes:

i. Intel (R) Core (TM) i3-3220 CPU

(2 cores, 2 threads, 3.3 GHz)

ii. Intel (R) Core (TM) i5-3470 CPU
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(4 cores, 4 threads, 3.2 GHz )

iii. Intel (R) Core (TM) i7-4770K CPU

(4 cores, 8 threads, 3.5 GHz)

iv. NVIDIA (R) GeForce (TM) GTX 760 GPU

(1152 CUDA cores, 980 MHz)

v. NVIDIA (R) GeForce (TM) GT 620 GPU

(96 CUDA cores, 700 MHz)

vi. AMD (R) Radeon (TM) R9 200 GPU

(2048 stream processors, 1150 MHz)

Table 4.5 lists the average speedup of the PPSO with different swarm size on these

devices. From simulation results, some conclusions can be drawn. In most tests, the

speedup of the PPSO is above 1. In other words, the execution time of the PPSO is

normally shorter than that of the SPSO. Moreover, the parallel program with larger

swarm size tends to perform at a faster speed. The exception is made by the PPSO

with a swarm size of 64 particles. Its speed is even lower than the corresponding

sequential version on GT 620 and GTX 760, which implies the overheads on data

communication and kernel scheduling are more significant on the two GPUs. With

more applied particles, the speedup appears to be a larger ratio. This is because the

speedup on the applied multi-core devices over the host processor is large enough to

compensate for the initial data transfer cost. From Figure 4.5 (a) and (e), we can

conclude that the PPSO can achieve better fitness values if taking the same amount

of execution time as the SPSO. Similar trends are observable in the speedup for the

DDC, SDM, and DDM. Among these tests, the parallel program with Intel i7-4770k

and AMD R9 200 series exhibits the minimum execution time, recording an average

speedup ratio from 3.4426 to 4.6062 for a swarm size set of 2048 particles.

4.6 Summary

In this work, a parallel computing paradigm has been shown to speed up the param-

eter estimation process for four PV models, which are SDM, DDC, SDM, and DDM

respectively. The proposed Parallel Particle Swarm Optimization (PPSO) implemented

in OpenCL can be executed with a wide range of multi-core computing devices. The
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PPSO implemented here does not only show improvement in terms of speed, but also

records lower error values in comparison with three other methods (LSO, PS and SA).

Hence, it is evident that the PPSO possesses exceptional capability in the parameter es-

timation. In addition, fitness evaluations are performed concurrently on multi-processor

devices, and the simulation results show that the PPSO with 2048 particles is capa-

ble of accelerating the computational speed by at least 64% on the used computing

platforms.
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Chapter 5

Maximum Power Point Tracking
Using Model-Based Two-Stage
Control Strategy

This chapter deals with Maximum Power Point Tracking (MPPT) control of a Photo-

voltaic (PV) array, focusing on changing environmental conditions. In the first section,

the problem of MPPT is introduced, and this is followed by an overview of the most

popular MPPT methods. In Section 5.3, the approximate model used for the proposed

MPPT strategy is addressed. Section 5.4 demonstrates a model-based two-stage MPPT

framework, including the Maximum Power Power Estimation (MPPE) and Maximum

Power Point Revision (MPPR). The experimental setup is introduced in Section 5.5,

and the simulation results are presented in Section 5.6. Finally, the concluding remarks

are presented in Section 5.7.

The content of this chapter has been published in the following papers:

• Jieming Ma, Ka Lok Man, Tiew On Ting, Nan Zhang, Sheng-Uei Guan, and

Prudence W. H. Wong, Approximate Single-Diode Photovoltaic Model for Effi-

cient I-V Characteristics Estimation, The Scientific World Journal, vol. 2013,

no. 230471, pp. 1-7, 2013.

• Jieming Ma, Ka Lok Man, Tiew On Ting, Nan Zhang, Sheng-Uei Guan, Pru-

dence W. H. Wong, Eng Gee Lim, T. Krilaviius, J. Kapoit-Dzikien, and Chi-Un

Lei, Improving Power-Conversion Efficiency via a Hybrid MPPT Approach for

Photovoltaic Systems, Electronics and Electrical Engineering, vol. 19, no. 7, pp.

57-60, 2013.
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• Jieming Ma, Ka Lok Man, Tiew On Ting, Nan Zhang, Sheng-Uei Guan, and

Prudence W.H. Wong, Estimation and Revision: A Framework for Maximum

Power Point Tracking on Partially Shaded Photovoltaic Arrays, IEEE Interna-

tional Symposium on Computer, Consumer and Control, pp. 162-165, 2014.

• Jieming Ma, Ka Lok Man, Tiew On Ting, Nan Zhang, Chi-Un Lei, and Ngai

Wong, A Hybrid MPPT Method for Photovoltaic Systems via Estimation and

Revision, in Proceedings of IEEE International Symposium on Circuits and Sys-

tems, pp. 241-244, 2013.

5.1 Introduction

Since the availability of fossil fuels is declining, efforts have been made to explore solar

energy. Photovoltaic (PV) generating systems, providing extra electrical power from

solar energy, are becoming more common and necessary components in daily life. In

these applications, the typical goal is to obtain the maximum possible power from the

PV plant over the entire time of operation.

Today a commercial PV inverter has an efficiency of about 99% over a wide range

of irradiation conditions [128]. A major challenge in the utilization of PV generation

is posed by its non-linear Current-Voltage (I-V ) characteristics, which results in an

unique Maximum Power Point (MPP) varying with different atmospheric conditions

in its Power-Voltage (P -V ) curve (e.g. temperature, insolation) [11]. As these quan-

tities vary with time, it is essential to develop an Maximum Power Point Tracking

(MPPT) algorithm to extract maximum power from the PV array in real time. How-

ever, until recently, tracking under rapidly changing environmental conditions received

little attention from manufacturers. In the locations with varying cloud conditions,

fast dynamic MPPT can contribute a few additional percentage points to the energy

yield [129]. The issue becomes more complicated when the entire PV array receives

nonuniform irradiance level - a condition known as partial shading. When a PV array

is subjected to partial shading conditions, its P -V curves exhibit multiple peaks with

several Local Maximum Power Point (LMPP) and one Global Maximum Power Point

(GMPP) [130]. The main drawback of the conventional MPPT method is that for most

of the cases, the algorithm is likely to trap at the LMPP since it could not differenti-

ate the LMPP with the GMPP. Consequently, it oscillates around the local peak and

remains at that location afterwards. The output power is therefore reduced. More
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recently, evolutionary algorithms have been proposed to track the PV devices under

partial shading conditions [103,104,108,109]. These methods do not need an accurate

mathematical model and are robust in MPPT. Although they prevent the operating

point from concentrating at LMPPs, it requires much more computational effort since

a large number of random solutions have to be evaluated in every iteration.

Because of recent advances in the PV modeling, the electrical characteristics of

various sizes of PV generators, from a single PV module to a multidimensional PV

array, can be estimated to aid the task of MPPT. By using the PV electrical model

illustrated in [131], this chapter proposes a novel framework for MPPT capitalized on

a model-based two-stage search strategy for partially shaded PV arrays. It intends

to combine the offline random search using bio-inspired algorithms with the online

Adaptive Perturb & Observe (APO) algorithm as an iterative manner. The advantages

of the proposed method are threefold:

• The number of online searching iterations can be decreased dramatically by the

initial voltage value delivered by a simple yet accurate Maximum Power Point

Estimation (MPPE) method.

• The variable-step size APO accelerates the tracking speed.

• Power oscillation, which is considered as an inherent drawback of the conventional

direct MPPT methods, can be eliminated by the proposed two-stage method.

5.2 Related Work

In recent years, a number of MPPT methods have been developed and implemented to

improve the power-conversion efficiency of PV systems. These methods vary in com-

plexity, sensors requirements, convergence speed and cost [10,23,24,54,84–93,103–105].

In the literature [82], MPPT methods are classified into online and offline approaches,

depending on the function of tracking methods or control strategies. The former nor-

mally uses measured operating power, voltage or current along with an online algorithm

to search MPPs of PV generators. The methods in this group include Perturb and Ob-

serve (P&O) [84–86] and Incremental Conductance (IncCond) [87]. These approaches,

although robust, usually produce slow response to the sudden changes of environmental

conditions (e.g. T and G). In addition, fixed perturbation size causes inevitable os-

cillations of output power, resulting in extra energy loss. Classical Root-Finding (RF)
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algorithms are considered as iterative numerical methods with variable-size perturba-

tions. One advantage of the RF based algorithms over the P&O and IncCond methods

is that root-finding techniques avoid issues with oscillations [88, 89]. However, the RF

algorithms, such as Newton Raphson Method, Secant Method, and Bisection Method,

may fail to track the GMPP of a PV array under partial shading conditions.

The offline methods typically predict the MPP based on equations with the math-

ematical expressions of the electrical characteristics of a PV array, or the algorithms

obtained from empirical data. Curve Fitting (CF) [91], Fractional Open-Circuit Volt-

age (FOCV) and Fractional Short-Circuit Current (FSCC) [132] methods all fall into

this category. The CF method is based on the assumptions that the P -V relations can

be expressed by a cubic equation (5.1):

Ppva = αV 3
pva + βV 2

pva + γVpva + δ, (5.1)

where α, β, γ, and δ are coefficients that are determined by sampled values of the ter-

minal current and voltage of the PV array (Ipva and Vpva). As long as these coefficients

are calculated, the approximate voltage at the MPP can be estimated by the following

formula:

Vmp =
−β ±

√
β2 − 3αγ

3α
. (5.2)

In the tracking process, this estimation should be repeated every few milliseconds since

the P -V characteristics may rapidly change. This method is easy to implement, how-

ever, its accuracy is dependent on the number of samples. Also, it might require a large

memory capacity as the sample size is large.

The FOCV method is based on the empirical fact that a linear dependency between

the Vmp and open circuit voltage Voc:

Vmp ∼= KmvVoc, (5.3)

where Kmv is called voltage factor and its value ranges from 0.7 to 0.95 depending

upon the characteristics of PV module [92]. Similarly, the FSCC method is based on

the fact that Imp is approximately linearly proportional to its short-circuit current.

Their relations are given in Equation (5.4):

Imp ∼= ImvIsc. (5.4)

The Imv is the current factor whose value is around 0.85 [83].

65



Their performance is directly affected by the precision of the sensors used for mea-

suring T and G, as well as the open voltage Voc and the short current Isc. As reported

by Salas [100], few offline MPPT methods are able to obtain the MPP exactly and thus

they are known as “quasi seeks”.

In recent years, Evolutionary Algorithms (EAs) have been applied to address the

global MPPT issues. The standard Particle Swarm Optimization (PSO) was modified

to meet the practical consideration of PV generation systems operating under partial

shading conditions. According to the experimental results, the PSO-based MPPT

method [23,24] can obtain the GMPP in all the test cases no matter where the GMPP

locates. Ahmed [105] implemented a global MPPT method with Cuckoo Search (CS)

algorithm, highlighting the significance of the Lévy flight in influencing the algorithm’s

convergence. The tracking performance of the CS-based MPPT method was compared

with the P&O and PSO-based MPPT methods. The results demonstrated that the

CS performs better than the P&O and PSO in terms of convergence speed, transient

fluctuations and steady state performance. Although most of the EA-based MPPT

approaches prevent the operating point from concentrating at LMPPs, it takes time

and computational effort for these methods to measure the output power of every trial

solution.

A method that overcomes most of the previously explained problems is the model-

based MPPT. If an accurate model of the PV panel is available, it will be possible to

locate the MPP for each module [133]. The main advantage lies in its quick response to

sudden variations of T and G with respect to the conventional P&O MPPT technique.

The model-based approaches have already been investigated in [133–135]. They

impel researchers to develop a PV electrical tool with low computational complexity.

Ignoring the effect of the resistance is a typical approach to reduce the complexity

of PV models. In [34], Mahmoud proposes the Simplified Single-Diode (SSD) model

which removes the Rp from the general SD model. The further simplified single-diode

model, also known as the Ideal Single-Diode Model , neglects the Rs and Rp as well.

Despite their simplicity, accurate estimation of the electrical characteristics is not guar-

anteed [43]. Furthermore, tedious iterative root finding methods (e.g. Newton-Raphson

method) are still needed in the SD model and SSD model to solve the implicit tran-

scendental equations. In [136,137], Jain et al. proposed Lambert-W function based SD

model which enables the solutions to be exact, explicit, straightforward, and does not

need to ignore resistance effects. However, that model does not intrinsically reduce the
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complexity because the root of the Lambert W-function can only be calculated using

iterative approximations [138].

Another problem in the existing model-based MPPT methods is the fact that they

normally require an accurate (and very expensive) pyranometer whose accuracy signifi-

cantly affected the tracking performance of the model-based MPPT method. Moreover,

for a large scale PV array, the GMPP cannot be estimated by using the SDM model

alone.

5.3 Approximate Single-Diode PV Model for Efficient I-V
Characteristics Estimation

5.3.1 Conventional Single-Diode PV Model

As discussed in Section 5.2, a reliable and flexible PV model that enables an accurate

estimation of the PV generated electricity towards various operating conditions is of

significance in the design phase.

The Single-Diode (SD) model compromises the accuracy and computational effi-

ciency, and thus it has been widely used to estimate the I-V characteristics. Figure

2.2 shows the circuitry diagram of the SD model. When a PV cell, connecting an

external circuit, is exposed to incident light, a reverse current is generated across the

p-n junction. This current is known as photocurrent (Ipv). By eliminating the effect

of photocurrent, a PV cell behaves like a normal diode. Its I-V characteristics can be

simply modeled as a linear independent current source in parallel with a diode. The

SD model improves the simple model by recognizing the series resistance Rs and shunt

resistance Rp. Its equivalent Thevenin circuit equation is mathematically expressed by

the following equation:

I = Iph − Io1(e
V+IRs
A1Vt − 1)− V + IRs

Rp
. (5.5)

In a large PV generation system, PV modules are used as basic components rather

than PV cells since the output power of PV cells is limited at high voltage levels. Owing

to the fact that the PV module is a packaged, connected assembly of Ns PV cells, its

output voltage and resistance are scaled in accordance with the following rules [33]:

V ′ = Ns · V,
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I ′ = I,

R′s = Ns ·Rs,

R′p = Ns ·Rp, (5.6)

where V ′, R′s, and R′p here represent the terminal voltage, series resistance and shunt

resistance of the PV module, respectively. After substituting the scaling rules from

Equation (5.6) into (5.5), we obtain the expression for a Single-Diode Module (SDM)

model:

I ′ = Iph − Io1(e
V ′+I′R′s
A1NsVt − 1)− V ′ + I ′R′s

R′p
. (5.7)

Equation (5.7) is transcendental, and requires tedious iterative root finding methods

(e.g. Newton-Raphson method) to obtain the I ′. Aiming to overcome this problem,

a simple yet accurate Approximate Single-Diode Model (ASDM) is proposed in the

following subsection. The exponential diode behavior is approximated via function

approximation, which permits designers or engineers to predict the current I ′ by solving

a closed-form expression.

5.3.2 Function Approximation

Function approximation provides an approach to represent a complicated function f(x)

(f(x) ∈ C[a, b]) by an easier form φ(x; a0, a1, ..., an), where a0, a1 ..., an are param-

eters to be determined so as to achieve the best approximation of f(x). The term

least squares describe a frequently used means to solve over-determined or inexactly

specified equations (e.g. transcendental functions, integrals and solutions of differen-

tial or algebraic equations) in an approximate sense [139]. Normally, Least Squares

Approximation (LSA) can be viewed as finding proper coefficients a0, a1, ..., an to:

minimize ||f(x)− φ(x; a0, a1, ..., an)||2, (5.8)

where φ(x; a0, a1, ..., an) is usually a polynomial Pn(x) of degree at most n:

Pn = a0 + a1x+ ...+ anx
n =

n∑
k=0

akx
k. (5.9)

The approximation problem might be regarded as a process of minimizing the error

E, which is given in Equation (5.10):

E ≡ E(a0, a1, ..., an) =

∫ a

b
(f(x)− Pn(x))2dx. (5.10)

68



By applying derivative to Equation (5.10), we get:

∂E

∂aj
= −2

∫ b

a
xjf(x)dx+ 2

n∑
k=0

ak

∫ b

a
xj+kdx. (5.11)

With the aim of finding real coefficients a0, a1 ..., an, a necessary condition that

should be considered is:
∂E

∂aj
= 0, j = 0, 1, ..., n (5.12)

After substituting Equation (5.12) into Equation (5.10), the linear normal equa-

tions, expressed by Equation (5.13), can be derived to solve the unknown coefficients

a0, a1 ..., an. It has been proven that the normal equations always have a unique

solution provided f(x) ∈ C[a, b] [98].∫ b

a
xjf(x)dx =

n∑
k=0

ak

∫ b

a
xj+kdx, for each j = 0, 1, ..., n (5.13)

The above approximation process is called Continuous Least Square Approximation

(CLSA) in the field of applied mathematics.

5.3.3 Approximate Single-Diode Model (ASDM)

In a typical SD model, the analytical expression of the forward I-V characteristics

contains a transcendental function for predicting the value of ID1 , which is formulated

as:

ID1 = Io1(e
V+IRs
A1Vt − 1). (5.14)

Assuming that the parameters are constant at a certain test condition, the value of

I ′ varies directly with the reference V ′. Let m = R′s/A1NsVt, and then ID1 can be

rewritten as a function of I ′:

ID1 = Io1e
mV ′
R′s · emI′ − Io1 . (5.15)

The CLSA provides a paradigm that simplifies the transcendental part of Equation

(5.15) into a polynomial of degree 1:

emI
′ ∼= a0 + a1I

′, (5.16)

By using the linear normal equations, namely Equation (5.13), the values of a0 and a1

can be solved.
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According to Equation (5.13), the linear normal equation for emI
′

can be rewritten

as:

a0

∫ I′max

0
dI ′ + a1

∫ I′max

0
I ′dI ′ =

∫ I′max

0
emI

′
dI ′,

a0

∫ I′max

0
IdI ′ + a1

∫ I′max

0
I ′2dI ′ =

∫ I′max

0
IemI

′
dI ′. (5.17)

where I ′max is the upper limit of the PV terminal current that is available at the I-V

curves of the manufacturer’s datasheet. After performing the integration, it yields:

I ′maxa0 +
I ′2max

2
a1 =

emI
′
max

m
− 1

m
,

I ′2max
2

a0 +
I ′3max

3
a1 =

I ′max
m

emI
′
max − emI

′
max

m2
+

1

m2
. (5.18)

Equation (5.18) can be solved to obtain the exact mathematical expressions of a0

and a1, given in Equation (5.19) and (5.20) respectively.

a0 = − 2

mI ′2max

[(
I ′max −

3

m

)
emI

′
max +

(
2I ′max +

3

m

)]
, (5.19)

a1 =
12

mI ′3max

[(
I ′max

2
− 1

m

)
emI

′
max +

(
I ′max

2
+

1

m

)]
. (5.20)

The least squares polynomial approximation of degree 1 for ID1 is:

ID1(I) ∼= Io1

[
e
mV
Rs · (a0 + a1I)− 1

]
. (5.21)

Finally, the ASDM can be formulated as a rational function:

I ′ ∼=
Iph −

(
Io1e

V ′
A1NsVt

)
· a0 − V ′/R′p

1 +

(
Io1e

V́
A1NsVt

)
· a1 +R′s/R

′
p

. (5.22)

In the next subsection, the methods of determining the parameters Iph, Io1 , A1, R
′
s

and R′p are presented.

5.3.4 Parameter Identification for The ASDM

As a result of the PV effect, the photo current Iph flows in a direction opposite to the

forward dark current. Even when the PV module operates at short circuit, this current
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continues flowing and is measured as the short-circuit current Isc. From Equation (2.3),

it can be seen that the value of Iph is approximately equal to the Isc in a high-quality

PV module, and thus the assumption Isc ∼= Iph is often used in PV modeling. Although

the short current density can be determined by analytical equations in [33], the required

parameters are usually not given in manufacturer’s tabular data. In view of the fact

that the Isc depends linearly on the G and is also slightly influenced by the T , the Iph

can be given by Equation (5.23) [44,58,140]:

Iph ∼= Isc = (Iscn +Ki∆T )
G

Gn
, (5.23)

where Iscn and Gn are the short current and irradiance at STCs, respectively. Ki,

named short-circuit current coefficient, is a constant available in the datasheet. The

difference between T and the standard test temperature Tn is denoted by ∆T .

The saturation current Io1 is the small current that flows when the p-n junction is

reverse biased. The dependence of Io1 on the temperature was studied by Villalva et

al. [140], in which the authors introduced Equation (5.24) to predict the value of Io1 . In

the expression, Kv is the open-circuit voltage coefficient and Vocn represents the open

circuit voltage measured at the STCs.

Io1 =
(Iscn +Ki∆T )

e
(Vocn+Kv∆T )

A1NsVt − 1
. (5.24)

The ideality factor A1 is an important parameter used to describe whether the P -

N junction behaves close to or apart from the ideal case. As reported in [141], A1

and R′s significantly affect the shape of I-V curves around the MPP, whereas the R′p

influences the slope of the I-V curve near the point arriving Isc lower. With the aim of

delivering a simplified calculation approach, the parameters of the ASDM are assumed

to be constant and the variables x = (R′s, n) are solved by the equation system f(x)

formed by:

• The terminal current at the MPP:

I ′mp
∼=
Iph −

(
Io1e

V ′mp
A1NsVt

)
· a0 − V ′mp/Rp′

1 +

(
Io1e

V ′mp
A1NsVt

)
· a1 +Rs

′/Rp
′
. (5.25)

• The derivative of the terminal current with respect to the voltage at the MPP:

∂I

∂V

∣∣∣∣
V=V ′mp, I=I

′
mp

= −
(a0 + a1I

′
mp)Io1e

V ′mp
A1NsVt /A1NsVt + 1/R′p

1 + a1Io1e
V ′mp

A1NsVt +R′s/R
′
p
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= −
I ′mp
V ′mp

. (5.26)

In the above equation system, a0, a1, Iph and Io1 are represented by Equations (5.19),

(5.20), (5.23) and (5.24) under the STCs. I ′mp and V ′mp are the current and voltage at

MPP under the STCs, and usually can be found in the datasheet. By substituting the

known operating points (0, Voc) and (Isc, 0) into Equation (5.22), 1/R′p and R′s/R
′
p are

expressed as:

R′p =
Voc

Iph − a0Io1e
Voc

A1NsVt + Io1

, (5.27)

R′s
R′p

= (1− a0 − a1Isc)
Io1

Isc
. (5.28)

Finally, the Newton method illustrated in [142] is capable of solving the unknowns

n and Rs. In the numerical computing process, the kth generation of variable vector x

gets the updated vector estimate:

xk+1 = xk − J−1k f(xk). (5.29)

where Jk is the Jacobian matrix of f(xk). Other parameters as well as I can be

recovered by using Equation (5.19)-(5.27).

5.3.5 Modeling a PV Array under Partial Shading Conditions

In an outdoor environment, the whole or some parts of the PV array may be under a

non-uniform insolation conditions caused by passing clouds, high buildings, and trees.

All the cells in a series array are forced to carry the same current even though a few

cells under shade produce less photon current. In this case, the power delivered by the

less illuminated solar cells may be negative, which indicates that some of the power

produced by the other cells in the PV array is dissipated by the less illuminated PV

cell, acting as loads, draining power from the fully illuminated cells. If the system

is not appropriately protected, “hot-spot” problem will arise, and the system can be

irreversibly damaged in several cases [33]. Bypass diodes are a standard addition to

PV modules, which are placed across every PV cell or across part of the series string

to eliminate the ‘hot-spot’ effect.
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(a) (b)

Figure 5.1: PV array consisting of two series connected modules: (a) circuitry diagram;
(b) block diagram.
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(b)

Figure 5.2: Electrical characteristics of the PV array shown in Figure 5.1: (a) P -V
curves; (b) I-V curve.

Figure 5.1 shows a PV array consisting of two series connected modules receiving two

irradiance level (G1=1000 W/m2 and G2=500 W/m2). The PV module composed of

Ns1 cells receives G1 while the PV module composed of Ns2 cells receives G2. Assuming

that the bypass diodes are ideal components, the terminal current Ipva and the terminal

voltage Vpva of the PV array satisfy the following relations [9]:

Ipva =

 Iph(G1)− Io1
e
V1
′+IpvaRs′

A1Ns1Vt − V1
′+IpvaRs′

Rp′
, Ipva ≥ Iph(G2)

Iph(G2)− Io1
e
V2
′+IpvaRs′

A1Ns2Vt − V2
′+IpvaRs′

Rp′
, Ipva < Iph(G2)

(5.30)

Vpva =

{
V1
′, Ipva ≥ Iph(G2)

V2
′ + V1

′, Ipva < Iph(G2)
(5.31)

The P -V characteristics of a partially shaded array exhibit multiple peaks as shown

in Figure 5.2 (a). The corresponding I-V curve is depicted in Figure 5.2 (b). The Ipva
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is equivalent to the current generated by the module under full irradiance 1000 W/m2

until its value reaches the same value as the photo current of the shaded module Iph(G2).

Then I ′1 sinks in the current generated by Module #2. The output power P ′1 becomes

flatten and Module #2 starts to generate power.

Based on the above analysis, Sayedmahmoudian [9] concluded a simple modeling

method for the PV array working under the partial shading conditions. The calculation

process can be described as follows:

i. Measure the solar irradiance received by each PV modules.

ii. Compute the Iph and Ns of each PV module and define the Iph and Ns matrix

respective of the solar irradiance.

iii. Rearrange Iph matrix from the highest to the lowest value.

iv. Calculate the output current of array (Ipva) using Equation (5.32).

Ipva = I ′(i), Ipva ≥ Iph(i+1)

Vpva = ΣV ′(i) (5.32)

5.3.6 The Accuracy and Computational Efficiency of The ASDM

The ASDM described in this chapter is compared with the physical PV models in the

commercial simulation tools, such as PSIM and PVsyst. The Villalva’s model [140], a

famous comprehensive approach to modeling and simulation of PV arrays in the litera-

ture, is also used for comparison. These models are programmed in MATLAB, and their

capability of predicting the electrical characteristics of the PV modules is validated by

the experimental I-V data extracted from the manufacturer’s datasheet. Four different

PV modules produced with three diverse manufacturing techniques, namely MSX60

(mutli-crystalline), KC200 GT (multi-crystalline), SQ150-PC (mono-crystalline) and

HIT Power 180 (HIT) PV modules, are utilized for verification.

Aiming to evaluate the ASDM’s capability of fitting the characteristics of PV pan-

els, statistical analysis is performed. In this work, the accuracy of the PV models

is described by the Root Mean Square (RMS) error ε and the Mean Absolute Error

(MAE) as well as the Relative Error (RE). They are mathematically expressed by the
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Figure 5.3: I-V curves of a MSX60 PV module at various cell temperatures

following equations:

ε =

√√√√ 1

n

n∑
i=1

(Ii − Îi)2 (5.33)

ē =
1

n

n∑
i=1

|Ii − Îi| (5.34)

ẽ =

∣∣∣∣1− Ii

Îi

∣∣∣∣× 100% (5.35)

where Ii and Îi present the simulated and measured current at the ith operating point

among n measured I-V pairs, respectively. Table 5.1 lists the parameters of PV panels

by using the methods described in Section 5.3.4, which deliver a convenient parameter

estimation method that only requires the tabular information available in the datasheet.

The obtained results are extracted under a set of STCs and are assumed to be constant

in other operating conditions. The obtained RMS errors for the modules working under

the STCs show a good agreement between the simulation results and experimental data.

Table 5.1: Extracted ASDM parameters for different PV modules.

Module n Rs(Ω) Rp(Ω) a0 a1 ε

SQ150 1.6031 0.5334 808 0.9018 0.2877 2.1E-3
KC200GT 1.1266 0.2764 206 0.6939 0.3771 5.29E-2

MSX60 1.5390 0.1035 3140 0.9921 0.0843 6.23E-04
HIT180 1.6240 0.4929 781 0.9753 0.1583 2.24E-2
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Figure 5.4: I-V curves of a KC200GT PV module at various irradiance levels
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Figure 5.5: I-V curves of a KC200GT PV module at various cell temperatures

Once the model parameters are determined, the ASDM is able to predict the elec-

trical characteristics of PV modules under varied atmospheric conditions. Figure 5.3,

5.4 and 5.5 show the I-V characteristics of MSX60 and KC200GT modules varying

with different levels of irradiance and temperature. The simulation results of the PSIM

and Villalva’s models are also plotted for reference. It is interesting to see that the

ASDM obtains more accurate (I, V ) above the 25 ◦C, whereas the operating points

of the Villalva’s model are closer to the measured data below the 25 ◦C. Since the
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Figure 5.6: Mean absolute errors of the PV models at different atmospheric conditions:
(a) SQ150-PC; (b) MSX60; (c) KC200GT; (d) HIT 180

I-V curves of MSX60 at different irradiance levels are not issued in the datasheet, the

related tests are not conducted in this work.

In order to further evaluate the estimation performance of the ASDM, more ex-

haustive tests have been conducted on the tested modules. Figure 5.6(a) and 5.6(b)

show the MAEs of the simulated results subjected to irradiance variation, and all mea-

surements are performed at a temperature of 25 ◦C. On the other hand, Figures 5.6(c)

and 5.6(d) demonstrate the MAEs of the ASDM model for MSX60 and HIT Power 180

Modules working at the same irradiance of 1000 W/m2 but different temperatures. In

Figure 5.6, it is evident that the ASDM model outperforms the commercial tools (PSIM

and PVsyst) in most cases and obtains better fitness quality than Villalva’s model at

high irradiance and temperature levels.
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Table 5.2: Relative errors of the calculated Imp at various irradiance levels.

Module G(W/m2) T (◦C)
ẽ

ASDM PSIM PVsyst Villalva [140]

SQ150-PC

200 25 6.34% 0.51% 2.11% 1.51%
400 25 3.29% 2.81% 0.30% 2.99%
600 25 1.79% 3.60% 0.89% 2.68%
800 25 1.18% 3.33% 0.29% 1.18%
1000 25 0.59% 3.32% 0.00% 0.00%

KC200GT

200 25 1.93% 1.31% 0.39% 0.39%
400 25 0.39% 2.90% 1.93% 1.93%
600 25 0.00% 4.16% 1.15% 1.15%
800 25 0.00% 5.48% 0.38% 0.38%
1000 25 0.38% 6.81% 0.00% 0.00%

Table 5.3: Relative errors of the calculated Imp at various temperature levels.

Module G(W/m2) T (◦C)
ẽ

ASDM PSIM PVsyst Villalva [140]

MSX60

1000 0 1.59% 1.32% 1.59% 1.59%
1000 25 0.00% 2.16% 0.00% 0.00%
1000 50 1.31% 3.07% 1.31% 1.31%
1000 75 3.70% 4.00% 3.70% 3.70%

HIT180

1000 0 2.11% 0.33% 0.35% 2.11%
1000 25 0.00% 2.57% 2.59% 0.19%
1000 50 0.82% 1.51% 0.41% 0.82%
1000 75 0.22% 1.68% 1.12% 0.67%

Similar trend is observed in Tables 5.2 and 5.3, which show the REs of the calculated

MPP locus at different operating conditions. In practical, predicting the locus of MPP

is of importance in the improvement of power efficiency. For this reason, statistical

analysis is conducted. Except the tests on SQ150-PC module under high irradiance

test condition, most REs of the ASDM are similar or even lower than that of others.

The simulation results described so far verify the accuracy of the proposed ASDM.

Besides its low-error estimation performance, the ASDM has the advantage of deriving

the I-V characteristics in closed form, and thus it supports high-speed computing.

Figure 5.7 makes a comparison among the computational efficiency of different PV

models. In the tests, 10,000 operating points varied within the operating voltage range

[0, Voc] are calculated in a general PC with a 2.40GHZ Intel(R) Core(TM) 2 Duo CPU.

It shows that the ASDM is able to reduce the simulation time by 30% compared with
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Figure 5.7: Simulation time of different PV models

other tested models.

In conclusion, this section has presented a simple approximate PV model which is

capable of predicting the electrical characteristics of PV modules operating at a variety

of atmospheric conditions. The CLSA approach is applied to fit PV behaviors in a sim-

ple manner. The proposed mathematical modeling approach is easy, straightforward,

and does not depend on iterative procedures to obtain solutions. The accuracy of the

proposed model is assessed through simulations. The results show that the obtained

current values agree well with the experimental data. The application of the ASDM

in the MPPT method, discussed in the following section, highlights the value of the

approximate model.

5.4 Model-Based Two-Stage MPPT strategy

As discussed in Section 5.2, the traditional MPPT methods can be classified into on-

line and offline approaches depending on the function of tracking methods or control

strategies. The former normally uses measured data (e.g. Vpva, Ipva, Ppva, etc.) along
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with an online algorithm to search MPPs of PV generators. The most popular online

methods are P&O and IncCond. These approaches, although robust, usually produce

a slow response to the sudden changes of environmental conditions. The fixed-size

perturbation causes inevitable oscillations of output power, resulting in extra energy

loss. Moreover, when a PV array is under partial shading conditions, these traditional

MPPT control methods can obtain the LMPP, but may not be able to extract GMPP

and cause power loss [143]. The offline methods typically predict the MPP based on

equations with the mathematical expression of the electrical characteristics of a PV

panel, or the algorithms obtained from empirical data. The CF, FOCV, FSCC meth-

ods all fall into this category. Their performances are directly affected by the precision

of the sensors used for measuring T and G, as well as the Voc and the Isc. As reported

by Salas [100], few offline MPPT methods are able to obtain the MPP exactly.

In order to overcome the inherent shortages of online and offline methods, a two-

stage MPPT approach, which combines the variable step APO with the Maximum

Power Point Estimation (MPPE), is proposed.

5.4.1 Maximum Power Point Estimation

Particle Swarm Optimization (PSO) [15] is one of the prominent algorithms in the cat-

egory of nature-inspired algorithms and has been one of the most successful numerical

optimization algorithms applied in many fields. Compared with many evolutionary al-

gorithms such as Genetic Algorithm (GA) [144], Evolutionary Programming (EP) [145]

and Differential Evolution (DE) [146], the PSO normally obtains faster convergence

speed. As an original stochastic optimizer with fast speed and simple way of realiza-

tion, the PSO has been effectively applied to solve large range of problems of renewable

energy systems [147]. MPPT is such a successful application, which is used to search

the MPP. The PSO based tracking systems do not require any derivatives calculation,

therefore it is vigorous and noise-resistive [147].

The basic idea behind the PSO is to search a space by adjusting the trajectories of

particles (or commonly known as trial solutions), whose fitness values are evaluated by

a similar cost function during the searching process. The PSO works as follows. First,

a swarm of particles are seeded onto the search space in a random manner. These

particles then move through the problem space. At time t, the historical best solution

of the ith particle is recorded as local best pbesti. Among the swarm of particles, the
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best pbest with the maximum fitness value is termed global best gbest. The movement

is guided by the essentially important ingredient formulas:

xt+1
i,j = xti,j + vt+1

i,j , (5.36)

where vt+1
i,j is the velocity, expressed as:

vt+1
i,j = wvti,j + αε1(x

t
i,j − gbestt) + βε2(x

t
i,j − pbestti). (5.37)

whereby:

vti,j Velocity for ith particle in jth dimension at time t.

w Inertia weight, usually set to 0.5.

Xt
i,j Current position of ith dimension at time t.

gbestt The best solution among all participating particles for ith dimension at time t,

also known as global best.

pbestti The best position for ith dimension at time t of a particle, also known as personal

best.

ε1, ε2 Independent uniform random numbers within [0, 1].

α, β Acceleration coefficients towards pbestt and gbest respectively.

Particle’s velocity in each dimension is clamped to the maximum value Vmax, so that

particles will not move beyond the search space. Large Vmax may make the particle

fly past the good solution while small Vmax value will cause particles to be trapped in

local minima, not allowing them to travel far places in search of a good solution in the

search space [69]. In early experiments, particles velocity is usually set within 10%,

50% or 100% of search space [148]. Also, after the updating through Equation (5.36),

bounds checking is done to ensure that particles only explore the predefined search

space. As the number of generation increases, particles accelerate towards those with

better fitness until maximum iteration is reached.

By careful inspection of Equation (5.36) and (5.37), Ting [148] concluded the fol-

lowing interpretations are valid in regard to the PSO:

i. the velocity somehow acts as short-term memory retention and plays a crucial

role in the update process;
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ii. the update of a dimensional value is guided by the pbesti and gbest. Simply, this

means that a particle moves between the pbesti and gbest;

iii. the independent random numbers ε1 and ε2 control the ratio of movement towards

the pbesti and gbest.

Although the conventional PSO algorithm has high capability of finding global

minima and maxima, it is still computational expensive for real-time systems. To

reduce the algorithm complexity, Ting [148] proposed Weightless Swarm Algorithm

(WSA), which excludes inertia weight from the canonical PSO. The equation guiding

the particles’ movements, namely Equation (5.36) and (5.37), is simplified to a single

line:

xt+1
i,j = xti,j + αε1(x

t
i,j − gbestt) + βε2(x

t
i,j − pbestti). (5.38)

From the results on static numerical problems, Equation (5.38) can be further sim-

plified as:

xt+1
i,j = xti,j + αε1(x

t
i,j − pbestti). (5.39)

which implies that the movements of particles are only guide by the pbest. As Equation

(5.39) are simple enough, the concept of velocity is not introduced in the WSA. Without

vi,j , a user also discards the concern of the bound for this parameter, namely Vmax and

Vmin. Consequently, the complexity of the algorithm is reduced and the tuning of the

algorithm is much easier.

In this work, the locus of MPP will be predicted offline by the WSA. The estima-

tion process is so called Maximum Power Point Estimation (MPPE). To illustrate the

application of the WSA algorithm in MPPE, a solution vector of operating voltage with

N particles at generation t is determined as follows:

xti = [xt1, x
t
2, ..., x

t
N ]. (5.40)

The objective function is defined as:

f(xti) = P tpva,i = V t
pva,i · Itpva,i, (5.41)

where Iti can be estimated via the ASDM.

The Pseudocode of the WSA is shown in Algorithm (3). In the first generation, the

particles are released randomly within the valid range. They serve as the pbesti in the
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first iteration. The new position of these particles are determined by Equation (5.39).

Bounds checking is then carried out to accelerate the search process. The optimization

process will not end until it satisfies the stopping criterion. Obviously, implementation

of WSA is pretty simple and can be implemented into any existing PSO algorithm with

the following steps [149]:

i. set inertia weight w = 0;

ii. discard the gbest term by setting ε2 in equation 5.37 to zero;

iii. swapping is done during pbesti update. The swapping for gbest will not be per-

formed.

Algorithm 3: Pseudocode for the WSA

Initialize WSA parameters;
Initialize locations xi of the ith particle;
while Stopping criterion is not satisfied do

for i = 1 to P (particle) do
Evaluate the power for each trial via Equation (5.41);

end
Update the pbesti for each particle;
Update the location xi via Equation (5.39);
if xi exceeds the bounds then

Set xi to the bounds;
end

end

5.4.2 Maximum Power Point Revision

The MPPE is developed on the basis of the PV modeling techniques and an artificial

optimization algorithm. Implementing the MPPE in an MPPT control system not only

needs a thermometer but also light meters. The precision of these instruments, as well as

the accuracy of the applied PV electrical model, significantly affects the estimated MPP

locus. Thus, Maximum Power Point Revision (MPPR) process is necessary to further

improve the tracking performance within a narrow range if the ambient atmospheric

conditions are not changed much. Due to the simplicity and robust performance of the

P&O, it is potentially an ideal choice for the MPPR.

In a conventional P&O algorithm, the terminal voltage Vpva and current Ipva are

measured. A small perturbation of voltage is then addressed in one direction. The

83



change of terminal power ∆P is calculated as:

∆P = P t+1
pva − P tpva. (5.42)

It is used to guide the search direction as follows:

• If |∆P | < ξ, the voltage for the next sample V t+1
pva will not be changed since the

system is working at the MPP;

• If |∆P | > ξ, ∆P > 0 and V t+1
pva > V t

pva, the V t
pva is on the left of the MPP and

the V t+1
pva will be located on a point with a higher voltage value so as to reach the

MPP.

• If |∆P | > ξ, ∆P > 0 and V t+1
pva < V t

pva, the V t is on the right of the MPP and

the V t+1 will be located on a point with a lower voltage value so as to reach the

MPP.

• If |∆P | > ξ, ∆P < 0 and V t+1
pva > V t

pva, the V t is on the right of the MPP and

the V t+1 will be located on a point with a lower voltage value so as to reach the

MPP.

• If |∆P | > ξ, ∆P < 0 and V t+1
pva < V t

pva, the V t is on the left of the MPP and

the V t+1 will be located on a point with a higher voltage value so as to reach the

MPP.

The ε is a preset tolerance for ∆P . The process is repeated until the MPP is

reached. After that, the system will be oscillated around the MPP.

The major drawback of P&O is that it may deviate from the MPP in case of rapidly

changing atmospheric conditions (e.g. passing clouds). There is a trade-off between

dynamic response and steady state performance due to the selection of perturbation

step size Vstep. That is, large perturbations result in quick responses during large tran-

sients, while they produce large current ripple causing oscillations around the current

at the MPP in the steady-state. Through the above analyses, it is ideal to make Vstep

large during the transient stage and to make Vstep small in the steady state. To achieve

that, Adaptive Perturb & Observe (APO) method [97] is used at the MPPE stage,

where the perturbation step size is set to a large value when the power changes in a

large range primarily due to environmental variation. The step size is set as follows:
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Figure 5.8: Adaptive P&O algorithm.

τ = ∆P/∆Pmax;

Vref = Vref + τVstep, (5.43)

where ∆Pmax denotes the preset upper limit for the ∆P , τ is a coefficient defining

the variable step size, and Vref is the reference voltage for the next iteration. The

controller is formulated in such a manner that the perturbation can be small when the

power change is less than or equal to the ∆Pmax. The flowchart is illustrated in Figure

5.8.
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5.4.3 The Two-Stage MPPT Strategy

The proposed two-stage MPPT strategy has two distinct main offline and online stages:

MPPE and MPPR. Since a PV array under different environmental conditions exhibits

various P -V characteristics, the algorithm considers two different steady environmental

conditions that a PV array may encounter.

• Uniform insolation conditions

All the PV modules in the array receive the irradiance at the same level. The

P -V characteristics exhibit hill-like curve, displaying a single peak.

• Partial shading conditions

When some parts of the PV system might be shaded, the bypass diodes cause

the P -V characteristics of the PV array get complex - displaying multiple peaks

(only one of which is the GMPP; the rest are LMPPs).

In the real world, the insolation conditions change continuously, all the time, which

makes the task of MPPT even more difficult. In [7], the changing conditions are divided

into sudden and gradual insolation changes. It is worth noting that the voltage at MPP

also changes with the temperature variations. However, the shape of the P -V curve

will not change significantly and the GMPP can be tracked by the APO effectively, and

thus only the insolation changes are considered.

In the implementation of our two-stage algorithm, ∆G is used to distinguish the

environment changes, and it is defined as:

∆G =

N∑
i=1

|Gt+1
i −Gti|. (5.44)

where Gti is the ith module at time T in the PV array. The irradiance is divided into

two levels εu and εl. According to the value of ∆G, the tunning process is expressed as

follows:

i. ∆G > ξu (rapidly changing insolation). The voltage at GMPP varies with the

ambient atmospheric conditions. Using P&O or APO alone may make the oper-

ating point approach a LMPP but not the GMPP, and therefore the algorithm

first calls the WSA-based MPPE function so that the reference voltage Vref can
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Figure 5.9: Flow chart of the proposed model-based two-stage MPPT strategy.

approach the GMPP immediately. The MPPR function, namely APO algorithm,

then continues to track the MPP online by variable-step perturbations. At every

sampling point, the power difference between the current and the previous sample

points ∆P will be calculated. Equation (5.43) indicates that the Vref will not

be changed if ∆P = 0. It essentially avoids the oscillations that happen in the
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conventional P&O at steady state.

ii. ∆G < ξl (steady insolation). A slight change in the level of irradiance also implies

a small deviation of the MPP locus. In this case, the MPPE is not necessary since

the APO is capable of tracking the GMPP according the ∆P . The algorithm

applies variable-step perturbations until the ∆P drops to 0.

iii. ξl < ∆G < ξu (gradually changing insolation). The entire or a part of PV array

may receive the gradually changing of insolation at the intermediate state. Dur-

ing each control cycle, the output power is calculated. Between the consecutive

measurements, the environment may change from uniform insolation conditions

to partial shading conditions or, conversely, from partial shading conditions to

uniform insolation conditions. The changes of the irradiance level are not large

enough, yet the shapes of P -V curves can be different, which may cause miss

tracking of the position of GMPP. To settle the problem, a loop is set as shown

in Figure 5.10. The MPPE, followed by five MPPR steps, performs every six

sampling times. Consequently, the algorithm’s complexity and accuracy are bal-

anced.

Figure 5.10: Process at gradual change insolation.

Based on the above analysis, the flow chart of the proposed two-stage MPPT strat-

egy is shown in Figure 5.9.

5.5 Experimental Setup

With the aim of verifying the proposed method, a PV-supplied Single Ended Primary

Inductance Converter (SEPIC) with the MPPT function is constructed in the PSIM [66]

simulator.
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(a)

(b)

(c)

Figure 5.11: SEPIC converter current flow: (a) SEPIC circuit; (b) circuit with the
switch closed and the diode off; (c) circuit with the switch open and the diode on.

The SEPIC is a DC-DC converter topology that provides a positive regulated output

voltage. It can be higher or lower than the input voltage. Unlike the traditional buck-

boost converter, it deliveries non-inverted output.

Figure 5.11 (a) shows a simple circuit diagram of a SEPIC, consisting of an input

capacitor C1, an output capacitor C2, an AC coupling capacitor C3, a coupled inductors

L1 and L2, and a diode D1. The output voltage Vout is controlled by the duty cycle D

of the switch (or control transistor).

To understand the basic operation of the SEPIC, it is important to analyze the

circuit at DC. Figure 5.11 (b) shows the situation whereby the switch is closed. In this
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case, the diode D1 is off. The voltage across L1 for interval DT can be calculated by:

VL1 = Vin. (5.45)

When the switch is open, the diode is on as shown in Figure 5.11 (c). According to

Kirchhoff’s voltage law around the path containing Vin, VL1, Vc3, VD and Vout gives:

−Vin + VL1 + VC3 + VD1 + Vout = 0. (5.46)

Assuming that the voltage across C3 remains the value at the average value. Recall

Figure 5.11 (a), Kirchoff’s voltage law around the path containing Vin, VL1, Vc3, VL2

gives:

−Vin + VL1 + VC3 − VL2 = 0, (5.47)

where the VL1 and the VL2 are equal to 0 at the average value. Equation (5.47) can be

rewritten as :

VC3 = Vin. (5.48)

By substituting Equation (5.48) to Equation (5.46), we get:

−Vin + VL1 + Vin + VD1 + Vout = 0. (5.49)

or

VL1 = −VD1 − Vout, (5.50)

for the interval (1 − D)T . Since the average voltage across an inductor is zero for

periodic operating, Equation (5.50) and (5.45) can be combined to get the D [150]:

(VL1,swclosed)(DT ) + (VL1,swopen)(1−D)T = 0

Vin(DT )− (VD1 + Vout)T = 0, (5.51)

The value of D can be delivered by:

D =
Vout + VD1

Vin + Vout + VD1
. (5.52)

In the simulation model, the SEPIC is supplied by the Renewable Energy Package

of PSIM as shown in Figure 5.12. The array is consisted of three series connected

MSX60 PV modules, and its terminal voltage Vpva is the Vin of the SEPIC, which is

set between the range of 10 V to 60 V . To keep a stable output voltage of SEPIC Vout,

a 30V-battery is connected. If the diode D1 is assumed to be ideal, Equation (5.52)

then can be written as:

D =
Vout

Vpva + Vout
. (5.53)
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Equation (5.53) implies that the operating points of the adopted PV modules are

controlled by the duty cycle delivered by MPPT block. For the reason that Proportional

plus Integral (PI) controllers do not work efficiently in non-linear applications [108],

this work eliminates them and uses the topology stated in [151]. The duty cycle is

computed directly by MPPT algorithms. The PSIM provides an interface linking the

function model to its schematic program, and the MPPT algorithm is written in C

using “Dynamic Link Library (DLL)”. By comparing the reference duty cycle with a

triangular signal, the switching signal can be generated.

The switching frequency and sampling rate are chosen to be 10 KHz and 20 Hz

respectively. The peak-to-peak ripple is set to be 2% of the 30 V output voltage.

According to the design guidelines in [152], the parameters of SEPIC are specified as

follows: L1 = L2 = 0.66 mH, C1 = C2 = 660 uF , C3 = 100 uF. Figure 5.12 shows the

Vpva and the Vref are closely matched with each other, which indicates the SEPIC is

able to move the operating point with the value computed by the MPPT block.

Figure 5.12: Simulation model for PV array with the model-based two-stage MPPT
method.

5.6 Experiments and Results

The proposed model-based two-stage MPPE method presented in Section 5.4 is simu-

lated to evaluate its effectiveness. Eight environmental sets are considered, as shown

in Table 5.4.
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Table 5.4: Testing environment sets.

Environment Set I II III IV V VI VII VIII

G1 1000 500 1000 500 1000 500 1000 750
G2 1000 500 1000 500 1000 500 750 500
G3 1000 500 1000 500 500 250 500 250
T 25 25 12 12 25 25 25 25

The rest of the section is structured as follows. First, the MPPE’s capability of

estimating the GMPP is evaluated. The tracking performance of the proposed MPPT

method is studied using three environmental conditions: (a) steady environment (b)

rapidly changing insolation (c) gradually changing insolation. The results for the three

environmental sets are discussed in section 5.6.2, 5.6.3, and 5.6.4, respectively.

5.6.1 Maximum Power Point Estimation Capability

In the MPPE, the following parameters were used in our experiments:

• learning factor c1 = 2;

• inertia factor wmax = 0;

• swarm size = 20 particles;

• maximum generation number = 200.

Figure 5.13 shows the qualitative representation of the evolutionary performance of

the MPPE method under the environment sets shown in Table 5.4, where the output

power represents the fitness value of every particle (or trial solution). In Figure 5.14,

the predicted GMPPs for different environment sets are marked by heavy dots on the

P -V curve simulated with the PSIM’s Renewable Energy Package.

As seen in Figures 5.14 (a)-(d), the P -V characteristics exhibit a single peak for the

environment sets I-IV. For these curves, the convergence traces of the WSA are plotted

in Figures 5.13 (a)-(d). The best particle first moves to a value closed to the voltage at

GMPP Vgmp, and then it oscillates around the Vgmp to find better solutions. The shapes

of P -V curves become more complicated in Figures 5.14 (e)-(f), displaying double peaks

for the environment sets V-VI and triple peaks for the environment sets VII-VIII. In

Figures 5.14 (e) and (f), the particles are moved around the GMPP directly and the
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convergence traces are similar to the ones in Figures 5.14 (a)-(d). On the other hand,

the particles may be trapped in a local optimum solution in early search. Figures

5.14 (g) and (h) present the convergence traces in such situation. Before the first

50 iterations, the WSA evaluates the fitness values among the peaks, the best particle

delivering more power will be deemed as the GMPP, and then the particles move around

the GMPP to achieve a better accuracy. It is observed that the approximate GMPP

can be successfully predicted by using the model-based MPPE method. Although the

accuracy still needs to improve, the MPPE is capable of preventing the particles from

staying stuck in the local best.

5.6.2 The Performance of The Proposed MPPT Algorithm in a PV
System under Steady Environmental Conditions

Figures 5.15, 5.16, and 5.17 show the time plot of the output power obtained with

different MPPT methods under the environment sets I, V, and VII, respectively. The

parameters of P&O and PSO are set as follows:

P&O perturbation step = 0.2 V, initial voltage = 52 V

PSO swarm size = 5 particles, maximum generation = 6, c1 = c2 = 2, w = 0.5

From these figures, the weakness of the P&O as an MPPT method is apparent: (1)

the search time can be considerably long if the initial point is far from a peak on the

P -V curve; (2) the operating point oscillates as soon as it finds a local best point; and

(3) it stops tracking and stay at a local best point closed to its initial point.

The PSO method releases trial solutions randomly in the first generation. The

fitness values, namely the Ppva, are measured online. The movements of particles are

then guided by the positions of the local best and the global best. It is worth pointing

out that the accuracy depends on the number of generations and the applied particles.

For an unimodal P -V curve, the PSO with large swarm size or generation number has

a slow response compared with the conventional P&O algorithm. On the other hand,

small swarm size or generation number may lead to an inaccurate solution, which is far

from the GMPP.

The proposed method combines the merits from the conventional P&O and from

the PSO methods. Before performing an online search, the voltage is initialized by the
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MPPE, which is a soft computing approach used to estimate the value of Vgmp. The

MPPE narrows the search range for the MPPR and, at the same time, reduces the

probability of trapping into local best. In the MPPR, variable perturbation steps not

only increase the tracking speed, but also prevent oscillations at a steady state.

5.6.3 The Performance of The Proposed MPPT Algorithm in a PV
System under Rapidly Changing Environmental Conditions

To evaluate a PV array working under rapidly changing environmental conditions, six

tests are organized as shown in Table 5.5. Take test 1 for example, the total simulation

time is divided into four subintervals, in which the environmental factors are set as:

I, II, III, and IV. Figure 5.18 shows the time plot of the output power obtained with

the proposed method for Test 1 - Test 6. As rapid isolation changes are detected

(∆G > εu), the algorithm calls the MPPE function. It can be seen that the Vref jumps

to a value closed to the Vgmp at the beginning of every subintervals. The variable-step

MPPR then adjusts the operating point so as to obtain a higher output power. These

tests show that the proposed algorithm gives a good guess for the Vgmp under rapidly

changing environmental conditions.

Table 5.5: Testing sets for a PV array under rapidly changing environmental conditions.

Time (s) 0 6 t 6 0.5 0.5 6 t 6 1 1 6 t 6 1.5 1.5 6 t 6 2

Test 1 I II III IV
Test 2 V VI V VI
Test 3 VII VIII VII VIII
Test 4 V II V II
Test 5 V VII V VII
Test 6 VIII I VIII I

5.6.4 The Performance of The Proposed MPPT Algorithm in a PV
System under Gradually Changing Environmental Conditions

The level of irradiance may be changed gradually during a particular period of time.

Figure 5.19 shows an example for the gradually changing environmental conditions.

The temperature is assumed to be stable at 25 ℃, while the level of irradiance is set

as shown in Figure 5.20 (a). During 0 - 2 s, the G1 increases from 500 W/m2 to 1000

W/m2, and the other PV modules receives 1000 W/m2. By varying the operating

voltage, the corresponding P -V curve is illustrated in Figure 5.19. When the G1 is in
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the range between 500 W/m2 and 600 W/m2, the Vgmp is around 35 V. The height of

the right peak rises with the increase of G1. As the G1 is up to 650 W/m2, the right

peak is higher than the left one and the Vgmp moves to a value about 52 V. For this

case, most of the conventional online MPPT method (e.g. P&O and IncCond) may fail

to track the GMPP.

The proposed model-based two-stage MPPT method applies the value ∆G to detect

the gradually changing environmental conditions. As the conditions are recognized, the

algorithm calls the MPPE for every 6 control cycles. Figures 5.20 (b) and (c) show

the time plot of output power Ppva, reference voltage Vref and operating voltage Vpva.

Before 0.8 s, the Vref is kept around 35 V, which is the voltage of the first peak. After

that, it jumps to 52 V. That indicates the algorithm has recognized the changes on the

Vgmp and has used the MPPE to give a good initial point for the MPPR method.

5.7 Summary

By combining the offline Weightless Swarm Algorithm (WSA) with the online Adap-

tive Perturb & Observe (APO) method, a two-step MPPT method with a simple and

straightforward approximate PV electrical model has been successfully developed.

After briefly outlining the basic procedure of the applied Maximum Power Point

Estimation (MPPE) and Maximum Power Point Revision method (MPPR), it is then

implemented in the PSIM simulation environment. The simulation results show that

the proposed MPPT method can efficiently track the GMPP of the P -V characteristics

curves under rapidly and gradually changing testing environments.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.13: Evolution performance of the MPPE under various testing environment
sets: (a) I (b) II (c) III (d) IV (e) V (f) VI (g) VII (h) VIII.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.14: Estimated GMPPs on the P -V curve for various testing environment sets:
(a) I (b) II (c) III (d) IV (e) V (f) VI (g) VII (h) VIII.
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(a)

(b)

(c)

Figure 5.15: Time plot of the output power obtained with (a) P&O method under the
environment set I (perturbation step = 0.2 V, initial voltage = 52 V); (b) PSO (swarm
size = 5 particles, maximum generation = 6, c1 = c2 = 2, w = 0.5); (c) proposed
method.
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(a)

(b)

(c)

Figure 5.16: Time plot of the output power obtained with (a) P&O method under
the environment set V (perturbation step = 0.2 V, initial voltage = 52 V); (b) PSO
(swarm size = 5 particles, maximum generation = 6, c1 = c2 = 2, w = 0.5); (c)
proposed method.
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(a)

(b)

(c)

Figure 5.17: Time plot of the output power obtained with (a) P&O method under
the environment set VII (perturbation step = 0.2 V, initial voltage = 52 V); (b) PSO
(swarm size = 5 particles, maximum generation = 6, c1 = c2 = 2, w = 0.5); (c)
proposed method.
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(a)

(b)

(c)

Figure 5.18: Time plot of the output power obtained with the proposed method in
different tests: (a) Test 1; (b) Test 2; (c) Test 3; (d) Test 4; (e) Test 5; (f) Test 6.
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(d)

(e)

(f)

Figure 5.18: Time plot of the output power obtained with the proposed method in
different tests: (a) Test 1; (b) Test 2; (c) Test 3; (d) Test 4; (e) Test 5; (f) Test 6.
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Figure 5.19: The P -V curve of a PV array receiving gradually changing insolation.
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(a)

(b)

(c)

Figure 5.20: A PV array receiving gradually changing insolation: (a) irradiance G; (b)
output power Ppva; (c) reference voltage Vref and operating voltage Vpva.
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Chapter 6

Conclusions and Future Work

In this thesis, the problems of parameter estimation and Maximum Power Point Track-

ing (MPPT) have been investigated for Photovoltaic (PV) systems. Several artificial

intelligence optimization approaches are analyzed and are used to solve the two prob-

lems. The applied algorithms are summarized as follows:

• The Cuckoo Search (CS) algorithm has been applied to estimate the parameters

for PV electrical models. The CS algorithm is based on the cuckoo breeding

behavior. Instead of conventional isotropic random walks, the algorithm uses Lévy

flights. The simulation results showed that CS algorithm outperforms Genetic

Algorithm (GA) [18], Chaos Particle Swarm Algorithm (CPSO) [17], and Pattern

Search (PS) [74] methods. At a certain irradiance level, the CS obtained slightly

lower RMSE for model parameters, recording 0.0010 in numerical value, and its

convergence speed was slightly faster than the CPSO. Moreover, the validity of the

CS algorithm was evaluated using KC200GT PV module operating under different

environmental conditions. In statistical analysis, the CS algorithm recorded the

lowest RMSE value compared with other algorithms such as the GA, CPSO and

PS.

• The Parallel Particle Swarm Optimization (PPSO) has been implemented to

speed up the parameter estimation process for different PV electrical models.

It was implemented in Open Computing Language (OpenCL) and can be ex-

ecuted with a wide range of multi-core computing devices. In order to make

a comprehensive comparison, the parameters were estimated by the other meth-

ods, such as Least Square Optimization (LSO) [16], PS, and Simulated Annealing

(SA) algorithms [74]. From these test results, the mean absolute error obtained
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by the PPSO with double diode cell model achieves the lowest value, recording

6.6415E-4, which is 51.85% lower than the SA with the same PV electrical model,

and is approximately 3 % lower than the PPSO with the single diode cell model.

The PPSO-based parameter estimation method did not only record lower error

values, but also showed speed improvements. The simulation results showed that

the PPSO with 2048 particles is capable of accelerating the computational speed

by at least 64% on the used computing platforms.

• The Weightless Swarm Algorithm (WSA) has been proposed to estimate the

Global Maximum Power Point (GMPP) locus with an approximate PV electrical

model. It is capable of predicting a PV array under either the uniform insolation

conditions or the partial shading conditions. By means of alternative use of the

WSA-based Maximum Power Point Estimation (MPPE) and an Adaptive Perturb

& Observe (APO) based Maximum Power Point Revision (MPPR), the two-

stage MPPT method first gives a good initial operating point and the accuracy is

further improved online as the changes of environments are detected. To verify the

efficiency of the proposed method, an MPPT system composed of a SEPIC and

PV generator was implemented in PSIM. The results showed that the model-based

two-stage method combines the merits of both the direct and indirect MPPT

methods: the dynamic response of the proposed MPPT method is quicker than

that of the conventional P&O and PSO methods. Moreover, the WSA-based

MPPE method prevented the operating point stay stuck at a local best value,

and the output power did not oscillate around the GMPP.

To sum up, our research effort has been taken in developing and implementing new

algorithms to solve parameter estimation and MPPT methods. The proposed methods

have been verified from the measured data and simulation experiments. The CS algo-

rithm minimizes the errors of parameter estimation while the PPSO further enhance

the computational efficiency under a parallel computing environment. The proposed

model-based two-stage MPPT method guarantees high accuracy and reliability of track-

ing performance.

Although the proposed methods achieved promising results with respect to the

investigated problems, there are several aspects that can be further investigated:

• The performance of the artificial intelligence optimization algorithm significantly

depends on the values of algorithm parameters. An optimal parameter setting will
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improve performance in terms of the convergence speed. Therefore, a self-tuning,

which is the process of tuning an algorithm to find the best parameter settings,

is required to enable the algorithm to perform the best for a given problem.

• Since branching is difficult for all the computing devices, especially GPUs, the

process of updating positions and velocities of particles in the PPSO has not

been parallelized. On the other hand, like the WSA, the inertia weight w as well

as branching process for bounds checking can be ignored to further improve the

computational efficiency. This can be investigated in our future work.

• The performance of the proposed parameter estimation and MPPT methods will

be explored on the TI’s Piccolo F28035 based Solar Explorer Development Kit.

The experimental results obtained from the kit will further verify the feasibility

of the proposed MPPT method.
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Appendix A

PV Physical Model Adopted in
PSIM

By using the parameters extracted at the STCs, the I-V characteristics of a PV module

under nonstandard operating conditions are calculated via the following equations:

I = Iph − ID − IR (A.1)

Iph = Iscn ·
G

Gn
−Ki · (T − Tn) (A.2)

ID = Io1 · (e
qVd
A1kT − 1) (A.3)

Io1 = Ion1 ·
(
G

Gn

)3

· e
(
qEg
A1k

)
·
(

1
T
− 1
Tn

)
(A.4)

IR =
VD
Rpm

(A.5)

VD =
V

Ns
+ I ·Rsm (A.6)

where G is the solar irradiance, T is the cell temperature, Iph is the photocurrent, Io is

the reserve saturation current of the diode, Isc is the short circuit current, Rsm is the

series resistance, Rpm is the shunt resistance, k is Boltzmann constant, q is electron

charge, Ns is the number of series connected cell in the PV module, Ki is the short

circuit current coefficient, IR is the current flowing through the resistance, A1 is the

ideality factor, Eg is the band gap energy, VD and ID represent the voltage and current

flowing through the diode respectively. Ion1, Iscn, Gn and Tn denote the Io1, Isc, G,

and T measured in the standard testing conditions.
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Appendix B

The Experimental I-V Data of
The R.T.C. France PV Cell

Measurement G T Î V̂

1 1000 33 0.7640 -0.2057
2 1000 33 0.7620 -0.1291
3 1000 33 0.7605 -0.0588
4 1000 33 0.7605 0.0057
5 1000 33 0.7600 0.0646
6 1000 33 0.7590 0.1185
7 1000 33 0.7570 0.1678
8 1000 33 0.7570 0.2132
9 1000 33 0.7555 0.2545
10 1000 33 0.7540 0.2924
11 1000 33 0.7505 0.3269
12 1000 33 0.7465 0.3585
13 1000 33 0.7385 0.3873
14 1000 33 0.7280 0.4137
15 1000 33 0.7065 0.4373
16 1000 33 0.6755 0.4590
17 1000 33 0.6320 0.4784
18 1000 33 0.5730 0.4960
19 1000 33 0.4990 0.5119
20 1000 33 0.4130 0.5265
21 1000 33 0.3165 0.5398
22 1000 33 0.2120 0.5521
23 1000 33 0.1035 0.5633
24 1000 33 -0.0100 0.5736
25 1000 33 -0.1230 0.5833
26 1000 33 -0.2100 0.5900
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Appendix C

The Experimental I-V Data of
The Photowatt-PWP 201 PV
Module

Measurement G T Î V̂

1 1000 45 1.0315 0.1248
2 1000 45 1.03 1.8093
3 1000 45 1.026 3.3511
4 1000 45 1.022 4.7622
5 1000 45 1.018 6.0538
6 1000 45 1.0155 7.2364
7 1000 45 1.014 8.3189
8 1000 45 1.01 9.3097
9 1000 45 1.0035 10.2163
10 1000 45 0.988 11.0449
11 1000 45 0.963 11.8018
12 1000 45 0.9255 12.4929
13 1000 45 0.8725 13.1231
14 1000 45 0.8075 13.6983
15 1000 45 0.7265 14.2221
16 1000 45 0.6345 14.6995
17 1000 45 0.5345 15.1346
18 1000 45 0.4275 15.5311
19 1000 45 0.3185 15.8929
20 1000 45 0.2085 16.2229
21 1000 45 0.101 16.5241
22 1000 45 -0.008 16.7987
23 1000 45 -0.111 17.0499
24 1000 45 -0.209 17.2793
25 1000 45 -0.303 17.4885
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Appendix D

The Experimental I-V Data of
The KC200GT PV Module

Measurement G T Î V̂

1 200 25 1.5754 0.0409
2 200 25 1.5754 1.0472
3 200 25 1.5754 2.0534
4 200 25 1.5754 3.0707
5 200 25 1.5754 4.0769
6 200 25 1.5754 4.9957
7 200 25 1.5754 6.0129
8 200 25 1.5754 7.0192
9 200 25 1.5754 8.0255
10 200 25 1.5754 9.0427
11 200 25 1.5754 10.0490
12 200 25 1.5754 11.0662
13 200 25 1.5754 11.9740
14 200 25 1.5754 12.9912
15 200 25 1.5754 13.9975
16 200 25 1.5754 15.0147
17 200 25 1.5754 16.0210
18 200 25 1.5754 17.0272
19 200 25 1.5754 18.0445
20 200 25 1.5754 19.0507
21 200 25 1.5754 20.0679
22 200 25 1.5754 21.0742
23 200 25 1.5568 22.0805
24 200 25 1.5358 22.9993
25 200 25 1.4962 24.0165
26 200 25 1.4589 25.0227
27 200 25 1.3982 26.0290
28 200 25 1.2817 27.0462
29 200 25 1.0462 28.0525
30 200 25 0.7524 29.0697
31 200 25 0.3607 30.0760
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32 400 25 3.2402 0.0409
33 400 25 3.2402 1.0472
34 400 25 3.2402 2.0534
35 400 25 3.2402 3.0707
36 400 25 3.2215 4.1754
37 400 25 3.2215 4.9957
38 400 25 3.2215 6.0129
39 400 25 3.2215 7.0192
40 400 25 3.2215 8.0255
41 400 25 3.2215 9.0427
42 400 25 3.2215 10.0490
43 400 25 3.2215 11.0662
44 400 25 3.2005 12.0724
45 400 25 3.2005 13.0787
46 400 25 3.2005 13.9100
47 400 25 3.2005 15.0147
48 400 25 3.1819 16.0210
49 400 25 3.1819 17.0272
50 400 25 3.1819 18.0445
51 400 25 3.1819 19.0507
52 400 25 3.1619 20.0679
53 400 25 3.1609 20.9867
54 400 25 3.1609 21.9930
55 400 25 3.1422 22.9993
56 400 25 3.1422 24.0165
57 400 25 3.0839 25.0227
58 400 25 2.9860 26.0290
59 400 25 2.8298 26.9478
60 400 25 2.4964 28.0525
61 400 25 2.1047 29.0697
62 400 25 1.4775 30.0760
63 400 25 0.5962 31.0823
64 600 25 4.8653 0.0409
65 600 25 4.8653 1.0472
66 600 25 4.8653 2.0534
67 600 25 4.8653 3.0707
68 600 25 4.8653 4.0769
69 600 25 4.8653 5.0941
70 600 25 4.8653 6.0129
71 600 25 4.8453 7.0192
72 600 25 4.8466 8.0255
73 600 25 4.8466 9.0427
74 600 25 4.8466 10.0490
75 600 25 4.8280 11.0662
76 600 25 4.8280 12.0724
77 600 25 4.8070 13.0787
78 600 25 4.8070 14.0959
79 600 25 4.8070 14.9163
80 600 25 4.8070 16.0210
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81 600 25 4.8070 17.0272
82 600 25 4.7883 18.0445
83 600 25 4.7883 19.0507
84 600 25 4.7883 20.0679
85 600 25 4.7487 21.0742
86 600 25 4.7487 22.0805
87 600 25 4.7487 23.0977
88 600 25 4.7300 24.0165
89 600 25 4.6694 25.0227
90 600 25 4.5715 26.0290
91 600 25 4.4153 27.0462
92 600 25 4.0819 28.0525
93 600 25 3.4756 29.0697
94 600 25 2.7692 30.0760
95 600 25 1.9275 30.9948
96 600 25 0.5962 32.0010
97 800 25 6.5300 0.0409
98 800 25 6.5300 1.0472
99 800 25 6.5300 2.0534
100 800 25 6.4927 3.0707
101 800 25 6.4927 4.0769
102 800 25 6.4927 4.9082
103 800 25 6.4927 6.0129
104 800 25 6.4927 7.0192
105 800 25 6.4530 8.0255
106 800 25 6.4530 9.0427
107 800 25 6.4530 10.0490
108 800 25 6.4530 11.0662
109 800 25 6.4530 12.0724
110 800 25 6.4134 13.0787
111 800 25 6.4134 14.0959
112 800 25 6.4134 14.9163
113 800 25 6.4134 16.0210
114 800 25 6.4134 17.0272
115 800 25 6.3948 18.0445
116 800 25 6.3948 19.0507
117 800 25 6.3948 20.0679
118 800 25 6.3551 21.0742
119 800 25 6.3551 22.0805
120 800 25 6.3551 22.9118
121 800 25 6.3155 24.0165
122 800 25 6.2759 25.0227
123 800 25 6.2176 26.0290
124 800 25 6.0031 27.0462
125 800 25 5.5717 28.0525
126 800 25 4.9049 29.0697
127 800 25 4.0049 30.0760
128 800 25 2.7319 31.0823
129 800 25 1.0671 32.0995
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130 1000 25 8.1761 0.0409
131 1000 25 8.1761 1.0472
132 1000 25 8.1761 2.0534
133 1000 25 8.1364 3.0707
134 1000 25 8.1364 4.0769
135 1000 25 8.1364 4.9082
136 1000 25 8.1178 6.0129
137 1000 25 8.1178 7.0192
138 1000 25 8.1178 8.0255
139 1000 25 8.0781 9.0427
140 1000 25 8.0781 10.0490
141 1000 25 8.0781 11.0662
142 1000 25 8.0781 11.9740
143 1000 25 8.0595 12.9912
144 1000 25 8.0595 13.9975
145 1000 25 8.0385 15.0147
146 1000 25 8.0385 16.0210
147 1000 25 8.0199 17.0272
148 1000 25 8.0199 18.0445
149 1000 25 8.0012 19.0507
150 1000 25 7.9802 20.0679
151 1000 25 7.9802 21.0742
152 1000 25 7.9616 22.0805
153 1000 25 7.9219 22.9993
154 1000 25 7.9219 24.0165
155 1000 25 7.8823 25.0227
156 1000 25 7.7844 26.0290
157 1000 25 7.5699 27.0462
158 1000 25 7.1385 28.0525
159 1000 25 6.4717 29.0697
160 1000 25 5.4155 30.0760
161 1000 25 3.8091 31.1807
162 1000 25 2.1443 32.0995
163 1000 25 0.4400 32.9198
164 1000 50 8.2600 0.0761
165 1000 50 8.2410 1.0405
166 1000 50 8.2410 2.0145
167 1000 50 8.2400 3.0656
168 1000 50 8.2214 3.9625
169 1000 50 8.2214 3.9625
170 1000 50 8.2214 4.9268
171 1000 50 8.2214 6.0648
172 1000 50 8.2014 7.0388
173 1000 50 8.2014 8.0031
174 1000 50 8.1818 8.9771
175 1000 50 8.1618 9.9511
176 1000 50 8.1618 10.9251
177 1000 50 8.1418 12.0534
178 1000 50 8.1422 13.0274
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179 1000 50 8.1222 14.0014
180 1000 50 8.1235 14.9754
181 1000 50 8.1049 15.9398
182 1000 50 8.1049 16.9138
183 1000 50 8.0839 18.0517
184 1000 50 8.0653 19.0161
185 1000 50 8.0257 19.9901
186 1000 50 7.9861 20.9641
187 1000 50 7.9465 21.9381
188 1000 50 7.8300 22.9025
189 1000 50 7.4969 24.0404
190 1000 50 6.9891 25.0144
191 1000 50 6.2065 25.9788
192 1000 50 5.2072 26.9528
193 1000 50 3.8958 27.9268
194 1000 50 1.9601 29.0551
195 1000 50 0.0221 29.7880
196 1000 75 8.3378 0.0761
197 1000 75 8.3192 0.9633
198 1000 75 8.3192 1.9373
199 1000 75 8.3006 2.9885
200 1000 75 8.3006 3.9625
201 1000 75 8.2796 5.0136
202 1000 75 8.2796 5.9876
203 1000 75 8.2400 6.9520
204 1000 75 8.2400 7.9260
205 1000 75 8.2400 8.9771
206 1000 75 8.2400 9.9511
207 1000 75 8.2027 10.9251
208 1000 75 8.2027 11.9763
209 1000 75 8.2027 12.9503
210 1000 75 8.1818 14.0786
211 1000 75 8.1235 14.9754
212 1000 75 8.1235 15.9398
213 1000 75 8.1049 16.9909
214 1000 75 8.0443 17.9650
215 1000 75 7.9465 18.9390
216 1000 75 7.7718 19.9901
217 1000 75 7.3199 20.9641
218 1000 75 6.7539 21.9381
219 1000 75 5.7942 23.0664
220 1000 75 4.6994 24.0404
221 1000 75 3.3088 25.0144
222 1000 75 1.6061 25.9788
223 1000 75 0.0012 26.8756
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