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Abstract 

Canine infection from pathogenic Leptospira serovars remains an issue within the UK, despite the 
availability of a canine vaccine.  Canine leptospirosis cases are non-reportable and data regarding 
current levels for both suspected and confirmed cases is limited.  A questionnaire based survey was 
undertaken to determine the number of canine leptospirosis cases within UK practices over a 12 month 
period.  Average canine vaccination coverage across responding practices was determined as 60%, with 
1669 vaccines administered per practice on average within the responding practices.  No significant 
difference was witnessed between doses administered in either mixed or dedicated small animal 
practices (1692.40 and 1653.38 respectively), demonstrating that vaccination habits vary between 
individual clinicians rather than practice type.  Diagnosing leptospirosis remains an issue, particularly 
relating to vague clinical signs during early infection.  Survey results emphasised the priority that 
clinicians base on initially vague signs, with leptospirosis being typically considered once icteric signs 
present, where mortality rates are greater and treatment is less effective. 
 
Despite well documented associations linking leptospirosis and rodents, a current uncertainty remains 
regarding serovars maintained within the UK. In an attempt to clarify the situation, 283 wild rodents 
were sampled from rural (n=7) and urban sites (n=8).  Infection was identified within 23 (8.13%) samples 
belonging to wood mice (n=16/152), bank voles (n=5/47) and field voles (n=2/10).  Initial Leptospira 
identification using direct sequencing of PCR amplicons showed a single infecting pathogenic species 
(Leptospira interrogans).  Serology data was obtained for 71 rodents using the microscopic agglutination 
test (MAT).  Positive samples from pooled antigen testing (n=7/71; 9.86%) were further tested using 
four individual antigens.  Data further confirmed a single infecting species (L. interrogans) and serogroup 
(Australis).  Interestingly, we did not detect Leptospira within the portion of 67 rat kidney samples 
investigated.  Stained kidney sections (n=11) showed limited association between inflammation and 
leptospire presence, indicating that rodents may shed the bacteria asymptomatically. 
 
Multi-locus sequence typing (MLST) schemes have been successfully applied to identify the sequence 
types (STs) of pathogenic Leptospira strains.  The PCR positive rodent samples were tested using MLST 
(n=23).  All samples with a full profile (n=11) were shown to belong within ST-24, with five partial 
profiles also likely to belong to the same ST.  To date, three serovars are within ST-24 (Jalna, Bratislava 
and Muenchen), that belong to the Australis serogroup.  This was the first study to utilise DNA extracted 
directly from kidney tissue to perform Leptospira MLST analysis.  MLST data further emphasises a single 
infecting species and presents evidence for a single infecting serogroup. 
 
Further work involved full genome sequencing of ten strains not previously investigated, covering 
pathogenic, intermediate and saprophytic species.  Sequence data for each strain was obtained using 
the MiSeq platform.  The ‘core’ genome was identified across 17 strains (n=1,095; 28.76%), with 
pathogenic strains being more conserved with a greater shared core genome (n=2,859; 69.30%).  Single 
nucleotide polymorphism (SNP) data was generated for strains (n=6), with an average of 35,346 SNPs 
per strain (range=686 to 55,303).  L. interrogans serovar Icterohaemorrhagiae had the lowest SNP count 
(686) and was the only strain with a greater number of non-synonymous SNPs compared to synonymous 
(1.8:1); indicating close relatedness between serovars Icterohaemorrhagiae and Copenhageni.  Coding 
sequences were identified within genome regions that may relate to antigenic differences (high SNP 
variation) or relate to key cellular processes (low SNP variation).  Due to poor gene characterisation, 
hypothetical proteins make up a high proportion of coding sequences within such regions.  Further work 
to characterise identified coding sequences may identify future therapeutic or diagnostic targets. 
 
This project aimed to investigate the current situation concerning canine and rodent Leptospira research 
within the UK.  Results presented within this thesis demonstrate several wild rodent species within 
England are capable of maintaining and potentially shedding pathogenic strains known to infect both 
humans and dogs.  Serogroup Australis (found infecting rodents) is now protected within a tetravalent 
canine vaccine; however annual booster vaccinations are required for optimal immunity.  Extended 
urban sampling would be of great benefit considering the absence of positive urban samples.  Suspected 
and confirmed canine cases are still witnessed within UK practices despite the reported majority having 
current vaccinations.  Continued monitoring of serogroups would benefit vaccination strategies, and an 
emphasis on early detection within infected dogs would allow for the greatest chance of survival.   
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Chapter One  Introduction 

1. Introduction 

1.1 Overview 

Pathogenic Leptospira spp. are the causative agents for leptospirosis, regarded as the most 

widespread zoonotic disease in the world ((WHO), 1999), with estimated human global 

infection rates at 5 cases per 100,000 (or 1 in 20,000) ((LERG), 2010).  The bacterium itself is 

Gram negative and responsible for both Weil’s disease in humans and canine leptospirosis 

within the UK.  Weil’s disease is caused by serovar Icterohaemorrhagiae and can lead to renal 

and hepatic failure if left untreated.  Humans and dogs are incidental hosts, with small rodents 

being the typical reservoir animal for pathogenic variants.  Human cases are self-limited, with 

only a minority of cases progressing into late stage clinical signs with no treatment 

intervention.  Early stage clinical signs can be vague and indicate a range of diseases, and it is 

believed to be under-diagnosed within all end hosts as a result (Prescott et al., 1991; Sarkar et 

al., 2012). 

1.2 Discovery & naming of the Leptospira genus 

The disease now known as leptospirosis was first described in 1886 by Adolf Weil, although its 

presence can be traced back from infectious disease outbreaks throughout history (Faine  S., 

1999).  Stimson was the first to describe the morphology of the bacteria within kidney tissue, 

specifically the renal tubules.  From this, the nomenclature Spirochaeta interrogans was 

derived (Stimson, 1907).  Wolbach and Binger attempted to culture the bacteria during 1914 

on various media, including sterile water, with many failed attempts (Wolbach and Binger, 

1914).  A year later, Inada and Ido successfully identified the bacteria within a guinea pig 

injected with blood serum from a patient suffering with Weil’s disease, naming it Spirochaeta 

icterohaemorrhagiae (Inada et al., 1916).  It wasn’t until 1918 that Noguchi described the 

name Leptospira based on morphological characteristics when compared to other members of 

the Spirochaeta family (Noguchi, 1918). 

1.2.1 Leptospira species and serovars 

Up until 1987, only three Leptospira species were identified; pathogenic (L. interrogans), 

saprophytic (L. biflexa) and intermediate (L. parva (Hovind-Hougen et al., 1981)).  Following 

DNA hybridization studies a further four pathogenic, two intermediate and two saprophytic 

species were nominated for inclusion in the genus (Yasuda et al., 1987).  Now the genus 

Leptospira contains 19 known species.   
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Within each species, strains are further classified based on antigen recognition to give a 

serovar and serogroup.  Serovars were first identified using the cross-agglutination absorption 

test (CAAT) (Faine  S., 1999).  CAAT classifies strains based on their expressed surface exposed 

epitopes within the lipopolysaccharide (LPS), specifically the sugar composition and protein 

orientation within the membrane (Adler and de la Pena Moctezuma, 2009).  A single serovar 

can exist within multiple species, including both pathogenic and saprophytic species, due to 

the serogrouping system (Zakeri et al., 2010a).  For example the serogroup Canicola contains 

11 serovars in Leptospira interrogans and 3 serovars in Leptospira kirschneri (Cerqueira and 

Picardeau, 2009).   

The variability in LPS constituents gives rise to the multitude of serovars.  DegT (amino 

transferase) proteins are involved with the synthesis of LPS O side-chains.  For example, the 

serovar Copenhageni genome contains 9 degT genes, whereas serovar Lai only has 7 

(Nascimento et al., 2004).  Variations of this nature may contribute to host specificity seen 

with distinct serovars. 

Recombination arising from horizontal gene transfer has meant that serovars are now 

represented across multiple species (Brenner et al., 1999; Haake et al., 2004).  One example 

can be seen with serovar Grippotyphosa now represented within both L. interrogans and 

L. kirschneri (Table 1.1).  This is a result of the same O antigen that characterises the serovar 

becoming transferred between strains (Levett, 2004).  However to date, no evidence has been 

presented for mobile elements surrounding such antigenic genes.   

Serogroup Species Serovar Strain 

Hebdomadis 

L. kirshneri Kambale Kabura 

L. borgpetersenii Nona Nona 

Genomospecies 2 Manzhuan A 23 

Icterohaemorrhagiae 

L. interrogans Canicola Hond Utrecht IV 

L. interrogans Icterohaemorrhagiae RGA 

L. borgpetersenii Tonkini LT 96-98 

Grippotyphosa 
L. interrogans Grippotyphosa Andaman 

L. kirschneri Grippotyphosa Moskva V 

Table 1.1. Examples of how a single serovar and serogroup can be represented within multiple 

pathogenic species. 
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The catalogue of known serovars is ever increasing, and as such there is a range of total 

serovar numbers amongst published work, with between 240-260 pathogenic serovars 

reported (Adler and de la Pena Moctezuma, 2009; Galloway and Levett, 2010; Jimenez-Coello 

et al., 2010).  In 2010, a novel serovar belonging to L. weilii was discovered within infected grey 

kangaroos in Eastern Australia (Roberts et al., 2010).  Further novel serovars have since been 

discovered in both rodents and humans (Paiva-Cardoso et al., 2013; Valverde Mde et al., 

2013). 

1.2.2 Emergence of genomospecies 

The emergence of recent genomospecies demonstrates that the serovar database is still 

growing and changing as typing and identification methods evolve.  In 2007, the subcommittee 

on the Taxonomy of Leptospiraceae recognised five genomospecies presented by Brenner and 

colleagues (1999) as newly defined species (Brenner et al., 1999; Levett and Smythe, 2008).  

L. alexanderi was given to genomospecies 2, with the remaining four characterised with 

species names in 2012 (Smythe et al., 2013). 

The full genome composition for each newly discovered genomospecies have not yet been 

investigated.  Comparison between themselves and other closely related species would 

provide insight into how genetically related they really are to the serovars they were 

previously classified with. 

Given the high number of serovars, and difficulties encountered for using them in 

epidemiology studies, identification methods are now favouring genomospecies.  As a result, 

difficulties have emerged with aligning results for genomospecies with the traditional antigenic 

methodology. 

1.2.3 Cellular structure 

All members of the genus possess the same spiral shape morphology (Fig 1.1).  The bacterium 

is composed of a double membrane structure with a selectively permeable outer membrane 

for specific binding and uptake of molecules.  The outer membrane contains phospholipids, 

outer membrane proteins (OMPs) and lipopolysaccharide (LPS) (Cullen et al., 2004).  Porins 

(e.g. OmpL1) and type two secretion systems (T2SS) are also located within the outer 

membrane and have been shown to have antigenic properties (Adler and de la Pena 

Moctezuma, 2009).   
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Figure 1.1. Electron microscope image of Leptospira spp (2400x magnification).  Courtesy of 

Lee Smith (AHVLA). 

Pathogenic strains adhere to host cells with one or two termini.  The adhering positions are 

located within the terminal knobs at the flagella basal bodies.  The bottom of the flagella 

consists of the MS ring (formed by both the M and S rings) and a cytoplasmic C ring (Liao et al., 

2009).  Adhesion to the extra-cellular matrix (ECM) is seen as essential in the initial stage of 

infection (Oliveira et al., 2010).   

Two periplasmic flagella with polar insertions into the periplasmic space at each end are 

responsible for motility.  They comprise of both a flagellar sheath (made up from FlaA 

proteins) and a core (FlaB proteins).  A mutant deficient in flaB loses endoflagella and becomes 

non-motile (Picardeau et al., 2008).  Phosphorylation of CheY leads to an interaction with the 

flagella to change the motor rotation bias (Li et al., 2006). 

Within the leptospiral genome, 1,496 proteins (41% of total) have been found to contain at 

least one transmembrane segment.  Within those, 346 (9.3% of total) have been shown as 

having four or more.  Previous studies have documented that between 40-60% of proteins that 

include at least four transmembrane segments are related to transport (Meidanis et al., 2002; 

Paulsen et al., 2000).  Of the 346, one protein contains 18 transmembrane segments, and at 

least 111 have not yet been identified as having a specific function (Nascimento et al., 2004).   

LPS facilitates innate immune recognition and clearance by the host, therefore expression 

once within a host may be disadvantageous towards the survival of the organism (Haake and 

Matsunaga, 2010).  However, the human innate immune system does not detect the LPS of 

Leptospira via human Toll-like receptor 4 (TLR4) (Werts et al., 2001).  As a result, the human 

immune response is instead activated by TLR2.  Further evidence is shown with TLR2/4 double 
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knock-out mice, normally asymptomatic hosts, that become highly susceptible to a leptospiral 

challenge (Chassin et al., 2009). 

Once shed into the environment, pathogenic strains can adapt their membrane constituents 

for survival.  This is in part down to the range of stimulus response systems within the large 

genome e.g. L. interrogans have 107 signal transduction proteins (Haake and Matsunaga, 

2010).  One example being with the regulation of Lig production (an OMP), that has been 

shown to be dependent on osmolarity changes (Haake and Matsunaga, 2010).  An osmolarity 

increase in the local environment activates an up-regulation of the production of both LigA and 

LigB.  This situation is similar to when the bacteria encounter host cells, and both Lig proteins 

can mediate the osmolarity for enhanced adherence to fibronectin (Choy et al., 2007). 

1.2.4 Growth conditions 

Leptospira are an obligate aerobe with an optimum growth temperature of 28-30oC (Adler and 

de la Pena Moctezuma, 2009; Palmer and Zochowski, 2000).  However, some saprophytic 

strains have demonstrated their potential to grow at lower temperatures, albeit with a lower 

efficiency.   

When observed from a sample of stagnant water in 1914, culture was attempted using sterile 

water, synthetic media and broth with no success (Wolbach and Binger, 1914).  Ito and 

Matsuzaki first described the isolation of Spirochaeta Icterohaemorrhagiae (Inada) on both 

solid and semi-solid blood media, particularly with greater growth seen on blood gelatine 

instead of blood agar (Ito and Matsuzaki, 1916).  Following the first isolation, advances have 

been made using supplemented media, with semi-solid media (such as Fletcher’s or 

Vervoort’s) becoming commonly used for isolation (Czekalowski et al., 1953; Lawrence, 1951). 

Now, Leptospira are commonly grown on Ellinghausen-McCullough-Johnson-Harris (EMJH) 

media.  The nutrient rich media contains supplements of long chain fatty acids, ammonium 

salts and vitamins B1 and B12, of which all are essential for successful growth.  EMJH is a 

modified version of the original developed by Ellinghausen and McCullough in 1965 that 

contains tween alongside the original components (Johnson and Harris, 1967).  As cultures are 

extremely fastidious and slow growing, rabbit serum is typically added to further supplement 

growth.  Cultures can take up to 6 months before a definitive negative result can be 

ascertained.  Components such as bovine serum albumin (BSA) also need to be fresh to give 

the greatest chance of a positive culture. Due to the nutrient rich media, contamination is a 

problem; precautions are required to limit the likelihood of this occurring.   
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When growing multiple strains, cross-contamination must be prevented as saprophytic strains 

can outgrow pathogenic strains in a mixed culture (Ganoza et al., 2006; Wilson and Fujioka, 

1995).  This presents issues when isolating pathogenic species from environmental sources, 

such as standing water or damp soil, as it has been shown that saprophytic species are in the 

majority under such conditions (Benacer et al., 2013b).  It is recommended that cultures are 

checked regularly (at least once a week) using a dark field microscope for evidence of growth 

or potential contamination (Fig 1.2). 

Another media currently in use for isolating Leptospira is Korthof’s media, again supplemented 

with rabbit serum (Babudieri, 1961).  Saprophytic strains have been found to reach stationery 

phase within 5 days of inoculation with Korthof’s compared to 30 days on EMJH (Saito et al., 

2013). 

 

Figure 1.2. Growth of L. interrogans as seen using dark field microscopy (x400 magnification).  

Image courtesy of Lee Smith, AHVLA. 

Antimicrobials are often included within Leptospira growth media, particularly during early 

sub-culturing from clinical material or environmental sources.  Several antimicrobials have 

been suggested for inclusion into EMJH that do not impair growth of leptospires, such as 

5-fluorouracil (5-FU).  The pyrimidine analogue of 5-FU shows no impairment of Leptospira 
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growth up to concentrations of 200µg/ml, whereas it has demonstrated a bacteriostatic effect 

on other bacteria species (Heidelberger et al., 1957).   Phosphomycin (FOM) also shows no 

inhibition of Leptospira, even at greater concentrations of 1,600µl/ml (Oie et al., 1986).  Once 

inside a bacteria, FOM prevents the production of new cellular wall structures by inhibiting the 

biosynthesis at an early stage (Forsgren and Walder, 1983). 

ATP is generated by an F0F1-type ATPase, as seen in other bacterial species such as 

Mycoplasma pneumonia (Nascimento et al., 2004).  Fatty acids are utilised as a sole carbon 

source and metabolised by beta-oxidation, whereas ammonium salts are metabolised for 

nitrogen (Adler and de la Pena Moctezuma, 2009; Palmer and Zochowski, 2000), and both are 

key components of any commercial Leptospira media. 

Environmental survival can be sustained for prolonged periods by certain species such as 

L. interrogans; however saprophytic species are better adapted for such conditions.  The 

genomes for saprophytic strains contain the metabolic pathways necessary to thrive in 

environmental niches instead of those contributing to survival within a host. 

1.2.5 Survival & acquisition of metabolites within a host and the surrounding external 

environment 

Following the full genome sequencing of Leptospira strains, it became possible to identify the 

genes and pathways involved in acquiring nutrients and metabolites, both within a host and 

the external environment.   

The mechanism for glycerol metabolism and further glycerol enzymes indicated towards 

glycerol and fatty acids being acquired through phospholipids degradation (Nascimento et al., 

2004).  All genes necessary for a complete glucose utilisation pathway are present but only one 

uptake system is utilised, which is dependent on a sodium gradient across the membrane.  

Difficulties in utilising glucose for energy are a result of insufficient uptake rather than a lack of 

ability to generate glucose-6-phosphate (Nascimento et al., 2004).   

During infection, the host immune response can reduce the rate of iron absorption and 

increase production of transferrin, thus limiting the amount of free iron available to the 

bacteria.  The low iron environment has been suggested as one explanation for the signs of 

jaundice and haemorrhagic lesions seen in patients, as the bacteria lyse host cells to acquire 

the iron they require (Sridhar et al., 2008).  A number of proteins have been linked with 

degrading membranes including 5 sphingomyelinase C-type haemolysins, one phospholipase D 

and orthologs for other haemolysins (Nascimento et al., 2004).   
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Genes relating to capsular polysaccharides and secreted exopolysaccharides are present, 

despite no experimental evidence of leptospiral biofilm formation existing (Faine  S., 1999).  

One possible explanation may relate to colonisation mechanisms in renal tubules and methods 

for survival outside of a host (Nascimento et al., 2004). 

Mutant clones of metW, metX and metY demonstrated the presence of two distinct pathways 

for methionine biosynthesis within two pathogenic species of Leptospira (Picardeau et al., 

2003).  These include both transsulphuration and sulphhydration pathways, similar to those 

seen in other bacteria such as E. coli.  The importance of additional sources for methionine 

may be emphasised from the range of hosts that pathogenic species can infect, and so require 

the genes for nutrient acquisition within a number of differing environments.   EMJH contains 

high levels of sulphate (Johnson and Harris, 1967) which may be utilised during the 

biosynthesis of methionine when grown on media. 

1.3 Pathogenic Leptospira Species 

Pathogenic strains are able to infect and cause disease in humans and a wide range of animals 

(Albatanony and El-Shafie, 2011; Gamage et al., 2012; Mayer-Scholl et al., 2013; Miraglia et al., 

2012; Runge et al., 2013; Suwancharoen et al., 2013).  In particular, serovars known to infect 

companion animals (Arbour et al., 2012; Arent et al., 2012; Markovich et al., 2012)  have been 

reported in the UK.  Disease manifestations can differ between serovars to a certain extent; 

however the specificity to a host is of greater importance to the pathogenic outcome.  For 

example, rats act as the reservoir for serovar Icterohaemorrhagiae, whereas dogs are 

maintenance hosts for serovar Canicola as they shed the serovar into the local environment 

(Klaasen et al., 2003).   

1.3.1 Canine and human infection 

Canine leptospirosis is a widespread zoonotic issue, with a large range of pathogenic serovars 

able to infect and cause disease.  Even within countries with vaccine availability, infection is 

still an issue due to a lapse in duration of immunity (DOI), differences with infecting serovars or 

a lack of vaccination entirely.  Following colonisation, antibodies can be detected within 10-15 

days (Andre-Fontaine, 2013).  Clinical signs are typically vague during the early stages of 

infection (such as diarrhoea, vomiting, fever and malaise) and can be associated with a range 

of diseases.  If left untreated, the disease can develop into late stage leptospirosis and cause 

renal and hepatic complications, which can be fatal.  It is during these stages where the 
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characteristic jaundice can present.  Not only is disease an issue but as dogs can shed into the 

local environment, humans or other unvaccinated animals in their vicinity are at risk. 

Previous infection studies have demonstrated the effects that certain serovars can have 

following infection of a canine host.  Greenlee and colleagues (2005) demonstrated 

L. interrogans serovar Pomona to be highly infectious, with 11/12 8-week old female beagles 

becoming infected following a challenge dose.  Typical signs of lethargy and fever presented at 

day 7 post-inoculation, with lesions and pulmonary haemorrhage from day 10 onwards 

(Greenlee et al., 2005).  An earlier study by Navarro and colleagues (1981) showed the 

presence of fever, dehydration, depression and icterus following infection with L. interrogans 

serovar Icterohaemorrhagiae (Navarro et al., 1981). 

Human leptospirosis can be caused by a range of pathogenic serovars regularly maintained 

within animal hosts. Since 2008 in the UK, the HPA have reported infections from serovars, 

Icterohaemorrhagiae, Autumnalis, Australis, Grippotyphosa, Saxkoebing, Bataviae and Hardjo 

(HPA, 2012).  Humans are incidental hosts that can also shed the bacteria for up to a year after 

infection (Bal et al., 1994; Chow et al., 2012; Ko et al., 2009).  Human to human infection is not 

common, but can occur when residing in cramped conditions with poor sanitation that favour 

leptospire growth in the environment (Ganoza et al., 2010). 

Not only does leptospirosis pose a detrimental effect to dogs and humans, pathogenic strains 

can also cause equine abortions (Whitwell et al., 2009).  This was the first report of 

leptospirosis causing abortions in the UK, however this has been seen in cattle (Atxaerandio et 

al., 2005), sheep (Leon-Vizcaino et al., 1987) and pigs (Paz-Soldan et al., 1991; Ramos et al., 

2006). 

1.3.2 Mechanisms for infection for Leptospira 

Once inside a host, pathogenic strains have the ability to evade defences, such as complement, 

due to expressed Leptospira proteins (LenA and LepA for example) (Fraga et al., 2011).  In 

contrast, saprophytic strains (such as L. biflexa) lack these (or similar) proteins and are cleared 

rapidly from host serum by reticuloendothelial phagocytosis in a matter of minutes (Fraga et 

al., 2011; Merien et al., 1997).  The bacteria travel through the bloodstream to rapidly 

disseminate into target organs and tissues (Stevenson et al., 2007), further facilitating the 

ability to evade host immune responses (Ko et al., 2009).  Evidence for such mechanisms has 

been published using pathogenic strains on polarised Madin-Darby canine kidney (MDCK) cells 

(Barocchi et al., 2002).  Plasmin activity arising from interacting with plasminogen on host cell 
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surfaces can help facilitate this translocation across the endothelial cell barrier (Vieira et al., 

2013), a practice lacking in non-virulent strains.  Proteolytic degradation of the extra-cellular 

matrix (ECM) may also aid invasion of host cells.  Enzymes are transported to the surface as 

lipoproteins and then utilise type two secretion systems (T2SS) (Nascimento et al., 2004).  

Further to this, leptospires can target areas protected from the immune response such as the 

meninges or the eye.   

Pathogenic species are also resistant to the alternate complement pathway and acquire 

complement factor H through ligands such as leptospiral endostatins (Len proteins).  Factor H 

binds to the outer membrane and degrades C3b and C3 convertase.  This inhibits the 

formation of the membrane attack complex (MAC).  Saprophytic strains lack the ability to bind 

factor H (Adler and de la Pena Moctezuma, 2009).  There is also some degree of protection 

against the classical pathway by strains binding the C4b-binding protein alpha chain (C4BPA) to 

the leptospiral surface (Ko et al., 2009). 

Should an infection become chronic (as typically seen in reservoir hosts), the bacteria colonise 

the luminal surface of the proximal renal tubules, allowing continuous shedding into the 

environment via urine (Haake and Matsunaga, 2010; Stevenson et al., 2007). 

It has been shown in vitro that virulent strains of L. interrogans killed macrophages via 

apoptosis to invade Vero cells (renal fibroblast cell line) (Merien et al., 1998).  However prior 

treatment with formaldehyde strongly inhibited the internalisation of virulent cells (Merien et 

al., 1997).   

Four of the five genes in the BatI operon seen in Bacteriodes fragilis have also been found in 

Leptospira (including batA and batB).  They encode for proteins containing a Von Willebrand 

factor type A domain (Nascimento et al., 2004) and has been inferred that the proteins are 

involved in the loss of haemostasis in a host during infection (Ren et al., 2003). 

Mutations in genes involved with motility (LA0025, LA2417, LA2069, LA2215 & LA2592) 

demonstrated no effect on motility in liquid culture or inhibited growth, suggesting a degree of 

functional redundancy (Murray et al., 2009a).  Following the addition of leptospiral antiserum 

to EMJH, a reduction in motility was witnessed in vitro.  At high concentrations the bacteria 

intertwined initially and then slowly regained motility after two hours.  It was suggested that 

the constituents of the LPS react to antibody binding by shifting the antigens towards the 

bacterial cell ends, which aids motility and the ability to break away from membranes (Guo et 
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al., 2013).  Pathogenic strains may have evolved methods to circumvent or aid in reducing the 

time taken to regain motility however further investigation would be required. 

Temperature is a well documented factor that can affect the growth and survival of the 

bacteria (Palmer and Zochowski, 2000), although the exact role on differential gene expression 

was not known until recently.  Under conditions simulating the shift between an outside 

environment and that inside a host, 507 genes were witnessed to be differentially expressed.  

Of those, 299 were up-regulated and included signal peptidases (lepB), DNA repair proteins 

(radC) and ion chaperones (copZ) (Lo et al., 2006).  Such proteins would further aid survival 

and replication within a host. 

1.3.3 Clinical manifestations of Leptospira infections 

Humans are incidental hosts and cannot transmit the disease to others (Ko et al., 2009), 

whereas dogs act as the maintenance host for certain serovars (such as Icterohaemorrhagiae).  

Generally, canine leptospirosis is only considered in a differential diagnosis when typical later 

stage (anicteric) symptoms present themselves, such as jaundice and renal failure (Segura et 

al., 2005).  With the disease presenting with varying manifestations (potentially due to 

different infecting serovars), a diagnosis of leptospirosis may be neglected altogether or only 

considered post-mortem (Zaki et al., 1996).   

Distinct serovars can manifest with differing symptoms within a host.  Serovar Canicola can 

cause Stuttgart’s disease in humans (acute renal or gastrointestinal infection) and serovar 

icterohaemorrhagiae can cause Weil’s disease in canines (acute haemorrhagic form) (Klaasen 

et al., 2003) but is also known to cause acute hepatic syndrome, uraemia or haemorrhagic 

enteritis (Andre-Fontaine and Ganiere, 1990).  Acute renal failure can also manifest as tubulo 

interstitial nephritis as indicated by polyuria (Atzingen et al., 2008). 

Within both canines and humans, the majority of leptospirosis cases present as mild and vague 

signs, such as fever, diarrhoea and vomiting (Levett, 2001).  However, if left untreated during 

this early stage, a percentage of cases can develop into late stage leptospirosis where the 

survival likelihood is reduced. 

Between 5-10% of human patients contracting leptospirosis develop late stage complications, 

with an overall mortality rate reported between 1-5% (Dolhnikoff et al., 2007a).  Adler and de 

le Pena Moctezuma (2009) described the potential for four syndromes to arise from late stage 

leptospirosis, of which severe pulmonary haemorrhaging syndrome is becoming increasingly 
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common, reported in France, Mexico and Brazil (amongst others) (Gouveia et al., 2008; 

Paganin et al., 2011; Zavala-Velazquez et al., 2008). 

Severe pulmonary haemorrhagic syndrome (SPHS) was first identified within humans during an 

outbreak in Nicaragua, 1995 (Trevejo et al., 1998).  A study in Brazil identified a further 47 

cases of SPHS between 2003-2005 as a result of a Leptospira infection, with a fatality rate of 

74% within them (Gouveia et al., 2008).  Since the first identification of SPHS  there have been 

growing reports from human infections (Croda et al., 2010; Dolhnikoff et al., 2007b; Duplessis 

et al., 2011; Trevejo et al., 1998).  However no definitive link between SPHS and leptospirosis  

has been made in dogs to date (Klopfleisch et al., 2010).  Seven pulmonary leptospirosis cases 

were identified using real-time PCR within endemic urban areas of Peru which presented with 

symptoms not traditionally associated with leptospirosis (Segura et al., 2005).  Of the seven, 

five died with late stage pulmonary leptospirosis which further emphasises the high mortality 

rates previously described (Dolhnikoff et al., 2007a). 

Late stage symptoms have been suggested to have associations with certain serogroups, such 

as serogroup Icterohaemorrhagiae linked to jaundice, elevated bilirubin and oliguria relating to 

renal failure (Katz et al., 2001).  Serovar Icterohaemorrhagiae has been associated with severe 

leptospirosis in humans (Herrmann-Storck et al., 2010).  However, despite this perceived 

association in humans, it is yet to be investigated if the same level of significance is seen 

between serovars and the chance of developing severe leptospirosis within canine cases. 

Thrombotic thrombocytopenic purpura (TTP) is a condition that is classically characterised by 

fever, anemia, renal failure and thrombocytopenia.  If left untreated, the condition has a 

mortality rate of up to 90% (Amorosi and Ultmann, 1966; Rock et al., 1991).  Recently there 

have been human cases of TTP witnessed that have been linked to a Leptospira infection 

(Booth et al., 2011; Quinn et al., 2013).  In the case presented by Quinn and colleagues (2013) 

the abnormal liver function results were not traditionally indicative of TTP, indicating a 

possible mis-diagnosis based on the vague symptoms.  However, whether this extends to 

canine infections is yet to be determined. 

Meningitis can also be caused by a small number of late stage human infections, typically from 

neuroleptospirosis, which is biphasic; with septic and immunological phases (Panicker et al., 

2001).  It is during this second stage where classical meningitis symptoms can be seen.  Aseptic 

meningitis has been seen in up to a quarter of human leptospirosis cases (Bharti et al., 2003).   
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The cholinergic responses to mild leptospirosis have also been demonstrated, with both 

acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) detected within the blood of 

infected rat models, particularly five days post infection.  Increased levels of AchE can 

contribute to inflammation caused by a leptospirosis infection and may act as a marker for 

inflammation within an infected host (da Silva et al., 2012; Das, 2007).  BChE can also act as a 

marker in similar fashion.  Following the host response of inhibiting AChE to prevent further 

inflammation, BChE can compensate, and an increase of BChE activity was witnessed 30 days 

post infection (da Silva et al., 2012).  Both enzymes may be beneficial as markers for assessing 

inflammation arising from infection. 

It has been suggested that white-spotted kidneys of ruminants & cattle following slaughter are 

an indicator of an infection from Leptospira (Dorjee et al., 2009).  With 79.2% of cattle 

presenting with the white spots were positive by PCR for the bacteria (Azizi et al., 2012).  While 

it is not indicative of an infection, the presence of white-spotted kidneys should in turn raise 

suspicion of either an active or chronic infection.  Despite the association in farm animals, no 

link has been identified within companion animals for such clinical signs. 

1.3.4 Treatment of Leptospirosis in both humans and dogs 

Due to vague anicteric clinical signs witnessed during early stage canine leptospirosis, 

treatment is typically prescribed with broad spectrum antibiotics.  In the past, penicillin has 

been used to combat infections, and has been suggested for use with severe, late stage 

infections (Watt et al., 1988), however a situation was witnessed in humans requiring an 

increased dialysis following late stage penicillin use (Brett-Major and Coldren, 2012).  Whether 

this also applies to canine treatment has not yet been investigated.   

For treating human infections, penicillin is reported to be effective only within the first four 

days of infection (Panicker et al., 2001) but a course of treatment, coupled with dialysis to 

treat the renal complications, has been shown to be sufficient for treating complications 

arising from infection (Patil et al., 2011).  Despite the advantages, due to severe 

Jarish-Herxheimer reactions previously witnessed from large scale endotoxin release, other 

antibiotics are now commonly prescribed (Hartskeerl et al., 2011).  A report in 2000 backed the 

use of both penicillin and doxycycline for leptospirosis treatment (Guidugli et al., 2000). 

In vitro studies have shown that pathogenic strains of Leptospira are susceptible to ampicillin, 

cefepime and macrolides (Ressner et al., 2008).  Tilmicosin (a macrolide) was demonstrated to 

show greater bacteriocidal properties against four strains when compared to amoxicillin and 
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enrofloxacin (Kim et al., 2006).  However, any clinical implications are yet unknown as 

extensive testing on side effects for a host is yet to be carried out in regards to leptospirosis 

treatment.   

Alternatives treatments such as corticosteroids (Shenoy et al., 2006) that have demonstrated a 

reduced mortality rate during human studies may also prove useful in canines.  To what extent 

however is currently unknown as they are yet to be investigated for such purpose. 

1.3.5 Reservoir hosts and environmental survival of Leptospira 

Rodents are an important part of the transmission cycle for leptospirosis in both canines and 

humans.  Not only do they maintain their survival as asymptomatic carriers, but they also shed 

live leptospires into the local environment.  Once shed, certain pathogenic species can survive 

within damp soil or bodies of standing water for prolonged periods before being taken up by a 

new host. 

The most common rodent reservoir across the literature is the black rat (Rattus rattus) and the 

brown or Norwegian rat (Rattus norvegicus).  Wood mice, bank voles, house mice and yellow 

necked mice are also associated with the disease (Wisseman et al., 1955).  Renal carriage levels 

vary depending on local endemic rates, with reports of infection in 84.6% (11/13) of mice and 

65.9% (54/82) from regions of high leptospirosis infection rates (Desvars et al., 2012). 

Once inside a reservoir host, the bacteria rapidly disseminate from the bloodstream into target 

organs such as the liver or kidneys in order to avoid host defences.  Once there, they colonise 

and establish an infection within the renal tubules.  From the kidneys they are shed via the 

urine of the infected animal which can then infect an incidental or reservoir host. 

It has been suggested that the sex of a rodent is not a definitive risk factor for the rodent to 

contract an infection, whereas others suggest that females have an increased risk for infection 

(Krojgaard et al., 2009). 

Currently, reports are conflicting on the risk of urban leptospirosis.  Expansion of urban 

populations into previously rural land has increased leptospirosis incidence rates from greater 

contact with favourable growth conditions, particularly in areas with poor sanitation (Reis et 

al., 2008).  Rats living in a confined, damp space e.g. sewers show an increased prevalence of 

Leptospira infections.  The environmental conditions facilitate leptospire survival and a limited 

movement space increases contact and the chance of transmission between rodents 

(Krojgaard et al., 2009).  Cases within cities and towns also vary.  A study of rodent populations 
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within Tokyo, Japan, revealed that of the total 127 rats sampled, 22 (17%) were shown to be 

PCR positive (Koizumi et al., 2009).  As a contrast however, two studies from New Zealand 

identified no presence of urban Leptospira over two separate studies despite identifying the 

bacteria within rural samples (Blakelock and Allen, 1956; Brockie, 1977). 

To emphasise the worldwide extent of the type of host susceptible to leptospirosis, the 

common tenrec (Tenrec ecaudatus) is a small mammal native to islands around Madagascar 

and Africa.  Interestingly one study discovered that although the species were found with 

circulating antibodies in their blood (confirmed by MAT), no evidence of renal presence was 

confirmed by PCR (Desvars et al., 2012). 

When outside a host, pathogenic strains can survive for short periods in bodies of water and 

damp soil.  Damp, alkaline conditions favour the growth of all Leptospira (Smith and Self, 1955) 

and temperature is a limiting factor in their survival (Levett, 2001).  Reports from cases in 

Argentina (Vanasco et al., 2008), Korea (Jung et al., 2010) and Guadeloupe (Storck et al., 2008) 

all show an increase in leptospirosis cases during wet and warm conditions.   

1.3.6 Vaccination and prevention methods 

The vaccine itself is typically a non-adjuvanted liquid vaccine containing inactivated whole cells 

of each serogroup that it protects against.  A number of human and canine vaccines have been 

produced in countries with endemic leptospirosis within local reservoir populations.  Vaccine 

effectiveness in a region primarily focuses on two areas, serovar specificity and the duration of 

immunity.  Knowing the endemic serovars within a region can allow for vaccines to be tailored 

for adequate coverage and increase their effectiveness.  Typically, two vaccine doses are 

required for full immunity against the disease when vaccinating for the first time.  The same is 

true for including a new serovar within the annual booster, as a single dose may not be 

sufficient to supply adequate protection (Moore, 2013). Failing to maintain an up to date 

vaccination by letting the duration of immunity (DOI) lapse exposes a companion animal to 

infection should they be challenged with Leptospira exposure.  Typical vaccines against 

leptospirosis protect for 12 months before a booster is required to maintain optimal 

protection (Klaasen et al., 2003). 

A study in 2003 investigated the duration of immunity (DOI) that the canine vaccines available 

at the time of the study offered.  They conferred a suitable level of protection for 13 months 

from the serovar Canicola with no signs of shedding.  Two of six unvaccinated dogs became 

carriers of the serovars Icterohaemorrhagiae whereas none of those vaccinated did (Klaasen et 
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al., 2003).  More recently a study by Minke and colleagues (2009) looked into the DOI offered 

by the vaccine EURICAN® L (Merial).  This vaccine was shown to offer protection against both 

Canicola and Icterohaemorrhagiae for at least 14 months.  None of the 18 vaccinated puppies 

developed a renal carrier state and only 2 out of the 16 adult dogs presented clinical signs 

(Minke et al., 2009).  This was however following a challenge with doses much larger than 

those naturally occurring in the environment. 

Several canine leptospirosis vaccines have been registered within the UK.  Due to previously 

reported cases, most are typically bivalent to include two common serovars in the UK 

(L. interrogans serovars Canicola and serovar Icterohaemorrhagiae).  The vaccines do offer 

limited cross-protection to other serovars within the same serogroup; however this effect can 

vary.  It has been suggested that serovar Canicola can impart protection against Ballum and 

Copenhageni strains (Rosario et al., 2012). 

Licensing requirements differ between countries, meaning the serovars that vaccines are 

registered to protect against can vary.  For the US, there are four tetravalent vaccines that 

protect against four serogroups including Canicola, Icterohaemorrhagiae, Grippotyphosa and 

Pomona (Klaasen et al., 2013). 

In 2013, MSD Animal Health published details of a new tetravalent canine vaccine that 

protects against challenge from four serogroups (Klaasen et al., 2013). Serogroups Australis 

and Grippotyphosa are included alongside Canicola and Icterohaemorrhagiae.  The HPA have 

reported human infection arising from the Australis serogroup (HPA, 2013b) and previous 

studies in the UK have shown that serovars belonging to the Australis serogroup are present in 

wild rodents (Hathaway et al., 1983b).  

Due to the perceived low rates of infection in the UK, the canine leptospirosis vaccine is also 

not currently considered a ‘core’ vaccine in the UK (unlike the vaccines for parvovirus, 

parainfluenza virus, canine distemper and infectious hepatitis).  Alongside this leptospirosis 

was removed from the list of notifiable diseases, meaning labs are not required to report 

positive leptospirosis cases to the AHVLA. 

Human vaccines are available alongside those for companion animals and livestock.  As with 

canine vaccines they are typically bivalent or trivalent and contain serovars endemic to the 

region.  However, human vaccines are typically administered for regions with high risk factors 

such as following serious environmental conditions like a period of heavy flooding (Adler and 
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de la Pena Moctezuma, 2009).  In the UK, the human vaccine is not routinely administered due 

to the low incidence of cases (between 50-60 a year) (HPA, 2012). 

Proteins residing in the outer membrane have been scrutinised for their efficacy within 

vaccines.  Following the full sequencing of several Leptospira genomes, motifs within the 

membrane have been identified and suggested for inclusion within vaccines due to their 

antigenic properties.  The protein LemA was shown as a potential candidate, given its 

conserved nature amongst pathogenic species.  Initial testing of LemA indicated a reduced 

mortality rate from a range of vaccine production methods, including a strong level of 

protection using a prime-boost strategy (Hartwig et al., 2013).  However the protection that is 

conferred amongst each endemic serogroup would need further investigation to determine its 

true potential.  

Hap1 is also known as lipL32.  Previous reports describe hap1 as encoding for a haemolysin, 

located downstream from sphH (Lee et al., 2000).  It is highly conserved and located within 

pathogenic strains L. interrogans serovar Lai and L. kirschneri serovar Grippotyphosa (Branger 

et al., 2005).  Studies demonstrate the potential of hap1 as a vaccine candidate, as the gene 

conferred a level of protection within gerbil models (Branger et al., 2001).  However, studies 

should be compared to those of lipL32. 

Leptospirosis can also be avoided by preventing an infection within a host. By preventing 

colonisation, the level of bacterial shedding into the environment is also restricted.  By 

creating a physical barrier between a host and the bacteria, the potential for host invasion is 

restricted.  The threat of such has been highlighted within clinicians examining infected 

rodents and canines (Whitney et al., 2009).   

Alongside vaccination, removal or prevention of reservoir hosts can help prevent incidental 

canine or human infections.  During 2011, in an attempt to curb endemic human infections, 

the Indonesian government culled the local rat population following an over-average increase 

in leptospirosis cases.  In one month before the culling, fifteen cases were reported that led to 

four deaths in humans (ProMED-mail, 2011). 

While many strains cannot be eradicated from areas due to the large range of animal 

reservoirs such as rodents, there is one exception.  Serovar Hardjo is maintained within cattle 

and sheep reservoirs with no other known hosts (Hartskeerl et al., 2011).  Given these 

characteristics, it may well be possible to eradicate the serovar from herd populations through 

extensive vaccination programmes. 
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1.4 Saprophytic Leptospira species 

To date there are six saprophytic species of Leptospira.  Within the six, there are much fewer 

serovars documented compared to the pathogenic species which emphasises the greater ratio 

of pathogenic strains currently in circulation throughout the world.   

Historically, all saprophytic strains were grouped within one species name, L. biflexa until the 

discovery of several genome divergences which culminated in the discovery of new species in 

1987.  Yasuda et al., (1987) proposed the names of two new saprophytic strains L. meyeri and 

L. wolbachii.  Since then a further two were discovered, including a genomospecies, to bring 

the total to six species within the saprophytic sub-group. 

Isolating the bacteria from environmental sources has proven to be difficult due to the nature 

of sampling, the presence of other contaminants, and a slow growth process (Saito et al., 

2013).  The issue with contaminants can be prevented to an extent with the addition of 

multiple antimicrobial agents which do not affect leptospires (Chakraborty et al., 2011).  The 

combination of five antimicrobial agents were able to isolate a potentially new saprophytic 

species from water obtained in Japan within close proximity to a swimming pool (Saito et al., 

2013).  The same study also suggested that saprophytic strains may not grow as efficiently in 

EMJH compared to pathogenic species.  This finding is conflicting with previous reports of how 

the saprophytic strains can outgrow pathogenic if in the same EMJH inoculation (Ganoza et al., 

2006).   

While saprophytic strains have no clinical relevance in terms of causing disease, the genetics of 

the strains can still remain useful in identifying pathways and survival mechanisms utilised that 

could also be part of pathogenic serovars.  To date, saprophytic strains have never been 

isolated from a human host (Merien et al., 1997). 

The inability of saprophytic strains to cause disease, lack of clinical importance and the 

difficulty of isolating new strains from environmental sources means that new pathogenic 

serovars have a greater chance of discovery.  This may be one reason for explaining the greater 

number of pathogenic serovars currently identified. 

1.5 Diagnosing a Leptospira infection 

Diagnosis of leptospirosis infections are currently carried out with serological or molecular 

protocols, although successfully culturing any bacteria recovered from a host is highly 

beneficial to research into the organism.  Diagnosis via PCR is more effective, compared to the 



20 
Chapter One  Introduction 

MAT, during the early phase of infection as antibody levels are low or even non-existent (de 

Souza, 2006).  In the immunological phase, while antibodies can be detected in the cerebral 

spinal fluid (CSF), it is not possible to isolate the bacteria (Bharti et al., 2003). 

DNA for molecular detection can be extracted from a range of tissues for PCR including the 

spleen, liver, lungs and kidneys (Lourdault et al., 2009).  Studies have demonstrated a greater 

number of positive samples from tissue extracts compared to urine or blood (Azizi et al., 2012), 

presumably due to the bacterial load present.  However this approach presents issues with 

material availability.  Typically either blood or urine samples are submitted for testing, 

meaning this approach may not be feasible under such circumstances. 

In 2007, a range of serological techniques were tested against the MAT to compare their 

specificity and sensitivity.  Methods investigated include the IgM ELISA, dip stick tests, ELISA 

EIE-IgM-Leptospirose and the Dri-Dot test.  The IgM ELISA demonstrated the greatest 

sensitivity during the acute (<7 days) and the convalescent (8-10 days) phases of infection.  

Although with a reported sensitivity during the acute phase lower than 67%, a second result 

may be required for a definite diagnosis (McBride et al., 2007). 

When required, kidney tissue can be stored in formalin, embedded in paraffin and then cut 

into  sections for histology, such as the Warthin-Starry stain (Athanazio et al., 2008).  The 

technique is not useful for clinical application, only for post-mortem confirmation of infection.  

However, it is important for research due to having the greatest chance for visualising 

internalised bacteria within a host.  The haematoxylin and eosin (H&E) stain can infer sites of 

inflammation as a result of an infection when applied to the same section of tissue. 

1.5.1 Serological identification of Leptospira serogroups 

Serological testing still remains the most widespread method to confirm a potential 

leptospirosis case, with the microscopic agglutination test (MAT) established as the ‘gold 

standard’.   Laboratories across the world utilise the MAT for both diagnosing clinical cases and 

identifying the serogroup of infections for research purposes (Faine  S., 1999). 

Fundamentally, the MAT relies on agglutination of live Leptospira antigens to host antibodies, 

meaning the antigen needs to be a specific serogroup in order to detect an infection.  Sample 

serum is diluted down a titre gradient and mixed with live culture of Leptospira and saline on a 

96 well plate.  The samples are then incubated for two hours to allow for agglutination to take 

place.  Following this, each sample is observed under a dark field microscope for the presence 

of agglutination against a black background (Fig 1.3).  More than 50% agglutination is 
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considered as a positive titre.  Each sample is read down the titre gradient to determine the 

final reading.   

Countries differ in their cut-off point for positive titre values.  In the UK, a titre of 1:100 is 

usually required for a positive result, whereas in Australia and New Zealand, a higher titre of 

1:400 is required.  This value can differ for countries where the disease is more prevalent and 

values of 1:200-1:320 are regarded as the minimum diagnostic criteria (Katz et al., 2001; 

Sekhar et al., 2000).  A second sample taken a few days later demonstrating a rising titre value 

is a definitive diagnosis of a Leptospira infection.  Relying on a single sample is not ideal as it 

may be skewed by a recent vaccination or a previous challenge that has since been cleared. 

The MAT offers a useful diagnostic tool for clinicians.  Diagnostic labs that are maintaining a 

full panel of serovars can run the test in a matter of hours.  If ran on multiple pooled samples, 

the test can give a positive or negative result, whereas further testing with individual serovars 

will go some way to identifying the serogroup of the infecting strain.  Laboratories responsible 

for testing samples using MAT are regularly monitored by the Leptospirosis Reference Centre 

(Royal Tropical Institute, Amsterdam), who administer blind tests to ensure a high degree of 

competency.  As MAT results are subjective, this testing allows for a confidence in the results 

generated between labs.   

Epidemiologically, the MAT has been utilised to detect circulating antibodies in a range of 

susceptible animals.  Studies demonstrate that the level of seropositive results can vary to a 

wide degree, depending on the sampling location and host investigated.  One study in Brazil 

identifying 39.4% of sows from a slaughterhouse was seropositive (Miraglia et al., 2008), 

whereas a separate study in the same country found that 68.1% of domestic brown rats were 

seropositive (de Faria et al., 2008).  Further studies have shown that seropositive rates in 

rodents can also vary depending on the region, particularly within countries were leptospirosis 

is considered endemic (Agudelo-Florez et al., 2009; Benacer et al., 2013a; Rahelinirina et al., 

2010; Scialfa et al., 2010).   

A main disadvantage to conducting the MAT is with serovar identification and specificity.  

While the test is able to determine serogroups, it is unable to definitively distinguish between 

serovars within a serogroup due to the large amount of cross-reaction that can occur 

(Cerqueira and Picardeau, 2009).  This cross-reaction can be more severe within some 

serogroups compared to others (Levett, 2003) and can restrict the potential for 

epidemiological studies investigating the circulating strains within reservoir populations.   
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Figure 1.3.  Agglutination of antibodies to Leptospira antigens as typically seen as an outcome 

of a microscopic agglutination test (MAT).  Image courtesy of Lee Smith, AHVLA. 

The need for a second sample for a definitive diagnosis is also a major drawback with MAT.  A 

four-fold rising titre result on the second sample indicates an active infection. In contrast, a 

second sample showing the same titre result (especially a low titre) is indicative of a previous 

infection, or even a recent vaccination.  Alongside this, the technique is labour intensive, 

requires trained expertise to perform and is time consuming (Yitzhaki et al., 2004). 

An alternative serological test to the MAT that is used in the UK is the immunofluorescence 

absorption test (IFAT).  Antigens from live Leptospira cultures are fixed to slides.  Sample 

serum is then applied and incubated to allow interaction between the antigen and any present 

antibodies.  Following this, fluorescent conjugated anti-human IgG is added to the slides and 

incubated further for attachment.  Once excess IgG has been removed, the slides are observed 

under a fluorescent microscope for the presence or absence of fixed fluorescent tags (Zakeri et 

al., 2010b).  Just like the MAT, the IFAT is only able to give definitive sample identification to 

the serogroup level and is unable to identify the serovar.  The test offers a high-throughput 

alternative to the MAT, as a full 96 well plate can be used instead of needing a titre gradient. 

The enzyme-linked immunosorbent assay (ELISA) has been utilised both commercially and for 

researching Leptospira.  Anti-guinea pig IgM or IgG is conjugated to horseradish peroxidase to 

detect cross-reactive antibodies, absorbance results are then analysed (Lourdault et al., 2009).  
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For commercial tests the non-pathogenic L. biflexa serovar Patoc is used as it can detect 

cross-reactive antibodies in a broad selection of serovars.  However it has been suggested that 

results gained from commercial test kits should only be used as an initial diagnosis and further 

confirmation from another test e.g. MAT/PCR may be needed (Levett and Branch, 2002).  

There is also a commercially available IgM-dipstick test that can detect Leptospira.  This 

method may be better suited for smaller sample sizes, compared to large sample numbers 

which are more suited for ELISA. The test itself uses minimum equipment and takes around 

two hours, making it possible for an initial diagnosis in areas without the facilities for the full 

ELISA test, or when out in the field (Levett et al., 2001).  However the downside is a low 

sensitivity for both acute and convalescent phases (32.9% and 80.0% respectively) (McBride et 

al., 2007) 

1.5.2 Molecular identification of Leptospira serovars 

A number of genes have been proposed as targets for serovar identification using molecular 

methods, the most common being the 16S rRNA gene.  Not only can it be used for 

differentiating Leptospira from other spirochetes (Paster et al., 1991), the infecting species can 

also be determined.  A PCR assay targeting the 16S rDNA gene was first developed in 1992 

(Hookey, 1992) and has now been incorporated into a range of conventional, nested and 

real-time PCR assays (Djadid et al., 2009; Merien et al., 1992; Patarakul and Lertpocasombat, 

2004; Slack et al., 2006; Tansuphasiri et al., 2006; Woo et al., 1998). 

Published data for utilising the DNA gyrase gene, gyrB, demonstrates the potential for species 

identification from direct amplicon sequencing (Slack et al., 2006).  The gene encodes for a 

DNA gyrase subunit and has a 100% agreement with direct 16S rDNA amplicon sequencing, 

with the added benefit of a greater BLAST score and lower E value.  The gyrB gene has been 

shown in other bacteria to have a much higher rate of base substitution when compared to 

16s rDNA, a rate of 0.7-0.8% per 1 million years compared to 1% every 50 million years 

(Yamamoto and Harayama, 1996).  This level of genetic variation suggests that gyrB could be 

the better candidate for phylogenetic analysis. 

Several outer membrane proteins (OMPs), such as OmpL1 and the LipL family, have also been 

investigated for their use in distinguishing between serovars.  As they contain antigenic 

properties, as recognised for the MAT, then the potential exists for OMPs to convey the ability 

to distinguish on a serovar level.  
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The lipL32 gene (also known as Hap1) is only present in pathogenic strains and codes for the 

OMP LipL32.  To date, the gene has been targeted for several published PCR assays and direct 

sequencing of amplified amplicons can also determine the species of a strain (Foronda et al., 

2011; Haake et al., 2004; Tansuphasiri et al., 2006). 

Multi-locus sequence typing (MLST) is a highly discriminative molecular technique for bacterial 

identification and typing, which relies on sequencing multiple loci within the genome.  The first 

scheme was developed in 1998 to strain type isolates of Neisseria meningitides (Maiden et al., 

1998).  Since then, the technique has been successfully applied to a wide range of bacterial 

taxa, including spirochetes (Margos et al., 2008; Rasback et al., 2007).  The first MLST scheme 

for Leptospira was published by Ahmed and colleagues (2005) which targets six genes, 

including genes contained within previously published PCR assays.  Thaipadungpanit and 

colleagues (2007) published an alternate scheme in 2007 which amplifies seven loci, based on 

housekeeping genes (Thaipadungpanit et al., 2007).   

The first scheme put forward by Thaipadungpanit and colleagues (2007) was only able to 

discriminate between two pathogenic species (L. interrogans & L. kirschneri) and is 

inconclusive for typing other species.  Cerquiera and colleagues (2010) observed that when 

two additional loci (lipL41 & rpoB) were included with the original scheme it was possible to 

distinguish between a further four pathogenic species (Cerqueira et al., 2010). 

The online MLST database (http://leptospira.mlst.net) currently contains allele data for 338 

isolates belonging to 201 sequence types (STs).  Recently, the scheme was updated to 

incorporate a total of seven pathogenic species (Boonsilp et al., 2013).  By switching the fadD 

locus for caiB and introducing degenerate bases into the primers, it is now possible to identify 

an additional five species to improve the accuracy and potential for the technique.  The 

database holds information for alleles based on both the original scheme and the updated 

primers.  

Multi-locus variable number tandem repeat analysis (MLVA) is a technique similar to MLST 

that has been described as having the discriminative potential to distinguish the serovars of 

three pathogenic species.  Similar to MLST, the technique is based on running the products 

from amplified loci on a sequencer to identify the size and total number of repeats.  However, 

the nucleotide sequence is not examined with MLVA, only the size of the amplicons.  Several 

loci where identified as potential targets for a VNTR scheme in 2005 (Majed et al., 2005).  

Following the study, a full MLVA scheme was subsequently first published in 2006 (Salaun et 

al., 2006) based on five loci.  Each locus is selected based on tandem repeat regions within the 
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genome.  Different serovars contain differing replicate numbers for each repeating region.  It 

was found that by combining the number of repeats in up to five loci, it was possible to 

determine the serovar of three pathogenic species (L. interrogans, L. borgpetersenii and 

L. kirschneri).  However MLVA has its own limitations, with some serovars sharing the same 

number of tandem repeats, highlighting a reduced discriminatory ability to distinguish 

genetically close serovars.  Within L. interrogans, serovars Copenhageni and 

Icterohaemorrhagiae have the same profile, as do serovars Sejroe and Istrica from L. 

borgpetersenii (Salaun et al., 2006). 

1.6 The Leptospira genome 

The size of the bacteria’s genome differs from species to species.  This is to be expected as 

pathogenic and saprophytic strains require different pathways for survival.  However, there is 

also a differentiation within individual pathogenic species.  The L. interrogans genome is 

roughly 4.7Mb with the L. borgpetersenii genome having a smaller genome with roughly 

4.1Mb (Table 1.2). However, most pathogenic genomes are generally conserved, with serovars 

Lai and Copenhageni sharing 95% homology (Nascimento et al., 2004).  All tRNA and rRNA 

genes are found on Chromosome 1 (Ren et al., 2003). 

The first full genome sequencing of Leptospira was carried out in 2003, when Ren and 

colleagues (2003) sequenced the pathogenic L. interrogans serovar Lai (Ren et al., 2003); using 

the same sequencing method applied to other spirochete species (Fraser et al., 1997).  In the 

same year, the first mutant strain was produced in Leptospira meyeri, using trpE,  the gene 

responsible for coding the alpha subunit for the tryptophan biosynthetic pathway (Bauby et 

al., 2003).  The ability to produce mutants for Leptospira presented the potential for virulence 

trait investigations in knock out models. 

Following the success from whole genome sequencing, the first virulence factor was 

genetically defined in 2007 by Ristow and colleagues (2007).  They discovered that the 

lipoprotein Loa22 was essential for virulence when inserted into guinea pig and hamster 

models.  Despite being essential for virulence, its exact role is yet unknown.  A transposon was 

inserted into the loa22 gene and attenuating the resulting strain, which failed to express the 

protein in vivo (Ristow et al., 2007). 

Five years following the first Leptospira genome sequencing, the whole genome for a 

saprophytic strain of Leptospira biflexa was published (Picardeau et al., 2008).  In total, the 

genome size of L. biflexa was more similar to L. borgpetersenii rather than L. interrogans (Table 
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1.2).  In addition to this, the saprophytic strain contained a replicative plasmid (p74) along with 

the two chromosomes found in all other Leptospira species. 

Within all strains sequenced to date, a ‘core’ genome has been reported that consists of 2,052 

(61%) genes.  This core includes essential genes associated with DNA repair, cellular structure, 

metabolism amongst others (Picardeau et al., 2008).  

A total 31 open reading frames code for the enzymes involved with the O-antigen of LPS 

(Werts et al., 2001).  This would go some length to explain the large variation of epitope 

expression, and the large range of serovars.   

Strain 

Chromosome 

Size (Mb) 

Number of 

Genes 

Number of 

Proteins 

C I C II C I C II C I C II 

L. interrogans Copenhageni str. 

Fiocruz L1-130 
4.28 0.35 3,486 276 3,399 268 

L. interrogans Lai str. 56601 4.34 0.36 3,457 293 3,409 293 

L. interrogans Lai str. IPAV 4.35 0.36 3,469 293 3,421 293 

L. borgpetersenii Hardjo-bovis str. 

JB197 
3.58 0.3 2,980 262 2,645 235 

L. borgpetersenii Hardjo-bovis str. 

L550 
3.61 0.32 3,003 270 2,703 242 

L. biflexa Patoc str. Patoc 1 (Ames)1 3.6 0.28 3,351 267 3,277 266 

L. biflexa Patoc str. Patoc 1 (Paris)1 3.6 0.28 3,440 276 3,391 276 

Table 1.2. Genome sizes, gene numbers and protein numbers for seven species that have been 

sequenced to date.  1 Contains an additional plasmid (p74) 

Differences in genome size and composition of strains within the same species have previously 

been highlighted (Bulach et al., 2006).  Pathogenic strains may become adapted to infect 

specific hosts, which can lead to differences in the receptors utilised for cell attachment within 

alternative hosts.  This can be demonstrated within L. interrogans due to its widespread 

presence in a range of animal species whereas L. borgpetersenii is considered to be maintained 

mainly within cattle herds.  As a result, the genome of L. borgpetersenii has undergone a 

restriction, with a lower total number of functional genes (Bulach et al., 2006). 

Following recombination of genome arrangements via insertion sequences (IS), the organism 

can acquire genes that are considered non-essential.  To increase efficiency, production of 
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enzymes and proteins involved with active pathways for survival and growth are either up or 

down regulated when within a host in response to the change in environment.  Despite the 

evidence for horizontal gene transfer within intermediate species, there is a distinct lack of IS 

elements amongst both the intermediate and saprophytic species (Ricaldi et al., 2012). 

One example of non-essential gene deletion can be seen in all pathogenic strains that contain 

the cobalamin riboswitch, which is concerned with the regulation of genes involved with 

synthesising and transporting vitamin B12.  Vitamin B12 is essential for growth and included as a 

supplement in all commercial growth media.  However it is not present in the saprophyte 

L. biflexa, indicating a lack of a response to local environmental cobalamin levels from 

saprophytic species (Ricaldi et al., 2012).  This potentially indicates the presence of an 

alternative process of acquiring B12, given its importance for growth. 

Mutant construction has been carried out on saprophytic strains since 2003, when a trpE 

double cross over mutant was produced in L. meyeri (Bauby et al., 2003), however the first 

pathogenic mutant was only produced in 2008 with an SpcR cassette inserted into a portion of 

the ligB open reading frame (Croda et al., 2008). 

1.6.1 Comparison between serovars within the same species: L. interrogans  

Comparisons of serovars within the same serogroup (Icterohaemorrhagiae) can be analysed 

following the full sequencing of L. interrogans serovars Copenhageni & Lai.  The average 

identity between the two genomes was 95% (Nascimento et al., 2004).  While chromosome II 

in both are collinear, a large inversion exists in chromosome I, with evidence suggesting that 

the inversion took place in Lai. 

The rDNA genes do not exist in operons, but are instead scattered across chromosome I, with 

the only difference being an extra 23S rrl gene in Copenhageni.  A key part to note is that many 

of the genes unique to Lai are based in a 54-kb insertion containing 81 genes, not present in 

Copenhageni (Nascimento et al., 2004). 
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Feature 
Copenhageni Lai 

CI CII CI CII 

Size (bp) 4,277,185 350,181 4,332,241 358,943 

GC Content (%) 35.1 35 36 36.1 

Protein Coding Genes 
  

    

With assigned function 1,811 161 1,901 159 

Conserved & Hypothetical 1,643 113 2,459 208 

Total 3,454 274 4,360 367 

Transfer RNA 37 0 37 0 

Ribosomal RNA genes 
  

    

23S 2 0 1 0 

16S 2 0 2 0 

5S 1 0 1 0 

Insertion Sequences 26 0 48 9 

Transfer-Messenger RNA 0 0 0 0 

Table 1.3. Comparison of genome constituents between L. interrogans serovars Copenhageni 

and Lai 

1.6.2 Comparison between two pathogenic species, L. interrogans & L. borgpetersenii 

The normal route of transmission for pathogenic leptospires is through urine from a carrier 

host.  This can be either through direct urine contact or via contact of contaminated water 

sources following from urine passage.  However, it was suggested that the pathogenic 

L. borgpetersenii may have adopted a different mode of transmission (when compared to 

L. interrogans) that requires more direct contact.  This may have contributed to a reduction in 

overall genome size (compared to L. interrogans). Around 22% of the L. borgpetersenii genome 

now comprises of pseudogenes, transposases or insertion sequences (Adler et al., 2011).  This 

resulted in the total size being roughly 700Kb smaller than L. interrogans (Bulach et al., 2006).   

The gene products absent from L. borgpetersenii are involved with adaptation to diverse 

environments (e.g. host immune defence avoidance, metabolic functions and solute 

transportation), resulting in a limited range of nutrients utilised by the bacteria in both host 

and natural environments.  Two genes which are absent from L. borgpetersenii, but present in 

L. interrogans carry out a process of preparing the bacteria for long term survival in water and 

closely resemble devR and devS in Myxococcus Xanthus (Bulach et al., 2006; Thony-Meyer and 

Kaiser, 1993).  Studies identified L. interrogans outbreaks to usually result from contaminated 
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water (Cacciapuoti et al., 1987; Stern et al., 2010) implying an ability to survive compared to 

L. borgpetersenii. 

Despite the genome reduction, the outer membrane protein (OMP) lipL32 is still retained in 

the L. borgpetersenii genome, with suggestions of a further role for the protein.  Murray and 

colleagues (2009) described an up-regulation of genes involved with the haem and vitamin B12 

pathways within a lipl32 mutant, suggesting an association with the uptake and/or metabolism 

of these co-factors (Murray et al., 2009c). 

Upon investigation,  L. interrogans contains more genes responsible for signal transduction, 

transcription factors and solute transport functions when compared to L. borgpetersenii 

(Sridhar et al., 2008), which may be in part a result of the overall genome reduction. 

1.6.3 Comparison between genomes of pathogenic and saprophytic species 

Genes shared by pathogenic and saprophytic strains are mostly responsible for essential 

functions, such as metabolism, protein formation and maintaining homeostasis and structural 

integrity.  One third of the genes within the saprophytic L. biflexa genome are not present in 

pathogenic species.  These relate to processes developed to aid survival under more diverse, 

potentially extreme, environmental conditions such as a greater number of nutrient 

acquisition and sensing mechanisms (Adler et al., 2011). 

While present in pathogenic species, it has been suggested that the lack of sphingomyelinases 

within saprophytic strains propose a role in pathogenesis over nutrient acquisition (Adler et al., 

2011).  However, in this instance, nutrient acquisition itself may be part of pathogenesis.  

Further investigation is required before an alternate role for the proteins can be definitively 

stated. 

Genes encoding for a haem-oxygenase are present in both pathogenic and saprophytic strains.  

As it is used for iron acquisition in a host, its presence in L. biflexa is unusual since iron would 

be acquired from other sources outside a host. 

Many target genes that have been utilised for PCR are only present in pathogenic strains.  As 

saprophytes cannot cause infection within a host, such genes lend themselves well to 

molecular studies of leptospirosis infections.  A strict presence within pathogenic strains has 

led to many being suggested or investigated as potential virulence factors. 
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1.6.4 Virulence Factors 

Identifying virulence factors within the Leptospira genome has become a major focus for 

research in recent times.  In theory, identifying key virulence factors may have a direct result 

on future vaccine production.  By knowing the role of genes involved with virulence, vaccines 

can target the proteins or genes to prevent infection, shedding and disease. 

It was only in 2005, following the full genome sequencing of L. interrogans, that the Himar1 

mariner transposon was identified to allow for random mutagenesis (Bourhy et al., 2005).  The 

high A+T content of Leptospira allow for suitable mutants to be produced by this system as all 

insertions occur at a TA dinucleotide (Murray et al., 2009a). 

The first genetically defined virulence factor of Leptospira was published in 2007 (Ristow et al., 

2007).  An antigenic protein known as Loa22 had previously been shown to be expressed only 

in pathogenic strains and while it is located within the outer membrane, a part of the protein is 

left exposed on the cell surface (Koizumi and Watanabe, 2003).  Loa22 has previously been 

described as having a strong correlation with Leptospira virulence (Koizumi and Watanabe, 

2003) and several studies attempting to identify candidates for vaccine production have 

highlighted loa22 to have potential as a virulence factor (Gamberini et al., 2005; Yang et al., 

2006).  As there is no replicative plasmid present in pathogenic Leptospira strains, a 

spectinomycin-resistant mutant was utilised.  A loa22 transposon was inserted to disrupt the 

gene.   When the animals were challenged with the loa22- strain in an infective dose of 4e108, 

an amount shown to be 100% lethal in guinea pigs, all eight of the subjects remained alive and 

demonstrated no clinical signs within the 21 day follow-up investigation.  Bacteria were 

recovered from the blood of the animals 3 days post-infection (4/4), and from the kidneys 

(5/7) for culture with none shown to have reverted back to the wild-type.  Complementation 

restored the wild type phenotype (Ristow et al., 2007).  This evidence complies with the 

Molecular Koch’s postulates for virulence (Falkow, 1988).     

It has been shown that the haem oxygenase gene, hemO, has a major role in iron acquisition 

by Leptospira spp.  HemO degrades the haem tetrapyrrole ring (tetrapyrroles are the precursor 

molecule to haem) and releases ferrous iron for uptake (Frankenberg-Dinkel, 2004).  Using 

this, the bacteria can survive solely with haem or haemoglobin as it’s only iron source (Murray 

et al., 2009b).  A knock-out mutation of hemO showed reduced virulence in a hamster model 

suggesting towards a significant role for in vivo survival (Murray et al., 2009b).  The production 

of hemO is up-regulated in low iron conditions, increased osmolarity and in the presence of 

serum (Adler et al., 2011). 
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One set of proteins that have been targeted as potential factors are a group of OMPs that are 

anchored into the outer membrane.  As they play a role in either attachment to host cells or 

translocation through the membranes, then it is feasible to hypothesise that they may also 

play a key role in virulence. 

Being the most abundant OMP with 38,000 copies per cell (Haake and Matsunaga, 2010), one 

study looked into the virulence traits of lipL32.  LipL32 also demonstrated the highest 

immunogenic response, with over 95% of patients during one study producing antibodies 

towards the protein (Guerreiro et al., 2001).  Despite this, it lacks sensitivity towards polymixin 

B (toxic towards Gram negative bacteria) (Werts et al., 2001), with no other antibiotics further 

studied.  Recently the protein has been re-evaluated and suggestions have been made that 

due to its abundant nature, the actual location of the protein within the cell may have been 

mis-calculated (Pinne and Haake, 2013).  It was demonstrated that the protein is not in fact 

surface exposed and this previous mis-conception may have been from cellular degradation 

exposing LipL32 on the surface. 

Following gene knock-out studies, LipL32 was suggested to play a role in virulence, however 

with a degree of redundancy.  Within knock-out models, production of other genes was 

up-regulated to compensate for the absence of lipL32.  As the bacteria retained its pathogenic 

status despite losing the gene, the study concluded that lipL32 was not a key factor for the 

virulence of Leptospira (Murray et al., 2009c) and has been shown as not necessary for acute 

infection or kidney colonisation (Adler and de la Pena Moctezuma, 2009).   

Another OMP with potential as a virulence factor is lipL53, an adhesin that can bind to several 

components of the extra-cellular matrix.  As with lipL32, the gene is only present in virulent 

strains and has been demonstrated to be up-regulated by temperature and osmolarity 

(Oliveira et al., 2010), conditions that may be similar to those within a host.  It was suggested 

as a potential vaccine target, however only conferred a limited protection response from a 

challenge dose of Leptospira. 

There are three high-molecular weight leptospiral immunoglobulin-like repeated (Lig) proteins, 

ligA, ligB and the pseudogene ligC.  Both LigA and LigB mediate host cell attachments during 

infection and invasion and are present on the surface of pathogenic strains (Matsunaga et al., 

2003).  They contain Ig-like domains with 90 amino acid tandem repeats (Lin et al., 2008).  LigA 

and LigB have structural and virulence traits relating to microbial surface components 

recognizing adhesive matrix molecules (MSCRAMMs), the bacterial proteins involved with 

colonisation of host tissue (Choy et al., 2007).  One study demonstrated that when both ligA 
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and ligB were inserted into the replicative plasmid in L. biflexa they conferred a virulent 

phenotype and allowed for binding to eukaryotic cells and fibronectin when tested in vitro 

(Figueira et al., 2011). Despite this however, ligB is not necessary for virulence.  While it plays a 

role in infection, including up-regulation with physiological osmolarity (Matsunaga et al., 2005) 

and a high affinity between human sera and the 2nd to 6th Big domains of LigB (Croda et al., 

2007), it has been shown that a ligB mutant did not demonstrate a loss of virulence (Croda et 

al., 2008).  As a result, it has been suggested that single gene inactivation is not a suitable 

method for determining Leptospira virulence factors (Adler and de la Pena Moctezuma, 2009).   

Leptospira have demonstrated chemotactic movement towards haemoglobin (Yuri et al., 1993) 

and the genome contains more than double the amount of methyl-accepting chemotaxis 

proteins (MCP) than other spirochetes (11 in Copenhageni and 12 in Lai) (Nascimento et al., 

2004).  It was demonstrated that heme oxygenase may contribute significantly to the virulence 

of L. interrogans since the bacteria utilise haem as their only source of iron (Murray et al., 

2009b). 

A complete set of flagella genes are present in the genome of Leptospira including 4 flagella 

motor switch proteins; FliG, FliM, FliN and FliY, which play a critical role in motor direction.  

FliY contains a carboxy-terminal domain of 60 amino acid residues which is homologous with 

Yersinia pestis flagella proteins that are involved in Type 3 secretion systems.  Mutant fliY- 

strains demonstrated a reduced  pathogenicity, however it was not clear if fliY is a confirmed 

virulence gene, or was a result of down-stream effects following insertion (Liao et al., 2009). 

Lsa21 is a surface adhesin 21kDa in length.  When grown on EMJH containing a salt 

supplementation the expression of lsa21 is enhanced; demonstrating that up-regulation is 

dependent on osmolarity (Atzingen et al., 2008).  In a similar fashion to Lig proteins, it binds to 

fibronectin along with laminin (basal membrane proteins) and collagen IV.  During infection, 

damaged host cell walls may present adhesive glycoproteins for attachment by Lsa proteins 

(Ljungh et al., 1996). 

OmpL1 is an outer membrane protein with a molecular mass of approximately 31 kDa and in 

line with other proposed virulence factors, is only present in pathogenic strains.  It is 

considered to be a primary target of the host immune response (Haake et al., 1993).  However 

no work to date has focused on the feasibility of targeting OmpL1 for either therapeutics or 

vaccination purposes. 
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Lipopolysaccharide (LPS) is a major component of the leptospiral outer membrane, as with 

most gram negative bacteria.  Its role as a virulence factor was hypothesised and proven by 

Murray and colleagues (2010) following transposon mutations in two separate mutant strains 

of L. interrogans serovar Manilae.  This result makes LPS the fourth Leptospira virulence factor 

to be identified (Murray et al., 2010).  The mutants failed to cause acute infection or establish 

chronic infection in the kidneys of hamsters.   

The role of LPS as a virulence factor is unique, as most pathogenic spirochetes (including 

Treponema & Borrelia) do not have LPS, opting for a majority of lipoproteins instead (Murray 

et al., 2010).  In 2005, two spontaneous mutations in L. interrogans serovar Pomona were 

isolated.  These mutants had an altered LPS size and the presence of an insertion sequence 

designated IS1501, suggesting that this insertion sequence may be capable of gene activation 

(Zuerner and Trueba, 2005). 

Microarray studies investigated the effects of variables such as temperature, physiological 

osmolarity, serum presence and iron levels in the medium.  From these, 14 genes were 

differentially expressed in at least three experiments and six were absent from L. biflexa (Adler 

et al., 2011).  Any of these fourteen genes could potentially encode for virulence factors and 

further work would be required as to their role in pathogenesis. 

1.7 Leptospirosis in the UK 

Human infections are perceived as incidental in the UK, with humans being a dead-end host.  

Human to human transmission is not common due to an absence of direct contact between 

the urine of a shedding individual and another.  Infection is typically likely to arise following 

contact with water sources contaminated with the urine of infected reservoir animals, or 

following direct contact with shedding animals.   

Unfortunately, due to issues relating to both the diagnosing and reporting of clinical canine 

leptospirosis, there is currently very limited data on the present situation in the UK.  Current 

information on suspected cases and the serovars causing infection would aid vaccination 

production and ultimately, protection for dogs.  However, the same serovars can infect both 

humans and dogs and cause disease (potentially transmitted by dogs), so current human data 

may go some way to describe circulating serovars. 

Reports for human cases in recent years have linked to both occupational and recreational 

infections with hazards of this nature.  In 2009 the Health Protection Agency (HPA) reported 52 

confirmed cases in England & Wales, with 38 being indigenous and 14 acquired abroad (HPA, 
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2013a).  This figure was reduced in 2010, with 39 confirmed cases of which 17 were acquired 

abroad (HPA, 2011).  Of the indigenous infections, only one case was presented in a female; 

however previous reports have identified no link between infection and gender (Alton et al., 

2009).  Studies showing a higher prevalence in males typically link an infection to occupational 

risks (Cowie and Bell, 2012).  Infection rates remained at the same level in 2011, with 52 cases 

in the UK, with sixteen cases linked to recreational exposure and fourteen linked to 

occupational risks.  The infecting serovar was only identified in 21 cases (HPA, 2013b). 

Occupational risks are mostly linked to water exposure, with 36% infected from water 

exposure in 2010 (HPA, 2011).  A further five cases were a result of direct handling of rodents, 

or material that rodents could have contaminated.  Both routes of transmission are also 

important with regards to canine infections.  Veterinary surgeons are at risk when examining 

potentially infected companion animals and physical barriers such as gloves are highly 

recommended.  A greater emphasis on a patient’s occupation and history when clinical signs 

related to early stage leptospirosis are presented would improve the accuracy and efficiency 

for a diagnosis. 

Water sports can be a key risk factor for contracting the disease.  A recent high profile case in 

the UK was seen when Andy Holmes, a canoeist, became infected and subsequently died in 

October 2011.  Since then, another outbreak was reported when five individuals contracted 

the disease on the River Itchen, Southampton.  Five cases were suspected with one lab 

confirmed by the HPA.   

Climate plays a role in Leptospira infection rates, with temperate climates not having extreme 

weather situations that may contribute to infection rates.  According to the Köppen climate 

classification, the UK has a rating of Cfb, meaning cooler summers but also milder winters.  The 

classification reflects the milder climate changes between seasons which reduce the likelihood 

of leptospirosis. 

1.7.1 Epidemiology of leptospirosis outside the UK 

Humans and canines within a large proportion of countries (including the UK) are most 

commonly infected with serovars Canicola and Icterohaemorrhagiae (HPA, 2012; van den 

Broek et al., 1991).  However infection arising from other serovars is dependent on serovars in 

circulation within a region.  An example being that infections from L. interrogans serovars 

Pyrogenes and Tarassovi, two serovars not commonly witnessed have been identified in dogs 

in Chiapas, Southern Mexico (Jimenez-Coello et al., 2010). 
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Several outbreaks that have been linked to canines include North Dakota 1950, Texas 1971, 

Portland and St Louis 1972, Barbados 1988 (Levett, 2001) and Nicaragua 1995 (Trevejo et al., 

1998).  Recent vaccinations, improved sanitation and public health awareness have meant that 

canine-related outbreaks have decreased over the past 20 years.  However one conflicting 

study presented an increasing trend of cases in Ontario, Canada, between 1998-2006 (Alton et 

al., 2009). 

The United States and Canada showed a decline in human cases between 1970 and 1982, 

however the following 15 years between 1983 and 1998 presented an increase (Ward et al., 

2002).  A follow up study concluded that the greater level of annual rainfall had a positive 

effect on the number of cases (Ward, 2002). 

There are 50-60 annual cases of human leptospirosis in England and Wales (HPA), giving an 

average incidence rate of 0.1 per 100,000.  Incidence rates were also relatively low for the rest 

of Europe between 2000 and 2008. Croatia had the greatest, averaging 1.56 (cases per 

100,000) with the lowest in Romania at 1.47.  Latvia witnessed a high level in the early 1990’s 

at 5.45 but has declined each year to 0.13 in 2008 (WHO). 

A seasonal pattern is seen in Eastern Europe with most infections occurring between July and 

November (Roczek et al., 2008).  A study in Germany from 1962-2003 showed the median 

number of cases to be 59 in a year, however cases were on the decline over the 41 year period 

(Jansen et al., 2005).   

Leptospirosis is more commonly associated with a recreational risk within countries where 

higher Leptospira infection rates are not endemic.  Recent recreational outbreaks include an 

endurance length swamp race in Florida 2005 (Stern et al., 2010), white water rafters in Costa 

Rica 1996 ((CDC), 1997) and triathlons in Wisconsin and Illinois 1997 ((CDC), 1998).  

Occupational risks are also evident outside of the UK.  A survey of both non-veterinary and 

veterinary students within Trinidad and Tobago showed a higher percentage of vet students 

were positive for antibodies towards Leptospira (James et al., 2013).  Whilst a serosurvey in 

the USA outlined the degree of danger direct canine contact poses to vets (Whitney et al., 

2009).  A recent case report showed an incidental case of human leptospirosis from L. 

interrogans in a fish market worker in Tokyo.  Infection was contracted as a result from 

cleaning out the sewage system whilst having an exposed cut on his hand.  Following a patient 

interview it was revealed that the sewers were host to many rats which were the presumed 

source (Kokudo et al., 2009), the serovars present where not investigated. 
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Travel associated infections are also common, with tourists not knowing the risks associated 

with the disease.  Two cases in Venice were reported following Australian tourists submerging 

themselves in contaminated waters.  Rising MAT titres were reported for serogroup 

Icterohaemorrhagiae, along with a positive urine PCR result, demonstrating shedding of the 

bacteria via urine (Lagi et al., 2013). 

Reservoir hosts within a region can also determine which serovars are maintained.  Some 

serovars are relatively specific, whereas others are known to infect several different hosts.  

This can be demonstrated in Spain, where a common serovar (Icterohaemorrhagiae) has 

known to infect a range of hosts from feral cats to the mongoose (Millan et al., 2009). 

Two communities that still practice traditional survival and hunting techniques in Canada were 

investigated for the presence of Leptospira antibodies.  Within the 250 patients examined, 23% 

were positive for leptospiral antibodies, the highest out of 10 zoonotic bacteria investigated 

(Campagna et al., 2011).  Of the 58 positive cases, only 4 had documented any symptoms 

commonly associated with the disease. 

Heavy flooding is commonly associated with outbreaks of leptospirosis, particularly in climates 

with extreme seasonal changes.  One example was shown during a large outbreak in Nicaragua 

during October-November 1995 following a period of heavy flooding.  It was assumed that 

infection was with the serovar Canicola as 60% of the dogs tested were confirmed to be 

infected (despite the small sample size); however there was no associated jaundice (Trevejo et 

al., 1998).  In 2010, 33 cases were reported in the 8 weeks leading up to the end of September.  

Outbreaks such as this are not uncommon in the region during the rainy season (ProMED-mail, 

2010). 

Co-infections with other endemic bacteria are not common, however they can occur, and to 

what extent either facilitates infection from the other is not known.  India had an outbreak of 

leptospirosis and dengue fever occurring within the same area in 2002.  Neither leptospirosis 

nor dengue occurred in the same host but malaria was also witnessed in a small number of 

cases alongside either disease (Leptospirosis = 3.33% and Dengue = 3.33%) (Karande et al., 

2005).  A further outbreak occurred in 2010, with 77 dengue cases and 22 leptospirosis cases.  

However, there were only two cases where both bacteria infected the same individual (Zaki 

and Shanbag, 2010).  While this is not evidence to either prove or disprove any methods of 

co-infection it certainly suggests that dengue and leptospirosis are not likely to facilitate each 

other’s infection.  Additional evidence identified a co-infection in three further cases following 

clinical signs being compared to those seen in 18 previous patients with the same infection 
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(Gurjar et al., 2011).  A conflicting study in 2010 investigated the presence of Leptospira in 

children submitted to hospital in Mumbai during an outbreak of both leptospirosis and dengue 

fever.  No cross-over or co-infection was subsequently reported on a significant scale in this 

instance (Zaki and Shanbag, 2010).   

A historical review looked into an epidemic within Native Americans in 1616-1619.  Symptoms 

and witness reports from the time suggest a possible link towards leptospirosis, due to 

jaundice being a key symptom.  Previous work investigating the same outbreak suggests 

alternate diseases such as the bubonic plague, smallpox and influenza which have all been 

discounted, with the exception of influenza.  Living conditions and surroundings are ideal for 

Leptospira survival, such as black rat presence, close living and working contact to soil and 

opportunistic routes of entry into the body (Marr and Cathey, 2010). 

Crowded areas close to bodies of water are at a greater risk from zoonotic infections, 

particularly those prone to flooding (Agudelo-Florez et al., 2009).  Developing countries living 

in poor sanitation and housing also have higher zoonotic risks from an increased exposure to 

rodents and other host reservoirs.  As a contrast, it has been suggested that regions 

experiencing a drought or dry season could also encounter a rise in cases as bodies of water 

reduce, potentially concentrating any bacteria within them.  This decrease can also increase 

the chance of coming into contact with the bacteria as rodents, animals and humans may take 

from the same source (Gubler et al., 2001). 

With regards to animal incidental hosts that aren’t companion or farm animals, Korea 

witnessed Leptospira infections in horses and ponies bred for racing (Jung et al., 2010).  Due to 

limited or no interaction with other horses, environmental exposure to reservoir hosts such as 

rodents have been hypothesised as the main risk factor.  This is not an isolated situation, with 

horse infections also being prominent in Poland, with 620/1588 (39%) showing a positive MAT 

titre.  Serogroups Grippotyphosa and Sejroe where found as the most common causative 

serovars (Arent and Kedzierska-Mieszkowska, 2013), which are also known to cause disease in 

both canines and humans. 
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1.8 Aims of this thesis 

The overall aim of this thesis was to investigate the presence and diversity of Leptospira 

currently circulating within the UK.  Further to this, expansions on molecular methods for 

detection were explored for an accurate identification method.  Potential virulence traits were 

also considered from full genome sequencing of a panel of strains across multiple species.  In 

more detail, the major aims of the project were as follows: 

 

 Assess the prevalence of Leptospira species in the UK vet-visiting dog population  

 

 Assess the environmental prevalence of Leptospira species pathogenic to dogs and 

humans.  

 

 Development of a sensitive and specific assay for the detection of pathogenic 

Leptospira species from environmental and canine samples  

 

 Assess molecular markers for virulence by full genome analysis of representative 

Leptospira species 
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2. Materials & Methods 

This chapter detailing general materials and methods is divided into four sections.  The first 

outlines the process for practice selection and design during the questionnaire study.  The 

second outlines the general methodology for molecular studies, including DNA extraction from 

both field samples and cultures, and subsequent PCR assays.  Section three describes 

serological testing and histopathology staining.  The final section describes the process and 

analysis for full genome sequencing of Leptospira strains.  Further detailed protocols are 

available within relevant chapters. 

2.1 Questionnaire design and protocol 

A mail shot questionnaire was designed and sent to 419 vet practices within the UK.  The UK 

was stratified into 23 regions and practices were randomly selected from each region.  One 

member of staff at each practice was used for correspondence in attempt to increase the 

likelihood of return.  An information sheet outlining the study and providing information 

regarding the purpose was included also (Appendix One).  Participants were informed of their 

right to withdraw from the study at any point should they wish.  Due to the nature of the 

study, the questionnaire itself was kept relatively short to increase compliance. 

Initially, questions were asked about the practice itself and covered practice size and 

vaccination habits (Appendix One).  The second part enquired for details regarding the last 

date a case of either suspected or confirmed leptospirosis was seen by the practice.  If a case 

had presented to the practice within the last 12 months we then asked for further details.  This 

included the age and breed of the dog, vaccination status and the outcome. 

2.2 Molecular identification of infecting Leptospira strains 

2.2.1 Maintenance and DNA extraction for cultured strains 

Two control strains (L. interrogans serovar Australis & L. kirschneri serovar Grippotyphosa) 

were maintained on commercial EMJH media provided by MSD.  Direct DNA extractions on low 

passage cultured strains was carried out using the DNeasy® Blood and Tissue (Qiagen, Crawley, 

UK) kit according to manufacturer’s instructions.  The success of each extraction was 

subsequently confirmed using the duplex PCR assay as described below. 

Extraction of genomic DNA from ten strains (L. interrogans serovar Icterohaemorrhagiae, 

L. interrogans serovar Bratislava, L. interrogans serovar Pomona, L. interrogans serovar 

Prajitno, Leptospira alexanderi serovar Manzhuang, L. borgpetersenii serovar Hardjo-bovis, 
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Leptospira kirschneri serovar Grippotyphosa, Leptospira weilii serovar Mengding, Leptospira 

fainei serovar Hurstbridge and L. biflexa serovar Andamana) for full genome sequencing was 

carried out with the Wizard Genomic DNA Kit (Promega, Southampton, UK) according to 

manufacturer’s instructions. A total of 5ml of live culture were centrifuged at 16,000g for five 

minutes.  The resulting pellet was then used for the DNA extraction.  Ethanol precipitation 

ensured no salt contamination in the final extraction.  Quantification of the DNA yield was 

determined via the Quant-iT™ PicoGreen® dsDNA Assay Kit (Invitrogen, Paisley, UK) according 

to manufacturer’s instructions. 

2.2.2 DNA Extraction from rodent kidney tissue 

From obtained field samples, roughly 1g of kidney tissue was used for each extraction.  The 

DNeasy® Blood and Tissue (Qiagen, Crawley, UK) kit was used according to manufacturer’s 

instructions.  Incubated protease digestion was extended depending on size of the tissue used.  

Each extraction yielded a total of 60µl in elution buffer.  Following elution, DNA was split into 

10µl aliquots and stored at -80oC until required.  This removed potential DNA degradation 

following repeated freeze-thawing. 

2.2.3 Duplex PCR assay for detecting Leptospira  

Two sets of primers from previously published studies were utilised in a duplex conventional 

PCR assay throughout the whole of this project.  This assay targeted two gene candidates to 

detect the presence of pathogenic Leptospira and allowed for direct sequencing of amplicons, 

identifying the species of infecting strains. 

 

Gene 
Target 

Primer 5' to 3' Sequence 
Size 
(bp) 

Reference 

rrs 
rrsF GGAACTGAGACACGGTCCAT 

430 Tansuphasiri et al., 2006 
rrsR GCCTCAGCGTCAGTTTTAGG 

gyrB 
2For TGAGCCAAGAAGAAACAAGCTACA 

502 Slack et al., 2006 
504Rev MATGGTTCCRCTTTCCGAAGA 

Table 2.1. Primers used for the duplex PCR assay to detect the presence of Leptospira 

 

A total reaction volume of 25µl including ReddyMix PCR Master Mix (Thermo Scientific, 

Asheville, United States) containing 1.3 units of ThermoPrime Taq DNA polymerase, 150mM 

Tris-HCl, 40mM (NH4)2SO4, 3mM MgCl2, 0.01% (v/v) of Tween® 20 and 0.4mM each of dATP, 
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dCTP, dGTP and dTTP with 20pmol of each primer (Eurofins MWG Operon, Acton, UK) and 1µl 

of sample DNA was used per reaction. 

Cycle conditions for the assay were as follows; 94oC for 15 seconds, followed by 35 cycles of 

94oC for 10 seconds, 50oC for 20 seconds, 72oC for 40 seconds and a final extension step of 

72oC for 5 minutes.  Strains belonging to pathogenic species demonstrated an amplified band 

for both primers, whereas saprophytic species only amplify the rrs gene.   

2.2.4 Leptospira MLST PCR assay 

Following the success of applying MLST to Leptospira (Boonsilp et al., 2013; Thaipadungpanit 

et al., 2007), the scheme was applied to field samples obtained in this study.  Separate PCR 

assays were performed for each locus in a 50µl reaction volume using ReddyMix PCR Master 

Mix (as described in 2.2.3).  Due to the larger reaction volume, 2µl of sample DNA was 

included. 

Primers included with the updated scheme were as described in table 2.2.  The MLST PCR was 

carried out under the following cycle conditions: Initial denaturing at 95oC for 2 minutes, 

followed by 30 cycles of denaturing at 95oC for 10 seconds, annealing at 46oC for 15 seconds 

and extension at 72oC for 30 seconds with a final extension of 72oC for 7 minutes. 

 

Gene Primer Sequence (5' - 3') 
Amplicon Size 

(bp) 

pntA 
Forward TAGGAAARATGAAACCRGGAAC 

621 
Reverse AAGAAGCAAGATCCACAAYTAC 

sucA 
Forward TCATTCCACTTYTAGATACGAT 

640 
Reverse TCTTTTTTGAATTTTTGACG 

pfkB 
Forward CGGAGAGTTTTATAARAAGGACAT 

588 
Reverse AGAACACCCGCCGCAAAACAAT 

tpiA 
Forward TTGCAGGAAACTGGAAAATGAAT  

639 
Reverse GTTTTACRGAACCHCCGTAGAGAAT 

mreA 
Forward GGCTCGCTCTYGACGGAAA 

719 
Reverse TCCRTAACTCATAAAMGACAAAGG 

glmU 
Forward AGGATAAGGTCGCTGTGGTA 

650 
Reverse AGTTTTTTTCCGGAGTTTCT 

caiB 
Forward CAACTTGCGGAYATAGGAGGAG  

650 
Reverse ATTATGTTCCCCGTGAYTCG 

Table 2.2. Primer pairs utilised for the seven locus scheme, with expected amplicon sizes 

(Boonsilp et al., 2013). 
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2.2.5 Variable number tandem repeat (VNTR) PCR assay  

A recently published VNTR protocol was investigated for its use in determining the serovars 

infecting wild rodents for this project (Salaun et al., 2006).  Two positive controls were initially 

included to test the viability of the scheme (L. interrogans serovar Australis and L. kirschneri 

serovar Grippotyphosa). 

Each locus was assayed individually using primers described in table 2.3.  As described above in 

2.2.4, reactions were carried out in a 50µl volume.  Cycle conditions for all loci were as follows: 

94oC for 5 minutes followed by 35 cycles of 94oC for 30 seconds, 55oC for 30 seconds, 72oC for 

1 minute and a final elongation step at 72oC for 10 minutes. 

Amplified products were purified and sent for direct sequencing as described below to identify 

associated alleles. 

 

Primer 5' to 3' Sequence 
Size (bp) 

Leptospira 
interrogans 

Leptospira 
kirschneri 

Leptospira 
borgpetersenii 

VNTR4-F AAGTAAAAGCGCTCCCAAGA 
425+34n 425+34n 425+34n 

VNTR4-R ATAAAGGAAGCTCGGCGTTT 

VNTR7-F GATGATCCCAGAGAGTACCG 
299+46n 299+46n No Product 

VNTR7-R TCCCTCCACAGGTTGTCTTG 

VNTR10-F GAGTTCAGAAGAGACAAAAGC 
420+46n 347+46n 333+46n 

VNTR10-R ACGTATCTTCATATTCTTTGCG 

VNTR-Lb4 F AAGAAGATGATGGTAGAGACG 
No Product 

No 
Product 

573+60n 
VNTR-Lb4 R ATTGCGAAACCAGATTTCCAC 

VNTR-Lb5 F AGCGAGTTCGCCTACTTGC 
668+39n 668+39n 722+36n 

VNTR-Lb5 R ATAAGACGATCAAGGAAACG 

Table 2.3. Primers used for the VNTR analysis to identify the serovar from infecting strains 

(Salaun et al., 2006). 

 

2.2.6 Agarose gel electrophoresis 

All PCR assay products were separated and analysed on a 1.5% agarose gel (Alpha 

Laboratories, Hampshire, UK) containing ethidium bromide, or RedSafe® (iNtRON 

Biotechnology) when available, and 1x Tris-acetate buffer (Alpha Laboratories).  Given the size 

of expected amplicons, ΦX174 DNA/BsuRI (HaeIII) (Thermo Scientific) was utilised as the DNA 
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marker.  During the project, agarose gels were run at 120V, with time dependant on the gel 

size.   

2.2.7 Purification of PCR amplicons 

All PCR products were purified using the commercial QIAquick® PCR purification kit (Qiagen) 

according to manufacturer’s instructions.  The purified DNA was quantified on a Nano-drop 

1000 spectrophotometer (Thermo Scientific) for a concentration estimate. 

2.2.8 Sequencing of PCR products 

Following quantification, products were diluted to 100µg/µl/100bp.  Sanger sequencing was 

carried out commercially (Source Bioscience Ltd, Nottingham, UK).  Both forward and reverse 

reads were sequenced to allow for construction of a consensus sequence of each reaction.  

Primers initially used for each assay were also used for all amplicon sequencing. 

2.2.9 Downstream analysis of sequenced amplicons 

Following commercial sequencing of amplicons (Source Bioscience), signal qualities of reads 

were analysed using ChromasPRO v1.7.3 (http://technelysium.com.au).  The presence of 

background interference was also checked for, with poor quality sequences re-sequenced to 

ensure high quality output. 

Consensus alignments between sequences for the same gene were carried out using MEGA5 

were possible (Tamura et al., 2011).  Both forward and reverse sequences were aligned for 

each sample to ensure high compliance consensus sequences to reduce any error potentials.  

For ambiguous base calls, degenerate IUB codes were included.  Maximum likelihood analysis 

to infer evolutionary trees were constructed using default settings with 1000 bootstrapping 

re-sampling in MEGA5.   

BLAST analysis was conducted on all sequencing results deemed of a high enough quality.  

Briefly, sequence data was trimmed to remove primer sites and compared against the National 

Center for Biotechnology Information (NCBI) database.  This allowed for species identification 

from the rrs and gyrB assay products. 

MEGA5 was also use to aid in the analysis of MLST sequence reads.  Alignment to reference 

alleles for each locus allowed for trimming to the correct size.  Allele data for each query locus 

was then obtained from the online MLST database. 
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2.3 Serological testing and histopathology 

Serology testing of samples was personally carried out at the AHVLA (Woking, Surrey), using 

their facilities and stock antigen panels.  Histopathology staining was done by the 

histopathology department at the University of Liverpool. 

2.3.1 Multiple pooled serovar antigens 

Serum samples obtained from rodents were tested using the microscopic agglutination test 

(MAT).  The MAT is a previously well documented method for detecting circulating leptospiral 

antibodies and is widely regarded as the gold standard for comparing diagnostic methodology 

(Bajani et al., 2003).   For pooled antigens, 5ml of live culture for each strain were mixed.  25µl 

of each serum sample were diluted in saline to obtain 100µl total serum.  In a 96-well plate, 

25µl of pooled antigen was added to each well.  On top of that, 25µl of sample was added 

individually followed by a further 25µl of saline.  Plates were incubated at 30oC for two hours 

and analysed under dark field microscopy at 400x magnification.  Each sample was observed 

for the presence of 50% agglutination against a black background. 

2.3.2 Single serovar titrations 

To identify single serovar titres, each antigen from a positive pooled result was tested for on 

individual plates.  25µl of saline was added to lanes 2-11 on a 96-well plate and 25µl of the 

1:50 sample dilution was added into lanes 1 and 2.  From lane 2, 25µl was taken and serial 

diluted down to lane 10 to give a final titration of 1/12800.  Lane 11 was left as a negative 

control with no antigen or sample.  Antigen was added (25µl) to lanes 1-10 and each plate was 

incubated for two hours at 30oC.  Plates were read on a dark field microscope starting at 1/25 

and working across the titration gradient if agglutination was witnessed until a negative result 

was seen.  The lowest titration that showed more than 50% agglutination against a black 

background was confirmed as the titre result for that sample.   

2.3.3 Histopathology testing of formalin fixed rodent kidney tissue 

During dissection, one kidney from each rodent was stored in 1% formalin.  Sections from each 

sample were sent for staining at the histopathology department at the University of Liverpool.  

Two stains were used to analyse each kidney section during this study.  The hematoxylin and 

eosin (H&E) stain was applied to identify the presence of inflammation and any morphological 

changes resulting from infection.  A second stain that has previously been used to visualise 
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leptospires in tissue, the Warthin-Starry silver stain, was also applied for a visualisation of the 

bacteria. 

2.4 Full genome sequencing of Leptospira strains 

The final aim of the project involved the sequencing and analysis of Leptospira, with a view to 

identify potential virulence factors.  Following extraction and quantification, next generation 

sequencing was carried out on ten strains using the high-throughput MiSeq platform (Illumina, 

UK) by colleagues at the Centre for Genomic Research (CGR) (Liverpool, UK).   

2.4.1 Analysis of sequenced genomes 

After successful sequencing of each strain, paired end reads from each strain were constructed 

into contig predictions.  Further de novo pipeline work combined the files into a draft genome.  

The Prokaryotic Genome Annotation System (Prokka) (http://vicbioinformatics.com/) was used 

to annotate the genomes.  BLAST (Basic Local Alignment Search Tool) analysis to confirm 

annotations and to derive potential matches for hypothetical proteins was used.  GATK 

(Genome Analysis Toolkit) detected single nucleotide variations (SNPs) between sequenced 

strains and closely related reference strains, allowing for potential virulence genes to be 

identified.  Genbank files were uploaded for annotation by RAST (Rapid Annotation using 

Subsystem Technology) to compare functional differences within each strain. CMG-tools 

(Comparative microbial genomics tools) allowed for the calculation of both the total number of 

unique genes between all sequenced strains and the total number of shared genes to derive 

core genomes (Vesth et al., 2013). 
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3.1 Introduction 

Canine leptospirosis is believed to be under-diagnosed due to non-specific symptoms (Sarkar 

et al., 2012), including within the UK (Forbes et al., 2012).  Leptospirosis infections in canines 

can be classified as anicteric (before jaundice) or icteric (jaundice).  Primary clinical signs 

observed during the anicteric stage are common within other diseases; including vomiting, 

diarrhoea, malaise and fever.  The majority of cases will present anicteric symptoms only, with 

the minority (5-10%) of cases continuing into the icteric, jaundice stage where uraemia from 

renal failure and hepatic haemorrhaging also occur.  Haemorrhagic gastroenteritidis (Stuttgart 

disease) may also develop following fever and has been linked to infection by the serovar 

Canicola (Andre-Fontaine and Ganiere, 1990). 

Survival rates in dogs contracting the disease have been previously reported at around 78% 

(Adin and Cowgill, 2000; Goldstein et al., 2006), however no figures on survival are currently 

available for the UK.  Pathogenic serovars associated with canine leptospirosis include 

Copenhageni, Icterohaemorrhagiae and Canicola (Millan et al., 2009; Roach et al., 2010; 

Suepaul et al., 2010).  However this is dependent on the endemic serovars within a country, as 

pathogenic serovars are capable of causing disease in other animal species given the 

opportunity.  

There are no current reports of canine leptospirosis case numbers in the UK.  However, the 

HPA reports an annual incidence in humans of 50-60 cases per year, equating to an incidence 

rate of 0.1 per 100,000 (HPA, 2012). 

In the UK, diagnosis of canine leptospirosis is routinely carried out using either the microscopic 

agglutination test (MAT) (Faine  S., 1999) or the immunofluorescent antibody (IFA) test 

(Appassakij et al., 1995; Naigowit et al., 2000; Torten et al., 1966).  In most diagnostic labs, a 

MAT titre is regarded as positive at dilutions above 1:100.  A second blood serum sample is 

recommended to be taken 3-5 days following the initial sample.  A four-fold titre increase in 

the second sample confirms a positive MAT titre. 

There are a number of canine vaccines currently licensed in the UK which protect against two 

serogroups, Canicola and Icterohaemorrhagiae (and specifically serovars Canicola and 

Icterohaemorrhagiae respectively); however it is believed to provide cross-protection to other 

serovars within these serogroups. A level of protection between antigenically similar 

serogroups has been previously documented (Plesko and Lataste-Dorolle, 1970; Sonrier et al., 

2000) however currently a vaccine can only claim protection against the serogroups 
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administered. Details for a tetravalent vaccine in Europe were recently published to protect 

against challenge from additional serogroups Australis and Grippotyphosa (Klaasen et al., 

2013).  The extent of vaccination coverage in UK dogs also remains unexplored, including 

whether booster vaccinations are administered annually to maintain an up-to-date vaccination 

and therefore sufficient immunity from strain challenges. 

The vaccine itself targets the lipopolysaccharide (LPS) which determines the variability of 

serovars and causes the very limited level of cross-protection amongst different serovars.  

Prevention remains one of the greatest defences against infection, and creating a physical 

barrier when in contact with potential shedders of the bacteria is highly recommended.  

Previous cases have been observed in clinicians following handling of animals actively shedding 

leptospires without wearing gloves (Baer et al., 2010). 

According to the World Small Animal Veterinary Association (WSAVA) guidelines, leptospirosis 

is not considered a ‘core’ vaccine (unlike the vaccines for parvovirus, parainfluenza virus, 

canine distemper and infectious hepatitis) (VGG, 2010).  It is however, recommended to be 

administered annually to maintain protection against this disease.  It has been determined that 

the duration of immunity for the bivalent vaccine covered between 12-14 months, following 

that the level of protection declined (Klaasen et al., 2003; Minke et al., 2009). 

Human leptospirosis is primarily a recreational and occupational disease in the UK.  From the 

22 human laboratory confirmed cases in 2010 that were acquired domestically, eighteen were 

from direct contact with animals or water (HPA, 2011).  The same threat is present to canines.  

Dogs living in close vicinity, or with more regular contact with, water or woodland are at a 

higher risk of contracting leptospirosis (Meeyam et al., 2006; Raghavan et al., 2012; Ward et 

al., 2004), a similar situation as seen in humans (Tangkanakul et al., 2000).  Including this 

information alongside clinical signs can aid in a more rapid and accurate diagnosis.  Vaccination 

history should also be taken into consideration with all potential cases.  A recent vaccination 

can affect a MAT titre result if testing for the same serogroups within the vaccine and give a 

false-positive result (Midence et al., 2012). 

The aim of this work was to investigate the perceived and confirmed number of canine 

leptospirosis cases within UK vet visiting dogs, by surveying small animal vets.  The level of 

up-to-date (within 12 months) vaccinations within their practice was also investigated 

alongside the clinical signs that veterinarians associate with the disease for a diagnosis.  

Information on both suspected and confirmed cases was collected from targeted practices 

over the previous 12 months.  
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3.2 Materials and Methods 

3.2.1 Practice selection 

A questionnaire survey was conducted across the full length of the UK.  To ensure full 

coverage, practices in the UK were stratified into 23 regions and 15 practices were randomly 

chosen from each region.  The only inclusion criteria included the practice residing within a UK 

postcode. Practices both with and without Royal College of Veterinary Surgeons (RCVS) 

Practice Standards Scheme (PSS) accreditation were included for the study in accordance with 

the randomised selection.  This selection process allowed for an unbiased approach for full 

coverage of all areas within the UK. 

In total, 472 practices were targeted.  This enabled good coverage of UK practices across 

different environment types (rural, semi-rural and urban). 

3.2.2 Questionnaire design 

A two page questionnaire was designed as a mail shot approach to a large number of 

practices. In order to keep compliance as high as possible, the questionnaire was kept to only 

the necessary questions to obtain the information needed.  An additional information sheet 

was included outlining the purpose of the study and also the overall aim of what was hoped to 

be achieved (Appendix One). 

To improve compliance and enable practices to reply as easily as possible, methods employed 

for returning questionnaires included freepost envelopes, email and a fax number.  Alongside 

this, an article was published in the Veterinary Record prior to the first questionnaires being 

sent out (Ball et al., 2011).   

Practices were asked to return the questionnaire even if they had not seen a case either in the 

last 12 months or at all.  Full consent for the study was granted by the University of Liverpool 

ethics committee.  

3.2.3 Study protocol 

Initially 239 practices were targeted.  However due to the low compliance rates, an additional 

number of practices were contacted, bringing the total to 472. 

To determine the size of the practice and how much time was dedicated to small animal 

practice, participants were asked questions covering their practice type and the number of 

small animal vets employed in their practice, including part time staff.  Information was also 
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asked to determine the number of dogs seen in the practice per day. This information could 

then be used for a comparison between the practice size and number of small animal vets.  

This information can be used to test two hypotheses.  The first being that the more vets 

employed at a practice (and so the larger the practice is), the more dogs will be seen per day.  

Following on from this, the second hypothesis is that the more dogs a practice receives per 

day, the greater the likelihood is of reporting a leptospirosis infection. 

Vaccination status within the vet visiting dog population was determined.  Firstly, participants 

were asked the total number of vaccination doses administered over the previous 12 months.  

Secondly, they were also asked to estimate the percentage of dogs that were up to date 

(within the last 12 months) with a leptospirosis vaccine.  Using this data we can test the 

hypothesis that as dogs seen per day increase in a practice, the amount of vaccine doses 

administered also increases.  

This study also aimed to determine the number of suspected or confirmed leptospirosis cases 

that were witnessed within UK practices. Participants were asked when their practice last saw 

a case of leptospirosis, either suspected or laboratory confirmed, and also information 

pertaining to cases seen within the last 12 months.  If no cases had been seen over 12 months 

this then provides information detailing the point at which the last suspected or confirmed 

leptospirosis case was observed at a practice.  If a practice had seen a case within the last 12 

months, clinicians were then asked for further details regarding the age, breed, vaccination 

status, clinical outcome and if the case was laboratory confirmed. 

The final section asked participants what clinical signs they looked for when making a diagnosis 

of leptospirosis.  As the anicteric symptoms are vague in most cases presenting to a vet, 

determining what signs they look for would give an indication of the level of awareness when 

making a differential diagnosis for a case.  It would also indicate if vets look more for the 

symptoms related during the icteric stage – where treatment intervention may have a limited 

effect due to the late stage of the disease. 

As a follow up, practices that reported lab confirmed case details within the last 12 months 

were contacted for further details.  Practices that had opted out on the initial response were 

not contacted.  Information was then collected concerning the diagnostic test carried out and 

which serogroup/serovar, if any, was reported. 
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3.2.4 Response inclusion criteria 

All responses received either by mail, email or fax either during or after the 12 week study 

were included if they fell within the inclusion criteria.  Responses that contained ≤3 blank fields 

(not including case details) would be included, however responses containing >3 blank fields 

would be excluded.  

3.2.5 Correlation analysis of responding practices 

SPSS Statistics 20 (IBM) was utilised for analysing correlation of variables obtained through the 

questionnaire responses.  R2 values were obtained for comparisons of dogs seen per day 

against practice size and vaccine doses administered.   
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3.3 Results 

3.3.1 Total Questionnaire Responses 

From the combined total of 472 questionnaires sent out, a final total of 89 were returned 

completed over the 12 weeks that the study ran for, with a compliance rate of 18.86% for the 

study.    In total three questionnaires were returned due to the practice no longer being at the 

address.  These were excluded from any further part in the study.   

All responses were divided into 3 distinct groups based on the presence or absence of a 

leptospirosis case at the practice.  Group 1 = Leptospirosis case in the last 12 months (n=13), 

Group 2 = Leptospirosis case > 12 Months (n=29), Group 3 = No reported leptospirosis cases at 

all (n=45). 

Out of the 89 replies in the study, 13 (14.61%) reported either a suspected or laboratory 

confirmed Leptospira case within the last 12 months (Table 3.1).  However, only five of the 

practices had their suspected cases confirmed by a laboratory, with the remaining eight either 

not sending a sample (single or paired) or having the result back as negative.  Only one practice 

reported a confirmed case of leptospirosis in a canine with an up to date vaccination.  

 

Practice 
Reference 

Lab Confirmed Up to date Vaccination 
Age (Years) Breed Outcome 

Yes No Yes No 

1004 + 
 

  + N/A
1 

Yorkie Cross-breed Died 

1007 + 
 

  + 5 Australian Cattle Dog Cured 

1009 + 
 

+   2 Springer Spaniel Cured 

1014 
 

+   + 5 Cross-breed Cured 

1018 
 

+   + N/A
1 

Working Labrador Cured 

1027 
 

+   + 4 Border Collie Died 

1029 
 

+   + 5 Springer Spaniel Died 

1129 + 

 
  + 3 Old English Sheep Dog Cured 

1315 
 

+   + 8 Staffordshire Bull Terrier Died 

2021 
 

+   + 6 Huntaway Died 

2146 
 

+   + 7 Boxer Died 

2166 + 
 

  + 0.4 Labrador Died 

2171   +   + 10 Jack Russell Died 

Table 3.1 Case details for the 13 practices reporting a case in the last 12 months.  1N/A = 

Information not given. 
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A further 29 practices reported having seen a case within the last 15 years.  No practice in the 

study reported seeing two or more suspected (or confirmed) cases in the 12 previous months.   

From the study, no apparent age or breed of dog leading to greater susceptibility to 

contracting the disease was determined.   

The final outcome of each case was asked for.  The majority of the cases (n=8/13) ended with 

the dog either dying or being put to sleep.  

Information concerning the practice itself was also collected (Table 3.2).  The majority of the 

practices (n=8/13) specialised in small animal practice.  The remaining five were mixed.  The 

mean number of small animal vets at the practices worked out to be 4.125, slightly higher than 

the amount employed at the mixed practices (n ≥ 4). 

The amount of dogs seen per day does not significantly correlate to the number of small 

animal vets at a practice (R2 = 0.282).  Despite that however, there is a degree of positive 

correlation between the two variables.  The figures for dogs per day per vet varied to a great 

degree.  Overall, the average was calculated to be 7.1 dogs per day per vet.   

Comparing the number of dogs seen per day to the reporting of a case can determine whether 

or not bigger and busier practices are more likely to see a leptospirosis case.  In this study, 

practices that reported seeing no cases saw a higher number of dogs per day compared to 

practices that did (40.22 compared to 30.21). 

The number of annual vaccine doses administered differed to a large degree between all 

practices, ranging from 473 to 3600.  The mean number of vaccine doses administered 

between practices witnessing a leptospirosis case was 1668.38.  Mixed practices reported a 

higher number of doses with an average of 1692.4 compared to 1653.38 in dedicated small 

animal practices.  Although there is a positive trend between the variables, no significant 

correlation was witnessed between vaccine doses administered and dogs seen per day at a 

practice (R2 = 0.195). 

The mean reported level of vaccinated dogs at practices observing a case was lower than the 

overall average (60.37%) at 58.77%.  It was also lower than the practices that hadn’t seen a 

case in the last 12 months which averaged out at 60.67%. 
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Practice 
Reference 

Practice 
Type 

Small 
Animal 
Vets

1 

Dogs 
seen 

per Day 

Vaccine Doses 
administered 
over past 12 

months 

Percentage of dogs 
registered at the 

practice with an up to 
date vaccination (%) 

Last Leptospira 
Case - Suspected or 

Lab Confirmed 

1004 Small Animal 2 30 1200 30 Confirmed 

1007 Small Animal 5 40 500 70 Confirmed 

1009 Small Animal N/A
2 

6 3136 55 Confirmed 

1014 Small Animal 4 40 960 56 Suspected 

1018 Mixed 9 40 3000 50 Suspected 

1027 Mixed 4 35 900 65 Suspected 

1029 Mixed 4 8 775 60 Suspected 

1129 Small Animal 2.5 12 884 80 Confirmed 

1315 Small Animal 3 50 3600 30 Suspected 

2021 Mixed 6 65 2800 53 Suspected 

2146 Small Animal 3 30 2474 60 Suspected 

2166 Small Animal 1 10 473 85 Confirmed 

2171 Mixed 6 15 987 70 Suspected 

Table 3.2 Practice details for the 13 practices reporting a case in the last 12 months.  1Includes 

part time vets at 0.5.  2Information not given 

 

Practices reporting a case within the last 12 months were analysed based on their location in 

the UK to explore any potential hot-spots or environmental conditions were leptospirosis is 

more common in dogs.  Due to the low number of respondents, no definite area of the UK was 

identified as having a higher risk for the disease.  There was also no apparent prominent 

environment type based on the practice locations.  Six of the practices were from urban areas, 

whereas the other seven came from rural or semi-rural practices. 

3.3.2 Practices reporting a Leptospira case later than 12 months 

From the 89 responses, 29 (32.58%) reported their practice having seen a Leptospira case 

(Table 3.4) at a date later than the previous 12 months.  The total number of practices 

reporting seeing either a suspected or confirmed leptospirosis case was 42 (47.19%) (Table 

3.3). 

 

Time before Study Suspected Lab Confirmed Total 

≤ 12 Months 8 5 13 

> 12 Months 18 11 29 

Total 26 16 42 

Table 3.3 Total number of suspected and lab confirmed cases for all practices reporting a 

Leptospira case 
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Practice 
Reference 

Practice Type 
Small 

Animal 
Vets

1 

Dogs 
seen 

per Day 

Vaccine Doses 
administered 
over past 12 

months 

Up to Date 
Vaccination 

(%) 

Last Leptospira 
Case - Suspected 
or Lab Confirmed 

1005 Mixed 2 30 N/A
2 

60 Suspected 

1010 Small Animal 4 30 843 50 Suspected 

1011 Small Animal 3 25 1000 20 Suspected 

1015 Small Animal 4 25 600 45 Suspected 

1016 Small Animal 4 20 1200 70 Confirmed 

1017 Small Animal 6 34 900 76 Confirmed 

1019 Small Animal 6 60 5000 73 Suspected 

1022 Mixed 2.5 20 1800 0 Confirmed 

1024 Mixed 6 15 1138 90 Confirmed 

1028 Small Animal 2 25 846 75 Suspected 

1108 Mixed 6 60 1940 80 Suspected 

1135 Small Animal 2 15 480 75 Suspected 

1170 Mixed 4 25 2400 30 Suspected 

1171 Small Animal 4 27 1931 51 Suspected 

1214 Mixed 5 25 1 90 Suspected 

1299 Small Animal 2 20 250 70 Confirmed 

1310 Small Animal 8 80 3600 80 Suspected 

2003 Small Animal 11 10 605 45 Suspected 

2047 Small Animal 3 20 800 70 Suspected 

2055 Small Animal 1 15 835  N/A
2 

Confirmed 

2080 Mixed 3 30 1350 80 Confirmed 

2084 Small Animal 3 30 240 75 Suspected 

2122 Mixed 7 45 2245 75 Confirmed 

2150 Small Animal 3 20 1600 85 Suspected 

2151 Small Animal 8 60 3000 50 Suspected 

2175 Small Animal 5 50 2886 20 Confirmed 

2187 Small Animal 5.5 25 3000 50 Confirmed 

2196 Small Animal 4 35 1500 50 Confirmed 

2215 Small Animal 1 12 300 90 Suspected 

Table 3.4 Practices reporting a leptospirosis case > 12 Months before the study.  1Includes part 

time vets at 0.5.  2Information not given 

 

The majority (n=22) of the 29 practices reported a case within 5 years of the study, with the 

earliest reported suspected case in 1985. 

On average, there were 30.6 dogs seen per day per practice.  This figure is roughly compliant 

with those reporting a case ≤ 12 Months (29.3). 
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The vaccine doses administered were on average, lower than the overall responses with 

1510.36 compared to 1669.41.  This is also lower than the doses administered to the ≤ 12 

Months group (1668.38). 

3.3.3 Comparison of vaccination status between the three defined groups 

In total, from the 89 participants who responded, 42 (47.19%) reported seeing a case at their 

practice.  The average percentage of dogs vaccinated was the same level for practices 

reporting a case and those that had seen none (60.71% compared to 60.55% respectively).  

However despite this, the amount of vaccine doses administered was lower for the practices 

reporting a case (1560.46 compared to 1708.67 per year) (Table 3.5).  The group that reported 

a case ≤ 12 months before the study also reported the lowest average number of dogs with an 

up to date vaccination.   

 

Group 
Mean Vaccine Doses 

administered over past 12 
months 

Mean Up to Date 
Vaccination (%) 

≤ 12 Months  1668.38 58.77 

>12 Months 1510.36 61.61 

No Cases 1708.67 60.55 

Overall 1669.41 60.31 

Table 3.5 Comparison of vaccination doses and up to date vaccinations between the three 

groups and the overall figures. 

 

3.3.4 Clinical signs identified for a leptospirosis case by vet surgeons 

All vets completing the questionnaire were asked to list the clinical signs they look for when 

diagnosing a suspected leptospirosis case.  Of the 89 that responded, 70 listed at least one 

clinical sign (78.66%). 

The clinical signs most frequently reported where usually characteristic of the disease.  

Jaundice was the sign cited most, with 64.04% of clinicians reporting it (Figure 3.1).  The other 

two main reported signs were fever and vomiting (52.8 and 41.57% respectively), both 

common in the anicteric stage.  

Identifying contact with rodents or water was only reported as a risk factor from seven 

practices.  This amount is lower than expected considering the importance that contaminated 

urine or water plays in the transmission of Leptospira.  A current vaccination against the 
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disease was only determined as a risk factor when making a diagnosis in 17% of practices, 

whereas symptoms such as lethargy, polydipsia/polyuria and renal failure were more common. 

 

 

Fig 3.1 Percentage of corresponding vets reporting clinical signs and risk factors.  *Pu/Pd = Polyuria & 

Polydipsia. **Other = Clinical signs reported in <5% of practices including toxaemia, coughing, age, 

breed & shock. 
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3.4 Discussion 

The aim of this study was to gain information on the occurrence of suspected or confirmed 

Leptospira cases seen in the UK vet visiting dog population.  To date, the level of practices 

witnessing a suspected case of leptospirosis in the UK over a given time period has not been 

investigated.  Neither has the level of vaccination coverage against the disease.  Knowledge of 

current data regarding case numbers and vaccination levels will help vaccination programs to 

become more effective and efficient.  For the study, a questionnaire based approach was 

employed to gain a better insight into how practices perceive and deal with the disease.  

In theory, a bigger and busier practice with more dogs seen per day will have an increased 

likelihood of witnessing a leptospirosis case.  This hypothesis was investigated during this study 

by comparing the means between those that have ever seen a case and those that haven’t.  

On average, practices that haven’t seen a case reported 40.23 dogs per day, whereas those 

that have seen a case only reported 30.21 per day.  This contradicts the original hypothesis as 

the 42 practices that had seen an infection received roughly 10 dogs less per day on average.  

A larger sample size available would go further to improve the accuracy of this finding and 

ascertain if this report is true for a greater population.   

The only breeds to be represented more than once during the study were Labradors and 

Springer spaniels (n=2 for both).  This may be a result of their popularity in the UK, with the 

breeds coming 1st and 3rd on the Kennel Club’s registration statistics in 2007 (KC, 2008).  This 

finding echoes the reports that have been seen in countries across the world (Alton et al., 

2009; Oliveira Lavinsky et al., 2012; Raghavan et al., 2011). One report indicated that dog 

breeds used as farm working dogs were more susceptible to the disease  (Harland et al., 2013).  

This however is more likely to be linked to the environmental exposure rather than the breed 

itself.  Only two clinicians claimed to include a dog’s breed or age in a differential diagnosis, 

indicating that vets place a low priority on these factors when making a diagnosis for 

leptospirosis.   

A further interesting point to focus on is the lack of clinicians that consider environmental 

factors in their diagnosis.  As Leptospira environmental survival tends towards certain 

conditions (neutral pH and damp soil, room temperature water sources etc.) (Parker and 

Walker, 2011; Smith and Turner, 1961) this restricts the sources of infection for dogs.  Canine 

exposure to this habitat on a regular basis can increase the likelihood for contracting the 

disease.  Leptospira interrogans have the ability to survive for weeks in these conditions (Smith 

and Turner, 1961) meaning the likelihood of an infection from serovars Canicola and 
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Icterohaemorrhagiae increases with exposure to those risk factors.  As the bivalent vaccine 

protects against these serovars, maintaining an up to date vaccination will limit the potential 

for an infection.  Contact with rodents either directly or indirectly (urine contact) will also have 

a large impact on the risk of contracting the disease.   

While there is currently no data for dogs in the UK, there are reports of human cases linked to 

water or rodent contact through either occupational or recreational activities (Forbes et al., 

2012).  As the same serovars can infect humans and dogs, these risk factors can’t be ignored.  

The dog’s exposure to both damp conditions and rodents, and a lack of vaccination should be 

considered when taking a suspected leptospirosis case into account.  This study indentified no 

apparent locations or environments that presented an increased risk for contracting 

leptospirosis.  While this contradicts the studies previously mentioned, it suggests infection to 

be linked more to the level of exposure and lifestyles of the dogs in the UK, as these will vary 

to a degree within each geographical area.  However as this study used only a small 

demographic, such associations may be missed that would be more apparent if a larger sample 

size was obtained. 

Interestingly, the practices that reported a lower level of both vaccine dose administered and 

overall percentage of vaccinated dogs were also those reporting cases within the last 12 

months.  This reduced level of vaccine coverage within dogs, or a lower rate of annual 

vaccinations to maintain protection, may be contributing to the increased risk for contracting 

leptospirosis.  Despite this observation, a greater sample size available would be required to 

draw any significant conclusions from the data.  

For 12 of the cases reported by practices within the last 12 months, no up to date vaccination 

was maintained in the individual animals.  This further emphasises the need for regular, 

maintained Leptospira vaccinations in dogs.  The only case that did have an up to date 

vaccination was confirmed by a laboratory and the dog survived.  It was not possible to obtain 

information regarding the infecting serogroup due to confirmation by PCR.  One possible 

explanation may be the infection being caused by a serovar not protected by the vaccine.  As 

the vaccines are serogroup specific (with a varying degree of cross-protection within 

serogroups) then a host will not be protected from a challenge by a different strain.   

In recent years a number of different serovars have been reported to cause human disease in 

the UK, including serogroups Australis and Autumnalis.  These serogroups weren’t covered by 

the bivalent vaccine and also demonstrated the potential to infect and cause disease in dogs 

(Collings, 1984; Iwamoto et al., 2009; Mastrorilli et al., 2007; Weekes et al., 1997).  Further 
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investigation would be required to determine if infection was due to a serogroup not covered 

by the bivalent vaccine.  Details regarding a novel tetravalent vaccine that incorporates an 

additional two serogroups (Grippotyphosa and Australis) were recently published (Klaasen et 

al., 2013).  The emergence of these serovars reinforces the need to have current data available 

regarding strains in circulation.  Not only does this improve the accuracy of serological testing 

but also ensures vaccines are kept relevant and efficient. 

Despite the low case numbers, the amount of cases resulting in death were relatively high 

(n=8/13; 61.54%) when compared to the 78% survival rate previously reported (Adin and 

Cowgill, 2000; Goldstein et al., 2006). This can possibly relate back to the diagnostic issue to an 

extent.  If the diagnosis of leptospirosis is delayed to allow late stage signs to manifest, then 

the chances of recovering are reduced.  This study collected no information on when the dog 

presented at the vet.  The earlier an infection is detected, the more effective treatment is.  For 

the cases reported, no dog was older than 10 years old and given the expected life spans for 

the breeds reported, it is reasonable to link leptospirosis as the cause of death.   

A key limitation for the study was the level of dependence on vet practices having to recall 

previous figures over the last 12 months and longer.  While certain questions would be easier 

to gather figures for (vaccine doses administered), the questions relating to previous cases 

may be affected by issues such as recall bias or a change of practice personnel.  One issue that 

can be identified with practices recalling suspected cases from longer than 12 months ago is 

the degree of recall bias.  When presented with the question, they would be more likely to 

associate a previous suspected case to the disease.  This potential bias could affect the reports 

for this question, however to what extent is unknown. As this study was carried out using a 

mail shot approach a number of factors were taken into consideration in an attempt to 

maintain a good compliance rate, however rates seen were relatively low (18.86%).  Despite 

this, 89 responses were received from all practices targeted.  As there have been no similar 

studies of this nature carried out in UK practices regarding Leptospira, it is not possible to 

compare compliance rates. 

The returning number of practices reporting a case (n=13) may be underestimating the true 

number of cases if dogs showing only mild clinical signs (such as vomiting or diarrhoea) are not 

presented to vets or a differential diagnosis is not made.  Doxycycline can help to rapidly clear 

a Leptospira infection in its anicteric stage from the dog within a matter of days by preventing 

the growth of any bacteria within a host (Truccolo et al., 2002).  This would hamper the 

possibility of any future samples giving a definitive positive result.  While this is good practice 
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for the health of the animal, it removes the possibility of a definite leptospirosis case from a 

fourfold increase in serological test results. 

The vague anicteric symptoms are one of the main problems with diagnosing an early 

infection.  As highlighted in this study, of the three main clinical signs, two presenting before 

jaundice can be applied to a range of other diseases.  Jaundice is characteristic of the disease 

and is only seen in the minority of cases that progress to the more aggressive state.  Dogs can 

become carriers and shed the bacteria should they become infected (Harkin et al., 2003; Rojas 

et al., 2010).   Due to this, the zoonotic potential hence remains high even in cases only 

presenting with mild clinical signs.  Vaccination not only protects against the disease, but can 

also prevent asymptomatic colonisation and shedding.  During a differential diagnosis, more 

prevalent and reported diseases in the UK will take precedence.  If treatment for other 

diseases overlaps with leptospirosis (such as prescribing doxycycline) then it’s possible a 

Leptospira infection can be treated without ever knowing it was there. A lack of information to 

the general public and published information to veterinarians will mean that leptospirosis will 

remain to be perceived as an infrequent disease in dogs.   

Current diagnostic testing in the UK focuses around the MAT and the IFAT test.  One major 

drawback for both is the requirement for a paired second sample to see a 4-fold titre increase.  

This increase in the second sample is indicative of a current infection and indicates a definite 

positive result, as a recent vaccination (or previous recent exposure) can affect results by 

circulating antibodies causing agglutination resulting in a false-positive result.  A second 

sample taken 5-7 days following the first negates the chance of this occurring.  Another issue is 

the limited serovar and serogroup specificity of the MAT test.  When testing a suspected 

sample, a vet must request which serogroups or serovars to test for.  With the incorrect 

information about which serovars are in circulation within UK reservoirs, this reduces the 

effectiveness for the test to return the correct result.  The development of an accurate, rapid 

and reliable diagnostic test will benefit the identification of future suspected cases and 

improve monitoring in the UK.   

In summary, this study has shown that Leptospira infections are still an issue in the UK despite 

the availability of a vaccine.  As there was a case seen in a previously vaccinated dog, the 

possibility of serovars different to those in the vaccine in circulation was also presented.  

Increasing awareness of the disease, the early symptoms and the risk factors involved will 

improve diagnostic testing.  Identifying an infection early will also benefit treatment and 

increase the likelihood of the dog surviving.  The current vaccine still remains relevant and key 
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to protecting a dog against a challenge from either serovars Canicola or Icterohaemorrhagiae, 

however with the emergence of new serovars in the UK; there is a need to keep vaccines up to 

date.  Monitoring of these new serovars passing through practices will benefit vaccination 

programs and ultimately keep dogs protected from leptospirosis. 
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4.1 Introduction 

Pathogenic Leptospira are maintained and transmitted within asymptomatic reservoir hosts 

with a wide range of animal species capable of maintaining and transmitting the bacteria 

(Cacciapuoti et al., 1987; Timoney et al., 2011; Tulsiani et al., 2011a). Once infected, the 

bacteria can colonise various internal organs including the kidneys and liver.  Following an 

established infection in the kidneys, leptospires are then shed into the environment via urine 

(Rojas et al., 2010).  The large majority of reservoir animals are asymptomatic and can shed the 

bacteria for their entire lifespan without ever showing external signs of infection (Rojas et al., 

2010).  Small rodents have the ability to shed Leptospira into the local environments of a wide 

range of animals and humans. 

Whilst in the environment the bacteria can survive for weeks, dependant on environmental 

conditions, and certain species (such as Leptospira interrogans) have been proven to survive 

for longer periods outside a host than others.  L. interrogans has demonstrated a greater 

tolerance towards external conditions compared to L. borgpetersenii, which has become much 

more host dependant and can only last for a matter of days outside the host.  This is likely due 

to either acquisition, through horizontal gene transfer, or loss of genes essential to pathways 

for environmental survival (Bulach et al., 2006; Picardeau et al., 2008).   Saprophytic species 

are more fastidious in the environment as their genome contains the pathways required for 

utilising alternative methods for acquiring metabolites (Picardeau et al., 2008).  To date, 

saprophytic strains have been isolated from water sources but never from a host (Merien et 

al., 1997). 

Traditionally, certain serovars have been suggested to be reservoir host specific.  Serovar 

Canicola is maintained in dogs, Icterohaemorrhagiae in rats (Klaasen et al., 2003), Pomona in 

pigs (Chappel et al., 1998) and Hardjo in cattle (Ryan et al., 2012).  This serovar-host specificity 

has an effect on transmission potential to other animal species depending on the living and 

housing conditions.  Infections of Hardjo and Pomona are more likely to be contained and 

maintained within domestic animal herds (Boqvist et al., 2002; Ryan et al., 2012) whereas 

Canicola and Icterohaemorrhagiae may have a greater potential to infect other animals, 

including humans.  However, an increasing number of reported infections are involving 

serovars not traditionally associated with that particular animal species (Felt et al., 2011; 

Oliveira Lavinsky et al., 2012). Serovars can be only host specific but also region specific with a 

variety of animal hosts more likely to be infected with certain serovars due to their 

geographical location than others. 
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Due in part to their ubiquitous nature, small rodents play an extremely important role in the 

transmission of the bacteria to a wide range of incidental hosts across the UK.  It has been 

suggested that larger herd sizes and rodent presence on farmland increases potential 

transmission routes between animals within a herd, or even animals grazing in adjacent fields, 

due to their mobility (Schoonman and Swai, 2010).    Presence of infected rodents in urban 

communities increases transmission risk amongst companion animals and humans.  However, 

human populations within urban areas are less likely to have direct contact with wild rodents 

and so the potential for contracting an infection from wildlife is decreased.  Incidents of 

flooding can cause infected sources (such as urine) to spread and potentially lead to outbreaks 

of leptospirosis.  Leptospira has been reported to cause infection within 17.1% of outbreaks 

following periods of flooding or heavy rain (Cann et al., 2012). 

Human infections in the UK are usually either occupational or recreational, and are usually 

consistent with either water or rodent contact (Forbes et al., 2012).  UK figures from 2010 

indicate that ten out of the 12 human cases arising from recreational exposure had contact 

with either rodents or water.  This included keeping pet rats, a canoeist, a mouse bite, fishing 

and clearing out property infested with rats (HPA, 2011). 

In the UK, traditionally serovars Canicola and Icterohaemorrhagiae have been the cause of 

infection in both humans and dogs (HPA, 2011).  Either serovar can be maintained within small 

rodent populations around the world (Doungchawee et al., 2005; Scialfa et al., 2010); however 

the extent of this in the UK is currently unknown.  Earlier studies carried out in the UK showed 

both bank voles and wood mice to shed serovars Saxkoebing and Muenchen (Hathaway et al., 

1983b; Little et al., 1987).  However, more recently human infections have been reported in 

the UK arising from emerging serovars not normally observed in UK infections (HPA, 2013).  

There is a lack of current data regarding the serovars maintained within rodent reservoirs in 

the UK, with little data also available across Europe.  Serogroups Australis and Grippotyphosa 

were recently detected in bank voles and yellow necked mice during a study in Croatia (Tadin 

et al., 2012).  Further to this, serogroups Icterohaemorrhagiae and Sejroe have been identified 

in wild rodents, including rats, at five areas within France (Aviat et al., 2009).  Serovars from 

these serogroups have demonstrated the potential to cause infection in humans within the UK 

(HPA, 2011). 

Outside of Europe, studies into reservoir animals are more prominent.  Field mice and rats 

were both shown as PCR positive for Leptospira presence during a study in China that also 

identified a positive canine case from the same areas (Yalin et al., 2011). 
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Identification of the presence of Leptospira from companion animals is normally carried out 

using the microscopic agglutination test (MAT) that can also be applied to other animal species 

(Aviat et al., 2009; Mohamed-Hassan et al., 2010; Rahelinirina et al., 2010).  This method 

however requires the user to have the competence to successfully determine the correct titre 

and results can vary from lab to lab.  Another drawback of the MAT test is it does not give 

serovar identification due to cross-reactions between serovars within the same serogroup.    

The MAT relies on the production of antibodies in a host specific for the bacteria; these react 

with live antigens added across titrated dilutions to give a resulting titre reaction result.  In the 

early stages of infection, the IgM antibodies produce a non-specific reaction to live antigens.  

This can result in a certain degree of cross-reaction between serovars within the same 

serogroup.  As a host’s antibody reaction develops, IgG antibodies are more specific for 

individual serovars.  A second test on the same animal will result in at least a four-fold titre 

increase for the infecting serovar due to the accumulation of serovar-specific IgG antibodies. 

Furthermore, MAT has limited usefulness for determining an infection in a reservoir host.  As 

chronic infections in the kidneys potentially evade the immune system (Monahan et al., 2009), 

then circulating antibodies towards Leptospira can be absent or below the determined level to 

give a positive MAT result. 

Molecular methods, such as PCR assays, allow labs to rapidly test samples from urine, blood 

and even tissue.  There has been a shift towards utilising PCR for identification due to its 

accuracy, ease of use and allowing for comparable results between labs.   Direct sequencing of 

the 16S gene has demonstrated the ability to identify the species of an infecting Leptospira 

(Morey et al., 2006).  As an alternative, gyrB has also demonstrated this ability, having 100% 

compliance with 16S sequencing results (Slack et al., 2006). 

Leptospira are Gram negative; however they are difficult to stain using conventional 

methodology and individual leptospires are difficult to visualise.  Warthin-Starry silver staining 

allows better visualisation of Leptospira within infected tissue (Fornazari et al., 2012; Leon et 

al., 2006).  Under these conditions it is possible to see aggregates as well as individual bacteria 

within infected tissue.  Analysing the same section with the hematoxylin and eosin (H&E) stain 

allows for comparison between the two stains to investigate if inflammation is present, along 

with morphological changes (De Brito et al., 1996). 

Culture of leptospires from urine, serum or tissue samples, while beneficial for diagnostic and 

identification capabilities, is problematic.  There are numerous technical issues with 
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establishing a grown culture in liquid EMJH media, in particular contamination.  Given the long 

growth period, and nutrient rich media, careful consideration is required to prevent 

contaminated cultures.  Dark field microscopy is used to help visualise and confirm any 

positive cultures. 

The aim of this study was to investigate the presence of pathogenic Leptospira strains in a 

range of wild rodent species across multiple sites in the North West of England.  Alongside this, 

molecular techniques were used to identify the species, serogroup and serovar of any 

infections discovered.  Histopathology and serology testing was also carried out on the same 

samples to allow direct comparison of results between each test. 
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4.2 Materials and Methods 

4.2.1 Trapping protocol and site selection 

Trapping locations were chosen primarily based on their location, along with factors such as 

closeness to bodies of water, previous rodent sightings and if dog walking had been witnessed 

previously in that area (Table 4.1 and Figure 4.1).  Suitable sites in Liverpool were chosen 

based on recommendations by the environmental health as potential hotspots.  Open public 

areas were not included to prevent any theft or tampering with the traps.  Differing locations 

were chosen to represent different habitats and to allow different rodent species to be 

investigated.   

 

Location Habitat Type Rural/Semi-Rural/Urban 

Livestock Farm Open Farmland Semi-Rural 

Equine Livery Managed field Semi-Rural 

Ruthin Forest Managed woodland Rural 

Forest of Bowland Managed woodland Rural 

Beef Farm Open Farmland Semi-Rural 

Public Gardens Field/Woodland Semi-Rural 

Frodsham Marsh Field Semi-Rural 

Liverpool Port Urban Urban 

Allotment 1 Urban Urban 

Allotment 2 Urban Urban 

Allotment 3 Urban Urban 

Allotment 4 Urban Urban 

Allotment 5 Urban Urban 

Allotment 6 Urban Urban 

University of Liverpool Campus Urban Urban 

Table 4.1. Locations and habitats of trapping sites for both rats and small rodents.  All 

allotment sites were within a single Liverpool postcode. 

 

Rats were live trapped using standard rat traps and Longworth traps were used for small 

rodents (such as mice and voles).  Grain, bedding and small pieces of fruit or vegetable were 

included in each trap.  The traps where checked every morning over a four night period 

(Monday to Friday) each time they were placed.  Trapping was carried out multiple times at 

different points in the year at the Livestock Farm and Equine Livery.  Full ethical approval was 

obtained from the University of Liverpool ethics committee and land owner’s permission was 

sought prior to work starting. 
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Figure 4.1. Location of rat and small rodent sampling sites during the study.  Sites within 

Liverpool are grouped. 

 

Rodent euthanasia was carried out according to Schedule 1 methods as described in the 

Guidance on the Operation of the Animals (Scientific Procedures) Act 1986 (2000).  Gender and 

size were determined for each rodent post mortem.  Dissection was carried out and both 

kidneys were removed.  To reduce any contamination risk, each rodent was sprayed with 70% 

ethanol.  One kidney was stored at -80oC for DNA extraction while the other was stored in 

formalin for histopathology testing.  Blood was taken via a heart puncture immediately 

following euthanasia and stored at -80oC for MAT testing at a later date. 

4.2.2 DNA extraction from kidney tissue 

Roughly 1g of kidney tissue was taken from each sample for a DNA extraction.  The tissue was 

cut into small pieces to allow for more efficient extraction.  The DNeasy® Blood and Tissue 



71 
Chapter Four  Rodent Chapter 

(Qiagen) kit was used according to manufacturer’s instructions.  This method gave a total of 

60µl of extracted DNA in elution buffer.  The DNA was then aliquoted into 10µl tubes and 

stored at -80oC. 

4.2.3 Rodent species identification using PCR 

Each DNA extract was subjected to a standard PCR reaction and subsequent sequencing 

analysis to confirm the species of rodent.  This allowed for confirmation of species that can be 

difficult to distinguish on gross examination. 

The PCR reaction targeted the cytB gene (Schlegel et al., 2012) and following sequencing, 

allows for BLAST comparison against other known species sequences.  PCR was carried out in a 

25µl reaction volume using ReddyMix PCR Master Mix (Thermo Scientific) which 0.625 units of 

ThermoPrime Taq DNA polymerase, 75mM Tris-HCl, 20mM (NH4)2SO4, 1.5mM MgCl2, 0.01% 

(v/v) of Tween® 20 and 0.2mM each of dATP, dCTP, dGTP and dTTP with 10pmol of each 

primer and 1µl of sample DNA. 

Cycle conditions were as follows: 94oC for 3 minutes, followed by 40 cycles of denaturation at 

94oC for 30 seconds, annealing at 47oC for 30 seconds, and extension at 72oC for 1 minute, 

with a final extension at 72oC for 10 minutes.  The 946bp product was run on a 1.5% agarose 

gel against a ΦX174 ladder with controls.  The amplicon was cleaned up and sent for 

sequencing at Source Bioscience.  The resulting sequence was then compared to the existing 

database using BLAST. 

4.2.4 Establishing a screening PCR for presence of pathogenic Leptospira 

To identify any Leptospira DNA in acquired samples, a screening PCR was established for use 

with kidney tissue DNA extracts that utilises two primer sets; one to identify any leptospiral 

DNA and a second to identify only pathogenic serovars.  Two targets were primarily identified 

for this, the 16S gene rrs and the gene for the outer membrane protein lipL32.   

A series of primers were selected from the literature to test for both gene targets (Table 4.2).  

These where then tested on two control strains L. interrogans serovars Canicola and 

Icterohaemorrhagiae to identify the set that were able to work in duplex and had the highest 

binding efficiency.   
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Gene Primer Sequence Reference 

lipL32
1 

Forward 1 ATCTCCGTTGCACTCTTTGC Ahmed et al., 2006 

  Reverse 1 ACCATCATCATCATCGTCCA   

  Forward 2 AAGAATGTCGGCGATTATGC Tansuphasiri et al., 2006 

  Reverse 2 CCAACAGATGCAACGAAAGA   

  Forward 3 TATAAGCTTTGTGGTGCTTTCGGTGGTCT Hoke et al., 2008 

  Reverse 3 TTAACCTAGATCTTTGTTTAAACAG   

  Forward 4 CGCTTGTGGTGCTTTCGGTGGT Fernandes et al., 2008 

  Reverse 4 CTCACCGATTTCGCCTGTTGGG   

  Forward 5 GTCGACATGAAAAAACTTTCGATTTTG Cheemaa et al., 2007 

  Reverse 5 CTGCAGTTACTTAGTCGCGTCAGAAGC   

rrs
2 

Forward 1 GGAACTGAGACACGGTCCAT Tansuphasiri et al., 2006 

  Reverse 1 GCCTCAGCGTCAGTTTTAGG   

Table 4.2. Primers sets used in preliminary duplex PCR testing.  1lipL32 is an outer membrane 

protein found in pathogenic strains.  2rrs is a 16S RNA gene present in all strains. 

 

From all the different primers tested, the two primers rrs (Tansuphasiri et al., 2006) and lipL32 

(Cheemaa et al., 2007) were initially selected to be used in duplex for the screening PCR.  Cycle 

conditions were as follows; 94oC for 10 minutes, followed by 40 cycles of 94oC for 1 minute, 

55oC 1 minute, 72oC for 1 minute, and a final extension of 72oC for 10 minutes. 

One problem experienced when applying the PCR to DNA extracts was that the lipL32 primers 

bound inefficiently to the control strains.  Due to this, a different target for pathogenic strains 

was identified from a list of potential candidates (Table 4.3), all of which amplify pathogenic 

serovars only.  All cycle conditions were kept as published. 

 

Gene 
Target 

Primer 5' to 3' Sequence 
Size 
(bp) 

Reference 

ligB
1 PSBF ACWRVHVHRGYWDCCTGGTCYTCTTC 

380 Cerqueira et al., 2009 
PSBR TARRHDGCYBTAATATYCGRWYYTCCTAA 

gyrB
2 2For TGAGCCAAGAAGAAACAAGCTACA 

502 Slack et al., 2006 
504Rev MATGGTTCCRCTTTCCGAAGA 

flaB
3 flaB Forward TCTCACCGTTCTCTAAAGTTCAAC 

793 Krishna et al., 2008 
flaB Reverse CTGAATTCGGTTTCATATTTGCC 

Table 4.3. Additional potential targets for differentiation of pathogenic serovars by PCR.  1ligB 

plays a role in cell adhesion.  2gyrB is involved with DNA production.  3flaB is a component of 

the rotational flagella. 
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From the potential candidate genes, gyrB was chosen for its efficient binding when compared 

to either the ligB or flab primers.   The final duplex screening PCR was carried out according to 

the protocol in chapter two.  Figure 4.2 demonstrates the expected band sizes for both rrs and 

gyrB (502bp). 

 

Figure 4.2 Example of amplified bands for both the rrs (430bp) and gyrB (502bp) loci used in 

the duplex PCR assay, against a ΦX174 ladder.  L. interrogans serovar Australis was utilised as 

the positive control. 

All samples were then re-tested using the updated duplex PCR reaction.   Samples were tested 

in triplicate to ensure none were identified as a false-negative.  Any samples with faint bands 

or smearing on the agarose gel were re-tested for confirmation.  Positive PCR samples were 

then purified and sent for commercial Sanger sequencing of both the rrs and gyrB gene 

amplicons. 

4.2.5 Clean up of PCR reactions and sequencing of amplicons 

Amplicons gained from positive PCR assays were purified for sequencing.  This was carried out 

using the QIAquick® PCR purification kit (Qiagen) according to manufacturer’s instructions.  

The subsequent solution was tested by Nano-drop to estimate the concentration for 

sequencing and diluted to 100µg/µl/100bp. 
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Commercial Sanger sequencing of the purified amplicons was carried out at Source Bioscience 

and MWG Eurofins.  Both forward and reverse reads were obtained for each sequence.  This 

allowed for alignment of consensus sequences to prevent potential base variation errors. 

Sequences were analysed in ChromasPRO v1.7.3 (http://technelysium.com.au), for read 

quality.  Primer locations were identified and the sequences were trimmed appropriately.  

Alignments and comparisons between sample sequences were carried out in MEGA5 (Tamura 

et al., 2011).  Phylogenetic analysis and BLAST searches were also carried out using MEGA5. 

4.2.6 Microscopic agglutination testing of rodent serum samples 

Blood samples were taken via cardiac puncture post mortem and serum was stored at -80oC.  

All serum samples were tested at the Animal Health and Veterinary Laboratories Agency 

(AHVLA) against their stock panels of antigens. 

All serum samples were centrifuged at 2,500rpm for six minutes to separate the serum from 

any clotted blood. Where possible, 80µl of serum was taken from each and diluted down by a 

factor of 12.5 in saline to obtain a total of 1ml, however up to a minimum of 15µl was used to 

dilute giving a minimum total of 187.5µl. 

If the serum was contaminated with serum proteins, lipids etc. then it was necessary to filter 

the sample prior to testing through a 0.2µM filter to remove impurities which could potentially 

give false-positive results. 

4.2.7 Multiple serovar pooled samples 

Serum samples were initially tested with pooled antigens as described in Chapter Two.  

Previous serovar identification from direct sequencing of PCR assays were included, along with 

those typically seen with UK infections.  Serovars included in the pool were L. interrogans 

serovar Canicola, Icterohaemorrhagiae, Australis, Bratislava, Muenchen and Jalna. 

4.2.8 Single serovar titrations 

Samples indicating an infection from pooled antigen testing were tested further with single 

serovar plates as described in Chapter Two.    Each plate contained a serum sample serial 

diluted and incubated with an individual antigen.  Two hours of incubation was then followed 

by observation under dark field microscopy as with the pooled antigens.  The serogroup that 

demonstrated agglutination at the lowest tire was deemed the infecting serogroup. 
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4.2.9 Histopathology of kidney tissue sections 

To attempt to visualise the bacteria within rodent tissue, any samples found positive by the 

screening PCR were subjected to histopathology staining by the Histopathology department at 

the University of Liverpool.  Chapter Two describes the two stains used for this project and the 

reasoning behind them.  Key areas looked for with the H&E stain included capsular 

indentations and lymphoplasmacytic infiltration in the interstitial tissue, cortex and medulla.  

The Warthin-Starry silver stain allowed for potential visualisation of either individual or 

aggregates of leptospires within tissue.  Using both stains in tandem allowed identification of 

any association between sites of inflammation and the sites that the bacteria are located 

within. 

4.2.10 Variable number tandem repeat (VNTR) analysis of positive samples 

A VNTR method has been developed for Leptospira which has the potential to identify 

individual serovars (Salaun et al., 2006).  In this study, the primers for the VNTR analysis were 

primarily tested on positive controls.  If shown to be effective they would then be applied to all 

positive samples.  Published cycle conditions were kept the same, as were the primers (Table 

4.4). 

 

Primer 5' to 3' Sequence 
Size (bp) 

L. interrogans L. kirschneri L. borgpetersenii 

VNTR4-F AAGTAAAAGCGCTCCCAAGA 
425+34n 425+34n 425+34n 

VNTR4-R ATAAAGGAAGCTCGGCGTTT 

VNTR7-F GATGATCCCAGAGAGTACCG 
299+46n 299+46n No Product 

VNTR7-R TCCCTCCACAGGTTGTCTTG 

VNTR10-F GAGTTCAGAAGAGACAAAAGC 
420+46n 347+46n 333+46n 

VNTR10-R ACGTATCTTCATATTCTTTGCG 

VNTR-Lb4 F AAGAAGATGATGGTAGAGACG 
No Product No Product 573+60n 

VNTR-Lb4 R ATTGCGAAACCAGATTTCCAC 

VNTR-Lb5 F AGCGAGTTCGCCTACTTGC 
668+39n 668+39n 722+36n 

VNTR-Lb5 R ATAAGACGATCAAGGAAACG 

Table 4.4. Primers used for the VNTR analysis to identify the serovar from infecting strains 

(Salaun et al., 2006). 
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4.2.11 Isolation of Leptospira strains from caught wild rodents 

As rodent reservoirs are more likely to have a higher bacterial carriage in the kidney tissue, 

culture was attempted on single kidneys from a subset of samples.  The PCR assay on the 

second kidney would be carried out alongside to give early confirmation of an infection.  

Positive controls were L. interrogans serovar Canicola and serovar Icteroheamorrhagiae. 

Ellinghausen-McCullough-Johnson-Harris (EMJH) media was obtained from MSD Animal 

Health.  Media containing 1% rabbit serum and 5-fluorouracil was used for the primary culture.  

To reduce any contamination, both the rodent and the kidney were sprayed with 70% ethanol 

prior to inoculation.   

Roughly 1g of kidney tissue and 9ml of liquid culture were placed into a Stomacher tissue 

homogeniser for 5 minutes.   From this, 1ml was taken and inoculated into 9ml of semi-solid 

EMJH media.  This was mixed for 10 seconds and one 1ml was transferred into 9ml of liquid 

media to give a 10-3 dilution.  For the final culture, 100µl of the 10-3 dilution was inoculated 

into 6ml of EMJH media and incubated at 29oC.  The final inoculation was carried out in 

triplicate to ensure maximum likelihood of a successful culture. 

All cultures were checked on a weekly basis for growth using a dark-field microscope.  

Additionally, DNA extracts were carried out on the media to detect growth via PCR assays.  

Only after six months were negative cultures identified.  
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4.3 Results 

In total, 283 rodents were caught over the seven locations; samples from multiple sites around 

Liverpool were pooled together as one location (Table 4.5).  All samples from Liverpool were 

provided by Kieran Pounder from the University of Liverpool.  Species caught were identified 

and confirmed using the cytB PCR assay and sequencing.  These included wood mice 

(Apodemus sylvaticus), house mice (Mus musculus), bank voles (Myodes glareolus), field voles 

(Microtus agrestis), and brown rats (Rattus norvegicus). 

Trapping was carried out at different times of the year, at different locations.  Live trapping 

was carried out between May 2010 and July 2012.  Some locations were visited on more than 

one occasion at different points throughout the year.   

The total number of small rodents caught and tested over the study was 283.  This broke down 

into wood mice (n=152), bank voles (n=47), field voles (n=10), house mice (n=7) and brown 

rats (n=67).  The only species that was sampled at all locations were wood mice, with bank 

voles present at all locations apart from Ruthin Forest and sites within Liverpool.   

As it was, a high majority of brown rats were obtained in the urban locations at Liverpool; two 

were captured on semi-rural sites, but none were captured from rural sites.  No voles were 

caught at any of the urban sites in Liverpool. 

Location
1
 

Time of 
Sampling 

Rodent Species 

Total A. 
sylvaticus 

M. 
glareolus 

M. 
agrestis 

R. 
norvegicus 

M. 
musculus 

Livestock 
Farm 

06/2010 – 
03/2012 

22 21 2 0 0 45 

Equine 
Livery 

09/2010 – 
07/2011 

43 6 1 0 0 50 

Forest of 
Bowland 

08/2010 1 1 2 0 0 4 

Ruthin 
Forest 

10/2010 8 5 0 0 0 13 

Beef 
Farm 

08/2011 6 2 3 0 0 11 

Liverpool 
06/2010 – 
08/2011 

37 0 0 67 7 111 

Public 
Gardens 

11/2011 – 
12/2011 

35 12 2 0 0 49 

Total   152 47 10 67 7 283 

 Table 4.5. Numbers and species of rodents caught at each trapping location.  1Locations from 

table 4.1 from which no samples were obtained are not included. 
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4.3.1 Wild rodent samples tested via the screening PCR for pathogenic Leptospira presence 

All 283 rodent samples were tested using the PCR assay described in Chapter Two, the results 

of which are in table 4.6.  Amongst the five rodent species between the seven sites, 23 

samples were PCR positive for the presence of pathogenic Leptospira. The remaining 260 

tested negative for the presence of any leptospires. 

From the 283 samples, infections were identified within the kidneys of 23 small rodents (8.13% 

of total sample size) using PCR.  This comprised of 15 wood mice (9.87% of wood mice sampled 

at seven locations), six bank voles (12.77% of bank voles sampled at six locations) and two field 

voles (28.57% of field voles sampled at five locations). 

 

Location 
Total number 

tested 
Total Number 
Positive (%) 

Livestock Farm     

Apodemus sylvaticus 22 2 (9.09) 

Myodes glareolus 21 2 (9.52) 

Microtus agrestis 2 0 

Equine Livery 
 

  

Apodemus sylvaticus 43 3 (6.98) 

Myodes glareolus 6 0 

Microtus agrestis 1 0 

Forest of Bowland     

Apodemus sylvaticus 1 1 (100) 

Myodes glareolus 1 1 (100) 

Microtus agrestis 2 1 (50) 

Ruthin Forest 
 

  

Apodemus sylvaticus 8 4 (50) 

Myodes glareolus 5 0 

Beef Farm     

Apodemus sylvaticus 6 0 

Myodes glareolus 2 1 (50) 

Microtus agrestis 3 1 (33.33) 

Liverpool 
 

  

Apodemus sylvaticus 37 0 

Rattus norvegicus 67 0 

Mus musculus 7 0 

Public Gardens     

Apodemus sylvaticus 35 5 (14.29) 

Myodes glareolus 12 2 (16.67) 

Microtus agrestis 2 0 

Table 4.6. PCR results by location and species investigated in this study 
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All but one of the locations sampled presented evidence of pathogenic Leptospira being 

present in rodents (Table 4.6).  Three sites that were tested multiple times presented evidence 

for the same species being maintained (Livestock Farm, Equine Livery and the Public Gardens).  

Sites at Liverpool all tested negative (the majority of which were rat samples), despite 

numerous repeats in triplicate and a second DNA extraction on additional tissue. 

Species of both mice and voles (specifically wood mice, bank voles and field voles) 

demonstrated their potential to be reservoir hosts of the bacteria.  The brown rat and house 

mouse were all negative; however samples were only obtained from sites in Liverpool for both 

species which was the only location testing completely negative. 

BLAST analysis of the trimmed rrs and gyrB consensus sequences confirmed identification as 

L. interrogans for 22 samples, with one being L. borgpetersenii, identified within a field vole.   

Both wood mice and bank voles were shown to be host to the same Leptospira species, 

whereas the positive field vole sample was infected with a different species.  Both the rrs and 

gyrB consensus sequences were compared for each sample and showed 100% homology when 

identifying the species of each infecting leptospire.   It is not possible to determine the serovar 

or serogroup using this method. 

4.3.2 Microscopic agglutination test on rodent serum samples to determine the infecting 

serogroup 

Serum samples taken from 71 wild rodents were tested using the standardised MAT protocol 

at the AHVLA.  Samples were initially tested against pooled samples that contained a range of 

serovars from different serogroups that corresponded to the findings of the initial BLAST 

results (Table 4.7). 

From the pooled testing, seven samples resulted in a positive titre (>50% agglutination against 

a black background) with antigen pools containing strains belonging to the Australis serogroup.  

These samples where then tested against the individual antigens to determine the serovar 

producing the highest titre result.  Trace results (<50% agglutination on a black background) 

were not included as a positive result. 

Single antigen testing can determine to an extent the infecting serovar based on which shows 

the highest titre response.  From the seven samples, L. interrogans serovar Bratislava 

produced the strongest titre response in four of the samples (WM72, WM80, WM93 and 

BV50).  All three wood mouse samples were from the same trapping location.  Serovar Lora (of 
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the same species) had the highest serovar for one wood mouse sample (WM80).  Three 

samples failed to produce a response when tested against the four serovars (Table 4.7). 

Three samples produced a reaction in all of the serovars tested for, demonstrating the 

potential cross-reactivity that can occur between serovars within the same serogroup. 

All samples identified to have a positive MAT titre had previously been shown as PCR positive 

using the screening PCR (Table 4.4).  Three samples identified as PCR positive were shown to 

be negative for an MAT titre.   
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Sample
1
 

Pooled 
Antigen 
Result 

Serovar Antigen 

Australis Bratislava Lora Jalna 

BV3 + - - - - 

BV13 - - - - - 

BV14 - - - - - 

BV15 - - - - - 

BV16 - - - - - 

BV17 - - - - - 

BV18 - - - - - 

BV19 - - - - - 

BV20 - - - - - 

BV21 - - - - - 

BV22 - - - - - 

BV26 - - - - - 

BV36 - - - - - 

BV38 - - - - - 

BV39 - - - - - 

BV40 - - - - - 

BV41 - - - - - 

BV43 - - - - - 

BV44 - - - - - 

BV45 - - - - - 

BV46 - - - - - 

BV47 - - - - - 

BV48 - - - - - 

BV50 + - 1:25 - - 

FV3 - - - - - 

FV6 - - - - - 

FV8 - - - - - 

FV9 - - - - - 

FV10 - - - - - 

WM25 - - - - - 

WM26 - - - - - 

WM27 - - - - - 

WM28 - - - - - 

WM42 - - - - - 

WM43 - - - - - 

WM44 - - - - - 

WM58 - - - - - 

WM59 - - - - - 

WM67 - - - - - 

WM68 - - - - - 

WM69 - - - - - 

WM70 - - - - - 
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Sample
1
 

Pooled 
Antigen 
Result 

Serovar Antigen 

Australis Bratislava Lora Jalna 

WM72 + 1:100 1:800 1:200 1:100 

WM72 - - - - - 

WM73 + - - - - 

WM73 - - - - - 

WM75 - - - - - 

WM76 - - - - - 

WM77 - - - - - 

WM78 - - - - - 

WM79 - - - - - 

WM80 + 1:50 1:100 1:200 1:100 

WM80 - - - - - 

WM81 - - - - - 

WM83 - - - - - 

WM84 - - - - - 

WM85 - - - - - 

WM86 - - - - - 

WM87 - - - - - 

WM88 - - - - - 

WM89 - - - - - 

WM90 - - - - - 

WM91 - - - - - 

WM92 - - - - - 

WM93 + 1:100 1:400 1:200 1:100 

WM93 - - - - - 

WM94 + - - - - 

WM94 - - - - - 

WM96 - - - - - 

WM97 - - - - - 

WM98 - - - - - 

WM99 - - - - - 

WM100 - - - - - 

WM101 - - - - - 

 

Table 4.7. Titre results for the all 71 samples examined using the MAT.  Italics denote 

suggested serovar identification. 1 Bank vole (BV), field vole (FV) and wood mouse (WM). 
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4.3.3 Visualising a Leptospira infection using conventional silver staining histopathology 

Eleven formalin fixed samples that had previously been shown as PCR positive were tested 

using both the Warthin-Starry and the H&E stain.   From two samples inflammation and 

leptospires were identified (Fig 4.3A and 4.3B).  Locations of leptospires were not directly 

linked to the presence of inflammation.  Inflammation alone was witnessed in a further six.   

Capsular multifocal indentations were witnessed with several samples (n=4), including samples 

where no Leptospira were visualised.  Multiple membrane indentations at several locations 

within the kidney tissue indicate an inflammation response by a host to an infection. Multifocal 

lymphoplasmacytic infiltration in the interstitial tissue was seen in six of the samples tested 

(Fig 4.3C and 4.3D).  The presence of lymphocytes and plasma cells within the tissue indicate 

either an active or chronic infection.  In this instance it is more likely to be a chronic infection 

maintained within the rodent.  Inflammation was not directly linked to the same sites where 

bacteria were visualised. 

Three samples showed no signs of either an inflammatory response or the presence of any 

Leptospira. 
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Figure 4.3. Histopathology staining images of a PCR positive wood mouse sample.  A: Warthin-

Starry silver stain showing individual leptospires are observed. B: Warthin-Starry stain showing 

clumping of multiple bacteria within renal tubules. C: H & E stain showing interstitial infiltrate 

within kidney tissue. D: H & E stain showing chronic interstitial infiltrate of lymphocytes and 

plasma cells.  All imaging carried out at 400x magnification. 
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4.3.4 VNTR analysis to identify Leptospira serovars 

All samples positive for Leptospira by the screening PCR assay were examined using the VNTR 

primers as described in section 4.2.  The primers were tested on two controls, L. interrogans 

serovar Australis and L. kirschneri serovar Grippotyphosa for their ability to identify serovars 

before their use on rodent samples. 

Testing on the positive control strains proved inconsistent and unreliable.  It wasn’t possible to 

obtain bands for all loci with the controls despite altering the PCR conditions such as lowering 

the annealing temperature or increasing primer and sample concentration.  This was the same 

for the field samples.  As primers were unable to bind, it was not possible to produce 

amplicons that could be sequenced. 

4.3.5 Isolating Leptospira from wild rodent kidney tissue 

Culturing was attempted from seven samples from the Public Gardens, a site which had 

previously demonstrated positive rodent samples (Table 4.6).  

The same samples were also tested via PCR and three of the seven samples (BV49, WM105 

and WM106) were positive by PCR for the presence of pathogenic Leptospira.  All seven 

cultures were diluted and maintained in liquid EMJH media obtained from MSD Animal Health 

at 30oC.  

All cultures were checked on a weekly basis for signs of growth over a six month period.  This 

included a visible turbidity within the media and also signs of the bacteria under the dark field 

microscope.  However over the six months, there were no signs of growth either on the 

microscope or visually in the media itself.  All dilutions were kept for reference for up to six 

months as advised.  Both L. interrogans serovar Canicola and serovar Icterohaemorrhagiae also 

demonstrated no growth over the time period. 
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4.4 Discussion 

The aim of this study was to investigate pathogenic Leptospira serovars currently maintained 

within UK wild rodent populations.  Although the focus of the study was a molecular testing 

approach, serological and histopathology results were also examined.   Being able to identify 

pathogenic serovars maintained over a range of environments benefits both vaccination 

development and treatment.  The presence of the bacteria within these locations would help 

to determine if Leptospira should be perceived as a viable zoonotic threat to both dogs and 

humans.   

Rodent trapping sites were determined based on their environment type, proximity to water 

sources and/or the potential for canine infection through close proximity of dog walking.  This 

could potentially allow for the selection of diverse conditions and for possible comparisons to 

be drawn from positive results.  However final results of this study demonstrated that positive 

sample numbers were not high enough for definitive conclusions based on location alone.   

Locations included for the study were rural woodland (n=2), semi-rural farmland, rural fields or 

public gardens (n=4) and urban locations within central Liverpool (n=8).  The main differences 

between sites hampering comparisons would be the native rodent species to that area and the 

small number of samples obtained.  The absence of voles caught within urban locations 

indicates their typical habitat to be more rural.  Wood mice were the only rodent species 

obtained from all locations sampled, suggesting their widespread presence as a risk for human 

and canine leptospirosis. 

Screening PCR assays targeted a number of genes using published primers and conditions on 

two control strains (L. interrogans serovar Canicola and serovar Icterohaemorrhagiae).  

Preliminary testing of each primer set allowed for a consistent and reliable PCR protocol that 

could detect both saprophytic and pathogenic Leptospira DNA in samples by targeting the rrs 

and gyrB genes.  Exploring the 16S/23S spacer region was also suggested as it has been 

targeted in other spirochetes, however as the 16S and 23S regions aren’t linked in Leptospira 

this is not feasible (Woo et al., 1996).  

As previously mentioned in section 4.3, brown rats were not obtained from rural areas.  

Repeated attempts were made to sample rats on farm land and at public gardens, however 

despite anecdotal reports of sightings and several different bait (including grain and 

cooked/cured meats), it was not possible to capture and sample any rural rats.  This was one 

major limitation of the study.  Having samples from rural and semi-rural rats would have been 
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of benefit given their previously well documented role in the transmission of the disease 

(Foronda et al., 2011; Jansen and Schneider, 2011; Koma et al., 2012; Socolovschi et al., 2011). 

Of the five species sampled, the brown rat and the house mouse were the only rodent species 

absent of any Leptospira infection.  One reason may be due to the low sample size of the 

house mice as it was only possible to obtain seven in total. A greater sample size of house mice 

would enable definite conclusions to be drawn regarding its status as a reservoir for 

Leptospira. 

Previous work demonstrated that gyrB sequencing analysis shares a 100% homology with full 

16S sequencing in regards to determining the species of Leptospira strains (Slack et al., 2006).  

The results from this study provided further evidence to this, as both the 16S and gyrB 

sequencing identified individual samples as being the same species.     

Phylogenetic analysis of rrs and gyrB sequencing showed the nucleotide sequences of all 

samples confirmed to be L. interrogans as highly conserved.    Typically wood mice and bank 

voles occupy the same habitat (Zhang and Usher, 1991), as evidence presented here further 

details, thus the two species becoming infected by the same serovar is entirely feasible.  The 

results may indicate that all the L. interrogans infections are in fact from the same serovar.  

However, as the sequences of these genes are so highly conserved, it is only possible to 

identify at a species level and cannot definitively state the serovar.  Further work is required to 

investigate whether molecular methods are able to distinguish between serovars, such as 

multi-locus sequence typing (MLST). 

To date there have been only three previous studies carried out in the UK investigating the 

serovars present in wild rodent hosts, the most recent of which investigated brown rats in 

1995 (Webster et al., 1995).    Webster and colleagues (1995) carried out the study on UK 

farms investigating the presence in brown rats to see if infection levels were as high as 

previously perceived.  They discovered that 14% were currently infected, compared to the 

50-70% previously thought to act as a reservoir.  Our study found no presence of Leptospira in 

the urban brown rat samples, however as it was not possible to obtain samples from farmland, 

despite repeated attempts, it is not possible to draw a comparison at the present time.  

Hathaway and colleagues (1983) discovered during a study of free-living and domestic animals 

in the UK that L. interrogans serovar Muenchen was present in wood mice, bank voles and 

field voles from two areas of Southern England (Hathaway et al., 1983b).  L. interrogans 

serovar Muenchen belongs to the serogroup Australis.  The findings of this current study have 

shown that serogroup Australis is still being maintained and in circulation amongst a range of 
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native rodent species, however the work presented in this thesis suggests a different serovar, 

L. interrogans serovar Bratislava, infecting rodents.   

The results of this study indicate that the species of rodent plays a larger role in determining 

infection risk than the location (urban or rural).  This may be due to the habitat in which the 

rodents occupy, with voles preferring the rural and semi-rural locations compared to urban 

sites.  If urban rodents (primarily brown rats) live in conditions that have low levels of standing 

water or no contact with other infected rodents then the chances of them in turn becoming 

reservoir shedders are low.   Bank voles and field voles are likely to habitat the same areas 

however interspecies transmission of bacteria is not common (Begon et al., 1999) 

Cases have been reported from the AHVLA in dogs over recent years from Bratislava and 

Australis infections (L Smith 2012, personal communication).  This study identified both mice 

and voles as viable candidates to maintain these serovars, potentially for prolonged periods as 

positive samples were identified from two sites on more than one occasion.  Due to their 

habitat the potential for transmitting the infection to other animals, particularly on farmland, 

remains a possibility. 

Typically the MAT is considered the standard test for serological studies and is traditionally 

used to describe the serogroup of an infecting strain (Koizumi et al., 2013).  As this study 

focused more on molecular methodology for detecting and determining the serovar, the MAT 

was conducted post-PCR for a comparison between results obtained.  The four serovars 

Australis, Bratislava, Jalna and Lora were included based on their initial reaction to the 

Australis serogroup and previous results from direct PCR sequencing.  From the four, the 

resulting highest titre was deemed the infecting serovar (Faine  S., 1999). 

The potential for MAT cross-reactivity is more prominent early on in infection when 

non-specific IgM antibodies are in circulation.  The MAT results from this study demonstrated 

to an extent the possibility of cross-reactivity between serovars within the same serogroup.  

This reaction outlines one reason why a definitive serovar cannot be stated from a single 

serum sample.  Clinically, a four-fold rising titre from a paired-sample is required to reliably 

state the infecting serogroup (van de Maele et al., 2008).  As a second serum sample was not 

feasible for each rodent in this study, it was only possible to serologically determine the 

infecting serogroup based on single serum samples. 

Knowing the serovars in current circulation not only aids vaccination development and 

efficiency, but it can also have a positive impact on the accuracy of diagnostic testing, 
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particularly those based on serology.  In the UK, the AHVLA run the MAT test on serum 

samples submitted from vet practices, however the vets request which pooled antigens to run 

the tests on.  Canicola and Icterohaemorrhagiae belong in the same pool, whereas the 

Australis serovars are in a different pool altogether.  By not knowing which serovars pose a risk 

to dogs, then the correct antigens may not be requested and a potential positive could be 

missed.  There is a degree of cross-reaction particularly within the acute phase of infection 

(Levett, 2004; Meites et al., 2004), however the effect of such a reaction would be minimised 

with chronic rodent kidney infection as witnessed during the study. 

Results in this study demonstrate that PCR assays on kidney extracts have greater potential to 

identify a Leptospira infection in small rodent reservoirs when compared to serological testing.  

Given the greater bacterial load in the kidneys of infected reservoir hosts, and the low 

antibody responses, this is somewhat expected. 

Histopathology has a low specificity in regards to identifying Leptospira in infected tissue and is 

not routinely used for diagnostic purposes.  Keeping with its fastidious nature, it can be hard to 

stain conventionally; however it is Gram negative.  Silver staining has previously demonstrated 

the ability to visualise individual bacteria in tissue sections (De Brito et al., 1996; Saravanan et 

al., 2000), characterised by their helical shape combined with the hooked ends.   

In this study, a total of eleven samples were tested using both the Warthin-Starry and H&E 

stain.  The stains allowed for visualisation of indicators for inflammation within reservoir hosts.  

Despite there being no direct link, in the absence of other potential signs of infection then it is 

feasible to assume that Leptospira are the causative agent of the inflammation.  The absence 

of inflammation in sections where no bacteria were seen further suggests this to be the case.  

All eleven samples were previously shown to be PCR positive, emphasising that molecular 

testing by PCR is faster, more cost-effective and has a greater sensitivity for detecting the 

presence of an infection.  Another diagnostic advantage to using PCR over histopathology is 

that direct sequencing of PCR amplicons can also identify the infecting Leptospira species 

whereas staining can only determine presence at best.  Relying on staining alone is not 

recommended, although it is useful post-diagnosis, particularly for research, to obtain a visual 

confirmation without the need to culture.   

Any study of this nature that investigates the presence of an infection will look to isolate the 

bacteria in question.  This is of particular interest with Leptospira as the discovery of new 

pathogenic and saprophytic serovars and strains from a wide range of sources is ongoing (Saito 

et al., 2013; Valverde Mde et al., 2013).  Isolation brings its own difficulties, particularly when 
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attempting to isolate from urine or tissue  (Faine  S., 1999).  Due to the size of a rodent, using 

the whole kidney presents the greater chance of a successful culture.  Urine contains inhibitory 

properties that can hamper leptospire growth after only a couple of hours, meaning a 

mid-stream sample is typically taken and inoculated into growth media as soon as possible 

(Rajeev et al., 2010).  This study attempted to isolate bacteria from rodents obtained at a site 

previously identified as having Leptospira positive rodent reservoirs present. 

Potential reasons for the failure to isolate any bacteria may relate to the original bacterial load 

in the kidney tissue.  If the concentration of colonised bacteria was low, then homogenisation 

and dilution steps may have affected their inoculation into the media.  Alongside this, if the 

level of viable cells where low during the initial inoculation, then this would also reduce the 

chances of growth when diluted out into the liquid media.  However, as all dilutions were kept 

and monitored, still with no growth, then it may have been an issue regarding the growth 

media itself or its constituents, such as bovine serum albumin (BSA). 

The canine vaccines currently available in the UK predominantly cover two serogroups, 

Canicola and Icterohaemorrhagiae, which are traditionally perceived as the most common 

infecting serovars in humans and dogs (Blum Dominguez Sdel et al., 2013; Miraglia et al., 

2012).  However in recent times the picture has shifted to differing pathogenic serovars 

(Koizumi et al., 2013).  A novel tetravalent vaccine is now available in Europe that includes the 

additional Leptospira serogroups Australis and Grippotyphosa (Klaasen et al., 2013).   

The inclusion of such serogroups within the vaccine is based on diagnosis from cases observed 

in practices; this study provides evidence that serovars belonging to serogroup Australis are 

being maintained within rodent reservoirs.  The 16S and gyrB sequencing could only prove this 

to the species level; however the MAT also demonstrated that the samples belonged to the 

Australis serogroup, of which both Canicola and Icterohaemorrhagiae do not belong.  Including 

strains from the Australis serogroup has aided to keep the vaccine relevant to current needs.   

The main aim of this study was to establish and identify pathogenic serovars that are being 

maintained within small rodent reservoirs.  These rodents pose a large transmission risk to 

dogs, as well as carrying the zoonotic potential to humans.  Urine carriage of pathogenic 

leptospires can contaminate small bodies of standing water or cause infection through direct 

contact.  This study successfully identified the presence of pathogenic serovars within multiple 

sites in the UK and across multiple rodent species, particularly wood mice.  It was also possible 

to determine that the Australis serogroup is prominent within these animals and serovars 
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belonging to this serogroup have been shown to cause infection in humans and a wide range 

of animals including dogs in the UK. 
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5.1 Introduction 

Leptospira are notoriously fastidious and difficult to culture.  When cultures have been 

successfully established from bacteria isolated from the environment or clinical samples, their 

identification was traditionally relied on the cross agglutination absorption test (CAAT) (Faine  

S., 1999).  More recently, monoclonal antibodies have been introduced for determining the 

serovar of Leptospira strains (Adler and Faine, 1983; Masuzawa et al., 1988) and are now used 

routinely for identifying the species of cultured leptospires (KIT, 2013).  Obtaining cultures of 

any Leptospira species encountered is ideal in regards to research.   

For diagnostic purposes, culturing the bacteria is not routine, and given their slow growth, not 

recommended.  In the UK the widely used microscopic agglutination test (MAT) is routinely 

carried out on serological clinical samples (Forbes et al., 2012).   

The MAT can also be used for epidemiological studies, for example to determine the natural 

transmission pathways of Leptospira (Aviat et al., 2009; Mohamed-Hassan et al., 2010).  

Results from the MAT are open to interpretation however due to the criteria used for 

determining a positive result; judgement of the required 50% agglutination against a black 

background can be somewhat subjective.  This subjectivity potentially undermines 

inter-laboratory comparison of results, although the availability of reference sera and 

independent quality control procedures contributes to countering these concerns.   

The introduction of molecular methods for the direct detection of leptospiral DNA has 

provided a practical alternative to serology for diagnosis and for epidemiological studies. 

Serology can detect a recent Leptospira exposure whereas PCR has the discriminative ability to 

detect both a recent challenge and a chronic infection.  The nomenclature for Leptospira is 

serological based and as a result there is currently a limited congruence between molecular 

and serological identification of serovars and serogroups.  The availability of a discriminative 

molecular technique to specify individual strains would be of great value. 

Multi-locus sequence typing (MLST) has now been applied to explore the population structure 

and diversity of many bacterial taxa (Dingle et al., 2001; Enright et al., 2000; Iredell et al., 

2003).  This approach involves comparative sequence analysis of six or seven different genetic 

loci.  These loci are typically within housekeeping genes, under neutral selection and well 

conserved within a bacterial species.   

To date two MLST schemes have been described for Leptospira species.  The first was 

developed by Ahmed and colleagues in 2006 who proposed a scheme involving loci in rrs2, 
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secY, icdA, adk, lipL32 and lipL41.  The first four of these are housekeeping genes but the latter 

two encode outer membrane proteins (Levett et al., 2005; Lin et al., 2009).  This study revealed 

that rrs2 was highly conserved amongst serovars, whereas secY, icdA, lipL32, lipL41 and adk 

were not.  Limitations of this scheme include a lack of an existing and easily accessible online 

database for analysis of MLST allele profiles discovered in samples from around the world and 

therefore the inability to directly link obtained samples to serovars. 

A second MLST scheme was published in 2007 based on seven loci, all within housekeeping 

genes, none of which were included in the scheme by Ahmed and colleagues (2006) 

(Thaipadungpanit et al., 2007).  This study delineated 12 sequence types (STs) from 101 human 

isolates within Thailand, with one dominating in 76% of isolates (ST-34; corresponding to 

serovar Autumnalis).  It was suggested that possible selective advantages for the survival (and 

host infection) of ST-34 contributed to the low ST diversity within the human isolates. Eight 

isolates were obtained from bandicoot rats, of which seven were associated with ST-34, 

indicating its role as a maintenance host for this ST within the area of North East Thailand. 

Since the publication of the original scheme, a further amendment has been made to allow the 

detection of sequence types across six pathogenic species (Leptospira interrogans, Leptospira 

borgpetersenii, Leptospira kirschneri, Leptospira weilii, Leptospira noguchii and Leptospira 

santarosai).  The fadD locus was excluded from the scheme and in its place caiB was included 

(Boonsilp et al., 2013).  To date there are a total of 201 STs and 338 isolates in the database.  

All allele numbers and STs are currently published and maintained in an online database at 

http://leptospira.mlst.net.   

Ahmed and colleagues (2011) subsequently compared the two MLST schemes.  They identified 

slightly higher nucleotide diversity (p-distance) in the seven locus scheme of 3.60% compared 

to 2.30% of the six locus scheme.  The inclusion of lipL32 and rrs2 within the six locus scheme 

resulted in the 7L scheme providing a better resolution of STs between the two species 

analysed, Leptospira kirschneri and L. interrogans.  As the seven loci scheme has the online 

database established and maintained it was proposed by Ahmed and colleagues, that it should 

be the scheme to be broadly adopted for use in MLST analyses of isolates (Ahmed et al., 2011).  

For these reasons it was chosen for use in this study. 

There have now been several MLST-based  surveys of Leptospira species (Agampodi et al., 

2013; Caimi et al., 2012; Perez and Goarant, 2010; Romero et al., 2011),  including one focused 

on isolates obtained from rodents  (Li et al., 2012). However all of the studies utilise cultured 

isolates or blood samples for analysis.  MLST schemes have been applied to infected material 
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(rather than isolates) for identifying other bacterial species (Arvand et al., 2010; Henriksen et 

al., 2009), including from paraffin fixed tissue (Arunmozhi Balajee et al., 2013). Given the 

fastidious nature of Leptospira, developing a similar approach would be useful for both 

diagnostic and epidemiological purposes. This will be the first study to attempt to sequence 

type infecting serovars from direct DNA extracts of wild rodent kidney tissue.   

This study aimed to use MLST to determine the identities and diversity of leptospiral strains 

infecting wild rodents in the North West of England.   
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5.2 Materials and Methods 

Wild rodent samples for this study were obtained from seven locations as described in Chapter 

Two.  A total of 60µl of genomic DNA was directly extracted from roughly 1g of kidney tissue 

from each rodent using the DNeasy® Blood and Tissue (Qiagen) kit according to manufacturer’s 

instructions, and aliquoted into 10µl amounts and stored at -80oC until required. 

A total of 283 samples were screened for the presence of pathogenic Leptospira DNA, using 

the PCR assay to target the rrs and gyrB genes as described in Chapter Two, table 2.1.  A total 

of 23 samples yielded a PCR product. The identity of the strains from which these amplicons 

were derived was determined by amplification then sequencing of both gene amplicons. 

All 23 positive samples were then used for the MLST study to determine the infecting 

sequence type and which serovars and serogroups they were related to.  Reference strains 

from two different species covered by the scheme (L. interrogans serovar Bratislava & 

L. kirschneri serovar Grippotyphosa) were included as positive controls to ensure the primers 

amplified correctly and the sequencing results were accurate. 

5.2.1 Primers used in the seven loci MLST scheme 

The seven loci explored in this study were the same as those described previously 

(Thaipadungpanit et al., 2007).  Following the publication of the updated scheme, primer 

sequences were amended and the caiB locus was included to comply with the current 

database (Boonsilp et al., 2013).   

The loci in the scheme encode for the following: glmU (UDP-N-acetylglucosamine 

pyrophosphorylase), pntA (NAD(P) transhydrogenase subunit alpha), sucA (2-oxoglutarate 

dehydrogenase decarboxylase component), tpiA (Triosephosphate isomerase), pfkB 

(Ribokinase), mreA (Rod shape-determining protein rodA), fadD (putative long-chain-fatty-

acid-CoA ligase) and caiB (carnitine dehydrataseA). 

Separate PCR assays were performed for each locus in a 50µl reaction volume using ReddyMix 

PCR Master Mix (Thermo Scientific) which contains 1.3 units of ThermoPrime Taq DNA 

polymerase, 150mM Tris-HCl, 40mM (NH4)2SO4, 3mM MgCl2, 0.01% (v/v) of Tween® 20 and 

0.4mM each of dATP, dCTP, dGTP and dTTP with 20pmol of each primer (Eurofins MWG 

Operon) and 2µl of sample DNA.   

The MLST PCR was carried out under the following cycle conditions: Initial denaturing at 95oC 

for 2 minutes, followed by 30 cycles of denaturing at 95oC for 10 seconds, annealing at 46oC for 
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15 seconds and extension at 72oC for 30 seconds with a final extension of 72oC for 7 minutes.  

Figure 5.1 demonstrates expected amplicon sizes for all seven loci used by Boonsilp and 

colleagues (2013). 

 

Figure 5.1. Expected amplicon sizes for each Leptospira MLST locus, as amplified from 

L. kirschneri serovar Grippotyphosa.  Lane 1: ΦX174 ladder, Lanes 2-8: pntA, sucA, pfkB, tpiA, 

mreA, glmU and caiB. 

Reaction products were separated and analysed on a 1% agarose gel containing ethidium 

bromide and Tris-acetate buffer with ΦX174 DNA marker to confirm presence of the correct 

sized amplicon prior to clean-up and sequencing. 
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Gene Primer Sequence (5' - 3') 
Amplicon 

Size 

Number of Alleles 

to date1 

pntA 
Forward TAGGAAARATGAAACCRGGAAC 

621 66 
Reverse AAGAAGCAAGATCCACAAYTAC 

sucA 
Forward TCATTCCACTTYTAGATACGAT 

640 62 
Reverse TCTTTTTTGAATTTTTGACG 

pfkB 
Forward CGGAGAGTTTTATAARAAGGACAT 

588 72 
Reverse AGAACACCCGCCGCAAAACAAT 

tpiA 
Forward TTGCAGGAAACTGGAAAATGAAT  

639 57 
Reverse GTTTTACRGAACCHCCGTAGAGAAT 

mreA 
Forward GGCTCGCTCTYGACGGAAA 

719 55 
Reverse TCCRTAACTCATAAAMGACAAAGG 

glmU 
Forward AGGATAAGGTCGCTGTGGTA 

650 52 
Reverse AGTTTTTTTCCGGAGTTTCT 

fadD2 
Forward AGTATGGCGTATCTTCCTCCTT 

576 20 
Reverse TTCCCACTGTAATTTCTCCTAA 

caiB2 
Forward CAACTTGCGGAYATAGGAGGAG  

650 51 
Reverse ATTATGTTCCCCGTGAYTCG 

Table 5.1. Primers utilised for the seven locus scheme.  1 As of 15/12/2013. 2fadD was replaced with caiB in the updated scheme. 
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5.2.2 Analysis of locus sequences and determining the ST 

All PCR products were purified using the QIAquick® PCR purification kit (Qiagen) according to 

manufacturer’s instructions.  The purified DNA was quantified on a Nano-drop 1000 

spectrophotometer (Thermo Scientific), and diluted to 100µg/µl/100bp.  Sanger sequencing of 

both strands of each amplicon was carried out commercially (Source Bioscience Ltd, 

Nottingham, UK).  

Amplification signal strength of each sequence was checked using ChromasPRO v1.7.3 

(http://technelysium.com.au), as well as the presence of ambiguous background signals.  Poor 

quality reads were re-sequenced to ensure a high quality of data.  Alignments to reference 

alleles and sequence trimming was carried out using MEGA5 (Tamura et al., 2011).  Maximum 

likelihood analysis to infer evolutionary trees of concatenated locus sequences were 

constructed using MEGA5 using the default settings with 1000 bootstrapping re-sampling.  

Variation within all alleles of the same locus were analysed in MEGA5 using the Kimura two 

parameter nucleotide substitution model. 

The trimmed sequence for each locus was then entered into the allele database to identify the 

allele number.  Allelic data for all loci were combined to yield an allelic profile that was 

assigned to a sequence type by comparison with profiles on the MLST database. 

Genetic  diversity between reference sequence types and collected data where analysed using 

UPGMA cluster analysis with START2 (Jolley et al., 2001) to demonstrate similarities between 

the taxa.  eBURST analysis (Feil et al., 2004) was also carried out on the entire Leptospira 

database to determine which clonal complex the STs from this study were associated with. 

Sequences for reference strains were obtained from http://leptospira.mlst.net/ and the NCBI 

Nucleotide database.  Allele data for the previous scheme was obtained from 

http://leptospira.mlst.net/previous_scheme.asp for comparative analysis. 
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5.3 Results 

From the 23 samples included in this study (Table 5.2), STs were obtained from 11. Partial 

allelic profiles were obtained for a further five samples. All samples for which a complete allelic 

profile was obtained were found to belong to ST24 (Table 5.3).   

Sample ID Rodent Species Rural/Semi-Rural/Urban 

WM1 Apodemus sylvaticus Semi-Rural Open Farmland 

WM12 Apodemus sylvaticus Semi-Rural Managed Field 

WM16 Apodemus sylvaticus Rural Managed Woodland 

WM18 Apodemus sylvaticus Rural Managed Woodland 

WM22 Apodemus sylvaticus Rural Managed Woodland 

WM24 Apodemus sylvaticus Rural Managed Woodland 

WM25 Apodemus sylvaticus Semi-Rural Managed Field 

WM31 Apodemus sylvaticus Semi-Rural Managed Field 

WM32 Apodemus sylvaticus Semi-Rural Managed Field 

WM64 Apodemus sylvaticus Semi-Rural Open Farmland 

WM74 Apodemus sylvaticus Semi-Rural Field & Woodland 

WM82 Apodemus sylvaticus Semi-Rural Field & Woodland 

WM95 Apodemus sylvaticus Semi-Rural Field & Woodland 

WM96 Apodemus sylvaticus Semi-Rural Field & Woodland 

WM105 Apodemus sylvaticus Semi-Rural Field & Woodland 

WM106 Apodemus sylvaticus Semi-Rural Field & Woodland 

BV4 Myodes glareolus Rural Managed Woodland 

BV18 Myodes glareolus Semi-Rural Open Farmland 

BV37 Myodes glareolus Semi-Rural Open Farmland 

BV42 Myodes glareolus Semi-Rural Field & Woodland 

BV49 Myodes glareolus Semi-Rural Field & Woodland 

FV2 Microtus agrestis Rural Managed Woodland 

FV6 Microtus agrestis Semi-Rural Open Farmland 

Table 5.2. Habitat and wild rodent species for each PCR positive sample obtained. 

Following eBURST analysis it is demonstrated that ST-24 is a member of clonal complex (CC) 

21.  Clonal complexes define groups of sequence types based on their similarity to a central 

allelic profile.  Within CC21 there are currently only four isolates belonging to two STs (ST-24 & 
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ST-25), with only one SNP differentiating the two.  However to date, neither ST has been 

predicted as the founder of the CC.  This is due to limited to low reported isolate numbers. 

The 11 samples with full allelic profiles, along with the L. interrogans serovar Australis and 

L. kirschneri serovar Grippotyphosa positive controls, were compared to five serovars within 

L. interrogans using UPGMA cluster analysis. It was clear that there are multiple allele 

variations within serovars belonging to the same species and particularly within serovars of the 

same serogroup (Figure 5.2). 

 

Sample 
Allele 

ST1 

glmU pntA sucA fadD2 tpiA pfkB mreA caiB2 

WM12 1 4 2 2 - 5 - 4 24 

WM22 1 4 2 2 1 5 3 4 24 

WM25 1 4 - 2 - 5 - 4 24 

WM31 1 4 2 2 1 5 3 4 24 

WM32 1 4 2 2 1 5 3 - 24 

WM64 1 4 2 2 1 5 3 4 24 

WM74 1 4 2 2 1 5 3 4 24 

WM82 1 4 2 2 1 5 3 4 24 

WM95 1 4 2 2 1 5 3 4 24 

WM96 1 4 2 - 1 5 3 - 24 

WM105 1 4 2 2 1 5 3 4 24 

WM106 1 4 2 2 1 5 3 4 24 

BV4 1 4 2 - 1 5 3 - 24 

BV18 1 4 2 - - 5 3 - 24 

BV49 1 4 2 2 1 5 3 4 24 

FV2 - - - - - 5 - - 24 

FV6 24 4 2 - - 5 - - 24 

Australis 1 4 2 2 1 5 3 4 24 

Grippotyphosa 19 20 13 - 22 31 18 23 110 

Table 5.3. Allele numbers and sequence type (ST) results for the 23 samples found to be PCR 

positive for pathogenic Leptospira.  1 ST determined from at least 4 loci. 2fadD was replaced by 

caiB for the updated scheme; both were included where possible for analysis. 
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Figure 5.2. Dendrogram of the 11 samples with full allelic profiles and positive controls 

compared with a selection of serovars within L. interrogans and L. kirschneri from the NCBI 

database.  Serovars Bratislava and Lora are allocated as ST-24 and ST-25respectively, and are 

within the Australis serogroup. Constructed using UPGMA cluster analysis.   

 

In an attempt to obtain allele numbers for the fadD locus the alternate primers designed by 

Caimi and colleagues were utilised (Fnew: 5'-ACGTGATCTCCCTTATGCCAAGCA-3', 

Rnew: 5’-ATCCAACCGACAGAAGTATGGCGT-3’).  The alternate primers were applied to the 

samples without an allele number for fadD from the original scheme.  Despite this, I was not 

able to obtain any additional allele numbers using the primers. 

For sample FV6 I obtained sequences for four loci.  Interestingly, sequence data from the glmU 

locus shared, at best, only 87% similarity with the glmU sequences in the original MLST 

database.  The overall average variation within the glmU locus, based on the Kimura two 

parameter nucleotide substitution model, was 13.8% across all 52 alleles.  When compared to 

the updated database including seven pathogenic species, the glmU locus was identified as 

allele 24.   

On the basis of its 16S rDNA sequence (Chapter 2), FV6 was initially designated as a potential 

L. borgpetersenii strain.  As there are currently two full genomes published for 

L. borgpetersenii I was able to compare the sample allele sequences I obtained to genes within 

the existing sequences from the NCBI database.  The glmU locus aligned perfectly with the 

L. borgpetersenii strains, however the other three sequenced loci (pntA, sucA and pfkB) aligned 

perfectly with alleles from L. interrogans.   
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A previous report has suggested that comparative sequence analysis of concatenated pntA and 

glmU data allows L. borgpetersenii and L. interrogans strains to be distinguished from one 

another (Perez and Goarant, 2010).  Comparison of these loci from FV6 with those from 

representative strains of both species (Figure 5.3) indicated that FV6 was most 

phylogenetically similar to L. borgpetersenii serovar Hardjo-bovis strain JB197; however there 

was no distinct clustering between the two L. borgpetersenii reference strains included and 

FV6.  Five strains with full published genomes were chosen as representative strains for the 

comparison. 

 

Figure 5.3. Maximum likelihood analysis of concatenated pntA and glmU sequences (969bp) 

for FV6 against five reference strains from the NCBI database (accession numbers: NC_004342, 

NC_005823, NC_008510, NC_008508, NC_017551) and two positive controls used in the study 

(L. interrogans Australis & L. kirschneri Grippotyphosa). 
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5.4 Discussion 

The aim of this study was to investigate the use of a discriminative molecular typing scheme 

for the identification of serovars being maintained within wild rodents in the North West of 

England.  In previous chapter four it was only been able to identify Leptospira within infected 

samples to the species level.  The MLST scheme used in this study has previously been 

recommended as a universal scheme for adoption (Ahmed et al., 2011).    

Of the 23 samples tested, it was only possible to obtain interpretable data for 16.  Eleven of 

which were found to be the same sequence type (ST-24), with the remaining five suggested as 

ST-24 from the loci I was able to obtain an allele number.  The data obtained suggests that ST-

24 was the only infecting ST within the wild rodents at the locations sampled.  The sixteen 

samples with interpretable data were obtained during a two year period across six locations.  

Two locations within a 500m radius (semi-rural open farmland and managed fields) were 

sampled at different time points over the two years, indicating a degree of persistence within 

the populations present.   There are three serovars which are associated with ST-24, Bratislava, 

Muenchen and Jalna, all of which belong to the serogroup Australis.  The closely related ST-25 

(containing just serovar Lora) differs by just one SNP in the pfkB locus highlighting the 

discriminative ability of the scheme to determine the sequence type (and potentially serovar) 

of an infecting strain. 

Not only was ST-24 identified as infecting rodents on a broad spatial and temporal scale within 

the North West, but was also identified within different species of wild rodents.  Wood mice 

made up the majority of the samples identified (n=12) with bank voles contributing the rest 

(n=4).  Unfortunately it was not possible to definitively type any of the field vole samples due 

to the lack of reliable amplification and sequence data for enough loci.  Previously the 

sequence type has been isolated in Germany and the Czech Republic from a hedgehog, a 

yellow-neck mouse and in one case, a human.  This is the first report of this sequence type 

being identified in the UK, and specifically within wild rodents; however the results presented 

here back up previously reported results on the database showing the presence of ST-24 

within small wild rodents.  This leads to suggest a widespread presence of this ST within 

Europe, although other STs have been isolated from European rodents (ST-58, 110, 115, 146 & 

149) according to the online database. 

Strains with an ST-24 genotype have been shown to belong to three different serovars that 

could be the cause of the infection (serovars Bratislava, Muenchen and Jalna).  All belong to 

the same serogroup, are pathogenic and have the ability to cause disease in humans and dogs.  
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The only other previous report of this sequence type was from the Czech Republic (n=2; Jalna 

& Bratislava) and Germany (n=1; Muenchen) with none reported from outside of Europe.  The 

closely related ST-25 has only been reported in Italy.   The serogroup Australis is currently 

represented in the database with 13 serovars amongst 10 different sequence types.  This 

highlights a potential limitation of the database, as samples will only be reported from 

countries that utilise the method and submit data.  Given the complexities surrounding 

Leptospira identification, particularly from molecular techniques, there is a limit to what can 

be concluded from a limited dataset.  Due to this there is a clear need for increased surveying 

and utilisation of MLST to generate greater allele data.  From this the database can be 

expanded for increased effectiveness during future studies. 

For one field vole sample (FV6), sequencing data for four loci were obtained (glmU, pntA, sucA 

and pfkB), three of which showed 100% similarity with alleles belonging to sequence types 

associated with L. interrogans serovars.  However, the glmU locus shared only 87% similarity 

with the alleles within the original database.  Following comparison with the current database 

that incorporates additional species, the sequence was assigned allele number 24.  Allele 24 

for glmU is only present in sequence types associated with L. borgpetersenii.  Despite this 

similarity, the allele numbers for pntA, sucA and pfkB are still associated with L. interrogans.  

Due to this, and the absence of a full profile, it is still not feasible to assign a definitive ST to 

FV6. 

The representation of two species within the allelic profile may indicate a potential infection 

from two individual serovars.  The presence of multiple serovars within a single host has been 

previously documented (Ayanegui-Alcerreca et al., 2007), although it is not frequently 

witnessed.  From the location where the sample was obtained (semi-rural open farmland), 

only one other positive sample was present that was shown to belong to ST-24.  No infection 

from L. borgpetersenii alone was present at the site.  As it was a beef farm, then it is possible 

that the species may be maintained within the herd, as it is a well documented pathogen for 

cattle (Bulach et al., 2006; Murray et al., 2013).   

Another potential reason for the apparent incongruence of the sequence data from different 

loci in sample FV6 may be that the infecting strain belongs to a Leptospira species not 

currently included in the MLST database. Currently the database is restricted to seven 

pathogenic species and does not include Leptospira kmetyi and Leptospira genomospecies 1, 

along with the five intermediate species.    One limitation of adapting the scheme to include 

other species may be the absence of loci used in the scheme from other species.  For example, 
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pfkB, which codes for a ribokinase, is not present on either of the full L. borgpetersenii 

genomes (JB197 and L550) that have been sequenced to date. 

Following concatenated analysis of glmU and pntA, it is possible to suggest that FV6 is most 

closely associated with L. borgpetersenii.  Perez and Goarant included only one 

L. borgpetersenii (strain JB197) with their initial report which may have resulted in the 

apparent diversity, however when L550 was included along with further reference strains then 

it was apparent that L. borgpetersenii did form a separate cluster.  Despite this the two 

concatenated loci showed limited potential beyond identifying the species.  WM22 was shown 

to be associated with serovar Bratislava (Figure 5.1) however when based on just the two loci, 

it was demonstrated to have a 100% homology with serovars Australis and Copenhageni.  This 

emphasises the limitation of specifying a serovar from just pntA and glmU.  Due to the 

conserved nature of the locus within MLST, it is not suitable to identify a species based on this 

concatenation and utilising a different PCR assay is more feasible for a molecular identification 

simply to the species level (Slack et al., 2006). 

It was not possible to amplify all loci for every PCR positive sample obtained.  This issue has 

been demonstrated within other Leptospira MLST studies (Agampodi et al., 2013; Caimi et al., 

2012) which presents one limitation to using direct DNA extracts from tissue.  The technique 

itself relies on DNA being recovered at a sufficient concentration within the portion of tissue 

used for the extraction.  This becomes more apparent within larger animal species as a biopsy 

would sample a smaller percentage of the overall kidney tissue when compared to a sample 

taken from a small rodent.  On top of this there is the risk of losing DNA material during the 

extraction and clean-up, although precautions were taken in an attempt to maximise the total 

DNA output. Nested PCR assays have previously shown an improved sensitivity compared to 

conventional PCR for other bacterial species (Lee et al., 1998).  Introducing a nested assay for 

locus amplification may further improve amplicon identification and also signal data produced 

from sequencing. 

An alternative would be to use urine instead of kidney tissue.  This would potentially allow for 

multiple attempts for isolation and/or extraction from the same animal that is actively 

shedding the bacteria.  This approach would be particularly useful within small rodents where 

kidney material is limited and benefit diagnosis of canines.  Extracted DNA from urine carries 

its own problems however.  Samples are typically taken from mid-stream (Rajeev et al., 2010) 

and must be processed immediately to prevent the breakdown and inhibition of any bacteria 

that may be in there.  Another issue amongst incidental hosts is that a host may only shed 
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pathogenic leptospires intermittently and thus hamper diagnostic capabilities, particularly 

when a sample is only taken from one time point (Tulsiani et al., 2011b).  The difference in 

sensitivity and viability for DNA extracts on urine and kidney tissue has not yet been 

determined for Leptospira however hypothetically the initial bacterial load would be a factor in 

the concentration output. 

Another limitation discovered with this study was the limited availability of sample material 

generated for use.  The DNA extraction produced 60µl of DNA in total.  Due to the size of 

rodent kidneys I was limited to only two extractions per sample which gave a total of 120µl per 

sample.  As each sample required 14µl per MLST PCR for all seven loci, this gave limited 

material for repeated reactions.  Unfortunately due to this, for some samples (WM1, WM16 

and WM18) all available DNA was exhausted before obtaining sufficient sequence data for 

MLST analysis.  This demonstrates the usefulness of obtaining cultures from any samples 

obtained.  With a steady culture being maintained, a larger availability of material would be 

generated to allow for a greater number of repeats and increase the chance of obtaining full 

allele profiles for each sample.  

During this study, the pfkB primers showed to be the most reliable in terms of amplicon 

production following PCR and signal strength from sequencing.  I was able to generate good 

quality sequence data for 18 of the samples and it was the only locus amplified for FV2.  It was 

also the only locus at which ST-24 and ST-25 are different (guanine to adenine at position 319).  

Allele 5 is currently only found in ST-24 to date, however as the database continues to expand 

with increased use of the scheme, it is not possible to definitively state that the sample does 

belong to ST-24. 

In contrast, the fadD primers were found to be the least reliable in terms of amplification and 

sequencing.  During the study it was only possible to obtain allele numbers for 13 samples.  A 

similar situation has been previously reported, with alternative primers suggested for use 

(Caimi et al., 2012).  However, even with testing the alternative fadD primers for this study, 

sequence data for the samples without the fadD allele could not be obtained despite multiple 

attempts.  For three samples, data could be generated for all alleles apart from fadD, with that 

14 full allele profiles would have been established out of the 23 samples.  

The study presented here is the first to apply MLST to DNA extracted directly from infected 

kidney tissue to characterise the infecting leptospiral strains within wild rodents. All previous 

studies have used the technique on cultures that have been isolated primarily from urine, 

blood and tissue.  One study in 2012 demonstrated the ability to apply the same Leptospira 
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MLST to DNA extracted from human blood samples during an outbreak in Sri Lanka (Agampodi 

et al., 2013).  They were only able to produce allele numbers for 12 out of a possible 58 

qPCR-positive samples (20.69%), whereas good quality sequence data was obtained for 16 of 

23 PCR positive samples (69.57%).  This did include repeated sequencing for some loci due to 

problems arising with either inefficient primer binding or low signal quality, indicating a low 

DNA concentration within the PCR reaction.   

The benefit of having the ability to applying the technique to direct tissue extracts will allow 

for a rapid and accurate method for identifying the serovar of an infected human or animal.  

Culturing of isolates requires precise media constituents and a potential larger period of time.  

Even after a successful culture, further work is required to identify the serovar.  MLST on direct 

tissue extracts presents an accurate and highly discriminative methodology, which can 

produce results to be easily shared between labs utilising the scheme.  In this study the 

technique was applied to kidney tissue, however as Leptospira also has the potential to 

manifest as a chronic infection in the liver and lungs, then it is feasible that the technique 

could also be applied to other organs.   

Other potential molecular methods for obtaining serovar identifications have previously been 

investigated and where considered for this study.  Two main areas are macro-restriction 

pulsed-field gel electrophoresis (PFGE) (Galloway and Levett, 2010) and multiple locus variable 

number tandem repeat analysis (MLVA) (Pavan et al., 2011; Salaun et al., 2006).  Both offer 

alternative protocols to identify the serovar of a strain; however PFGE require maintained 

cultures which I was not able to successfully produce in this study. 

PFGE was first described to have the ability to identify infecting Leptospira strains in 1992 

(Herrmann et al., 1992).  Since then, a reference library has been developed over several 

studies to include over 200 strains (Galloway and Levett, 2008, 2010; Naigowit et al., 2007; 

Romero et al., 2009).  For this study, due to a lack of viable cultures from the samples it wasn’t 

a feasible option to carry out PFGE and instead MLST was the focus for the study.  

MLVA has been demonstrated to give an accurate serovar ID based on the amplicon size from 

five different loci (Salaun et al., 2006).  However, as demonstrated in an earlier chapter it was 

not possible to produce good quality sequence reads from my positive controls.  Due to this 

the protocol was not applied to the samples obtained.  In contrast to MLST, MLVA can also 

identify serovars belonging to the L. borgpetersenii species however due care must be taken 

when interpreting the amplicon for the correct repeat numbers. 



109 
Chapter Five  MLST Chapter 

For this study, MLST was investigated for its ability to identify the serovars of the strains found 

to be infecting wild rodents in the North West of England.  Further to this, the potential of 

direct DNA extracts from kidney tissue was demonstrated with the scheme as before now, it 

had not been explored.  An increase in the viability of MLST for tissue in comparison to 

previously reported blood samples was also presented in this study.  Identification of a unique 

sequence type (ST-24) that has been infecting a range of rodent species (wood mice, bank 

voles and potentially field voles) across multiple sites including farmland and woodland was 

carried out successfully.  This sequence type includes serovars Bratislava, Jalna and Muenchen 

which are pathogenic and have the ability to infect and cause disease in humans, dogs and 

other animal species. 
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6.1 Introduction 

Next generation sequencing (NGS) has revolutionised the field of genomic bacterial research 

and allowed the full genomes for a range of pathogenic spirochetes to be sequenced (Bellgard 

et al., 2009; Fraser et al., 1997; Fraser et al., 1998).  Following the first full genome sequencing 

of a free-living organism, Haemophilus influenza in 1995 (Fleischmann et al., 1995), 

technological advancements in the field have allowed cheaper and a faster turn-around of 

sequence data for bacterial species. This has aided the identification of metabolite pathways, 

infection mechanisms and even the identification of individual virulence factors (Ricaldi et al., 

2012).   

Prior to the advent of NGS, the genome sizes of Leptospira species were estimated using pulse-

field gel electrophoresis (PFGE). Using this approach, the genome of (pathogenic) 

L. interrogans was estimated to be 3.1Mb whereas the genome of (saprophytic) L. biflexa was 

estimated to be 3.5Mb (Taylor et al., 1991).  Others concurrently estimated L. interrogans to 

possess a circular chromosome and a plasmid with a combined size of 4.75Mb using contour-

clamped homogenous electric field gel electrophoresis (Zuerner, 1991).  Subsequently, 

following comparison of two L. interrogans serovars (Icterohaemorrhagiae and Pomona) it was 

reported that both replicons were suggested to act as chromosomes (Zuerner et al., 1993). 

To date, the whole genomes of seven Leptospira strains have been successfully sequenced and 

published.  These include five strains belonging to two pathogenic species (L. interrogans and 

L. borgpetersenii) and two members of the saprophytic species L. biflexa (Bulach et al., 2006; 

Nascimento et al., 2004; Picardeau et al., 2008; Ren et al., 2003). 

All closed Leptospira genomes consist of two chromosomes, with an additional plasmid 

(plasmid 74) in L. biflexa (Picardeau et al., 2008; Ren et al., 2003), and a total size of 

approximately 4.3Mb (range 3.88-4.71Mb).  These studies suggest that, typically, chromosome 

I is 4Mb, chromosome II is 300kb and plasmid p74 is 30kb in size.   

The GC skew demonstrates the bias for bases Guanine (G) and Cytosine (C) in either the 

leading or lagging DNA strand and can also be used to indicate the point of DNA replication 

origin.  The total GC skew across both chromosomes for all Leptospira strains is between 35% 

and 40.2%.  Interestingly, L. borgpetersenii serovar Hardjo-bovis strain JB197 has the smallest 

genome, but the greatest GC skew, suggesting a possible bias for choosing guanine over 

cytosine in the third codon position (Tillier and Collins, 2000).   
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Sequencing of L. biflexa allowed Picardeau and colleagues (2008) to suggest a ‘core’ leptospiral 

genome of 2,052 genes, comprising of essential housekeeping functions.  Further to this, due 

to the high gene orthologue count between each genome, the authors hypothesised that 

lateral gene transfer had little effect on the overall gene composition. 

As well as there being considerable difference in genome size and composition between 

pathogenic serovars, marked variation between attenuated and wild-type strains of the same 

serovar has also been observed. Comparison of the attenuated L. interrogans serovar Lai strain 

IPAV with the wild-type strain 56601 revealed 387 single nucleotide polymorphisms (SNPs) 

affecting 101 genes (Zhong et al., 2011).  Within the 101 genes, only 44 were identified as 

encoding for a functional protein, potentially highlighting the abundance of hypothetical 

proteins (and variations within them) that are yet to be categorised.  Furthermore, 

transcriptomic studies demonstrated a difference in up-regulated genes was observed when 

grown in EMJH.  A total of 149 proteins were up-regulated in IPAV, compared to 187 in 56601.  

Those up-regulated in strain 56601 were typically related to DNA replication/repair, whereas 

those up-regulated in IPAV were involved with energy production/conversion and lipid 

metabolism. The variations witnessed offer an insight into how strain attenuation can affect 

functional genes within pathogenic serovars.  With 44 functional proteins having nucleotide 

variations following attenuation, the study further suggests a number of genes that potentially 

play a role within pathogenesis. 

The variation in the antigenic properties of outer membrane constituents is used as the basis 

for the serological nomenclature that is widely applied to leptospires.  Different serovars also 

demonstrate an affinity for infecting particular reservoir hosts (e.g. Icterohaemorrhagiae 

within rodents), which may be a result of differential antigenic expression between serovars.  

Alternatively, as strains adapt to survive within local environments (or hosts), they diverge and 

antigenic differences emerge as a result.  Identifying the underlying genetic variations within 

antigenic differences may go some way to linking the serological classification with genetic 

identification.  

Comparison of available genomes (Bulach et al., 2006; Picardeau et al., 2008) has revealed 

marked variation.  One striking difference between the two pathogenic species is the level of 

constriction in genome size within L. borgpetersenii.  This reduction possibly presents evidence 

for evolution into an exclusively parasitic organism, as metabolic pathways associated with 

environmental survival may become obsolete (Bulach et al., 2006).  As a result it is feasible to 

consider a similar situation within the other pathogenic species not investigated to date.  
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L. borgpetersenii has long been considered an exclusive pathogen for cattle (Bomfim et al., 

2008) and sequencing of its genome would help identify the extent to which this species has 

adapted to a parasitic lifestyle, exploiting cattle as a reservoir host.   

Genetic diversity within the Leptospira genus has previously been explored on an extensive 

panel of strains using a wide variety of molecular techniques.  Conventional PCR assays have 

been developed to target a range of genes (Ahmed et al., 2012; Gravekamp et al., 1993; Slack 

et al., 2006), while multi-locus sequence typing (MLST), PFGE and variable number tandem 

repeat (VNTR) analysis have also been used (Galloway and Levett, 2010; Koizumi et al., 2013; 

Pavan et al., 2011; Zuerner and Alt, 2009). 

One complication experienced to date is correlating molecular results based on nucleotide 

sequences with antigen recognition from serological tests.  As traditional nomenclature is 

based on antibody reaction to surface antigens, there have been difficulties in identifying a 

molecular scheme to discriminate between every identified serovar to date.  While MLST & 

VNTR have come close, there are instances with both approaches where serovars have not 

been distinguished. For example, L. interrogans serovars Icterohaemorrhagiae and 

Copenhageni share the same repeat numbers for VNTR, and within a number of MLST 

sequence types (STs) there are multiple strains sharing the same allelic profile.  By having the 

full genome of multiple Leptospira isolates at our disposal, future targets can be identified to 

allow for a greater congruence between molecular and serological techniques. 

Definitive factors contributing to virulence have somewhat eluded researchers with regards to 

Leptospira.  Arising from the multiple PCR assays developed in recent years that target 

pathogenic strains, there have been several gene targets suggested that contribute to 

infection and colonisation. However, to date only seven proteins have been shown definitively 

to be virulence factors within Leptospira (Eshghi et al., 2012; Lambert et al., 2012; Liao et al., 

2009; Lourdault et al., 2011; Murray et al., 2009b; Zhang et al., 2012).   

An OmpA-family lipoprotein (loa22) was the first protein in Leptospira to be characterised that 

complied with the molecular Koch’s postulates (Falkow, 1988; Ristow et al., 2007).  The 

insertion of the Himar1 transposon into loa22 attenuated the pathogenic strain L. interrogans 

Lai 56601 within guinea pig and hamster models, including an absence of an inflammatory 

response compared to the wild type.  Complemented strains restored loa22 expression 

following re-isolation from the guinea pig model.  Comparison of genes encoding for functional 

proteins across pathogenic, intermediate and saprophytic strains could highlight further 
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potential factors.  Typically, functional proteins present solely in pathogenic strains are 

consistent with a role in pathogenesis and would warrant further investigation.  

As mentioned previously, L. borgpetersenii possesses a reduced genome that is thought to 

have resulted from its adoption of a parasitic lifestyle.  Due to this, it is reasonable to assume 

that similar processes have shaped the genomes of other leptospiral species.  This in itself may 

result in proteins becoming essential for the infection and colonisation in specific hosts.  Host 

specific virulence factors have been demonstrated with other bacteria (Rashid et al., 2006; 

Sarkar et al., 2006; Uehlinger et al., 2009).  Given the reported presence of particular 

Leptospira serovars within certain hosts, it may be practical to consider host specific virulence 

factors within other pathogenic strains. 

Recombination events between pathogenic and saprophytic strains have been previously 

reported.  Thirteen genes within plasmid p74 have orthologues on chromosome I in 

pathogenic strains, with suggestions of p74 obtaining such genes through recombination 

(Picardeau et al., 2008).  Orthologues discovered include several hypothetical proteins and 

exodeoxyribonuclease V sub-units. 

SNPs are single base changes for a query strain when compared to a reference genome 

(Brookes, 1999; Collins et al., 1998).  A SNP can be classed as synonymous (also referred to as 

silent) with no change in the codon, or non-synonymous that can change the corresponding 

codon.  Non-synonymous SNPs can be classed as missense (changes the codon) or nonsense 

(introduces a stop codon).  A further downstream effect is seen with non-synonymous SNPs 

resulting in changes in the composition of proteins that may affect their function.     

Analysing SNPs within a query genome can potentially demonstrate regions of high variability.  

Previous work has looked into their ability to identify Escherichia coli strains involved with an 

outbreak, and determined their divergence from a comparator strain (Sherry et al., 2013).  The 

discovery of two separate Enterococcus faecium sub-populations was also achieved through 

genome analysis, including SNP investigation, of 21 strains (Galloway-Pena et al., 2012). 

For a genus such as Leptospira, for which nomenclature is based on antigen recognition, high 

variability regions may contribute towards the difference in serovars and host specificity.  As a 

knock on from identifying these regions, potential virulence traits may be observed and 

investigated (Alix et al., 2006; Manning et al., 2008).  Having a wider panel of sequenced 

genomes available can aid in allowing a greater comparison to be drawn from parasitic strains 

and those adapted to exploit environmental niches.  As data are currently limited for 
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Leptospira in regards to virulence, research in this area is crucial to gain a better understanding 

of infection mechanisms and developing a suitable intervention. 

The Illumina MiSeq (Illumina) sequencer allows for a fast turn-around of sequence data.  The 

sequencing machine itself uses sequencing by synthesis (SBS) technology (Bentley et al., 2008; 

Liu et al., 2012).  The basis of SBS was developed by Dr Shankar Balasubramanian & Dr David 

Klenerman as an alternative approach to Sanger sequencing.  In brief, the sequencing concept 

uses modified dNTPs that each include a unique fluorescent labelled terminator to block 

further nucleotide polymerisation (Fuller et al., 2009).  The fluorescence from the terminator is 

then imaged and the terminator is cleaved, allowing the addition of the next dNTP along the 

DNA fragment.  This process continues until each fragment has been fully complemented.  This 

method produces high quality results as the DNA fragments are bound to a solid surface and 

amplified prior to dNTP addition.  Typically read sizes from the MiSeq platform are up to 

250bp. 

As a contrast to the HiSeq 2000 (also produced by Illumina), the MiSeq platform is better 

suited to a low throughput environment while still producing a high yield per run compared to 

similar sequencers on the market (Glenn, 2011; Loman et al., 2012; Quail et al., 2012).  

Alongside this, the MiSeq platform returns raw data with a far lower error rate on average, 

reported to be below 0.4%, compared with up to 13% for other platforms (Quail et al., 2012). 

Ion Torrent sequencing has demonstrated a greater accuracy for calling SNPs, however MiSeq 

has a lower rate of false calls, meaning potentially fewer errors in read output.  Alongside this, 

MiSeq was able to call a greater percentage of true SNPs when compared to the HiSeq 

platform.  As the average GC content for Leptospira is around 35%, consideration of bias would 

be need to be considered during the sequencing process.  A similar situation is seen with the 

AT rich genome (GC content under 20%) of Plasmodium falciparum (Gardner, 2001; Quail et 

al., 2012).  A disadvantage of MiSeq is the shorter read length (up to 250bp), meaning de novo 

constructs are limited.  However the platform produces paired-end reads which provide a 

greater level of information compared to single reads (e.g. 2x75bp paired compared to 

1x150bp single) and therefore improves the usefulness for using MiSeq reads for de novo 

constructions (Morozova and Marra, 2008). 

Given the lower run costs and greater yield from the same quantity of sample DNA, the MiSeq 

platform was utilised for this study.  As it was also suitable for deriving SNP data for all strains 

sequenced during the study, the greater calling accuracy is of benefit. 
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The aim of this study was to obtain the sequence data for Leptospira strains not previously 

analysed.  This data could then be mapped onto existing reference genomes to analyse 

variations between different strains.  A broad range of species, including pathogenic, 

intermediate and saprophytic, were included to demonstrate the high level of variation within 

the genus.  Alongside SNP variations, functional gene presence within de novo constructs was 

compared for differences potentially arising from either host specificity or environmental 

stresses. 
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6.2 Methods 

In this study, ten Leptospira strains were chosen for full genome sequencing.  All ten strains 

were acquired courtesy of the AHVLA (Addlestone, UK), the details of which are in table 6.1. 

 

Species Serovar Serogroup Strain Origin Status 

L. alexanderi Manzhuang Hebdomadis A23 Human Pathogenic 

L. borgpetersenii Hardjo-Bovis Sejroe Sponslee Cattle Pathogenic 

L. interrogans Icterohaemorrhagiae Icterohaemorrhagiae RGA Human Pathogenic 

L. interrogans Bratislava Australis Jez Bratislava Hedgehog Pathogenic 

L. interrogans Pomona Pomona Pomona Human Pathogenic 

L. interrogans Prajitno Sejroe Hardjo Prajitno Human Pathogenic 

L. kirschneri Grippotyphosa Grippotyphosa Moskva V Human Pathogenic 

L. weilii Mengding Celledoni M606 Human Pathogenic 

L. fainei Hurstbridge Hurstbridge BUT 6T Unknown Intermediate 

L. biflexa Andamana Andaman CH11 Unknown Saprophytic 

Table 6.1. Ten strains sequenced for this study, together with source of isolation and infectious 

status. 

 

All strains were kept at as low a passage as possible.  Pathogenic strains were chosen based on 

their ability to infect either humans or canines, with intermediate and saprophytic species also 

included to ensure coverage of all pathogenicity types within the genus.  The recently 

discovered genomospecies L. alexanderi was also included. 

6.2.1 Extraction of DNA from all ten strains 

All isolates were grown in liquid EMJH for seven days prior to DNA extraction.  A total 5ml of 

live culture was centrifuged at 16,000g for 5 minutes and DNA extraction was carried out on 

the resulting pellet once the supernatant had been removed. 

Initial attempts to extract DNA from isolates were made using phenol-chloroform.  A total of 

3ml of culture for each strain was centrifuged at 13,000rpm for two minutes.  The resulting 

pellet was re-suspended in 467μl Tris-EDTA and mixed with 30μl 10% SDS and 20mg/ml 

proteinase K.  The samples were incubated at 37oC for 1 hour and 500μl of phenol-chloroform-

isoamilic acid (25:24:1) was added.  The mixture was homogenised and centrifuged at 
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14,000rpm for 5 minutes.  After transferring the supernatant, 500μl of chloroform-isoamilic 

acid (24:1) was added, mixed and centrifuged at 14,000rpm for another 5 minutes.  The 

supernatant was transferred to a new tube and 1/10 volume Sodium Acetate (3M) was 

included along with 0.6 volume isopropanol.  This was then mixed and stored at -20oC for 1 

hour followed by centrifugation at 14,000rpm for 5 minutes.  The supernatant was then 

removed and washed by adding 1ml 70% ethanol to the pellet and centrifuged again for 5 

minutes.  The excess was removed and allowed to air dry, followed by another wash with 1ml 

100% ethanol.  The excess ethanol was removed and the pellet re-suspended within 50μl of 

sterile water. 

However, using this approach, insufficient DNA for sequencing (a minimum of 50ng/µl is 

required for the MiSeq platform) was obtained. Thus, a commercial Wizard Genomic DNA Kit 

(Promega, Southampton, UK) was subsequently used according to manufacturer’s instructions 

with the following amendments; to increase the recovery of high concentration DNA, steps for 

incubation on ice and subsequent centrifugation were increased to 30 minutes each. 

Following extraction and an initial estimate of concentration using the Nano-drop 1000, the 

purity and amount of DNA was assessed using the Quant-iT™ PicoGreen® dsDNA Assay Kit 

(Invitrogen) according to manufacturer’s instructions.   

6.2.2 Sequencing of strains 

Leptospiral genomes were sequenced at the Centre for Genomic Research (CGR) (Liverpool, 

UK) using the Illumina MiSeq platform (Illumina, UK).  Briefly, DNA libraries were prepared for 

each of the ten samples.  The purified sample DNA is fragmented, and both 5’ and 3’ 

overhangs are converted to blunt ends.  Adapter sequences are then ligated to each fragment, 

purified and amplified using PCR to establish a library for each sample.  Following denaturation 

with NaOH, samples were diluted in hybridisation buffer.  Each library was then loaded onto 

MiSeq reagent cartridges according to manufacturer’s instructions.  Libraries were then 

sequenced in a paired end run using primers for adapters at both ends on each fragment (150 

cycles) to obtain raw data in the Fastq file format. 

Following the successful sequencing of each strain, Dr Roy Chaudhuri at the CGR carried out 

initial construction and analysis of sequencing files.  Adapter sequences from the raw data 

were removed using Cutadapt (Martin, 2011) and data was further trimmed using Sickle 

(https://github.com/najoshi/sickle) to remove low quality fragment reads. The trimmed reads 

were assembled into contig predictions, and subsequently into draft genomes using Velvet.  
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6.2.3 De novo construction and analysis of draft genomes 

Gene annotation on de novo constructs was carried out using Prokka (Prokka: Prokaryotic 

Genome Annotation System - http://vicbioinformatics.com/).   

Coding sequences (CDSs) for each draft genomes were analysed in Artemis (Carver et al., 2012) 

and BLAST analysis was carried out on genes not originally identified by Prokka to confirm 

correct annotation.  DNAPlotter (Carver et al., 2009) was used to create circular maps for each 

draft genome (Appendix 3).  Locations of tRNA, mRNA, CDSs and GC skew were also mapped 

for each strain. 

6.2.4 Identification of the pan- and core-genomes within Leptospira 

Using CMG-biotools, the pan- and core-genome was calculated using BLAST analysis for 

individual proteins (Vesth et al., 2013).  A cut-off of 50% identity and 50% coverage was used 

to identify gene homologues within all strains.  Matching proteins within the same genome 

were considered as part of the same protein family.  The core was determined from the 

presence of similar genes across all strains. 

6.2.5 Identification and comparison of functional roles 

Genbank files for each draft genome were uploaded for RAST annotation (Aziz et al., 2008).  

This allowed for variations in functional pathways possessed by each strain examined to be 

determined. 

6.2.6 Phylogenetic comparison of gene orthologues 

Alignment of nucleotide sequences for orthologues was carried out using MEGA5 (Tamura et 

al., 2011).  Maximum likelihood analysis was used to infer evolutionary trees of concatenated 

locus sequences were constructed using MEGA5 using the default settings with 1000 bootstrap 

re-samplings.  

6.2.7 Variant identification within sequenced strains 

Bowtie2 analysis (Langmead and Salzberg, 2012) initially identified which reference genomes 

shared the most synteny with those of the sequenced strains. SNP variations for mapped reads 

to reference genomes were identified using GATK (DePristo et al., 2011).  SNPeff software 

(Cingolani et al., 2012) identified SNP details such as base/codon changes, synonymous and 

non-synonymous SNPs and SNP density.  SNP positions in comparison to the genome, along 

with density were visualised using Circos (Krzywinski et al., 2009).  
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6.3 Results 

6.3.1 Mapping of sequenced strains and comparative analysis 

All ten strains were successfully sequenced using the Illumina MiSeq platform.  Reads were 

mapped to existing genomes within the NCBI database using Bowtie2 to identify similarities 

within the read coverage (Table 6.2).  Pathogenic strains demonstrated very little similarity 

with saprophytic reference strains. 

Sequenced Strain Reference Strain % Match1
  

L. interrogans Icterohaemorrhagiae Leptospira interrogans serovar Copenhageni 93.85 

Pathogenic Leptospira interrogans serovar  Lai IPAV 91.45 

  Leptospira interrogans serovar Lai 91.19 

L. interrogans Bratislava Leptospira interrogans serovar Lai IPAV 91.38 

Pathogenic Leptospira interrogans serovar Copenhageni 91.29 

  Leptospira interrogans serovar Lai 91.05 

L. interrogans Pomona Leptospira interrogans serovar Copenhageni 89.08 

Pathogenic Leptospira interrogans serovar Lai IPAV 88.8 

  Leptospira interrogans serovar Lai 88.47 

L. interrogans Prajitno Leptospira interrogans serovar Copenhageni 85.83 

Pathogenic Leptospira interrogans serovar Lai IPAV 85.76 

  Leptospira interrogans serovar Lai 85.41 

L. alexanderi Manzhuang Leptospira borgpetersenii serovar Hardjo-bovis L550 50.93 

Pathogenic Leptospira borgpetersenii serovar Hardjo-bovis JB197 50.46 

  Leptospira interrogans serovar Copenhageni 2.22 

L. borgpetersenii Hardjo-Bovis Leptospira interrogans serovar Copenhageni 87.5 

Pathogenic Leptospira interrogans serovar Lai IPAV 87.45 

  Leptospira interrogans serovar Lai 87.11 

L. kirschneri Grippotyphosa Leptospira interrogans serovar Copenhageni 55.01 

Pathogenic Leptospira interrogans serovar Lai IPAV 54.98 

  Leptospira interrogans serovar Lai 54.81 

L. weilii Mengding Leptospira borgpetersenii serovar Hardjo-bovis L550 41.52 

Pathogenic Leptospira borgpetersenii serovar Hardjo-bovis JB197 41.11 

  Leptospira interrogans serovar Lai IPAV 2.44 

L. fainei Hurstbridge Leptospira interrogans serovar Copenhageni 0.26 

Intermediate Leptospira interrogans serovar Lai IPAV 0.25 

  Leptospira interrogans serovar Lai 0.25 

L. biflexa Andamana Leptospira biflexa serovar Patoc Patoc 1 Paris 88.85 

Saprophytic Leptospira interrogans serovar Copenhageni 0.23 

  Leptospira interrogans serovar Lai IPAV 0.23 

Table 6.2. Bowtie2 mapping identifying sequence similarity of all ten sequenced strains against 

available reference strains within Genbank.  1The greatest three reference strain matches are 

shown. 
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Following identification of similar genomes, GATK variant detection was carried out on the six 

strains showing >80% mapped sequence similarity with a reference genome.  The results from 

GATK detection were analysed using SNPeff to produce a range of SNP analysis data (Table 

6.3).   

L. biflexa serovar Andamana demonstrated the greatest amount of variation from the 

compared reference genome (L. biflexa serovar Patoc) with a total of 55,303 SNPs whereas 

L. interrogans serovar Icterohaemorrhagiae had the fewest with 686 (mapped to L. interrogans 

serovar Copenhageni).  This equated to L. interrogans serovar Icterohaemorrhagiae also having 

the lowest change rate indicating a closer phylogenetic relation to the reference strain 

compared to the other five strains tested. 

L interrogans serovar Icterohaemorrhagiae demonstrated the highest percentage of nonsense 

(3.728%) and missense (62.305%) SNPs.   All other pathogenic strains maintained a similar 

ratio, with the only saprophytic strain, L. biflexa, having a greater proportion of silent SNPs. 

Figures 6.1-6.7 demonstrate the sites where SNPs occur between the five sequenced strains 

and reference genomes.  All strains had relatively even coverage across both genomes (and 

plasmid p74 for L. biflexa).  It is clear that several sites on L. interrogans serovar Copenhageni 

chromosome I are conserved within several other pathogenic species given the minimal SNP 

disruption.  Figures 6.2,  6.4 and 6.6 suggests a lower variation within chromosome II for all 

mapped strains, according to the summary in table 6.3 it is confirmed to have a lower rate of 

variation in four of the five strains sequenced. Serovar Icterohaemorrhagiae demonstrates a 

very high congruence for chromosome II, with only seven SNPs and a change rate of 1 in every 

17, 509 bases. 

Despite the large level of variants within chromosome I and chromosome II of the L. biflexa 

strain, there is a large section of plasmid p74 that contains no SNPs. 
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Sequenced Strain 

L. borgpetersenii 

Hardjo-Bovis 

L. interrogans 

Bratislava 

L. interrogans 

Icterohaemorrhagiae 

L. interrogans 

Pomona 

L. interrogans 

Prajitno 

L. biflexa 

Andamana 

Comparison Strain 
L. interrogans 

Copenhageni 
L. interrogans Lai 

L. interrogans 

Copenhageni 

L. interrogans 

Copenhageni 

L. interrogans 

Copenhageni 
L. biflexa Patoc 

Total Variants   49,828 30,707 686 48,985 26,569 55,303 

Change Rate 1 every 92 bases 1 every 153 bases 1 every 6745 bases 1 every 94 bases 1 every 174 bases 1 every 71 bases 

Chromosome Variants               

I 46,304 28,497 666 45,534 24,878 49,788 

Change Rate 1 every 92 bases 1 every 152 bases 1 every 6422 bases 1 every 93 bases 1 every 171 bases 1 every 72 bases 

II 3,524 2,210 20 3,451 1,691 4,168 

Change Rate 1 every 99 bases 1 every 162 bases 1 every 17509 bases 1 every 101 bases 1 every 207 bases 1 every 66 bases 

Plasmid 74 N/A N/A N/A N/A N/A 1,347 

Change Rate N/A N/A N/A N/A N/A 1 every 55 bases 

Change Type               

Homozygous 44,186 26,167 129 43,880 22,274 54,004 

Heterozygous 5,642 4,540 557 5,105 4,295 1,299 

Functional Class Effect   
 

          

Missense (%) 8,933 (31.493) 5,529 (32.697) 200 (62.305) 8,845 (31.602) 4,936 (33.679) 11,597 (23.009) 

Nonsense (%) 127 (0.448) 95 (0.562) 12 (3.728) 145 (0.518) 95 (0.649) 133 (0.264) 

Silent (%) 19,305 (68.059) 11,286 (66.742) 109 (33.956) 18,999 (67.88) 9,617 (65.654) 38,673 (76.728) 

Missense/Silent Ratio 0.4627 0.4899 1.8349 0.4656 0.5133 0.2999 

    Table 6.3. Summary of GATK variation detection for each strain when compared against the closest matching reference genome.   
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Figure 6.1. Circos diagram indicating SNP positions for four of the strains sequenced in this 

study mapped against the reference strain L. interrogans Copenhageni str Fiocruz L1-130 

(NC_005823).  CI: Chromosome 1 (4,277,158bp) Outer track: Reference strain (nucleotide 

position given in Mb). Track 2: SNP locations for L. borgpetersenii Hardjo-bovis.  Track 4: SNP 

locations for L. interrogans Pomona.  Track 6: SNP locations for L. interrogans Prajitno.  Track 

8: SNP locations for L. interrogans Icterohaemorrhagiae.  Tracks 3, 5, 7 & 9: Histogram 

detailing relative SNP density (100kb windows) for each sequenced strain.  Coloured lines 

indicate synonymous SNPs, Black lines indicate non-synonymous SNPs. 
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Figure 6.2. Circos diagram indicating SNP positions for four of the strains sequenced in this 

study mapped against the reference strain L. interrogans Copenhageni str Fiocruz L1-130 

(NC_005823).  CII: Chromosome 2 (350,181bp).  Outer track: Reference strain (nucleotide 

position given in Mb). Track 2: SNP locations for L. borgpetersenii Hardjo-bovis.  Track 4: SNP 

locations for L. interrogans Pomona.  Track 6: SNP locations for L. interrogans Prajitno.  Track 

8: SNP locations for L. interrogans Icterohaemorrhagiae.  Tracks 3, 5, 7 & 9: Histogram 

detailing relative SNP density (10kb windows) for each sequenced strain.  Coloured lines 

indicate synonymous SNPs, Black lines indicate non-synonymous SNPs. 
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Figure 6.3. Circos diagram indicating SNP positions for L. interrogans Bratislava mapped 

against the reference strain L. interrogans Lai IPAV (NC_017551).  CI: Chromosome 1 

(4,349,158bp).  Outer track: Reference strain (nucleotide position given in Mb). Track 2: SNP 

locations for L. interrogans Bratislava.  Track 3: Histogram detailing relative SNP density (100kb 

windows).  Coloured lines indicate synonymous SNPs, Black lines indicate non-synonymous 

SNPs. 
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Figure 6.4. Circos diagram indicating SNP positions for L. interrogans Bratislava mapped 

against the reference strain L. interrogans Lai IPAV (NC_017551).  CII: Chromosome 2 

(359,372bp).  Outer track: Reference strain (nucleotide position given in Mb). Track 2: SNP 

locations for L. interrogans Bratislava.  Track 3: Histogram detailing relative SNP density (10kb 

windows).  Coloured lines indicate synonymous SNPs, Black lines indicate non-synonymous 

SNPs. 
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Figure 6.5. Circos diagram indicating SNP positions for L. biflexa Andamana mapped against 

the reference strain L. biflexa Patoc strain Patoc 1 (Paris) (NC_010602).  CI: Chromosome 1 

(3,599,677bp).  Outer track: Reference strain (nucleotide position given in Mb). Track 2: SNP 

locations for L. biflexa Andamana.  Track 3: Histogram detailing relative SNP density (100kb 

windows).  Coloured lines indicate synonymous SNPs, Black lines indicate non-synonymous 

SNPs. 
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Figure 6.6. Circos diagram indicating SNP positions for L. biflexa Andamana mapped against 

the reference strain L. biflexa Patoc strain Patoc 1 (Paris) (NC_010602).  CII: Chromosome 2 

(277,655bp).  Outer track: Reference strain (nucleotide position given in Mb). Track 2: SNP 

locations for L. biflexa Andamana.  Track 3: Histogram detailing relative SNP density (1kb 

windows).  Coloured lines indicate synonymous SNPs, Black lines indicate non-synonymous 

SNPs. 
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Figure 6.7. Circos diagram indicating SNP positions for L. biflexa Andamana mapped against 

the reference strain L. biflexa Patoc strain Patoc 1 (Paris) (NC_010602).  Plasmid p74 

(74,116bp).  Outer track: Reference strain (nucleotide position given in Mb). Track 2: SNP 

locations for L. biflexa Andamana.  Track 3: Histogram detailing relative SNP density (1kb 

windows).  Coloured lines indicate synonymous SNPs, Black lines indicate non-synonymous 

SNPs. 
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6.3.2 Annotation and analysis of de novo constructs for sequenced genomes 

Following de novo construction of each sequenced genome using Velvet; all ten strains were 

passed through the automated annotation pipeline Prokka.  Circular diagrams for each 

constructed sequenced strain (along with coding regions, tRNA and mRNA) can be seen in 

Appendix 3. 

All ten strains were successfully annotated by RAST (Table 6.4) and the genes within 26 

pre-determined functional subsystems could be compared (Figure 6.8). 

 

  

Assembled 

Genome 

Size (bp) 

Number 

of 

Contigs 

Subsystems
1 

Coding 

Sequences 

GC Skew 

(%) 

Number of 

Putitative 

RNA encoding 

genes 

Number 

of tRNA 

encoding 

genes 

L. interrogans sv. 

Icterohaemorrhagiae 
4,617,795 117 301 5111 34.83 40 37 

L. interrogans sv. 

Bratislava 
4,659,159 104 298 5186 34.87 40 37 

L. interrogans sv. 

Pomona 
4,558,815 165 295 5059 34.67 41 37 

L. interrogans sv. 

Prajitno 
4,762,143 141 298 5386 34.81 47 37 

L. alexanderi sv. 

Manzhuang 
4,045,279 294 285 4557 39.68 40 37 

L. borgpetersenii sv. 

Hardjo-bovis 
4,695,933 153 295 5244 34.9 43 37 

L. kirschneri sv. 

Grippotyphosa 
4,328,889 71 290 4315 35.77 42 38 

L. weilii sv. 

Mengding 
4,379,309 350 282 4986 40.16 43 37 

L. fainei sv. 

Hurstbridge 
4,961,646 1050 305 4928 41.25 59 50 

L. biflexa sv. 

Andamana 
3,921,737 90 294 3894 38.73 43 35 

Table 6.4. Summary of de novo genome constructs.  Subsystems, coding sequences and RNA 

totals were calculated in RAST. 1 Pre-determined according to the RAST pipeline. 
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All assembled genomes were of similar size to the previously closed Leptospira genomes in 

Genbank.  L. borgpetersenii serovar Hardjo-bovis was the only strain demonstrating any 

apparent difference, being roughly 700,000bp larger (across both chromosomes) than the two 

reference genomes of the same species (L. borgpetersenii serovar Hardjo-bovis, strains JB197 

and L550).  The GC skew was determined for each sequenced strain, demonstrating a skew 

between 34.67% and 41.25%. 

Overall, the total amount of open reading frames (ORF) encoding for tRNA remained fairly 

consistent over all ten strains (n=35-38), with the exception of L. fainei that had 50.  The 

previously sequenced strains of L. interrogans serovars Copenhageni and Lai both have 37. 

6.3.3 Functional role analysis 

The functional gene sub-systems were compared between each sequenced strain using RAST 

to identify the percentage of similarity across the seven different species (Figure 6.8).  A high 

percentage of functions (at least 83.64%) are shared across all seven species investigated, and 

more importantly between pathogenic and saprophytic strains (Appendix 4). 

The overall average of shared functional genes was at 91.89% (n=1,342), indicating a high 

majority of functional processes within all species of Leptospira are conserved within the 

genome.  As expected, both the intermediate and saprophytic strains had the lowest 

percentage of shared functions.  

Along with identifying the percentage of shared functional roles the actual total number of 

differences between each strain’s functions was explored (Figure 6.8).   

L. biflexa contains 31 genes relating to functional nitrogen subsystems whereas all pathogenic 

species investigated in this study only contain six.  One major difference within L. biflexa and L. 

fainei is the presence of denitrification process genes (n=17 and 5, respectively).  All ten strains 

contain a selection of the genes involved with producing glutamate synthase (GltS), although 

the two non-pathogenic strains contain a slightly higher number.   

The pathways for potassium acquisition and homeostasis are the same across eight of the 

species investigated.  Similarly, the number of genes for processing the histidine pathway are 

roughly equal across the ten species investigated in this study (n=10 – 13).  Six of the eight 

pathogenic species contain greater numbers of functional subsystems for arginine biosynthesis 

(n=15 compared to n=8).  In contrast, L. biflexa and L. fainei only contain eight and seven 

respectively.   
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The intermediate species investigated here was observed to contain genes for a partial 

pathway of methionine uptake and the degradation into homocysteine. 

According to RAST analysis, the intermediate and saprophytic strains contained more genes 

within the virulence, disease and defence sub-system than any other strain (51 and 70, 

respectively).  This is due to the higher number of antibiotic resistance genes, with L. biflexa 

containing 37 genes for resistance to antibiotics and toxic compounds.  This includes resistance 

to fluoroquinolones, vancomycin, copper tolerance and beta-lactamases. 

Low numbers of genes relating to iron acquisition were recognised within all strains, 

particularly within pathogenic strains.  Only one gene was identified to relate to iron 

acquisition within each pathogenic strain, three in the saprophytic and none in the 

intermediate. 

For each strain, low numbers of phage or transposable elements were identified using an 

automated pipeline.  Further manual investigation for insertion sequences revealed no 

additional presence, particularly IS122 within pathogenic strains.  

Overall, pathogenic species demonstrated a relatively similar functional difference, whereas 

the intermediate and saprophytic strains presented a much higher level of difference 

(Appendix 4). 
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Figure 6.8. Comparison of the total number of genes within each functional sub-systems as determined 

by RAST annotation. 
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6.3.4 Identification of a ‘core’ genome within all strains sequenced in the study 

All ten strains were subjected to BLAST analysis against themselves and the seven reference 

strains currently within the NCBI database.  This allowed both the pan- and core-genomes 

amongst 17 strains of Leptospira (Figure 6.9) to be determined.  Within 17 strains, there were 

10,488 unique genes (pan-genome) and a core-genome represented by 1,095 genes (28.76% 

of the total genome) across different serovars and species.  As expected, the core genome 

comprises of housekeeping genes involved with cell maintenance, DNA replication and repair, 

and cell motility.  In keeping with the overall Leptospira genetic make-up, a proportion of core 

genes were hypothetical with no known role. 

Within four strains of a single species, the core genome retained a higher percentage of the 

overall composition (Figure 6.10a).  L. interrogans strains had a core of 3,153 genes (roughly 

84.40% of the total genome).  However as CMG-Tools only outputs total amounts, it was not 

possible to determine the identity of unique genes for each strain using this method. 

The core for the eight pathogenic strains made up a much greater percentage of the overall 

genome when compared to all 17 strains (n=2,859), contributing 69.30% on average of the 

total gene pool. 

One representative strain for the pathogenic, intermediate and saprophytic pathogenicity 

groups were then analysed, demonstrating a shared core-genome of 1,104 genes (roughly 28% 

of the total genome) (Figure 6.10b).  

6.3.5 Presence of confirmed, or genes alluding to, virulence factors within Leptospira 

The presence of 36 genes previously discussed as potential virulence factors or utilised in 

previously described PCR assays were investigated within each strain (Appendix 5).  The 

presence of such genes within all eight pathogenic strains further confirms their role for 

determining Leptospira detection. 

Four genes that have been strongly linked (or confirmed) to virulence, or were only identified 

in the pathogenic species, were aligned and compared.  Inclusion of intermediate and 

saprophytic strains with the comparison demonstrates the nucleotide variation and their 

usefulness for species differentiation (Figure 6.11).  

The gene first identified as a Leptospira virulence factor, loa22, was present in all eight 

pathogenic strains; however analysis of the de novo constructs found no presence within 

either L. biflexa or L. fainei.  The nucleotide sequence itself was found to be highly conserved, 
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particularly within serovars of the same species.  The gene encoding for GyrB was the only one 

out of the four analysed to be present within all sequenced strains.   
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Figure 6.9.  The pan- and core-genome as calculated using BLAST (parameters of 50% identity 

and 50% coverage).  If two proteins matched within a genome they were included as one gene 

family.  A gene was considered as core if present within all 17 strains.  The pan-genome is the 

total number of unique genes present within all ten strains.  Strains 1-10: Ten strains 

sequenced during this study. Strains 11-17: Seven closed and fully annotated strains from the 

NCBI database (Accession numbers: NC_004342, NC_005823, NC_008510, NC_008508, 

NC_017551, NC_010602, NC_010842). 
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Figure 6.10. A: Unique and shared individual genes amongst the four L. interrogans serovars sequenced during this study.  B: Unique and shared individual 

genes amongst strains representing each pathogenicity group; L. interrogans Icterohaemorrhagiae (pathogenic), L. biflexa serovar Andamana (saprophytic) & 

L. faniei serovar Hurstbridge (intermediate). 
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Figure 6.11. Maximum likelihood analysis for aligned sequences for four gene orthologues 

found within strains sequenced within this study.  Carried out using the default settings with 

1000 bootstrapping re-sampling.    A: gyrB (DNA gyrase sub-unit B) B: ompL1 (outer membrane 

protein) C: loa22 (OmpA-family lipoprotein) D: lipl36 (outer membrane lipoprotein).  
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6.4 Discussion 

This study involved the sequencing of the genomes of ten Leptospira strains. From this, the 

variation between sequenced strains and seven previously sequenced reference genomes was 

investigated. A high level of variation was discovered, even within serovars of the same 

species.  The individual functional genes were also compared, which further emphasised a 

diverse population of strains within the Leptospira genus. 

Part of this study was to sequence isolated strains acquired during the overall project.  

However, due to issues encountered during the isolation process it was not possible to 

generate cultured isolates for genome sequencing.  As a result the strains had to be acquired 

from other sources.  This meant that I was not able to obtain strains specifically of rodent or 

canine origin which would have been ideal.  Instead it was decided to sequence strains 

covering a range of species (pathogenic, intermediate and saprophytic) to allow for 

comparison between species that may have adapted to a range of different hosts. 

Picardeau and colleagues (2008) previously determined by comparison of three species 

(pathogenic, intermediate and saprophytic), a core genome of 2,052 (61%) orthologous genes 

(Picardeau et al., 2008).  This study determined a core genome of 1,095 (28.76%) genes 

amongst the ten sequenced strains.  This figure was further reduced to 1,038 when seven 

reference strains were also included (for a total of 17 strains).   

Given the core comprises of a much greater percentage between pathogenic strains, the 

reduction  caused by inclusion of both the saprophytic and intermediate strains may reflect the 

difference in pathways utilised for survival within external environmental conditions. 

This relatively large difference may be a culmination of several factors including sequencing 

methodology (MiSeq is not ideal for de novo constructs), annotation pipeline and parameters 

used during the BLAST search.  Alongside this a larger amount of 17 strains were included in 

this analysis, compared to the three used by Picardeau and colleagues (2008).  For a direct 

comparison, the strains examined by Picardeau were analysed using CMG-biotools, which 

identified a core of 1,070 genes.  This finding is more in-line with the results of this study, 

indicating that the methodology may be the defining factor behind the large discrepancy.   

As previously described, the 16S and 23S rDNA are not linked as with other spirochetes (Woo 

et al., 1996).  Instead they are distributed within chromosome I, a situation seen in all strains 

sequenced within this study.  Previous conflicting reports have discussed how the relatively 

low number of tRNA affects growth rates (Picardeau et al., 2008; Ren et al., 2003).  This project 
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found a similar situation as Picardeau and colleagues (2008) were the saprophytic L. biflexa, 

despite previously known for growing faster than their pathogenic counterparts (Ganoza et al., 

2006), have the same level of putitative tRNA coding genes.   

Previous studies have described a genome reduction of approximately 700kb within 

L. borgpetersenii compared to L. interrogans, as it tends towards host specialisation (Bulach et 

al., 2006).  However in the current study, the L. borgpetersenii strain sequenced had a total 

assembly size 700kb greater than the other pathogenic species.  This may be due to the initial 

sequencing approach taken, and that the genomes in this study were primary constructs, not 

closed genomes.  The MiSeq reads in this study were predominantly intended for SNP 

recognition, and so full de novo assemblies may have had a greater accuracy from a 

sequencing approach such as HiSeq.  In comparison, the HiSeq outputs a greater maximum 

number of paired end reads (>1 billion compared to 50 million) and overall total data obtained 

(>90 Gb compared to 15 Gb).   

6.4.1 SNP variation between sequenced and reference strains  

Even though L. biflexa serovar Andamana was mapped to a serovar within the same species 

(L. biflexa serovar Patoc) it still presented with the greatest level of genetic variation within its 

genome.  This difference may highlight the extent to which environmental pressures exert on 

the evolution of bacteria that exist exclusively outside of a host.   

Survival within a range of environments may also expose the bacterium to a greater degree of 

genetic variation through insertion sequence (IS) acquisition or other mobile elements (Heuer 

and Smalla, 2007).  Despite that however, no presence of IS1533, previously described as a 

prominent IS within Leptospira (Zuerner et al., 1995), was found in the strains sequenced for 

this study.  This finding is a stark contrast from that witnessed by Picardeau and colleagues 

(2008) who described large numbers of IS elements, particularly within pathogenic strains 

(Picardeau et al., 2008).  The discrepancy may be due to the sequencing and annotation 

process.  However as a manual search also found no presence then it may be further evidence 

for using HiSeq over MiSeq to allow for greater genome coverage. 

The region within the p74 plasmid that shows no SNP presence may be highly conserved and 

crucial for coding processes involved with the survival and transmission of the plasmid; 

however synonymous SNPs may still be present should this be the case.   

Another explanation could be a lack of coverage (or complete absence) for the region by the 

sequence reads for L. biflexa serovar Andamana.  If the region was not present within the 
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sequences obtained then no SNPs would be detected by GATK.  Given the density of SNPs 

within the remaining regions of chromosome I, chromosome II and p74, then it seems that a 

lack of coverage resulting from sequencing is the greater possibility.   

The greater number of SNPs seen within L. borgpetersenii can be somewhat explained by the 

reference genome (L. interrogans serovar Copenhageni) being of a different species 

completely.  Initially, either of the two L. borgpetersenii genomes previously sequenced may 

have been chosen, however due to neither showing a close match from Bowtie2 mapping 

(both 2.75%) then they were not selected for the GATK variation pipeline. 

The only strain that shows a lower level of SNP variation is L. interrogans serovar 

Icterohaemorrhagiae (mapped against L. interrogans serovar Copenhageni).  The genetic 

similarities between serovars Icterohaemorrhagiae and Copenhageni have been previously 

described (Salaun et al., 2006), and so the low SNP presence is not unexpected.  The SNP data 

in the present study further suggests that both serovars Icterohaemorrhagiae and 

Copenhageni have a closely related phylogeny.  This is especially true for chromosome II.  With 

only seven SNPs mapped within the chromosome a high level of similarity is seen. 

However, despite the lower SNP count, RAST analysis recognised only 92.79% of functional 

roles shared when compared to the same reference strain.  Icterohaemorrhagiae had 46 

unique functions and Copenhageni demonstrated 54 unique functions.  Of the pathogenic 

strains sequenced in this study, five showed a higher proportion of orthologues, with only 

L. weilli serovar Mengding demonstrating a lower level of similarity.  Given the previous 

reported links between the two serovars (Icterohaemorrhagiae and Copenhageni), including 

similar reservoir hosts, the difference in functional roles is somewhat surprising.  The higher 

nonsense/silent SNP ratio within Icterohaemorrhagiae suggests that protein disruption may 

suggest the discrepancy with translated proteins between the two. 

The major difference for SNPs seen within serovar Icterohaemorrhagiae was the greater 

percentage coding for nonsense or missense variants.  The introduction of nonsense codons 

will disrupt the reading of coding regions and may result in truncated proteins.  Alterations of 

amino acid constituents from missense variations may cause multiple downstream effects such 

as the folding and structure of proteins.  This change could disrupt pathways and may be a 

possible reason for such a difference within the functional roles as observed with RAST. 

Between the four strains (L. borgpetersenii serovar Hardjo-bovis, L. interrogans serovar 

Icterohaemorrhagiae, L. interrogans serovar Pomona and L. interrogans serovar Pajitno) 
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mapped against serovar Copenhageni it is clear that there are three regions within 

chromosome I with a high congruence between each sequenced strain.  There were no SNPs 

between nucleotides 992,109-1,005,189 suggesting a highly conserved region between the 

serovars and species.  However within the region, only five hypothetical proteins have 

previously been identified on serovar Copenhageni.  The conserved nature suggests towards 

an important role within the bacterium, however further investigation is needed to correctly 

identify the proteins within the region.  The genes may also carry the potential for species 

identification through PCR assays. 

Nucleotides 2,577,755-2,658,246 also show very little SNP presence between the 

L. interrogans strains.  As with nucleotide region 992,109-1,005,189, there are also a very high 

proportion of hypothetical proteins.  However this region does contain mutT (mutator 

protein), and the absence of the gene can lead to increase spontaneous A/T to C/G mutations 

(Bhatnagar et al., 1991).  Therefore its involvement with maintaining correct base sequence 

may be crucial for the bacteria, causing the low level of nucleotide variation. 

Following analysis of SNP density within set kb frames it is possible to identify regions with a 

possible increased likelihood for base changes.  The change in base (and subsequent possible 

amino acid and protein difference) may present one explanation for the antigenic differences 

causing certain serovars that may be closely genetically linked (such as serovars Canicola and 

Icterohaemorrhagiae) tend to favour different reservoir hosts.   

A section amongst the genes mapped to Copenhageni (2.4-2.5Mb) showed an increase in SNP 

density within three of the four strains.  For serovar Copenhageni, this region contains genes 

encoding for dehydrogenases (e.g. serA involved in serine biosynthesis and sdhA/B/C, which 

are three of the four subunits within succinate dehydrogenase), GTP-binding proteins (e.g. 

lepA), tRNA synthases (e.g. asnS) and 56 hypothetical proteins.  Given the large proportion of 

hypothetical proteins in the region, it is entirely feasible that the SNPs occur within these and 

not genes typically involved with housekeeping roles. 

A disadvantage of SNP analysis for the sequence data in this study is the limited range of fully 

sequenced reference genomes.  As a result of this, a number of strains are mapped against 

genomes that they may not be closely phylogenetically related.  This can be seen in figures 

6.1-6.7 as there is a high proportion of SNPs within four strains. 
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6.4.2 Acquiring nutrient components from environmental sources 

Between the species investigated here, there is a difference in the ability to acquire and utilise 

nitrogen compounds.  Despite the saprophytic strain containing 31 genes within nitrogen 

subsystems (six of which relate to ammonia assimilation), only six genes are present within 

pathogenic strains for acquiring nitrogen.  This finding emphasises the host specificity, given 

that pathogenic species colonise host kidneys and so require less genes involved with 

acquisition pathways that may be essential for environmental survival.  As previously stated, 

genes involved in the metabolic pathway for GltS are present within all ten strains; however a 

great number are present within non-pathogenic strains.  GltS is involved with  nitrogen 

assimilation and breakdown of compounds into their individual nitrogen components (Vanoni 

and Curti, 2008).  

Although denitrification is an anaerobic reduction, the process is witnessed in aerobic bacteria 

such as Pseudomonas (Carlson and Ingraham, 1983).  The presence of several genes involved 

with this stage of the nitrogen cycle could give both the non-pathogenic species from this 

study a survival advantage within the environment over pathogenic species.   

Similarly, genes for the process of ammonification of nitrites and nitrates are seen in the 

non-pathogenic species.  The ability to convert organic nitrogen compounds back into 

ammonium plays an important role for respiration under low-oxygen conditions, and 

generates considerable levels of energy for the bacteria (Strohm et al., 2007).  As well as 

providing more evidence for their growth advantage within environmental sources such as soil 

or small bodies of water, it may also explain in part why saprophytic species can out-grow 

pathogenic when maintained on commercial growth media. 

Given the importance of potassium for cell membrane potential regulation during changes in 

pH and osmolarity (Torres et al., 1997), it is of no surprise that related subsystems are stable 

between all species.  The recently defined genomospecies L. alexanderi contains an additional 

four genes relating to both the process of maintaining potassium homeostasis and flagellar 

structure and motility.  Although no reservoir host has been defined to date, the impact of the 

additional processes would need to be further investigated.  The key aspect to focus on 

however is the absence of any potassium homeostasis genes within L. biflexa.  While the ability 

to adapt to changes in pH within a host would impart greater benefit to pathogenic strains, 

adapting to osmolarity changes would benefit an environmental bacterium so their absence is 

somewhat unusual. 
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The absence of iron acquisition or uptake genes is surprising, particularly in relation to 

pathogenic strains.  Iron plays a crucial role in bacterial processes and once within a host, 

acquiring iron from sources requires specialised pathways.  Previous work has eluded to a 

putitative protein demonstrating low similarity in both sequence and structure to FepA in 

E. coli (Sritharan et al., 2006).  Given that no genes were identified during this study that are 

similar to those utilised by other bacteria, it then suggests towards potential involvement from 

hypothetical proteins.  Investigation into genes actively transcribed during iron uptake would 

be required to determine if this is the case for Leptospira. 

6.4.3 Amino acid processes and their derivatives 

The highly conserved histidine pathway amongst all strains indicates a level of stability during 

the bacteria’s evolution and a basic requirement for survival.  

It is interesting to note that L. biflexa contains two genes involved with a putrescine utilisation 

pathway.  The enzyme 4-aminobutyraldehyde dehydrogenase (ABADH) oxidises 

gamma-aminobutyraldehyde into gamma-aminobutyrate (GABA).  Once converted, GABA is 

then further converted into succinate semialdehyde by GABA aminotransferase (gabaT).  Both 

genes are absent from all other species in this study.  Despite this however, the pathway is 

incomplete as no other enzymes (such as putrescine aminotransferase) are encoded for within 

the genome.  The remaining pathway may be compensated for by the hypothetical genes not 

yet characterised, however further work would be required to confirm if this was the case. 

As well as the additional putrescine proteins, L. biflexa also contains nine genes for polyamine 

metabolism only present within this species.  Spermidine synthase (SPDS) synthesises 

spermidine from putrescine and aids cell growth and proliferation which may further 

contribute to their ability for prolonged environmental survival compared to pathogenic 

strains.  The pathways for polyamine metabolism have been a target for therapeutics, and 

particularly to counter cancer cell growth (Bergeron et al., 1988; Marton and Pegg, 1995).  

However their potential for disrupting Leptospira colonisation and proliferation rates would 

need further investigation. 

Homocysteine is an amino acid that has been demonstrated as a pre-cursor to both hydrogen 

sulphide in oral bacteria (Yoshida et al., 2009) and methionine (Or-Rashid et al., 2001).  Due to 

only a partial processing pathway being presented within L. fainei, and its presence in just a 

single species, acquisition via horizontal gene transfer could explain one possible origin.  The 
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advantages over other species for survival or infection that the pathway confers would need to 

be further investigated. 

One external stress that may result in differences arising within the genome is the level of 

passage a culture goes through before sequencing.  The effects of which are not yet known for 

Leptospira.  Strains used during this study were kept to low passage numbers to prevent 

potential disruptions. How the genome is disrupted following repeated sub-culturing would 

need further investigation, with sequence analysis carried out and SNP counts compared 

between passage numbers for the same strain.  

Overall, the average number of shared functional genes (n=1,342) is of a similar level to the 

core genome discovered for the same strains (n=1,095).  The high presence of hypothetical 

proteins may factor into the discrepancy between the two methods of annotation. 

6.4.4 Previously identified virulence factors 

Certain members of the lipL gene family have been put forward as potential virulence factors, 

however to date only lipL32 has been investigated.  As a result, it was found that lipL32- 

mutants were able to infect hamster models (Murray et al., 2009c).  This could suggest a 

degree of functional redundancy as other genes may compensate for the loss of lipL32. 

Following manual comparison in the present study, another lipL gene family member, lipL36, 

was found to only be present in the pathogenic strains sequenced.  However, despite its 

exclusive presence in pathogenic serovars, previous work has eluded to its role being tailored 

towards environmental survival rather than virulence.  When challenged with a host-adapted 

strain it was demonstrated that an absence of LipL36 antibody response suggests a 

down-regulation during infection when compared to a culture-adapted strain (Haake et al., 

1998).  The study by Haake and colleagues (1998) examined a strain of L. kirschneri; however I 

was not able to locate the gene within the strain sequenced from the same species.   The 

presence in pathogenic strains, but reported down-regulation, may suggest a role in the 

transmission of the bacteria. 

The gene encoding for LipL36 has not yet been the subject of PCR assays and the variation 

presented here demonstrates the ability to not only distinguish only pathogenic strains, but 

the ability to potentially determine individual serovars.  Whether or not this is possible would 

need further investigation.  However, phylogenetic analysis presented here of other genes 

such as gyrB and ompL1 seem better suited for such diagnostic abilities.  This finding echoes 
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previous work which propose the use of gyrB for identifying pathogenic species (Slack et al., 

2006). 

A lipoprotein belonging to the OmpA family, loa22, was the first gene to be successfully 

demonstrated as an essential virulence factor (Ristow et al., 2007).  The loa22 gene was 

analysed within all pathogenic strains for this present study, and comparison revealed low 

nucleotide variation, particularly within the same species.  This restricted variation emphasises 

the importance towards host infection and survival. The evidence presented here is in line with 

that found by Ristow and colleagues (2007). 

Six further genes (katE, flaA, fliY, clpB, hemO, mce) previously described as crucial for 

pathogenesis were investigated for their presence in the ten strains sequenced in this study 

(Eshghi et al., 2012; Lambert et al., 2012; Liao et al., 2009; Lourdault et al., 2011; Murray et al., 

2009b; Zhang et al., 2012).  I found no presence of any of the six genes associated with 

pathogenicity within the saprophytic strain.  However, the clpB gene was present in the 

intermediate strain, leading to suggest that while it may be essential for virulence; other 

contributing factors may also be required.  A situation similar to that is described for lipL41, 

which although not required for virulence, requires the chaperone lep for expression (King et 

al., 2013).  Further investigation would be required to confirm if this is also true for clpB, 

however I found no CDS present within close proximity to clpB for any strain sequenced in this 

study. 

Another protein previously suspected to confer virulence was LigB.  LigB is one of three 

leptospiral immunoglobulin-like repeated (Lig) proteins that mediate host cell attachment.  

The gene ligB was only present in the eight pathogenic strains for this study, which does 

suggest a role in virulence.  Despite this however, ligB- mutants have been shown to still infect 

rodent models (Croda et al., 2010) with a suggestion of other proteins in similar roles 

compensating for the loss.  Given the large gene pool within pathogenic Leptospira, it is 

entirely feasible that this could be the case. 

In summary, this study successfully sequenced the genomes of ten Leptospira strains not 

previously analysed.  Strains representing pathogenic, intermediate and saprophytic groups 

were included to allow comparison between strains inhabiting different ecological niches.  

Genomic analysis demonstrated a high level of SNP variation, particularly amongst serovars of 

the same species.  The high level of non-synonymous SNPs could play a vital role in 

host-specific adaption and lend itself to the variety of reservoir animals that play host to the 

bacteria.  
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7.1 General Discussion 

Current and accurate data regarding both infection levels and serovars causing those 

infections is lacking in the UK.  A high number of pathogenic serovars have proven their ability 

to infect a wide range of both reservoir and incidental hosts (Babudieri, 1958; Jimenez-Coello 

et al., 2010; Tubiana et al., 2013) and a limited awareness of circulating serovars may affect 

both diagnostic and vaccination practices.  Further to this, with the advancement of molecular 

typing techniques, there is an on-going issue with relating results to the traditional 

nomenclature based on serological antigen recognition.  With the successful sequencing of the 

full Leptospira genome, it has been possible to identify several putative virulence factors.  

However, as some strains have seemingly become host dependant (Bulach et al., 2006) further 

investigation is required into other potential factors that may contribute to pathogenesis. 

This thesis aimed to identify the current situation regarding Leptospira within the UK.  To this 

end, both reservoir hosts and retrospective cases arising within the vet-visiting dog population 

were examined.  To gain a better insight into molecular identification, this study aimed to 

apply highly discriminative multi-locus sequence typing (MLST) to establish the identity of 

serovars circulating within UK wild rodents.  Following this, the genome sequences of ten 

strains encompassing a range of pathogenicity traits were compared and analysed against 

seven strains previously published.  This allowed for identification of single nucleotide 

polymorphisms (SNPs) and translated functional proteins.  SNP data was compared between 

sequenced strains to identify regions containing potential virulence factors and housekeeping 

genes. 

The canine vaccination status for Leptospira in the UK is currently unknown.  Details of a 

bivalent vaccine were first published in 1960 (Jull and Heath, 1960) and recently, aspects of a 

novel tetravalent vaccine (Klaasen et al., 2013) were announced for the UK.  Currently in the 

UK, human leptospirosis is no longer a notifiable disease (HPA, 2012), resulting in confirmed 

cases not being reported.  Further to this, due to the perceived low levels of infection in the 

UK, it is not identified as a ‘core’ vaccine for dogs despite annual vaccination required to 

maintain immunity.  A combination of the two may result in a lack of both accurate published 

information and knowledge within communities outside of the veterinary profession. 

A questionnaire based survey was undertaken to determine vaccination rates and the 

frequency of suspected or confirmed canine leptospirosis cases.  The study described how 

vaccination against the disease is carried out for a high percentage (60.37% on average) of 

canines seen by practices.  A lack of consideration for canine contact with potential 
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environments with a known association for leptospirosis infections during a diagnosis was 

highlighted, and demonstrated that clinicians are typically more likely to consider icteric signs.  

As the anicteric signs are typically vague and can be associated with a range of diseases, linking 

rodent and/or water contact may aid an early diagnosis.  Identifying and treating leptospirosis 

at an earlier stage increases survival likelihood (Lau et al., 2010), and prevents infection from 

progressing into the later stages of disease were renal and hepatic failure can be common 

(Winearls et al., 1984; Yang et al., 2001). 

Confirming previous published results, no relationship was seen with dog age or breed 

(Oliveira Lavinsky et al., 2012).  The practice size was also not deemed important in regards to 

witnessing a case of leptospirosis.  Conclusions drawn here are limited however due to the low 

numbers of returning practices, and the low number reporting a recent leptospirosis case.  An 

increased compliance rate would provide greater clarity for potential links to associated risk 

factors in the UK. 

Future work guided towards increased uptake of diagnostic testing for canines presenting with 

relevant anicteric clinical signs would be of great benefit.  Serum sampling at the point of first 

contact would provide a better indication of infection levels within a wider population and 

provide accurate information on circulating serogroups over a prolonged period.  Due to the 

issues regarding timing and cost of implementing a system of this nature, it wasn’t possible 

within the scope of this project.  While culturing Leptospira from potential cases of infection 

would be ideal, several issues contribute towards difficulty with doing so.  The bacteria itself is 

notoriously fastidious and inoculation from sample material may take several months before 

growth is visible under dark field microscopy (Doern, 2000).  During this prolonged growth 

stage, given the rich composition of EMJH, contamination can also affect culture attempts.  

Molecular typing of infecting strains provides a rapid and accurate alternative.  While recent 

work has helped link molecular typing (such as MLST and VNTR) with serological results to an 

extent, continuous work in the field is still needed to provide a method that has complete 

homology with serological testing. 

In chapter four, the extent of Leptospira presence was described within wild rodents 

populating multiple sites of the North West.  Studies carried out by Hathaway and colleagues 

in 1983 demonstrated the presence of Leptospira within wild rodents, particularly serogroup 

Australis (Hathaway et al., 1983b).  Following this, Webster and colleagues identified the 

prevalence within rats on farmland (Webster et al., 1995).  Since then however, no studies 

have carried out further investigation.  As new serovars are continually being discovered (Lau 
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et al., 2012; Paiva-Cardoso et al., 2013; Roberts et al., 2010), there is a need for current 

identification of infectious strains within UK local environments. 

Following trapping at fifteen sites over a period of 24 months, it was determined that 

Leptospira are being maintained and potentially shed within wild rodents.  The range of rodent 

species identified as acting as reservoirs for the same pathogenic serovar opens up a greater 

possibility for both human and canine infections.  As distinct rodent species occupy differing 

habitats, the likelihood to shed into local environments, potentially causing infection within 

incidental hosts increases.  An increased awareness of typical environmental conditions that 

the bacteria occupy would aid in preventing future infections to both humans and dogs. 

A major observation with this study was a lack of infection witnessed within urban rat samples 

obtained.  Despite the disease being historically linked with rat exposure, no presence of 

Leptospira was identified from 81 rat samples.  However, the wood mouse samples from the 

same urban locations were also negative; leading to suggestions that rural leptospirosis may 

be a bigger threat in the UK.  This finding provides further evidence of an absence of 

Leptospira infecting urban samples despite a presence within rural samples (Blakelock and 

Allen, 1956; Brockie, 1977). 

Building on previous molecular studies, results gained during this project emphasised the 

usefulness of molecular approaches for identifying both the presence and identity of strains.  

Comparisons to serological testing and histopathology results demonstrated that PCR assays 

were of the same standard, if not better, than the MAT.  Not only were they more accurate 

and effective, but the results from molecular testing are more favourable for a diagnosis.  

While the MAT can only provide information regarding the serogroup and requires a paired 

sample for serogroup confirmation (Ooteman et al., 2006), PCR has the ability to potentially 

identify the serovar from a single sample via direct sequencing (Slack et al., 2006).   

Histopathology was shown to be the least discriminative and informative testing method.  As 

such it is not used for routine diagnostic testing and is only of benefit for research purposes to 

visualise tissue infections.  Despite the disadvantages, clear images of individual and 

aggregates of leptospires were obtained.  The lack of inflammation witnessed via H&E staining 

at the same sites bacteria were noted at, emphasised a rodent’s role as a reservoir animal for 

Leptospira. 

Further to work investigating the presence of pathogenic Leptospira in wild rodents, this 

project aimed to explore the possibility of identifying the serovar using molecular techniques.  
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For this, several techniques were initially outlined.  Methods identified from previously 

published work included MLST, macro-restriction pulsed-field gel electrophoresis (PFGE) and 

variable number tandem repeat (VNTR) analysis (Ahmed et al., 2011; Boonsilp et al., 2013; 

Galloway and Levett, 2010; Pavan et al., 2011; Salaun et al., 2006; Thaipadungpanit et al., 

2007). 

As described in chapter three, due to difficulties in obtaining cultures of isolates from rodent 

kidney tissue, it wasn’t feasible to utilise PFGE for this study.  Both MLST and VNTR are better 

suited as it is possible to apply either technique to tissue DNA extracts (Arvand et al., 2010; 

Henriksen et al., 2009; Santos et al., 2012).  The VNTR protocol previously described by 

Picardeau and colleagues (2008) was applied to two positive controls (L. interrogans serovar 

Australis and L. kirschneri serovar Grippotyphosa).  However, despite repeated testing it was 

not possible to successfully amplify all loci required to gain interpretable data. 

A combination of preliminary testing from this study and previously published work describing 

the success for MLST (Perez and Goarant, 2010; Romero et al., 2011; Thaipadungpanit et al., 

2007), demonstrated its ability as the technique most suited for samples obtained during this 

project.  The work in chapter four further demonstrates the typing ability of the scheme, 

particularly in regards to DNA extracted from kidney tissue material, which has never been 

described before in regards to Leptospira.   

Sequence types were obtained for eleven samples of which all were ST-24.  A further five 

samples offered interpretable data from at least four loci that also suggests association with 

ST-24.  This demonstrated the presence of a unique ST within wild rodents populating the 

North West of England.  This ST has been identified within small rodents and humans within 

several European countries, including Germany and the Czech Republic.  Within ST-24 there 

are currently three serovars L. interrogans serovar Lora, L. interrogans serovar Jez Bratislava 

and L. interrogans serovar Jalna.  All three belong within the Australis serogroup. 

The presence of only a single unique ST is of high interest given that multiple rodent species 

were sampled at multiple sites.  In the original study for the Leptospira MLST scheme; a 

dominant ST was present, however a number of other strains were found to infect also 

(Thaipadungpanit et al., 2007).  The results from PCR assay sequencing in chapter three 

correlated with those found via MLST in chapter four.  Direct gyrB amplicons sequencing 

identified all samples to belong within L. interrogans following BLAST analysis.  Despite only 

identifying the species, gyrB sequencing provided further evidence that a single ST was found 

to be infecting wild rodents.   
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The serovars belonging to ST-24 have previously been shown to confer the ability to infect 

both humans and canines (Arent et al., 2012; Hathaway et al., 1983a; Renaud et al., 2012; 

Wasinski et al., 2012).  The results from MLST analysis in this study confirms the need for the 

additional serogroups (such as Australis) included along with those in the previous UK bivalent 

vaccine.  Canines covered by the bivalent vaccine may succumb to infection should they 

encounter a challenge from the other serovars identified during this study.  Continuous 

investigations into serovars maintained within reservoir populations would aid both research 

and vaccine effectiveness.  A combined approach with sentinel vet practices sampling for the 

presence of infection within canines would also help to ensure vaccine coverage was both 

sufficient and effective. 

All histopathology samples demonstrating signs of infection were identified using conventional 

PCR and MLST.  MLST identified the infecting sequence type within a further sample found 

negative by histopathology.  In contrast, MAT only detected antibodies within four samples 

previously shown to be positive using MLST.  This direct comparison of results emphasises the 

greater typing ability that MLST offers in contrast to either histopathology or MAT testing.  

While visualisation of the bacteria is beneficial for research purposes, it offers little in terms of 

diagnostic advantages.  Similarly, the antibody skew that previous infections or vaccinations 

can have on MAT testing also hinders its capabilities.  MLST does not suffer from this limitation 

as it directly identifies bacteria present using DNA extracts. 

Previous MLST work has shown the discriminative power of the technique (Agampodi et al., 

2013; Li et al., 2013; Li et al., 2012) and the results gained from this study provided further 

evidence for this.  Given the success of the scheme’s ability to identify infecting STs from tissue 

DNA extracts, it would be of benefit to the database overall if the scheme was adopted for 

similar studies in the future.  Not only would this assist research into serovar presence within 

reservoir animals, but identifying and locating new alleles would help further the application of 

the scheme. 

Following on from the success of molecular typing strains actively infecting wild rodents, the 

next stage of the project was to investigate the genomes of additional Leptospira strains 

belonging to serovars not currently in the NCBI database.  Currently there are seven fully 

sequenced genomes; two L. biflexa serovar Patoc, two L. interrogans serovar Lai, two 

L. borgpetersenii serovar Hardjo-bovis and L. interrogans serovar Copenhageni.   Due to issues 

regarding the culturing of isolates as explained in chapter four, the sequencing and analysis of 

ten strains of differing virulence traits were described in chapter six; L. alexanderi (serovar 
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Manzhuang), L. borgpetersenii (serovar Hardjo-Bovis), L. interrogans (serovars 

Icterohaemorrhagiae, Bratislava, Pomona and Prajitno), L. kirschneri (serovar Grippotyphosa), 

L. weilii (serovar Mengding), L. fainei (serovar Hurstbridge) and L. biflexa (serovar Andamana). 

Previous work has alluded to several putitative and confirmed virulence factors (Eshghi et al., 

2012; Lambert et al., 2012; Liao et al., 2009; Lourdault et al., 2011; Murray et al., 2009b; Zhang 

et al., 2012), of which their presence within each strain was described.  Variation and 

functional analysis was utilised to identify genes encoding potential virulence factors that may 

be essential for pathogenicity. 

Variation analysis using identified SNPs showed a high level of variability spread amongst both 

chromosomes (and the additional plasmid p74 for L. biflexa).  This raises an interesting point in 

regards to serovars within the same species.  The high level of variation suggests the extent to 

which molecular differences affect host specification, possibly in regards to environmental 

pressures for survival.  The greatest variation was seen within the saprophytic strain L. biflexa 

serovar Andamana, which had 55,303 SNPs from the reference strain of the same species.  Due 

to the extensive pathways utilised for varied environmental conditions, this is somewhat 

unsurprising, giving rise to the higher SNP total. 

Density values for SNPs were analysed to identify common regions of both high and low 

variation.  High variability may indicate the location of antigenic genes responsible for differing 

serological reactions, whereas low variability may highlight genes essential for survival or 

virulence.  Unfortunately, due to the poor characterisation of a large proportion of Leptospira 

genes, the majority of those within such regions were hypothetical.  This limitation emphasises 

the need for further investigation and research into the functional roles of hypothetical genes 

within the given regions.  A result of which may highlight future potential virulence factors and 

targets for both vaccinations and therapeutics. 

Annotated de novo constructs provided the opportunity to compare genes present within all 

ten strains (and a further seven reference strains).  Using previously published methodology 

(Vesth et al., 2013) it was possible to identify the ‘core’ genome present within all 17 strains as 

being roughly 28.76%.  Compared to the 61% previously described, the core identified by this 

study was relatively low (Picardeau et al., 2008).  For Picardeau and colleagues (2008), 

genomes for only three species were available at the time; L. borgpetersenii (serovar Hardjo), 

L. interrogans (serovars Copenhageni and Lai) and L. biflexa (serovar Patoc).  All three were 

included for analysis during this study.   Further investigation showed that the difference in 

methodology may be responsible for the discrepancy.  Despite this, when excluding L. biflexa 
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and L. fainei, the pathogenic strains retained a relatively high core, making up 69.30% of total 

genes.  As explained, the difference in both the sequencing method and analysis methodology 

will have an effect on annotations and downstream analysis.   

Aside from the limitations regarding gene annotation, the sequencing method chosen for this 

study (MiSeq, Illumina) is better suited for SNP analysis rather than de novo constructs.  

Chapter six outlines the reasoning for utilising MiSeq for this study, however for the de novo 

constructs, a platform offering greater coverage such as the HiSeq (Illumina) may have 

produced more accurate data.   

Following on from the success of identifying potential regions containing virulence factors, 

further work to characterise the function and potential virulence of hypothetical proteins is 

needed.  Making use of transposon mutagenesis as previously described (Murray et al., 2009c), 

may allow additional exploration of the dependency for virulence.  Similarly, the effects on 

colonisation ability would also be worth investigating, particularly with certain species, such as 

L. borgpetersenii, being observed to preferentially infect specific hosts. 

In summary, the work here identified the serovars infecting multiple species of wild rodents 

acting as reservoirs for Leptospira.  Given the nature of the host-dependency, it is entirely 

feasible to presume they may be shedding live bacteria into the local environment.  

Application of a highly discriminative molecular technique has allowed for identification of 

infecting strains down to the serovar level.  Further to this, the advantage of using MLST 

allowed for direct comparisons to previous studies utilising the scheme.  Increased use of MLST 

will aid both research and diagnostic procedures.  Finally, this thesis identified the high level of 

nucleotide variation within a range of pathogenic serovars.  Further work into coding regions 

for hypothetical proteins within highly variable regions may yield targets for diagnostic testing 

and aid future therapeutic protocols. 

7.2 Future Work 

 Extensive practice sampling for suspected leptospirosis cases within vet visiting 

canines at the point of first contact, particularly for cases presenting with mild clinical 

signs. 

 Increased rodent sampling within urban areas for all local species including molecular, 

serological and histopathology testing.  Where possible, culturing and isolation from 

blood and/or tissue would be of benefit.  Further sampling within more regions of 
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England would also be of benefit to identify any geographic differences of circulating 

serovars. 

 Extended sampling to identify the presence of pathogenic Leptospira within animal 

species previously reported as having a known association with leptospirosis such as 

squirrels or bats. 

 Knock-out studies targeting genes within conserved regions as identified within this 

study.  This may result in the identification of virulence or essential genes for 

pathogenesis within pathogenic strains. 

 Further characterisation of hypothetical genes potentially encoding for functional 

proteins within regions of high nucleotide variability.   

 Extended species testing for ompL1 as a potential candidate for serovar identification 

through direct sequencing. 
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Appendix 1.1 Covering letter for questionnaire survey of UK veterinary practices. 
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Appendix 1.2 Questionnaire utilised for the veterinary practice survey in Chapter three. 
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Name Sequence Reference Purpose 
Product 
Size (bp) 

rrsF GGAACTGAGACACGGTCCAT Tansuphasiri et al., 
2006 

Leptospira Screening 430 
rrsR GCCTCAGCGTCAGTTTTAGG 

lipL32F GTCGACATGAAAAAACTTTCGATTTTG Cheemaa et al., 
2007 

Pathogenic Leptospira 
Screening 

756 
lipL32R CTGCAGTTACTTAGTCGCGTCAGAAGC 

2For TGAGCCAAGAAGAAACAAGCTACA 
Slack et al., 2006 

Pathogenic Leptospira 
Screening 

502  
504Rev MATGGTTCCRCTTTCCGAAGA 

glmU-F AGGATAAGGTCGCTGTGGTA 

Thaipadungpanit et 
al., 2007 

Boonsilp et al., 2013 
MLST 

650 
glmU-R AGTTTTTTTCCGGAGTTTCT 

pntA-F TAGGAAARATGAAACCRGGAAC 
621 

pntA-R AAGAAGCAAGATCCACAAYTAC 

sucA-F TCATTCCACTTYTAGATACGAT 
640 

sucA-R TCTTTTTTGAATTTTTGACG 

tpiA-F TTGCAGGAAACTGGAAAATGAAT  
639 

tpiA-R GTTTTACRGAACCHCCGTAGAGAAT 

pfkB-F CGGAGAGTTTTATAARAAGGACAT 
588 

pfkB-R AGAACACCCGCCGCAAAACAAT 

mreA-F GGCTCGCTCTYGACGGAAA 
719 

mreA-R TCCRTAACTCATAAAMGACAAAGG 

fadD-F AGTATGGCGTATCTTCCTCCTT 
576 

fadD-R TTCCCACTGTAATTTCTCCTAA 

caiB-F CAACTTGCGGAYATAGGAGGAG  
650 

caiB-R ATTATGTTCCCCGTGAYTCG 

CytB-For TCATCMTGATGAAAYTTYGG 
Schlegel et al., 2012 

Rodent Species 
Identification 

946 
CytB-Rev ACTGGYTGDCCBCCRATTCA 

fad2-F ACGTGATCTCCCTTATGCCAAGCA 
Caimi et al., 2012 

MLST - Alternate Fad 
Primers 

  
fad2-R ATCCAACCGACAGAAGTATGGCGT 

VNTR4-F AAGTAAAAGCGCTCCCAAGA 

Salaun et al., 2006 VNTR 

425+34n 
VNTR4-R ATAAAGGAAGCTCGGCGTTT 

VNTR7-F GATGATCCCAGAGAGTACCG 
299+46n 

VNTR7-R TCCCTCCACAGGTTGTCTTG 

VNTR10-F GAGTTCAGAAGAGACAAAAGC 
420+46n 

VNTR10-R ACGTATCTTCATATTCTTTGCG 

PSBF ACWRVHVHRGYWDCCTGGTCYTCTTC Cerqueira et al., 
2009 

ligB Detection 380 
PSBR TARRHDGCYBTAATATYCGRWYYTCCTAA 

flab-F TCTCACCGTTCTCTAAAGTTCAAC 
Krishna et al., 2008 flaB Detection 793 

flab-R CTGAATTCGGTTTCATATTTGCC 

 

Appendix 2.1 Full primer list and source for all published primers utilised throughout this 

thesis 



162 
Appendices  Appendix Three 

 

 

 

Appendix Three 

  



163 
Appendices  Appendix Three 

Appendix 3.1. Circular map of L. biflexa serovar Andamana.  Track 1: Coding sequences on the 

forward strand.  Track 2: Coding sequences on the reverse strand.  Track 3: tRNA.  Track 4: 

rRNA.  Innermost track is GC skew with positive skew shown in black and negative in grey. 
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Appendix 3.2. Circular map of L. borgpetersenii serovar Hardjo-Bovis.  Track 1: Coding 

sequences on the forward strand.  Track 2: Coding sequences on the reverse strand.  Track 3: 

tRNA.  Track 4: rRNA.  Innermost track is GC skew with positive skew shown in black and 

negative in grey. 
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Appendix 3.3. Circular map of L. interrogans serovar Bratislava.  Track 1: Coding sequences on 

the forward strand.  Track 2: Coding sequences on the reverse strand.  Track 3: tRNA.  Track 4: 

rRNA.  Innermost track is GC skew with positive skew shown in black and negative in grey. 
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Appendix 3.4. Circular map of L. kirschneri serovar Grippotyphosa.  Track 1: Coding sequences 

on the forward strand.  Track 2: Coding sequences on the reverse strand.  Track 3: tRNA.  Track 

4: rRNA.  Innermost track is GC skew with positive skew shown in black and negative in grey. 
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Appendix 3.5. Circular map of L. fainei serovar Hurstbridge.  Track 1: Coding sequences on the 

forward strand.  Track 2: Coding sequences on the reverse strand.  Track 3: tRNA.  Track 4: 

rRNA.  Innermost track is GC skew with positive skew shown in black and negative in grey. 
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Appendix 3.6. Circular map of L. interrogans serovar Icterohaemorrhagiae.  Track 1: Coding 

sequences on the forward strand.  Track 2: Coding sequences on the reverse strand.  Track 3: 

tRNA.  Track 4: rRNA.  Innermost track is GC skew with positive skew shown in black and 

negative in grey. 
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Appendix 3.7. Circular map of L. alexanderi serovar Manzhuang.  Track 1: Coding sequences on 

the forward strand.  Track 2: Coding sequences on the reverse strand.  Track 3: tRNA.  Track 4: 

rRNA.  Innermost track is GC skew with positive skew shown in black and negative in grey. 
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Appendix 3.8. Circular map of L. weilii serovar Mengding.  Track 1: Coding sequences on the 

forward strand.  Track 2: Coding sequences on the reverse strand.  Track 3: tRNA.  Track 4: 

rRNA.  Innermost track is GC skew with positive skew shown in black and negative in grey. 
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Appendix 3.9. Circular map of L. interrogans serovar Pomona.  Track 1: Coding sequences on 

the forward strand.  Track 2: Coding sequences on the reverse strand.  Track 3: tRNA.  Track 4: 

rRNA.  Innermost track is GC skew with positive skew shown in black and negative in grey. 
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Appendix 3.10. Circular map of L. interrogans serovar Pajitno.  Track 1: Coding sequences on 

the forward strand.  Track 2: Coding sequences on the reverse strand.  Track 3: tRNA.  Track 4: 

rRNA.  Innermost track is GC skew with positive skew shown in black and negative in grey. 
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Comparison 
Strain 

Sequenced Strain 
Comparison 

Strain 
L. 

interrogans 
Bratislava 

L. 
interrogans 

Ictero
1 

L. 
interrogans 

Pomona 

L. 
interrogans 

Prajitno 

L. 
alexanderi 

Manzhuang 

L. 
borgpetersenii 
Hardjo-Bovis 

L. kirschneri 
Grippotyphosa 

L. weilii 
Mengding 

L. fainei 
Hurstbridge 

L. biflexa 
Andamana 

L. interrogans 
Bratislava 

  
15 (1347) 12 (1354) 6 (1361) 36 (1302) 19 (1358) 20 (1338) 40 (1288) 149 (1411) 134 (1358) 

L. interrogans 
Bratislava 

L. interrogans 
Ictero

1 8 (1347) 
  

13 (1348) 4 (1352) 37 (1288) 15 (1308) 25 (1326) 38 (1274) 150 (1399) 136 (1345) 
L. interrogans 

Ictero
1 

L. interrogans 
Pomona 

13 (1354) 21 (1348) 
  

14 (1363) 35 (1299) 9 (1359) 16 (1344) 37 (1284) 145 (1409) 132 (1357) 
L. interrogans 

Pomona 

L. interrogans 
Prajitno 

10 (1361) 15 (1352) 17 (1363) 
  

35 (1297) 17 (1361) 24 (1337) 42 (1286) 147 (1405) 133 (1353) 
L. interrogans 

Prajitno 

L. alexanderi 
Manzhuang 

48 (1302) 57 (1288) 46 (1299) 43 (1297) 
  

41 (1294) 36 (1323) 18 (1269) 140 (1372) 126 (1356) 
L. alexanderi 
Manzhuang 

L. borgpetersenii 
Hardjo-Bovis 

22 (1358) 25 (1308) 11 (1359) 16 (1361) 31 (1294) 
  

22 (1337) 36 (1282) 148 (1417) 135 (1357) 
L. 

borgpetersenii 
Hardjo-Bovis 

L. kirschneri 
Grippotyphosa 

24 (1338) 36 (1326) 19 (1334) 24 (1337) 28 (1323) 24 (1337)   28 (1298) 140 (1424) 121 (1382) 
L. kirschneri 

Grippotyphosa 

L. weilii 
Mengding 

61 (1288) 67 (1274) 58 (1284) 59 (1286) 26 (1269) 55 (1282) 45 (1298)   155 (1345) 127 (1322) 
L. weilii 

Mengding 

L. fainei 
Hurstbridge 

88 (1411) 98 (1399) 86 (1409) 83 (1405) 69 (1372) 84 (1417) 79 (1424) 75 (1345)   113 (1430) 
L. fainei 

Hurstbridge 

L. biflexa 
Andamana 

116 (1358) 127 (1345) 115 (1357) 112 (1353) 99 (1356) 115 (1357) 105 (1382) 89 (1322) 151 (1430)   
L. biflexa 

Andamana 

Appendix 4.1. Total number of functional gene variations for the ten sequenced strains when compared between themselves.  The number of shared functions 

between species shown in brackets. 1 L. interrogans Icterohaemorrhagiae. 



175 
Appendices        Appendix Four 

Comparison 
Strain 

Sequenced Strain 
Comparison 

Strain 
L. 

interrogans 
Bratislava 

L. 
interrogans 

Ictero
1 

L. 
interrogans 

Pomona 

L. 
interrogans 

Prajitno 

L. alexanderi 
Manzhuang 

L. 
borgpetersenii 
Hardjo-Bovis 

L. kirschneri 
Grippotyphosa 

L. weilii 
Mengding 

L. fainei 
Hurstbridge 

L. biflexa 
Andamana 

L. interrogans 
Bratislava 

  
98.32 98.19 98.84 93.94 97.07 96.82 92.73 85.62 84.45 

L. interrogans 
Bratislava 

L. interrogans 
Ictero

1 98.32 
  

97.54 98.61 93.2 97.03 95.6 92.39 84.94 83.64 
L. interrogans 

Ictero
1 

L. interrogans 
Pomona 

98.19 97.54 
  

97.78 94.13 98.55 97.46 93.11 85.91 84.6 
L. interrogans 

Pomona 

L. interrogans 
Prajitno 

98.84 98.61 97.78 
  

94.33 97.63 96.53 92.72 85.93 84.67 
L. interrogans 

Prajitno 

L. alexanderi 
Manzhuang 

93.94 93.2 94.13 94.33 
  

94.73 95.39 96.65 86.78 85.77 
L. alexanderi 
Manzhuang 

L. 
borgpetersenii 
Hardjo-Bovis 

97.07 97.03 98.55 97.63 94.73 
  

96.67 93.37 85.93 84.44 
L. 

borgpetersenii 
Hardjo-Bovis 

L. kirschneri 
Grippotyphosa 

96.82 95.6 97.46 96.53 95.39 96.67   94.68 86.67 85.95 
L. kirschneri 

Grippotyphosa 

L. weilii 
Mengding 

92.73 92.39 93.11 92.72 96.65 93.37 94.68   85.4 85.96 
L. weilii 

Mengding 

L. fainei 
Hurstbridge 

85.62 84.94 85.91 85.93 86.78 85.93 86.67 85.4   84.42 
L. fainei 

Hurstbridge 

L. biflexa 
Andamana 

84.45 83.64 84.6 84.67 85.77 84.44 85.95 85.96 84.42   
L. biflexa 

Andamana 

Appendix 4.2. Percentage of shared functional genes amongst all ten sequenced strains when compared between themselves.  1L. interrogans 

Icterohaemorrhagiae 
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Gene 

Strain 

L. 
borgpetersenii 
Hardjo-Bovis 

L. 
Interrogans 
Bratislava 

L. kirschneri 
Grippotyphosa 

L. interrogans 
Icterohaemorrhagiae 

L. 
alexanderi 

Manzhuang 

L. 
interrogans 

Pomona 

L. 
interrogans 

Prajitno 

L. biflexa 
Andamana 

L. weilii 
Mengding 

L. fainei 
Hurstbridge 

gyrB + + + + + + + + + + 

fadD + + + + B/H/L + + + - B/H/L/M/R 

caiA 2 2 2 2 5 - - 5 - 5 

caiB + + + + + + + + - + 

pntA + + + + + + + + - + 

glmU + + + + + + + + - + 

sucA + + + + + + + + - + 

tpiA + + + + + + + + - + 

pfkA + + + + + + + + - + 

pfkB - + + + - + + - - - 

mreA - + + + - + + - - - 

mreB, C, D + + + + + - - + - + 

flaB 
(1/2/3) 

+ + + + + - - + - + 

lig + + + + - - - + - + 

fliG + + + + - - - + - 3 

loa22 + + + + + + + - + - 

adk + + + + + - - + - + 

icdA + + + + + - - + - + 

rrs2 - - - - - - - - - - 

secY + + + + + - - + - + 

lipL21 + + + + + - - + - + 
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Gene 

Strain 

L. 
borgpetersenii 
Hardjo-Bovis 

L. 
Interrogans 
Bratislava 

L. kirschneri 
Grippotyphosa 

L. interrogans 
Icterohaemorrhagiae 

L. 
alexanderi 

Manzhuang 

L. 
interrogans 

Pomona 

L. 
interrogans 

Prajitno 

L. biflexa 
Andamana 

L. weilii 
Mengding 

L. fainei 
Hurstbridge 

lipL31 + + + + + - - + - + 

lipL32 + + + + + + + - + + 

lipL36 + + - + + - - - - - 

lipL41 2 2 + 2 + - - - - 2 

lipL45 + + + + + - - + - + 

lipL48 + + + + + - - + - - 

lipL71 + + + + + - - + - + 

flaA (1/2) + + + + + - - + - + 

ompL1 + + + + + + + - + 2 

 

Appendix 5.1. Individual gene presence within all ten sequenced strains.  Numbers correspond to presence of >1 copy of the gene.
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