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Abstract 

 

The reduction of imino bonds produces highly valuable amine products of 

significance in a range of industries. The development of new systems for their 

production relies on knowledge of the mechanisms for these catalytic processes. 

While the mechanisms have been widely studied for metal catalysed asymmetric 

hydrogenation there is much less work for the emerging area of metal−Brønsted 

acid cooperative catalysis. Chapter 1 describes the recent developments in both 

metal catalysed and organocatalysed asymmetric reduction of imines with an 

emphasis on the mechanistic details. This will be followed by the mechanistic 

studies carried out for the reduction of imino bonds. 

 

Chapter 2 describes the development of a new cooperative achiral 

metal−Brønsted acid system for the asymmetric reduction of imines with high 

ee’s. There then follows the mechanistic study which shows that the chiral 

Brønsted acid plays a dual role in protonating the catalyst and mediating the key 

hydride transfer step, through hydrogen bonding. The hydrides of the catalyst are 

shown to be formed in a mixture of cis and trans orientations but only the cis 

hydride carries out the enantioselective reaction. 

 

Chapter 3 describes the work carried out to identify the existence of a 

supramolecular structure involving the imine, Brønsted acid and catalyst. 

Through a combination of NMR measurements and subsequent constrained 

computational calculations the structure of this tertiary complex is determined. 

From this the cis-SIrSN hydride is show to carry out the hydride transfer step with 

the aid of non-covalent interactions. 

 

Chapter 4 looks at how the levels of conjugation present in a range of 

cyclometallated iridium (III) complexes influences their reactivity towards a 

range of hydrogen transfer reactions. Computational studies on the hydride 

transfer step for imine reduction show a combination of steric and electronic 

factors affect reactivity. Crucially, the ability of the ligand to stabilise the 

negative charge build up on the metal centre allows for higher conversions. 
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B3LYP Becke, three-parameter, Lee-Yang-Parr exchange-
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conv.  
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DKR dynamic kinetic resolution 
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ee     enantiomeric excess 
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GC-MS         gas cromathography-mass spectrometry 

h          hour(s) 
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HMBC heteronuclear multiple-bond correlation spectroscopy 

HOMO highest occupied molecular orbital 
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HRMS high resolution mass spectrometry 
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Hz   hertz 
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IR infrared 

J coupling constant value 

K Kelvin 
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Me        methyl 
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Chapter 1 

 

Introduction 

 

1.1 Importance of chiral amines 

 Chiral amines are an important functionality present in an array of 

bioactive compounds as well as having uses in agrochemical, pharmaceutical 

and materials products. Around one third of prescription drugs on the market 

are chiral with 40% of these chiral drugs on the market containing an amine 

moiety.
1,2

 Below (Figure 1.1) is shown some important chiral amines that are 

used in the pharmaceutical industry, repaglinide is used in the treatment of type 

II diabetes and works by stimulating the release of insulin from the pancreas.
3
 

Rivastigmine is a parasympathomimetic or cholinergic agent for the treatment 

of Alzheimer’s disease while tamsulosin marketed under the name Flomax, is 

used for the treatment of chronic prostatitis.
4,5

 

 

 

Figure 1.1: Examples of chiral amines used in the pharmaceutical industry. 
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 Chiral amines have also found utility in asymmetric catalysis. Amino 

catalysts have been demonstrated for a variety of reactions.
6,7

 In particular, L-

proline coupled with DMTC (5,5-dimethyl thiazolidinium-4-carboxylate) was 

shown to catalyse the direct asymmetric aldol reaction. A variety of aldehydes 

and unmodified ketones were reacted giving excellent regio-, diastereo-, and 

enantioselectivity to form anti-1,2-diols.
8
 Amines are also prevalent through a 

range of ligands
9,10

 with one of the most successful being DPEN (1,2-diphenyl-

1,2-ethylenediamine).
11

 

 

1.2 Methodology for chiral amine synthesis 

The traditional route to amines yields the achiral product employing 

borohydrides as the redundant. The development of processes to access chiral 

amines with low wastage has been highlighted as a key green chemistry 

research area.
12

 This has led to a number of methodologies being developed to 

form chiral amines.  

Transamination is a process that exploits enzymatic catalysis. The 

process was developed to form chiral amines from prochiral ketones in the 

presence of transaminases and cofactor pyridoxal phosphate 1 (Scheme 1.1).
1,13

  

Due to the reaction being carried out in an aqueous (aq.) solution, the resultant 

amine products are poorly soluble; therefore low concentrations of products are 

attained. Recent work in this area has seen more complex enzymatic examples 

reported making use of direct evolutions of the enzymes to fine tune the 

catalyst.
14

 The combination of enzyme catalysis  and metal co-catalysts has 

also been explored with yields of single enantiomers approaching 100% and a 
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recent mechanistic study has shown that for the Shvo catalyst an inner-sphere 

mechanism with metal coordination of the racemic amine is crucial in the 

hydrogen transfer step.
15,16

  

 

Scheme 1.1: Transamination of prochiral ketones by use of transaminase and cofactor 1. 

 

The resolution of amines via crystallisation of diastereomeric amine 

salts with chiral carboxylic acids such as (R,R)-tartaric acid 2 and (R)-mandelic 

acid 3 has been shown to form chiral amines (Scheme 1.2). However, this 

method suffers from a maximum yield of 50% for each enantiomer.
1
 

 

 

Scheme 1.2: Resolution of amines via crystallisation of diastereomeric amine salts. 

 

This concept of resolution was extended to the kinetic resolution of 

amines by a nonenzymatic acylation catalyst (Scheme 1.3).
17

 A ferrocene 



Chapter 1: Introduction  

 
 

4 
 
 

derivate 4 was used as an acylation catalyst for primary amines but again 

suffers from a maximum yield of 50%.  

Scheme 1.3: Kinetic resolution of amines by a nonenzymatic acylation catalyst 4. PPY= 4- 

pyrrolidinopyridine. 

 

While asymmetric catalysis has proven an important method in the 

synthesis of chiral amines the asymmetric hydrogenation of imines remains an 

underused method in industry.
1
 Ideally a one pot synthesis to access chiral 

amines from the prochiral ketone would yield a greener, more efficient process 

that could utilise a catalyst and a green reductant in H2 (Figure 1.2).  

 

 

Figure 1.2: General method for imine hydrogenation. 

 

In comparison to asymmetric imine hydrogenation, the asymmetric 

hydrogenation of ketones and olefins by homogeneous metal catalysis is an 

extensively researched area, with numerous publications utilising a range of 
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metals and ligands.
18,19

 This is due to the asymmetric hydrogenation of imines 

posing different challenges: 

 The C=N bond has the ability to isomerise unlike the C=O bond, with a 

small energy barrier between the E and Z isomers.  

 The C=N bond also possesses a higher lowest unoccupied molecular 

orbital (LUMO) compared to carbonyl and olefins, making reduction 

more difficult.  

 The net hydrogenation processes for the reduction of C=N or C=O 

bonds has a smaller thermodynamic gain (~60 kJ mol
-1

), relative to  an 

olefinic bond (~130 kJ mol
-1

).
20

  

 Olefins favour side on η
2
 binding which allows effective overlap of the 

orbitals with the metal centre. However, imines and ketones tend to 

bind to the metal catalyst η
1
 through the lone pairs on the N and O 

giving a less effective orbital overlap.  

 Catalyst deactivation by coordination of both imine and the amine 

product (amines>alcohols>saturated hydrocarbons) also add to the 

challenges of a successful catalytic cycle.
20

  

 

Despite the drawback of this method the asymmetric hydrogenation of 

imines is a desirable process due to the atom economy, green reductant in H2 

and the straightforward nature of the methodology. The thesis will review the 

development of both metal and organocatalysed asymmetric hydrogenations of 

imines. This will then move on to the looking at the emerging area of 

cooperative catalysis, combining a metal catalyst with an organocatalysis. 
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There will be an emphasis on the mechanistic studies of the systems that have 

been developed. 

 

1.3 Metal catalysed asymmetric hydrogenations of imines 

The first catalytic enantioselective hydrogenation of imine was reported 

by Scorrano in 1975.
21

 An enantiomeric excess (ee) of 22% was achieved for 6 

by use of a rhodium DIOP (2,2-Dimethyl-4,5- 

(diphenylphosphino)dimethyl)dioxolane)) complex (Scheme 1.4).  

 

 

Scheme 1.4: First reported enantioselective imine hydrogenation by Scorrano. 

 

This early result wasn’t improved dramatically until the 1990s when 

examples like Buchwald’s titanocene 7 catalyst were reported. Cyclic imines 

were hydrogenated in good yields and enantioselectivities (ee’s) of up to 99% 

(Scheme 1.5).
22
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Scheme 1.5: Buchwalds titanocene catalyst. 

 

This substrate scope was then extended into acyclic imines and the 

mechanism was deduced by kinetics to show it being consistent with a fast 1,2-

insertion step in a classical manner. The imine reacts with titanium hydride 

followed by the slow reaction of the amide complex with dihydrogen; this 

produces the amine and regenerates the titanium hydride.
23

  

Since this first example a wide range of chiral catalysts have been 

reported utilising late row transition metals.
24,25,26,27

  So far iridium has proven 

the most successful metal with regards to enantioselectivity but rhodium and 

ruthenium catalysts have found utility as well.    

 

1.3.1 Chiral rhodium metal catalyst 

Following the first rhodium catalyst reported by Scorrano a significant 

improvement was not reported until Bakos in 1991.
28

 The system made use of a 

Rhodium(I)–sulfonated-bdpp (bdpp = 2,4-bis(diphenylphosphino)pentane) 

catalyst in an aqueous–organic two-phase solvent system. High pressures of 70 

bar H2 were required to hydrogenate 5 giving an excellent ee of 94% in 24 h.  

Buriak and Osborn reported in 1996 that exploiting the presence of 

reverse micelles formed by AOT (AOT: sodium bis(2-ethylhexyl) 

sulfosuccinate) with the [Rh((S,S)-BDPP)(NBD)]ClO4 catalyst  (NBD: 
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norbornadiene) 6 could be obtained with 87% ee. Lowering the temperature 

from 25 °C to 4°C increased the ee to 92%, under 70 bar H2. From these early 

examples a range of diphosphine ligands have since proven successful with 

rhodium gaining ee of up to 95%.
29,30

 

Work within the Xiao group described that an Rh-TsDPEN catalyst 

with an AgSbF6 counterion could access amongst the highest ee’s to date. The 

system reduced a range 3,4-dihydroisoquinolines and 3,4-dihydro-6,7-

dimethoxyisoquinolines, giving excellent yields and ee, tolerating both electron 

donating and withdrawing groups (Scheme 1.6).
31

 The bulky SbF6
-
 anion was 

shown to be key to the success. Changing to a smaller coordinating anion such 

as chloride reduced the activity of the system likely due to the anion binding to 

the metal centre therefore hindering hydride formation. 

 

 

Scheme 1.6: Asymmetric hydrogenation of cyclic imines using a Rh-TsDPEN catalyst with an 

SbF6
-
 counterion. 

 

Noyori and co-workers had previously shown how an anion can change 

reactivity. When replacing the chloride in 9a (Scheme 1.7) with a triflate anion 



Chapter 1: Introduction  

 
 

9 
 
 

9b the system could be changed from asymmetric transfer hydrogenation 

(ATH) to asymmetric hydrogenation of ketones.
32

  

 

 

Scheme 1.7: ATH vs AH anion effect. 

 

1.3.2 Chiral ruthenium catalysts 

Noyori type catalysts of ruthenium diphosphine/diamine catalysts were 

reported by Morris for the asymmetric hydrogenation of imines.
33

 The catalyst 

11 was capable of hydrogenating both N-alkyl and N-aryl acyclic imines with 

ee’s up to 71% (Figure 1.3). Key to the reaction working is the use of the base 

KOiPr, which is likely to be involved in aiding the loss of the chloride to form 

HCl, allowing the catalyst to form an active dihydride species.  

 

 

Figure 1.3: Noyori’s type catalyst used for the asymmetric hydrogenation of imines. 
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 Cobley also investigated the use of Noyori type catalysts, using 12.
34

 

For N-aryl imines 12 gave a best result of 91% ee at 65 °C under 15 bar H2 at 1 

mol% catalyst, in the presence of 1 eq of base in iPrOH.  

Chan et al has also shown the hydrogenation of quinolones using a Ru 

catalyst (Scheme 1.8) in ionic liquids, demonstrating a phosphine free 

system.
35

 Using the system shown below a wide range of substrates were 

hydrogenated tolerating a range of electron withdrawing and donating groups. 

With the cyclic amine 14 being achieved in 99% ee. An ionic mechanism was 

predicted with a proton transfer step to form an iminium ion, followed by a 

hydride transfer to an iminium to form the chiral amine.  

 

 

Scheme 1.8: Chan’s Hydrogenation of quinolones. 

 

1.3.3 Chiral iridium metal catalysts 

In comparison to asymmetric rhodium hydrogenation catalysis there is 

a larger number of examples of iridium catalysis.
25

 The earliest example of 

enantioselective iridium catalysed asymmetric imine hydrogenation was 

reported by Spindler.
36

  A series of diphosphine ligands where tested with 

[Ir(COD)Cl]2, with the catalyst being formed in situ. Use of the ligand (S,S)-

BDPP yielded 84% ee for the reduction of imine 15, with 1 mol% catalyst 
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loading, 20 bar H2 at 0 °C (Scheme 1.9).  The bulky N-aryl group was needed 

in order for a high ee to be achieved. This is probably due to the need for 

restrictive movement along for the N-aryl bond.  

 

 

Scheme 1.9: First reported example of iridium catalysed asymmetric imine hydrogenation. 

 

Osborn reported at the same time, the discovery of a series of iridium(III)-

diphosphine-monohydrido complexes 16 (Figure 1.4) that were able to 

hydrogenate imines. Ligands DIOP and BDPP were found to be the most 

effective diphosphines for the reaction. With lower catalyst loadings of 0.2 

mol% the enantioselectivities were lower, giving 22-63% ee for hydrogenation 

of 15.  

 

 

 

Figure 1.4: Osborn’s iridium-diphosphine catalyst. 

 

Since these early examples a range of phosphine ligands have been 

used to carry out the asymmetric hydrogenation of imines, with increasing 

yields and ee’s. 
25,27
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Tani demonstrated the use of the iridium(I)-TolBINAP catalytic system to 

hydrogenate imine 17 (Scheme 1.10).
37

  A good enantioselectivities of 90% ee, 

was achieved at 1 mol% catalyst, 60 bar H2 and 20 
o
C in MeOH. Interestingly, 

addition of 5 mol% of a protic amine, such as benzylamine, increased both the 

catalytic activity and the enantioselectivity.  

 

 

Scheme 1.10: Ir-TolBINAP catalyst for the asymmetric hydrogenation of 17. 

 

Work by Zhou showed a successful route to cyclic chiral amines using 

a system of [Ir(COD)Cl]2/MeO-Biphep/I2 to reduce quinolines to 

tetrahydroquinoline. This showed high yields and ee of up to 96% with a wide 

substrate range.
38

  

 

1.4 Mechanistic considerations for chiral metal asymmetric hydrogenation 

of imines  

Previous work with catalysts used in the asymmetric hydrogenation of 

ketones has shown that the Noyori metal ligand bifunctional mechanism 

(Figure 1.5) is normally observed.
39,40

 This mechanism for ketone 
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hydrogenation occurs without direct complexation of the substrate to the metal 

centre and has been shown through nuclear magnetic resonance (NMR) spectra 

and computational calculations to proceed through a six membered transition 

state as shown below. The two hydrogens are transferred simultaneously on to 

one face of the substrate.  

 

Figure 1.5: Noyori metal ligand bifunctional transition state for ketones. 

 

The calculated structures also show that a π-CH interaction from a 

cymene C-H to the aromatic ring of the substrate can account for the high 

selectivity for the re-face (Figure 1.5). While this mechanism prevails for 

ketones it does not necessarily occur for imines due to the differences outlined 

earlier.  

Casey carried out work using a catalyst similar to that of Shvo,
41

 

showing that the mechanism of hydrogenation of benzaldehyde occurs 

simultaneously. The isotope effects suggest that the proton and hydride are 

transferred simultaneously while also regenerating the catalyst.
42

 Work with 

imine hydrogenation also suggests a metal ligand bifunctional mechanism but 

with the electronic nature of the imines influencing the rate determining step. 

For electron deficient imines the limiting step is the concerted addition while 

electron rich imines are subject to back hydrogen transfer to ruthenium. The 

limiting step then becomes the coordination of the amine to Ru where 
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isomerisation of the imine is possible before hydrogen transfer forms the 

product.
43

 

Few studies have been carried out purely on the mechanism of the 

homogenous hydrogenation of imines. The suggested mechanisms fall into two 

categories; the classical pathway and the ionic pathway. Scheme 1.11 below 

shows a representation of the classical pathway, this involves coordination of 

hydrogen, oxidative addition, and coordination of the substrate prior to hydride 

transfer, followed by reductive elimination to release the product (Scheme 

1.11). 

 

 

 

Scheme 1.11: General scheme for imine hydrogenation via a classic pathway; L: ligand; S: 

solvent. 
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Work by both James
44

 and Wilkinson
45

 independently studied the case 

of rhodium-phosphine complexes. It was shown that a hydrogen bonding 

alcohol solvent was needed to interact with the imine to promote η
2
-C,N-

bonding of the substrate. The alcohol solvent is likely to be bound to the metal 

therefore facilitating imine binding. This classical mechanism is also observed 

in Buchwald’s titanocene catalyst discussed earlier.
22,23

 

Support for the ionic mechanism come from work by Norton. He has 

shown that a CpRu(II)(P^P) catalyst will catalyse the hydrogenation of 

iminium ions through an ionic mechanism for half sandwich metal 

complexes.
46

  Through stoichiometric reactions with the metal hydride and a 

non-coordinating solvent in the presence of H2, the mechanism was deduced to 

involve coordination of H2 to the Ru cation (Scheme 1.12). This is then 

followed by heterolytic cleavage to form a proton and a hydride, with the 

resulting hydride being transferred to the imnium cation in a rate limiting and 

enantioselective determining step (Scheme 1.12). The mechanism can be 

described as an outer-sphere mechanism and does not involve imine binding to 

the metal centre in contrast to the classical mechanism. Moderate 

enantioselectivities were reported for a methyl aryl pyrrolidinium salt (up to 

60% ee). 
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Scheme 1.12: Norton’s proposed ionic mechanism. 

 

Norton also monitored the reaction by 
1
H NMR, observing the 

formation of monohydride but not dihydrogen or dihydride species, confirming 

the hydride transfer step as the limiting step. They also determined that the 

smaller the chelate ring size, the higher the reaction rate is. This means the 

smaller the ring the more space for the iminium cation to approach the hydride. 

Stoichiometric experiments carried out by both Fan
35

 and Norton
47

 

support the ionic mechanism. Fan reported no reduction for a neutral imine 

even in the presence of an excess of the hydride but upon protonation the 

reaction occurs to give the product. Norton determined that the hydride transfer 

rate is first-order for both the Ru-hydride and the iminium cation, being second 

order overall, supporting the ionic mechanism. 

Bäckvall’s work on stoichiometric transfer hydrogenation of imines 

also shows a step wise mechanism that proceeds via protonation of the 

imine.
48,49

 Through kinetic and isotope studies it was shown that concerted 
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hydrogen transfer was not the rate determining step, giving support to the 

stepwise ionic mechanism rather than the concerted alternative. It was 

proposed that ring slippage from η
5
 to η

3
 allowed imine co-ordination and was 

the rate determining step (Scheme 1.13). 

 

 

Scheme 1.13: Ring slippage mechanism proposed by Bäckvall. 

 

Work by Bullock has shown an ionic mechanism with the H
+
/H

-
 

transfer occurring in separate steps for ketones. The system used, looked at a 

[W(Cp)(CO)2-(PMe3)(H)2]
+
 catalyst and a triflate counter ion.

50
 Using 

stoichiometric reaction with ketones and following the reaction with 
1
H NMR, 

a key [W(Cp)(CO)2(PR3)(Et2CHOH)]
+
 species was observed demonstrating the 

protonation of the ketone in a stepwise manner. This was then followed by 

hydride transfer with the rate limiting step being the release of the product; the 

catalyst was then regenerated by uptake of H2. 
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Rauchfuss has demonstrated that the 16e 

[Cp*Ir(H2NCHPhCHPhNTs)]
+
 complex can be converted into a range of 

organometallic Lewis acids upon reaction with Brønsted acids, displaying a 

wide range of reactivity.
51-53

 These generated cationic derivatives are 

sufficiently electrophilic to activate H2 directly; conversion to amino hydrides 

is then possible with the ability to reduce ketones and imines. This 

demonstrates that that the ligands can play a large part in the activation of 

dihydrogen when assisted by a Brønsted acid. 

 

1.5 Organocatalysis asymmetric imine reduction 

An alternative method for producing chiral amines makes use of 

organocatalysis rather than the metal catalysts so far described.  A wide range 

of organocatalysts have been shown to catalyse the asymmetric transfer 

hydrogenation of imines.
54-56

 

Organocatalysed asymmetric imine reduction makes use of 

organocatalysts typically with Hantzsch esters (HEH) employed as the 

hydrogen source. Instead of using metal catalysts, a range of chiral Brønsted 

acids have been shown to catalyse reactions. Brønsted acids based on chiral 

thioureas,
57

 diols
58

 and phosphates have been reported. It is however the chiral 

phosphoric acids which have found the most applications in imine reduction. 

The groups of List,
59

 Rueping
60

 and MacMillan
61

  have all published results on 

a range of substrates including examples of direct asymmetric reductive 

amination (DARA). 
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Rueping’s work focused on the reduction of acyclic imines achieving 

moderate to good yields and ee’s of around 70%. The proposed mechanism 

involves the ion pair formation of a protonated iminium ion with the chiral acid 

followed by hydride transfer from the Hantzsch ester. The possibility of ion 

pair formation can be seen in the solvent screening, when polar protic solvents 

were used no reduction took place. The best results were seen in the non-polar 

solvents such as toluene and benzene. The non-polar solvents will solvate the 

ions least and allow for the biggest chance of a successful ion pair formation. 

The initial work from List focused on acyclic imines also but achieved 

higher ee’s and yields by using the sterically congested tri-isopropyl aromatic 

substituted phosphoric acid. The system had a lower loading of the catalyst of 1 

mol %, shorter reaction times and a lower temperature of 35˚C than previous 

work. The substrate scope was also extended with the system tolerating both 

aromatic and aliphatic imines.  

 

1.5.1 Organocatalysed DARA 

List demonstrated that imine generation from a pro-chiral ketone could 

be done in tandem with the imine reduction thus achieving DARA.
62

 

MacMillan also showed a similar concept but using the bulkier triphenylsilyl 

substituent HB with a higher catalyst loading of 10 mol% (Scheme 1.14).
61
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 Scheme 1.14: Organocatalytic reductive aminations. 

 

The results show a range of substrates tolerating electron withdrawing 

groups as well as electron donating groups with high ee’s of 95%; the system 

was also applied to an alanine amino ester with 82% yield and 97% ee 

achieved for 20 (Scheme 1.15). When the corresponding ethyl substituent was 

used however, the ee was reduced to 79% for 21, this was rationalised by use 

of a computational model. It showed that if R= Me the Si face was exposed but 

upon changing to R= Et the extra unit blocks the approach of the hydride so the 

extra methyl has to be positioned away from the catalyst framework therefore 

blocking the si-face.  
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Scheme 1.15: Rationale of stereochemical outcome for the MacMillan system. 

 

1.5.2 Mechanistic considerations of organocatalysts 

Further to this basic modelling of the mechanism there have been much 

more extensive studies undertaken by Himo
63

 and Goodman.
64

 Both propose a 

three point model to account for the high selectivity observed with the 

proposed possible modes of interactions shown below (Figure 1.6) making use 

of hydrogen bonding. 

 

 

Figure 1.6: Proposed possible interactions of hydride delivery. 

 

The initial protonation of the imine by the acid to form the iminium 

phosphate ion pair was shown to be fast with a barrier of 1-1.5 kcal mol
-1

. 

From this, model (a) is shown to have the lowest barriers of reaction in 
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comparison to (b) and (c), and the value of just below 20 kcal mol
-1

 is in 

agreement with the reported experimental conditions.  

The origin of the enantioselectivity is attributed to the steric effects of 

the bulky aryl groups on the phosphate; the imine shown above is seen by 
1
H 

NMR to be in the E conformation but the barrier between E and Z is calculated 

to be slightly higher than 2 kcal mol
-1

. This is low enough so that on the 

timescale of the reaction they will interconvert and both can therefore feasibly 

take place in the key hydride transfer step. In the case of this imine the steric 

repulsion between the aryl rings of the iminium and the mesityl groups of the 

catalyst are responsible for the selectivity observed. The hydride transfer then 

takes place on the Re face of the Z conformation of the iminium ion - this is 

more compact and fits better in the binding pocket of the phosphate in 

comparison to the E conformation. The Z conformation minimises these steric 

interactions and is therefore the lower energy transition state.   

When the reaction is considered with the cyclic 3,4-

dihydroquinolinium, the planar nature of the compound and its rigidity lead it 

to having the transfer occurring on the opposing Si face. This minimises the 

unfavourable interactions with the mesityl groups of the phosphate. 

Goodman’s work also looked at the same reaction and comes to similar 

conclusions supporting a three point model of interaction. As in the work by 

Himo, Figure 1.16(a) is the likeliest pathway and helps explain the 

enantioselectivity with the two hydrogen bonds and steric interactions. The 

paper also proposes that in the case of Rueping’s work and the majority of 

MacMillan’s, the Z isomer of the imine is the likeliest form for the transition 
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state during the hydride transfer, with the E isomer being important as a minor 

pathway for substrates with different steric constraints e.g.  3,4-

dihydroquinolinium.  

 

1.6 Metal−Brønsted acid cooperative catalysis 

Previous examples have shown that combining a metal catalyst with a 

strong acid helps to protonate the catalyst, allowing it to readily activate 

hydrogen. Brønsted acids meanwhile, have been demonstrated as ideal 

activators of C=N bonds in asymmetric transfer hydrogenation. From this, the 

combination of a metal catalyst working with a Brønsted acid has opened up 

new ways of reducing the imino bond.
65-67

 

The concept of using chiral Brønsted acids was taken by the group and 

combined with the rhodium catalytic system that had been used to hydrogenate 

cyclic imines.
68

 The previous system had not been able to hydrogenate the 

acyclic imines giving only 3% ee. The metal was changed to iridium, as this 

had shown the highest activity for the acyclic imines (Scheme 1.16). Once the 

16e complex was protonated by the chiral phosphoric acid to form 22, good 

yields and high enantioselectivity were observed for a range of aromatic imine 

substrates. Aliphatic imines were also hydrogenated along with toleration of 

functionality including olefins and cyclopropyl rings with ee’s up to 98%. 
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Scheme 1.16: Asymmetric hydrogenation of aromatic and aliphatic imines 

 

An interesting trend was observed with respect to the size of the aryl 

groups on the phosphoric acid. When the steric size of the group was increased 

as well as noting a higher ee, a change in the product configuration from (R) to 

(S) was seen. If the diamine ligand had its configuration also switched from 

(S,S) to (R,R), the product configuration was again swapped but with much 

lower yields and ee’s than previously seen (98% vs 40% ee).  

Rueping took the concept further when he reported the first example of 

an achiral metal catalyst combined with an (R)-N-triflylphosphoramide 

Brønsted acid. (Scheme 1.17).
69

 The system carries out kinetic discrimination 

by the Brønsted acid deactivating the (S,S)-24 form of the catalyst, leaving the 

(R,R)-24 to carry out the enantioselective reaction. The hydrogenation of 

quinaldine was achieved with 96% yield and 82% ee. 
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Scheme 1.17: Brønsted acid differentiated metal catalysis by kinetic discrimination. 

 

The Beller group in 2011 reported an iron based cooperative transition-

metal and chiral Brønsted acid catalytic system for the asymmetric reduction of 

imines.
70

 Using iron catalyst 26 and Brønsted acid 27 a range of imines were 

hydrogenated giving good yields and high selectivities (92% ee in the case of 

28). 
31

P NMR was used to probe the mechanism and the structure shown below 

involving a three body interaction (Scheme 1.18) was postulated to be the key 

intermediate in the hydride transfer step. 
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Scheme 1.18: Asymmetric hydrogenation of imines using an iron catalyst and 

Brønsted acid. 

 

1.6.1 Metal catalysed DARA 

One of the most desirable pathways to the production of chiral amines 

is the DARA of ketones, utilising H2 gas to perform the key hydrogenation 

step.
1
 This method has major advantages in comparison to other employed 

routes due its atom efficiency and the ability for it to be carried out in one pot 

without the need to isolate potentially unstable imine intermediates. 

  Previous reported work on DARA using metal catalysis has been 

carried out but with a limited substrate range and with only a few examples 

involving homogeneous catalysis.
24

 Blaser reported the first example of DARA 
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for the synthesis of (S)-metolachlor from 29 in 79% ee using an Ir-xyliphos  

catalyst (Ir-30) but this was an isolated example and no substrate scope was 

examined (Scheme 1.19).
71

 

 

 

Scheme 1.19: First example of DARA for the synthesis of (S)-metolachlor. 

 

 Zhang reported the DARA or aromatic ketones with a system 

containing an Ir-f-binaphane catalyst with I2 and Ti(O
i
Pr)4 but this did not 

transpose to the aliphatic ketones.
72

  

Asymmetric transfer hydrogenation has also been used to achieve 

DARA of aromatic ketones and an intra-molecular example, each achieving 

excellent selectivity but with a limited substrate scope.
73,74

 Work by Rubio-

Pérez however has achieved DARA of the aliphatic ketones using a Pd-(R)-

BINAP catalyst with excellent ee’s of 99% but this again is isolated to the 

aliphatic ketones and does not transfer to the aromatic ketones.
75

  

Recently the Beller group reported the achiral reductive amination of 

aldehydes and ketones with anilines with a simple iron catalyst of triiron 
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dodecacarbonyl.
76

 Yields of up to 97 % for 28 examples were achieved after 6 

h at 65°C under 50 bar of H2.  

Previous work in the Xiao group has led to the development of DARA 

using a chiral metal Ir(III)-diamine catalyst 31 in combination with a chiral 

Brønsted acid HA.
77,78

 A wide range of aliphatic and aromatic ketones were 

converted to chiral amines with high yields and ee’s reported, giving 97% ee 

for 32 (Scheme 1.20). The system tolerated electron withdrawing and donating 

groups as well as olefin functionality. The slight excess of phosphoric acid 

compared to the catalyst was predicted to help drive the imine formation and 

then in combination with the metal catalyst, hydrogenate the formed imine.  

 

 

Scheme 1.20: Catalytic system for DARA developed within the Xiao group. 
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Scheme 1.21: Proposed mechanism for DARA. 

 

Mechanistically the postulated mechanism is shown above (Scheme 

1.21). The condensation of the ketone and amine is aided by both HA and the 

removal of water by molecular sieves, thus forming the imine. The H2 activated 

by the catalyst 31-H2, is heterolytically cleaved forming the iminium cation and 

the catalyst hydride 31-H. The iminium phosphate ion pair is then involved in 

the hydride transfer step, where the chiral amine is formed and the catalyst 

regenerated.  This predicted mechanism is an ionic mechanism rather a 

concerted bifunctional mechanism and postulates that a three body interaction 

occurs during the hydride transfer, probably involving hydrogen bonding of 

HA to both 31-H and the iminium. 

 

. 
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1.7 Catalytic supramolecular assemblies 

The concept that a three body interaction exists between the two 

catalysts and the substrate forming a supramolecular assembly is a theory that 

will be investigated within this thesis. While there are no fully characterised 

examples in the literature involving a metal catalyst there are examples 

involving organocatalysts. Publications by both Ooi
79

 and Jacobsen
80

 have 

shown supramolecular assemblies that form active catalysts (Figure 1.22). 

 

 

Scheme 1.22: Catalytic Supramolecular Assemblies. 

 

Jacobsen showed that the Povarov reaction could be cocatalyzed by o-

nitrobenzenesulfonic acid and chiral urea 33. The assembly above allows for 
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concerted addition of a dihydrofuran in a highly selective manner giving 

excellent ee’s. The work by Ooi shows a similar principle; a chiral 

tetraaminophosphonium cation, two phenols, and a phenoxide anion self-

assemble into a catalytically active supramolecular structure 34 through 

hydrogen bonding. The complex promotes a stereoselective conjugate addition 

of acyl anion equivalents to α,β-unsaturated esters. All the components of the 

catalytic assembly participate in the selectivity defining step. This kind of 

supramolecular assembly although identified in organocatalysis has yet to be 

fully confirmed with the involvement of a metal catalyst. 

 

1.8 Aims of the thesis 

 The introduction has described the methodology developed for the 

asymmetric hydrogenation of imines with particular focus on metal catalysed, 

organocatalysed and the subsequent advance to cooperative catalysis. The 

improvements described have seen higher yields and ee’s for a range of imine 

substrates under milder conditions. The mechanistic considerations for each of 

these types of catalysis have also been described. These have shown evidence 

for metal catalysts operating via either a concerted or ionic mechanism. 

Organocatalysts however, can play a dual role in the protonation of the imine, 

followed by facilitating the hydride delivery by use of hydrogen bonding to 

both the hydride donor and iminium ion.  

While the mechanisms for both the metal catalysed and 

organocatalysed enantioselective hydrogenations have been elucidated 

individually, the mechanism of how these high selectivities are achieved in the 
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case of cooperative catalysis remains unclear. Questions remain over the exact 

role of the organocatalyst, how the chirality is transferred from the metal 

catalyst and organocatalyst to the substrate and whether this proceeds with the 

catalysts working cooperatively.  The nature of the interactions present during 

the catalysis needs examining to see if the previously postulated 

supramolecular structure, between all three compounds exists. 

In Chapter 2 the development of a cooperative system for the 

enantioselective hydrogenation of imines using an achiral metal catalyst and 

Brønsted acid is described. The mechanism is then studied for this system with 

each of the key steps examined in turn. By the use of stoichiometric reactions, 

isolation of intermediates and in-situ NMR the full mechanism is determined. 

Chapter 3 is a natural extension of the previous chapter and looks at the 

key hydride transfer step where the chirality is transferred. The nature of the 

interactions present in this step are determined by a combinations of NMR and 

computational calculations. Crucially this allows for the key active catalytic 

species to be identified. 

The work in Chapter 4 looks at how the levels of conjugation present in 

a range of cyclometallated iridium catalysts effects the levels of activity for a 

range of hydrogen transfer reactions. A full computational study is carried out 

on a selected series of the cyclometallated iridium catalysts and the key 

structural and electronic factors affecting reactivity revealed. 
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Chapter 2  

 

Cooperative Catalysis: Mechanistic Studies of an Achiral Metal 

Catalyst Coupled with Chiral Brønsted Acid for Asymmetric 

Hydrogenation of Imines  

 

2.1 Introduction  

Over the past few decades, a great deal of effort has been made on 

asymmetric reduction of imines to access optically active amines,
1-3,4-13,14-19,20-

22,23
 

 
 ubiquitous functionalities in fine chemical, agrochemical and 

pharmaceutical products.
24,25

 Among the approaches reported so far, 

asymmetric hydrogenation with cheap, clean hydrogen gas offers a totally 

atom-economic and most convenient route. However, in contrast to the great 

success in asymmetric hydrogenation of prochiral olefins and ketones,
26

 highly 

enantioselective hydrogenation of imines is still challenging. In particular, 

apart from only a few isolated examples,
27,28-30

 few catalysts are known that 

can deliver enantioselectivity higher than 80% ee in the hydrogenation of 

imines derived from aliphatic ketones.
4,6,9,10 

This chapter describes that by 

exploiting achiral-chiral metal-organo cooperative catalysis, acyclic imines, 

including aliphatic ones, can be readily hydrogenated with enantioselectivities 

up to 98% ee. Leading on from this, the mechanism is fully investigated to 

elucidate the key intermediates and explain how high selectivities are achieved. 
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The combination of metal catalysts with organocatalysts has recently 

become one of the most active and exciting topics in catalysis, which allows 

reactivity and selectivity patterns inaccessible within the field of either 

homogeneous or organo-catalysis alone.
31-37

 Previous work within the group 

showed that the chiral Cp*Ir(diamine) complex [B
+
][A

-
], generated from the 

protonation of the chiral complex
 
B with the chiral phosphoric acid HA, 

activates H2 and catalyses asymmetric hydrogenation of acyclic imines
28

 and 

reductive amination of ketones
29,30

 with excellent enantioselectivities (Scheme 

2.1).  

Scheme 2.1: Hydrogenation of imine with a cooperative catalytic system resulting from B + 

HA (Ar = 2,4,6-triisopropylphenyl). 

 

The reduction was thought to proceed via an ionic pathway involving 

metal-organo cooperative catalysis,
38,39

 in which the phosphate anion ion-pairs 

with the iminium cation,
40

 thereby influencing the face-selective addition of the 
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hydride B-H to the imino C=N bond and so the enantioselectivity. In line with 

this hypothesis, dramatic changes in enantioselectivity and reversal of amine 

configuration were observed on altering the steric bulkiness of (R)-HA, or on 

replacing the (S,S)-diamine with a (R,R)-diamine ligand in B.
28 

These results 

suggested to us that it might be possible to combine a chiral HA with an 

achiral analogue of B to effect the same asymmetric hydrogenation, with the 

former inducing chiralty at the latter.
41,42 

This was not very far-fetched, since chiral phosphoric acids had been 

demonstrated to be able to direct highly enantioselective hydride transfer from 

achiral organo-hydride donors to imines.
43-46

 In fact, while our search for the 

optimal chiral-achiral “couple” was in progress, Rueping and co-workers 

reported in 2011 that chiral N-triflylphosphoramide can induce chirality at an 

achiral analogue of B, although the enantioselectivity was low (32% ee) in the 

hydrogenation of quinoline.
47

 More recently, Beller and co-workers developed 

a highly effective catalytic system which combines an achiral iron complex 

with a chiral phosphoric acid,
6
 affording excellent ee’s (up to 97%) for aryl 

ketone-derived imines, but lower values (up to 83%) for the analogous 

aliphatic imines.   

The use of a chiral organocatalyst to induce chirality at an achiral metal 

complex, or vice versa, is interesting, not only because of “economy” in 

chirality but also due to widened catalyst space, opening up the potential for a 

range of noncovalent interactions to be exploited. Described below are our 

results on asymmetric hydrogenation of acyclic imines obtained using an easily 

accessible achiral Cp*Ir(diamine) catalyst coupled with a chiral phosphoric 
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acid and the determination of the mechanism with which the high selectivities 

are achieved.  

 

2.2 Results and discussion 

2.2.1 Identification of catalysts 

The initial catalyst screening and substrate scope of the hydrogenation was 

carried out by Dr Weijun Tang followed by joint work on the mechanism.
48

 

Following on from the initial search for a viable chiral-achiral couple of 

catalysts, a series of neutral 16e complexes exemplified by C1-C6 from cheaply 

available ethylene diamine and its derivatives (Figure 2.1).
49,50 

Mixing the 

phosphoric acid HA with C leads to its protonation at the amido nitrogen, 

forming an analogue of B
+
, i.e. the active catalyst [C

+
][A

-
] (Scheme 2.2).

 28-30, 

41,51-53 

 

Figure 2.1: Achiral metal catalysts synthesized and studied for cooperative hydrogenation (Ar 

= 2,4,6-triisopropylphenyl). 
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Scheme 2.2: Protonation at the amido nitrogen, forming the active catalyst [C
+
][A

-
]. 

 

With these complexes in hand, the asymmetric hydrogenation of a model 

imine 1a was examined under the same conditions as reported before, i.e. 20 

bar H2 in a non-polar solvent toluene at room temperature (RT), with the 

catalyst [C
+
][A

-
] formed in situ by combining C with HA.

28
 The results are 

shown in Table 1. Compared with those obtained with the chiral combination 

[B
+
][A

-
] (Scheme 2.1), the conversion and enantioselectivity were both 

decreased considerably when using the achiral C1 in the presence of HA (Table 

2.1, entry 1). Replacing the hydrogen atom with an ethyl group on the nitrogen 

in C1 did not lead to a better catalyst (C2) (Table 2.1, entry 2). And somewhat 

surprisingly, when a cyclohexylmethyl group was installed (C3), little 

hydrogenation was observed (Table 2.1, entry 3), highlighting the critical effect 

of the diamine structure on the catalysis. Further search led to the discovery of 

C4, in which the NH hydrogen is replaced with a benzyl group, and when C4 

was combined with HA, an excellent enantioselectivity of 97% ee was 

observed along with complete conversion of 1a (Table 2.1, entry 4).  
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Table 2.1: Screening of achiral metal catalysts for the asymmetric hydrogenation of imine 1a
a 

 

     Entry C HA (%) T (h) Conv. (%)
b
 Ee (%)

c
 

1 C1 2 5 10 50 

2 C2 2 5 15 48 

3 C3 2 5 2 - 

4 C4 2 5 100 97 

5 C5 2 5 100 94 

6 C6 2 5 100 95 

7 C4 1 5 82 97 

8 C4 1 12 100 97 

9
d
 C4 1 12 87 98 

10
e
 C4 1 12 43 97 

a
The reaction was carried out with 0.15 mmol 1a in 0.7 mL toluene. 

b
The conversion was 

determined by 
1
H NMR. 

c
Determined by HPLC analysis; configuration was assigned by 

comparison with the literature. 
d
The temperature was 10 °C. 

e
5 bar H2. 

 

 

Aiming to further improve the enantioselectivity, alteration to C4 was 

undertaken and the resulting complexes were tested. Whilst neither C5 nor C6 

gave better results when combined with HA, some interesting observations 

emerged. The bulky Ar group in C4 is beneficial, as replacing the Ar with p-

tolyl (C6) led to a slight decrease in the ee (entry 4 vs 6) and a similar effect 

was observed for C5 (entry 4 vs 5).  

With C4, the loading of the phosphoric acid HA can be reduced without 

compromising the ee; but the hydrogenation became slower (Table 2.1, entry 
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7). Full conversion was reached in a longer reaction time of 12 h (Table 2.1, 

entry 8). As maybe expected, lower temperature improved the 

enantioselectivity slightly but reduced the reaction rate (Table 2.1, entry 9). 

Additionally, hydrogen pressure also impacts on the hydrogenation rate, with 

lower pressure leading to a lower conversion (Table 2.1, entry 10).  

 

2.2.2 Asymmetric hydrogenation of acyclic aromatic imines  

Having established a highly enantioselective achiral-chiral combination of 

catalysts for the hydrogenation of imine 1a, we turned our attention to 

examining the scope of the C4-HA couple-catalysed asymmetric hydrogenation 

of substituted acyclic aromatic imines 1b-p. The results are shown in Table 

2.2. In general, all substrates examined were reduced smoothly in excellent 

enantioselectivities and isolated yields, with ee’s ranging from 92% to 98%. 

Notably, this catalytic system tolerates not only functional groups with diverse 

electronic properties, e.g. -MeO, -CN, -Br and -NO2, but also at different 

substitution positions (Table 2.2, entries 2-4). Imine substrates bearing ortho-

substituents on the phenyl ring necessitated more forcing conditions for the 

reaction to proceed with a reasonable rate; however, the enantioselectivity 

remained high (Table 2.2, entries 4 and 11). The low reactivity of these imines 

is likely to stem from the ortho-substituents, which increase the steric bulkiness 

of the imine, impeding its approach to the Ir-H hydride. Replacing the anisidine 

in 1 with other aryl groups, such as aniline or p-bromoaniline, does not appear 

to impact on the hydrogenation, with excellent enantioselectivities and high 

isolated yields again observed (Table 2.2, entries 14-15). Finally, α-substituted 
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N-aryl ketimine could also be reduced with high enantioselectivity (Table 2.2, 

entry 16).  

For most of the reactions in Table 2.2, the enantioselectivities obtained 

with the achiral-chiral couple C4-HA are comparable to those from the chiral-

chiral B-HA.
28

 However, C4-HA led to significantly higher ee’s in the case of 

the –CN and –NO2 substituted imines 1h, 1i and 1l, e.g. 92% ee with C4-HA 

(Table 2.2, entry 12) vs 84% ee with B-HA for 1l.
28

 Why this is the case is not 

immediately clear to us.  

Table 2.2: Asymmetric hydrogenation of acyclic aromatic imines 

 

Entry
 

Product Yield (%) Ee (%)
b
 

1 

 

95 97 

2 

 

94 97 

3 

 

95 98 

4
d,e

 

 

93 97 
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5 

 

93 98 

6 

 

97 97 

7 

 

92 98 

8 

 

95 96 

9 

 

93 96 

10 

 

92 98 

11
d,e

 

 

93 94 

12 

 

93 92 
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13 

 

95 98 

14 

 

96 98 

15 

 

96 97 

16 

 

93 92 

a
All reactions were carried out with 0.15 mmol substrate, 0.7 mL toluene, 20 bar H2, 20 

o
C for 

12 h. 
b
Isolated yields. 

c
The enantioselectivities were determined by HPLC; S configuration, 

assigned by comparison with the literature (See the SI). 
d
The reactions were carried out in 20 h 

with 2% of the phosphoric acid HA. 
e
The pressure was 30 bar. 

 

2.2.3 Asymmetric hydrogenation of aliphatic ketone-derived imines 

In contrast to aromatic imines, successful examples of asymmetric 

hydrogenation of imines derived from aliphatic ketones are rare.
 4,6,9,10

 

Subsequent to the study above, we explored the same catalytic system for 

asymmetric hydrogenation of the more challenging aliphatic N-aryl imines. We 

started our initial investigation using 4-methoxy-N-(4-methylpentan-2-

ylidene)-aniline as a model substrate (Scheme 2.3, R = p-OMe), which 

afforded a high enantioselectivity of 92% ee under the catalysis by a chiral-

chiral couple analogous to B-HA.
9a

 However, combining the achiral C4 with 
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HA resulted in a much lower enantioselectivity of 43% ee. A moderate 

increases in ee was observed when C4 was replaced with C5. Since increasing 

the steric hindrance of imines may render their C=N faces easier to 

discriminate,
4,10

 we went on to study imines with different substitution pattern. 

As can be seen from Scheme 2.3, the enantioselectivity increased progressively 

when the imine became sterically more demanding, i.e. when the substitution 

position at the N-aryl ring changes from p, m to o, reaching a remarkable value 

of 89% ee. This observation may not be surprising, considering that the 

interaction between the phosphate A
- 

and the iminium cation is non-covalent 

and weak
40

; therefore the enantioselectivity is expected to be sensitive to the 

steric hindrance of the imine (see Chapter 3).  

 

 

Scheme 2.3: Substrate steric effect on enantioselectivity. 

 

To probe the generality of the C5-HA combination for aliphatic ketone-

derived imines, a series of ortho-substituted N-aryl aliphatic imines were 

subjected to the hydrogenation. As can be seen from Table 2.3, all the 

substrates examined were hydrogenated with high isolated yields and 

enantioselectivities. In general, higher enantioselectivities were observed for 

imines with bulkier ortho substituents on the phenyl ring. For instance, the 
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ethyl-substituted imines always afford higher ee’s than their methyl analogues 

(Table 2.3, entries 4, 8, 11, 14 and 17 vs 2, 7, 10, 13, 16.). 

Worth noting is that the catalytic system tolerates reducible C=C 

double bonds, affording excellent enantioselectivities (Table 2.3, entries 9-11). 

More remarkably, this C5-HA catalyst is capable of discriminating, highly 

effectively, an ethyl from a butyl (Table 2.3, entries 12-14) or an ethyl from a 

propyl (Table 2.3, entries 15-17) group, giving ee’s up to 94%. To the best of 

our knowledge, these ee values represent some of the highest 

enantioselectivities ever reported for aliphatic N-aryl imines. Only a few 

scattered examples are known where higher ee’s have been observed.
10,27

  

 

 

Table 2.3: Asymmetric hydrogenation of aliphatic ketone-derived imines with C5-HA
a
 

 

Entry
 

Product Yield (%) Ee (%)
b
 

1 

 

93 89 

2 

 

91 94 

3 

 

93 94 
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4 

 

96 97 

5 

 

96 94 

6 

 

94 84 

7 

 

93 85 

8 

 

95 91 

9 

 

96 92 

10 

 

95 89 

11 

 

95 92 

12 

 

94 85 
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13 

 

95 94 

14 

 

95 94 

15 

 

93 81 

16 

 

94 89 

17 

 

90 91 

a
Conditions were identical to those in Table 2, except with C5 used. 

b
Isolated yield. 

c
Enantioselectivity determined by HPLC, with configuration assigned by analogy with the 

literature (See the experimental). 
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2.2.4 Proposed mechanism 

To evaluate the mechanism, a simplified achiral, neutral 16e  complex 

C6 was used, which leads to [C
+
][A

-
] upon mixing, in situ or ex situ, with the 

chiral phosphoric acid HA via protonation at the amido nitrogen (Scheme 2.4). 

In the asymmetric hydrogenation of the model ketimine 1a, [C
+
][A

-
] afforded 

95% ee and full conversion. On the basis of related studies,39,54,55 the 

hydrogenation can be broadly explained by the catalytic cycle shown in 

Scheme 2.4, i.e. [C
+
][A

-
] activates H2 to give the hydride D and protonated 1a, 

which ion-pairs with the phosphate affording [1a
+
][A

-
];

 
hydride transfer 

furnishes the amine product 2a while regenerating [C
+
][A

-
].

40,56-58
 Questions 

pertinent to possible iridium-phosphate cooperation then arise: “How does the 

chiral phosphoric acid induce asymmetry in the hydrogenation?” and “Does the 

enantioselectivity result from D being formed enantioselectively from [C
+
][A

-
], 

from the phosphate salt [1a
+
][A

-
], or from interactions involving all three 

components?”  
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Scheme 2.4: Hydrogenation of imine with achiral C6 and chiral acid HA (Ar = 2,4,6-

triisopropylphenyl, Ts = tosyl, Bn = benzyl). 
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2.2.5 Protonation of the 16e catalyst and catalyst deactivation 

 One of the first steps taken during the investigation of the mechanism 

was to look at the basic stoichiometric reaction of C6 with HA (Scheme 2.5). 

Upon addition of one equivalent of HA to C6 (0.05 mmol) in d8-toluene (0.5 

ml) immediate changes could be observed in the 
1
H NMR. A new species is 

formed with no peaks remaining from the starting C6. In particular the singlet 

of the benzyl CH2 observable in C6 is fully converted into an AB quartet. 

Further to this, hydrogen bonding can be seen due to protonation at the amido 

nitrogen by HA, with two new resonances appearing at δ 9.85 ppm and δ 10.2 

ppm. 

 

Scheme 2.5: Stoichiometric protonation of C6 by HA. 

 

We had previously noted that when C4 or C5 was mixed with HA in 

toluene in the absence of 1a or was not used immediately upon mixing, the 

resulting species [C
+
][A

-
] was much less effective in catalysing the 

hydrogenation. With this in mind the stoichiometric reaction was left for a 

period of 12 hours (h), resulting in the formation of a yellow precipitate in d8-

toluene in the NMR tube. Isolation of this solid and subsequent 
1
H NMR in 

CD2Cl2 showed a lack of HA resonances and by integration, the loss of an 

aromatic proton in C6. This indicates that under such conditions, the benzyl 

group of the cation undergoes cyclometalation with the iridium, forming a 
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catalytically inactive complex (Scheme 2.6).
59

 This was verified by X-ray 

diffraction analysis, revealing the formation of a stable cyclometalated 

complex C7. Indeed, this complex does not catalyse the hydrogenation of 1a. 

However, its formation is suppressed in the presence of an imine, presumably 

due to coordination of the imine to the cationic 16e iridium centre. Thus, in the 

absence of a coordinating substrate, [C
+
][A

-
]  deactivates via cyclometalation. 

The above reactions were repeated in CD2Cl2 and again showed that the 

complex [C
+
][A

-
] is formed completely upon protonation of C6 (0.05 mmol) 

with 1 eq. HA (0.5 mL), but without any observable formation of C7 after 18 h. 

 

Scheme 2.6: Formation of catalytically-inactive cyclometalated complex C7, from protonated 

C6. 

2.2.6 Hydride formation 

We looked next at the formation of hydride D. The studies were mainly 

carried out in CH2Cl2 or CD2Cl2 due to the low solubility of the various metal 

complexes used in toluene. The catalytic hydrogenation is feasible in both 

solvents, giving a 95% ee in toluene and 85% ee in CH2Cl2 in the case of 1a 

hydrogenation with C6 and HA under the standard conditions given in Table 
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2.2. Under H2 pressure (>1 bar), proton transfer from a [C
+
]-H2 dihydrogen 

intermediate (not observed) to 1a converts C
+
 into the hydride D and affords 

the salt [1a
+
][A

-
].

40
 Formation of D took place instantly even at -78 °C, and it 

is observed during catalytic turnover, indicating that the hydrogenation is rate-

limited by the hydride transfer step.  

Racemic D can be generated as a solid precipitate in toluene by 

hydrogenation of the neutral C6, and has been characterized by X-ray 

crystallography, as the trans hydride SIrRN-D and its mirror image RIrSN-D, in 

which the Ir-H and N-H protons are trans disposed (Scheme 2.7).  

 

Scheme 2.7: Formation of racemic hydrides D by hydrogenating C6 generated from E and the 

X-ray structure of trans-D. 

 

1
H NMR spectrum of D displays two hydride resonances (δH, 20 °C in 

CD2Cl2: trans-D = -10.81, cis-D = -11.74; in d8-toluene: trans-D = -10.55, cis-
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D = -11.37 ppm) in the ratio of 10.5:1. Using 
1
H 2D-NOESY measurements in 

CD2Cl2 taken under 20 bar H2, we are able to assign these signals to trans-

SIrRN-D and its mirror image, and to the analogous cis-SIrSN-D and its 

enantiomer (Figures 2.2 & 2.3), trans-D being the more abundant.  A clear 

NOE signal was observed between the NH proton (δ4 ppm) of the minor 

species and the minor hydride signal (δ -11.71 ppm) (Figure 2.2), confirming 

the minor species as the cis hydride. A 1D 
1
H overlay (Figure 2.3) clearly 

demonstrates the assignment to the minor N-H species rather than the major N-

H species. The trans-D shows no signal between the hydride and N-H with 

only the benzyl CH2 and two CH’s from the backbone giving NOE signals. 

 

Figure 2.2. 
1
H NOESY NMR of D showing clear NOE signal between the minor hydride 

species and minor N-H. 
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Figure 2.3. 
1
H NOESY NMR of D with 1D 

1
H NMR overlay. 

 

Remarkably, the hydride signals of the enantiomers of trans-D can be 

resolved in a d8-toluene solution by addition of [NBu4
+
][A

-
] (Figure 2.4). The 

enantiomers of the cis hydride could not be resolved, however.  
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Figure 2.4: 
1
H NMR spectra of 0.05 mmol D (i) and D + 0.1 mmol [NBu4

+
][A

-
] (ii) in d8-

toluene (0.5 mL) at 20 °C. 

 

Further support for the presence of additional isomers of D in solution 

is found in the X-ray crystal structure of the analogous chloride complex E 

(Figure 2.5), in which two trans and one cis isomers are observed. 
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Figure 2.5: X-ray crystal structure of the chloride complex E showing the three isomers 

formed. 

 

Under catalytic conditions, the hydride D, produced from 

hydrogenation of [C
+
][A

-
], is also racemic and can be precipitated and isolated 

by performing the hydrogenation in the presence of 2,6-lutidine in toluene. 

This demonstrates that the hydride is not formed selectively and is not the step 

that accounts for the high enantioselectivities. When D was used in the 
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stoichiometric reduction of [1a
+
][A

-
] at 20 °C in toluene (Scheme 2.8), 2a was 

formed with the same ee (95%) as obtained under catalytic conditions, 

suggesting that the asymmetric induction of the catalysis arises in the hydride 

transfer step, rather than from enantioselective generation of D. Under the 

same conditions, the neutral imine 1a cannot be reduced, however. This 

observation, which resembles those made in related studies, indicates that it is 

the iminium cation that participates in the hydride transfer.
39,54

  

 

Scheme 2.8: Reduction of [1a
+
][A

-
] by D at 20 °C in toluene at 20 °C. 

 

2.2.7 Importance of hydrogen bonding 

Monitoring the 
1
H NMR of stoichiometric reactions of racemic D with 

imine and HA in the hydride region reveals trimolecular interactions. Thus, 

addition of 1a to a solution of D at -50 °C does not appear to affect the 

hydrides (Figure 2.6, compare i and ii), consistent with 1a not being reduced by 

D. However, on addition of 1 equivalent of HA at -50 °C, [1a
+
][A

-
] is formed 

instantly, and new resonances are seen in both the hydride region, δH = -9.25 

and -9.45 ppm (Figure 2.6, iii), and at low-field in the region expected for 

hydrogen bonded N-H in D, δH = 10.00 and 10.34 ppm with an intensity ratio 

similar to that of the two new hydride peaks.  

To gain insight into the hydrogen bonding between A
-
, the iminium 

nitrogen and the Ir-hydride, we treated the chloride complex E with 20 bar H2 
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in CD2Cl2 in the presence of NaBARF (sodium tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate) and excess 1a; this afforded only the 

racemic hydride D with no hydrogen-bonded hydrides observed (Figure 2.6, 

compare v and vi). Unlike the phosphate A
-
, the BARF

-
 anion is not expected 

to act as a hydrogen bond acceptor. Similarly, on hydrogenation of [F
+
][A

-
] 

(Figure 2.6, vii), in which the NH hydrogen is replaced with a methyl, only two 

hydrides, at -11.39 and -11.44 ppm, were observed in the 
1
H NMR spectrum, 

with no observable hydrogen-bonded species. Furthermore, when D was mixed 

with [NBu4
+
][A

-
], no new hydride resonances were observed in CD2Cl2, in 

contrast to the case of D being mixed with [1a
+
][A

-
]. These observations 

suggest that in the hydrogen bonded network formed by D, 1a
+
 and A

-
, the NH 

hydrogen of the former two hydrogen-bonds to the oxygen atom of the latter.  

 



Chapter 2: Cooperative Catalysis: Mechanistic Studies of an Achiral Metal Catalyst Coupled 

with Chiral Brønsted Acid for Asymmetric Hydrogenation of Imines 
 
 

64 
 
 

Figure 2.6: 
1
H NMR spectra (0.5 mL CD2Cl2) of i): hydride D (0.05 mmol; -50 °C); ii): i plus 

10 eq. 1a; iii): ii plus 1 eq. HA; iv): mixture of complex C6 (0.1 mmol) and 1 eq. HA, followed 

by introduction of 10 eq. 1a and 20 bar H2 at -78 °C; spectrum recorded at -50 °C; v): complex 

E (0.05 mmol) together with 2 eq. NaBARF and 10 eq. 1a; 20 bar H2 gas charged at -78 °C and 

spectrum recorded at -50 °C; vi): hydride D with 2 eq. NaBARF and 10 eq. 1a; vii): complex F 

(0.1 mmol, Ar = 2,4,6-triisopropylphenylsulfonyl) plus silver phosphate (1 eq. AgA) and 10 eq. 

1a; 20 bar H2 charged at -78 °C and spectrum recorded at -50 °C. 

 

We then monitored, by in situ 
1
H HPNMR, the reaction of [C

+
][A

-
] 

under 20 bar H2 in the presence of excess of 1a as the temperature is raised 

from -78 to 20 °C. At low temperature (-50 
o
C), both D (trans and cis isomers) 

and the hydrogen-bonded hydrides were observed (Figure 2.6, iv). At this 

temperature no observable hydrogenation took place. However, contrary to the 

reaction at higher temperature, the cis hydride is favored. On raising the 
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temperature, the trans isomer becomes the major species observed and 

subsequent cooling does not alter the equilibrium, consistent with a kinetic 

effect in operation. The lower activation energy characterizing formation of the 

cis hydride may be a result of hydrogen bonding-assisted heterolysis of H2 

(Figure 2.7).
60

 Comparing the spectra iv and iii (Figure 2.6) shows that the 

intensity of the hydrogen-bonded hydrides varies with that of free trans-D, 

suggesting that the hydrogen-bonded hydrides arise from the trans hydrides.  

 

      X = Substrate or A
-
 

Figure 2.7: A plausible model for the preferential formation of cis-hydride at low temperature. 

 

Further 
1
H NMR monitoring suggests that it is the minor cis hydride 

that hydrogenates 1a
+
 (Figure 2.8). We started from the free racemic hydride D 

with a ratio of free trans to free cis hydride 10.5 : 1 at -50 °C in the presence of 

10 equivalents of 1a (Figure 2.8, i). After addition of 1 equivalent of HA at the 

same temperature, two peaks can be seen between -9.2 and -9.6 ppm. The ratio 

of these two peaks added together to the free trans- and cis-hydride is ca 7:7:1, 

indicating again that the new hydrogen-bonding hydrides derive from trans-D 

(Figure 2.8, ii). Increasing temperature led to continued decrease in the content 

of the cis-hydride, and this is accompanied with the appearance of amine 

product at -20 °C. Thus, comparing the conditions i and vii, the ratio of free 

trans- to free cis-hydride has changed from approximately 10.5:1 to 22:1. 
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These observations suggest, surprisingly somehow, that it is the minor cis-

hydride that hydrogenates 1a
+
, instead of the major trans-hydride which forms 

observable hydrogen bonding with the organocatalyst, an inference reminiscent 

of the observations made in the seminal study of asymmetric hydrogenation of 

dehydroamino acids with Rh-diphosphine catalysts.
61,62 

Figure 2.8: 
1
H NMR monitoring of hydride transfer from hydride D to imine 1a in CD2Cl2 

(0.05 mmol D; D’ = D + 10 eq. 1a + 1 eq. HA) at various temperatures. 
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2.2.8 Hydride Exchange 

 

Scheme 2.9: 
1
H NMR monitoring of hydride transfer from hydride D (0.05 mmol) to complex 

[C2][A
-
] (0.05 mmol) in CD2Cl2 (0.5 ml) over 24 h at RT. 

 

 With 
1
H NMR monitoring suggesting that it is the minor cis hydride 

that carries out the hydrogenation and Scheme 2.8 showing that the racemic 

hydride gives 95% ee,  the question of hydride exchange then arises. To 

achieve this high selectivity in the racemic reaction the hydrides would have to 

exchange from the trans hydride to the cis hydride. With this in mind, [C2][A
-
] 

was added to an NMR tube along with D and 1 equivalent of HA and left for 

24 h with spectra recorded periodically. The spectra show that after 1 hour 

there is a small amount of hydride exchange from D to [C2][A
-
] to form C2-H, 

with over 50% exchanged after 24 h (Scheme 2.9 ii vs iv). This demonstrates 

that it is possible for the trans and cis hydrides to exchange during the course 

of the hydrogenation although on a slower timescale than would be needed for 
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the observed rate. Dehydrogenation of the trans hydride and hydrogenation to 

reform more active cis hydride is probably helping to achieve the high 

selectivities. 

 

2.2.9 Importance of hydrogen bonding and the effect of the chiral 

phosphate on the rate of reaction     

The importance of the intermolecular hydrogen bonding is seen in the 

hydrogenation of 1a using [C
+
][BARF

-
] as the catalyst generated by metathesis 

of E with NaBARF, which is much faster (full conversion in 20 min) than 

using [C
+
][A

-
] (full conversion in 12 h). The non hydrogen-bonding BARF 

anion means that the hydride transfer from the iridium to the “naked” iminium 

cation can be much faster, but with no enantioselectivity (Scheme 2.10, Eq 2).   

For the same achiral reaction, [F
+
][BARF

-
] afforded full conversion in 

1 h; but extremely slow hydrogenation was observed when using [F
+
][A

-
] 

(<2% conversion in 12 h), emphasising the need for the hydrogen bonding NH 

functionality in the case of A
-
 being the counteranion (Scheme 2.10, Eq 3).  
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Scheme 2.10: The hydrogenation of 1a with catalysts derived from F or E with NaBARF vs 

C6 and HA. 

 

Thus, although the organocatalyst renders the hydrogenation 

enantioselective, the bulkiness of A
-
 inhibits the reduction of 1a

+
. And 

somehow paradoxically, the reduction occurs only as a result of A
-
 hydrogen 

bonding with D. We then followed these reactions with the use of in situ 
1
H HP 

NMR at a constant H2 pressure of 20 bar at 25 °C.  Scheme 2.11 gives the 

details of the two specific reactions examined and Figures 2.9 & 2.10 give the 

conversion-time profiles obtained.  
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Scheme 2.11: Comparison of the hydrogenation of 1a with catalysts derived from E and 

NaBARF vs C6 and HA. 

 

Figure 2.9: Time profiles for the hydrogenation of 1a with catalysts derived from NaBARF vs 

HA monitored over 120 minutes by in situ 
1
H HP NMR. Reactions were carried out with 0.09 

mmol substrate in 0.5 mL d8-toluene, at 20 bar H2 and 25 °C. 
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Figure 2.10: Time profiles for the hydrogenation of 1a with catalysts derived from E + 

NaBARF vs C6 + HA monitored by in situ 
1
H HP NMR. Reactions were carried out with 0.09 

mmol substrate in 0.5 mL d8-toluene, at 20 bar H2 and 25 °C. 

 

Examination of the profiles reveals that the initial rate of the 

hydrogenation with E-NaBARF is 22 times faster than that with C6-HA. More 

interestingly, the former proceeds with approximately a constant rate whilst the 

latter becomes much slower after the first few hours, suggesting that the 

counteranion alters the reaction mechanism. The linear dependence of the 

conversion on time in the case of E-NaBARF is consistent with fast, non-

turnover-limiting hydride transfer to the iminium ion over the entire course of 

the reaction, whereas with C6-HA the catalytic turnover is likely to be 

controlled by hydride transfer to the iminium ion. These observations, together 

with those before, add more support to the view that the bulkiness of the chiral 

acid inhibits the reduction of the imine and yet paradoxically, the reduction 

occurs enantioselectively only as a result of the phosphate hydrogen-bonding 

with both the metal catalyst and the substrate. 
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2.3 Conclusions and future work  

We have developed a new metal-organo cooperative catalytic system, 

in which a chiral Brønsted acid induces chirality in an achiral metal-catalysed 

hydrogenation. The catalyst is highly efficient, affording excellent 

enantioselectivities and high isolated yields in hydrogenation of imines derived 

from either aryl or aliphatic ketones, thus opening up a new avenue for 

accessing chiral amines. The mechanism proceeds via an ionic mechanism with 

the key hydride transfer step being carried out by the minor cis hydride species, 

mediated by the hydrogen bonding counterion of the Brønsted acid.  However, 

the enantioselectivity is attained at the expense of reaction rate, due to the 

steric hindrance created by the chiral counteranion.  

Further work was directed at gathering structural information of the key 

hydride delivery step utilising NMR and computational modeling methods. 

This information would then allow for all factors influencing the high 

selectivity to be elucidated. 

  

2.4 Experimental 

2.4.1 General information 

Unless otherwise noted, all experiments were carried out using standard 

Schlenk techniques. 
1
H and 

13
C NMR spectra were recorded on a Bruker 

Avance DMX 400 Spectrometer (
1
H 400 MHz and

 13
C 100 MHz, respectively). 

Chemical shifts are given in ppm and are referenced to residual solvent peaks. 

Single crystal X-ray data were collected on a Bruker D8 diffractometer with an 

APEX CCD detector and 1.5 kW graphite monochromated Mo radiation. All 
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organic solvents were dried using standard published methods and were 

distilled before use. All other chemicals were used as received from Aldrich, 

Alfa Aesar or Acros without further purification. 

 

2.4.2 General procedure for the synthesis of achiral 16e Ir complexes  

 

For L2-L6: to a solution of diamine
63

 (2.0 mmol) and Et3N (2.2 mmol) 

in dichloromethane (DCM) (10 mL), sulfonyl chloride was added (2.0 mmol) 

and the mixture stirred for 2 h at room temperature. Upon completion of the 

reaction, the solution was transferred to a short silica gel column and eluted 

with EA/DCM (1:1); white solid was obtained in high yield (90-95%). L1 was 

synthesized via sulfonylation of ethylenediamine (20 mmol) with 2,4,6-

triisopropylbenzesulfonyl chloride (2 mmol) in CH2Cl2 (10 mL) at 0 
o
C for 5 h. 

Subsequent washing with water, drying with MgSO4, and removal of the 

solvent gave a yield of 90%, which was used for the next reaction directly. 

Treatment of the white solid (L1-6) (0.11 mmol) in DCM (2.0 ml) with 

[IrCp*Cl2]2 (0.05 mmol, L/Ir = 1.1/1) in the presence of 2 M KOH solution 

(150 μl, 0.3 mmol) at rt for 20 min afforded a deep red solution, which was 

washed with distilled water three times and dried with MgSO4. The DCM was 
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removed under reduced pressure, affording the achiral Ir complexes as purple 

red solids, which were used as catalysts directly. 

 

2.4.3 Synthesis of Ir-Cl complex E 

The chloride complex was prepared using the same method as for 

complexes C except with 1.1 eq. triethyl amine used, instead of KOH. The 

resulting light orange solution was washed with water and dried with MgSO4, 

and after removal of the solvent under reduced pressure, an orange-red colored 

solid was formed. The compound was recrystallized from a DCM/hexane 

solution (86% yield). The crystal was analyzed by X-ray diffraction (Appendix 

I). 

 

2.4.4 Synthesis of tetra-(N-butyl)ammonium phosphate salt [NBu4
+
][A

-
] 

To a solution of silver phosphate salt (0.4 mmol) in DCM (5 mL) was 

added 1 equivalent of NBu4Cl in H2O (1 mL). The mixture was stirred for 1 h 

and the separated organic solvent extracted with DCM (3 x 5 mL). Following 

removal of solvent, the combined extracts were dried with 4Å MS, affording a 

white solid (99% yield). 

 

2.4.5 Synthesis of N-methyl-N-benzyl substituted Ir-Cl complex F 

The compound was synthesized according to the reported literature 

method.
53

 A mixture of N-(2-(benzyl(methyl)amino)ethyl)-2,4,6-

triisopropylbenzenesulfonamide (0.11 mmol),
64,65

 K2CO3 (25 mg) and 

[Cp*IrCl2]2 (0.05 mmol) was stirred for 20 h in dried DCM (2.0 mL). The 
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resulting light orange colored slurry was filtered and the solvent removed, 

affording an orange solid. The compound was recrystallized from DCM/hexane 

(80% yield). 

 

2.4.6 Synthesis of C7 

 For C7: a solution of C6 (0.05 mmol) and HA (0.05 mmol) in toluene 

was stirred at room temperature for 12 h. Upon completion of the reaction, the 

yellow solid precipitate was isolated by removing the upper solvent layer, 

and washing with toluene (4x 4 ml). The yellow solid was then recrystallized in 

a Hexane/DCM mixture. 

 

2.4.7 Procedure for in-situ NMR with high H2 pressure at low temperature 

To a sapphire tube was added complex C6 (3.3 mg, 0.05 mmol), 

Brønsted acid HA (3.8 mg, 0.05 mmol) and imine 1a (11.2 mg, 0.5 mmol). 

After being degassed with nitrogen three times, CD2Cl2 (0.5 mL) was added, 

and the mixture was cooled down to -78 °C in a acetone-dry ice bath. After 

charging with hydrogen (20 bar), the tube was stirred for 1 min in the acetone-

dry ice bath. NMR was then recorded at -50 °C. 
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2.4.8 Stoichiometric reduction with racemic hydrides 

 

An oven-dried glass tube was charged with toluene (0.7 mL), imine 1a 

(0.1 mmol) and 4Å MS (100 mg). The mixture was stirred for 10 min, and then 

HA (0.1 mmol) was added. After stirring for another 10 min, the racemic 

hydride D was added in one portion. The mixture was stirred for 5 h and 

filtered to remove 4Å MS. After removal of the solvent, the product was 

purified and examined by 
1
H NMR and HPLC.  

 

2.4.9 Assignment of hydride D by 
1
H NOESY measurements  

The NMR measurement was carried out on a 400MHz Avance Bruker 

spectrometer equipped with a TBI 1H/31P/BB HR probe. Spectra were 

obtained on natural isotope abundance samples at 295 K at 20 bar of H2. C6 (9 

mg) was dissolved in CD2Cl2 (0.5 mL) and charged with H2 to 20 bar at room 

temperature. 2-Dimensional homonuclear 
1
H-

1
H NOESY were employed 

utilizing pulse sequences supplied by the manufacturer. Sequences were set up 

as follows: NOESY data matrix 2048x512, 64 scans 16 dummy scans, 50 ms 

and 500 ms mixing times. 
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2.4.10 General procedure for in situ 
1
H HPNMR monitoring 

The NMR measurements were carried out on a 400MHz Avance Bruker 

spectrometer equipped with a TBI 1H/31P/BB HR probe using a 5mm sapphire 

tube fitted with a constant flow of hydrogen. To the sapphire tube was added 

complex C6 or E (0.0009 mmol), Brønsted acid HA (0.0009 mmol), or 

NaBARF (0.0014 mmol), imine 1a (20 mg, 0.09 mmol) and d8-toluene (0.5 

mL). The mixture was cooled to -50 °C in the NMR machine and the tube 

charged with hydrogen (20 bar). Once the required pressure had been reached 

the sample was warmed to 25 °C over a five minute period. 
1
H NMR spectra 

were recorded after the five minutes, once a constant temperature had been 

reached. Spectra were then recorded at regular intervals to track the reaction.  

 

2.5 Analytical data 

2.5.1 Analytical data for iridium complexes 

 

C1:  

1
H NMR (CD2Cl2, 400 MHz, T = 263K) δ 7.06 (s, 2H), 5.66 (br, 1H), 4.35-

4.38 (m, 2H), 2.80-2.86 (m, 3H), 2.53-2.57 (m, 2H), 1.83 (s, 15H), 1.13-1.20 

(m, 18H) ppm; 
13

C NMR (CD2Cl2, 100 MHz, T = 263K) δ 151.23, 150.89, 

135.60, 123.58, 85.44, 58.69, 55.15, 34.62, 29.33, 25.49, 24.15, 10.75 ppm; 

HRMS could not be obtained due to instability. 
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C2:  

1
H NMR (CD2Cl2, 400 MHz) δ 7.08 (s, 2H), 4.39-4.46 (m, 2H), 3.62-3.67 (m, 

2H), 2.83-2.90 (m, 1H), 2.61-2.65 (m, 2H), 2.49-2.53 (m, 2H), 1.87 (s, 15H), 

1.09-1.27 (m, 21H) ppm; 
13

C NMR (CD2Cl2, 100 MHz) δ 151.27, 151.22, 

135.53, 123.68, 85.76, 64.89, 60.98, 54.31, 34.83, 29.49, 25.50, 24.30, 15.90, 

10.99 ppm; HRMS (ES+) calcd. for C29H48N2O2SIr
193

 [M+H]
+
: 681.3066; 

found: 681.3069. 

 

C3:  

1
H NMR (CD2Cl2, 400 MHz) δ 7.08 (s, 2H), 4.40-4.46 (m, 2H), 3.41-3.43 (d, J 

= 6.8 Hz, 2H), 2.85-2.90 (m, 1H), 2.58-2.62 (m, 2H), 2.45-2.52 (m, 2H), 1.84 

(s, 15H), 1.59-1.73 (m, 7H), 1.15-1.24 (m, 22H) ppm; 
13

C NMR (CD2Cl2, 100 

MHz) δ 150.11, 135.30, 122.53, 84.60, 72.36, 64.84, 37.97, 33.69, 30.78, 

28.36, 26.60, 25.97, 24.36, 23.15 ppm; HRMS (ES+) calcd. for 

C34H56N2O2SIr
193

 [M+H]
+
: 749.3669, found: 749.3687. 

 

C4:  

1
H NMR (CD2Cl2, 400 MHz) δ 7.17-7.23 (m, 4H), 7.10-7.14 (m, 1H), 7.00 (s, 

2H), 4.75 (s, 2H), 4.32-4.39 (m, 2H), 2.74-2.81 (m, 1H), 2.57-2.61 (m, 2H), 

2.35-2.38 (m, 2H), 1.73 (s, 15H), 1.04-1.18 (m, 18H) ppm; 
13

C NMR (CD2Cl2, 

100 MHz) δ151.43, 151.27, 141.09, 136.07, 129.07, 127.37, 127.27, 123.74, 
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86.14, 68.96, 65.10, 54.84, 34.84, 29.59, 25.54, 25.43, 24.30, 10.86 ppm; 

HRMS (ES+) calcd. for C34H50N2O2SIr
193

 [M+H]
+
: 743.3222; found: 

743.3188. 

 

C5:  

1
H NMR (CD2Cl2, 400 MHz) δ 7.09-7.15 (m, 4H), 7.07 (s, 2H), 4.78 (s, 2H), 

4.41-4.48 (m, 2H), 2.82-2.89 (m, 1H), 2.64-2.67 (m, 2H), 2.41-2.44 (m, 2H), 

2.30 (s, 3H), 1.82 (s, 15H), 1.17-1.23 (m, 18H) ppm; 
13

C NMR (CD2Cl2, 100 

MHz) δ 151.00, 150.88, 137.52, 136.50, 135.75, 129.32, 126.91, 123.32, 85.71, 

68.44, 64.65, 54.23, 34.43, 29.17, 25.12, 23.88, 21.14, 10.45 ppm; HRMS 

(ES+) calcd. for C35H52N2O2SIr
193

 [M+H]
+
: 757.3379; found: 757.3414. 

 

C6:  

1
H NMR (CD2Cl2, 400 MHz) δ 7.69-7.71 (m, 2H), 7.28-7.31 (m, 2H), 7.18-

7.23 (m, 5H), 5.77 (s, 2H), 3.00-3.03 (m, 2H), 2.38 (s, 3H), 2.27-2.30 (m, 2H), 

1.74 (s, 15H) ppm; 
13

C NMR (CD2Cl2, 100 MHz) δ 143.71, 141.42, 140.39, 

129.64, 129.10, 127.55, 127.44, 127.26, 86.27, 70.08, 64.84, 55.37, 21.89, 

10.43 ppm; HRMS (ES+) calcd. for C26H34N2O2SIr
193

 [M+H]
+
: 631.1970; 

found: 631.1987. 
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C7:  

1
H NMR (CD2Cl2, 400 MHz) δ 7.80 (d, J= 7.5 Hz, 1H), 7.11 (d, J= 8.0 Hz, 

2H), 6.97-7.06 (m, 2H), 6.94 (d, J= 8.0 Hz, 2H), 6.88 (t, J= 7.5 Hz, 1H), 4.73 

(s, 1H), 3.95 (dd, J= 5.1, 13.8 Hz, 1H), 3.84 (d, J= 13.8 Hz, 1H), 2.41-2.66 (m, 

3H), 2.39 (s, 3H), 1.83-1.93 (m, 1H), 1.80 (s, 15H) ppm: 
13

C NMR (CD2Cl2, 

100 MHz) δ 164.34, 141.83, 139.68, 137.80, 128.30, 127.45, 126.61, 121.84, 

120.84, 87.05, 63.91, 55.73, 52.42, 20.88, 9.13 ppm; HRMS (ES+) calcd. for 

C26H34N2O2SIr
193

 [M+H]
+
: 631.1964; found: 631.1975. 

 

 

E:  

1
H NMR (CD2Cl2, 400 MHz, T = 273 K): A mixture of trans and cis (referring 

to the relative position of the chloride and NH proton) compounds with a ratio 

of 2:1; The X-ray diffraction structures are shown in Appendix I; trans-E δ 

7.73-7.75 (d, J = 8.08 Hz, 2H), 7.34 (m, 3H), 7.23-7.25 (m, 2H), 7.10-7.12 (d, 

J = 8.00 Hz, 2H), 4.53-4.56 (d, J = 12.00 Hz, 1H), 3.93-3.97 (m, 1H), 3.80-

3.82 (m, 1H), 2.79-2.83 (dd, J = 4.40, J = 10.80 Hz, 1H), 2.60-2.63 (d, J = 9.20 

Hz, 1H), 2.38-2.43 (m, 1H), 2.30 (s, 3H), 2.16-2.20 (m, 1H), 1.73 (s, 15H) 

ppm; cis-E δ 7.98-8.00 (d, J = 8.00Hz, 2H), 7.34 (m, 3H), 7.23-7.26 (m, 2H), 

7.15-7.17 (d, J = 8.00 Hz, 2H), 4.29-4.36 (m, 1H), 4.07-4.09 (d, J = 8.00 Hz , 

1H), 3.98-4.00 (m, 1H), 2.73-2.74 (m, 1H), 2.43-2.49 (m, 1H), 2.33 (s, 3H), 

2.30-2.33 (m, 2H), 1.75 (s, 15H) ppm; 
13

C NMR (CD2Cl2, 100 MHz, T = 273 

K) of the mixture compounds δ 141.19, 140.40, 140.18, 136.14, 129.57, 

129.20, 129.08, 128.72, 128.69, 128.30, 128.22, 128.09, 86.08, 85.40, 59.32, 

57.51, 54.48, 51.12, 48.44, 21.18, 9.61, 9.23 ppm; HRMS (ES+) calcd. for 

C26H34N2O2SIr
193

 [M-Cl]
+
: 631.1970; found: 631.1990. 
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F:   

1
H NMR (CDCl3, 400 MHz) δ 7.32-7.35 (m, 3H), 7.27-7.28 (m, 2H), 7.05 (s, 

2H), 4.99-5.02 (m, 1H), 4.46-4.48 (m, 2H), 4.04-4.08 (m, 1H), 2.99 (s, 3H), 

2.82-2.99 (m, 3H), 1.71 (s, 15H), 1.19-1.23 (m, 18H) ppm; 
13

C NMR (CDCl3, 

100 MHz) δ 151.53, 150.69, 134.93, 132,43, 132.37, 129.11, 128.75, 123.51, 

86.63, 66.29, 66.18, 48.79, 34.40, 29.20, 25.92, 25.89, 25.50, 25.47, 24.15, 

10.73 ppm; HRMS (ES+) calcd. for C35H52N2O2S Ir
193

 [M-Cl]
+
 757.3379; 

found 757.3371. 

 

2.5.2 Analytical data for tetra-(N-butyl)ammonium phosphate salt 

[NBu4
+
][A

-
]  

1
H NMR (CDCl3, 400 MHz) δ 7.80-7.82 (d, J = 8.0 Hz, 2H), 7.71 (s, 2H), 

7.32-7.36 (m, 2H), 7.16-7.24 (m, 4H), 7.08 (s, 2H), 7.00 (s, 2H), 2.98-3.21 (m, 

10H), 2.88-2.95 (m, 2H), 2.69-2.76 (m, 2H), 1.34-1.42 (m, 8H), 1.27-1.30 (m, 

18H), 1.11-1.20 (m, 20H), 0.82-0.92 (m, 18H) ppm; 
13

C NMR (CDCl3, 100 

MHz) δ 149.80, 149.70, 148.59, 147.72, 147.18, 134.66, 133.82, 133.79, 

133.46, 131.56, 130.39, 128.11, 127.56, 125.42, 123.40, 120.80, 120.16, 58.66, 

34.67, 31.31, 30.94, 26.79, 25.27, 24.62, 24.56, 24.35, 24.22, 23.92, 19.85, 

14.10 ppm; 
31

P NMR (CDCl3, 162 MHz) δ 3.95 ppm; HRMS (FAB) calcd. for 

anion [C50H56O4P]
-
 751.3922; found 751.3915; calcd. for cation [C16H36N]

+
 

242.2842; found 242.2841.  
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2.5.3 X-ray diffraction analysis and analytical data for C7, D and E 

The full crystallographic data for both C7 (CCDC 915867), E 

(CCDC888491) and D (CCDC888492) can be found in the attached electronic 

information. 
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Chapter 3 

 

Cooperative Catalysis: Made Possible by Noncovalent 

Interactions 

 

3.1 Introduction  

Chapter 2 showed the development of an excellent system for the 

asymmetric reduction of imines utilising a chiral phosphoric acid and an 

achiral iridium catalyst. The mechanism was investigated and was determined 

to proceed via an ionic mechanism with a key hydride transfer step mediated 

by hydrogen bonding. During this key step, four chiral hydrides are formed and 

through in situ NMR studies it was determined that the cis orientated hydride 

was the active species responsible for the reduction.  

The questions then arise: “How does the chiral phosphoric acid induce 

asymmetry in the hydrogenation?” and “Does the enantioselectivity result from 

both cis hydrides or is there only one active species?” To determine this, the 

nature of the noncovalent interactions between the three components needed to 

be established.  

Non-covalent interactions, such as hydrogen bonding, electrostatic, π-π, 

CH-π and hydrophobic forces, play an essential role in the action of nature’s 

catalysts, enzymes. In the last decade these interactions have been successfully 

exploited in organocatalysis with small organic molecules.
1

 In contrast, such 

interactions have seldom featured in the well established area of homogeneous 

organometallic catalysis, where electronic interactions via covalent bonding 
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and steric effects imposed by bound ligands dictate the activity and selectivity 

of a metal catalyst. An interesting question is: “What happens when an 

organocatalyst meets an organometallic catalyst?” This unification has already 

created an exciting new space for both fields – cooperative catalysis – in which 

reactants are activated simultaneously by both types of catalyst, enabling 

reactivity and selectivity patterns inaccessible within each field alone.
2-7

  

To gain insight into these interactions in this metal-organo cooperative 

catalysis, we studied the key hydride transfer step using a range of techniques, 

including diffusion measurements, nuclear Overhauser effect (NOE) 

measurements and NOE-constrained computational modeling.  

The NOE involves the transfer of spin polarisation from one nuclear spin 

to another via cross relaxation. This allows for the determination of NMR 

active nuclei in close proximity through space (< 5 Å).
8
 2D NOE spectroscopy 

(NOESY) then lets these signals be correlated throughout a full system. The 

existence of an NOE signal between protons in the potential tertiary complex 

could then be used as a constraint in computational modelling. 

A range of structures could then be generated to satisfy these constraints 

and then optimised.
9-12

 The initial constrained structure optimisations could be 

carried out at a density functional theory (DFT) level in the gas phase using the 

B3LYP functional and 6-31G** basis set was used for all atoms except Ir.
13

 

Relativistic effects for Ir were addressed by using LANL2DZ effective core 

potential (ECP) together with the LANL2DZ basis set.
13

  

However, due to the need to model the full complexity of the system while 

taking into consideration the length of time this would require using a DFT 
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level of theory, full calculation of the Hessian for each system was carried out 

in Gaussian09 at a semi-empirical level of theory using the PM6 

Hamiltonian.
14,15

 

Another part of the experimental work was the use of diffusion ordered 

spectroscopy (DOSY). This is a 2D NMR technique where one dimension 

represents the regular chemical shift information, while the other is 

representative of the molecular size by use of the diffusion constant. If an 

interaction was present between two molecules, a slower diffusion constant D 

would reflect this when compared to the diffusion constant D of the free 

molecule. 

 Using the pulsed field gradient spin-echo (PFGSE) developed by Stejskal 

and Tanner
16

 a spin echo sequence is implemented containing two pulsed field 

gradients separated by a waiting time. The effect of this is to initially defocus 

and then refocus the magnetisation. If the molecules diffuse after the first 

pulsed gradient the effective magnetisation the spins feel will be decreased by 

the second pulse. The result of this is that the recorded signals decrease in 

intensity; if the experiment is repeated with increasing gradient strength a set of 

signals is generated from which the diffusion constant D can be calculated.
17,18

  

This technique has been previously applied to organometallic compounds, 

most notably by Pregosin who has shown a range of examples including the 

effect of hydrogen bonding on the diffusion constant of an anion.
19

 The 

diffusion constant of an anion when interacting with an organometallic 

compound has a much slower diffusion constant than when the anion is 

measured separately. If the diffusion constant changes at a similar rate to that 
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of the organometallic compound, it is indicative of an interaction likely to be 

hydrogen bonding between the two.  

 The combinations of these techniques were used to probe the existence 

of a key tertiary structure and the results are described herein.  

 

3.2 Results and discussion 

3.2.1 NMR structural characterisation 

The results reported in Chapter 2 suggest that the enantioselective 

hydrogenation is likely to proceed via a hydrogen bonded supramolecular 

complex
20,21

 involving all three of B, 1a
+
 and A

-
 (Figure 3.1). To shed light on 

the structure of the predicted ternary complex, we performed 
1
H PFGSE, 

1
H-

13
C heteronuclear single quantum coherence spectroscopy (HSQC), 

1
H 

NOESY NMR and DFT/semi-empirical computational studies of the model 

complex C, HA, and 1a or 1b. 1b is more stable than 1a and hence was used 

for experiments requiring relatively long time. The hydride B could not be used 

due to its reaction with 1a
+
 or 1b

+
 under the conditions used so complex C acts 

as a mimic.  
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Figure 3.1: The three components used for the structural characterisation and the 

predicted supramolecular structure. 

 

Each component was firstly fully characterised in CD2Cl2 at 293 K, so 

that a library of signatures could be built up to be used when analysing more 

complex spectra. Among the data collected was the internal NOEs present in 

each of the components (Figure 3.2). The identification of an NOE depends on 

the rate of molecular tumbling which is influenced by the molecular size.  A 

positive NOE cross peak is observed for smaller molecules of less than 600 Da, 

goes through zero for MW range 600 – 1500 Da, and becomes negative for 

larger molecules (> 1500 Da).
8
 Apart from the low weight isolated imine, all 

other NOESY spectra had the existence of an NOE confirmed by observation 

of negative cross peaks.  
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Figure 3.2: Schematic illustration of internal 
1
H NOE signals bewteen each of the three 

components. All NMR acquired in CD2Cl2 at 293 K. 

 

In the case of 1a these show the expected NOEs between the para 

methoxy group with the meta aromatic protons (Figure 3.2, 1) and the methyl 

group with the ortho aromatic protons of the non-substituted ring (Figure 3.2, 

2). The rigid structure of HA gives rise to NOEs between each of the methyl 

groups to the central proton of the isopropyl groups and the aromatic protons 

from the substituted rings (Figure 3.2, 3&4). An additional NOE is seen from 

an aromatic proton on the biphenyl ring to the methyls of the isopropyl groups 

at the 2 and 6 positions of the substituted ring (Figure 3.2, 5). Complex C 

shows NOEs from the Cp* ring to the ortho aromatic protons of the Ts ring, 

NH and benzyl CH2 group (Figure 3.2, 6-8). The ortho aromatic protons of the 

Ts ring also show a signal to a CH2 on the backbone (Figure 3.2, 9) along with 
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the meta aromatic protons showing an NOE to the tosyl methyl group (Figure 

3.2, 10). 

 

3.2.2 Structural characterisation of HA and 1a  

 The spectra for the mixture of 1 eq HA with 1 eq 1a in CD2Cl2 shows 

one new set of peaks in the 
1
H NMR and one new peak formed in the 

31
P NMR 

shifted 1.5 ppm upfield from free HA, corresponding to a newly formed 

complex. Assignment of the NOE signals show that apart from the internal 

NOEs previously calculated there is a new signal between HA and 1a. This 

signal arises between the ortho aromatic protons of the substituted ring of 1a 

and the methyl groups from the 2 and 6 positioned isopropyl groups of HA 

(Figure 3.3, 11).  

 

Figure 3.3: Schematic illustration of the intramolecular 
1
H NOE signal for HA and 1a.  

NMR acquired in CD2Cl2 at 293 K. 
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 These NOE signals were then taken as constraints in structural 

calculation and optimizations at DFT level of theory. A range of initial 

structures were built which met the required NOE constraints with no distances 

exceeding 5 Å, which were then optimised. Once an optimised structure had 

been found, the restraints were removed and the structure reoptimised locating 

the local energy minima. The resulting lowest energy structure that is 

consistent with the observed NOEs is shown below (Figure 3.4) in which 1a is 

protonated and hydrogen bonding to HA (NH--O=P distance = 1.44 Å). 

 

Figure 3.4:  Fully optimised structure based on NOE constraints of HA and 1a. Structures 

optimised at B3LYP/6-31G**/LANL2DZ. Grey = C, white= H, red = O, green = P, blue = N. 

Distance in Å. 
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3.2.3 Structural characterisation of HA + C  

 Upon mixing of 1 eq HA and 1 eq C in CD2Cl2 the 
1
H NMR shows a 

new sets of peaks formed in comparison to the free molecules, with two peaks 

observable at δ 9.42 and δ 11.45 ppm consistent with the region associated 

with hydrogen bonds. Complex C has both trans and cis orientations in a 2:1 

ratio and the hydrogen bonding signals maintain this ratio. From the 
1
H 2D-

NOESY a range of intramolecular NOE signals were determined (Figure 3.5, 

11-16). These further confirm the interaction between HA and C and could be 

used in the more complex NMR to discount any of this population.  

 

Figure 3.5: Schematic illustration of 
1
H NOE signals for HA and C.  

NMR acquired in CD2Cl2 at 293 K. 

 

 

 

 



Chapter 3: Cooperative Catalysis: Made Possible by Noncovalent Interactions 

 

96 
 
 

3.2.4 Structural characterisation of tertiary structure via NMR 

The 
1
H-

13
C HSQC and 

1
H NOESY NMR spectra of a mixture of HA 

(0.1 mmol), 1 equivalent (eq.) C and 1 eq. 1a at 800 MHz in CD2Cl2 (0.5 mL) 

allowed for the identification of a range of NOE signals. In the multiple-

component spectra several sets of resonances could be observed arising from 

the mixture of the molecular combinations (single component vs. multiple 

components). Resonances belonging to either the isolated or multiple-

molecular forms previously determined could be distinguished by comparison 

to the spectra of the individual and hetero-dimer components. 

In the HA-C-1a sample no evidence of free acid or catalyst was 

observable although resonances deriving from HA-C were discernible. NOEs 

assigned in the HA-C-1a were compared to those observed in the HA-C and 

HA-1a samples to differentiate between NOEs from HA-C or HA-C-1a. 

Although the majority of NOEs could not be unambiguously assigned to HA-

C, HA-1a or HA-C-1a, two NOEs were identified as deriving from the ternary 

complex and used to aid selection of the appropriate models (Figures 3.6-3.9). 
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Figure 3.6: 
1
H-

13
C HSQC spectra of C (dark blue), C-HA (green), 1a (light blue) and C-HA-

1a (red). Peaks attributed to unbound C are indicated by blue boxes, peaks attributed to the C-

HA complex are indicated by green boxes, peaks attributed to the triple C-HA-1a complex are 

indicated by red boxes. Assigned peaks marked A or B indicate they derive from different, yet 

unidentified, isoforms of the catalyst. All NMR acquired in CD2Cl2 at 293 K. 

 

The two NOE signals were identified as being unambiguously derived 

from the ternary complex (Figure 3.7, 17 & 18).  They arise from the methoxy 

group of 1a
+
 and the isopropyl-substituted aryl ring of A

-
, and the methyl group 

of 1a
+
 and the tosyl ring of C, supporting the hypothesized supramolecular 

complex (Figure 3.8 & 3.9).  
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Figure 3.7: Schematic illustration of 
1
H NOE signals between the three components. 

NMR acquired in CD2Cl2 at 293 K. 

 

These NOE signals were then taken as constraints in structural calculation 

and optimisation. A range of structures were generated for each of the four 

configurations of C via conformational searching using molecular mechanics 

with the force field MMFF94. The most popular structures, which satisfied the 

key NOE signals, were further optimised (Figure 3.10). Structure optimisations 

were carried out at density functional theory (DFT) level in the gas phase using 

the B3LYP functional. For all the optimisations the 6-31G** basis set was used 

for all atoms except Ir.
13

 Relativistic effects for Ir were addressed by using 

LANL2DZ effective core potential (ECP) together with the LANL2DZ basis 

set.
13

  

Due to the need to model the full complexity of the system while taking 

into consideration of the length of time this would require using a DFT level of 

theory, subsequent calculations were carried out in Gaussian09 at a semi-
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empirical level of theory using the PM6 Hamiltonian.
14,15

 A further 

optimisation followed by vibrational frequency calculations were carried out to 

confirm the nature of the stationary point on the potential energy surface. The  

resulting structures were then analysed to see if the minima satisfied the key 

NOEs.
22

  

 

Figure 3.8: 
1
H-

13
C HSQC (bottom and right panels) spectra of C (dark blue), C-HA (green), 

1a (light blue) and C-HA-1a (red). The corresponding C-HA-1a 
1
H-

1
H NOESY is shown in 

magenta (top-left panel). The NOESY peak indicated by grey lines corresponds to an 

intermolecular NOE between a CH on the tosyl group of C and the methyl group of 1a and 

derives from resonances only observable in the triple precatalyst-acid-imine complex. NMR 

acquired in CD2Cl2 at 293 K. 

 

 

CH-o-Ts 
(Catalyst) 
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Figure 3.9: 
1
H-

13
C HSQC (bottom and right panels) spectra of C-HA (green), 1a (light blue) 

and C-HA-1a (red). The corresponding C-HA-1a 
1
H-

1
H NOESY is shown in magenta (top-left 

panel). The NOESY peak indicated by grey lines corresponds to an intermolecular NOE 

between the aromatic CH of HA and the methoxy group of 1a and derives from resonances 

only observable in the triple catalyst-acid-imine complex. NMR acquired in CD2Cl2 at 293 K. 
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Figure 3.10: DFT/PM6-modeled structure formed by trans-RIrSN-C, 1a
+
 and A

-
, showing 

intramolecular NOEs used to constrain the modelling and indicated by arrows between 

highlighted hydrogens (light green). Grey = C, red = O, blue = N, green = Cl, yellow = S, 

gold= Ir, white = H. 

The optimisation led to four minimised structures for each of the four 

configurations of C. From these four structures two ternary structures were 

consistent with the NOE data (Figure 3.11), the complex [RIrSN-C][1a
+
][A

-
] (-

2.7 kcal/mol, all energies relative to [SIrRN-C][1a
+
][A

-
]) incorporating trans-

RIrSN-C (Figure 3.11 a,b), and a lower energy cis analogue [SIrSN-C][1a
+
][A

-
] (-

5.7 kcal/mol) (Figure 3.11 d,e). In both structures, a hydrogen bond exists 

between the NH proton of 1a
+
 and an oxygen atom of the phosphate, the O---H 

distances being similar at 1.41 Å and 1.48 Å, respectively. The other phosphate 

oxygen hydrogen-bonds with the NH proton of C; however, the O---H distance 
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is significantly shorter in the trans complex, 2.03 Å vs. 2.45 Å, indicating a 

weaker hydrogen bond in the cis analogue and thus explaining why hydrogen 

bonding with the cis hydride B was not observed.  

Significantly, in the trans-C derived complex [RIrSN-C][1a
+
][A

-
], the 

chloride faces away from the hydrogen bonded 1a
+
 (Figure 3.11 a,b), whereas 

in the cis analogue the chlorine atom faces the re-face of 1a
+
 with a Cl and C 

(C=N) separation of 4.36 Å (Figure 3.11 d,e), which would afford the observed 

S configured amine if the chloride of C was replaced with a hydride, lending 

support to the NMR study in the previous chapter using the hydride B.  

In addition to the hydrogen bonding, a range of CH-π interactions are 

evident in both complexes.
23

 The main difference between the two ternary 

complexes is seen in the cis-C-derived [SIrSN-C][1a
+
][A

-
], which exhibits 

favorable CH-π interactions, ranging 2.8-3.2 Å, between the CH2 groups on the 

backbone of C and the benzyl phenyl ring of C, and between the former and 

the phenyl group of 1a
+
 (Figure 3.11 f); these interactions are absent in the 

trans analogue, accounting for the higher stability of the complex derived from 

cis-SIrSN-C (Figure 3.11 c vs f).  

The results obtained with the model chloride complex C supports the 

notion that a ternary complex is formed in the catalysis and is responsible for 

enantioselective hydride transfer, and further suggest that out of the four 

isomeric hydrides D, it is the minor cis-SIrSN-B isomer that forms the 

productive ternary complex with the phosphate and an iminium ion, through 

which the imino bond is reduced. The phosphate binds to both cis-SIrSN-B and 

1a
+
 through hydrogen bonding and CH-π interactions, allowing the hydride to 
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add only to the re-face of the imino bond. These interactions and the resulting 

ternary complex are proposed to be the key feature of the transition state of 

hydride transfer in the catalysis (Figure 3.11 g), which permits highly effective 

chirality transfer, but at a much slower rate of hydride transfer than in 

hydrogenation using non-hydrogen-bonding counteranions.
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Figure 3.11: Modeled structures of ternary complexes. a and b: [RIrSN-C][1a
+
][A

-
] (-2.7 kcal/mol), arising from trans-RIrSN-C,

 
1a

+
 and A

-
, which fits NOE data; c: 

expansion of [RIrSN-C][1a
+
][A

-
] showing lack of

 
CH-π interactions; d and e: [SIrSN-C][1a

+
][A

-
] (-5.7 kcal/mol), arising from cis-SIrSN-C, 1a

+
 and A

-
, which fits NOE 

data; f: expansion of cis-[SIrSN-C][1a
+
][A

-
] to show CH-π interactions; g: Schematic representation of the presumed transition state of hydride transfer in asymmetric 

imine hydrogenation with the achiral-chiral catalysts C and HA.  Grey = C, red = O, blue = N, green = Cl, yellow = S, gold = Ir, white = H.
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3.2.5 Diffusion ordered spectroscopy (DOSY) of the tertiary structure  

PFGSE measurements were used to further probe interactions between 

the components. The diffusion constants calculated from the resulting 
1
H 

DOSY NMR spectra could be related to the hydrodynamic radii, rH, of a 

molecule by use of the Stokes-Einstein equation (Eq 1), where η is the solution 

viscosity and rH equals the hydrodynamic radius of the diffusing particles 

assuming a spherical shape. This gives another method to help prove the 

existence of the interactions and the previously calculated structures could be 

compared directly with the rH. 

 

D = (kT)/(6πηrH)               (1) 

 

1
H DOSY spectra of the individual components showed in CD2Cl2 the 

expected difference in mobility, with HA having the slower diffusion constant 

(Figure 3.12 & Table 3.1). The calculated rH show in general good agreement 

with the computational calculated radii, with a small difference noted for HA. 

This difference is above the uncertainty of the measurement (±9%, based on 

the reproducibility of dichloromethane) and can be attributed to possible self-

aggregation and the assumption of a spherical shape in HA. From modelling 

studies HA can be seen to possess a large free cavity with a non-spherical 

shape. HA also possesses the ability to aggregate through hydrogen bonding 

and the larger hydrodynamic radii may be a product of this interaction.  
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Table 3.1: Diffusion constants and hydrodynamic radii for HA, C and 1b
a 

Entry Diffusion 

Constant (m
2
/s) 

Hydrodynamic Radius 

(Å) 

Computational 

Calculated Radius (Å) 

CH2Cl2 2.94 x 10
-9

 1.71 1.80 

  1b 1.46 x 10
-9

 3.44 4.04 

HA 6.51 x 10
-10

 7.71 5.80 

C 1.01 x 10
-9

 5.00 4.90 

a
The NMR were carried out in 0.7 mL of CD2Cl2, with a concentration of 20 mM for each 

compound. Computational calculated radius determined from the total volume of the optimised 

structure at a DFT level of theory. 

 

Upon mixing of equimolar amounts of 1b and HA, it can be seen that 

1b is more mobile than the 1b in the presence of HA, indicating an interaction 

(Figure 3.13, b.).
24

 The resonances of the imine are also changed with respect 

to the free imine (1b) indicating a new imine environment. 

Free acid HA is also more mobile than HA in the presence of 1b, but 

there is no change greater than the uncertainty of the measurement seen in the 

acid (HA) diffusion (Figure 3.13, c. and Table 3.2). However, from the 

computational model it is predicted that the imine sits in a cavity within the 

acid; therefore a large change in the diffusion constant and hydrodynamic 

radius is expected for the imine but not for the acid.  



Chapter 3: Cooperative Catalysis: Made Possible by Noncovalent Interactions 

 

107 
 
 

 

 

 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: a.)
1
H DOSY spectra of 1b; b.) 

1
H DOSY spectra of HA; c.) 

1
H DOSY spectra of C. 

a.) b.) 
c.) 
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Figure 3.13: a.) 
1
H DOSY spectra of 1b + HA (1:1 molar ratio); b.) 

1
H DOSY 

spectra of 1b + HA (blue) compared to free 1b (red); c.) 
1
H DOSY spectra of 

1b + HA (blue) compared to free HA (red). 

  

 

b.) 

c.) 

a.) 



Chapter 3: Cooperative Catalysis: Made Possible by Noncovalent Interactions 

 

109 
 
 

Examination of the hydrodynamic radii shows a good agreement 

between the calculated radii for the free and bound imine but larger radii for 

the free and bound acid. This again can be explained by the assumption of a 

spherical shape and possible aggregation discussed earlier. 

 

Table 3.2: Diffusion constants and hydrodynamic radii for 1b and HA
a 

Entry Diffusion Constant 

(m
2
/s) 

Hydrodynamic 

Radius (Å) 

Computational 

Calculated Radius (Å) 

 1b 1.46 x 10
-9

 3.44 4.04 

HA 6.51 x 10
-10

 7.71 5.80 

 1b (HA present) 8.34 x 10
-10

 6.03 6.36 

HA (1b present) 6.55 x 10
-10

 7.67 6.36 

a
The NMR were carried out in 0.7 mL of CD2Cl2, with a concentration of 20 mM for each 

compound. Computational calculated radius determined from the total volume of the optimised 

structure at a DFT level of theory. 

 

 The previous chapter demonstrated that the combination of 1b and B 

was unreactive in the absence of HA. The 
1
H DOSY for this combination 

reaffirms this lack of interaction between metal complex and substrate (Figure 

3.14). There is no change in either the chemical shift or diffusion constant for 

1b or C.  With the peaks showing no change in chemical shift compared to the 

free components in the spectra, no interaction is suggested. 

. 
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Figure 3.14: DOSY spectra of 1b + C (blue)(1:1 molar ratio) compared to free C (red).  

 

Work earlier in the chapter showed hydrogen bonding and NOE signals 

between C and HA and this is further confirmed when the diffusion is 

examined. There is a definite slowing of C and for HA a change no greater 

than the uncertainty of the measurement is observed (Figure 3.15 b-c.).  
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Figure 3.15: a.) DOSY spectra of HA + C (1:1 molar ratio); b.) DOSY spectra 

of HA + C (blue) compared to free C (red); c.)  DOSY spectra of HA + C (1:1 

molar ratio)(blue) compared to free HA (red). 

 

 

a.) 

b.) 

c.) 
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A good agreement between the calculated and observed hydrodynamic 

radii is again observed (Table 3.3). As discussed previously the larger observed 

HA hydrodynamic radii compared to the computational calculated is likely due 

to the non-spherical shape of HA or aggregation. The presence of hydrogen 

bonding in the 1D 
1
H NMR coupled with the observed slowing of C indicates 

an interaction between the two components. 

 

 

Table 3.3: Diffusion constants and hydrodynamic radii for HA and C
a
 
 

Entry Diffusion 

Constant (m
2
/s) 

Hydrodynamic Radius 

(Å) 

Computational 

Calculated Radius (Å) 

HA 6.51 x 10
-10

 7.71 5.80 

HA (C present) 6.91 x 10
-10

 7.27 6.81 

C 1.01 x 10
-9

 5.00 4.90 

C (HA present) 7.17 x 10
-10

 7.01 6.81 

a
The reaction was carried out in 0.7 mL of CD2Cl2, with a concentration of 20 mM for each 

compound. Computational calculated radius determined from the total volume of the optimised 

structure at a DFT level of theory. 
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 Figure 3.16: DOSY spectra of HA + C + 1b (1:1 molar ratio). 

 

Detecting the presence of all three components interacting together is 

challenging due to the number of peaks in the spectrum, which causes 

streaking in the 
1
H

 
DOSY NMR (Figure 3.16). The diffusion constants are 

calculated using either the peak intensity, or area underneath the peak, and so 

require a well resolved signal to achieve this. 

 Analysis of the 
1
H DOSY NMR of HA + C + 1b in CD2Cl2 allows the 

identification of a number of species in the sample, free 1b (Figure 3.17, a), C-

HA (Figure 3.18), and a small amount of 1b-HA (Figure 3.19); but there is no 

free C (Figure 3.17, c), or free acid HA present (Figure 3.17, b). 
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Figure 3.17: a.) DOSY spectra of HA + C + 1b (blue) compared to free 1b 

(red); b.) DOSY spectra of HA + C + 1b (blue) compared to free HA (red); c.) 

DOSY spectra of HA + C + 1b (blue) compared to free C (red).  

 

 

c.) 

b.) 

a.) 
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Figure 3.18: DOSY spectra of HA + C + 1b (blue) (1:1 molar ratio) compared to C + HA 

(red).  

 

Figure 3.19: DOSY spectra of HA + C + 1b (blue) (1:1 molar ratio) compared to 1b + HA 

(red).  
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Table 3.4: Diffusion constants and hydrodynamic radii for HA, C and 1b
a 

Entry Diffusion 

Constant (m
2
/s) 

Hydrodynamic Radius 

(Å) 

Computational 

Calculated Radius (Å) 

CH2Cl2 2.94 x 10
-9

 1.71 1.80 

  1b 1.46 x 10
-9

 3.44 4.04 

1b (HA present) 8.34 x 10
-10

 6.03 6.36 

HA 6.51 x 10
-10

 7.71 5.80 

HA (1b present) 6.55 x 10
-10

 7.67 6.36 

HA (C present) 6.91 x 10
-10

 7.27 6.81 

C 1.01 x 10
-9

 5.00 4.90 

C (HA present) 7.17 x 10
-10

 7.01 6.81 

1b, HA and C 

Tertiary average 

6.37 x 10
-10

 7.89 7.20 

a
The NMR were carried out in 0.7 mL of CD2Cl2, with a concentration of 20 mM for each 

compound. Computational calculated radius determined from the total volume of the optimised 

structure at a DFT level of theory. 

 

Calculating the diffusion constant for a range of peaks (δ 8.01-7.07 ppm 

1.85-0.81 ppm) without the interference of the free 1b gives a diffusion 

constant of 6.371 x 10
-10 

m
2
/s (Table 3.4). The associated hydrodynamic radius 

(7.89 Å) compares well with the calculated computational hydrodynamic 

radius of HA + C + 1b (7.20 Å), giving evidence for a tertiary structure and 

further confidence in the calculated structures.  

Extracting a range of the 32 recorded 1D 
1
H NMR spectra from the 

1
H 

DOSY NMR shows the decay of the signals as a function of the diffusion. The 
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free 1b aromatic peaks (δ 8.15-8.3 ppm and 6.8-6.95 ppm) can be seen to 

decay more rapidly than the other aromatic peaks. The remaining peaks decay 

at very similar rate in all regions of the spectrum (Figure 3.20). This coupled 

with the good agreement between the observed and calculated hydrodynamic 

radii give evidence of a tertiary structure. When the NOE signals between all 

three components are also taken into consideration there is solid evidence for 

the existence of a tertiary structure. 

 

Figure 3.20: Aromatic region of 1b + HA + C showing decay of signal as a function of the 

diffusion. 

 

3.3 Conclusions and future work 

This study has revealed that when an organometallic catalyst is 

combined with an organocatalyst to effect a reaction, it is non-covalent 

interactions that are likely to dictate the catalytic activity and selectivity, 

resembling enzymatic catalysis. The combination of hydrogen bonding and 

CH-π interactions allow cis-SIrSN-B to carry out the enantioselective hydride 

transfer. 
1
H DOSY NMR studies added further evidence for the supramolecular 
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ternary structure and showed good agreement between the predicted size of the 

calculated and observed radii. 

Future work should concentrate on using the knowledge gained to allow 

for the design of future metal-organo cooperative catalysts. The key features 

that determine selectivity are now known and computational modelling could 

help locate alternative catalysts.  It could be envisaged that a strategy similar to 

pharmacophore searching in drug design could, with the right database, allow 

for the location of new catalysts.  

 

3.4 Experimental 

3.4.1 Structural characterisation of tertiary structure via NMR 

1
H-

13
C HSQC and 

1b
 NOESY NMR spectra of mixtures of HA, C, and 1a 

NMR spectroscopy was carried out on 800MHz Bruker spectrometer 

equipped with a triple resonance TXI cryo probe. Spectra were obtained on 

natural isotope abundance samples at 293 K with a relaxation delay of 2 sec, 

90
o
 (

1
H) of 10 µs. Samples used for NMR assignment were as follows; acid 

(HA) in isolation, chloride complex (C) in isolation, HA-C 1:1 mixture, HA-

1a 1:1 mixture, HA-C-1a 1:1:1 mixture; all samples were prepared at a 

concentration of 0.1 mmol in 500 µL in deuterated DCM. 2-Dimensional 

homonuclear 
1
H-

1
H, TOCSY, COSY, NOESY and heteronuclear 

1
H-

13
C 

HSQC, HMBC spectra were employed utilizing pulse sequences supplied by 

the manufacturer. Sequences were set up as follows: COSY data matrix 

2048x512, 8 scans, 128 dummy scans; TOCSY data matrix 2048x512, 8 scans 

128 dummy scans, 45 ms mixing time; NOESY data matrix 2048x512, 16 
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scans 128 dummy scans, 50 ms and 500 ms mixing times. HSQC (aliphatics) 

data matrix 1200x350, 48 scans, 128 dummy scans, 70 ppm 
13

C spectral width, 

35 ppm 
13

C offset; HSQC (aromatics) data matrix 1200x192, 48 scans, 128 

dummy scans, 40 ppm 
13

C spectral width, 125 ppm 
13

C offset; HMBC data 

matrix 4096x512, 48 scans, 128 dummy scans, 145 ppm 
13

C spectral width, 

72.5 ppm 
13

C offset. 

Assignment was carried out using well documented methods. Briefly, 

assignment of isolated acid and complex C was carried out using COSY, 

TOCSY and NOESY experiments prior to assignment of acid-catalyst, acid-

imine and acid-C-imine samples. Heteronuclear experiments were essential in 

order to reduce complexity and differentiate from overlapping 
1
H resonances. 

In instances where no COSY and TOCSY resonances were observable use of 

1
H and 

13
C chemical shift enabled prediction of assignments to be made with 

high-confidence (eg. Cp* and OMe assignment).  

 

3.4.2 Pulsed field gradient spin-echo (PFGSE) measurements 

 The 
1
H pulsed field gradient spin-echo measurements were carried out 

without spinning and with a steady airflow of 670 l/h to prevent convection 

currents from the heating coil at 295 K (±0.1 K). The samples were dissolved 

in 0.7mL of CD2Cl2, with a concentration of 20 mM.  

 All the PGSE diffusion measurements were performed using the 

stimulated echo pulse sequence dstebpgp3s on a 400 MHz Bruker Avance 

spectrometer equipped with a TBI 1H/31P/BB HR probe. The pulse sequence 

was convection compensated and used bipolar pulses. A quadrangular gradient 
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pulse was used with a duration δ of 1.25 µs, and its strength varied 

automatically in the course of the experiments. The gradient system was 

calibrated using doped water as described in the Bruker diffusion user manuel. 

The data obtained were used to calculate the D values of the samples, 

according to the literature. In the 
1
H-PGSE experiments, the diffusion delay, Δ, 

was set to 100 µs, respectively. The number of scans was 8 per increment with 

a recovery delay of 2s. Typical experimental times were 30 minutes. All the 

spectra were acquired using 32 K points and processed with a line broadening 

of 1 Hz (1H).  

 Echo intensities and integrals were fit by non-linear regression to using 

the T1 processing package in TopSpin, to obtain the observed diffusion 

coefficients. Normally, 15-20 points were used for regression analysis, and all 

of the data leading to the reported D-values afforded lines whose correlation 

coefficients were >0.999. The gradient strength was incremented in 3-4% steps 

from 1 to 99%. The hydrodynamic radii, RH, were estimated using the Stokes-

Einstein equation, D = (kT)/(6πηrH), where η is the solution viscosity and rH 

equals the hydrodynamic radius of the diffusing particles assuming a spherical 

shape. 

The uncertainty of measurements can be judged from the reproducibility of 

the diffusion coefficient of dichloromethane, giving an uncertainty of ±9% for 

the diffusion coefficients.   
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3.4.3 Computational details 

Methodology for structure optimisation utilising NOE 

Initial structures were generated by use of a conformation distribution 

search carried out in Spartan ’08 using molecular mechanics and a MMFF94 

force field with default parameters.
25

 The most popular structures which 

satisfied the key NOE signals previously identified were optimised using PC 

GAMESS.
26

 Structure optimisations were carried out at density functional 

theory (DFT) level in the gas phase using the B3LYP functional.
27-30

 For all the 

optimisations the 6-31G** basis set was used for all atoms except Ir.
13

 

Relativistic effects for Ir were addressed by using LANL2DZ effective core 

potential (ECP) together with the LANL2DZ basis set.
13

  

Due to the need to model the full complexity of the system while taking 

into consideration of the length of time this would require using a DFT level of 

theory, subsequent calculations were carried out in Gaussian09 at a semi-

empirical level of theory using the PM6 Hamiltonian.
14,15

 A further 

optimisation followed by vibrational frequency calculations were carried out to 

confirm the nature of the stationary point on the potential energy surface. It 

was necessary to insert a dummy atom placed into the middle of the Cp* ring 

so that the coordination remained η
5
. The Ir to dummy atom distance was 

constrained to a value of 1.83 Å based on the crystal structure of C. Energy 

minima were confirmed with no imaginary frequencies less than -50 cm
-1

. All 

calculations were performed on the University of Liverpool linux clusters, and 

graphical representations were generated using chemcraft
31

 and CYLview.
,32
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3.5 Analytical data 

All NMR data can be found attached in the supporting electronic 

information. All XYZ coordinates can also be found attached in the supporting 

elctronic information. 
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Chapter 4 

 

Computational Studies of the effect of ligand conjugation on the 

activity of cyclometallated iridium (III) complexes 

 

4.1 Introduction 

Work in the previous chapters has focused on mechanistic studies of 

cooperative catalytic systems. This chapter centres on a range of iridium (III) 

cyclometallated catalysts and how the nature of conjugation present in the 

ligand affects the reactivity in a variety of hydrogen transfer reactions. 

Cyclometallation was a term introduced in 1973 by Trofimenko
1
 and 

can be defined as “an organic ligand undergoing intramolecular metallation to 

form a metal-carbon σ bond”.
2
 Classically in a cyclometallation, coordination 

of the ligand to the metal forms a dative bond involving a heteroatom such as 

nitrogen. C-H activation then follows giving rise to the covalent metal-carbon 

bond with elimination of a basic leaving group as HX (Scheme 4.1). The 

metallacycles are usually regioselectively formed and are five-membered as 

opposed to the less stable four or six membered rings. 

 

 

Scheme 4.1: General scheme for cyclometallation, E= Heteroatom, M= Metal. 
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Some of the first examples of cyclometallated complexes were reported 

by Cope and Siekman in 1965. They reacted azobenzene with K2PtCl2 and 

PdCl2 to form cyclometallated Pt and Pd dimers 1.
3
  Further early examples 

were reported including rhodium phenyl-phosphane 2 and ruthenium phenyl-

phosphite 3 complexes (Figure 4.1).
4,5,6-8

 

 

 

Figure 4.1: Early reported examples of cyclometalled complexes. 

 

Since these early examples the field has seen major advancements, with 

cyclometalled complexes being utilised as highly active catalysts for a range of 

reactions. Specifically among these reactions, cyclometallated complexes have 

been shown to catalyse  a range of novel hydrogen transfer processes,
 
including 

the racemisation of amines and alcohols,
9-11

 hydrogenations
12-14

 and 

dehydrogenation reactions.
15-23

 

Racemisation of amines and alcohols utilising cyclometallated 

complexes was demonstrated by de Vries.
9
 This was achieved with electron-

rich iridacycles, with complex 5 containing a benzylamine ligand showing high 

activities for alcohols, upon activation with base (Scheme 4.2). Full 

racemisation could be achieved at room temperature with alcohol 4 fully 
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consumed in 5 minutes. The amine racemisation necessitated a change to a 

phenylimidazoline ligand but without the need for activation. 

 

 

Scheme 4.2: Racemisation of alcohols using a cyclometalled iridium catalyst. 

 

The first example of transfer hydrogenation using a cyclometallated 

metal catalyst was reported by Baratta et al.
12

 They reduced a range of simple 

ketones using complex 6, containing a P^C ligand and a 2-

(aminomethyl)pyridine ligand (Figure 4.2). The reaction was carried out in 

iPrOH at 82 ˚C and gave a very high TOF up to 63,000 h
-1

. 

 

 

Figure 4.2: Cyclometallated ruthenium(II) complex used for transfer hydrogenation. 
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Sortais et al investigated the asymmetric transfer hydrogenation of 

acetophenone using ruthenacycles obtained by cyclometalation of enantiopure 

aromatic primary or secondary amines.
13

 The ability to prepare the 

cyclometallated catalyst in situ allowed for the use of high throughput 

techniques. Of the ligands tested using this method, 7 gave the best results with 

99% yield and 80% ee in iPrOH at room temperature (Figure 4.3).    

 

Figure 4.3: (R)-bis((R)-1-phenylethyl)amine ligand. 

 

Dehydrogenations catalysed by cyclometallated complexes have also 

been demonstrated. Gupta and co-workers showed that the iridium P-C-P 

pincer complex could catalyse the dehydrogenation of a range of cycloalkanes 

to alkenes and arenes.
17,18

  Dehydrogenation of cyclodecane at 201 ˚C yields 

170 and 360 turnovers after 4 and 24 h, respectively (Scheme 4.3).
20

 The 

reaction was also successfully extended to alkylbenzenes and cyclic ethers but 

required the presence of the hydrogen acceptor, tertbutylethylene.
19

 

 

 

Scheme 4.3: Dehydrogenation of cyclodecane with an iridium P^C^P pincer complex.  
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Recent work in our group has shown that cyclometallated 

Cp
*
Ir(N^C)Cl complexes are highly active catalysts for a range of hydrogen 

transfer reactions, including transfer hydrogenation of imines and carbonyls, 

mild hydrogenations of N-heterocycles and acceptorless dehydrogenation 

reactions (Scheme 4.4).
24-30

  

 

Scheme 4.4: Cyclomeatllated complexes for the TH of imines and the dehydrogenation of 

formic acid. 

 

 These studies appear to suggest that conjugation in the ligand and 

between the ligand and metal affects the catalytic activity. Conjugation can be 

viewed as the delocalisation of π electrons through bonds with a π system.
31
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Conjugated systems require there to be an unbroken arrangement of p-orbitals 

that align to produce a π bonding overlap along the whole system. A break in 

this chain or an atom that does not provide a p-orbital causes the conjugations 

to be broken. Thus, conjugated systems fall into two basic groups: 

 An "isolated" π system existing between only a single pair of 

adjacent atoms (e.g. C=C). 

 An "extended" π system existing over a longer series of atoms 

allowing for extended stability and reactivity (e.g. C=C-C=C or C=C-

C=O). 

This overlapping of the p-orbitals in an extended system allows for the 

delocalisation of the electrons throughout a molecule and can be observed in 

many linear and cyclic molecules, for example benzene. The presence of 

conjugation gives rise to stronger sigma bonds due to the sp
2
-sp

2
 overlap giving 

single bonds more “double bond” character and conversely to longer double 

bonds than non-conjugated double bonds analogues. The more conjugation 

there is in analgous system, the closer together the highest occupied molecular 

orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) become, 

therefore giving a smaller energy gap between the reactant frontier orbitals and 

hence an increase in reactivity. The presence of conjugation allows for 

extended stability and different reactivity in molecules not observable in its 

absence. With transition metal atoms possessing the required orbitals of 

appropriate energy and symmetry, conjugated systems can be present within 

metal complexes and this study will focus on those present in a range of 

cyclometalled iridium (III) complexes. A detailed understanding of how 
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conjugation affects the hydrogen transfer steps in the reactions is of critical 

importance to the development of highly active catalysts for these processes. 

4.2 Results and discussion 

In the course of work undertaken in the Xiao group (Tables 4.1-4) 

developing catalysts for the dehydrogenation of formic acid, it was noted that 

the activity was strongly dependent on the position of cyclometallation of the 

arylimidazoline ligand, with C2 cyclometallation giving highly active catalysts 

and C4 giving inactive complexes (Figure 4.4).
27

 

 

Figure 4.4: Complexes examined to investigate the level of conjugation influencing reactivity. 

 

To investigate the factors behind the dramatic differences in activity of 

an array of catalysts a range of related complexes were synthesised within the 

Xiao group using the acetate assisted cyclometallation protocol reported by 

Davies and co-workers (Figure 4.4).
32-34

 Complex 11 and 12 differ in the added 

conjugation from an imidazoline ring in 11 to a more conjugated imidazole 
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ring in 12. Complex 13 has added steric bulk with a mesityl ring in the C2 

position while the related complex 14 has the cyclometallation occurring on a 

methyl group on the mesityl ring as opposed to the phenyl ring. Complex 15 is 

fully conjugated but without the added rings of the previous complexes in 

contrast to the sterically congested 16 which possesses 2,5 tert-butyl 

substituted phenyl rings.   

Complexes 11 and 14 lack a system capable of conjugating to the metal 

centre and can be described as non-conjugated but complexes 12 and 13 can be 

thought of as possessing a cross conjugated system. This is where there are 

three unsaturated groups present, two of which, although conjugated to a third 

unsaturated centre, are not conjugated to each other.
35

 Complexes 15 and 16 

possess the correct arrangement of bonds to allow for full conjugation to the 

metal centre. 

Each of these complexes was tested in a range of hydrogen transfer 

reactions and formic acid decomposition by Dr Jonathan Barnard to assess 

their catalytic activity for the computational study (Tables 4.1-4.4). 

Table 4.1 Hydrogenation of 1-methyl-3,4-dihydroisoquinoline
a
           

 

Entry Complex Solvent Conversion (%)
b
 

1 11 MeOH N.R. 

2 12 MeOH 14 

3 13 MeOH 22 

4 14 MeOH N.R. 

5 15 MeOH 44 

6 16 MeOH 38 

a
Conditions: 1-methyl-3,4-dihydroisoquinoline (0.5 mmol), catalyst (1 mol%), MeOH (3 mL). 

b
Conversion determined by 

1
H NMR of the crude reaction mixture and normalising the sum of 

the product and starting material integrals to 100%. N.R. = no reaction 
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Table 4.2 Hydrogenation of 2-methylquinoline
a 

 

Entry Complex Solvent Conversion (%)
b
 

1 11 TFE N.R. 

2 12 TFE 10 

3 13 TFE 50 

4 14 TFE N.R. 

5 15 TFE 50 

6 16 TFE 44 

a
Conditions: 1-methyl-3,4-dihydroisoquinoline (0.5 mmol), catalyst (1 mol%), TFE (3 mL). 

b
Conversion determined by 

1
H NMR of the crude reaction mixture and normalising the sum of 

the product and starting material integrals to 100%. N.R. = no reaction 

Table 4.3 Hydrogenation of an acyclic imine
a
 

 

Entry Complex Solvent Conversion (%)
b
 

1 11 MeOH N.R. 

2 12 MeOH 3 

3 13 MeOH 62 

4 14 MeOH N.R. 

5 15 MeOH 97 

6 16 MeOH 80 

a
Conditions: Imine (0.5 mmol), catalyst (1 mol%), TFE (3 mL), 

b
Conversion determined by 

1
H NMR of the crude reaction mixture and normalising the sum of the product and starting 

material integrals to 100%. N.R. = no reaction 

Table 4.4 Decomposition of formic acid
a 

 

Entry Complex 
Initial TOF h

-

1
 

Vol H2 (2 h) / 

mL 
TON (2 h) 

1 11 0 0 0 
2 12 490 8 33 
3 13 1142 40 163 
4 14 0 0 0 
5 15 1090 49 200 
6 16 980 76.5 312 

a
Reactions were performed under an N2 atmosphere with 10 µmol of catalyst precursor and 

1.5 mL of 5:2 formic acid/triethylamine mixtures (F/T). Initial TOF values calculated from 

the volume of gas collected in the first 3 min (see the experimental section for further details). 



Chapter 4: Computational Studies of the effect of ligand conjugation on the activity of 

cyclometallated iridium (III) complexes 

134 
 

A clear trend in reactivity can be observed for the complexes with the 

non-conjugated systems, 11 and 14 having no reactivity for any of the reactions 

tested, the cross conjugated 12 and 13 showing low to mid-range reactivity and 

the fully-conjugated 15 and 16 having the highest activity (Figure 4.5). This 

leads to clear trend in reactivity that can be thought of as: conjugated > cross-

conjugated > non-conjugated complexes. 

 

 

Figure 4.5: Table summarising the reactivity of complexes 11-16 for hydrogenation of 

substrates 17-19.  

This clear link observed in the results between the degree of 

conjugation and the activity of the complex was explored in much greater 

detail by the use of computational studies to identify the key factors that 

account for the changes in reactivity. 
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For the computational study, complexes 11-H, 12-H, and 15-H were 

selected to be examined for the hydride transfer step of the reduction of 20, due 

to the ease of formation of the hydrides in the hydrogenation reaction (Scheme 

4.5). Complexes 11-H and 12-H have differing degrees of conjugation while 

having a very similar structure allowing for direct comparison of the 

conjugation. In contrast complex 15-H has a fully conjugated system but 

without the outer rings of the other complexes. While a direct comparison to 

the other complexes has to take into consideration steric effects, the 

comparable reactivity of the fully conjugated complex 16 show that it is not a 

merely steric effect and there must be other underlying factors. Complex 15-H 

also has much lower computational demands due to the lower number of 

electrons than the much larger complex 16. 

 

Scheme 4.5: The hydride transfer step studied and the cyclometallated Ir(III) hydride 

complexes investigated in this study.  
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Previous stoichiometric studies have shown that the reduction of imines 

occurs by an ionic mechanism in which a protonated imine reacts with the 

iridium monohydride, with no reaction occurring between the hydrides and 

neutral imines.
29

 The modelling therefore looked at each of the hydride 

complexes delivering to a protonated imine 20 with a simple chloride counter-

anion, resulting in the amine product 20a and the corresponding chloride 

complex. 

4.2.1 Ground state structures and energies 

For each of the complexes 11-H, 12-H and 15-H the ground state 

structures and energies were attained. Due to the rigid nature of the ligand there 

are a small number of rotable bonds in the complexes (< 3). Both 12-H and 15-

H possess one stereogenic centre at the iridium and as expected each set of 

enantiomers are extremely close in energy, 0.28 and 0.06 kcal/mol apart 

respectively (Figures 4.6-4.8). The small difference is likely due to the error 

associated with the calculations.  

However, complex 11-H presents a different case, as there is an in built 

fixed chirality present in the ligand as well as the chirality at the iridium. This 

leads to two diastereoisomers with differing energies of 7.03 kcal/mol. A closer 

examination of the structures allows for a clear indication of where this large 

difference arises, 11-H-(R) and 11-H-(S) show a change in structure from the 

piano stool geometry in 11-H-(S) to a more distorted, flatter structure (lower 

Cp*-Ir-N-C dihedral angle 16.9° (R) vs. 83.59° (S)) in 11-H-(R) (Figure 4.6). 

In 11-H-(R) the C-H at C4 of the imidazoline ring is in close proximity (2.56Å 

(R) vs. 4.27 (S) Å) to the hydride, leading to a distortion in structure in order to 
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alleviate the steric hindrance.  This large difference in energy leads to 11-H-

(R) being inaccessible at room temperature removing this diastereoisomer from 

being involved in the hydride transfer step. The transition state search can 

therefore discount results from this diastereoisomer. 

 

11-H-(R) 

 

11-H-(S) 

 

Fig. 4.6: Ground state energy’s and structures for 11-H, gold = Ir, blue = N grey = C, H= 

white. Ball and stick model. 

C-H at C4 of the 

imidazoline ring in 

close proximity to 

the hydride leading 

to a distortion in 

structure. 
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12-H-(R) 

 

12-H-(S) 

 

Fig. 4.7: Ground state energy’s and structures for 12-H, gold = Ir, blue = N grey = C, H= 

white. Ball and stick model. 
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15-H-(R) 

 

15-H-(S) 

 

Fig. 4.8: Ground state energy’s and structures for 15-H, gold = Ir, blue = N grey = C, H= 

white. Ball and stick model. 

 

 



Chapter 4: Computational Studies of the effect of ligand conjugation on the activity of 

cyclometallated iridium (III) complexes 

140 
 

4.2.2. HOMO of ground state complexes  

Examination of the HOMO of each of the complexes at the ground state 

allowed for a qualitative indication of the degree of conjugation each possesses 

(Figures 4.9-4.10).  A close examination of the HOMO of 11-H-(S) shows the 

majority of the orbital located around the central iridium, cyclopentadienyl ring 

and the cyclometallated phenyl ring with a smaller amount located on the 

imidazoline ring at the C2, C4 positions and the cyclometallated N.  The lack of 

conjugation through-out the molecule is demonstrated by the absence of the 

orbital being spread across the ligand with only a presence in individual 

locations.  

The HOMO of 12-H-(S) has much the same characteristics of 11-H-(S) 

but possesses a conjugated imidazole ring and the HOMO diagram 

demonstrates this. There is a larger HOMO presence on this ring at the C2 and 

C5 positions and extend into the remote phenyl ring. Crucially, however, the 

orbital on the imidazole does not extend into the central iridium or the 

cyclometallated phenyl ring, showing a lack of complete conjugation through 

the ligand system. This helps to illustrate the cross conjugated system that is 

present in this complex. 

In contrast to the previous two complexes, 15-H-(S) has a HOMO that 

is located across the entire complex with the orbital situated over both the 

ligand and the iridium confirming a fully conjugated system.  This information 

confirmed the nature of the conjugation in each complex and led onto the 

location of the transition states for the hydride transfer step. 
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Figure 4.9: HOMO diagrams showing two orientations for the Ir-(S) configuration of each complex. The orange colour reflects a positive phase, whereas the purple 

colour refers to a negative phase, iso value range -0.02 – 0.02. 
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Figure 4.10: HOMO diagrams showing two orientations for the Ir-(R) configuration of each complex. The orange colour reflects a positive phase, whereas the purple 

colour refers to a negative phase, iso value range -0.02 – 0.02.
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4.2.3 Location of transition states for the hydride transfer step 

For each complex there are four possible transition states due to the 

stereogenic iridium (R and S) and there being two faces of the iminium for 

hydride delivery (Re and Si). Due to the inaccessibility of the ground state 11-

H-(R), two transition states can be discounted. Below is summarised the 

transition states that were located (Figure 4.11).  

 

Figure 4.11: An overview of the transition states located for each complex. 

 

All transition states were located and confirmed with only one 

imaginary frequency corresponding to delivering the hydride to the iminium 

carbon.  The figure below shows an overview of the activation energy from 

ground state to the transition state for each of the complexes. A general trend is 

immediately obvious (Figure 4.12). The more reactive 15-H has a 7-10 

kcal/mol smaller activation energy than 12-H, which has a much smaller gap of 

2-4 kcal/mol to the non-reactive 11-H (Figures 4.13-4.15). This trend matches 

the observed experimental results for the imine reduction (Table 4.3). 
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Fig 4.12: Energy profile showing the activation energy for complexes 11-H, 12-H, and 15-H. 

Energies relative to the starting materials 11-H/12-H/15-H + 20. 

 

Analysis and comparison of the transition state structures allowed for 

the factors influencing these energy differences to be elucidated. The main 

difference between 11-H and 12-H is the change from the imidazoline ring to a 

more conjugated imidazole ring; this has the effect of a change of structure. 

The imidazoline ring adopts a puckered confirmation, bringing the outer 

phenyl ring and cyclohexyl ring in closer proximity to the rings of the iminium 

in the transition state.  When 11-H-(S)-(Si) is compared directly to the 

analogous 12-H-(S)-Si a difference in the contact distances between these rings 

and the iminium is seen (3.182 Å in 11-H vs. 3.282 Å in 12-H, distance 

measured between the two closest carbons on each of the rings) and 

consequently, a larger bond distance for the hydride to the carbon for delivery 

is observed (1.505 Å in 11-H vs. 1.442 Å in 12-H) (Figure 4.16).  
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Figure 4.13: Energy profile for hydride delivery for 11-H. 
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Figure 4.14: Energy profile for hydride delivery for 12-H. 
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 Figure 4.15: Energy Profile for hydride delivery for 15-H.
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Figure 4.16: 11-H-(S)-(Si) and 12-H-(S)-Si showing hydride delivery distances of the 

transition states accounting for the energy difference. Change in shape of the imidazoline ring 

of 11-H (inset). Green = hydride, blue = N, grey = C, remaining protons omitted for clarity. 

 

When the transition states of 15-H are analysed, the first most notable 

observation is the lack of the phenyl and cyclohexyl outer rings seen in the 

previous complexes (Figure 4.17). The larger gap between 12-H and 15-H 

cannot be solely attributed to this removal of the rings, as the complex 16 
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possess the steric bulk 15-H lacks and gives high activity (97% vs. 80%, Table 

4.3 entries 5 & 6).  

The difference in reactivity between 11-H and 12-H is a steric 

contribution. There is no trend seen in the change in charge (extracted from the 

natural bond order (NBO) analysis) from ground state to transition state when 

compared (Ir = -0.095(11-H, average) vs. -0.101(12-H, average)) This steric 

difference gives an energy difference in the transition states of 11-H and 12-H 

of 2-4 kcal/mol. In comparison there is a 7-10 kcal/mol difference between 12-

H and 15-H. This leads to the conclusion that there must be more factors than 

just a steric effect present to account for this large difference. 

 

Figure 4.17: Transition state for 15-H-(S)-(Si). 

 

Comparison of the NBO charges of the transition states of 15-H with 

12-H and 11-H gives information on how the charge is delocalized through the 

complexes. The change in charge on each of the key atoms from the ground 

state to the transition state gives an indication on how the ligand helps to 

stabilize the build-up of charge during the hydride transfer step (Table 4.5).  
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Table 4.5: NBO charge comparison of ground states and transition states of complexes 11-H, 

12-H and 15-H. 

 Charge    

Transition State Ir Hydride N-Ir C-Ir 

11-H-(S)-Re 0.51 0.003 -0.516 -0.155 

11-H-(S)-Si 0.514 0.011 -0.533 -0.152 

     

12-H-(S)-Re 0.508 0.019 -0.479 -0.132 

12-H-(S)-Si 0.518 0.032 -0.489 -0.126 

12-H-(R)-Re 0.518 0.031 -0.489 -0.126 

12-H-(R)-Si 0.508 0.019 -0.479 -0.132 

     

15-H-(R)-Re 0.51 0.003 -0.521 -0.106 

15-H-(R)-Si 0.514 0.008 -0.512 -0.116 

15-H-(S)-Si 0.51 0.003 -0.522 -0.106 

15-H-(S)-Re 0.514 0.007 -0.521 -0.114 

     

     

Ground State Ir Hydride N-Ir C-Ir 

11-H-(S) 0.417 -0.057 -0.474 -0.133 

11-H-(R) 0.408 -0.019 -0.473 -0.136 

     

12-H-(S) 0.411 -0.031 -0.457 -0.117 

12-H-(R) 0.411 -0.031 -0.456 -0.117 

     

15-H-(R) 0.426 -0.03 -0.49 -0.104 

15-H-(S) 0.426 -0.03 -0.49 -0.104 

     

Difference from TS Ir Hydride N-Ir C-Ir 

11-H-(S)-Re -0.093 -0.06 0.042 0.022 

11-H-(S)-Si -0.097 -0.068 0.059 0.019 

     

12-H-(S)-Re -0.097 -0.05 0.022 0.015 

12-H-(S)-Si -0.107 -0.063 0.032 0.009 

12-H-(R)-Re -0.107 -0.062 0.033 0.009 

12-H-(R)-Si -0.097 -0.05 0.023 0.015 

     

15-H-(R)-Re -0.084 -0.033 0.031 0.002 

15-H-(R)-Si -0.088 -0.038 0.022 0.012 

15-H-(S)-Si -0.084 -0.033 0.032 0.002 

15-H-(S)-Re -0.088 -0.037 0.031 0.01 
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During the hydride transfer the iridium atom experiences a build-up of 

positive charge; the NBO analysis shows this increase for all complexes from 

the ground state to transition state. There is a smaller change in this charge on 

the iridium for 15-H than the other two complexes on average (-0.086 (15-H) 

vs. -0.095 (11-H) & -0.102 (12-H)). This trend also extends to the hydride 

atom (-0.035 vs. -0.064 & -0.056), with the more positive charge in the 

transition state being better stabilised by complex 15. 

Analysis of the nitrogen and carbon atoms immediately next to the 

iridium illustrates the conjugation present in the ligand. The conjugation 

present in 15-H allows it to spread the resulting negative charge build-up over 

the ligand, giving a small change in charge at the N and C (0.29 and 0.004). 

The cross conjugation in 12-H does not allow for stabilisation of the metal 

centre. It does, however, allow for the charge to be distributed across the ligand 

with the N and C having a small change in charge in comparison to the non-

conjugating ligand of 11-H (0.30 and 0.12 12-H) vs. (0.051 and 0.021 11-H). 

This demonstrates that the conjugated ligand of 15-H helps to stabilise 

the build-up of charge on the iridium in the transition state compared to 11-H 

and 12-H, proving that the presence of conjugation involving the iridium and 

the ligand is crucial.     

 

4.3 Conclusions and future work 

This study has shown that a combination of steric and electronic factors 

influences the reactivity of a series of cyclometallated iridium complexes. 

Small changes in the nature of the arylimidazoline ring of the ligand can 
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change the shape of the catalyst causing reduced reactivity. The presence of 

conjugation is however, the major factor in reactivity differences. Conjugation 

that involves both the ligand and the metal centre is crucial to stabilising the 

positive charge build up that occurs in the hydride transfer step.  

Future work should focus on the modelling of the larger conjugated 

complex 16 for the same hydride transfer to 20, to ascertain if the transition 

states fit into the trend so far observed. The same process should also be 

carried out for 12 with the attached phenyl and cyclohexyl rings removed, to 

quantify the exact magnitude of the steric effect. Modelling of the same 

complex set for hydride transfer to substrates 17 and 18 should also add more 

evidence for the importance of the presence of conjugation.  This work should 

enable the more effective design of catalysts for hydrogen transfer reactions.  
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4.4 Experimental 

 

4.4.1 Computational details 

All structures were optimized at the density functional theory (DFT) 

level by using the B3LYP functional.
36-39

 Initial structures were generated by 

use of a conformation distribution search carried out in Spartan ’08 using 

molecular mechanics and a MMFF force field with default parameters.
40

 The 

structures with a Boltzmann distribution greater than >0.2 were optimised 

using PC GAMESS.
41

 For all the optimisations the 6-31G** basis set was used 

for all atoms except Ir. Relativistic effects for Ir were addressed by using 

LANL2DZ effective core potential (ECP) together with the LANL2DZ basis 

set.
42,43 

Vibrational frequency calculations were carried out to confirm the 

nature of the stationary point on the potential energy surface. Energy minima 

were confirmed with no imaginary frequencies less than -50 cm
-1

. To locate the 

transition state certain inter-atomic distances were initially fixed as appropriate 

(e.g. C to H(Hydride), 1.6 Å), the rest of  the molecule optimised and the 

hessian calculated at the optimized coordinates. The structure and associated 

Hessian were used as an input to saddle point calculation (with no constraints) 

to locate the transition states. Transition states were confirmed by only one 

imaginary frequency with the associated atomic motion consistent with the 

mechanism. Partial atomic charges were calculated by NBO analysis.
44 
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All calculations were performed on the University of Liverpool linux clusters 

and graphical representations were generated using Chemcraft
45

 and 

CYLview.
46  

 

4.4.2 XYZ coordinates for all structures  

All XYZ coordinates for the named structures involved in the 

calculations can be found in the attached electronic information.  
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Chapter 5 

 

Conclusions and Future Perspectives  

 

This thesis has described the investigation of the mechanisms of 

hydrogenation of imino bonds. The mechanism of action for a newly developed 

cooperative system involving both an achiral metal catalyst and chiral 

phosphoric acid has been determined in Chapters 2 & 3. The mechanism 

(Scheme 1) was shown to go via fast generation of four different hydrides from 

the starting 16 electron catalyst. From these four, only one cis-hydride was 

determined to be the active species giving the correct amine configuration. A 

combination of NMR studies and subsequent constrained computational 

modelling, showed that a range of non-covalent interactions were responsible 

for the selectivity observed.  

The chiral acid was shown to be responsible for retarding the rate in 

comparison to other anions but this came with gain of selectivity. The chiral 

acid therefore plays a dual role of protonating the catalyst and helping enable 

selectivity in the key hydride transfer step.  

The work in Chapter 4 explored how levels of conjugations present in a 

range of cyclometallated iridium complexes influenced reactivity of hydrogen 

transfer reactions. By modelling the hydride transfer step of the reduction of an 

iminium cation it was shown that a combination of steric and electronic factors 
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determined reactivity patterns. Ligands that had the ability to stabilise the 

positive charge build up on the metal centre through conjugation during the 

hydride transfer had increased reactivity. This was reflected in the trend of the 

barrier to reaction for the complexes matching that of the experimental results. 

 

 

Scheme 1: The mechanism established for the asymmetric hydrogenation of imines going via a 

selective hydride delivery, involving both the chiral acid and cis-hydride.  
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 The knowledge gained from this research can hopefully be used to help 

aid the design of future catalytic systems. The systems investigated have shown 

that a combination of factors help influence both reactivity and selectivity, such 

as steric effects, non-covalent interaction and electronic properties of the 

ligand. These should be taken into consideration when new catalysts are 

developed as they can play a dual role in helping to activate substrates and 

conversely deactivating reactive species such as the trans-hydrides in Chapters 

2-3.  

 There is still a need for the asymmetric hydrogenation of imino bonds 

to move away from the more expensive metals such as iridium and target 

cheaper more sustainable metals. While examples have been reported with 

iron, the substrate scope is still limited. The exploitation of a range of 

interactions identified in this work could help to access cheaper and greener 

catalysts. 

Computational modelling also has a role to play in catalyst discovery. 

The calculated tertiary structure in Chapter 3 along with the transition states 

located in Chapter 4  show the points where selectivity is achieved be it a 

hydrogen bonding donor or steric blocking group.  It could then be envisaged 

that a strategy similar to pharmacophore searching in drug design could, with 

the right database, allow for the location of new catalysts. This knowledge led 

strategy for catalyst searching would allow for potential lead candidates to be 

located at relatively low cost compared to the current methods.  

 

 


