
 

 

 

 

 

 

 

Pharmacological modelling to investigate 

antimalarial drug treatment 

Thesis submitted in accordance with the requirements of the University 
of Liverpool for the degree of Doctor of Philosophy  

 
 

by 

 

Katherine Kay 

 

July, 2013 



!



!



!



! "!

 

 

 

Contents 
 

 

Abstract V 

Publications VII 

Contributors Statements IX 

Presentations and conferences XI 

Acknowledgements XIII 

Abbreviations XV 

Introduction 1 

1. Malaria .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 1 

1.1. The disease and treatment .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 1 

1.2. Antimalarial drug resistance .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 3 

2. Epidemiology and control of malaria (excluding drugs) .   .   .   .   .   . 13 

2.1. Control strategies  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 13 

2.2. Current status of malarial control .   .   .   .   .   .   .   .   .   .   .   .   . 16 

3. Modelling Malaria   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 17 

3.1. Models of general malarial epidemiology.   .   .   .   .   .   .   .   .   . 17 

3.2. Models of antimalarial drug resistance .   .   .   .   .   .   .   .   .   .   . 20 

3.3. Pharmacological models of antimalarial drug resistance  .   .   .   . 21 

4. Aims of this thesis.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 26  

 



! ""!

Development, evaluation and application of an in silico model 

for antimalarial drug treatment and failure 29 

1. Introduction.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  30 

2. Methods  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  31 

2.1. Basic Model .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 31 

2.2. Extensions of the basic methodology for malaria   .   .   .   .   .   .   . 33 

2.3. Model validation and analysis .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 36 

3. Results.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 40 

4. Discussion  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  49 

Appendix 1 – Calibration of models.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  60 

Appendix 2 – Incorporation of immunity into the calculations   .   .   .   .   .  63 

Appendix 3 – Miscellaneous outputs from the model  .   .   .   .   .   .   .   .   .  66 

Improving pharmacokinetic-pharmacodynamic modelling 

to investigate anti-infective chemotherapy with application 

to the current generation of antimalarial drugs 75 

1. Introduction.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  76 

2. Methods .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  78 

2.1. Pharmacokinetics.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  78 

2.2.  Pharmacodynamics.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  81 

2.3. Modelling drug killing when two or more drugs are present .   .   .  84 

2.4. Modelling artemisinin combination therapies.   .   .   .   .   .   .   .   .  85 

3. Results   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  89 

4. Discussion  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  93 

Appendix  98 

1. Pharmacokinetics.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 98 

2. Model calibration for analysis of ACTs .   .   .   .   .   .   .   .   .   .   .   .   . 101 

3. Implementation   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 114 

 



! """!

Simulating clinical trial data as a resource for optimising 

analysis methods 117 

1. Introduction .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  117 

2. Liverpool School of Tropical Medicine’s role in the project  .   .   .   .   .  124 

3. Methods   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  124 

3.1. General methods   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  124 

3.2. Simulation details .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  130 

4. Discussion   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  132 

Appendix – Co-authorship paper  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  135 

OpenMalaria 137 

1. Introduction  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  137 

1.1. Project background.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  137 

1.2. Liverpool School of Tropical Medicine’s role in the project.   .   .  139 

2. Methods.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  144 

2.1. Basic model   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  144 

2.2. Model implementation and architecture.   .   .   .   .   .   .   .   .   .   .  146 

3. Discussion .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  150 

Appendix 1 – OpenMalaria .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 152 

Appendix 2 – Object Orientated Programming (OOP.   .   .   .   .   .   .   .   . 158 

Appendix 3 – IV drug administration .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 164 

Estimating the windows of selection for antimalarial drugs 167 

1. Introduction   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 168 

2. Methods .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  170 

3. Results   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  173 

4. Discussion .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  178 

Appendix .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 180 

 



! "#!

Discussion 187 

1. Recent publications .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 188 

2. General discussion  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 190 

3. Limitations  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 196 

3.1. Protein binding .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 197 

3.2. Modelling time steps.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 197 

3.3. Impact of drugs on transmission  .   .   .   .   .   .   .   .   .   .   .   .   .   . 197 

4. Future directions .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 199 

5. Concluding remarks.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  201 

Appendix – Co-authorship poster .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  203 

References 205 



! "!

 

 

 

Abstract 
 

 

Malaria remains a major public health concern for billions of people worldwide. 

Achieving the ambitious goal of malaria eradication requires co-ordination of control 

strategies dealing with a range of parasite, vector, human, social and environmental 

factors. Availability of effective antimalarial treatment is a key component in malaria 

control. However the number of drugs available is limited and drug resistance, 

particularly in Plasmodium falciparum, has now been reported for all currently 

available antimalarials. Mathematical models provide the opportunity to explore key 

features underlying antimalarial drug action, effectiveness and resistance. They 

further allow investigation into questions that cannot otherwise be easily addressed, 

either because they are too expensive, unethical or logistically too complex. This 

thesis aims to develop pharmacological models to investigate antimalarial drug 

treatment.  

 

In Chapter 2 we develop a pharmacokinetic-pharmacodynamic (PK/PD) model of 

antimalarial drug treatment (calibrated using published data) and use it to investigate 

the efficacy of artemisinin combination therapies (ACTs).  

 

Chapter 3 addresses two assumptions built into the methodology that limit the models 

future application. The model now allows for (i) time lags and drug concentration 

profiles for drugs absorbed across the gut wall and, if necessary, converted to another 

active form (ii) multiple drugs within a treatment regimen (iii) differing modes of 

drug action in combinations (iv) modelling drugs converted to an active metabolite 

with similar modes of action.  

 

In Chapter 4 we extend the methodology to allow for i) the presence of more than one 

clone when treatment begins (ii) the acquisition of new clones during treatment 

follow-up (iii) the tracking of individual clones using molecular markers. We then use 
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these extensions to simulate clinical trial data to determine the best methods of 

analysis.  

 

Chapter 5 details how the drug action components of the extended PK/PD model were 

incorporated into OpenMalaria; a mathematical model of malaria epidemiology 

allowing investigation of the effects of various intervention strategies including 

malaria vaccines, vector control strategies and antimalarial drug treatment.  

 

In Chapter 6 we investigate the ability of clinical trials to accurately estimate (WoS) 

using the extended PK/PD model.  Windows of selection (WoS) are often used to 

quantify the genetic process whereby parasites evolve increasing tolerance to 

antimalarial drugs.  

 

We noted a conspicuous lack of comprehensive, good-quality PK datasets currently 

available in the literature. Despite this, the models produced results highly consistent 

with field data. They were applied to investigate the potential implications of drug 

resistance and to make predications about the future effectiveness of antimalarials. 

We emphasise the value of mathematical models by simulating ‘field data’ to assess 

the best methods of analysing clinical trials and to investigate the predictive ability of 

WoS. While we do not suggest models can replace the information gained in clinical 

trials, this work does demonstrate the importance of mathematical models capable of 

generating results consistent with field data.  
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Chapter 1 
 

Introduction     
 

 

1. Malaria  
 

1.1. The disease and its treatment    
 

Malaria is a devastating tropical disease transmitted by certain species of Anopheles 

mosquitoes. It presents a major public health concern for an estimated 3.3 billion 

people across 106 malaria endemic countries (395). With the burden of disease 

concentrated in sub-Saharan Africa (accounting for approximately 81% of cases and 

91% of deaths) it claims more human lives each year than any other infectious disease 

except AIDS and tuberculosis (372). The World Malaria report, published in 2011, 

states that in 2010 there were an estimated 216 million cases of malaria and an 

estimated 655,000 deaths (395). The groups most at risk include children under five 

(86% of deaths occurring globally) and pregnant women. 

 

Malaria in humans is caused by one of five species of Plasmodium parasites 

(P.falciparum, P.vivax, P.ovale (including two sub-species P.ovale curtisi and 

P.ovale wallikeri), P.malariae and P.knowlesi) of which P.falciparum is generally 

regarded as the most deadly. However it is important to note that the general 

perception that infections by P.vivax  are ‘benign’ is changing and the significant risk 

posed by P.vivax recognised (20, 21, 217, 266). The natural life cycle of the malaria 

parasite requires infection of two successive hosts, humans and the Anopheles 

mosquito. The female mosquito ingests the malaria parasites while taking a blood 
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meal from an infected host. The parasites develop from gametocytes to sporozoites in 

the intestines and midgut of the mosquito. The sporozoites then migrate to the 

mosquito salivary glands where they are passed back to a human host during the 

mosquito’s next blood meal. Once in the human, parasites travel via the blood to the 

liver where they replicate and mature, eventually releasing merozoites into the blood. 

These merozoites invade the erythrocytes and undergo asexual replication; ring stage 

trophozoites mature into schizonts that eventually rupture the red blood cell and 

release more merozoites. This asexual cycle continues with merozoites periodically 

released into the blood stream and it is these blood stage parasites that are responsible 

for the clinical manifestations of the disease. Occasionally, the merozoites 

differentiate into gametocytes (the sexual erythrocytic stage) and it is these 

gametocytes that are taken up by the mosquito during a blood meal, perpetuating the 

malaria life cycle.  

 

Malaria infections result in a wide variety of symptoms with disease severity ranging 

from absent or very mild symptoms to severe disease. Early symptoms typically 

include fever, headache and vomiting with onset usually occuring 10-15 days after the 

mosquito bite. Because flu-like symptoms of any origin are often mistaken for early 

malaria infections this can lead to an over-diagnosis of the disease. However, a 

significant delay in treatment (particularly in P.falciparum infections) is likely to be 

fatal and so prompt treatment with an effective antimalarial is crucial. Therefore, 

WHO recommends to presumptively treat suspected malaria cases (particularly in 

children) (379), however this can lead to overuse of antimalarial drugs. Infections are 

typically classified as either uncomplicated or severe (complicated). Severe malaria 

occurs most commonly if uncomplicated infections are not promptly treated or in 

patients with little to no immunity. Low immunity levels characteristically occur in 

people living in areas of low or no malaria transmission and/or in young children and 

pregnant women. The clinical manifestations of severe infections can include cerebral 

malaria (coma), severe anaemia due to haemolysis (destruction of the red blood cells), 

hypoglycaemia, acute renal failure, acute pulmonary oedema (fluid build up in the 

lungs) or acute respiratory distress syndrome (ARDS) (380).  

 

Clinical diagnosis of malaria, based on symptoms alone, is known to be inaccurate 

resulting in over-diagnosis of malaria incidence and hence over-administration of 
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antimalarials (187, 194, 246). For example, Nwanyanwu et al. (246) have shown 

malaria diagnosis based on clinical signs and symptoms over-estimates malaria cases; 

of the 248 of adult males with a reported fever (in Malawi, 1994), only 15% of the 

fevers were due to malaria yet 22% of patients received antimalarials. The WHO now 

recommends that every suspected cause of malaria be confirmed first by either using a 

rapid diagnostic test (RDT) or by microscopy (380). This improves upon the previous 

assumption that all fever cases in malaria endemic countries are due to malaria (and 

presumptively treated). It allows patients deemed to be parasite-negative to be 

correctly diagnosed and treated while avoiding unnecessary use of antimalarials 

thereby reducing patient side-effects, drug-interactions and selection pressure for drug 

resistance (395). Positive diagnosis should be followed by prompt treatment with an 

effective antimalarial (380); a step crucial to both patient survival and malaria control. 

Despite the obvious benefits, confirmation of parasitaemia is not always feasible in 

resource poor settings, usually due to a lack of functioning microscopes or RDTs.  

 

 

1.2. Antimalarial drug resistance 
 

1.2.1. Definition 

 
The WHO originally defined ‘antimalarial drug resistance’ in 1967 as “the ability of a 

parasite strain to survive or multiply despite the administration and absorption of a 

drug given in doses equal to or higher than those usually recommended but within the 

tolerance of the subject” (369). This was modified in 1986 to include the sentence: 

“the form of the drug active against the parasite must be able to gain access to the 

parasite or the infected erythrocyte for the duration of the time necessary for its 

normal action” (45). However, given the mechanism of action of the artemisinin 

parent drugs and their active metabolite this definition may require further discussion 

and clarification (378).  
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1.2.2. Origins of drug resistance 

 
To date, drug resistance has been documented in three of the five malaria species 

infecting humans, namely P.falciparum, P.vivax and P.malariae (378) (note only 

P.falciparum drug resistance will be discussed here). Many factors contribute to the 

development and spread of drug resistance. It is usually the result of complex 

interactions between the drug-deployment pattern, drug characteristics (including the 

drug pharmacokinetics (PK), dosing regimen and cross-resistance), parasite 

characteristics (including genetic mutations and transmission level), human host 

factors (such as immunity) and vector and environmental factors (133, 157, 222, 302, 

354, 366). Resistance is encoded by genetic mutations in, or changes to the number of 

copies of genes that determine the drug’s target or that affect pumps regulating the 

concentration of drug within the parasite (378). This may be the result of a single 

genetic change (for example, atovaquone resistance is the result of a single mutation 

in the cytochrome b gene) or multiple independent changes (342). The latter is more 

common for drug resistance in malaria (131), for example, the acquisition of 

sulfadoxine-pyrimethamine (SP) resistance in P.falciparum is the result of an 

accumulation of sequential mutations in the dhfr (dihydrofolate reductase) gene (163, 

186). The evolution of resistance is arguably a two-stage process in which mutations 

encoding drug resistance are preceded by those encoding drug tolerance (131). 

Increased drug tolerance allows parasites to persist in the presence of sub-therapeutic 

drug levels (as opposed to resistant parasites that can persist despite therapeutic drug 

levels) and given the frequency with which antimalarials are used in malaria endemic 

areas, a large proportion of the population have residual drug levels resulting from 

previous treatments (141, 142, 325). This results in a strong selection pressure, which 

drives tolerant parasites through the population (352). Resistance is complicated by 

cross-resistance occurring among drugs that belong to the same chemical family or 

have similar modes of action (157, 378). 

 

1.2.3 Measuring Drug Resistance 

 
Clinical treatment failures and/or increased parasite clearance times for P.falciparum, 

resulting from confirmed in vivo parasite resistance, have now been documented for 
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all current antimalarials including early evidence of resistance to the most recent class 

of drugs, the artemisinins (22, 52, 151, 152, 195). Susceptibility of P.falciparum to 

antimalarials can be determined in one of four ways.  

 

i. Clinical Trials 
Therapeutic efficacy studies are generally considered the gold standard capable of 

detecting subtle differences in treatment outcomes. They allow measurement of 

clinical and parasitological efficacy and are the primary reference for ministries of 

health in updating treatment strategies and policies. WHO (387) originally defined 

the therapeutic response in terms of sensitivity and resistance (with three levels of 

resistance); in 2001 this was updated and based on clinical outcomes defined as 

either adequate clinical response, early treatment failure or late treatment failure 

(34). These studies provide a good indication as to drug efficacy, but additional 

studies are required to confirm and characterise the genetic basis of drug resistance 

(378).  

 

ii. In vitro assays 
Changes in the P.falciparum phenotype are determined using in vitro assays; 

parasites are exposed to a precise drug concentration and the inhibition of intrinsic 

growth or schizont maturation (25, 33, 34) measured. However, this method 

removes the effects of host factors such as PK and immunity.  

 

iii. Molecular markers 
It is also important that the genetic changes associated with resistance are 

identified. The use of molecular markers to detect early treatment failures in 

malaria was suggested by Wellems & Plowe (353) and most recently implemented 

by the WHO (386). To date there are currently only six genes known (or 

suspected) to be associated with drug resistance in P.falciparum  

! dihydrofolate reductase (pfdhfr) (29, 104, 106, 155, 156)  

Point mutations in the pfdhfr gene confer resistance to pyrimethamine in a 

step-wise manner with resistance levels increasing as mutations accumulate 

(beginning with Ser108Asn then either Asn51Ile or Cys59Arg and 

Ile164Leu) (28, 157) while the double mutation Ser108Thr and Ala16Val 
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appear to be associated with cycloguanil (the active metabolite of 

proguanil) resistance (26, 156). 

! dihydropteroate synthase (pfdhps) (18, 30, 93, 204) 

Resistance to sulfadoxine has been associated with five point mutations of 

the pfdhps gene. Resistance begins with the Ala437Gly and Lys540Glu 

mutations and increases with the Ser436Ala/Phe, Ala581Gly and 

Ala613Thr/Ser mutations (156) 

! chloroquine (CQ) resistance transporter (pfcrt) (91)  

The pfcrt gene is a key gene associated with CQ resistance beginning when 

lysine is replaced at codon 76 with threonine (103, 378). This change is 

associated with different sets of mutations at different codons, including 

Cys72Ser, Met74Ile, Asn75Glu, Ala220Ser, Gln271Glu, Asn326Ser, 

Ile356Thr and Arg371Ile although the specific changes depend on the 

geographic setting (378). Combinations of artesunate-amodiaquine (AS-

AQ) appear to select for mutant forms of pfcrt in field isolates (76) (thereby 

increasing CQ resistance) while artemether-lumefantrine (AR-LF) selects 

for the wild-type pfcrt (confirmed in vitro (306)). Mutations in pfcrt have 

also been shown to affect the dose-responses of mefloquine, halofantrine 

and artemisinin (42, 187). A review of the functional and evolutionary basis 

of the pfcrt resistance gene can be found in Cooper et al. (69) and Ecker et 

al. (91). 

! multidrug resistance 1 gene (pfmdr1) (encoding P-glycoprotein homolog 1; 

Pgh1 proteins) (150, 165, 166, 169, 188, 219) 

The specific role of pfmdr1 in the CQ response is unclear (69), however, 

mutations of interest include Asn86Tyr, Tyr184Phe, Ser1034Cys, 

Asn1042Asp and Asp1246Tyr (378). Linkage disequilibrium between the 

Lys76Thr mutation on the pfcrt gene and the Asp86Tyr mutation on the 

pfmdr1 gene has been observed in field studies (378).  The interactions 

between pfcrt and pfmdr1 alleles result in varying levels of CQ and AQ 

with pfmdr1 mutations appearing to modulate drug effect (273, 282). 

Mutations in pfmdr1 have also been associated with resistance to the 

amino-alcohols (i.e. mefloquine (MQ), halofantrine (HF), lumefantrine 

(LF) and quinine (QN)) and the artemisinins (302, 346, 378, 390). Increases 

in pfmdr1 copy number were found to be responsible for MQ resistance in 
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the Cambodia-Thailand region alongside an increased risk of treatment 

failures following AR-LF and AS-MQ therapies (note that a four-dose 

regimen was used in these studies) (165, 169). Field studies have shown the 

wild-type Asn86 allele is a potential marker for reduced LF susceptibility 

with repeated AR-LF treatments appearing to select for the allele in 

recurrent infections (51, 74, 192). Amplification of the pfmdr1 gene in vitro 

has also been associated with small but significant reductions in parasite 

sensitivity which could explain the cross-resistance between amino-

alcohols and artemisinins in vitro (54, 267) Reductions in pfmdr1 copy 

number and gene mutations were found to reduce sensitivity to MQ, QN, 

HF and the artemisinins in vitro (150, 188). 

! Na+/H+ exchanger (pfnhe-1)  

It is difficult to demonstrate resistance to QN and like CQ it is influence by 

mutations in several genes (pfcrt, pfmdr1 and pfnhe-1) (93). While studies 

of laboratory strains and field isolates indicate a number of mutations 

which maybe associated with decreased parasite susceptibility to QN (5, 84, 

158). Further studies are needed (378). 

! cytochrome b (pfcyt b) (32, 177, 227) 

Resistance to atovaquone is linked to a single mutation at position 268 in 

the cyt b gene, most frequently Tyr268Ser but also Tyr268Asn or 

Tyr268Cys (32, 177, 227) 

Research into the genes responsible for artemisinin resistance is ongoing. Recent 

studies have shown drug response maybe associated with the ABC transporters, for 

example, Anderson et al. (8) observed an association between ABC transporter G7 

and AS. As yet however, there is no conclusive evidence supporting this theory 

 

iv.  Pharmacokinetic (PK) studies 
Clinical PK studies are performed to understand the relationship between drug 

dosage regimens and the drugs concentration time profiles. They provide crucial 

information about the absorption, distribution, metabolism and elimination of a 

drug within the body. PK studies are conducted throughout drug development with 

different aims. Studies performed during the early stages of drug development 

typically include healthy volunteers and are conducted under controlled conditions 
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to determine the safety and PK of a drug. During the later stages of drug 

development and after a drug has been approved, PK studies are conducted in 

patients who have the target disease (in this case malaria) to investigate patient PK 

profiles. They show the relationship between drug dosage and concentrations in the 

blood, and between drug concentrations in the blood and therapeutic effects. PK 

studies can also be used to further investigate the influence of factors such as age, 

gender, body weight, genetic factors, severity of disease, complications, meals, and 

concomitant drugs. 

 

 

1.2.4. History of drug use and resistance 
 

QN, extracted from the bark of the cinchona tree, was the first and only known 

antimalarial agent at the beginning of the 19th century. Today, QN is a highly 

effective antimalarial (including against CQ-resistant malaria) but the high frequency 

of adverse effects has inevitably lead to poor patient compliance so, QN is generally 

reserved for the treatment of severe malaria (19, 154). However, since the 

development of artemisinins the use of QN in cases of severe malaria is now often 

replaced with artemisinin monotherapy (380). Possibly as a result of it’s limited use, 

resistance to quinine has been slow to emerge and only reported sporadically in parts 

of South East Asia and South America (14, 215, 220). 

 

Introduced in 1934, chloroquine quickly became one of the most successful drugs 

deployed against malaria and the drug of choice in the Global Malaria Eradication 

Program (GMAP) launched by WHO in 1955 (373). CQ is characterised by its rapid 

efficacy, low toxicity and affordability (91, 353). It accumulates in the parasite food 

vacuole and works by inhibiting heme polymerisation (324). Although GMAP was 

discontinued in 1969 the widespread use of CQ throughout the program lead to the 

emergence and spread of CQ resistance worldwide. Resistance is associated with 

copy number changes and point mutations in the genes encoding the parasite PfCRT 

protein (for a review see (29, 56, 214)) and pfmdr1 (although the specific role of 

pfmdr1 is unclear (69)). The mutated form of PfCRT is able to reduce CQ 

accumulation in the digestive vacuole. Despite the global presence of CQ-resistant 
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P.falciparum, it has been suggested that CQ-resistance is the result of at least six 

independent emergences (91). Beginning in Colombia (223) and the Cambodia-

Thailand border (124) during the late 1950s, resistance spread steadily throughout the 

1960s and 1970s to South America, Southeast Asia and India eventually reaching 

Africa in the late 1970s (91, 258). However, it is highly probable that CQ-resistant 

parasites incur a fitness cost when compared to the wild-type sensitive parasites. An 

in vitro study by Hayward et al. (137) used transfected P.falciparum strains 

(described in Reed et al. (271)) to demonstrate that in the absence of drug pressure, 

parasites with the pfmdr1 mutation (associated with enhanced CQ resistance) incur a 

25% fitness cost relative to the wild-type parasites. Epidemiological studies have 

similarly shown that, in the absence of drug pressure, it is possible for parasite 

sensitivity to be recovered. For example, in a region of Malawi known for highly 

prevalent CQ-resistance, drug-sensitive parasites repopulated the region 

approximately ten years after CQ treatment was stopped (184). Hastings & Donnelly 

(127) estimated the fitness effect in Malawi as 5%. Similar CQ recovery has 

subsequently been observed in parasite in Kenya (229), Vietnam (152, 238, 334) and 

China (190, 349). 

 

SP was gradually introduced in the 1960s (33) as an effective, affordable, well 

tolerated and easy to administer (388) single-dose replacement (second-line) for CQ-

resistant malaria. It’s a drug combination that acts synergistically to inhibit folate 

synthesis in the parasite (by targeting the dihydropteroate synthase (dhps) and 

dihydrofolate reductase (dhfr) enzymes). Resistance to SP developed rapidly in South 

East Asia (84, 153) but remained low in Africa until the 1990s (247) when resistance 

was imported from South East Asia. In recent years resistance has developed and 

been reported in Africa, Asia, Indonesia and South America (14, 60, 96, 106, 142, 

144, 199) prompting concern about the potential public health impact (35, 164, 228), 

particularly given their role in IPT (see below). 

 

MQ was developed in the 1970s and emerged as the successor to CQ in the 1980s. It 

is a synthetic analogue of QN and like CQ, it is believed to target the digestive 

vacuole and heme polymerisation (324, 340). First introduced as a monotherapy in 

Thailand in 1977, MQ is now primarily administered in combination with AS (379, 

380). Resistance to MQ appeared soon after its introduction and in the late 1980s and 
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was reported along the Thai-Cambodian and Thai-Myanmar (Thai-Burmese) borders 

(297, 367), marking the emergence of multidrug resistant P.falciparum (defined as 

resistance to three or more classes of antimalarial drugs (366)). Despite this early 

emergence of resistance, reports of MQ resistance in other areas are sporadic. Case-

reports suggest some MQ resistance from the Amazon Basin (366) but the level of 

resistance in South America is far below that in South East Asia. Similarly, in vitro 

studies suggest the presence of P.falciparum strains with low MQ sensitivity in Africa 

(43, 160). The rapid emergence of MQ resistance along the Thai-Cambodian and 

Thai-Myanmar borders is possibly due to the previously widespread use of the 

structurally related antimalarial quinine (366).  

 

Lumefantrine (LF), originally known as benflumetol, was originally synthesised by 

the Chinese Academy of Military Medical Sciences in the 1970s. As with CQ and 

MQ, LF works within the parasite food vacuole where it is thought to interfere with 

the haem polymerisation process (358). LF has rarely been used as a monotherapy 

outside China and there is almost no published data on the in vivo efficacy of the 

monotherapy. Instead it was administered through the late 1980s in combination with 

AR. In 1990, the Chinese government and Novartis (then Ciba-Geigy) launched a 

joint venture to manufacture the AR-LF combination (under the name Coartem®). 

This combination was registered as an antimalarial in the early-2000s and was 

adopted as a first line treatment for uncomplicated malaria by many African countries 

throughout the mid-2000s. Early studies of drug efficacy indicated the use of AR-LF 

selected quickly for LF-tolerant parasites (125, 192) leading to concern about its 

therapeutic lifespan, particularly in high transmission areas (130). It is approximately 

seven years since the first emergences of LF-tolerance and the phenotype has now 

been confirmed in other areas (for a review see (248)). However, it is important to 

note that despite earlier concerns of emerging drug tolerance, the combination of AR-

LF is still effective and resistance has not yet been observed.  

 

Piperaquine (PQ) was originally synthesised in France (then called compound 13228 

RP) in the 1950’s but it was not until 1966, when the Shanghi Research Institute of 

Pharmacological Industry began work on the drug (56) that’s it potential as an 

antimalarial was realised. In 1978, it replaced CQ as the first-line monotherapy for 

malaria treatment throughout China. Despite decades of clinical use the exact 
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mechanism of action for PQ is unknown but given its close structural resemblance to 

CQ it is assumed they are assumed to have similar modes of action (328). However, 

PQ remains effective against CQ-resistant isolates (27) indicating the despite their 

structural similarities, resistance is controlled by different mechanisms (90). As with 

all drugs, the potential development of PQ resistance is concerning although to date 

reports of PQ resistance both in the field (98, 396) and in vitro (90) are limited. 

 

Artemisinin was originally isolated from the sweet woodworm plant Artemisia annua 

in the 1970s (219) and it, or its semi-synthetic derivatives, including AS, AR and 

DHA (an in vivo active metabolite of AS and AR), are the most recent class of 

antimalarials and a main constitute of current first-line therapies in 84 countries (i.e. 

ACTs) (395). With the broadest parasite stage specificity, the artemisinins are highly 

potent against both the erythrocytic stages and the early stage gametocytes (332) 

resulting in the fastest drug killing rate (measured as parasite reduction ratio (360)) of 

the currently available antimalarials. However, while the artemisinins produce a swift 

and powerful antimalarial effect (including against multidrug resistant strains of 

P.falciparum) they are rapidly eliminated from the body and so recrudescence can be 

a particular problem. This is usually overcome by combining the artemisinins with a 

longer-lasting partner drug (with a different mode of action) (379, 380) thus 

maximising their effectiveness and protecting them against the development of 

resistance. Alternatively, the duration of the monotherapy has been extended in some 

countries (39, 208) but use of artemisinin monotherapies are strongly discouraged 

(295, 391, 393). If used as a monotherapy, a full 7-day treatment course is required to 

completely eliminate the parasite. However, the rapid parasite clearance and hence 

resolution of symptoms associated with the artemisinins inevitably results in poor 

patient compliance with few patients taking the full 7-days required to produce 

adequate cure rates. One of the most important features of the ACTs is their potential 

ability to delay the spread of resistance, particularly to the partner drug. For example, 

wide-scale use of AS plus MQ decreased the rate MQ resistance spread in northwest 

Thailand (243). The reason for this is two-fold, first the use two drugs (with different 

modes of action) prevents further selection for resistance while the presence of an 

artemisinin (in this case AS) results in higher cure rates (24). ACTs typically decrease 

the transmission advantage of the resistant parasites over sensitive parasites by 
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reducing the gametocyte carriage ratio from 4:1 (resistant: sensitive) for 

monotherapies to a ratio of 1:1 for ACTs (265). 

 

Given its widespread use as a first-line treatment, emerging (or the potential 

emergence of) artemisinin resistance to ACTs threatens global control and elimination 

strategies. Resistance to the artemisinins first became a concern in 2005 with the four 

most affected countries including Cambodia, Thailand, Viet Nam and Myanmar. The 

first confirmed cases of artemisinin resistance were reported (in late 2006) in western 

Cambodia, along the Cambodia-Thailand border (241) leading to the development of 

the Artemisinin Resistance Confirmation, Characterisation and Containment project 

(ARC3) (funded by the BMGF) in early 2007. To date, incidences of artemisinin 

resistance (matching WHO’s working definition of drug resistance (45)) have been 

confirmed in western Cambodia (Pailin and Tasanh) (22, 52, 151, 152, 195) and 

western Thailand (Wang Pha/Mae Sot) (260) while resistance is suspected in 

Myanmar, Viet Nam and along the Myanmar-China border (150) and changes in 

parasite clearance rates noted on the Kenyan coast (38). To date, artemisinin 

resistance has manifested through delayed clearance times (52, 151, 196) and while 

still clinically effective, a molecular marker for artemisinin resistance is yet to be 

identified and so it is unclear whether the drug resistant-parasites identified most 

recently in western Thailand have emerged independently, or have spread from 

western Cambodia. In 2010, WHO embarked on the development of the Global Plan 

for Artemisinin Resistance Containment (GPARC). Launched in 2011, GPARC called 

for urgent action to protect the efficacy of ACTs, contain artemisinin resistance in 

existing ‘hotspots’ and to stop its spread around the world (377).  

 

1.2.5. Current status of drug treatment 

 
There are a limited number of antimalarials available for effective chemotherapy; 

currently these include the 4-aminoquinolines (CQ, AQ), the arylaminoalcohols (MQ, 

halofantrine, LF), antifolates (SP), atovaquone and artemisinin and its derivatives 

(AS, AR, DHA). Of these, most target the pathogenic blood stages (77) responsible 

for patients symptoms. The only drugs found to be effective at reducing gametocyte 

carriage include primaquine (298) and the artemisinins (42, 319).  Several classes of 
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antibiotic have been shown to exert antimalarial effects (74) but their relatively slow 

activity makes them unsuitable for chemotherapy. Despite this some antibiotics, 

particularly doxycycline, are used for antimalarial prophylaxis (30, 249). Since 2001 

WHO has recommended treating uncomplicated malaria infections with combinations 

of two or more unrelated drugs (379), preferably artemisinin combination therapies 

(ACTs). The ACTs including a fast-acting artemisinin derivative and a slower acting 

partner drug with five ACT combinations currently recommended for treatment of 

P.falciparum: AR-LF, AS-AQ, AS-MQ, AS-SP and DHA-PQ (380). The specific 

drug choice for first- and second-line antimalarial therapy is made at a country level 

and is based not only on the efficacy of the drugs against the parasite (which should 

be monitored at least once every two years, as recommended in the WHO standard 

protocol) but also the cost and availability of the drugs within each country (378). By 

the end of 2010 the national policies of 84 countries included an ACT as the first-line 

treatment with AR-LF accounting for approximately 70% of the ACTs in the public 

sector (395).  

 

 

2. Epidemiology and control of malaria (excluding drugs) 
  

2.1. Control strategies  
 

Antimalarial drugs are just one of the many methods currently employed in the bid to 

combat malaria. While the drugs are primarily used to treat patients with an existing 

infection they also affect malaria transmission by reducing the population of infected 

hosts. It is therefore impossible to examine drug resistance isolated from the general 

context of malaria control and so I here present a brief summary of the current control 

measures. Given the complexity of malaria epidemiology, which varies even over 

small distances, it is difficult to develop a universal malaria control policy that is 

appropriate to all situations in all countries. Instead, a range of control strategies are 

typically employed with specific control program details determined at a national and 

sub-national level with the aim to achieving the basic elements of the Global Malaria 

Control Strategy (GMAP) (375): (i) providing effective antimalarials to those infected 

with malaria (ii) implementing sustainable and effective preventative measures to 
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avert or detect and contain epidemics in high-risk areas (iii) strengthening of local 

research and development.  

 

Vector control is an effective preventative measure designed to reduce malaria 

morbidity and mortality through the reduction of vector transmission. It includes a 

range of strategies including indoor residual spraying (IRS), insecticide treated nets 

(ITN), larval control and/or environmental control. By far the most extensively used 

are the long-lasting insecticide treated nets (LLINs) and IRS (395) both working to 

reduce the human-vector contact by reducing the lifespan of the female mosquitoes. 

The protection provided by ITNs (including LLINs) is two-fold affording both 

personal protection to the individual sleeping under the net (by preventing mosquito 

contact) and a wider community level protection through the reduction of the vector 

population (the mosquito is killed upon contact with the net) and hence a reduction in 

transmission intensity of the targeted area. IRS involves spraying a residual 

insecticide on to the interior walls of buildings, where many species of Anopheles 

mosquitoes rest following a blood meal (381). Again it is an effective way of 

controlling malaria transmission in the targeted area thus reducing the local burden of 

morbidity and mortality. Both IRS and ITNs require high coverage levels to be 

achieved for effective control, IRS for example requires >80% of houses in the target 

area to be sprayed if it is to be an effective control measure (383). Note, there are 

currently four classes of insecticides available for IRS including pyrethroids, 

organochlorides, organophosphates and carbonates but only one class of insecticide 

(the pyrethroids) available for ITNs. The largest threat to vector control is insecticide 

resistance, particularly to pyrethroids, but the scope of this problem lies outside the 

remit of this thesis. 

 

Intermittent preventive treatment (IPT) is a public health intervention aimed at 

treating and preventing malaria episodes in the most at risk groups i.e. infants (IPTi), 

children (ITPc) and pregnant women (IPTp).  It involves administering an single dose 

of a long-acting, effective antimalarial at predefined times to a specific at risk 

population, regardless of the individuals infectious status (51). Initially recommended 

by WHO (389) for pregnant women in 1998 (390) because of its safety and efficacy 

during pregnancy, IPTp is administered under supervision at antenatal care (ANC) 

twice during pregnancy (390)  as part of national control policies in 35 high-burden 
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countries in sub-Saharan Africa and Papua New Guinea (395). It has been shown to 

be highly efficacious (compared to a placebo or CQ prophylaxis) at reducing the risk 

of placental infection, low birth weights and/or severe maternal anaemia (1, 32, 97, 

99, 149, 159, 172, 208). Since 2009, WHO has also recommended IPTi with SP in 

countries with moderate to high malaria transmission (382, 394). The delivery of IPTi 

occurs alongside routine childhood vaccinations (57, 156, 182) and its efficacy rates 

in the prevention of malaria episodes (33, 67, 103, 121, 126, 136, 183) range from 

22.6% (202) to 63.2% (290). However, despite its positive impact no country has yet 

adopted it as a national policy (395). Most recently IPT has been extended to children 

with studies in Senegal (using AS-SP; (65)), Mali (SP; (79)), Ghana (AS-AQ or SP; 

(179)) and Kenya (AQ-SP; (66)) demonstrating the protective efficacy of IPTc. This 

approach of chemoprevention has been extended to programs such as Focussed 

Screen and Treat (FSaT) or Seasonal Malaria Chemoprevention (SCM). For example, 

FSaT is a variation of mass screen and treat (MSAT) in which all individuals in a 

population are tested and, if necessary, treated for malaria. However, FSaT focuses on 

a much smaller geographic area, such as a household, village or hotspot.  

 

A malaria vaccine, deployed alongside current control methods, could play a crucial 

role in the future control and eventual elimination of malaria (205). Vaccines have 

historically contributed to a reduction in the spread and burden of infectious diseases 

and have played a major part in elimination programs (for example smallpox and the 

ongoing polio and measles campaigns (102, 370, 376)). Research towards this end is 

ongoing for malaria but despite the potential health benefits, there is currently no 

licensed vaccine. The progress and life cycle stages of P.falciparum currently being 

targeted by vaccine development programs were recently reviewed by Crompton et 

al. (71). The most clinically advanced malaria vaccine candidate to date is RTS,S; 

originally synthesised by GlaxoSmithKline (GSK) in 1987, it has since been 

developed by GSK Biological and PATH MVI, with funding from the BMGF (since 

2001). RTS,S is currently at least 5-10 years ahead of approximately 20 other 

potential vaccines in either phase 1 or 2 of clinical trials under development (395) and 

entered phase 3 clinical trials in 2009 (347). Targeting the pre-erythrocytic phases of 

P.falciparum, RTS,S is a fusion protein consisting of a malaria antigen with hepatitis 

B surface antigen, and includes a new potent adjuvant (to boost the immune system 

response) (323). By definition the pre-erythrocytic vaccines target either the 
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sporozoites stage that are inoculated by the mosquito, or the liver stage that 

immediately follows and aims to trigger the immune system to prevent infections (85, 

170, 209). These stages are particularly attractive as vaccine targets because parasite 

numbers are still low (274), infections are asymptomatic and they provide a relatively 

large window of opportunity for an effective immune response (approximately 6 days 

for P.falciparum) (118).  Initial results from the phase 3 clinical trials of RTS,S are 

positive with the RTS,S/AS01 vaccine reducing the number of clinical malaria 

episodes by approximately half during the first 12 months following vaccination 

(338). This is consistent with the results seen in children and infants during phase 2 

trials.  

 

 

2.2. Current Status of malaria control  
 

Malaria specific mortality rates have fallen by 25% and the estimated incidence of 

malaria by 17% globally between 2000 and 2010 (395). This considerable reduction 

follows the recent shift in malaria control targets to encompass the ultimate goal of 

malaria eradication (337). However elimination/eradication is not simple, programs 

must be implemented in a diverse range of epidemiological settings and deal with 

differences in parasite, vector, human, social and environmental factors (5). Malaria 

endemic-countries also contain some of the most operationally challenging areas 

typically with under-performing health services, insufficient financial, social and 

human resources and political instability. Current expert views on the likelihood and 

feasibility of malaria eradication vary and it is unclear what the future will hold. 

However, scaling up of current control strategies will further reduce the burden of 

disease while research and development of new antimalarials, insecticides, 

diagnostics and vaccines will assist in the eventual elimination of malaria. 
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3. Modelling malaria  
 

3.1. Models of general malaria epidemiology 
 

Mathematic models of malaria can be traced back to Ronald Ross; the first person to 

discover that the Anopheles mosquitoes transmits malaria. Throughout his life, Ross 

made many important contributions to the epidemiology of malaria though perhaps 

his greatest was the development of mathematical models for the study of malaria. In 

1905, Ross developed a mathematical description of malaria transmission relating 

mosquito flight distances and initial densities to the changing mosquito densities that 

result from larval control measures (279). Further study of malaria in Mauritius 

resulted in his early models of malaria transmission (281), which were later developed 

to include a new differential equation model (191, 280). His work on mosquito 

density showed that to eradicate malaria mosquito densities needed to be driven 

below a particular threshold density or longevity rather than eradicated completely. 

This work provided a quantitative framework and justification that dominated the first 

50 years of malaria control. 

 

Despite the pioneering mathematical work conducted throughout his life, Ross’s work 

was largely ignored until the 1950’s when George Macdonald began to test Ross’s 

theory with epidemiological (196) and entomological (197) field data. He extended 

the basic model to demonstrate the importance of vector control and interruption of 

transmission in malaria elimination (198, 200, 201). Throughout his career he placed 

particular emphasis on defining and measuring quantities relevant to malaria 

eradication, for example, the stability index (the expected number of human bites by a 

mosquito over its lifetime) (197) and the basic reproductive number (denoted R0; the 

expected number of human cases that would arise from each human case in a 

population with no previous exposure to malaria and no malaria control) (198).  

Macdonald’s analysis also helped explain how contact pesticides (such as DDT) 

worked by severely reducing the number of mosquitoes that would live long enough 

to survive sporogony and transmit malaria (199). These models were published 

around the same time as the World Health Organisation (WHO) launched the Global 

Malaria Eradication Program (GMEP). One of the aims of the GMEP was to use DDT 
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to target the adult Anopheles mosquito and so, unsurprising, Macdonald was recruited 

to the cause. His influence within GMEP is evidenced by his election to chair the 

committee that wrote the first technical report on malaria eradication (371).  

 

By the 1970’s it was clear that Macdonald’s model could be greatly improved by 

adding explicit considerations of human immunity (215)  and so, as part of the Garki 

project in Nigeria, Dietz and Molineaux developed a more sophisticated model (81).  

The model incorporated a number of novel concepts including the possibility of 

super-infection (previously explored mathematically (195, 348)) and considered the 

development of immunity (previously modelled by Bailey (18)). It had two primary 

objectives, the first, to explore the epidemiology of malaria and second, to predict the 

effects of specific control measures (including larvicide, adulticide and mass drug 

action), alone and in combination (49, 127, 190). The model provided significant 

advances to the work of previous models however, although it achieved its first aim 

reasonably well, it was unable to accurately reproduce the effect of control measures. 

Ultimately, the project encountered difficulties in accurately quantifying the input 

parameters and suffered from oversimplified assumptions (207), particularly those 

regarding the immunity of the patient and the biology of the mosquitoes (235). 

Despite the disappointingly poor predictive ability of the Garki model, the techniques 

used and ideas described within the project inspired much of the theoretical work 

throughout the 1980s.  

 

In the years since the publication of the Garki project there have been many scientific 

and technological advancements that have driven, both directly and indirectly, the 

development of mathematical models. Foremost amongst these is the availability of 

high-speed computers which have made previously time-consuming calculations and 

simulations commonplace. The result of this has been a massive upsurge in malaria 

models over the last few decades, with extensions of the basic malaria models 

expanding to include: 

- Compartmental models with dynamics similar to a viral infection (i.e. 

susceptible-infected-recovered-susceptible (SIRS)) (13, 14) that were later 

developed to allow for semi-immune individuals (58, 239, 240) within the 

population. 
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- The transmission dynamics (78) and epidemiology of serial infection and 

immunity to infection with multiple parasite “strains” (120, 123). 

- The processes driving the acquisition of immunity (105) 

- The full dynamics of super infection (13, 113, 210) assuming both an infinite (18) 

and finite number of genotypes (234). 

- Heterogeneity of mosquito biting behaviour, survival, human demography, 

immunity development in humans and the within-host dynamics of the parasite 

(3, 54, 71, 76, 128, 133, 193, 194). 

- The effects of mosquito biting behaviour on disease transmission (48, 53, 76). 

- The seasonality of malaria transmission (14, 59, 146, 192, 214). 

- The dynamics of mosquito and malaria transmission (289) including the effects 

of various control measures, for example zooprophylaxis (170, 288), genetically 

modified mosquitoes (36, 188), larvicides  (119), ITNs (61, 169, 170, 186), 

combinations of ITNs with IRS (60), use of antimalarials (185, 250), IPTi  (278) 

and vaccines (122, 123, 160). 

- The blood-stage asexual cycle of parasites described in terms of changes to the 

proportion of infected erythrocytes, uninfected erythrocytes and merozoites (6, 

145) 

- Individual-based models, such as those by Smith et al. (309, 311) follow the 

course of infections within the human (4, 129, 137, 138, 179) and are based upon 

the within-host dynamics (80, 92, 213). These simulations allow for 

superinfection within individuals, where multiple infections develop and run their 

own course while interacting with each other through the immune system. 

- Geospatial statistical models that use data from survey sites to produce 

transmission, prevalence or disease maps across broad geographical sites (113, 

134, 135, 173) and the distribution of malaria vectors (62-64).  

- Insecticide resistance, specifically pyrethroid resistance (74). 

- Antimalarial drug resistance (see section 3.2.) 

 

A review of the historical development of mathematical models of malaria 

epidemiology can be found in Mandal et al. (206). 
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3.2. Models of antimalarial drug resistance 
 

Mathematical models of infectious diseases have helped underpin our understanding 

of disease transmission dynamics both within and between hosts and parasites and are 

typically classified as either deterministic or stochastic. Deterministic models assume 

that a system follows a fixed and defined set of rules with no random variation or 

noise; they consider only the average or mean behaviour of a system and assume the 

randomness has a negligible effect (384). In contrast, stochastic models assume this 

randomness is important and explicitly include it within the model system (384). 

While both modelling approaches provide valuable insights into disease dynamics the 

models described herein are deterministic. The natural variation in drug metabolism 

within humans and drug effect on parasites was included in the model parameters 

thereby allowing us to capture the complexities of the malaria parasite life cycle while 

modelling the effects of antimalarials and the potential evolution of drug resistance. 

 

There are a large number of mathematical models investigating antimicrobial drug 

effects available in the published literature (Mideo et al. (218) review models of 

malaria pathogenesis). Models detailing the acquisition and spread of antimalarial 

drug resistance are numerous:  

- Aneke (9) examined transmission of sensitive and resistant parasites assuming 

that if all treated individuals respond to treatment then there are no gametocytes 

and that all infective individuals become immediately symptomatic.  

- Antao & Hastings (10) investigated how epistasis, inbreeding, selection 

heterogeneity and multiple simultaneous drug deployments interact to influence 

the spread of drug resistance.  

- Antia et al. (11), model the within-host dynamics of an antigenically varying 

parasite and host immunity  

- Bacaër & Sokhna (17) make the assumption that immune infected humans are not 

infectious and present a model focused on the diffusion of resistance due to 

mosquito mobility. 

- Chiyaka et al. (62) describe the influence of treatment and drug resistant parasites 

on the transmission of malaria. Their model takes into account treated humans 

that might still be infectious to mosquitoes and partially immune humans who are 
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also infectious but have a low gametocyte count as compared to their non-

immune counterparts.  

- Dye & Williams (89) investigated the conditions under which out-crossing could 

delay the evolution of drug resistance and whether the conditions are met by 

know multigenic resistance mechanisms.  

- Gupta & Hill (122) discuss the co-evolutionary consequences of heterogeneity in 

host resistance and diversity in parasite virulence. The model assumes host 

heterogeneity can be described by one locus with two alleles are coded as either 

resistance or sensitive 

- Gupta et al. (121) model of malaria epidemiology concentrating on patterns of 

infection and strain selection  

- Hastings (128) used parasite population genetics (with parasites coded as 

susceptible, tolerant or fully-resistant) to investigate the evolution of drug 

resistance. 

- Koella & Anita (174) extended the basic Ross-Macdonald model to explore the 

consequences of changing the level of drug use on the frequency of resistant 

malaria parasites. They assumed those who acquired immunity were no longer 

infectious and the infectious population recovers into the immune class. 

- Pongtavornpinyo et al. (262) develop a model combining malaria transmission 

with the evolution of drug resistance to investigate questions of treatment 

strategies in different transmission settings. 

- White (355) – Study of within host dynamics with humans either treated with 

drugs or untreated 

 

 

3.3. Pharmacological models of antimalarial drug resistance 
 

3.3.1. Importance of PK/PD models  
 

Czock & Keller (73) provide a comprehensive review “mechanism-based” PK/PD 

modelling of antimicrobial drugs, including their specific application to malaria. 
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3.3.2. Pharmacology 
 

Pharmacology is the study of drugs including their origin, composition, properties, 

therapeutic use, and toxicology. It also includes the development of new drugs that 

are first tested in vitro for biochemical activity and then in vivo for safety, 

effectiveness, side effects and interactions with other drugs to find the best dosing 

regimens. The relationship between drug dose and effect can be separated into 

pharmacokinetic (dose-concentration) and pharmacodynamic (concentration-effect) 

components (Figure 1). Pharmacokinetics (PK) defines the fate of drugs in the body. 

It uses mathematics to quantify the time course (i.e. absorption, distribution, 

metabolism and elimination) of the drug and metabolite concentrations in the body. 

The time course of orally administered drugs can be described using the standard 

Michaelis-Menten equation with just a few basic PK parameters (figure 1A) 

including: bioavailability (F), absorption rate constant (x), clearance (CL) and volume 

of distribution (Vd). However there is large inter-individual variability in these PK 

parameters which can be the result of numerous factors including variations in how 

the patient absorbs the drug, how it is distributed, metabolised and finally eliminated 

from the body.  These factors can be further affected by the patient’s disease state 

(e.g. pregnancy or co-infections with either HIV/AIDS or TB etc.), physiological state 

(e.g. those at the extremes of age or weight) and/or via interactions with other drugs 

present. Pharmacodynamics (PD) defines the relationship between the drug 

concentration (at the site of action) and the time course of the resulting effect. In the 

context of this thesis it refers to the parasite’s response to the administered drug 

(Figure 1B). The PD were based upon the Michaelis-Menten dynamics in which the 

population increased according to a parasite growth rate constant and decreased 

according to the drug dependent killing, determined from the Michaelis-Menten 

equation.  

 

3.3.2. PK/PD modelling 

 

Pharmacokinetic-pharmacodynamic (PK/PD) modelling combines a PK model 

component that describes the time course of drug in the plasma (Figure 1A) and a PD 

model component that relates the plasma concentration to the drug effect (Figure 1B) 
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Figure 1. Pharmacokinetic-pharmacodynamic (PK/PD) modelling combines a PK 

model component that describes the time course of drug in the plasma (Graph A, blue 

line) and a PD model component that relates the plasma concentration to the drug 

effect (Graph B, black line) to determine the time course of drug effect after 

treatment. Antimalarials either successfully clear parasites (Graph A, green line) or 

initially reduce the parasite burden but do not fully clear the infection (Graph B, red 

line). Parasite pharmacodynamics are derived from the concentration-effect curve as 

shown in Graph B.
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to determine the time course of drug effect after treatment. The models use 

differential equations to describe the dynamics of a parasite population in the 

presence of antimalarial drug treatment. Historically, PK/PD models have been used 

by 

- Austin et al. (16) identify the optimal pattern of drug administration to clear an 

infection.  

- Hoshen et al. (143) develop a stage-specific PK/PD model for AR including a 

period of drug-induced ‘dormancy’ during which the parasite’s life cycle is 

temporarily suspended.  

- Hoshen et al. (144) present a PK/PD model of CQ monotherapy designed to 

investigate whether CQ treatment could be improved in patients with different 

levels of immunity. 

- Hoshen et al. (148) describe a PK/PD model designed to simulate the effect of 

AS and MQ combination therapy and match their simulated results to field data.  

- Hoshen et al. (149) adapt the PK model developed in Hoshen et al. (144) to 

investigate the optimal dosing regimen of MQ monotherapy in different settings 

of transmission and immunity. 

- Saralamba et al. (285) develop a intrahost PK/PD model describing the parasites 

stage-specific response to artesunate therapy to investigate the hypothesis that 

artemisinin resistance is the result of decreased ring-stage drug sensitivity.  

- Simpson et al. (302) adapt the PK model developed in Hoshen et al. (144) to 

explore the development of resistance after the de novo use of 2 of the most 

widely used MQ doses.  

- Zaloumis et al. (399) extend the stage-specific within host model developed by 

Saralamba et al. (285) to account for the action of two or more antimalarial 

treatments.   

 

While clinical trials provide the gold standard method guiding drug deployment 

policies, PK/PD models conducted in silico have the potential to provide valuable 

insights into the effectiveness of drug treatments and thus guide policy decisions. 

Accurate simulations can, for example, rapidly investigate the consequences of 

varied drug deployment strategies to identify optimal dosage levels, frequency and 

duration. Moreover, they can be used to investigate real-life situations that cannot be 

ethically addressed in the field, for example the impact of poor patient compliance on 
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a treatment regimen, or to investigate situations which cannot be addressed until it is 

too late, an obvious example includes the consequences of developing drug tolerance 

/ resistance and its subsequent spread through the population. However, despite 

decades of work modelling malaria the application of PK/PD models to investigate 

antimalarial drug treatment has been limited to the eight accounts describe above. To 

date the methods have largely been confined to the investigation of monotherapies 

with only two notable exceptions. First, Hoshen et al. (148) investigated the AS-MQ 

combination modelling the action of AR through the MQ Michaelis-Menten equation 

thus ignoring the specific action of the artemisinin  and it’s absorption, conversion 

and elimination phases (148). While Zaloumis et al. (399) describe a parasite stage-

specific PK/PD model for antimalarial drugs and use it to investigate the optimal 

dosing regimen of combination therapies however where not able to reliably replicate 

the results of clinical trials. It should be noted that the Zaloumis et al. (399) paper 

was only recently published and so not considered while developing the model 

described in this thesis; the main methodological differences and model results are 

discussed further in Chapter 7. Given the widespread use of combination therapies 

and with the recent, massive shift towards using ACTs as first-line antimalarial 

therapy in malaria endemic countries, the inability of mathematical models to 

accurately predict treatment outcome severely reduces the value of such models. This 

thesis concentrates specifically on the development of PK/PD methodology to study 

the effectiveness of antimalarials, with particular focus on the evolution of drug 

resistance. Historically, drug resistance has been modelled assuming resistance is a 

dichotomous characteristic in which parasites are either fully sensitive or fully 

resistant to drugs (72, 89, 128). Here, resistance was modelled as a continuous 

process with parasite drug tolerance increasing progressively until parasites are no 

longer effected by the drug. 
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4. Aims of this thesis 
 

The general aim of this thesis was to develop the basic pharmacokinetic-

pharmacodynamic model for antimalarial drug treatment and to use this model to 

investigate key features of drug action and effectiveness.  

 

The specific aims include 

1. developing the methodology of the PK/PD model including model calibration 

and validation (Chapters 2 and 3) 

2. simulate field data to optimise clinical trial analysis (Chapter 4 and 6) 

3. implement the methodology into OpenMalaria (Chapter 5) 

 

Chapter 2 details the development, calibration and validation of an in silico model of 

antimalarial drug treatment. This model was then extended to make results more 

compelling for specific ACTs (Chapter 3), address key questions about the analysis of 

field data (Chapter 4) and to allow for intravenous drug administration (Chapter 5). 

The drug action components of this PK-PD model were integrated into an open source 

C++ program (OpenMalaria) simulating malaria epidemiology and the impact of 

interventions (Chapter 5). Finally, the extended PK/PD model was used to investigate 

the ability of clinical trials to estimate windows of selection for antimalarial drugs 

(Chapter 6). 
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Chapter 2  
 

Development, evaluation and application of 

an in silico model for antimalarial drug 

treatment and failure 
 

 

ABSTRACT 

 

Pharmacological ‘mechanism based’ modelling is refined and used to develop an in 

silico model of antimalarial drug treatment validated against clinical and field data. 

We used this approach to investigate key features of antimalarial drug action and 

effectiveness, with emphasis on the current generation of artemisinin combination 

therapies. We conclude: (i) The development of artemisinin tolerance and resistance 

will, unless checked, have an immediate, large impact on the protection afforded to its 

partner drug, and on likely clinical efficacy of artemisinin combination therapies. (ii) 

Long follow-up periods are required in clinical trials to detect all drug failures; 

follow-up periods of 28 days recommended by the World Health Organization are 

likely to miss at least 50% of drug failures and we confirm recent suggestions that 63 

days would be a more appropriate follow-up period. (iii) Day seven serum drug 

concentrations are a significant risk factor of failure. Although, paradoxically, 

receiver operating characteristic curve analysis reveals their predictive power is 

relatively poor. (iv) The pharmacokinetic properties of the partner drugs in ACTs are 

the most important determinant of treatment outcome, particularly it’s maximum 

killing rate.  We discuss the assumptions made in such modelling approaches and how 

similar approaches may be refined in future work. 
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1. Introduction 
 

Malaria remains an important public health problem in malaria endemic countries and 

prompt treatments with effective antimalarials is crucial to patient survival.  Correctly 

dosing patients with malaria is however a constant problem and standard dosage 

regimens are usually based on information from adults with uncomplicated malaria. 

This neglects the differences seen in patient’s age, weight, use of concomitant 

medication, genetic variation in pharmacokinetics especially in the groups most at 

risk (pregnant women, children and patients with severe malaria) and natural variation 

in parasite drug susceptibility. Furthermore, dosing regimens are determined during 

efficacy trials in which exact doses are calculated according to weight and taken 

under supervision, with strict adherence to dose timings. In real life, effectiveness is 

more important than efficacy. Drug effectiveness in the field is invariably less than 

the efficacy seen during trials for several reasons: 

i. Drug regimens consisting of more than one dose are vulnerable to the effects of 

patient compliance. Some treatments such as artemether-lumefantrine require up 

to 6 doses per course so compliance may be much worse than single-dosage 

therapies such as sulfadoxine-pyrimethamine (SP).  

ii. Drug trials tend to be small and may not capture the full natural variation in 

pharmacokinetics (PK) and pharmacodynamics (PD) within a population. Inter-

individual variation in PK/PD may result in patients with sub-therapeutic drugs 

concentrations. 

iii. Health systems in malaria endemic countries are not equipped to treat patients 

according to their weight which poses a particular problem when dosing children. 

A child’s dose is determined according to an age band and whilst more practical 

this inevitably leads to a large proportion of dosages either above or below those 

recommended (330).  

 

Clinical trials are expensive, relatively small and cannot ethically measure effects of 

factors such as poor compliance and under dosing. Subsequent field studies on 

effectiveness may infer the impact of factors such as compliance (293) but these can 

only be done after the drugs are deployed. Neither type of study can determine how 

robust the regimens are to small changes in parasite drug sensitivity nor how 
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vulnerable the regimens are to the evolution of drug resistance. In this paper, we 

investigate whether we can develop pharmacological models of antimalarial drug 

treatment that are sufficiently compelling that these questions can be usefully 

addressed in silico. The consensus method of modelling the effect of drug treatment 

on an infection is to track the change in total number of parasites in the body over 

time following treatment.  A review of this “mechanism-based” 

pharmacokinetic/pharmacodynamic (PK/PD) modelling of antimicrobial drugs by 

Czock and Keller (73) lists 28 papers that have used (with modifications) this model, 

including application to malaria by Austin et al. (16) to identify the optimal pattern of 

drug administration to clear an infection, by Hoshen et al. (144, 149) to determine 

whether simulated treatment outcomes are improved with a split chloroquine dose and 

Simpson et al. (302) to compare the development of resistance after the de novo use 

of 2 of the most widely used antimalarial doses of MQ. We investigate four drugs: 

chloroquine (CQ), lumefantrine (LF), mefloquine (MQ) and piperaquine (PQ) given 

as monotherapies and as components of artemisinin-containing combination therapies 

(ACTs) with artesunate (AS), artemether (AR) or dihydroartemisinin (DHA) as 

appropriate. Chloroquine is no longer officially deployed for P.falciparum malaria 

through the formal health sector for treatment of P. falciparum (with the interesting 

exception of Guinea Bissau (138, 176, 341)). It is included here is for historical 

comparison and because it results in higher failure rates (see later) than the ACTs 

allowing us to compare the different dynamics of drug failure. Following convention, 

CQ, LF, MQ and PQ are collectively known as the ‘partner’ drugs within these ACTs. 

We demonstrate that this modelling approach generates results consistent with field 

data and try to identify the most important factors that determine drug treatment 

success and failure.  

 

 

2. Methods 
 

2.1. Basic Model 
 

The rate of change in the total number of parasites present in a single patient over 

time depends on the parasite multiplication rate discounted by the proportions killed 
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by antimalarial drugs and cleared by host defences such as immunity. The 

methodology is based on a standard differential equation: 

 

! 

dP
dt

= P a " f (C) " f (I)[ ]  

 [1] 

 

where P is the number of parasites in the infection, t is time after treatment (days in 

these simulations), a is the parasite growth rate (per day),  f(C)  represents drug killing 

rate of parasites which depends on the drug concentration C, and f(I) represents the 

host’s background immunity to the infection. The drug killing function f(C) is given 

by:  

 

! 

f (C) =
V • Cn

Cn +Kn , 

 [2] 

 

where C is the drug concentration (mg/l), V is the maximal parasite-killing rate 

constant (per day), K is the concentration at which 50% of the maximal killing rate 

occurs (mg/l) and n is the slope of the dose-response curve. Drug concentration 

decays over time, as  

 

! 

C = C0 • e"kt  

 [3] 

 

where k is the terminal elimination rate constant (obtained from the drug half-life) and 

C0 is the drug concentration at time zero i.e. immediately after treatment (drug 

absorption and conversion is assumed to be instantaneous in this methodology; see 

later discussion).  The immunity function (f(I)) is assumed to be time-independent 

(i.e. immunity is not acquired over the course of treatment) and is a constant value 

depending on age and transmission settings as described later (Appendix 2).  
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Combining equations 1, 2 and 3 and integrating allows us to predict the number of 

parasites at any given time point t after treatment as: 
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Pt = P0 • e(a" f (I ))• t •
Kn + C0 • e"kt( )n

K n +C0
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 [4] 

 

where P0 is the initial number of parasites present in the body at time zero when 

treatment time commences. It is assumed that if and when Pt falls below one, an 

infection has been cleared. Note that this methodology tracks the total number of 

parasites in the body whereas clinical observations are on percentage of infected red 

blood cells; simple arithmetic using the number of RBC appropriate for patient age 

and weight allows conversion between the scales.  

 

 

2.2. Extension of the basic methodology for malaria 
 

Antimalarial regimens typically contain several doses spread over 3 days (Table 1). 

The concentration at time zero (C0) is dependent on the existing drug concentration in 

the blood, augmented by any new drug dosage administered i.e.  
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C0 = C'+ D
Vd •W
" 
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$ 
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& 
'  

 [5] 

 

the drug concentration at the immediate end of the previous time step is represented 

by C'  (C' =0 if first dosage), D is the drug dosage (mg) given, Vd is the volume of 

distribution (l/kg) and W is the weight of the patient (kg).  The new dosage is 

converted to the concentration in the blood assuming instantaneous absorption and 

distribution; the dosage can be reduced to reflect drug bioavailability less than 100%. 
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Table 1. Standard adult dosages recommended by WHO (2006) and mean antimalarial drug parameters for artemether, artesunate, DHA, 

chloroquine, lumefantrine, mefloquine and piperaquine. 

 
a Unpublished data from the Liverpool School of Tropical Medicine 
b Assumed to be like artesunate 
c Assumed to be like chloroquine, mefloquine and lumefantrine 
 

Default value 
Variable 

Artemether Artesunate DHA Chloroquine Lumefantrine Mefloquine Piperaquine 

Dose (mg/kg) 

1.6mg/kg 
given twice 
daily for 3 

days 

4mg/kg 
given once 
daily for 3 

days 

4 mg/kg 
once a 

day for 3 
days 

10mg/kg given 
once on days 1 and 

2, 5mg/kg given 
once on day 3. 

19.2mg/kg 
given twice 
daily for 3 

days.  

25mg/kg 
given once.  

18 mg/kg once 
a day for 3 

days 

Volume of distribution (Vd) 17.4(110) 2.75(301) 8(57, 237) 300(359, 397) 21(68) 20.8(359) 150(57) 

Elimination rate constant (k) 3.96 a 16.6 (212, 321) 19.8(57, 

237) 0.0231(359) 0.16(110, 212, 

350) 0.053(350) 0.03(151, 350) 

Conc. required to produce 
half the desired effect (IC50) 

0.0023 a 0.001(44, 211) 0.009(210) 0.02 (211, 225) 0.032(44, 321) 0.027 (44) 0.088 (237) 

Maximal parasite-killing rate 
constant (V) 4(355) 4.6(355) 4.6 b 3.45(355) 3.45(355) 3.45(355) 3.45 c 

Slope factor (n) 4 b 4(321) 4(321) 1.6 a 4(321) 5(321) 6 60 
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Equations 4 and 5 are applied to each separate time interval in the drug regimen. For 

example in a 3-day regimen of CQ (Table 1) there would be 3 intervals i.e. day1, 

day2, day3 onwards; for artemether-lumefantrine there would be 5 half-day periods 

followed by dosage 6 onwards. 

 

Antimalarials are now invariably deployed as combination therapies to improve 

therapeutic efficacy and to delay the development of drug resistance although we do 

recognize that many other drugs including monotherapies are still available through 

the informal health services. We also note that the use of quinine, particularly via 

continuous intravenous infusion in the case of severe malaria is still frequently 

administered. However, this model focuses on the treatment of uncomplicated malaria 

with orally administered drugs. It is assumed that two drugs act independently of each 

other in the combination (see discussion) and we simply expand Equation [1]: 

 

! 

dP
dt

= P a " f C1( ) " f C2( ) " f I( )[ ]  

 [6] 

 

Integrating this gives 
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 [7] 

 

In Equation 7, the subscripts 1 and 2 for parameters K, C0, n, k, and V, indicate 

whether the parameter value refers to drug 1 or 2. This equation can be used to find 

the change in parasite number between any two given time points, in this model it is 

used along side Equation 3 to update the parasite load and drug concentration daily. 

For clarity K will subsequently be referred to as IC50 in the text, figures and tables.  

 

Acquired immunity was incorporated using the data of Pongtavornpinyo et al. (262) 

who identified three possible measures of acquired immunity for use in modelling 

based on parasite biomass, the incidence of severe malaria and the proportion of 
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symptomatic infections. For the purposes of this model the equations are standardized 

to return a minimum value of 0 (when age=0 and EIR=0) and a maximum of 1 and 

then scaled by a factor ø to produce f(I) used in equations 1 and 6; see Appendix 2 for 

details. We use immunity only briefly here (to simulate clinical trials) but include it as 

a proof-of-principal.  

 

The dosing regimens of the drugs investigated, and estimates of the PK/PD 

parameters employed to model treatment are given in Table 1 and discussed in 

Appendix 1.  This model has been implemented in R (version 2.9.2) (270), although 

earlier versions were run in Excel and Maple 12. All packages generated the same 

results and the results presented here were generated in R. The model runs in half-day 

time steps using Equation 7 for the first seven days to allow for multiple-dose 

regimens and one-day time steps thereafter to speed up simulations. It is possible to 

use Equation 4 to find treatment outcome algebraically after the final dose (144) but 

this approach of single daytime steps is more explicit and allows easy calculation of 

factors such as parasite clearance time, period of chemoprophylaxis and allows easy 

incorporation of factors such as stochastic variation in predicted parasite numbers. 

The discrete time step and algebraic analysis do, of course, give the same result. 

  

 

2.3. Model Validation and analysis 
 

The first step in model validation is to check that the outputs match observations 

made in the field. The chief criteria are that the regimens give a reliable cure rate 

(except in the case of short-term artemisinin monotherapies), that parasite clearance 

times (PCT) are plausible and that times until new infections are noted (PoC) are 

reasonable. The first term is self-explanatory: PCT is the time taken for the infection 

to fall below the limit of microscopic detection that we assume is 108. The period of 

chemoprophylaxis (PoC) describes the length of time a drug treatment suppresses the 

appearance of new infections, this is often reported in clinical trials. We assume drugs 

do not affect parasites during the liver phase as is believed to be the case for those 

drugs considered here (75). The earliest parasites able to cause a patent re-infection 

emerge from the liver at precisely the time when drug concentration from previous 
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treatments has declined sufficiently that parasite reduction turns into increase i.e. 

when dP/dt becomes positive. Successful re-infection can occur before this point (i.e. 

when dP/dt <0) but the number of parasites will initially fall, hence re-infection will 

occur fastest if parasites emerge on the day dP/dt first becomes positive. The time 

when dP/dt becomes greater than zero is found by evaluating Equation 4 to obtain Pt 

at the end of each daily time-step and finding when Pt > Pt-1. Only the partner drug is 

considered in calculating PoC because we assume the artemisinin in an ACT has 

disappeared by the time the first drug becomes permissive for parasite growth. We 

assume 10,000 merozoites emerge from the liver and become detectable when their 

numbers exceed 108, the time taken for this to occur can be estimated by solving 

Equation 4 with respect to t, where P0 =105, Pt =108 and C0 is the drug concentration 

on the day dP/dt >0 first becomes true.  The PoC is then found by adding together the 

time taken for dP/dt to become positive and time required for a new infection to 

become patent. To get a rough estimate of when new infections may reasonably be 

observed we increased the PD parameters and parasite growth rate by 1 standard 

deviation (assuming CV =0.3, see later) to represent parasites that are slightly above 

average in their ability to resist the drug. The PoC will vary from person to person 

depending on variation in human PK, parasite drug sensitivity and growth rates. We 

later allow variation in all the PK and PD parameters resulting in PoC being different 

for each person; in this case the 5th centile value of PoC is reported as being 

indicative of when new infections may plausibly first start to be observed in high-

transmission setting. 

 

The initial analysis simply involved varying each individual parameter value in turn 

(while keeping other values constant) to find the size of change that resulted in 

treatment failure. This gave an initial indication of the relative importance of each 

parameter in determining treatment success or failure. In reality all parameter values 

vary simultaneously. This was incorporated by adding variation to seven different 

model parameters: the five PK/PD parameters listed on Table 1, the maximal parasite 

growth rate a and the number of parasites present at time of treatment P0. With the 

exception of the initial parasite number, all variables were assumed to be normally 

distributed with a coefficient of variation (CV) of 30%; the mean values are given on 

Table 1. Values must be positive, so the program checked this was true; if less than 

zero, the model generated another random number in the same way until a positive 
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number was chosen. The number of parasites present at the start of treatment was 

chosen randomly from a uniform distribution between 1010 and 1012. Populations of 

10,000 patients were simulated for the following drug regimens: CQ, LF, MQ and PQ 

monotherapies and CQ+AS, MQ+AS, LF+AS, LF+AR, and PQ+DHA as ACTs. The 

results were analyzed by logistic regression (LR) with treatment failure as the 

outcome using the PASW Statistics 18 package. The independent variables included 

the initial parasitaemia (P0), parasite growth rate (a), drug elimination rate constant 

(k), slope factor (n), IC50, volume of distribution (Vd) and the maximal parasite-

killing rate (V). LR analyzed the effect of a one-unit change in the value of each 

parameter but the scales of the parameter values were so diverse that it made 

comparisons impossible (for example a one unit change in IC50 is proportionally 

much larger than a one unit increase in volume of distribution, see Table 1). The 

parameter values were therefore converted to z-scores because the odds ratio statistic 

on this scale indicates the increased or decreased risk of failure associated with a one 

standard deviation increase in the parameter value allowing easy comparison between 

variables. The changes in log-likelihood (LL) and Wald statistics measured the 

reduction in model fit when individual parameters are omitted: the larger the value, 

the worse the fit and hence the more important the parameter. Thus Wald and LL 

measured the relative importance of each parameter’s variation on drug failure. 

 

There is considerable interest in how the evolution of resistance to the artemisinin 

component may compromise the long-term effectiveness of ACTs. We investigated 

two aspects of this process. Firstly, we measured how increasing IC50 to the 

artemisinin component would reduce the protection afforded to its partner drug. This 

was achieved by increasing artemisinin IC50 values above their default values and 

measuring how much of a change in the partner drug IC50 would be required for drug 

failure to occur. Secondly, we measured how increasing IC50 to artemisinins would 

increase ACT failure rates if resistance to the partner drug were already present. As 

before, we allowed 30% CV in the default parameter values and measured failure 

rates while increasing IC50 to the artemisinin component (and still allowing a CV of 

0.3 around this new artemisinin IC50 value). Both these measures (change in partner 

drug IC50 and drug failure rates) were standardized to allow direct comparison 

between different ACTs by constructing a standardized “protection index” so that a 

value of 1 indicates the ‘basal’ value at the original artemisinin IC50 value and a 
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value of 0 means the artemisinin component is useless and that the measure has 

become ‘maximal’, i.e. identical to that of the partner drug monotherapy: for example, 

if ‘f’ is the failure rate then its standardized protection index is 1-[(f-basal)/(maximal-

basal)]. 

 

“Clinical trial” simulations were run to compare model outputs to field data. The data 

recorded were those typically measured in trials and available to investigators i.e. 

outcome (success/failure), number of parasites present at time of treatment, age of 

patient, place of residence and day 7 serum level. Place of residence and age of 

subjects was included to demonstrate the effects of immunity (Appendix 2) with a 

scaling factor of the immune function, !, set to 0.8: village A had an EIR of 10 and 

village B an EIR of 100. The clinical trial simulations included 400 individuals, 200 

from village A and 200 from village B (aged 6 months to 15 years), all were treated 

with artesunate-mefloquine using the default parameters on Table 1 except the mean 

IC50 of mefloquine was increased to 0.8 to allow a proportion of failures more typical 

of clinical trials where a drug is failing. These parameters were varied with a CV of 

0.3 to allow treatment failures (see above; there was no point analyzing a clinical trial 

where everyone is cured). The results were analyzed using logistic regression with 

treatment outcome as the dependent variable; independent variables were age (!5 

years or >5 years), location, low day 7 drug serum levels (defined as values below the 

15th centile) and initial parasitaemia.  

 

Low drug serum levels on day 7 have been shown to be a significant risk factor for 

treatment failure (see later discussion), so we (arbitrarily) defined low levels as being 

below the 15th centile and determined the risk associated with low day-7 serum levels 

by the odds ratio and population attributable risk percentage (PAR%) a measure of the 

percentage of treatment failures that could be avoided if adequate drug levels were 

achieved throughout the population. The diagnostic accuracy of the day-7 serum 

concentration was further explored using PASW Statistics 18.0 to generate receiver 

operating characteristic (ROC) curves. The correlation between drug serum 

concentrations on days 3, 5, 7 and 10 and area under the drug concentration curve 

(AUC) between days 0-25, 0-50, 0-100 and 0-" was investigated. The AUC between 
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any two time points was found using equation 9 whilst AUC0-" was found using 

equation 10, 
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3. Results 
 

Using the default parameter values without variation resulted in CQ, LF, MQ and PQ 

monotherapies reliably clearing malaria infections when the drug dosage schedules 

simulated were those recommended by the WHO (379) (Table 2), assuming initial 

parasite numbers were below 1012. The use of artemisinins (AS, AR or DHA) as 

monotherapies over three days failed to clear infections (Table 2) although they did 

cure as monotherapies if given over seven days (data not shown). When initial 

parasite number was 1010 the parasite clearance times for LF, MQ and PQ began at 

three days and increased by approximately one day with each 10-fold increase in 

initial parasite number. The parasite clearance time for CQ began at four days when 

initial parasitaemia was set to 1010 and increased to six and seven days with 

increasing initial parasite number. For all partner drugs the addition of either AS or 

DHA reduced PCT by one to two days whilst the addition of AR to LF reduced the 

PCT by up to three days. Estimates of PoC when using the non-varied default 

parameters (Table 2) were always longer than expected (see later discussion). 

 

The percentage change that can be tolerated in a given drug parameter before 

treatment fails is shown in Table 3 assuming an initial parasitaemia of 1010 to crudely 

illustrate how sensitive a drug regimen was to the natural variation between 

individuals (recall that the partner drugs are able to clear parasites as a monotherapy 

so it was pointless varying individual parameter values of the artemisinin component).
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Table 2. Percentages of individuals predicted to be cured using drugs with and without artemisinins according to the dosing regimens detailed in 

Table 1, parasite clearance times, and periods of chemoprophylaxis a 

 

Drug 
Output 

Artemether Artesunate Chloroquine 
(plus artesunate) 

Lumefantrine 
(plus artesunate, artemether) 

Mefloquine 
(plus artesunate) 

Piperaquine 
(plus DHA) 

% Cured 0 0 100 (100) 100 (100, 100) 100 (100) 100 (100) 

PCT (days) with  
P0 = 1010 0 0 4 (2) 3 (2, 1) 3 (2) 3 (2) 

PCT (days) with  
P0 = 1011 0 0 6 (3) 4 (2, 2) 4 (2) 4 (2) 

PCT (days) with  
P0 = 1012 0 0 7 (4) 5 (3, 2) 5 (3) 5 (3) 

PoC (days) 9 9 87 41 80 57 
Apparent cure rate 
after 28 days (%) 0 0 92 (96) 96 (98, 99) 97 (98) 96 (97) 

Apparent cure rate 
after 63 days (%) 0 0 91 (93) 90 (93, 96) 97 (99) 91 (92) 

True cure rate (%)  0 0 85 (88) 90 (93, 95) 96 (97) 90 (91) 

Mean PCT  (days)  
± sd - - 6.4 ± 4.5 

(3.4 ± 2.64) 
4.98 ± 3.915 

(2.76 ± 2.1, 1.98 ± 0.65) 
5.3 ± 4.7  

(2.9 ± 2.7) 
5.3 ± 3.95  
(3.4 ± 2.5) 

PoC 
(5th centile) (days) - - 52 31 59 40 

 

a Note that the artemisinins have no effect on PoC because of its short half-lives, so PoC values are identical for all ACTs and their partner drug monotherapies. 
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Table 3. Percentages that drugs must deviate from the default values (see Table 1) to result in treatment failure in naïve patients with no 

immunity a 

 
a Positive values indicate that parameters must be increased for failure to occur, and negative values indicate that they must be decreases. Only partner drug PK/PD 

parameters are reported. The slope factor n did not influence treatment failure. 

Variable 

Drug 
Dose (mg/kg) 

Parasite 
growth rate, a 

(/day) 

Elimination rate 
constant, k 

(/day) 
IC50 (mg/l) Volume of 

distribution, Vd (l/kg) 

Maximal parasite 
killing rate 

constant, V (/day) 

Mefloquine -95.6 169.6 598.1 2122.2 2082.7 -56.5 

Mefloquine + Artesunate -98.4 178.3 805.7 2418.5 2404.8 -59.4 

Chloroquine -66.5 100.0 332.9 160.0 160.0 -40.3 

Chloroquine + Artesunate -85.0 108.7 462.8 191.0 191.0 -44.6 

Lumefantrine -96.9 134.8 262.5 2993.7 2971.4 -47.8 

Lumefantrine + Artemether -99.0 169.6 837.5 5868.0 5852.0 -56.5 

Lumefantrine + Artesunate -98.4 152.2 462.5 4275.0 4171.4 -50.7 

Piperaquine -61.1 143.5 366.7 161.4 154.7 -48.7 

Piperaquine + DHA -62.2 145.2 433.3 172.7 154.5 -50.4 
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Studying the parameters without variation suggested chloroquine and piperaquine 

regimens are most sensitive to change whilst mefloquine and lumefantrine regimens 

are most robust. All regimens appeared to be particularly sensitive to changes in the 

parasite-killing rate constant, V; for example, a reduction of only 40% resulted in 

treatment failure for CQ monotherapy. The slope of the concentration effect curve had 

little or no effect on drug treatment outcome.  

 

More realistically, allowing a 30% CV in parameter values reduced overall true cure 

rates to 85% (CQ), 90% (LF), 96% (MF) and 90% (PQ) for monotherapies (Table 2). 

The addition of artemisinins increased these to 88% (AS-CQ), 93% (AS-LF), 95% 

(AR-LF), 97% (AS-MQ) and 91% (DHA-PQ). The apparent cure rates at 28 and 63 

days were recorded to investigate the effects of differing periods of follow-up in 

clinical trails (Table 2).  The cure rates were over estimated at both time points but the 

apparent cure on day 63 gave a closer approximation of the true cure rate than the day 

28 estimates. Apparent CQ cure rate on day 63 was 6% higher than the true cure rates; 

all other day 63 cure rates were within 2% of the true cure rate (Table 2). The parasite 

clearance times found in the presence of variation were all reduced with the addition 

of an artemisinin to the partner drug  (Table 2). The range of PoC estimates were 

normally distributed (see Appendix 3) with the 5th centile values presented in Table 2. 

 

Allowing a CV of 30% in PK/PD parameters allowed the most important parameters 

to be identified and ranked using the Wald statistic from logistic regression (Table 4, 

noting that overall cure rates were given on Table 2) and compared to the results 

obtained by varying each parameter individually (Table 3). All model variables in 

monotherapies (except MQ initial parasite number) were found to be significant 

factors determining treatment outcome. For CQ, LF, MQ and PQ the Wald and log-

likelihood statistics identified the maximal parasite-killing rate (V) to be the most 

important and the slope factor (n) to be the least important variables. The volume of 

distribution (Vd), IC50 and slope factor (n) of the artemisinin component in 

combinations (with the exception of AS IC50 in the AS+LF combination) were not 

found to be significant determining factors of treatment success/failure. Additionally 

when using the AS+MQ combination both the initial parasite number and the 

artesunate maximal parasite-killing rate constant (V) were not significant. The most 

important variable in all combination therapies was the rate of parasite killing (V) of 
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FIGURE 1. The consequences of resistance evolving to artemisinins through increasing 

IC50 values. (A) Protection afforded to partner drug quantified as the reduction in the 

partner drug IC50 value that can occur before drug failure occurs. (B) Clinical protection 

quantified as changes in ACT failure rate as IC50 increases to artemisinins. These 

protection indices are standardized so that a value of 1 indicates values obtained using 

original artemisinin IC50 values (Table 2), and value of 0 indicates values equivalent to 

the partner drug monotherapy. 

A. 

B. 

the partner drug closely followed in all cases by the rate of parasite growth (a). Where 

significant, the number of parasites present when treatment began was found to be the 

least influential factor in combination therapies. 

 

The impact of increasing artemisinin IC50 values is shown on Figure 1 in terms of 

reduced protection afforded to the partner drug (Figure 1A) and in terms of likely 

increased failure rate of the ACT (Figure 1B). Both results suggest increasing 

resistance to artemisinin causes a rapid decline in protection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The consequences of resistance evolving to artemisinins through increasing 

IC50 values. A) Protection afforded to partner drug, quantified as the reduction in the 

partner drug IC50 value that can occur before drug failure occurs. (B) Clinical 

protection, quantified as changes in ACT failure rate as the artemisinin IC50 

increases. These protection indices are standardized so that a value of 1 indicates 

values obtained using original artemisinin IC50 values (Table 2) and value of 0 

indicates values equivalent to the partner drug monotherapies. 
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Table 4. Relative importance of variable parameters ranked for the nine treatment 

regimens, using Wald, log likelihood, and odds ratio statistics in logistic regression, 

with drug failure as the outcome a 

Drug Variablesb Rank Wald 
Statistic 

Change in -2 
Log Likelihood 

Significance 
(P value) Odds ratio (95% CI) 

P0 7 7.029 7.112 0.008 1.122 (1.031-1.223) 
a 2 478.113 2358.325 0.000 264.216 (160.274-435.566) 
k 5 324.825 640.959 0.000 10.762 (8.311-13.935) 
n 6 274.542 487.471 0.000 0.134 (0.105-0.169) 
IC50 3 394.607 1075.476 0.000 25.467 (18.504-35.052) 
Vd 4 387.435 1046.712 0.000 24.438 (17.777-33.595) 
V 1 508.018 5903.412 0.000 0.000 (0.000-0.000) 

Chloroquine 

Constant  522.451   0.000 
P0 9 17.670 18.283 0.000 1.227 (1.116-1.350) 
a 2 388.052 2044.336 0.000 321.885 (181.216-571.748) 
CQ k 5 231.727 420.421 0.000 8.185 (6.244-10.729) 
CQ n 6 221.282 386.808 0.000 0.145 (0.113-0.188) 
CQ IC50 3 321.878 827.574 0.000 21.178 (15.172-29.562) 
CQ Vd 4 316.659 788.882 0.000 19.629 (14.142-27.246) 
CQ V 1 417.353 5279.992 0.000 0.000 (0.000-0.000) 
AS k 7 43.178 46.965 0.000 1.812 (1.518-2.164) 
AS n 12 0.002 0.002 0.965 1.004 (0.842-1.196) 
AS IC50 10 2.786 2.804 0.094 1.162 (0.974-1.385) 
AS Vd 11 0.842 0.842 0.359 1.085 (0.911-1.292) 
AS V 8 40.981 44.564 0.000 0.555 (0.464-0.665) 

Chloroquine 
plus 

Artesunate 

Constant  430.377   0.000 
P0 7 19.198 20.130 0.000 1.293 (1.152-1.450) 
a 2 267.100 1461.201 0.000 415.911 (201.797-857.206) 
k 3 243.528 821.347 0.000 56.223 (33.895-93.259) 
n 6 27.154 29.445 0.000 0.546 (0.435-0.686) 
IC50 5 77.610 96.781 0.000 2.955 (2.322-3.760) 
Vd 4 82.145 101.599 0.000 2.957 (2.339-3.739) 
V 1 289.468 5334.075 0.000 0.000 (0.000-0.000) 

Lumefantrine 

Constant  295.124   0.000 
P0 9 19.811 21.134 0.000 1.331 (1.173-1.509) 
a 2 232.508 1150.943 0.000 251.521 (123.598-511.845) 
LF k 3 186.486 485.514 0.000 22.058 (14.149-34.388) 
LF n 8 24.768 27.014 0.000 0.535 (0.418-0.684) 
LF IC50 7 28.178 31.114 0.000 1.977 (1.537-2.543) 
LF Vd 6 39.783 44.971 0.000 2.317 (1.784-3.008) 
LF V 1 257.517 4257.815 0.000 0.000 (0.000-0.000) 
AS k 4 62.142 75.273 0.000 2.872 (2.209-3.733) 
AS n 11 0.596 0.598 0.440 0.908 (0.712-1.159) 
AS IC50 10 8.165 8.342 0.004 1.387 (1.108-1.735) 
AS Vd 12 0.351 0.352 0.553 1.070 (0.855-1.340) 
AS V 5 52.110 62.342 0.000 0.398 (0.310-0.511) 

Lumefantrine 
plus 

Artesunate 

Constant  263.643   0.000 
P0 9 17.670 18.283 0.000 1.227 (1.116-1.350) 
a 2 388.052 2044.336 0.000 321.885 (181.216-571.748) 
LF k 5 231.727 420.421 0.000 8.185 (6.244-10.729) 
LF n 6 221.282 386.808 0.000 0.145 (0.113-0.188) 
LF IC50 3 321.878 827.574 0.000 21.178 (15.172-29.562) 
LF Vd 4 316.659 788.882 0.000 19.629 (14.142-27.246) 
LF V 1 417.353 5279.992 0.000 0.000 (0.000-0.000) 
AR k 7 43.178 46.965 0.000 1.812 (1.518-2.164) 
AR n 12 0.002 0.002 0.965 1.004 (0.842-1.196) 
AR IC50 10 2.786 2.804 0.094 1.162 (0.974-1.385) 
AR Vd 11 0.842 0.842 0.359 1.085 (0.911-1.292) 
AR V 8 40.981 44.564 0.000 0.555 (0.464-0.665) 

Lumefantrine 
plus 

Artemether 

Constant  430.377   0.000 
Continued on following page 
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Table 4. Continued 

 

Drug Variablesb Rank Wald 
Statistic 

Change in -2 
Log Likelihood 

Significance 
(P value) Odds ratio (95% CI) 

P0 7 1.469 1.477 0.224 1.083 (0.952-1.232) 
a 2 176.479 761.123 0.000 110.263 (55.093-220.680) 
k 3 80.146 116.012 0.000 4.264 (3.104-5.858) 
n 6 12.501 13.263 0.000 0.613 (0.468-0.804) 
IC50 5 13.256 13.883 0.000 1.581 (1.236-2.023) 
Vd 4 17.108 18.392 0.000 1.840 (1.378-2.456) 
V 1 202.508 3128.261 0.000 0.000 (0.000-0.000) 

Mefloquine 

Constant  206.623   0.000 
P0 9 1.538 1.548 0.213 1.093 (0.950-1.258) 
a 2 159.869 668.108 0.000 87.176 (43.613-174.254) 
MQ k 3 45.487 55.621 0.000 2.867 (2.111-3.894) 
MQ n 8 3.920 3.971 0.046 0.750 (0.564-0.997) 
MQ IC50 5 12.613 13.441 0.000 1.633 (1.246-2.142) 
MQ Vd 7 6.892 7.086 0.008 1.480 (1.104-1.983) 
MQ V 1 187.344 2676.097 0.000 0.000 (0.000-0.000) 
AS k 4 22.465 25.146 0.000 2.006 (1.504-2.675) 
AS n 11 0.088 0.088 0.767 0.959 (0.726-1.266) 
AS IC50 10 0.646 0.647 0.421 0.896 (0.686-1.171) 
AS Vd 12 0.020 0.020 0.887 0.980 (0.744-1.292) 
AS V 6 11.547 12.206 0.000 0.625 (0.476-0.819) 

                                                                                                             
Mefloquine 

plus 
Artesunate 

Constant  192.601   0.000 
P0 7 12.093 12.306 0.000 1.163 (1.068-1.266) 
a 2 405.719 1147.304 0.000 27.102 (19.659-37.363) 
k 5 268.650 446.987 0.000 6.565 (5.242-8.222) 
n 6 96.420 111.102 0.000 0.416 (0.349-0.495) 
IC50 4 324.886 666.386 0.000 11.141 (8.572-14.480) 
Vd 3 331.315 667.546 0.000 10.928 (8.447-14.138) 
V 1 514.197 4464.531 0.000 0.000 (0.000-0.000) 

Piperaquine 

Constant  543.153   0.000 
P0 8 13.759 14.059 0.000 1.181 (1.082-1.290) 
a 2 374.163 1074.747 0.000 28.157 (20.077-39.488) 
PQ k 5 231.611 376.353 0.000 5.928 (4.714-7.455) 
PQ n 6 90.066 104.273 0.000 0.411 (0.342-0.494) 
PQ IC50 4 283.653 533.022 0.000 8.900 (6.901-11.479) 
PQ Vd 3 298.725 566.776 0.000 9.691 (7.491-12.539) 
PQ V 1 470.841 4087.798 0.000 0.000 (0.000-0.000) 
DHA k 9 13.447 13.705 0.000 1.364 (1.155-1.609) 
DHA n 12 0.000 0.000 0.988 0.999 (0.844-1.181) 
DHA IC50 11 0.077 0.078 0.781 0.977 (0.828-1.152) 
DHA Vd 10 1.920 1.928 0.165 1.123 (0.953-1.322) 
DHA V 7 19.808 20.370 0.000 0.693 (0.590-0.815) 

Piperaquine 
plus DHA 

Constant   499.203     0.000 
 
a Chloroquine, mefloquine, and lumefantrine were all given alone and with artesunate, in addition to 

artemether-lumefantrine. Dosages are in accordance with WHO guidelines (Table 1). The sample size 

for each drug regimen was 10,000 patients, and overall failure rates are given in Table 2.  

 
b P0, parasite number at time of treatment; a, parasite growth rate; k, terminal elimination rate constant; 

n, slope of the dose-response curve, IC50, concentration at which 50% of maximal killing occurs; Vd, 

volume of distribution; V, maximal drug killing rate.  
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The “clinical trial” simulations examined the importance of four variables typically measured 

in the field, initial parasite number, location, patient age and day-7 serum level. Results for 

artesunate-mefloquine are shown on Table 5. People from a high transmission village are 

more immune and, as expected, were less likely to fail treatment; interestingly, this effect was 

always associated with very small confidence intervals. Young age was associated with 

increased risk of failure although this was not significant in our simulation. Several different 

field studies have reported day-7 serum concentration as a predictor of treatment failures (55, 

97, 354); our results confirm that individuals with a low day-7 serum level have a three-fold 

higher risk of treatment failure than those with normal levels. 

 

Table 5. Relative importance of each risk factor measured during a simulated clinical trial of 

AS-MQ, determined using Wald and odds ratio statistics a  

 

Output 
Risk factors Wald 

statistic Odds ratio (95% CI) P value 

 log (Po) 0.000 0.977 (0.509-1.951) 0.992 

Location (high EIR) 7.505 0.991 (0.985-0.997) 0.006 

Age (under 5 years) 3.217 1.704 (0.952-0.3051) 0.073 

Day 7 serum (<15th centile) 10.102 2.939 (1.512-5.713) 0.001 

Constant 0.155 0.209 0.694 
 

a The overall failure rate was 15.57%, and the results came from logistic regression analysis with treatment 

failure as the outcome 

 

Individuals were categorized as having either normal or low day-7 serum levels using the 

15th centile value and its effect on treatment success/failure reported on Table 6. These 15th 

centile values were found to be <0.056 (mg/L) for CQ, <1.647 for LF, <0.637 for MQ and 

<0.232 for PQ. The increased risk of treatment failing in those with low day-7 serum levels 

was largest when treating with DHA+PQ (OR=2.62) and smallest when treating with 

AS+MQ (OR=1.24) (note that we disregard the OR value on Table 5 because this was 

obtained after inflating the MQ IC50 value, see methods).  The PAR% results suggest that 

increasing drug levels sufficiently to achieve normal day-7 serum levels in all individuals 

could reduced failure rates by as much as 17% when treating with DHA+PQ but by only 3% 

when using AS+MQ. The area under the ROC curve (AUROC) found low day-7 serum 
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levels to be a poor predictor of treatment outcome with AUROC values ranging from 0.538 

for AS+MQ to 0.646 for PQ (a AUROC value of 0.5 indicates no predictive power, AUROC 

of 1 indicates perfect sensitivity and specificity). These poor predictive values occurred 

despite strong correlation between AUROC and AUC (Appendix 3). The estimates of OR 

were not noticeably affected by our choice of the 15th centile as the definition of ‘low’ serum 

levels: the same ORs were obtained when the cut-off was defined as the 10th, 20th or 30th 

centile (Appendix 3). 

 

 

 

Table 6. Effects of low day 7 serum levels (<15th centile) on predicted outcomes of 

treatments 

 

Output a 
Drug 

OR Sensitivity Specificity AUROC PAR % 

Chloroquine 2.153 
(1.883-2.462) 

0.248 
(0.229-0.268) 

0.867 
(0.864-0.870) 

0.632 
(0.617-0.647) 11.584 

Chloroquine 
plus Artesunate 

2.086 
(1.805-2.411) 

0.248 
(0.227-0.271) 

0.863 
(0.860-0.866) 

0.627 
(0.610-0.643) 11.567 

Lumefantrine 1.934 
(1.654-2.262) 

0.240 
(0.216-0.265) 

0.860 
(0.857-0.863) 

0.615 
(0.596-0.633) 10.532 

Lumefantrine 
plus Artesunate 

1.919 
(1.605-2.295) 

0.242 
(0.214-0.273) 

0.857 
(0.855-0.860) 

0.603 
(0.582-0.624) 10.839 

Lumefantrine 
plus Artemether 

1.354 
(1.067-1.719) 

0.190 
(0.158-0.227) 

0.852 
(0.850-0.854) 

0.557 
(0.530-0.583) 4.762 

Mefloquine 1.393 
(1.104-1.759) 

0.195 
(0.162-0.231) 

0.852 
(0.851-0.854) 

0.554 
(0.528-0.580) 5.242 

Mefloquine plus 
Artesunate 

1.243 
(0.955-1.619) 

0.179  
(0.144-0.218) 

0.851 
(0.850-0.853) 

0.538 
(0.509-0.567) 3.361 

Piperaquine 2.557 
(2.199-2.973) 

0.286 
(0.260-0.312) 

0.865 
(0.862-0.868) 

0.646 
(0.628-0.665) 15.949 

Piperaquine plus 
DHA 

2.618 
(2.236-3.066) 

0.293 
(0.265-0.321) 

0.864 
(0.861-0.866) 

0.645 
(0.626-0.664) 16.780 

 

a OR, odds ratio; AUROC, area under the ROC curve; PAR%, population attributable risk percentage. Data are 

means with 95% confidence intervals. 
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4. Discussion 
 

All models need to make simplifications to make them tractable. We therefore explicitly 

identify and discuss the key simplifications and assumptions that underlie these analyses 

before moving on to discuss how well the model predictions fit with clinical data, and what 

the models results imply for the current generations of antimalarial drugs. 

 

The mechanism–based modelling approach (73) assumes drugs are instantaneously absorbed 

(across the gut wall for most antimalarials) and instantaneously converted, if necessary, to 

their active metabolite. This is probably reasonable for CQ, LF, MF and PQ because their 

long half-life dominates the time taken for relatively rapid absorption and conversion, but this 

approach is less satisfactory for artemisinins where the half-life is so short that time lags in 

absorption and conversion may arguably become important. It would be possible to remodel 

this component using a standard PK compartment model as will be discussed later. 

 

Within a human, drug bioavailability and the extent of absorption are important contributors 

to the variability of drug outcomes. Lumefantrine oral bioavailability is particularly variable 

and highly dependent on food intake; it is consequently poor in acute malaria cases but 

improves markedly with recovery (97). By assuming all patients modelled had uncomplicated 

malaria and followed the dosing recommendations, we ignored complications caused by 

bioavailability absorption. We also ignored any toxic effects resulting from high 

concentrations and any impact that might have on PK/PD parameters. 

 

We investigated two modifications of the basic methodology. We first examined the effects 

of assuming density-dependent growth in P.falciparum (73) (see Appendix 1 for details) and 

then the effects of  adding stochastic variation to Pt at the end of each day by choosing the 

value from a Poisson distribution. Neither modification had a significant effect on the 

outcome and both were subsequently removed; all results presented use a constant growth 

rate a, detailed in Appendix 1.  

 

The effects of acquired immunity have been largely ignored and introduced only briefly 

during the simulation of clinical trials. The development and action of human immunity 
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against malaria is a vast topic of current research and, as far as we know, there is no 

consensus mathematical description of its acquisition. Hence we used proxies to illustrate its 

basic effect and await more sophisticated descriptions to incorporate its effect (Appendix 2). 

Its omission can be justified because it is important that drugs act effectively in all humans 

irrespective of immune status. Most malaria mortality is in non- or poorly-immune African 

children so the results presented here are most appropriate to this group.  

 

The assumptions described above concern the structure of the model. The interpretation of 

the results requires a secondary assumption: that we have properly calibrated the PK/PD 

values of each drug (Appendix 1). Differences in drug assay sensitivity and reproducibility 

combined with natural PK variation between people resulted in a range of PK estimates. We 

incorporated natural variation in the model parameters to reflect inter-individual variation by 

simply assuming each parameter was normally distributed with a CV of 0.3. Ninety-five 

percent of parameter values will lie within 2 standard deviations of the mean i.e. from 0.4 to 

1.6 assuming a standard mean of one, a roughly 4-fold range of inter-individual variability. 

More sophisticated calibrations could be made: for example lumefantrine bioavailability 

depends critically on its ingestion with fatty food so may vary widely depending on diet, drug 

IC50 values typically vary 10 fold (225), and so on. At this stage, we were less concerned 

with exact calibration of the model, compared to its construction and evaluation, and  leave it 

to readers to calibrate the equations as they see fit. We do assert that PK/PD parameter values 

are known to vary widely so our approach of setting CV=0.3 seems a reasonable first 

approach for investigating the general properties and robustness of the drug regimens. 

 

Despite these assumptions made during model construction and calibration it is gratifying to 

note that the results presented above closely match observations made in the field. In 

particular: 

• CQ, LF, MQ and PQ monotherapies gave reliable cure rates when modelling 

infections of drug sensitive parasites.  

• Calibrating the CQ model with IC50 values typical of resistant parasites gave high 

treatment failure rates. Doubling the CQ dosage (as was done in Guinea-Bissau (138, 

176, 341)) restored the efficacy of CQ against these ‘resistant’ parasites (data not 

shown).  

• Artemisinin monotherapies over three days were unable to clear an infection but 

extending treatment time to 7 days does reliably clear parasites (1). 
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• Adding an artemisinin to a failing drug did not completely prevent treatment failure, 

but it did reduce failure rate by around 50% (Table 2) in line with field observations 

(1). The addition of an artemisinin derivative also appeared to increase the robustness 

of the partner drug to inter-individual variability (Table 3).  

• Estimates of parasite clearance times for ACTs were in the region of two to four days 

(Table 2) which closely match field estimates for AL (101, 163, 167, 283, 306, 343), 

CQ+AS (238), DHA+PQ (114, 151, 163, 237) and MQ+AS (101, 283). 

• The predictions of PoC were similarly consistent with field data when allowing 

variation in PK/PD parameters (Table 2). The model predicted a PoC of 32 days for 

LF which is very close to the reported range in fully sensitive parasites of 24 to 30 

days (305, 307) although we do note PoC is reduced as resistance spreads (130). The 

PoC for CQ was longer than expected at 52 days but this maybe due to the long 

terminal elimination half-life values reported for CQ (110, 269) which may not 

properly reflect elimination rates at higher, physiologically active concentrations (88). 

As MQ or PQ are not yet regularly deployed in areas of high transmission we were 

unable to find published estimates of PoC for either drug, we did however find papers 

comparing reinfection rates between two different drug regimens used in the same 

setting. Grande et al. (114) found the incidence of re-infections in their study site in 

Mali was higher in the DHA-PQ group than in the AS-MQ group and tentatively 

attribute this to the shorter post-treatment prophylactic effect seen in PQ compared to 

MQ.  Our model predicts a similar relationship between the prophylactic effect of PQ 

and MQ, with reinfections occurring up to 19 days earlier following treatment with 

PQ  compared to MQ, despite the longer half-life of PQ. This is possible because the 

PoC and hence time to reinfection depends not just on the drug half-life but also on its 

dosage (increasing dosage increases the protection time) and on parasite sensitivity to 

the drug (305, 307). Our model predictions of a longer PoC after MQ treatments 

compared with LF implies reinfections will occur sooner following LF treatment. 

This is in agreement with the findings of Sagara et al. (283) who found reinfections in 

Peru to occur more frequently following AR-LF treatment than AS-MQ. Finally, a 

study comparing the safety, efficacy and tolerability of AR-LF and DHA-PQ in 

Zambian children (233) observed more new infections during the follow up of 

patients receiving AR-LF than those receiving DHA-PQ which is consistent with our 

model predictions.  
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In summary, the model provides good qualitative and quantitative fit to clinical observation 

so, with the caveats noted above, it seems reasonable to ask what the modelling implies for 

current drug regimes. 

 

All drugs achieved reliable cure under the default PK/PD parameters with, as expected, the 

additional of artemisinins rapidly reducing patient parasitaemia (PCT, Table 2) and hence 

helping resolution of symptoms. Monotherapy drug failures occur at rates between 4% (MQ) 

and 10% (LF and PQ) when variation in PK/PD is introduced, but these are within the 10% 

limit suggested by WHO to indicate a need to change the drug regimen. The failure rate of 

CQ ‘sensitive’ parasites is relatively high at 15%. We believe this arose because good quality 

parameter estimates are only readily available from fairly recent studies where some degree 

of CQ resistance had already evolved. We are comfortable with this failure rate because we 

wanted to investigate at least one situation where resistance had already arisen naturally 

(rather than by our manipulation of PD parameters) and to compare this with patterns noted 

in highly effective drugs such as the ACTs. Adding artemisinins improved cure rates, but did 

not eliminate all drug failures, again in line with field observations (1). 

 

Efficacy is measured in the field using clinical trials where continued patient follow-up is 

operationally challenging and problematic in most endemic areas. How this may affect trial 

results is addressed in Table 2, which reports  ‘apparent cure rate’ at days 28 and 63 (the 

proportion of patients with no detectable parasites which may include patients with sub-

patent infections that will later recrudesce) as well as true cure rate. It is generally accepted 

that 14 days is the minimum follow up period although current WHO guidelines mandate at 

least 28 days (321, 380) and there have been suggestions that the long half-lives of partner 

drugs in ACTs make it necessary to follow patients for up to 63 days (321). The magnitude of 

errors likely to be caused by short follow-up periods was not quantified by these authors and 

field data is difficult to assess: in principle drug failures can be distinguished from new 

infections during the follow-up period using molecular typing (386), but in practice this 

process is hampered by poor detection of ‘minor’ parasite clones present at the time of 

treatment (284) which, combined with technical limitations, generates ambiguous results (e.g. 

(116)). The results presented in Table 2 add quantification to the argument about appropriate 

length of patient follow-up.  There was little difference between apparent cure rate at days 28 

and 63 for chloroquine and mefloquine (although, interestingly, many failures occurred after 

day 63 for CQ) but the results from LF and PQ suggest that following patients for only 28 
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days would detect less than 50% of drug failures and that, consequently, a 63 day follow 

would be extremely beneficial in obtaining good estimates of clinical efficacy. 

 

The robustness of drug regimes to changes in individual parameter values are shown in Table 

3 and suggest that both CQ and PQ regimens are most sensitive to changes in PK/PD 

parameters, followed by MQ and finally LF; typically LF could tolerate variation up to 10 

fold higher than that of CQ or PQ implying it is a much more robust and ‘forgiving’ drug 

regimen. It also implies that mutation(s) would have to encode very large effects to produce a 

LF drug-resistant phenotype. The addition of artemisinins to these monotherapies increases 

their power to tolerate variation in PK/PD parameters helping to protect against the rise and 

spread of resistance. The size of the protective effect could be large (for example adding AR 

to LF more than doubled the LF IC50 value at which drug failure occurred; Table 3) but in 

general was relatively modest in allowing increases more in the order of 20-30% over the 

monotherapy value. 

 

Tables 3 and 4 can be used to identify parameters having the largest effect on treatment 

outcome.  The maximal parasite-killing rate, V, of the partner drug was consistently ranked as 

the most important. Unfortunately, it is probably the parameter that is least well estimated 

(Appendix 1) so better estimates of its magnitude and variance would be valuable data for 

investigating antimalarial drug action. The parasite intrinsic growth rate constant a was 

almost as important as V for most treatment regimens modelled. This supports recent 

suggestions that faster growing, more ‘virulent’ parasites may be better able to survive drug 

treatment (292); interestingly, our results suggest that it is ‘virulence’ caused by increased 

parasite growth rate rather than ‘virulence’ attributable to high parasitaemia that is likely to 

affect drug sensitivity (see later discussion about the role of parasite number present at time 

of treatment). The relatively low rank of artemisinin PK/PD parameters in logistic regression 

analysis (Table 4) are consistent with their stated role as providing protection against 

resistance to the partner and increasing speed of resolution of symptoms (reducing PCT) 

rather than being the primary determinate of treatment outcome. 

 

The analyses shown on Table 3 and 4 consistently show that the slope of the concentration-

effect curve had little effect on treatment outcome. When plotting the concentration-effect 

curve, the point of inflection is the point on a curve at which the curvature changes sign, this 

occurs where drug levels have decayed to the IC50 value. At drug levels greater than the 
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IC50 the drug effect increases with increasing values of n, at levels less than the IC50 drug 

effect decreases with increasing values of n. The results suggest that the two effects cancel 

out so that the slope has little effect on treatment outcome (we assume this could be shown 

algebraically from the above equations but are forced to leave this to researchers more 

mathematically gifted than us). This observation is important: an influential paper by Shen et 

al. (299) on HIV treatment argued that drugs with a high value of slope parameter would be 

much more effective. Our results suggest this cannot be extrapolated to antimalarials. The 

underlying reason is presumably because antiretroviral drugs are taken daily and maintained 

at high concentrations (when high values of n are beneficial) so the penalty paid by high n at 

low drug concentrations is never incurred. It should be noted that higher values of n will 

increase kill rates at higher concentrations so may therefore be important in rapidly clearing 

parasites following treatment and hence rapidly alleviating symptoms. We are aware of 

unpublished suggestions that changes in the value of n have been associated with increased 

resistance and our analysis suggest that these changes may be indirect consequence of 

structural alteration changing IC50 and/or V rather than being directly driven by selection on 

n. 

 

An unexpected result from the simulations was the small apparent effect of initial 

parasitaemia on treatment outcome. It was consistently ranked as one of the least important 

factors influencing outcome (Table 4) and had no significant effect in the clinical trial 

simulation (Table 5). In contrast, most real clinical trials identify high parasitaemia as a 

strong risk factor for failure. Intuitively we might also expect an infection of 1011 parasites to 

be about 10 times more difficult to eradicate than an infection of 1010 parasites. First note that 

the odds ratio (OR) associated with initial parasitaemia is generally around 1.1 to 1.3 (Table 

4) and highly significant, so it does have an effect, it is simply not one of the more important 

ones; its non-significance in Table 5 can be explained by the simulated clinical trial having 

only 400 subjects, thereby lacking statistical power to detect the effect. These results suggests 

that patients generating high drug concentrations and/or infected with more sensitive 

parasites can reliably clear infections irrespective of initial parasitaemia, whereas patients 

with low drug concentrations and/or more resistant parasites are unable to clear infections 

with any more than 1010 parasites. This argument implies there is only a small number of 

patients where drug concentrations and parasite drug sensitivity are sufficiently well balanced 

that initial parasitaemia becomes the decisive factor determining outcome. This raises the 

interesting possibility that the importance of initial parasitaemia in clinical trials may not be a 
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direct effect, but be due to confounding with other factor(s). Initial parasitaemia is such a 

good indicator of immunity that we used it as a surrogate for immune status in our 

simulations (Appendix 2; noting that we allowed immune status and parasite number to be 

independent variables in the simulations) so it may be that the significance of initial 

parasitaemia is due to its inverse correlation with host immunity. The other plausible 

confounding factor is that high parasitaemia at treatment is often associated with clinical 

symptoms which may affect drug absorption and metabolism (e.g. (178, 237, 356, 357, 359)). 

 

The “clinical trial” simulations allowed us to assess whether the models produce results 

consistent with field data obtained in clinical trials. It also allowed us to interrogate the 

simulated field data to assess the usefulness of output measurements in typical clinical trial 

analysis because, unlike in real trials, we had access to all the parameter values that 

determine outcome. Using four variables commonly measured in the field we found both the 

effects of acquired immunity and the concentration of drug in the patient’s serum on day-7 to 

be significant factors affecting the likelihood of treatment failures. A patient’s age and the 

transmission intensity at time of treatment were both used as an indication of the effects of 

immunity on treatment outcome: transmission intensity was invariably associated with 

treatment outcome and the effect of age was also sometime significant. We ran numerous 

simulations of these clinical trials and although the basic patterns were consistent, there were 

large differences in parameter estimates between simulations (data not shown) even though 

they were based on random variables taken from the same parameter distributions and this 

effect may become more pronounced in real clinical trials that typically have fewer patients 

and lower failure rates. There have been suggestions that day 7 serum drug levels be 

collected as routine part of antimalarial drug effectiveness trials (362). Again, the detailed 

data produced by our simulations allow this suggestion to be quantified and examined in 

more detail. The simulations confirmed that low drug levels (here defined as below the 15th 

centile) are associated with increased odds of failing treatment (Table 6) but that, somewhat 

counter-intuitively, their predictive ability measured as sensitivity, specificity and area under 

the ROC curve was generally poor. The reason becomes obvious by considering the case of 

DHA+PQ drug. Failure rates in patients with low drug levels were 16.99% and with normal 

drug levels was 7.22%, giving an OR of 2.62. However, many people with normal levels 

failed treatment, while many people with low levels were successfully treated. Hence 

sensitivity and specificity were both fairly poor at 29% and 86% respectively. A practical use 

of day 7 serum levels is for drug effectiveness surveillance: if low levels are associated with 
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increased risk of failure then consideration should be given to increasing the drug dosage. 

Table 6 presents the population attributable risk percentage associated with low drug levels; 

in principle this predicts the reduction in failure rates that would occur if drug levels were 

increased so that no one was subsequently exposed to ‘low’ levels. However this is a crude 

method and underestimates the true effect. Increasing drug levels would not just prevent 

people from receiving ‘low’ levels, but would also increase every patient’s drug levels 

thereby increasing cure rates among patients receiving ‘normal’ levels (and the possibility 

that some patients may develop high drug levels with potential risks of adverse events). It is 

impossible to quantify this effect from analysis of failure rates in clinical trials and is another 

instance where quantitative modelling of the type described here can contribute to predicting 

the benefits of increasing drug dosage rate. 

 

The receiver operating characteristic (ROC) curve is a graphical representation of the trade-

offs between sensitivity and specificity whose area under the curve (AUROC) quantifies the 

predictive power of the variable with a value of 1 indicating perfect predictive capability and 

a value of 0.5 indicating no predictive ability. The AUROC values given in Table 6 and the 

ROC curves presented in Appendix 3 suggest the day-7 serum to be at best a moderate 

predictor of treatment outcome. Our analysis allowed both human PK variation and 

differential levels of drug sensitivity in parasites. We conjecture that area under the ROC 

curve may even provide a clue as to why treatments may be failing. If they are failing due to 

under-dosing the AUROC should be high (low drug level is a good predictor of failure) while 

if parasite drug resistance is the main factor causing failure then drug levels should be less 

important determinants of treatment failure and the AUROC should be corresponding low (as 

in our simulations). Future work on the simulations will explicitly investigate how much 

information ROC curves may provide on the etiology of drug failure. In summary, we 

therefore recommend that clinical trials report not just the odds ratio of failure associated 

with low drug levels, but also present a ROC curve analysis. 

 

Increasing tolerance, and possible resistance, to artemisinins has recently been observed (86, 

241, 365) leading to intense speculation about how this will affect the overall effectiveness of 

ACTs (e.g. (47, 94)). An obvious question is how the protection afforded by artemisinins to 

its partner drugs changes as resistance evolves to artemisinins: is there likely to be ‘safety 

margin’ associated with artemisinins whereby large increases in its IC50 can be tolerated 

before its protective values falls, or is a linear fall in protection likely, or as a worst-case 
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scenario is a rapid decline in protective effective likely to occur? The results shown on Figure 

1 suggest the latter scenario, supporting assertions that measures are urgently required to 

prevent the evolution and spread of artemisinin resistance (50, 87).  

 

Two issues not directly addressed above are those of synergism and cross-resistance between 

drugs in a combination (note that the two factors are distinct). Modelling the effect of 

combination therapies on parasite numbers was achieved by assuming that the two drugs act 

independently (Equation 7). This is likely to be the case for most combinations with ACTs 

but other combinations, such as SP and atovaquone-proguanil, may well show synergy. 

Unfortunately, there is no universally accepted approach for determining synergism and 

antagonism, and the topic is fraught with controversy and confusion. Greco et al. (115) list no 

less than 13 different methods to determine synergism and, in a comprehensive review, Chou 

(64) says, “it is hard to find any other field in biomedical science that has more controversy 

and confusion than drug combinations”; he then cites Goldin & Mantel (111) as giving seven 

different definitions for synergism, none of them supporting the others. There appears to be 

no concise mathematical way of describing synergisms. The best way to incorporate 

synergism is likely to be the empirical approach taken by Gatton et al. (109) for SP who 

simply use isobolograms to predict the kill rate for any given concentration combination of 

the constituent drugs. In summary, incorporating synergy into these models is likely to be 

problematic, both philosophically and practically, so we do not attempt it here. We do note 

that this precludes use of this methodology to investigate combinations such as SP and 

atovaquone-proguanil. Cross-resistance may occur between drugs in a combination even 

though they act independently; for example there are concerns that parasites show cross-

resistance to mefloquine and artemisinins (8, 225). This effect can be readily included using 

covariance terms between the IC50 (and/or max kill rates) values to each drug. This was not 

addressed here in the interests of simplicity and to avoid adding additional covariance terms, 

but it is important to recognize the assumption that PD parameters are independent can be 

easily relaxed.  

 

Incorporation of the artemisinin component was the most simplified part of the simulation. 

The mechanism-based modelling assumes instant absorption and conversion of artemether 

and artesunate into its active form DHA. As noted above, this can be incorporated using a 

compartmental model where the compartments are the gut, artesunate/artemether 

unconverted in the serum and DHA in the serum after conversion. The different rates of these 
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processes may explain why the PK/PD parameter estimates differed for the three forms of 

artemisinins (fuller discussion of the time course and conversion of artemisinins can be found 

in Giao & de Vries (110)). We decided against incorporating an explicit compartment model 

at this stage to minimize model complexity and because calibration of the transfer rates 

between compartments would be problematic and probably contentious. Instead, we chose to 

calibrate models separately for each artemisinin variant (Table 1) and to present the results 

for the partner drugs with alternative artemisinin variants to demonstrate that the results are 

robust.  A second limitation of the model for artemisinins was that it ignored the possibility 

that parasites enter a drug-induced dormancy stage in which they are unaffected by the drug, 

as has been suggested to occur for artemisinin (143, 182, 333) and, more recently, for 

atovaquone (253). Intuitively, it seems unlikely that this will affect the results: artemisinins in 

3 day regimens do not clear all parasites so a small residue persisting in a dormancy stage 

may be negligible, especially as they are likely to ‘recover’ in a time scale where they are 

likely to encounter high residual levels of the partner drug. Furthermore, ignoring dormancy 

leads to overestimating the impact of the artemisinin component in clearing infection and the 

results shown above suggest that even an overestimated impact is secondary to the role 

played by the partner drugs (Table 4). We note that our approach of daily updating the 

parasite load and drug level was explicitly designed to make the calculations highly flexible 

and, in principle, we could incorporate the effects of dormancy by augmenting the parasites 

present each day by those predicted to be exiting the dormancy stage. In summary it would be 

possible to make the extension into compartmental models and dormancy but we leave this to 

future work. 

 

A second way in which this mechanism-based modelling approach could be usefully 

developed in malaria is to make the simulations more specific to drugs and their human 

subjects. Drug absorption, distribution, metabolism and excretion can differ substantially in 

young children or infants, pregnant women, patients with severe disease and those with a 

HIV/AIDS co-infection (22). Most clinical trials are performed on non-pregnant adults with 

uncomplicated malaria and no co-morbidities for ethical reasons so it seems likely that, at 

least in the first instance, the impact of these factors on treatment outcome may be initially 

addressed by well-constructed and calibrated PK/PD model. Similarly we incorporated 

variation in PK/PD by assuming a CV of 30% across all parameters. Some parameters are 

likely to be much more variable (for example Mu et al. (225) reported IC50s over a 100 fold 

range) while others (possibly V?) may be much less variable. Incorporating parameter values 
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and associated distributions specific to individual drugs would give us confidence to extend 

the results into the quantitative domain useful for policy makers. One notable example is the 

use of fixed treatment dosages based on age or height bands where there will be considerable 

variation in drug concentrations within groups as a consequence of variation in body weight: 

dosages have to reliably cure all people within the band (while avoiding toxic concentrations) 

and it is not immediately obvious how to indentify the appropriate dosage for each band nor, 

consequently, how many bands would be required. 

 

We do not suggest that pharmacological modelling of antimalarial treatment will ever replace 

the gold standard of clinical trials but it does appear capable of generating results that are 

entirely consistent with field observations. It has key advantages in speed, the ability to 

generate large data sets, the ability to rapidly compare different scenarios, and freedom from 

ethical restrictions on investigating factors such as poor compliance. The value of modelling 

is that it can take arguments that are predominantly verbal into a more explicit, quantitative 

domain; our objectives here were to improve our understanding of how antimalarial drugs act 

in general, what conclusions could be drawn about, for example, the impact of increasing 

levels of artemisinin resistance, and what data collected in the field may reveal about ACTs. 

It seemed reasonable to apply mechanism based PK/PD modelling to this problem. Future 

work will develop the methodology in more specific directions. In particular we will 

incorporate the absorption, conversion and distribution phases of the drugs. These are 

important in artemisinins where absorption lag times may be significant compared to their 

half-lives, and where conversion of artesunate and artemether to DHA may be relatively 

rapid. The absorption and distribution phases also determine peak serum concentrations of 

the partner drugs that may be important determinants of potential toxicity; this becomes 

important when designing fixed-dose regimens based on age, weight or height bands because 

dosages per Kg may vary widely within a band. We have also extended the mathematics to 

investigate drugs given as infusions (such as intravenous quinine) but have not presented this 

methodology in the interest of brevity. Finally, it would be informative to include the 

possibility that parasites may enter dormant stages where they are unaffected by drugs such 

as the artemisinins (143, 182, 333) and atovaquone (253). Meanwhile, we conclude that 

initial analyses of antimalarial PK/PD models are encouraging, qualitatively improve our 

understanding of how antimalarial PK/PD factors combine to determine treatment outcome 

and await future developments with interest. 
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Appendix 1  
 

Calibration of models 
 

 

The intrinsic growth rate a, was defined as growth rate in the absence of host immunity and 

drug effects (Equation 1 of the main text). Empirical studies differ in their estimates for the 

rate of parasite growth during the asexual stage in the blood. Kitchen (171, 172) suggested 

that in non-immune subjects, the multiplication averages 6-fold but can reach 20-fold every 2 

day cycle. Later estimates by Kwiatkowski & Nowak (180) gave a maximal value of 16-fold 

for uninhibited parasite growth (such as in non-immune infants or naïve infected adults). 

Simpson et al. (302) used the estimates provided by Kitchen (171, 172) and assumed a single 

asexual parasite multiplies 10-fold every two days giving its instantaneous growth rate, a, as 

ln (!10)=1.15. Simpson et al. (302) utilized a PK/PD modelling approach analogous to ours, 

for this reason we chose their same estimate of a equal to 1.15.  

 

The intrinsic growth rate a can be linked to parasite density using a model of logistic growth:  
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P0

# 

$ 
% 

& 

' 
(  

 [A1.1] 

 

here at is the parasite growth rate at time t and a is the intrinsic growth rate; we assume that 

an infection has reached its logistic “carrying capacity” (P0) at time of treatment. Note that 

Equation 7 assumes growth rate is a constant however if, as implied in Equation A1.1, 

growth rate is dependent on time, the integration of Equation 6 to Equation 7 is invalidated. 

We overcame this by using a constant growth rate within each half- or one-day time steps 
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calculated from the parasite number (Pt in Equation 8) at the end of the previous time step. 

As this modification had no significant effect on the outcome it was subsequently removed.  

 

The maximal parasite-killing rate constants (V) came from clinical observations following 

treatment. The underlying assumption was that drug killing is maximal immediately after 

treatment (note the implicit assumption that drug concentration is effectively saturated and 

that higher killing rates would not occur at higher concentrations) so that the observed drop in 

parasite numbers reflects this maximal kill rate. Assuming the decline in parasitaemia is first 

order, the parasite count (Pt) at any given time (t) is given by 

 

! 

Pt = P0e
"Vt

 
 [A1.2] 

 

where V is the maximal parasite-killing rate constant. It is often convenient to use the parasite 

reduction ratio (PPR) over a 2 day time step (reflecting a single parasite growth cycle) where 

PPR= P0/P2; consequently t = 2 days, P2 = P0 e-2V so that PPR=P0/P2 = 1/e-2V giving the 

relationship between PRR and parasite-killing rate (V) as (355):  

 

! 

V = "0.5 • ln 1
PRR
# 

$ 
% 

& 

' 
( 
 

 
[A1.3] 

 

Values of IC50 and the drug dose/response slope factor came from in vitro assays. Both 

Nyugen et al. (237) and Dondorp et al. (86) used in vitro testing of drug sensitivity to assess 

the ex vivo antimalarial activity using parasite isolates obtained from infected individuals. 

The 50% inhibitory concentration (IC50) was determined using the log-probit approximation, 

to fit the concentration inhibition data (86). Earlier work by Brockman et al. (44) and  

Mayxay et al. (210) used the program WinNonlin to calculate the IC50 and slope value 

parameters of the concentration-response curve by fitting data to an inhibitory E-max model.  

 

Human PK parameters, the elimination rate and volume of distribution, came from clinical 

studies. A problem was that estimates could vary widely depending on factors such as 

whether whole blood or serum was analyzed and laboratory methodology. Estimation of PK 

parameters for artemisinins is confounded by the hydrolysis of artemether and artesunate to 
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DHA that may occur ex vivo at ambient temperature if blood samples are not separated and 

stored rapidly (358). The selected values came from recent studies made in laboratories 

conforming to good laboratory practice and where we could be sure that samples had been 

properly taken, stored and prepared. In each study the blood sample was centrifuged 

immediately after sampling and the separated plasma was stored at between -25 (237) and -

80ºC (57) until analysis. For each drug, the PK parameters were then derived from the plasma 

concentration-time profile using standard non-compartmental analysis.  

 

The model parameters were analyzed as mean values and variation was added by using 

CV=0.3 to reflect the inter-individual variation. 95% of the values lie within two standard 

deviations (") of the mean so if CV =30%, then95% of the variable values lie within 40-

160% of the mean, approximately a 4-fold range in the PK/PD parameters. This choice of CV 

was arbitrary but was intended to reflect the general belief that PK parameters in humans 

typically vary over a 3 to 4 fold range (although we cannot find a formal reference for this 

generally accepted rule of thumb). 
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Appendix 2 
 

Incorporation of immunity into the calculations 
 

 

There are several relatively sophisticated models for the acquisition of immunity to malaria 

infections incorporating non-specific immunity, strain-specific immunity and immunity to a 

repertoire of var antigenic profiles (e.g. (108, 221, 252)). These all run on two-day time steps 

so it would be relatively simple, but time consuming, to incorporate them into the PK/PD 

modelling. We have avoided doing so, partly because of the resources and time required, 

partly because these models are difficult to calibrate and make compelling and require more 

parameters that would obscure the main results of the PK/PD modelling, and partly because 

the stand-alone models described in the main text are explicitly designed to be integrated into 

OpenMalaria (311) which already has a sophisticate intrahost component that tracks 

immunity (Smith and Penny, personal communication). 

 

The effects of immunity were briefly introduced using the surrogates of immunity presented 

by Pongtavornpinyo and colleagues (261, 262) and used in their modelling. These surrogates 

were as follows: parasite density in patent infections, probability of clinical symptoms in 

people with a patent infection and incidence of severe malaria. Pongtavornpinyo et al. (261) 

calibrated this relationship with field data relating each of the measures to age and annual 

entomological inoculation rate (EIR) (305). The immunity equations presented by 

Pongtavornpinyo et al. (261) were transformed to lie on a scale of 0 to 1 as follows: 

 

1. The outcomes are inversely related to immunity, so the equations were multiplied by -

1 to get a measure of immunity: 

! 

f (i) = f (P)• ("1)  

 [A2.1] 
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where f(i) is the newly transformed immunity equation and f(P) represents the 

original function derived by Pongtavornpinyo (261).   

 

2. The minimum value of this function was assumed to occur when age and EIR are 

zero. The minimum number is negative (because the original equation has been 

multiplied by -1) so subtracting a negative number is equivalent to adding a number 

of that magnitude: 

 

! 

f (i) = f (P)• ("1)( ) " "min( )  

 [A2.2] 

 

3. The maximum value of this new function was assumed to occur in people aged 25 

living in an area with an EIR of 1000. Dividing through by the maximum should 

make all values lie between 0 and 1, 

 

! 

f (i) =
f (P)• ("1)( ) " "min( )

max
 

 [A2.3] 

 

Note that Pongtavornpinyo et al. (262) fitted polynomial curves to their data so minimum 

immunity value may not occur at exactly age=EIR=0 nor the maximum at age=25, EIR=1000 

(although maximum and minimum did occur very close to these values). The calculations 

involving immunity therefore made a check that the immunity scale was not <0 (and if this 

occurred reset it to 0) and was <1 (any value >1 were reset to one) 

 

These standardized relationships are shown on Figure A2.1. The function derived using the 

parasite density per person (Figure A2.1.A) gives a more gradual acquisition of immunity 

that we feel is more realistic (Pongtavornpinyo (261) also came to this conclusion although 

we recognize that this is purely subjective). Its standardized value as a function of age and 

EIR is 

! 

f (i) = "5.937e"0.001age+0.000003EIR"0.000002ageEIR " 0.588e0.011age+0.003EIR"0.0045ageEIR + 6.524  

 [A2.4] 
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Figure A2.1. A graphical representation of Pongtavornpinyo’s (2006) immunity functions 

after standardizing to lie between 0 and 1. A) Function derived using parasite density. B) 

Function based on incidence of severe malaria hospital admissions. C) Function based on the 

incidence of clinical malaria. 

 

 

 

These values are standardized to lie between 0 and 1. We scale their impact by a parameter ! 

to get the final immune killing function f(I) i.e. 

 

! 

f (I) = f (i)•"  

 [A2.5] 

 

We selected a value of !=0.8 on completely arbitrary grounds: it meant immunity was able 

to offset a parasites growth rate by almost two thirds (because a=1.15; Appendix 1) and gave 

an overall drug failure rate of around 16% in our clinical trail simulations. Note that 

immunity is only incorporated once into our simulations (to produce the simulated clinical 

trial data shown on Table 5) as a proof-of-concept and that all validation against field data 

was done assuming patients were non-immune. We included immunity here primarily for 

illustration and note that future researchers can easily fit and use other functions within the 

current framework.
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Appendix 3 
 

Miscellaneous outputs from the model 
 

We use this Appendix to include data that support and expand some of the interpretations and 

conclusions drawn in the main text, but whose inclusion would detract from the main 

argument. 

 

Logistic regression assumes the logit of the outcome changes linearly with the independent 

variables; this was checked by splitting the range of each variable into 10 evenly sized groups 

and plotting the percentage of successful treatments for each group (see Figure A3.1). 

 

The correlation matrix (Table A3.1) for CQ, MQ and LF show AUC for days 0-25, days 0-

50, days 0-100 and 0-# to be highly correlated to the day-7 serum concentration. PQ day-7 

serum level was similarly highly correlated with AUC for days 0-25, days 0-50 and days 0-

100 but, unusually, not strongly correlated with AUC for 0-#. 

 

The ROC curves used to determine the predictive ability of the day-7 serum level are shown 

in Figure A3.2; in each case the AUROC showed day-7 serum level to be a poor predictor of 

treatment outcome. The effects of low day-7 serum level remained consistent when different 

cut-off values, in this case the 10th, 15th, 20th and 30th centile values, were used to define low 

normal day-7 serum levels (Table A3.2). Table A3.3 gives the AUROC curve values for 

other potential diagnostic predictors of treatment outcome including serum levels on days 3, 

5, 7 and 10 and the AUC between days 0-25, 0-50, 0-100 and 0-#.  

 

The period of chemoprophylaxis for the four partner drugs examined here showed a large 

amount of variation when model parameters were chosen assuming CV =0.3. We present the 

5th centile value in Table 2 but also include histograms showing the range of values in Figure 
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A3.3. Note that these values indicate times of drug protection afforded to re-infection by a 

moderately resistant parasite clone (1SD above the mean for parasite PD parameters and 

growth rate) so it is entirely plausible that, for example, a person predicted to have a PoC of 

100 days would be re-infected much sooner by a more resistant or faster growing parasites 

clone 

 

 
 

Figure A3.1. The risks associated with factors included in logistic regression analysis are 

assumed to be on a linear scale. The plot confirms this assumption is reasonable. 
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Table A3.1. Correlation matrix showing the high correlation between the diagnosis 

predictors for treatment outcome. 

 

Chloroquine 
 Day 3 serum 

concentration 
Day 5 serum 
concentration 

Day 7 serum 
concentration 

Day 10 serum 
concentration 

AUC 
0-25 

AUC 
0-50 

AUC 
0-100 

AUC 
0-inf 

Day 3 serum 
concentration - 1.000 0.998 0.996 0.992 0.969 0.918 0.561 

Day 5 serum 
concentration 0.998 - 1.000 0.998 0.995 0.975 0.929 0.572 

Day 7 serum 
concentration 0.992 0.998 - 0.999 0.997 0.981 0.939 0.584 

Day 10 serum 
concentration 0.979 0.989 0.996 - 0.999 0.987 0.950 0.597 

AUC 0-25 0.985 0.993 0.998 0.999 - 0.993 0.961 0.613 

AUC 0-50 0.969 0.980 0.989 0.996 0.996 - 0.987 0.657 

AUC 0-100 0.954 0.967 0.977 0.987 0.988 0.997 - 0.709 

Lu
m

ef
an

tri
ne

 

AUC 0-inf 0.932 0.945 0.956 0.968 0.969 0.984 0.993 - 

 

Mefloquine 
 Day 3 serum 

concentration 
Day 5 serum 
concentration 

Day 7 serum 
concentration 

Day 10 serum 
concentration 

AUC 
0-25 

AUC 
0-50 

AUC 
0-100 

AUC 
0-inf 

Day 3 serum 
concentration - 0.998 0.992 0.981 0.974 0.927 0.866 0.584 

Day 5 serum 
concentration 0.999 - 0.998 0.991 0.987 0.948 0.893 0.608 

Day 7 serum 
concentration 0.997 0.999 - 0.997 0.995 0.965 0.917 0.630 

Day 10 serum 
concentration 0.993 0.997 0.999 - 0.999 0.981 0.941 0.654 

AUC 0-25 0.987 0.992 0.996 0.999 - 0.987 0.951 0.668 

AUC 0-50 0.955 0.965 0.974 0.983 0.990 - 0.988 0.721 

AUC 0-100 0.895 0.910 0.924 0.940 0.954 0.986 - 0.774 

Pi
pe

ra
qu

in
e 

AUC 0-inf 0.562 0.577 0.592 0.609 0.627 0.676 0.729 - 
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TABLE A3.2. The effects of ‘low’ day-7 serum levels on the predicted outcome of 

treatments. ‘Low’ was defined as either <10th, <15th, <20th and <30th centile. 

 

Output* 
Drug 

Centile OR Sensitivity Specificity AUROC PAR % 
10th 2.34 (2.01-2.73) 0.18 (0.16-0.12) 0.91 (0.91-0.92) 8.99 
15th 2.15 (1.88-2.46) 0.25 (0.23-0.27) 0.87 (0.86-0.87) 11.58 
20th 2.16 (1.91-2.45) 0.32 (0.30-0.34) 0.82 (0.82-0.82) 15.10 

Chloroquine 

30th 2.19 (1.96-2.46) 0.45 (0.43-0.48) 0.73 (0.72-0.73) 

0.63   
(0.62-0.65) 

21.79 
10th 2.22 (1.88-2.62) 0.18 (0.16-0.20) 0.91 (0.91-0.91) 8.74 
15th 2.09 (1.81-2.41) 0.25 (0.23-0.27) 0.86 (0.86-0.87) 11.57 
20th 2.10 (1.84-2.39) 0.32 (0.20-0.35) 0.82 (0.81-0.82) 15.06 

Chloroquine 
plus 
Artesunate 

30th 2.16 (1.91-2.45) 0.46 (0.43-0.48) 0.72 (0.17-0.19) 

0.63   
(0.61-0.64) 

22.22 
10th 2.24 (1.88-2.67) 0.18 (0.16-0.21) 0.91 (0.91-0.91) 9.18 
15th 1.93 (1.65-2.26) 0.24 (0.22-0.27) 0.86 (0.86-0.86) 10.53 
20th 1.99 (1.72-2.30) 0.31 (0.29-0.34) 0.81 (0.81-0.82) 14.30 

Lumefantrine 

30th 1.95 (1.71-2.23) 0.44 (0.41-0.47) 0.72 (0.71-0.72) 

0.62     
(0.60-0.63) 

19.59 
10th 2.20 (1.80-2.69) 0.19 (0.16-0.21) 0.91 (0.91-0.91) 9.41 
15th 1.92 (1.61-2.30) 0.24 (0.21-0.27) 0.86 (0.86-0.86) 10.84 
20th 1.76 (1.49-2.08) 0.30 (0.27-0.33) 0.81 (0.81-0.81) 11.94 

Lumefantrine 
plus 
Artesunate 

30th 1.89 (1.62-2.20) 0.44 (0.40-0.47) 0.71 (0.71-0.71) 

0.60      
(0.58-0.62) 

19.29 
10th 1.34 (1.01-1.77) 0.13 (0.10-0.16) 0.90 (0.90-0.90) 3.08 
15th 1.35 (1.07-1.72) 0.19 (0.16-0.23) 0.85 (0.85-0.85) 4.76 
20th 1.40 (1.13-1.73) 0.26 (0.22-0.30) 0.80 (0.80-0.81) 6.93 

Lumefantrine 
plus 
Artemether 

30th 1.37 (1.13-1.66) 0.37 (0.32-0.41) 0.70 (0.70-0.71) 

0.56      
(0.53-0.58) 

9.40 
10th 1.47 (1.13-1.93) 0.14 (0.11-0.17) 0.90 (0.90-0.90) 4.23 
15th 1.39 (1.10-1.76) 0.20 (0.16-0.23) 0.85 (0.85-0.85) 5.24 
20th 1.56 (1.27-1.92) 0.28 (0.24-0.32) 0.80 (0.80-0.81) 9.52 

Mefloquine 

30th 1.42 (1.18-1.72) 0.37 (0.33-0.42) 0.70 (0.70-0.71) 

0.55   
(0.53-0.58) 

10.64 
10th 1.24 (0.91-1.69) 0.12 (0.09-0.16) 0.90 (0.90-0.90) 2.21 
15th 1.24 (0.96-1.62) 0.18 (0.14-0.22) 0.85 (0.85-0.85) 3.36 
20th 1.47 (1.17-1.85) 0.27 (0.23-0.31) 0.80 (0.80-0.80) 8.16 

Mefloquine 
plus 
Artesunate 

30th 1.30 (1.05-1.60) 0.36 (0.31-0.40) 0.70 (0.70-0.70) 

0.54   
(0.51-0.57) 

7.80 
10th 2.87 (2.42-3.39) 0.22 (0.19-0.24) 0.91 (0.91-0.92) 12.83 
15th 2.56 (2.20-2.97) 0.29 (0.26-0.31) 0.87 (0.86-0.87) 15.95 
20th 2.50 (2.17-2.88) 0.36 (0.33-0.39) 0.82 (0.81-0.82) 19.84 

Piperaquine 

30th 2.58 (2.26-2.95) 0.50 (0.47-0.53) 0.72 (0.72-0.73) 

0.65   
(0.63-0.67) 

28.43 
10th 2.86 (2.39-3.41) 0.22 (0.19-0.24) 0.91 (0.91-0.91) 13.08 
15th 2.62 (2.24-3.07) 0.29 (0.27-0.32) 0.86 (0.86-0.87) 16.78 
20th 2.58 (2.22-2.99) 0.37 (0.34-0.40) 0.82 (0.81-0.82) 20.94 

Piperaquine 
plus DHA 

30th 2.60 (2.26-2.30) 0.50 (0.47-0.54) 0.72 (0.72-0.72) 

0.65    
(0.63-0.66) 

29.07 
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Table A3.3. Area under the ROC curve for various diagnostic predictors of treatment 

outcome, obtained for several drug monotherapies and combination therapies a 

 

Variable 

Drug Day 3 
serum 
level 

Day 5 
serum 
level 

Day 7 
serum 
level 

Day 10 
serum 
level 

AUC0-25 AUC0-50 AUC0-100 AUC0-" Treatment 
success (%) 

Chloroquine 0.626 0.629 0.632 0.636 0.639 0.647 0.649 0.647 85.36 

Chloroquine 
plus 

Artesunate 
0.621 0.624 0.627 0.630 0.633 0.639 0.640 0.637 88.09 

Lumefantrine 0.531 0.554 0.569 0.580 0.571 0.574 0.575 0.575 89.59 

Lumefantrine 
plus 

Artesunate 
0.525 0.542 0.554 0.562 0.555 0.557 0.557 0.557 92.63 

Lumefantrine 
plus 

Artemether 
0.498 0.503 0.508 0.513 0.508 0.508 0.508 0.508 95.43 

Mefloquine 0.544 0.549 0.554 0.559 0.560 0.566 0.568 0.568 95.22 

Mefloquine 
plus 

Artesunate 
0.531 0.535 0.538 0.542 0.543 0.548 0.549 0.549 96.08 

Piperaquine 0.637 0.637 0.642 0.652 0.657 0.664 0.665 0.664 90.18 

Piperaquine 
plus DHA 0.636 0.641 0.645 0.650 0.654 0.661 0.663 0.661 91.33 

a The 10,000 patients included in the analysis were simulated as described in the main text 

 

 



! &*!

,-! B. 

C. D. 

E. F. 

G. H. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3.2. The ability of day-7 serum concentrations to predict treatment success or failure 

was examined using ROC curves for 8 drug regimens; (A) CQ, (B) AS-CQ, (C) LF, (D) AS-

LF, (E) MQ, (F) AS-MQ, (G) PQ, (H) DHA-PQ
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Figure A3.3. The period of chemoprophylaxis (PoC) of the four partner drugs (A) 

chloroquine, (B) lumefantrine, (C) mefloquine, (D) piperaquine. Using only data from 

patients who were successfully treated.  
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Chapter 3 
 

Improving pharmacokinetic-pharmacodynamic 

modeling to investigate anti-infective 

chemotherapy with application to the current 

generation of antimalarial drugs 
 

 

ABSTRACT 

 

Mechanism-based pharmacokinetic-pharmacodynamic (PK/PD) modelling is the standard 

computational technique for simulating the drug treatment of infectious diseases with the 

potential to enhance our understanding of drug treatment outcomes, drug deployment 

strategies and dosing regimens. Standard methodology has assumed that only a single drug is 

used, which acts only in its unconverted form, and that oral drugs are instantaneously 

absorbed across the gut wall to their site of action. Treatment of infectious diseases often uses 

combination therapies so we show how the PK/PD methodologies can be refined and 

substantially extended to incorporate (i) the time lags and drug concentration profiles 

resulting from absorption across the gut wall and, if required, conversion to another active 

form (ii) multiple drugs within a treatment combination (iii) differing modes of action of 

drugs in the combination: additive, synergistic, antagonistic (iv) modelling drugs converted to 

an active metabolite with a similar mode of action. This methodology was applied to a case 

study of two first-line treatments of malaria based on artemisinin combination therapies 

(ACTs, artemether-lumefantrine and artesunate-mefloquine) where the likelihood of 

increased artemisinin tolerance / resistance has lead to speculation on their continued long-

term effectiveness. We note previous estimates of artemisinin kill rate were underestimated 
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by a factor of seven and that the extended PK/PD methodology produced result consistent 

with field observations. The simulations predict that a potentially rapid decline in ACT 

effectiveness is likely to occur as artemisinin resistance spreads, emphasising the importance 

of containing the spread of artemisinin resistance before it results in widespread drug failure. 

We found that PK/PD data is generally very poorly reported in the malaria literature, severely 

reducing its value for subsequent re-application, and make specific recommendations to 

improve this situation. 

 

 

 

1. Introduction 
 

Most human infections are currently treatable by drugs. Clinical trials remain the gold 

standard, empirical approach guiding drug deployment policy and practical issues such as 

dosing regimes. However in silico simulations based on computational predictions of drug 

treatment outcome have the potential to play a vital ancillary role in designing and guiding 

these deployment practices. Accurate simulations can rapidly investigate the consequences of 

putative changes in deployment practices such as changes in regimen (dosage level, 

frequency and duration of treatment) and can investigate and potentially quantify the threat 

posed by the evolution of drug resistance. The methodology used to investigate such factors 

in silico is mechanism-based PK/PD modelling, whose basic methodology and range of 

applications was recently reviewed by Czock and Keller (73). In essence, this approach uses 

differential equations to calculate the decline in drug concentration after treatment, converts 

this into a pathogen killing rate, to find how pathogen number declines after treatment and 

whether the infection is eventually cleared. The PK/PD methodology assumes a single drug is 

instantaneously present in the patient after treatment (drug absorption and conversion 

processes are ignored) and that pathogens are killed by the drug in its unaltered form. In 

practice, drug combinations are now mandatory for the treatment of many infections, 

including the ‘big three’ infective killers HIV, TB and malaria so the single-drug PK/PD 

methodology needs to be updated to reflect these policies. Many drugs also have short half-

lives so the time taken for their absorption (across the gut in the case of oral regimens) may 

be a significant period relative to half-life and needs to be incorporated into the methodology. 

Finally, many drugs undergo conversion in the human (often in the liver) to other active 
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forms that also kill the pathogens. This manuscript describes the computational extensions 

required to update the standard mechanistic-based modelling approach to allow for multiple 

drugs within a combination, and their absorption/conversion phases. We then illustrate their 

application to the current batch of first line antimalarial drugs, the artemisinin-based 

combination therapies (ACTs). 

 

Malaria caused by Plasmodium falciparum, is one of the top three infective killers of humans 

with an estimated 0.75 to 1.5 million deaths per annum. ACTs are now the WHO 

recommended first-line treatment for uncomplicated malaria (380). The deployment of these 

combination therapies was designed to slow or even prevent the evolution of drug resistance 

which has, historically, been a potent threat to successful malaria treatment; delays in 

changing policy led to the widespread retention of ineffective drugs and acrimonious 

accusations of ‘medical malpractice’ aimed at such august institutions as the World Health 

Organisation (15) and the malaria community must prevent any similar situation ever arising. 

However, the policy of deploying ACTs worldwide has lead to increasing levels of 

artemisinin-tolerance and possibly artemisinin-resistance in Plasmodium falciparum being 

reported on the Cambodia-Thailand border (52, 86, 87, 241, 365) leading to intense 

speculation about how this will affect the current and future effectiveness of ACTs (e.g. (47, 

94)). It is not possible to directly observe the consequences of antimalarial drug resistance 

until it is too late, so the best approach is to develop the best possible in silico models to help 

guide deployment policies aimed at maintaining long-term effectiveness of these key anti-

infective drugs. We therefore apply our updated in silico PK/PD modelling methodology to 

explicitly investigate two front-line ACTs and the public health consequences of increasing 

tolerance and resistance. Accurate PK/PD modelling has two further important applications.  

Firstly, it can generate accurate simulations of field data upon which methods of analysis can 

be developed and refined (158); the underlying parameters of interest are often unknown in 

field data but are easily recovered from simulated data enabling the performance of statistical 

tests to be gauged. Secondly, they can be used to investigate real-life situation that cannot be 

ethically addressed in the field, an obvious example being poor adherence to a treatment 

regimen. 
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Figure 1. A standard PK one-compartment model allowing for absorption of a drug from the 

gut (component A) at rate x, into the unconverted form in the serum (component B) where it 

is eliminated at a rate y and converted into an active form (DHA in this example; component 

C) at rate z. DHA is then eliminated at rate k. 

 

 

2. Methods 
 

Mathematical extensions of the basic model 
 

We use mechanistic PK/PD modelling (73) as previously described in Winter & Hastings 

(364) with the four key extensions outlined below.  

 

 

2.1. Pharmacokinetics – incorporating the absorption, conversion and 

elimination of drugs 
 
Standard PK/PD models (73) and their subsequent application to malaria (16, 144, 149, 302, 

364) have previously assumed the drugs are instantaneously present in the serum at time t=0, 

are not converted to any other form and decay at a rate Ct=C0e-kt, where Ct is the drug 

concentration at time t and k is the terminal elimination rate. This assumption is questionable 

for ACTs as their absorption and subsequent conversion to its active metabolite 

dihydroartemisinin (DHA) occur over a time period of 1-2 hours, roughly equivalent to their 

half-life (Figure A1). To address this assumption we track the time course of artemisinin 

absorption and conversion as illustrated in Figure 1 i.e. absorption across the gut (component 
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A) into the serum (component B) at rate x, its elimination from the body at rate y or its 

conversion to the active metabolite (DHA) (component C) at rate z and the subsequent 

elimination of DHA from the body at rate k.  

 

The drug-dependent killing function, f(C), was described using the standard Michaelis-

Menten equation  

 

! 

f C( ) =V • Cn

Cn + IC50
n

" 

# 
$ 

% 

& 
'  

 [1] 

 

where C is the drug concentration (mg/l) which decays over time, V is the maximal drug-

killing rate (per day), IC50 is the concentration at which 50% of the maximal killing rate 

occurs (mg/l) and n is the slope of the dose response curve. The problem is therefore to find 

how C varies over time following treatment so that it can be incorporated into Equation 1. 

 

We use a standard one-compartmental model (Figure 1) that appears appropriate for 

constituents of current ACTs (Appendix, part 2), to track the changes in concentration over 

time. To avoid confusion, we note that “one compartment” is used in the standard PK sense 

i.e. only one body compartment (in this case, serum) is investigated besides the gut. The 

change in drug concentration occurring for each component over time (allowing for 

complications caused by the presence of the drug/metabolite from previous dosages) can be 

described by three differential equations 
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To find the amount of converted and unconverted drug in the serum at time t, Equations 3 

and 4 were integrated using laplace transformations (209) (Appendix, part 1). Integrating 

Equation 3 gives  

 

 

! 

B t( ) =
x D+ A`( )
x " y + z( )( )

e" y+z( ) t " e"xt( ) + B è" y+z( )t  
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where B(t) is the amount (mg) of unconverted drug in the serum at time t, A` is the amount 

(mg) of drug in the gut at the immediate end of the previous time step i.e. at t=0 (A`=0 if this 

is the first dose of a multi-dose regimen), D is the drug dosage (mg) given and B` is the 

amount (mg) of unconverted drug in the serum at the immediate end of the previous time 

period i.e. at t=0 (B’=0 if it is the first dose). Inclusion of any drug left over from the previous 

day (denoted A`, B` and C`) is essential when including repeat dosages. 

 

Integrating Equation 4 (Appendix, part 1) gives  
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where C(t) is the amount of converted drug present in the serum, k is the elimination rate of 

the converted drug, C` is the amount (mg) of converted drug in the serum at the immediate 

end of the previous time step (C`=0 for the first dose) and M represents the molecular weight 

of both the unconverted drug (MB) and converted drug (MC). We are tracking drugs in mg so 

the ratio of the molecular weights of species B and C, MB and MC respectively, are required to 

account for the changes in molecular weight that occur during conversion. 

 

The drug-dependent killing described in Equation 1 required the amount of drug to be 

converted to a concentration (mg/l). This was found by dividing the amount of drug by the 

volume of distribution (l) which is the weight of the patient W, multiplied by the volume of 

distribution Vd per kg. The value of Vd differs between the drugs so VdB and Vdc represent 

volumes of distribution for drug forms B and C respectively. 
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The concentration of component B at time t, CB(t), is therefore 
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CB t( ) =
B t( )

W •VdB
 

 [7] 

 

and the concentration of component C at time t, CC(t) is 
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Cc t( ) =
C t( )

W •VdC
 

 [8] 

 

The use of laplace transformations in PK is relatively well established (209) so it would be 

straightforward to extend the calculations for increasing numbers of compartments, drug 

forms and conversion elimination routes. 

 

 

2.2. Pharmacodynamics – parasite killing by multiple drugs 
 

The PK/PD modelling now allows for artemisinin absorption and conversion (described 

above), so the ability to track more than two drug concentrations simultaneously and convert 

them into a drug-killing rate is crucial. This feature is absent from previous pharmacological 

models of malaria, which track only a single drug (73) although we previously extended the 

methodology to track up to two drugs (364). Existing pharmacological models typically use a 

standard differential equation (73) to find a mathematical description for the rate of change in 

total parasite growth and death rates 
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dP
dt

= P a " f I( ) " f C( )( )  

 [9] 

 

where P is the number of parasites in the infection, t is time after treatment (days), a is the 

parasite growth rate (per day), f(C) represents the drug-dependent rate of parasite killing 
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which depends on the drug concentration C, and f(I) the killing resulting from the hosts 

background immunity.  

 

As antimalarial drugs are now typically deployed as combination therapies and as each drug 

may affect parasites in its unconverted and/or converted forms, predicting the changing 

numbers of parasites requires an expansion of Equation 9 
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where r is the number of drugs, the drug effect f(Cd) is the effect of each drug, d. Note that 

we regard each active entity as a distinct “drug”. For example artemether-lumefantrine (AR-

LF) includes three drug forms lumefantrine (LF), artemether (AR) (unconverted) and its 

active metabolite DHA (dihydroartemisinin). Note that Equation 10 assumes drugs kill 

independently; this is discussed further below 

 

Integrating Equation 10 allows us to predict the number of parasites at any time, t, after 

treatment with any number of drugs. This was done by first integrating Equation 9 using the 

separation-of-variables technique 
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Integrating both sides of Equation 11 gives  
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Taking the exponential of both sides (and noting that a times 0 =0) gives 

 

! 

Pt
P0

= e a" f I( )( ) t "
1

e f C( )0
t# dt  

 

so 

 

! 

Pt = P0 • e a" f I( )( ) t •
1

e f Cd( )•# dt = P0e
a" f I( )( )te

" f C( )dt
0

t

#  

 [12] 

 

The problem is now to integrate f(C). Assuming there are r separate drugs/metabolites with 

antimalarial activity. In this case, f(C) becomes 
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So for each drug/metabolite d we need to calculate its concentration over time Cd using the 

compartment model Equations (7 and 8) and the substitute Cd into the killing rate equation 
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Note in Equation 14, Vd is the maximum drug killing V for drug d, not to be confused with 

the volume of distribution Vd. 

 

Substituting Equation 13 into 12 gives 
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or, equivalently, 
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Note that Cd may be a complicated expression (including Equations 7 and 8) and so 

! 

f Cd( )"  

has to be integrated numerically. As before (364), if the predicted parasite number (Pt) falls 

below 1 we assume the infection has been cleared and the patient cured, immunity is 

currently ignored (see Winter & Hastings (364) for further discussion).   

 

 

2.3. Modelling drug killing when two or more drugs are present 
 

These computational extensions to the mechanistic PK/PD modelling allow for the presence 

of two or more drug forms simultaneously present in the human host, and active against the 

infection. It therefore becomes necessary to consider and specify how these drug forms 

interact in their effect against the parasites. There appears to be four main computational 

choices. 

 

Independent modes of action. This is the mode of action explicitly developed above and 

summarised in Equation 16. Most drug combinations are designed to contain drugs with 

independent modes of action, so this is a common scenario and would be revealed by drugs 

having additive action in pharmacodynamic studies (64). 

 

Non-independent action. The total drug action may be greater than, or less than, that expected 

from the sum of the two drugs independently. This is commonly referred to as ‘synergy’ or 

‘anatogonism’ but see Chou (64) for a fuller discussion of the dangers inherent in using these 

terms. It is difficult to even define these terms (64), still less quantify them, so an empirical 

approach based on data obtained from isobolograms (109) would have to be used to convert 

drug concentrations into killing. 

 



! '$!

Identical modes of action. This seems plausible if there are different, but structurally similar, 

forms of same drug; artemisinins are a good example in this context. One computational 

possibility is simply to use the sum of their concentrations in Equation 1 i.e. 
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Where x and y are the two forms. Problems arise if V or IC50 differ between the two forms. 

The maximal killing rate may plausibly be the same for each form but it is entirely plausible 

that structural differences between the forms alter binding of the drugs and hence their IC50 

values. It is difficult to compute the joint killing under these circumstances because it is 

difficult to envisage how to weight the differing IC50 values. 

 

Dominant form killing. This is a computational compromise. The amount of killing of each 

related drug form over a time period is calculated and the higher killing rate used in the 

calculations. This is particularly useful for rapidly eliminated drugs that are essentially either 

present at full effect or absent (see, for example, Figure A2). This is the approach we shall 

use for artemisinins in the analyses described below. So, for example, when modelling the 

artemisinins, the drug killing for both forms (i.e. the parent drug and the active metabolite) 

were calculated during each time step and the drug form with the higher parasite killing is 

used to update parasite numbers at the end of the time step. 

 

 

2.4. Modelling artemisinin combination therapies 
 

Pharmacological ‘mechanism-based’ modelling (73) has been used previously to investigate 

key features of antimalarial drug treatment either as monotherapies (16, 144, 149, 302) or 

with recent emphasis on the current generation of ACTs (364). We have previously touched 

upon the potential consequences of increasing artemisinin resistance using standard 

pharmacokinetic-pharmacodynamic (PK/PD) modelling techniques (364) however, as 

mentioned in the paper, the model relied heavily on two main assumptions built in to the 

existing methodology. First, that all drugs are instantaneously absorbed and, if appropriate, 
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converted to their active metabolites. Whilst this may be reasonable for drugs with a long 

half-life it is not practical for drugs like the artemisinins where absorption and conversion 

times are almost equal to their short half-lives. The second assumption, that no more than two 

drugs could be present simultaneously, was reasonable when modelling the ACTs if both 

drugs were instantaneously absorbed and converted. However, conversion of the artemisinins 

requires that the artemisinins be modelled as two separate component drugs i.e. the parent 

drug and the DHA metabolite together with the partner drug and so modelling the ACTs 

requires a minimum of three drugs be tracked simultaneously. Here we have addressed the 

methodological challenges of incorporating the absorption and conversion phases of drugs 

into PK/PD modelling while simultaneously tracking the concentration of more than two 

drugs, a feature absent in previous pharmacological models (16, 144, 149).  

 

The PK/PD model parameters required to simulate treatment are given in Table A1 and 

described in the Appendix, part 2. The PK extensions for the artemisinins required additional 

parameters describing the drug absorption rate across the gut, the conversion rate to DHA and 

the elimination of DHA from the body (Figure 1). These parameters and their associated 

distributions can be found in Table A1 with details of model calibration and validation 

included in the Appendix (part 2). Variation in model parameters was previously (364) added 

assuming a coefficient of variation of 30% in all parameters. In reality, some parameters are 

much more variable (225) while others maybe less so. We now incorporate more appropriate 

levels of variation into the PK/PD parameters using drug specific distributions thus making 

results more compelling for specific ACTs. To validate the model’s predictive ability, the 

maximum serum concentration (Cmax) and time to achieve Cmax (Tmax) were compared to 

field data (Appendix, part 2).  

 

The methodology described above now allows for the action of both the unconverted and 

converted forms of the artemisinins. However, given that they have similar modes of action 

their effect on parasite numbers is unlikely to be additive (as is assumed in Equation 11). As 

such, the drug effect, f(C), for each of the artemisinin forms was calculated each time-step 

but only the dominant form (i.e. parent drug or active metabolite) with the greater drug 

killing effect was used to compute the number of parasites in the next time step. Activity, and 

hence killing, of artemisinins and the partner drug were assumed to be independent. 
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A major change was made to the artemisinin maximal drug kill rate (V). Previous estimates 

of the V (360, 364, 399) have been based upon the assumption that drug killing is maximal 

immediately after treatment and remains so for 48 hours after treatment. This is quantified by 

the parasite reduction ratio (PRR); a ratio of the number of parasites at time of treatment 

scaled by their number 48 hours after treatment. So, assuming the decline in parasitaemia is 

first order, the parasite count (Pt) at any given time (t) is given by 
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Pt = P0e
"Vt  

 [12] 

 

 where P0 is the number of parasites present at the start of treatment.  

 

This appears to be reasonable for drugs given at relatively high doses with a long half-life 

because the maximal killing will extend over the 48 hours after treatment. However, it is 

unrealistic for the artemisinins whose short half-lives mean parasites are typically only 

exposed to high concentrations of artemisinins during the first 6-8 hours following treatment 

(Figures S1 and S2). The steady decline in parasite numbers after this period presumably 

reflects dead or dying parasites being cleared by host mechanisms. PK/PD modelling of drug 

effect assumes deaths only occur in the presence of the drug (i.e. 6-8 hours post-treatment) 

hence the need for this increased kill rate. So, given PRR = P0/Pt (360) (where Pt is usually 

assumed to be 48 hours), the relationship between PRR and parasite killing rate V is 
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When t is assumed to be 48 hours then the maximal drug kill rate (V) is 4.6 (360, 364). 

However, if we assume artemisinin maximal drug killing occurs only during 6 hours with a 

PRR of 1000 (White (360) gives a range of 103 to 105 for the artemisinins) then V is 27.6. 

Note, if the maximal drug killing is assumed to occur over 8 hours and the PRR is assumed to 

be 10,000 (within the range reported in White (360)) V again equals 27.6. consequently our 

artemisinin maximum killing rate is approximately 7-fold higher than in previous 

simulations. 
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Two treatment combinations were investigated, artesunate-mefloquine (AS-MQ) and AR-LF, 

both are highly effective ACTs currently used to treat malaria. Variation in how humans 

metabolise the drug and parasite drug sensitivity was added to the model parameters (Table 

A1) using parameter specific estimates of co-efficient of variation, CV. The technical details 

regarding parameter variability are included in the Appendix, part 2. 

 

The extended pharmacokinetic-pharmacodynamic (PK/PD) model can then be implemented 

to address a critical feature of current ACT deployment: how is the observed increase in 

artemisinin tolerance likely to affect the long-term effectiveness of ACTs? The crucial 

operational question is whether there is likely to be a sudden catastrophic decrease in ACT 

effectiveness, a gradual decline or, a best case scenario, a margin of safety such that we can 

have relatively large increases in artemisinin tolerance/resistance before ACT failures start to 

increase? 

 

The partner drugs, LF and MQ, are currently largely effective monotherapies (if administered 

correctly) so increasing artemisinin resistance would, by definition, have little or no impact 

on therapeutic outcome. To avoid this trivial case, we investigated how increasing levels of 

artemisinin resistance impacted treatment failure rates if resistance to the partner drug was 

already present or spreading. When modelling MQ treatments the MQ IC50 values were 

either 1-, 2-, 5-, 10-, 15-, 20- or 25-fold greater than the current default value (TableA1) and 

when modelling LF treatments LF IC50 values were either 1-, 2-, 5-, 10-, 20-, 25- or 50-fold 

greater than the current default value (Table A1). Resistance to artemisinins was investigated 

in two ways. First by increasing the IC50 of the AS, AR or DHA (the active metabolite) 

independently and then by assuming the IC50s of the parent species and DHA were 

completely correlated i.e. the IC50s were increased simultaneously by the same amount. This 

was necessary because it is not clear whether parasites will evolve resistance independently 

to the artemisinin entities or whether there will be substantial cross-resistance to different 

entities (see later discussion) The IC50 range of both artemisinin forms included one value 

10-fold smaller than the mean and values 1-, 20-, 40-, 80- or 100-fold greater than the mean. 

 

Details of implementation are in the Supplementary Information, part 3. For each of the 

10,000 patients simulated the model recorded whether an infection (with one clone) was 

cleared and, if so, the parasite clearance time (PCT; defined as the time taken for an infection 

to fall below the limit of microscopic detection, which was assumed to be 108). This was 
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done first for the partner drugs without the artemisinin component, i.e. as monotherapies, to 

give a baseline failure rate. Then, by comparing the results of the monotherapy with those of 

the ACTs we were able to quantify the ability of the artemisinin component to reduce failure 

rates and PCTs.  

 

 

3. Results  
 

The artemisinin drug concentration profiles of the model are consistent with those measured 

in the field (Figure A1). Analysis of both ACTs showed that adding an artemisinin to a 

partner drug reduced failure rates below that of the monotherapy regardless of the initial 

levels of partner drug resistance (Figure 2), except for the trivial case when partner drugs 

were fully effective as monotherapies. For AS-MQ, the exact proportion of failures prevented 

by the artemisinin component was dependent on the initial level of resistance to the partner 

drug. Regardless of whether the IC50s of the artemisinins were correlated, adding an 

artemisinin at its default IC50 value to a partner drug reduced failure rates by between 70 and 

90%. This is a relative reduction, for example, a 50% reduction is equivalent to fall in failure 

rates from 40% to 20% or from 12% to 6% (Figure 2, panels A, C and E). The observation 

that adding AS to a standard monotherapy (chloroquine, amodiaquine, sulfadoxine-

pyrimethamine and MQ) reduced the absolute risk of failing treatment but did not result in a 

fully effective ACT was in line with results seen in the field (1). The results also show that 

the addition of AR to LF monotherapies reduced failure rates to zero when modelling the 

mean parameter values (Figure 2, panels B, D and F).  

 

Figure 2 shows the failure rates of the ACTs when the IC50s of the two artemisinin drug 

forms were either varied independently (Figure 2, panels A to D) or varied simultaneously 

(Figure 2, panels E and F). When the IC50s of the artemisinin drug forms were varied 

independently increasing the IC50 of either had very little effect in the failure rates (Figure 2, 

panels A, B, C and D). This was particularly clear for AR-LF treatments where increasing 

either AR or DHA IC50 caused no measurable increase in drug failure rates (Figure 2, panels 

B and D). This occurs because resistance to one form is compensated by continued sensitivity 

to the other form because both forms are potentially capable of high rates of parasite 
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Figure 2. Change in failure rates associated with either increasing AS/AR IC50 (top), 

increasing DHA IC50 (middle) or simulating increasing both AS/AR and DHA IC50 

(bottom). Left-hand column includes AS-MQ treatment and the right-hand column AR-LF 

treatment. Note that failure rates for monotherapies are shown as columns to the immediate 

right of the x-axis.
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(Figure A2). Increasing AS IC50 alone also had little effect on the AS-MQ failure rates 

(Figure 2, panel A), again highlighting the importance of its active metabolite on parasite 

survival. When DHA IC50 was increased by 20-fold in AS-MQ treatment (Figure 2, panel 

C), treatment failures increased by 25 to 65% (relative increase) depending on the level of 

resistance to the partner drug. This is the only time increasing either the artemisinin drug 

forms alone affected treatment outcome and further DHA IC50 increases (above 20-fold) had 

little further effect on treatment outcome (Figure 2, panel C). Failure rates to AS-MQ 

assuming the artemisinin drug forms were uncorrelated (Figure 2, panels A and C) remained 

lower than those seen when assuming they were correlated (Figure 2, panel E) thus implying 

both artemisinin drug forms are still playing an active role in parasite killing. Further DHA 

IC50 increases above 20-fold had no discernable effect on treatment outcome and failure 

rates remained lower than those seen when the IC50’s were correlated thus implying that 

while not as potent as AR and DHA it still plays an active role in parasite killing. For both 

ACTs, increases in failure rate as a result of increasing artemisinin resistance were much 

larger if the IC50s of the artemisinin drug forms were simultaneously increased.  Rapid loss 

of protection was most noticeable for AS-MQ with small IC50 increases (20 and 40-fold), 

well within the range of natural variation (225), increasing failure rates by 65-70% (Figure 2, 

panel E). Loss of protection was more gradual following AR-LF treatments (Figure 2, panel 

F) but both ACTs showed failure approaching those of the of the monotherapies as 

artemisinin IC50s increased to 100-fold greater than the mean. 

 

The PCT appears to be determined predominantly by the level of resistance to the artemisinin 

component with the initial level of partner drug resistance being relatively unimportant 

(Figure 3). This was particularly evident following AR-LF treatment where increasing the 

IC50 of LF had no discernable effect on PCT (Figure 3, panels B and D) while increasing 

MQ resistance only caused the PCT to vary by up to one day (Figure 3, panels A and C). 

When the IC50s of the two artemisinin species were increased simultaneously, the addition of 

artemisinin to the monotherapy reduced PCTs by approximately 2 to 3 days for both ACTs. 

As seen with the treatment failures (Figure 2), increasing the IC50 of AS/AR or DHA 

independently had little/no effect on PCT (Figure 3, panels A to D) and PCT did not 

approach that of the monotherapy because the other artemisinin species retained its 

effectiveness. When the IC50s were increased simultaneously both artemisinin species lost 

their effectiveness (Figure 3, panels E and F) while the PCT increased almost linearly with 
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Figure 3. Change in parasite clearance times (PCT) associated with either increasing AS/AR 

IC50 (top), increasing DHA IC50 (middle) or simultaneously increasing both AS/AR and 

DHA IC50 (bottom). Left-hand column includes AS-MQ treatment and the right-hand 

column AR-LF treatment. Note that PCTs for monotherapies are shown as columns to the 

immediate right of the x-axis.!!
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increasing artemisinin resistance and approached the PCTs seen with monotherapies (Figure 

3, panels E and F).  

 

 

 

4. Discussion 
 

The extended PK/PD mechanism based modelling was easily applied to ACTs and produced 

results and predictions consistent with field data on failure rates (1) and increasing PCT 

associated with resistance. The main operational concern surrounding the evolution of 

artemisinin resistance is that it will lead to clinical failure in patients treated with ACTs 

(374). Obviously, if the partner drug is effective as a monotherapy, then the presence or 

absence of artemisinin resistance has no clinical effect. Problems arise as resistance spreads 

to the partner drugs, a process slowed by the addition of an artemisinin (126). The results 

clearly show that adding AS to a failing drug (MQ) reduced the treatment failure rates by up 

to 90% (relative reduction) but did not result in a fully effective ACT (Figure 2, panel E). 

This observations is in line with the findings of the International Artemisinin Study Group 

who performed a meta-analysis of individual patients from 16 randomised trials (n=5948) 

studying the effect of adding AS to either CQ, AQ, SP or MQ (1). While the total population 

failure rates were reduced by 42-65% when averaged across all drug regimens, the addition 

of AS to MQ monotherapy reduced failure rates by approximately 90-95% (1). The results 

for AR-LF show that the addition of AR with default IC50 values was sufficient to save a 

failing LF monotherapy by reducing failure rates to <1% for all levels of partner drug 

resistance regardless of whether the IC50s of the AR and DHA are increased simultaneously 

or independently (Figure 2, panels B, D and F). However, this observation was much more 

difficult to validate than those of AS-MQ as there is almost no published data on the in vivo 

efficacy of LF monotherapy and so it is impossible to quantify the proportion of failures 

averted specifically by the addition of AR. We also note that for both ACTs, only when the 

IC50s were correlated did increasing the IC50 eventually lead to failure rates approximately 

equal to those of the monotherapy therefore removing any benefit afforded to the partner 

drug by the artemisinin. These occurred after 50-100 fold increases in artemisinin IC50 

which is large, but around the same magnitude as the natural variation observed in field 
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isolates (225). The key question is whether the IC50s are correlated; field data suggest they 

are (Appendix, part 2). 

 

Increasing PCTs are currently being observed in the field (7, 241, 242, 316, 374); Dondorp et 

al. (85) for example, show that parasites resistant or tolerant to artemisinins take 3 or 4 days 

to clear parasites as compared with less than 2 days for artemisinin sensitive parasites; this 

pattern was also apparent in the results presented here (Figure 3). The simulated results 

showed the initial level of resistance to the partner drug had very little effect on the PCT and 

whilst this may seem strange it can be explained relatively easily. While the partner drug is 

undeniably important when determining the treatment outcome (i.e. success or failure), the 

PCT is determined almost solely by the short-lived but fast-acting artemisinin component, 

which causes a rapid decline in parasite numbers but is not present long enough to completely 

clear the parasite load (364). As with dug failure rates, PCT only approached those of the 

monotherapies when the IC50s were increased simultaneously again consistent with field 

data that the IC50s are correlated (Appendix, part 2). For both ACTs, PCT began to increase 

after relatively small increases in artemisinin IC50 of 20- to 40-fold (within the range of 

natural variation (225)).  

 

It is important to realise that cross-resistance and mode of drug action are related, but distinct 

entities. Drugs with identical modes of action may show complete cross-resistance if 

mutations occur at their site of action which prevents both/all forms of the drug from binding 

therefore blocking their activity. Alternately, resistance may emerge through mutations that 

alter the drugs’ ability to reach or accumulate at their site of action. Malaria is often 

characterised by the latter where mutations in membrane transporters, notably mdr and crt, 

are implicated in resistance to a range of antimalarial drugs (91). These transporters depend 

more on the chemical scaffold (charge and structure) of the drug than its active site so it is 

not a priori certain that cross-resistance will inevitable occur between a parent drug and its 

active metabolite. A lack of cross resistance would be hugely beneficial as it means parasites 

would have to evolve resistance to both forms of the drug but, unfortunately, our simulations 

suggest a model of complete cross resistance provides the best fit to the malaria observations. 

 

Increasing tolerance / resistance to artemisinins was modelled using the standard assumption 

that it will arise through increased IC50 values. Artemisinin resistance may be atypical in this 

respect as it appears to manifest through increased clearance rate of parasites following 
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treatment with unchanged IC50, possible due to the drug(s) having activity against a more 

restricted range of stages in the malaria cell cycle (see below). The mechanistic approach 

assumes instantaneous killing of parasites irrespective of their stage, so deceased activity 

against some stages would be manifested as decreased drug maximal killing rate (V in 

Equation 1) in the methodology; interesting this parameter was found to be a far more potent 

determinant of resistance than the IC50 (364). It would be possible to re-run the above 

simulations altering V rather than IC50 but we chose to use the more conventional approach 

in the first instance as we consider this primarily a computational paper; we shall explore this 

approach in future studies applying the methodology more specifically to malaria. 

 

Malaria differs from many other pathogens in having a distinct 48-hour intracellular cycle 

that essentially consists of invasion of red blood cells (RBC), digestion of host haemoglobin, 

parasite multiplication within the RBC, cell rupture and re-invasion of new RBCs. Drugs 

consequently have different stage specificity profiles depending on what metabolic processes 

are occurring in each stage (for example, many drugs target haemoglobin digestion so are 

primarily active against parasites in this stage of their cycle). Our analyses ignored these drug 

stage-specificities. It would however be easy to re-compute the dynamics using one hour time 

steps and using a 48hour array to move parasites through the 48-hour development cycle as 

done previously (147, 287, 398). We chose not to do so for two main reasons. Firstly, stage 

specificity requires that PD parameters be specified for each stage and that the initial 

distribution of parasite stages in the infection be specified. Secondly, and more importantly in 

our opinion, is that the PK/PD computations assume instantaneous killing of parasites 

depending on current drug concentration whereas, in reality, there is a delay in killing. The 

delayed killing can be incorporated into the methodology by postulating a hypothetical 

‘metabolite’ whose production or elimination is disrupted by the drug, and that parasite death 

occurs as a function of metabolite level; the time taken for metabolite levels to reach ‘lethal’ 

levels introduces a time-lag into the killing (3, 254). This is an elegant way of incorporating a 

delay but it requires further parameterisation of the metabolite’s production and elimination, 

specification of a killing rate as a function of metabolite level, and calibration against field 

data. Patel and colleagues (254) estimated the delay in artemisinin killing as around 5 hours.  

A recent study attempted to simulate ACT dynamics using a stage structured approach and 

concluded that it did not match well field data (398); we are unsurprised because the short-

term dynamics will be critically dependent on stage-specific PD parameterisation and no time 

lag was built into the model. Hence, our approach was to ignore short-term dynamics and run 
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the enhanced PK/PD methodology, ignoring stage specify and delayed drug action (363); the 

objective was to simulate the fate of the infection over the longer term rather than the 

dynamics immediately post-treatment. Consistency of our results with field and clinical 

observations suggest this is a robust approach but it is important to recognise the alternative 

modelling approaches can be designed, and that our enhanced PK/PD methodology can easily 

form the basis for an improved stage-specific model run in 1-hour time steps. 

 

The rationale behind this paper is that combining good quality field and clinical data into a 

sophisticated PK/PD model should allow a thorough investigation of ACT effectiveness in 

the context of increasing artemisinin tolerance/resistance. It therefore provides a 

methodological framework for clinical pharmacologists to interpret their results. However the 

predictive power of mathematical modelling is governed by the crucial step of model 

calibration and the availability of comprehensive, good quality PK/PD data in the literature is 

surprisingly scarce (Supporting Information, part 2). This has the potential to limit the 

usefulness of models as predictive tools.  Given the amount of effort and resources required 

to conduct PK/PD studies and that their explicit aim is usually to improve human therapy, it 

seems appropriate to consider how best to report such studies for maximum impact.  We 

therefore make three specific suggestions that authors may consider to maximise their 

studies’ chance of influencing policy choice. Firstly, all available population PK/PD data, 

including those required purely for intermediate calculations should be reported. For 

example, terminal elimination rates are invariably reported but parameters required in their 

calculation, for example volumes of distributions (often confounded with bioavailability) are 

often omitted (321). We are uncomfortable with the rationale underlying the common 

assertion that DHA is the main active species during artemisinin treatment (see above and 

Figure A2); we would therefore recommend that PK parameters for parent species such as 

artesunate and artemether also be measured and reported. Secondly, the nature and extent of 

natural variation in the parameters are vitally important and can result in some patients 

developing low drug concentrations possibly leading to therapeutic failures or high 

concentrations potentially leading to toxicity. The distributions (normal, log-normal, etc) with 

their associated coefficients of variations (CV) are therefore almost equally important as their 

mean values. For example, many authors cite CV estimates larger than the mean, which 

obviously indicates a non-normal distribution:  such data are much more useful if 

accompanied by their distributions (herein we were forced to assume they were log-normal). 

Finally, there are wide variations in reported mean values between studies; these are 
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generally ascribed to sampling different populations or age groups but a more critical 

appraisal in terms of any impact of different methods of analysis would also be helpful. An 

excellent example is that of Tan et al. (326) who, after describing the population PK of AS 

and DHA in healthy patients, compare their results with those of other AS and DHA PK 

studies and provide a detailed discussion explaining how and why the results may differ. 

 

Despite the caveats mentioned above, our results and implications are clear. The kill rate of 

both artemisinin forms appears to be important in determining treatment outcome and their 

IC50’s are likely to be correlated. AS-MQ is more sensitive to increases in artemisinin drug 

resistance than AR-LF with the number of failures increasing quickly with relatively small 

increases in AS and DHA IC50s. Both ACTs show increasing PCT associated with 

increasing artemisinin IC50, an observation already seen in the field (52, 86, 87, 241, 365). 

Our results suggest this is indicative of a rapid loss of protection provided by the artemisinins 

against the partner drug(s). If, or when, resistance against the partner drug starts to increase, 

most plausibly driven by mismatched half-lives (132, 133, 352), then a rapid reduction in 

ACT clinical effectiveness is likely to occur. We conclude that policies designed to isolate 

and minimise the spread of artemisinin resistance are to be greatly encouraged (374).  
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Appendix 
 

1. Pharmacokinetics – incorporating the absorption, 

conversion and elimination of drugs 
 

 

The artemisinin model outlined in Figure 1 was described using equations 2 to 4 in the main 

text. These three differential equations were used to describe the change in the amount of 

drug in the gut (equation 2) and the amount of unconverted and converted drug in the serum 

(equations 3 and 4 respectively). Using Laplace transforms and the convention (209) of 

overhead bars to indicate transformed variables, we transform the equations as follows. 

Equation 2, describing the amount of drug in the gut, becomes 

 

! 

sA " A 0( ) = xA  

or 

! 

A =
A 0( )
s+ x( )  

 

where A(0) is the amount of drug present at time zero in the gut which equals the dosage 

administered (D) plus any drug present from previous treatments (A`) giving 

 

! 

A =
A +̀D
s+ x( )

 

 [A1.1] 

Equation A1.1 can be solved by substituting p=A`+D 

 

! 

A =
p

s+ x( )  
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back transforming into the time domain  and re-substituting gives 

 

! 

A t( ) = A +̀D( )e"xt  
 [A1.2] 

 

Note, if no treatments are present (i.e. if A`=0), equation A1.2 becomes  

 

! 

A t( ) = De"xt  

 [A1.3] 

 

Equation 3, describing the amount of unconverted drug in the serum, becomes 

 

! 

sB " B 0( ) = xA " (y + z)B 
or 

! 

B =
xA + B 0( )
s+ y + z( )

=
xA

s+ y + z( )
+

B 0( )
s+ y + z( )

 

 

the drug is not given intravenously so B(0)=B`, the drug present from previous treatments. 

Substituting  from equation 1a.1 gives 

 

! 

B =
x D+ A`( )

s+ y + z( ) s+ x( )
+

B`
s+ y + z( )

 

 [A1.4] 

 

Equation A1.4 can now be solved by substituting p=x(D+A`) and q=(y+z) to give 

! 

B =
p

s+ q( ) s+ x( )
+

B`
s+ q( )

 

 

back transforming into the time domain and re-substituting gives 

 

! 

B t( ) =
x D+ A`( )
x " y + z( )( )

e" y+z( ) t " e"xt( ) + B è" y+z( )t  

 [A1.5] 

! 

A
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Note, if no previous treatments are present (i.e. if A`=0 and B`=0), B(t) becomes 

 

! 

B t( ) =
xD

x " y + z( )( )
e" y+z( ) t " e"xt( )  

 [A1.6] 

 

Equation 4, describing the amount of converted drug in the serum, becomes 

 

! 

sC "C 0( ) = zB " kC  
or 

! 

C =
zB + C 0( )
s+ k( )

=
z

s+ k( )
B +

C 0( )
s+ k( )

 

 

where C(0)=C`, the amount of drug present from previous treatments. Note, the fraction was 

split at this point to help with the transformations later. Substituting  from equation A1.6 

gives  

 

! 

C =
z

s+ k( )
x D+ A`( )

s+ y + z( ) s+ x( )
+

B`
s+ y + z( )

" 

# 
$ 

% 

& 
' +

C`
s+ k( )  

or 

! 

C =
zx D+ A`( )

s+ k( ) s+ y + z( ) s+ x( )
+

zB`
s+ k( ) s+ y + z( )

+
C`
s+ k( )

 

 [A1.7] 

 

 

 

Equation A1.7 can now be solved by substituting p=zx(D+A`), q=(y+z) and r=zB` 

 

! 

C =
p

s+ k( ) s+ q( ) s+ x( )
+

r
s+ k( ) s+ q( )

+
C`
s+ k( )

 

 

 

 

! 

B
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Back transforming into the time domain and re-substituting gives 

 

! 

C t( ) = zx D+ A`( ) e"kt

y + z " k( ) x " k( )
+

e"qt

k " y + z( )( ) x " y + z( )( )
+

e"xt

k " x( ) y + z " x( )

# 

$ 
% 
% 

& 

' 
( 
( 

+
zB`

y + z " k( )
e"kt " e" y+z( )t( ) + C è"kt 

 [A1.8] 

Tracking the amount of drug in mg requires that the changes in the molecular weight be 

accounted for, this was done using the ratio of the molecular weights (see main text for more 

information). 

 

Note, if drug from previous treatments are absent because it is the first dose of the regimen 

(i.e. if A`=0, B`=0 and C`=0), C(t) becomes 

 

! 

C t( ) = zxD e"kt

y + z " k( ) x " k( )
+

e"qt

k " y + z( )( ) x " y + z( )( )
+

e"xt

k " x( ) y + z " x( )

# 

$ 
% 
% 

& 

' 
( 
( 
 

 [A1.9] 

 

 

 

2. Model calibration for analysis of ACTs 
 

 

This extended model required additional model parameters to describe the absorption rate 

across the gut, the conversion rate to DHA and elimination of DHA following AS and AR 

treatments (Figure 1). All data were taken from published clinical studies, where analysis had 

been carried out in laboratories conforming to good laboratory practice (140, 236) i.e. patient 

blood samples were immediately centrifuged after sampling and the separated plasma stored 

at between -20 (140) and -50ºC (236). 

 

Newton et al. (236) determined the pharmacokinetic parameters of AS absorption and 

conversion in three adult patients in western Thailand. They used open one- and two-

compartment models, fitted to plasma concentration-time data to derive standard PK 

parameters. Curve-fitting was performed with WinNonlin and compartment models 



! *)+!

Table A1. Mean antimalarial drug parameters for artesunate-mefloquine and artemether-

lumefantrine combination therapies. The amount of variation (i.e. CV) is given in square 

brackets 

 

a Unpublished data from Liverpool School of Tropical Medicine 
b Assumed to be like artesunate  
 

 

 

chosen using the Akaike Information Criterion (AIC). Hietala et al. (140) determined the 

pharmacokinetics of AR absorption and conversion using data from 50 paediatric patients in 

central Tanzania. They found the distribution of AR was best described using a two-

compartment model with first-order absorption whilst DHA concentrations were best 

described by a covariate-free one compartment model. The population PK/PD parameters 

were then determined using NONMEN version VI. Although Hietala et al. (140) determined 

that a two-compartment model provided the best fit to data this was reliant on the assumption 

that the absorption rate constant was fixed to 1/hour.  

 

Both studies provide estimates of the volume of distribution and elimination rate for the 

converted form of the drugs (DHA). The DHA estimates differed and so, for consistency, we 

chose to use the Newton et al. (236) estimates when modelling AS and the Hietala et al. 

(140) estimates when modelling AR (see part 4, assumptions, for further discussion). Finally, 

 Artesunate-Mefloquine Artemether-Lumefantrine 

 Artesunate DHA Mefloquine Artemether DHA Lumefantrine 

Volume of 
distribution (Vd) 

7#1(236) 
[94(224)] 

1#49(236) 
[48(211)] 

20#8(359) 
[38(165, 302)] 

5#21(140) 
[82(4)] 

3#7(140) 
[48(211)] 

21(68) 
[263(97, 329)] 

Absorption rate 
constant (x) 

252(236) 
[112(326)] - - 23#98(140) 

[68(4, 345)] - - 

Conversion rate (z) 30#96(236) 
[36#2(326)] - - 11#97(140) 

[65(4, 345)] - - 

Elimination rate 
constant (k) - 

25#4(236) 
[23(57, 83, 237, 

326)] 

0#053(350) 
[63(165)] - 

44#15(140) 
[23(57, 83, 237, 

326)] 

0#16(110, 212, 350) 
[5(83)] 

Concentration 
producing half the 

desired effect (IC50) 

0#0016(2, 18) 
[86(211)] 

0#009(211) 
[117(211)] 

0#027(44) 
[78(211)] 

0#0023a 
[79(264)] 

0#009(211) 
[117(211)] 

0#032(44, 321) 
[102(211)] 

First order rate 
constant of parasite 

killing (V) 
27#6 27.6 3#45(359) 27#6 27#6 3#45(359) 

Slope Factor (n) 4(321) 4(321) 5(321) 4b 4(321) 4(321) 
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neither study showed significant routes of elimination of AS/AR from the body and so is was 

assumed that the drugs were fully converted to DHA (i.e. y=0).  

 

The simulated drug concentration-time profiles of both the artemisinins using the default 

parameters in Table A1 are given in Figure A1 and the corresponding kill curves in Figure 

A2. To validate the models predictive ability the maximum serum concentration (Cmax) and 

time to achieve Cmax (Tmax) were compared to field data. The PK profile of AS absorption 

and conversion to DHA was simulated using PK parameters from Newton et al. (236). Figure 

A1.A shows both the Cmax and Tmax of AS (420ng/ml and 0#5hrs) within the range 

presented by Newton et al. (236) (AS: 62-510ng/ml and 0#25-0#5hrs) and while the Cmax of 

DHA (600ng/ml) is slightly lower the range presented in Newton et al. (236) (817-

2853ng/ml). The Cmax range for DHA is so large (see also Byakika-Kibwika et al.(49)) that 

we are confident the models are consistent with clinical data. The PK profile of AR 

absorption and conversion to DHA was simulated using PK parameters from Hietala et al. 

(140). However, this study does not provide estimates of the corresponding Cmax and Tmax 

parameters and so the resulting PK profile was validated against the results of van Agtmael et 

al. (345). We note that van Agtmael et al. (345) presents a variety of Cmax and Tmax values 

for both AR and DHA. For example, the drug concentration-time profiles of AR and DHA 

(after both AR monotherapy and AR-LF combination therapy) in Figures 1-3 of van Agtmael 

et al. (345) all clearly show the Cmax of AR to be higher than DHA (although exact Cmax 

values vary). However, somewhat confusingly, Tables 1 and 2 (of van Agtmael et al. (345)) 

show that, following AR monotherapy, the Cmax of DHA measured higher than that of AR. 

Whilst this observation directly contradicts the PK profiles plotted in their figures it is not 

discussed within the paper. For the purposes of validating the simulated PK profile, we 

compared the ratio of AR:DHA concentrations to those a typical patient (Figure 3, van 

Agtmael et al. (345)). As in the paper, DHA Cmax (57ng/ml) was found to be approximately 

one third that of AR (163ng/ml). Figure A1.B also shows the simulated Tmax of AR (1#5-2 

hours) and DHA (2-2#5 hours) are approximately equal to those reported in the study (345) 

 

Various studies assert that the rapid conversion of artemisinin derivatives to DHA means 

most of the antimalarial activity is derived from the DHA component, particularly following 

AS treatments (see for example (159, 286, 303, 320, 361)). As a recent high profile example, 

Saralamba et al. (286) state “the parasiticidal effect of artesunate was not incorporated here 

because the total drug exposure of artesunate was <10% of that of DHA in these patients 
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Figure A1. The simulated PK profiles of the artemisinin forms given as the parent drug and 

subsequently converted to DHA. Given as (A) artesunate or (B) artemether; generated using 

the model shown in Figure 1 mathematical derivation described herein and using the 

parameters of Table A1. The timescale and concentrations match well with those observed in 

vivo (see, for example, (49, 236, 345)). Note that DHA is the major component when dosing 

with artesunate, but the minor component when dosing with artemether. 
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Figure A2. The simulated parasite kill curves of the parent artemisinin drug forms 

(artesunate and artemether) and their active metabolite DHA. Treatment with (A) artesunate 

and (B) artemether. Curves generated using the mathematical derivation described herein and 

using the parameters of Table A1. 
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(86)”. Dondorp et al. (86) also report DHA accounted for >90% of the artemisinin species but 

concentration is not directly related to killing rate (Figure A2). Antimalarial drug dosages are 

massive compared to IC50 levels so both entities are usually working at near-saturated killing 

rates. Multiplying concentration profiles in Figure A1 by their Michaelis-Menten killing 

(Equation 1) gives similar kill rates for both species. This is illustrated in Figure A2 where 

the drug kill curves for both AS/DHA and AR/DHA suggest the parent drug and the active 

metabolite (DHA) are both likely to contribute to the parasite killing and supported by the 

simulated results when the IC50’s are varied independently (see main text). While it maybe 

reasonable to assume that DHA is usually the dominant species it is not inevitable that this 

will always be the case (86). The huge amount of variation characteristic of human PK 

parameters (for example, see the CV estimates in Table A1) means it is inevitable that some 

people will slowly convert AS/AR to DHA, and rapidly eliminate the latter. Thus it is entirely 

plausible that AS and AR will have significant impacts in many patients and we would urge 

pharmacologists to measure and report their concentrations in order to understand the clinical 

impact. 

 

A key operational question is whether mutations encode resistance to all artemisinins 

independently or whether there is any cross-resistance. Answering this question will provide 

crucial insights into how resistance to artemisinins is likely to spread. For example, if the 

IC50’s of the artemisinin forms (primarily AS, AR or DHA) are completely correlated then 

parasites will evolve resistance in the same way that they would to any other single drug. 

However if the IC50s are uncorrelated, resistance would need to be acquired to both 

components independently, in much the same way as it would to two drugs in combination. 

The latter would result in a much slower spread of resistance that the former. This can be 

tested if field isolates or laboratory strains are simultaneously assayed for drug sensitivity to a 

range of artemisinins. Unfortunately such data are rare, however the results presented here, 

alongside the results in a recent paper by Delves et al. (77), have allowed us to determine the 

likely correlation between artemisinin IC50s. Specifically, the simulations indicate that both 

components of the artemisinin are active (Figure A2) while the simulated ACT failure rates 

and PCT only became consistent with field data when the IC50s of the artemisinins were 

increased simultaneously. Delves et al. (77) describe the half maximal inhibitory 

concentrations (IC50s) of 39 different antimalarials measured in 7 different P.falciparum 

strains. We found the IC50 of all the artemisinin derivatives to be positively correlated (Table 

A2). This correlation was particularly strong (0.831; p<0.005) for AS and DHA, a drug and 
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Table A2. Data describing the half-maximal inhibitory concentration (IC50) of 5 different 

antimalarials measured in 7 different P.falciparum strains by Delves et al.(77), was used to 

determine whether the IC50s of the artemisinins are correlated. 

 

    Artemether Artemisinin Artemisone DHA 

Artemisinin 
Pearson 

Correlation 
(Sig. 2-tailed) 

0#893** 
p = 0.007 1     

Artemisone 
Pearson 

Correlation 
(Sig. 2-tailed) 

0#439 0#347 1   

DHA 
Pearson 

Correlation 
(Sig. 2-tailed) 

0#537 0#506 0#703 1 

Artesunate 
Pearson 

Correlation 
(Sig. 2-tailed) 

0#717 0#802* 
p = 0#03 

0#762* 
p = 0#047 

0#831* 
p = 0#02 

 

 

 

active metabolite routinely used as a first line treatment of malaria. We do note that a sample 

size of seven is small and standard deviation of each IC50 value within each isolate was often 

large, presumably a result of the variation in assay sensitivity. Both these factors are likely to 

reduce the power to detect correlations between the drugs. Despite this lack of power, all 

correlations were positive and 4/10 were statistically significant. Given these results and 

those of the simulation, it would indicate a likely correlation between the IC50 of the 

artemisinin components and that both the parent drug and active metabolite are responsible 

for the parasite killing (Figure A2) and we can conclude that the two components will be 

subject to joint selection pressure.  

 

Variation was added to model parameters using parameter-specific estimates of CV.  

For consistency and where possible, parameter-specific estimates of variability were taken 

from the same source as the default value (Table A1). Unfortunately some papers reported 

only the range of values measured so it was not possible to calculate a CV. In these cases, the 

estimates of variability were taken from other available studies (Table A1). For completeness 

we also include the changing failure rates seen if CV is assumed to be constant, in this case 

30% (Figure A3) as in our previous study (364). It is gratifying to note that the impact of 
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Figure A3. Change in failure rates associated with increasing AS/AR and DHA IC50 when 

the ./0112.2034 of variation in all parameters is always 30% (A) AS-MQ treatment and (B) 

AR-LF treatment.  

 

 

 

increasing levels of resistance is robust to how the CV was assigned (compare Figure A3 

with Figure 2, panels E and F in the main text). 

 

The CVs were used to determine the distribution of parameters but were often so large that a 

significant proportion of negative results (which are biologically impossible and hence 

unusable) would have occurred if we had assumed a normal distribution. We therefore 

assumed those parameters with a CV of <50% to be normally distributed whilst those with a 

CV >50% were log-normally distributed.  
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For log-normally distributed parameters, the logarithmic mean, !, was found using  

 

! 

µ = log
m2

v +m2

" 

# 
$ 

% 

& 
' 
 

 [3.1]
!

!
where m was the arithmetic mean value, which in this case was equivalent to the default 

value (Table A1) and v was the variance. Here, the variance was equal to the arithmetic mean 

multiplied by the CV, squared. 

 

The standard deviation, ", of the log-normally distributed parameter is  

 

! 

" = log
v

m2 +1
# 

$ 
% 

& 

' 
( 

 

 [3.2] 

 

The parameter value obtained from the log normal distribution was then back converted for 

use in the model by finding the exponential of the randomly generated number. 

 

Regardless of the parameter distribution all random numbers generated must be positive. 

Each time a number was generated the program checked for values less than 0 and, if 

necessary, generated another random number in the same way until a positive value was 

chosen. Random parameter values were generated using these distributions to simulate the 

PK properties of individual patients and PD profiles of their infections. 

 

The mechanistic PK/PD model presented here has met the methodological challenges 

involved in incorporating the absorption and conversion phases of the artemisinins whilst 

also tracking the concentration of more than two drugs.  However, the new model structure 

required one further assumption, that all artemisinin species could be adequately described 

with a one-compartment model structure (i.e. only one compartment besides the gut is 

investigated, in this case the serum). There is currently considerable uncertainty in the 

literature as to which structural PK model provides the best fit to data for the artemisinin 

derivatives. Simpson et al. (303) note that many studies of the artemisinin derivatives have 
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either been unable to fit satisfactory PK models (166, 212, 220, 301), fit only a one-

compartment model (96, 139, 301) or required some PK parameters to be fixed (96, 220, 

301). Given the confusion, we continue to assume a one-compartment model for all 

artemisinin species is satisfactory but the methodology could be easily extended to two-

compartment models although this would require estimating and including additional PK 

parameters. It was also assumed that both artemisinin species have the same mode of action 

and so only the ‘dominant’ form with the higher kill rate was used. While this assumption is 

reasonable, the new methods (allowing more the action of more than two drugs 

simultaneously) mean it can easily be relaxed. 

 

The extent of drug absorption and bioavailability can cause significant variability in the 

outcome of drug treatments. This is particularly true in the case of lumefantrine where the 

oral bioavailability is highly dependent on food intake and often poor in cases of acute 

malaria (97). When running simulations, we assumed all patients had uncomplicated malaria 

and followed dosing regimens precisely thus allowing us to ignore any potential 

complications arising from bioavailability and absorption. 

 

The effect of combination therapies on parasite numbers were modelled assuming that 

partner and artemisinin act independently and that drug effect is additive, i.e. no synergy or 

antagonism. This was a reasonable assumption in previous simulations (364) where the ACTs 

were modelled assuming the partner drug and only one active component for the artemisinins 

(i.e. instant absorption and if necessary converted) acted upon the parasites. The new 

methodologies described herein explicitly allow for the action of both artemisinin 

components (i.e. the parent drug and active metabolite) but to assume that this effect is 

independent and thus additive seems unrealistic given their similar modes of action. As such 

we chose to use only the dominant drug form (parent or metabolite) with the higher kill rate 

to influence the parasites over each time step. However, given the methodological extensions 

allowing for the action of more than two drugs simultaneously, this assumption can easily be 

relaxed. For completeness, the results of simulations allowing for independent action of the 

two artemisinin components has been included (Figure A4 and A5). We also note that this 

assumption that drug action is additive cannot be extended for combinations such as 

sulfadoxine-pyrimethamine and atovaquone-proguanil which may show synergy. 

Unfortunately, quantifying and even defining “synergy” or “antagonism” seems to be a topic 

of much debate; Chou (64) discusses the “controversy and confusion” surrounding drug 
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combinations whilst Greco et al. (115) list no less than 13 different methods of determining 

synergy. With no consensus method available to define drug synergy mathematically, the 

best method of inclusion is likely to be the empirical approach taken for SP by Gatton et al. 

(109).  

 

When looking for the addition parameters required to describe artemisinin absorption and 

conversion it became apparent that the estimates of DHA volume of distribution and 

elimination rate differed depending on whether the metabolite was measured following 

treatment with AS or AR (140, 236). It is not clear whether this response is a real biological 

phenomenon, for example AS and AR may differentially induce DHA elimination processes, 

or whether it reflects normal inter-study variability. Using two different estimates of DHA 

PK was obviously not ideal but with no way to choose between the estimates and for 

consistency with the other studies (140, 236), it seemed reasonable to use both. The need for 

consistency was also the reason estimates of the volume of distribution for AS and AR 

differed from those previously published in Winter & Hastings (364). 

 

While we do use multiple dosing regimens there was assumed to be no change in PK 

parameters due to auto-induction enzymes nor change due to improved clinical status after 

treatment has started. Running the model in shorter time steps would of course allow for 

these factors to be easily incorporated but were omitted here in the interests of simplicity. 
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Figure A4. Change in failure rates associated with either increasing AS/AR IC50 (top), 

increasing DHA IC50 (middle) or increasing AS/AR and DHA IC50 (bottom) (A) AS-MQ 

treatment and (B) AR-LF treatment assuming independent action of the artemisinin 

components. Note that failure rates for monotherapies are shown as columns to the 

immediate right of the x-axis.
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Figure A5. Change in parasite clearance times (PCT) associated with either increasing 

AS/AR IC50 (top), increasing DHA IC50 (middle) or increasing AS/AR and DHA IC50 

(bottom) (A) AS-MQ treatment and (B) AR-LF treatment assuming independent action of the 

artemisinin components. Note that PCTs for monotherapies are shown as columns to the 

immediate right of the x-axis.!!
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3. Implementation 
 

 

This model was implemented in R (version 2.9.2) (270) although earlier versions were run in 

Maple (version 13). Both packages gave the same result but the results presented here were 

generated in R. Substituting equations 7 and, where appropriate, 8 for each drug into equation 

11 enabled us to track parasite numbers and while the resulting equation was complicated, it 

was solved numerically using R (using the “integrate” command in the “stats” package). The 

model ran in half-day time steps for the first seven days to allow for multiple dosing and one-

day time steps thereafter to speed up simulations. We chose to use numerical integration of 

half/single day time steps as it is more explicit allowing us to give dosages twice per day and, 

if required, change PK parameters over the course of treatment to reflect changes in the auto-

induction of enzymes (as in quinine (335)). However we do note that it is possible to find the 

treatment outcome algebraically after the final dose (144).  

 

The dosing regimens investigated were AS-MQ (4mg/kg/day AS with 8.3mg/kg/day MQ for 

three days) or AR-LF (1.7mg/kg AR with 12mg/kg LF given twice daily for three days) 

(380).  The PK/PD parameter estimates are given in Table A1 and unless otherwise specified 

(Supporting Information, part 2), were previously validated in Winter & Hastings (364).  

!
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Chapter 4 
 

Simulating Clinical Trial Data as a Resource 

for Optimising Analysis Methods 
 

 

1. Introduction 
 

Increasing tolerance to the newest class of antimalarials, the artemisinins (150, 260, 285), 

means there is an urgent need for new drugs to combat malaria. Traditional mechanisms for 

drug development have typically provided few drugs to treat diseases in the developing 

world. The discovery and bringing to market of new drugs is lengthy and complicated, taking 

an average of ten to fifteen years and costing between $800 million and $1 billion (82). 

Clinical trials are a major part of this development, typically lasting between 6-7 years and 

conducted in 3 phases each with an increasing number of patients.  

 

Phase 1 (in healthy volunteers) and phase 2 trials (in patients) are used primarily to determine 

how new drugs work in humans, to test drug safety (pharmacokinetics, PK), predict a dosage 

range and in phase 2 focus on proof-of-concept and assessment of drug efficacy. Phase 3 

trials look at drug effectiveness in large groups of patients in several locations. Drugs used to 

treat malaria typically have long half-lives (the obvious exception being the artemisinins) and 

phase 3 trials must allow for a minimum of 28 days but as much as 63 days (322, 368) 

follow-up to adequately characterise antimalarial drug effectiveness. Conducting large 

antimalarial phase 3 drug trials with extended patient follow-up in developing countries is 

logistically challenging, particularly as local infrastructure is often poor and drop out rates 

are often high. Trials typically enrol a few hundred up to a few thousand patients (216), and it 



! **'!

is the size and comparatively long duration of phase 3 trials that means they are one of the 

most expensive, time consuming and difficult trials to design and run.  

 

The logistical challenges posed by clinical trials are further complicated by the variety of 

analysis methods available and by patients deemed to have infections with mixed genotypes 

at follow-up appointments. Mixed genotype infections are defined as those with more than 

one clone present at the time of follow-up, these maybe clone/s present in the original 

infection and/or clone/s acquired from new infections (Figure 1). They occur because patients 

enrolled within the studies are almost always at risk of reinfection during the follow-up 

period and so analysis of clinical trials must include a method of classification for mixed 

infections. Methods of analysis for clinical trials typically include either intention-to-treat 

(ITT), per-protocol (PP) or time-to-event (or survival) analyses (158). ITT analysis involves 

comparing treatment groups that include all patients originally allocated for randomisation 

while PP analysis compares treatment groups including only those patients who completed 

the treatment originally allocated (296). Survival analysis provides a tool for analysing the 

time-to-event data commonly collected within a clinical trial (304). In 2003, WHO attempted 

to standardise these methods and established a protocol for the design and analysis of malaria 

trials (368). They determined that trials should be analysed using survival analysis and 

provide a method for classifying infections with mixed genotypes. Despite the guidelines, 

analytical analysis and classification methods still vary (67) and it is impossible to investigate 

the performance of these methods using field data where the true results (in the absence of 

analysis bias) are unknown.  

 

Figure 1 shows the change in drug concentration and parasite number over time, within a 

patient whose original infection contains multiple clones and who acquires multiple new 

infections. The salient features we note on Figure 1 include  

 

1. Infections at time of treatment have between 1010 and 1012 parasites, the detection limit is 

108 and once below this limit we can no longer tell what happens to the parasites 

(red/green lines indicate parasites are either cleared (green) or recrudesce later (red)). 

Where MOI is high, several clones maybe preset at the time of treatment (red and green 

lines) and at any point following treatment new infections a likely to occur (grey and 

orange lines). A patient’s infection may therefore have a mixture of clones including 

those persisting from the time of treatment and those acquired from new infections.  



! **(!

!"#$

!"%$

&'
('
)*
+,
$-
./

0,
($ !"!"$

!"!1$

2*/,$ +$

3,+,4567$
8*/*+$

-./0,($69$:'(')*+,)$
,/,(;*7;$9(6/$+<,$8*=,($

!"#$%&'(&)(*"+,'(%
-.)+")/%'"0$0(+.%0(1)&,'(2%
3)&"#/)2&)(&)%
-.)+")/%()4%0(1)&,'(2%
5#&&)221#.%()4%0(1)&,'(2%

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 1. The changing drug concentration (blue) and parasite number over time, within a 

patient. Those parasites clones present at the time of treatment can either be cleared by the 

drug (green) or recrudesce later (red). New infections can also either be cleared by the 

existing drug (grey) or become established within the patient (orange). 

 

 

 

2. However the relative numbers of each clone means some maybe missed from the 

analysis (for example, the grey lines represent clones with continually low numbers). 

3. Some drugs have a long half-life and so failures can occur more than 50 days after 

treatment (red line) hence the long period of follow-up and high drop out rates 

4. New infections occur at a relatively high rate, approximately 6 to 16 per person per year 

in areas of high transmission. Current drugs do not affect the liver stages and so new 

infections emerge with approximately 105 parasites, these will then either be cleared 

(gray lines) or cause new infections (orange lines). 

5. At time ‘t’ there are several clones present, genotyping will give a ‘mixed’ result i.e. the 

sample will contain a mixture of alleles, some which were present at the time of 

treatment and some which were not. 



! *+)!

 

Generating simulated datasets, where we know the ‘true’ answers, seemed to provide an 

ideal opportunity to assess the different methods of analysis. We will generate simulated 

data designed to address the following questions/issues that typically arise during the 

analysis of trial data 

 

A. Dealing with data of patients who don’t attend all follow-up appointments 

B. Calculating drug effectiveness on a per parasite clone basis 

C. The best use of genetic markers to distinguish new infections from reinfections 

D. The extent to which genotyping resolution/sensitivity affects results 

 

 

A. Patient drop out data  
 

High patient drop out rates frequently cause recrudescent infections to be missed. The phase 

3 of clinical trials typically include between 100 and 500 individuals and for treatments to be 

deemed successful patients must attend all appointments for the trial duration. The WHO 

currently recommend a follow-up duration of 28 days for all antimalarials and extend this to 

42 days for treatments containing either MQ or piperaquine (PQ) (380). Treatment failures 

can occur at any time during follow-up at which point patients are no longer required to 

attend further appointments. Consequently treatment successes require longer follow-up 

periods than treatment failures. Patients can be lost from trials for a number of reasons, for 

example they may be withdrawn by their doctor, they may withdraw consent, travel outside 

the catchment area or in some cases they may die. In almost all clinical trials some patients 

are lost to follow-up (a systematic review of loss to follow-up in randomised controlled 

studies was conducted by Akl et al. (2)) and the data from these patients is often removed 

before result analysis (PP vs ITT analysis) (368). This may bias results as the extended 

follow-up period required to define a treatment as “successful” means patients drop-outs are 

more likely to occur in this group. Our first aim was to generate computer-generated data to 

determine whether there is a better way to deal with the data lost to patient dropouts. 
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B. Failure rate per clone 
 

Molecular studies have demonstrated that a patient with malaria can be simultaneously 

infected with multiple, genetically distinct Plasmodium falciparum clones (117, 259, 308). 

The number of ‘clones’ present in the patient at a specific time point is called the multiplicity 

of infection (MOI) and can be found using hyper-variable genetic ‘markers’ such as msp-1, 

msp-2 and glurp (386). Following antimalarial treatment, outcome is currently measured as 

success or failure per human but an association between MOI and both clinical episodes and 

treatment failure (12, 181) has been demonstrated although not conclusively established. In 

this case, the higher the transmission the more likely the patient will be infected with multiple 

clones. If true, this implies a cure is always easier to achieve in areas of low transmission 

where only a single clone has to be cleared by treatment compared to high transmission areas 

where success may require up to six clones to be cleared simultaneously. If this is the case it 

is not feasible to compare the drug success rates of different studies with different levels of 

transmission. To address this problem and allow for comparison between studies, we would 

like to calculate treatment outcome on a per-clone as well as per-human basis. 

 

 

C. New versus recrudescent infections 
 

Malaria transmission intensity is usually expressed in terms of the entomological inoculation 

rate (EIR) and this can typically vary from <1 to >1000 infective bites per person per annum 

(31). Where EIR are high locally, treated patients often develop a new infection during the 

course of follow-up. In some areas of Africa with very high transmission more than 50% of 

patients develop recurrent parasitaemia within 28 days of treatment (46). This suggests as 

many as 50% of the reported treatment failures may be re-infections (rather than true 

treatment failures), to deal with this we need to accurately differentiate re-infections from 

recrudescence.  

 

In principal, re-infections can be distinguished from drug failures by their molecular 

signature alleles at highly variable ‘marker’ genes. For example, if alleles A, B, C were 

detected at the time of treatment and the patient develops malaria four weeks later, this 

infection will be classed as a drug failure only if alleles A, B and/or C are present. Note that 
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each marker has many alleles and so comparisons must in fact determine whether the same 

alleles (rather than the simply markers) are present before or after treatment. Genotyping is 

the current method recommended by the World Health Organisation (386) to distinguish a 

new infection from a recrudescent infection with the majority using up to three markers, 

typically msp-1, msp-2 and glurp. These are highly genetically diverse markers (see for 

example (230)) that are believed to have no influence on treatment outcome, but do allow us 

to compare pre- and post-treatment parasite clones. Whilst genotyping provides a measure of 

the genetic diversity of an infection, genotyping techniques have not been standardised. The 

results are open to interpretation (308) and the differing methods used across laboratories 

(99) have a varied ability to measure diversity (67), this can have potentially large effects on 

estimates of treatment efficacy. In an effort to improve this measure of diversity a 

combination of markers is often used, two parasite clones may have the same allele at one 

marker but different alleles at another (315). 

 

A recent paper by Juliano et al. (162) highlights the main sources of error associated with 

parasite strain genotyping (a.k.a. PCR-correction) (i) sequestered parasites are absent from 

the peripheral blood at time of sampling, (ii) parasites present as a minor variant and missed 

by less sensitive genotyping methods (iii) parasites missed due to over amplification of the 

more abundant DNA sequences, a particular problem when using nested PCR (iv) the effect 

of antimalarials on the abundance and composition of the host parasite population is 

unknown, (v) the chance of reinfections with new parasites with the same genotype (162). 

Phase III trials are now shifting to non-inferiority trials comparing drug regimens with high 

cure rates rather than superiority trials that are usually conducted in areas where the 

recommended treatment is failing (37). Drugs compared in non-inferiority trials are expected 

to perform equally well and so even minor misclassification of newly acquired or 

recrudescent infections can have a significant impact on the estimated risk of treatment 

failure and hence the decisions of policy makers regarding optimal drug therapy. The 

accuracy of genotyping via PCR-correction has understandably attracted considerable 

attention (67, 107, 308, 322). For example, Juliano et al. (161) show 5 out of 6 (83%) patients 

from clinical trails in Thailand and Cambodia were incorrectly classified as being reinfected 

when using standard PCR (polymerase chain reaction) protocol. When using the more 

sensitive heteroduplex tracking assays (HTA) and direct DNA sequencing they found these 

infections to be recrudescences (161). This misclassification leads to overestimates of drug 

efficacy and may delay switches in first-line antimalarial policy.  
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Distinguishing a new infection from a re-infection is further hampered by the risk that pre- 

and post-treatment samples will have matching alleles by chance. While this chance is 

relatively low in areas with a low EIR (116), the risk increases with increasing MOI and/or 

with increasing transmission intensity. An over-estimation of the true risk of treatment failure 

is likely to occur when transmission is high as a large proportion of drug failures are likely to 

be new infections misclassified as a recrudescence (116). An antimalarial efficacy study 

carried out in Uganda (53) found the chance of two random infections having identical alleles 

by chance was 5% for msp-1 (45 unique alleles detected), 2% for msp-2 (57 alleles) and 7% 

for glurp (28 alleles). Genotyping is currently carried out without consideration for the 

increased likelihood that genotypes may match by chance when MOI and/or transmission 

intensity are high (67, 116). A recrudescence is simply defined by the detection of at least 

one identical marker allele in both the pre- and post-treatment samples (315, 386). The extent 

to which transmission intensity may affect genotyping classification and thus the accuracy of 

results from clinical trials has not been studied (116). We would like to know how 

genotyping techniques, sensitivity and resolution affect estimates of antimalarial efficacy. 

 

 

D. Genotyping sensitivity 
 

During genotyping analysis, it is difficult to detect ‘minor’ alleles if they are present in less 

than 10-20% the frequency of the most common allele, this often leads to misclassification of 

drug success rates (129). This can be a particular problem if MOI is high, Färnert et al. (100) 

for example showed the composition of infecting clones in Tanzanian children changed daily 

over 14-days. Sama et al. (284) used mathematical models to analyse the infection dynamics 

of heavily parasitized patients in northern Ghana and estimated that on average only 47% 

(42-51, 95% CI) of the parasite clones present were detected in a finger-prick sample. The 

effect of genotyping sensitivity was subsequently looked at in the field by Koepfli et al. 

(175), their study in Papua New Guinea (PNG) included sampling children on fourteen 

consecutive days to find the proportion of clones typically missed in a single bleed, in this 

case 18-31%.  
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2. Liverpool School of Tropical Medicine’s (LSTM) role in the 

project 
 

This work was done in collaboration with Alice Parry (masters and PhD student) at the 

department of Mathematics and Statistics, Lancaster University and her supervisor (Dr 

Thomas Jaki). The strategy was to identify key questions about analysis of field data 

(outlined above) and simulate datasets at LSTM designed to address these questions. The 

simulated results were generated using a modified version of the model described by Winter 

& Hastings (364), with appropriate modifications as described below. The resulting 

simulation data was forwarded to Parry for statistical analysis. 

 

 

3. Methods 
 

3.1. General Methods 
 

The methods used to generate the results presented here are an extension of those published 

in Winter & Hastings (364). We chose to investigate three antimalarial drug treatments, two 

were current first-line artemisinin combination therapies (ACTs) artemether-lumefantrine 

(AR+LF) and artesunate-mefloquine (AS+MQ). The third treatment was chloroquine (CQ) 

monotherapy, which although no longer officially deployed in the formal health sector, was 

included here for historical comparison. The dosing regimens of the drugs investigated and 

the PK/PD parameters used are included in Table 1. Natural variation was incorporated into 

the model PK/PD parameters by simply assuming that each parameter was normally 

distributed, with a co-efficient of variation of 30% (364). It is important to note that when 

assigning parameters within the model the fates (survival/death) of the different clones in 

each human were non-independent, as they share the same host environment. For example, 

background levels of immunity and rates of drug metabolism vary substantially between 

humans, if a human has a low level of immunity or rapidly metabolised a drug then all the 

clones present during treatment shared this (relatively benign) human environment. 

Consequently, pharmacokinetic parameters were considered to be a human attribute, unique 

to each human but common to all clones within a human. 
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Although we allowed for environmental similarities, we assumed no genetic relatedness 

between clones within a human and so the pharmacodynamic properties (IC50, maximum 

parasite kill rates and slope factor), the parasite growth rate and initial numbers present were 

assigned to each clone independently. 

 

To address the questions outlined above, the model of Winter & Hastings (364) required the 

following three modifications 

 

 

i. The presence of more than one clone at the start of treatment 
 

The number of clones present at the start of treatment was assigned to each patient using data 

collected by Nsanzabana (244, 245) and used in Hastings et al. (129). The data was collected 

from an area of high transmission in Tanzania where MOI typically ranged from one to eight 

(Figure 2). The probability of a patient being assigned a specific MOI was defined by on this 

frequency distribution of MOI measured. The initial number of parasites present at the start 

of treatment for each clone was chosen from a uniform distribution between 1010 and 1012.  

 

 

ii. The acquisition of new infections during the course of treatment 
 

The model was adapted to allow patients to acquire new infections during the course of 

follow-up. The number of new infections was assigned to each patient at the beginning of the 

simulation and simulated using the average number of reinfections occurring per patient per 

year. In this case we used reinfection data from Northern Ghana (284) where maximum 

likelihood estimates suggested on average any individual would acquire 16 new infections 

per year. This data is consistent was data on effective ACTs. For example, Bukirwa et al. 

(46) report more than 50% of patients developed recurrent parasitaemia within a month of 

treatment (51% of patients following AR-LF treatment and 66% of patients after AS-AQ 
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Table 1. Standard adult dosages recommended by WHO (2006) and mean antimalarial drug parameters for artemether, artesunate, chloroquine, 

lumefantrine and mefloquine a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a The two values in square brackets indicate those that were later used in Winter & Hastings 
b unpublished data from LSTM 
c assumed to be like AS 

 

Default value 
Variable 

Artemether Artesunate Chloroquine Lumefantrine Mefloquine 

Dose (mg/kg) 1.6mg/kg twice 
daily for 3 days 

4mg/kg once 
daily for 3 days 

10mg/kg once on days 
1 and 2, 5mg/kg once 

on day 3 

19.2mg/kg twice 
daily for 3 days 25mg/kg once 

Volume of distribution (Vd) 17.4(110) 2.75(301) 300(359, 397) 21(68) 20.8(359) 

Elimination rate constant (k) 3.96 b 16.6 (212, 321) 0.023(359) 0.16(110, 212, 350) 0.053(350) 

Conc. required to produce 
half the desired effect (IC50) 

0.0023 b 0.001(44, 211) 0.036 
[0.02 (211, 225)] 0.032(44, 321) 0.55 

[0.027 (44)] 

Maximal parasite-killing rate 
constant (V) 4(355) 4.6(355) 3.45(355) 3.45(355) 3.45(355) 

Slope factor (n) 4 c 4(321) 1.6 b 4(321) 5(321) 
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Figure 2. The probability of a patient being assigned a specific MOI was dependent 

on the frequency distribution of MOI measured in the field. The data plotted here was 

collected by Nsanzabana (245) in an area of high transmission in Tanzania (1993-

1994). 

 

 

 

treatment). If we assume reinfections can occur at any time in the month following 

treatment we can predict each patient will acquire approximately 6 new infections 

each year. However, we know patients were taking effective ACTs with long half 

lives so we can crudely assume no new infections became established for the first two 

weeks. Following treatment (due to their long half-life), 50% of patients get new 

infections in a 2-week period and so are likely to receive an average of 12 new 

infections each year. Areas with lower transmission would obviously have lower 

reinfection rates. For example, reinfection rates have recently been measured in an 

area of moderate transmission in PNG and show children (treated with AR-LF (189)) 

acquired approximately 6 new infections per child per year (226) 

 

The probability of a new infection occurring during the designated follow-up period 

was found by dividing the number of re-infections per year, by the number of days in 

a year and then multiplying by the number of days in the patient follow-up period. For 
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example, if simulated patients were followed for 63 days after treatment (the typical 

length of an antimalarial clinical trial) and were assumed to have 16 new infections 

per year, they will have an average of 2.8 (16/365 * 63 = 2.8) new infections during 

the follow-up period. Variation was added by choosing the exact number of new 

infections randomly from a poisson distribution.. 

 

In cases where patients were re-infected during follow-up we assumed parasites first 

became susceptible to drug treatment on emergence from the liver. Initial parasite 

number was therefore based on the emergence of 105 merozoites whilst random 

sampling determined the specific day parasites emerged. 

 

 

iii. Tracking of individual clones using molecular markers. 
 

We simulated the commonly used markers msp-1, msp-2 and glurp alongside the 

microsatellites TA109, TA1, and ARA2. At the beginning of each simulation, each 

clone present at the start of treatment or later appearing in a new infection was 

assigned a specific allele for each of the markers. 

 

The allele frequency data for msp-1 and msp-2 were taken from a study in Papua New 

Guinea by Schöpflin et al. (294) with raw data kindly provided by Ingrid Felger 

(Figure 3). Polymerase chain reaction (PCR) is a simple enzymatic technique used for 

the amplification of DNA fragments and allows for the detection of nucleic acid 

polymorphisms. Schöpflin et al. (294) use nested PCR (nPCR), a more sensitive and 

specific form of PCR, to identify the genetic variation (i.e. different alleles) in the 

markers. Porter et al. (263) note that the insensitivity of nPCR to small changes in the 

number of base pairs (bp) means variants differing by less than 20bp are routinely 

considered to be the same allele. The raw data contained details of allele length (bp), 

class and codes however for simplicity in the model the 24 msp-1 and 35 msp-2 

alleles were arbitrarily numbered and any potential misclassification of alleles as a 

result of base pair repeats was ignored. The frequency with which alleles were 

measured in the field was used to determine the probability of a clone containing that  
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Figure 3. The allele frequency distribution of (A) msp-1 and (B) msp-2 markers, the 

data were taken from a study in Papua New Guinea with moderately high 

transmission by Schöpflin et al. (294). 

 

 

 

A. B. C. 

 

 

 

 

 

 

 

 

 

 

Figure 4. The allele frequency distribution of the microsatellite markers (A) TA109, 

(B) TA1 and (C) ARA2 in an area of moderately high transmission in Malawi 

(between 2002 and 2003), as described in Mzilohowa et al. (231). 
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allele in the simulation. The microsatellite markers TA109 (14 alleles), TA1 (11 

alleles), and ARA2 (12 alleles), were originally described by Anderson et al. (339) 

however the distributions used here came from a more recent dataset collected in 

Malawi and described by Mzilahowa et al. (231) (Figure 4). Again each allele was 

arbitrarily numbered and the probability of a clone containing a given allele 

corresponded with the frequency that allele was seen in the field. The frequency 

distribution of glurp alleles was not found in time to be included in the simulations, 

see discussion.  

 

Note - although no information regarding allele size, class or code was passed to 

Parry, the information can of course be provided if necessary. 

 

 

3.2. Simulation Details 
 

A population of 10,000 individuals was simulated for each of the three treatment 

regimens. Each patient in the simulation had a malaria infection which could include 

multiple clones and were at risk of acquiring new infections during the period of 

follow-up. These details along with the timing of new infections (if any), patient PK 

and parasite PD parameters were all assigned to the patient at the beginning of the 

simulation. The model tracked drug concentration and parasite number for 100-days 

following the first treatment dose. While clinical trials typically run for up to 63 days 

(368), the 100-days of follow-up allowed us to determine the degree to which a trials 

follow-up period censors data. Simulations ran in half-day time steps for the first 

seven days allowing multiple drug dosages to be administered but to speed up 

simulations all subsequent days were modelled in one-day time steps. 

 

To answer such a diverse range of questions a large amount of data about both the 

patient and the parasites was recorded and subsequently passed to Parry for analysis. 

For each human this included the specific PK parameters, their initial MOI, the 

number of new infections that occurred and the day new infections emerged from the 

liver. For each parasite clone present at any point during the follow-up period the 

initial parasitaemia, the growth rate, the specific PD parameters, the associated 
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genotype and the exact number of parasites present on each day of the follow-up 

period was recorded. This data could then be used to determine the day each original 

clone in the infection first becomes undetectable in the blood (i.e. parasite numbers < 

108), the day a clone is cleared from the body (i.e. parasite numbers < 1) if treatment 

is successful and the day recrudescence occurs (i.e. parasite numbers >108) if 

treatment fails (Figure 1). 

 

To address each of the questions outlined above we suggest the following strategies. 

 

 

A. Patient drop out data 
 

All the necessary patient information required to address this question is included in 

the data set. The results can be easily manipulated to examine the methods of dealing 

with data lost to follow-up. For example by omitting data from the simulated results it 

is possible to produce results that mimic patients who fail to attend all follow-up 

appointments. 

 

 

B. Failure rate per clone  
 

The simulated data set includes information about the exact fate of each clone, each 

day after treatment. This can be used alongside the MOI of the patient’s initial 

infection to determine a failure rate per clone. 

 

 

C. New versus recrudescent infections  
 

The simulations provide data about every clone present in both the original host 

infection and any new infections, with this information it is easy to determine the true 

cause of treatment failure. Field conditions (i.e. non-detectability of clones present at 

low frequencies (see D)) can be recreated by omitting data, analysis of the complete 
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and edited results will then show how closely field studies estimate the reasons behind 

treatment failure. 

 

 

D. Genotyping Sensitivity 
 

All clones present within the body were assigned a specific genotype and the alleles 

present each day recorded. The relative numbers of each clone can be used to 

determine the strength of the genotyping signal. For example, if clone A has 1010 

parasites and clone B has 106 then it is unlikely clone B will ever be detected. From 

this we can then examine the effects of genotyping sensitivity. 

 

 

 

4. Discussion 

 

This work was done under strict time constraints early in the project; it was assumed 

that as the methodology and parameter calibration developed new simulated data 

would be provided. The main methodology employed here was described and 

validated in Winter & Hastings (364) however at the time of running simulations 

model calibration was incomplete (see below). Consequently, drug parasite clearance 

times and failure rates do not match those presented in Winter & Hastings (364). 

 

The widespread resistance of parasites to CQ and MQ made it difficult to find recent 

papers with reliable IC50 estimates for fully sensitive parasites. The IC50 values 

presented here for CQ and MQ (Table 1) are therefore higher than those that have 

since been validated in the paper. For CQ the difference is small (0.032 to 0.002) and 

it’s effect on the results negligible, the failure rates are still reliably within the range 

given in field estimates at 97% successful. The estimated MQ IC50 of 0.55 used here 

is significantly higher than the 0.027 used in Winter & Hastings (364), as a 

consequence the treatment failure rates for AS-MQ (86%) mimic those of a grossly 

failing regimen. The AR-LF data was typical of a drug just beginning to fail (87% 

success) and can be used alongside the very successful (CQ) and very unsuccessful 
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(AS-MQ) regimens to analyse drugs with varying degrees of resistance. Time 

constraints also prevented the inclusion of the glurp marker allele distribution 

however this can easily be added at a later date. Descriptions of the glurp allele 

frequencies have been collected by Cattamanchi et al. (53) in Uganda and more 

recently by Mwingira et al. (230) in Burkina Faso, São Tomé, Malawi, Tanzania and 

Uganda. 

 

Variation was incorporated into the model by assuming all model parameters were 

normally distributed with a co-efficient of variation of 30%. Whilst this was initially 

required to allow the relative importance of parameter values to be assessed it was not 

the most realistic scenario. We know some parameters, such as IC50 are much more 

variable (Mu et al. (225) report a range of greater than 100-fold) whilst others maybe 

much less variable. Work is on going to find more sophisticated descriptions of model 

parameters. 

 

As is necessary with all models, assumptions were made during this models 

construction. The assumptions were as follows. 

 

i. Drugs were instantly and fully absorbed and converted (if necessary) to their 

active metabolite. Whilst absorption lag-time maybe negligible for drugs with a 

long half-life (in this case CQ, LF and MQ) it becomes more important for the 

artemisinins with half-lives as short as 40 minutes.  

ii. The number of new infections is allocated independently of initial MOI, this 

ignores potential issues of spatial heterogeneity. Intuitively, those patients with a 

higher MOI are more at risk of acquiring new infections and hence more likely to 

become re-infected during patient follow-up. 

iii. Patients complied fully with the designated treatment regimen. 

iv. Assume there is no genetic relatedness between the clones, infections within a 

host can include multiple genetically distinct parasite clones  

v. There was no sequestration of malaria-infected erythrocytes. This is usually 

characteristic of infections with P.falciparum, Koepfli et al. (175) reported 

parasites can be sequestered in the internal organs for up to 20 hours of the 48 

hour lifecycle. Naturally if parasites are sequestered in the organs they will not be 
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present in the peripheral blood thus increasing the risk of missing clones when 

genotyping in a single blood sample. 

 

The model presented here was developed using the methodology described in Winter 

& Hastings (364). Parry chose to focus her analysis on just one of the issues that 

typically arise during analysis of clinical trial data (see A-D of the introduction) i.e. 

determining the effectiveness of drugs on a per clone basis. The model described 

herein produced plausible datasets and the results are now published (see Appendix 

(158)). This methodology has since been extended to mathematically incorporate the 

absorption, conversion and distribution phases of the drugs (168) as described in 

Chapter 2 of this thesis. This updated methodology will be used to generate new 

datasets and, while unlikely to make qualitative differences to Parry’s results, will 

produce results that are biologically more realistic. Parry decided against using results 

generated using these new methods while developing the methods described in Jaki et 

al. (158) but will use them in her future work. Parry now aims to develop a 

methodology that allows drug effectiveness to be analysed by its ability to cure 

patients, and it’s ability to prevent re-infections, beginning with analyses with two 

binary endpoints (i.e. treatment cure/failure and the presence/absence of new 

infections on day 28). I have now generated the new datasets for two treatment 

combinations (AS-MQ and AR-LF) consisting of the requested 2,500,000 individuals. 

The sample size was calculated by Parry to allow statistical analysis of 10,000 clinical 

trials including up 250 people per trial. The technical challenges associated with 

generating samples of this size required that I run the models remotely on servers for 

high performance computing available within LSTM. However it should be noted that 

with the model extensions outlined in the chapter, the model is still capable of 

addressing all the questions outlined above and so this work also forms the basis for a 

grant application to further develop methods of analysing antimalarial drug clinical 

trials (see Chapter 7 for more information). 
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Analysing malaria drug trials on a
per-individual or per-clone basis:
a comparison of methods
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There are a variety of methods used to estimate the effectiveness of antimalarial drugs in clinical trials, invariably
on a per-person basis. A person, however, may have more than one malaria infection present at the time
of treatment. We evaluate currently used methods for analysing malaria trials on a per-individual basis and
introduce a novel method to estimate the cure rate on a per-infection (clone) basis. We used simulated and real
data to highlight the differences of the various methods. We give special attention to classifying outcomes as
cured, recrudescent (infections that never fully cleared) or ambiguous on the basis of genetic markers at three
loci. To estimate cure rates on a per-clone basis, we used the genetic information within an individual before
treatment to determine the number of clones present. We used the genetic information obtained at the time of
treatment failure to classify clones as recrudescence or new infections. On the per-individual level, we find that
the most accurate methods of classification label an individual as newly infected if all alleles are different at the
beginning and at the time of failure and as a recrudescence if all or some alleles were the same. The most appro-
priate analysis method is survival analysis or alternatively for complete data/per-protocol analysis a proportion
estimate that treats new infections as successes. We show that the analysis of drug effectiveness on a per-clone
basis estimates the cure rate accurately and allows more detailed evaluation of the performance of the treatment.
Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Malaria treatments need to be monitored on a regular basis to ensure that the therapies used are still
effective. The current standard for these trials, and trials of new treatments, is randomised controlled
trials. Superiority trials were the standard design used when first-line drugs were failing, but artemisinin-
based combination therapies (ACTs) are all currently effective, so interest is moving to non-inferiority
trials to confirm effectiveness [1, 2]. Taking a blood sample and estimating the number of parasites by
the proportion of parasitised red blood cells prior to treatment detect whether a subject is infected and
subsequently treated. Converting the proportion of parasitised red blood cells to an absolute number of
parasites aids pharmacological analysis. A typical symptomatic infection has between 1010 and 1012

parasites, and only parasite counts greater than 108 are detectable by microscopy. The undetectable
parasite counts together with the possibility of multiple genetically distinct infections (clones) present at
one time make antimalarial drug trials in resource-poor environments particularly challenging. Figure 1
shows the possible clone dynamics and outcomes within one patient.

We can seen from the figure that the time points at which the effectiveness of a treatment is assessed
is highly important as infections appear to have cleared while the parasite is still present, although in
undetectable numbers. The consequence is that current trials evaluate parasite counts regularly up to
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Figure 1. The changing drug concentration (thick solid line) and parasite number over time, within a patient.
Those parasite clones present at the time of treatment can either be cleared by the drug (dashed) or recrudesce
later (long dash). New infections can also either be cleared (small dash) by the existing drug or become established

within the patient (dot-dash).

day 63 with evaluations on days 3, 7, 10, 14, 21, 28, 35, 42, 49, 56 and 63. We consider a treatment
effective if the patient is clear of the parasite at all time points after day 3 as the parasite may be
detectable up to day 3 because of the time required to clear a large number of parasites. This intense
follow-up schedule is responsible for only 100–200 patients having complete observations out of the
300–500 patients typically recruited.

An infected person being still liable to be bitten and re-infected with a genetically distinct clone
further complicates the assessment of the effectiveness of malaria treatments. Field data suggest that
people acquire up to 16 new infections per year [3]. Consequently, there may be as many as 10
genetically distinct clones present in an individual at the time of treatment in areas of high transmis-
sion [4]. In principle, we can distinguish new infections from an infection that has never been fully
cleared (recrudescent) by their molecular signatures or markers, which are genotyped using polymerase
chain reaction (PCR), although in practice some uncertainty remains. Often, three markers are used
with the two most frequently used markers, Merozoite surface protein 1 (msp-1) and Merozoite surface
protein 2 (msp-2). A correct classification of infections is crucial to assessing if a treatment has
successfully cleared an existing infection in the presence of parasites.

The World Health Organisation (WHO) have established a trial protocol for the design and analysis
of malaria trials, stating that trials should be analysed using survival methods and providing a method
for the classification of mixed genotypes [5]. Mixed genotypes occur when a treated individual contains
at least two clones at a follow-up time point: one is a new infection, and one was present at the start
of treatment and has never been fully cleared (recrudescent). Despite the report being released in 2003,
there are still various classification and analytic methods used in practice [6, 7].

Methods of classifying infections that can be found in the literature largely differ in whether mixed
infections are classified as new infections or recrudescences. For example, Dorsey et al. [8] used the
proportion of new alleles in the mixed infections and assigned an outcome according to whether the
proportion is greater than a half. The handling of early treatment failures (ETF), where the individual
fails treatment on days 1–3, also varies. After day 4, the infection may be a new infection appearing,
but before, it is more likely to be a highly robust initial infection. Verret et al. [9] treated ETF
as recrudescences, whereas others treated them along with other infections. Table I shows different
approaches to classification that have been found in the literature.

Even when the classification has been made, there still remain differences in the method of analysis
(Table II). The variety of methods includes intention-to-treat (ITT), per-protocol (PP), and time-to-event
analyses. The methods of analysis also involve choosing between a simple proportion estimate of the
number of individuals cured and survival analysis. Furthermore, new infections may be regarded as
either of the following:

(i) Drug failures because an infection is still present at the end of treatment
(ii) Successes as none of the original infections was detected before the time of failure (ToF)
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Table I. Range of classification methods used to differentiate infections.

Method Classification Examples

I
All alleles are different pre-treatment and post-treatment New

[10]Mixed infections
Recrudescence

All alleles are the same pre-treatment and post-treatment

II

All alleles are different pre-treatment and post-treatment
New

[11]
Mixed infections
ETF

Recrudescence
All alleles are the same pre-treatment and post-treatment

III

All alleles are different pre-treatment and post-treatment New

[11]
Mixed infections

RecrudescenceETF
All alleles are the same pre-treatment and post-treatment

IV

All alleles are different pre-treatment and post-treatment
New

[12]
Mixed infections (less than 50% of alleles are different)
Mixed infections (more than 50% of alleles are the same)

Recrudescence
All alleles are the same pre-treatment and post-treatment

V
All alleles are different pre-treatment and post-treatment New

[10]Mixed infections Removed
All alleles are the same pre-treatment and post-treatment Recrudescence

ETF, early treatment failure.

There are also differences in adjusting for the probability of matching alleles purely by chance. The
consequence is that despite the WHO recommendation, no real standard of analysing malaria trials exists.

Analysing malaria trial data from the individual patient outcome allows insights into the effective-
ness of a treatment only on the patient level. For a comparison of the effectiveness across locations, for
example, such analyses are insufficient as it is simpler to clear a patient with only one clone, the likely
situation in low-transmission areas, than if 10 clones are present as can be observed in high-transmission
areas. Figure 2 depicts the proportion of subjects completely free of malaria at 28 days dependent on
the number of clones present at time of treatment of a real data example, which is discussed in more
detail later. The overall trend suggests that as the number of clones present at the start increases, the
proportion of individuals completely cured reduces. Note that a trend test is non-significant, however,
which may be due to patients being only followed until day 28 so that it is expected that some of the
clones will still recrudesce later. Little research that focuses on the clones within an individual and how
this affects the treatment outcome has been undertaken. Reasons for this may include the complexity
of such evaluations and the shift in focus of the analysis. In the most extreme case, one can find that
a treatment cures a high percentage of clones, yet hardly any patients are infection free after treatment
because of high multiplicity of infection (MOI) and a high frequency of a particularly resistant clone in
the population. A complication of the per-clone analysis is that PCR genotyping only provides informa-
tion on certain markers of the parasite genome. Hence, the same alleles could be found at a given locus
purely by chance despite originating from genetically different infections. Research by Brockman et al.
[13] suggests that it is often impossible to assign multilocus genotypes to individual clones that can be
tracked throughout the course of follow-up. This implies that it is not currently possible to detect which
alleles belong to which clones. Instead, we only know an estimate of how many clones are present and
a multiclonal genotype for the individual. A direct consequence of this is that the failure time of each
clone is unknown, ruling out the use of survival analysis on a per-clone basis, the recommended analysis
on an individual level by the WHO.

Per-clone and per-person analyses are not mutually exclusive, and we should not view them as
competitors but rather as complementary approaches. Per-person analysis is important for clinicians
and patients, whereas per-clone analysis is important for surveillance because areas of differing MOI
could be compared at an equal level. It could be argued that per clone would be a better analysis as
you gain more information if a person with MOI D 13 is completely cleared than you do if a person
with MOI D 1 is cleared. It also allows a more explicit analysis of the ‘mixed’ genotypes such as those
in Table IV, which will be discussed in more detail later. Importantly, the fate of the clones within an
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Table II. Different methods used to analyse malaria trials.

Method of analysis

Unadjusted
A ITT simple estimate (number cleared/total) using all patients enrolled in the study
B PP simple estimate (number cleared/total) using only those that clear (ACPR) and

recurrent patients
C mITT Kaplan–Meier product limit formula—all patients enrolled in the study. Censoring

for patients with interrupted follow-up. Recurrent patients classed as failures
D Proportion of cure at day 14, where cure is being clear of infection at day 14
E Proportion of cure at day 28, where cure is being clear of infection at day 28

Adjusted—genotyping

A1
Exclusion criteria: none
New infections: treated as successes
Unsuccessful genotyping: treated as failure

A2
Exclusion criteria: none
New infections: treated as failures
Unsuccessful genotyping: treated as failure

B1
Exclusion criteria: all except those that clear (ACPR) or recrudesce
New infections: excluded
Unsuccessful genotyping: excluded

B2
Exclusion criteria: problems with follow-up and genotyping
New infections: treated as successes

B3
Exclusion criteria: problems with follow-up and genotyping
New infections: treated as failures

C1
Exclusion criteria: unsuccessful genotyping
New infections: censored along with those with interrupted follow-up

Accounting for probability of randomly matching alleles of distinct clones
A1a–C1a Repeat methods A1–C1, taking into account the probability of matching by chance (p.match)

ACPR, adequate clinical and parasitological response; ITT, intention to treat; mITT, modified intention to treat;
PP, per protocol.
‘Unadjusted’ means that the genetic marker information was unavailable (or not used) to distinguish new infections
from recrudescences. ‘Adjusted’ uses the marker information as summarised in Table I. We classify patients for whom
genotyping was performed but whose results were inconclusive or unavailable as unsuccessfully genotyped.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of clones

P
ro

po
rt

io
n 

of
 in

di
vi

du
al

s 
cl

ea
re

d 
by

 d
ay

 2
8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n=10

n=15
n=22

n=30

n=36 n=24

n=23

n=13

n=6

n=10

n=8

n=2 n=1

n=1

Figure 2. Proportion of individuals completely clear of malaria 28 days after treatment by the number of clones
present at time of treatment in a real trial dataset.
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infected person is not independent as people vary in their drug metabolism rates, so clones share the
same pharmacological environment.

There are several further complications associated with estimating and tracking the clones. It is, for
example, only possible to detect parasites that are present in the blood in large enough numbers (>108),
which leads to uncertainty about what alleles/clones are present at the time of treatment because some
may be below the limit of detection (Figure 1). The number of detected parasites, however, does not
remain constant but fluctuates daily. When we try to detect clones, it is difficult to detect a clone if it
is present in relatively small numbers compared with a more numerically dominant clone. If clones are
present in numbers less than 10–30% of the numerically dominant allele, then they will not be detected.
Sama et al. [3] found that only 47% of the clones present in the host were detected when a blood sample
was taken because of the oscillating number in the blood. This means that an infection may appear to
be cleared when it was actually just not detectable at follow-up. Assessing a subject on two or more
consecutive days would allow for an increase in the detection rate but obviously reduce the number of
complete observations even further.

Because of the complexity of the data, we have made assumptions in the investigations to follow. In
practice, there will be clones that are undetectable on the day the sample was taken and also some that
were masked by a numerically dominant allele as described earlier. We have not addressed this issue in
our evaluations as all methods will be equally affected by this, implying that the relative comparisons are
still valid. Consider, for example, a clone that is not detected on the initial day. Detecting this clone at
any later time point will always result in this clone being classed as a new infection, independent of the
method of analysis used. Similarly, a clone that was previously detected but masked at a later time point
will be viewed as a cleared clone. We have therefore assumed perfect detection for this work as long as
clones are present in numbers greater than 108. In addition, we have assumed complete data throughout
and consequently removed incomplete observations due to incomplete genotyping or loss to follow-up in
the real dataset used. This assumption will again have no impact on the relative comparisons of methods
that estimate a proportion cured. When working with simulated data, we only use information that would
be available from field data in our comparison. For example, it is possible to track individual clones in
the simulated data and ‘distinguish’ between clones with the same alleles at the measured markers. For
our evaluations, however, we only note that the allele was detected, but not in how many clones. Once
parasites are detected (defined as present in numbers greater than 108) at a follow-up day, the patient
receives further treatment (for ethical reasons) and is then removed from follow-up. The evaluations
presented here therefore follow patients to their ToF or day 63, whichever is sooner.

In summary, the evaluation of malaria treatments contains four main challenges:

(i) Classification of infections detected during follow-up
(ii) Analysis method

(iii) Per-clone versus per-individual analysis
(iv) Ambiguous genetic data

In this work, we will approach these challenges in two parts. In the first, we will conduct a thorough
evaluation of methods used to classify and analyse malaria trial data on a per-individual basis. Collins
et al. and Verret et al., for example, have undertaken similar investigations [6, 9]. In contrast to previous
work, which was exclusively based on real trial data, we will focus attention on simulated data where
the truth is known about all clones. This enables an informed comparison of the different methods rather
than just highlighting differences. We also used a real trial dataset as a complement to the simulated
data. The second part of this work develops a novel methodology to analyse malaria trial data on a
per-clone level. We again evaluate the performance of the estimation scheme on both simulated and real
trial data.

2. Data

We have used two different data sources in this work. The first set of data is simulated following the
methods described in [14], with extensions to allow for multiple clones, new infections and molecular
genotyping. It aims to replicate the course of infections in patients over a 100-day period following
treatment. We generated data using infection and re-infection rates similar to those found in Tanzania,
a high-transmission area, and validated them against field data [14]. See Appendix A for further
information regarding data generation.
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We simulate four datasets, each of 10 000 individuals, according to the dynamics of the three different
treatments: artemether–lumefantrine (AL), artesunate–mefloquine (AS_MQ) and chloroquine (CQ).
As a comparison of methods is difficult in datasets with no treatment failures, we adjusted the half
maximal inhibitory concentration (IC50) parameters (Appendix A) so that the four treatments had
very different cure rates. We have simulated the first two datasets according to the pharmacokinetics
(PK)/pharmacodynamics (PD) characteristics of AL with cure rates of approximately 90% (AL90) and
80% (AL80), whereas the datasets based on CQ and AS_ MQ have cure rates of approximately 50%
and 10%, respectively. It is important to highlight that we are not suggesting that, for example, the
cure rate of AS_MQ is really 10%. Instead, PK/PD characteristics in the simulations matched those of
AS_MQ, but we increased the IC50 parameter to obtain high failure rates. We focus on a subset of 500
subjects (the size of a standard trial) from the AL datasets, whereas we will use the other data for verifica-
tion and confirmation purposes. The simulated variables were the number of clones at time of treatment,
genetic information from the three markers, initial parasite number and parasite numbers from days 1
to 100 for each clone (both recrudescences and new infections). The genetic information simulated the
allele frequencies observed from field data at three genetic markers: msp-1, msp-2 and TA109. We will
use arbitrary numbers rather than the allele names for simplicity of use.

Table III shows a summary of cure rates on per-individual and per-clone bases for one simulated
dataset of 500 individuals. It shows the detectable cure (DC) rate, that is, the proportion of individuals/
clones whose initial infections have cleared. We give the DC for different times after treatment as well
as on the ToF, which will be used as the main parameter for reference. We define ToF as the first visit
time after day 3 when any parasites (new or recrudescences) are present in numbers of > 108. This
definition is consistent with practice as a patient would be censored on ToF and treated, irrespective of
it being a new or a recrudesced infection. For completeness, the table also provides the proportion of
individuals/clones cured when both new infections and recrudescences are viewed as failures. We
compute the true cure (TC) rate under the assumption of detectability of all infections irrespective of
their actual count. The entries for mean DC and mean TC correspond to the mean cure rates across 20

Table III. Per-individual and per-clone cure rates of the four simulated datasets.

Per individual Per clone

Day AL90 AL80 CQ AS_MQ AL90 AL80 CQ AS_MQ

DC rate

14 0.938 0.862 0.494 0.093 0.964 0.917 0.686 0.193
28 0.926 0.866 0.636 0.166 0.957 0.921 0.779 0.305
42 0.918 0.842 0.648 0.176 0.953 0.905 0.779 0.314
63 0.916 0.798 0.604 0.156 0.950 0.880 0.744 0.276

100 0.908 0.774 0.540 0.114 0.944 0.870 0.700 0.203
ToF 0.926 0.818 0.616 0.164 0.963 0.891 0.623 0.194

Mean DC ToF 0.935 0.800 0.619 0.169 0.972 0.894 0.636 0.200

14 0.886 0.602 0.460 0.078 0.961 0.913 0.680 0.189
Cure rate when 28 0.876 0.604 0.570 0.146 0.948 0.907 0.753 0.278
recrudescences and new 42 0.872 0.598 0.584 0.162 0.938 0.865 0.729 0.260
infections are classed as failures 63 0.870 0.584 0.558 0.148 0.902 0.732 0.641 0.195

100 0.864 0.562 0.506 0.108 0.720 0.535 0.495 0.108
ToF 0.876 0.584 0.558 0.148 0.948 0.817 0.612 0.193

Mean ToF 0.883 0.592 0.568 0.156 0.958 0.832 0.626 0.199

TC rate

14 0.716 0.302 0.016 0.006 0.859 0.601 0.128 0.018
28 0.880 0.765 0.318 0.022 0.931 0.847 0.569 0.054
42 0.898 0.766 0.448 0.036 0.940 0.868 0.657 0.090
63 0.908 0.770 0.494 0.046 0.944 0.870 0.682 0.115

100 0.908 0.770 0.498 0.048 0.945 0.870 0.684 0.121

Mean 63 0.905 0.759 0.492 0.049 0.954 0.871 0.687 0.125

We calculated estimates using one dataset of 500 individuals, except the mean values (e.g. ‘mean DC’), which are the
average over 20 datasets of size 500.
DC, detectable cure; TC, true cure; ToF, time of failure.
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datasets of size 500. Day 14 cure rates are lower than later assessments as clones that do eventually
clear still have parasites present in small numbers in the early stages of the trial. As expected, the TC
rates are slightly lower than the DC rates because of the undetected clones at the assessment time point,
although the difference is relatively small at the end of the study. The mean number of clones detected
in an individual at the time of treatment is the same for all three datasets (3.48) for ease of comparisons
between the treatments. In the simulated dataset, we assume follow-up days 3, 7, 10, 14, 21, 28, 35, 42,
49, 56 and 63 and assume that patients are not seen at any other time.

The second set of data comes from a trial in Tororo, Uganda, a high-transmission area. The dataset
contains 419 individuals divided between the two treatments amodiaquine + artesunate and AL. Our
focus will be on the 199 individuals, which were randomised to the AL treatment and were successfully
genotyped. The markers used were msp-1, msp-2 and TA40, and the average number of clones detected
in an individual at the start of treatment is 4.43, which is slightly higher than in the simulated datasets
(3.48). Bukirwa et al. and Greenhouse et al. give further details about the trial [15, 16].

3. Methods

3.1. The genetic information available

Table IV provides an example of the genetic information obtained from the genotyping of a specific
individual before and after treatment, that is, on ToF. Note that the alleles presented in one row do
not necessarily correspond to a multilocus ‘clonal’ genotype because assigning alleles to clones is not
possible. In the example, we have two alleles 10 and 24 at msp-1 and 25 and 35 at msp-2, but we cannot
tell if multilocus genotypes are 10/25 with 24/35 or 10/35 with 24/25. So that we can estimate the
number of clones present, it is natural to use the number of distinct alleles detected so that one would
estimate two clones present initially; the number of clones present at the ToF is less clear. Marker msp-1
suggests that five clones are present, whereas msp-2 and TA109 only show four different alleles. This
discrepancy is, of course, due to two clones sharing, by chance, the same allele at msp-2 and TA109,
and consequently, the number of clones present at the ToF should be estimated as five. As a result, more
markers will allow for a more accurate estimation of the number of clones [13]. Note that new infections
may accumulate after treatment, which is why there are a greater number of clones after treatment in the
example given in Table IV.

At the ToF, up to five different alleles are present at a given marker, indicating that there are probably
five infections present. Upon close examination, we can see that all alleles present at treatment are also
detected at ToF, suggesting that both initial clones survived. This gives some indication that the original
infections have not been cleared as the genetic information is the same. To make an informed decision
about that, we will need to carefully investigate the specific alleles observed using the ‘rules’ summarised
in Table I. Even once a classification has been found, there is the possibility that the alleles at treatment
and at ToF are new infections due to the possibility of the alleles matching by chance. By comparing the
alleles detected before treatment and at the ToF and taking into account the probability that they may
match by chance, we can assign the clones as a recrudescence or a new infection (Table I).

Table IV. Example of an individual’s genotyping results.

msp-1 msp-2 TA109

Before treatment
10 25 5
24 35 7

At ToF
10 13 4
20 23 5
21 25 7
23 35 12
24

We provide alleles (represented by numbers) present at each marker
before treatment and at the ToF.
ToF, time of failure.
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3.2. Classifying the data: interpreting the genotypes

The interpretation of genotype results for an individual subject has not yet been standardised. Collins
et al. [6] published a systematic review of such studies, which found that ‘all trials considered an outcome
recrudescence if all alleles from both samples (pre and post-treatment) matched and a new infection if no
alleles matched’. The differences in classifying infections occur when dealing with the ‘mixed’ results
where some but not all alleles are the same at the beginning and at the end of the study (Table I).
Following the recommendation by the WHO [17], the majority of trials classified a ‘mixed’ result as a
recrudescence as there were some alleles that were the same, although this is conservative because of the
problem of alleles matching by chance. Some studies defined all mixed results as new infections, and
some classified the sample as a recrudescence if more than half of the alleles matched; otherwise, they
recorded it as a new infection.

The methods described earlier have all been used to classify individuals rather than the clones. It is,
however, possible to combine these methods to interpret results on a per-clone basis. Specifically, we
can make the following deductions:

! If all alleles are different at the time of treatment and at the ToF
- all the original clones have cleared or at least are undetectable
- all the clones detected at ToF are new infections

! If all alleles are the same at the time of treatment and at the ToF, then all detected clones are clones
that failed treatment. Note, however, that there is the possibility that the observed alleles might just
match by chance, although this probability is small.

! If an individual contains some alleles that are the same at the time of treatment and at the ToF and
some that are different, a definitive decision on the fate (cure/fail) for a given clone present at the
time of treatment is not possible. In this case, the smallest proportion of matching alleles found
across all markers is used to estimate the proportion of recrudescences at the ToF. See Table V for
examples of this.

As the proportion of recrudescences has not been used before to classify mixed infections on a
per-clone basis, Table V gives a few examples. We denote the proportion of matching alleles before
treatment and at the ToF for each marker as elements in the vector a. The example again uses three
markers so that the length of the vector is 3, but extensions to more markers are straightforward. In
summary, the number of original infections that survived treatment is given as the value of the smallest
element of a times the number of clones at ToF. For example, if the vector a contains at least one 0, then
none of the alleles identified at the start and at the end of the study is identical for at least one marker. In
this case, all the clones found at the end of the study will be classified as new infections. Examples of this
are I–III in Table V. Similarly, if a contains all 1s, then all clones are recrudescences. Example IV has a
third of alleles the same for all markers. Because there are three possible clones, this suggests that one
clone is a recrudescence and the other two are new infections. For example V, one can see that at least
one-fifth is the same for all alleles, so one clone will be classified as a recrudescence. Note that we have
assumed that when a proportion is the same across markers, such as a D .0:3; 0:3; 0:3/, this proportion
comes from the same clone. This assumption will lead to a slight underestimation of the cure rate as
too many infections will be classed as recrudescences. Conversely, the probability that the original and
recrudescent clones share the same alleles by chance will increase the average values in a and hence
underestimate the number of recrudescences. Further, notice that this approach does not require whole

Table V. Examples of various proportions of alleles matching pre-treatment and at time of failure for each of
the three markers.

a
Estimated number

Sample msp-1 msp-2 TA109 of clones Classification

I 0 0 0 2 0 recrudescences and 2 new infections
II 0 0 0.25 4 0 recrudescences and 4 new infections
III 0 0.28 0.28 7 0 recrudescences and 7 new infections
IV 0.33 0.33 0.33 3 1 recrudescences and 2 new infections
V 0.2 0.4 0.4 5 1 recrudescences and 4 new infections
VI 0.25 0.4 0.4 5 1.25 recrudescences and 3.75 new infections

The estimated number of clones at time of failure and the corresponding classification are also given.
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infections to be classified but instead allows for probabilistic assignments. Suppose, for example, that for
two of the markers, five alleles are detected at the end of the study whereas only four alleles are found
for one marker (example VI). This might be because different clones have the same allele by chance or
because one allele is present in too few numbers to be detected. If we now have one out of four matching
on the one marker and two out of five for the others, we can classify one-fourth of the five clones
(1.25 clones) present at the end of the study as recrudescences and the other three-fourths (3.75 clones)
as new infections for the purposes of estimating an overall per-clone cure rate. In example VI, if there
were seven clones present at the start and five at the ToF, using a would suggest that 5.75 clones had
been cleared, 1.25 had recrudesced and 3.75 were new infections.

3.3. Per-individual analysis

When we analyse the data on a per-individual basis, the method of classification and the method of
analysis need to be considered. Table I describes the different methods of classifying patient outcome
(cured and not cured). A full account of methods for analysis is given in Table II. We will only use data
without any dropout in which case PP and ITT will be identical so that we will pay no further attention to
the issue of PP or ITT analysis. Despite this, there remains a large number of combinations of classifica-
tion and analysis methods, making it impossible to evaluate all combinations. We have therefore chosen
a selection of the key methods in the comparisons presented. More specifically, we will use methods B,
C, B1, B2, B3 and C1 and methods B1a to C1a given in Table II in our comparisons.

The biggest difference between the methods of analysis is whether a proportion cured is used as the
trial outcome or time-to-event analysis, both providing slightly different interpretations of the results.
For the time-to-event analysis, the event of interest is taken as the ToF, that is, time to the infection
becoming detectable (>108). One of the main drivers of differences in the results is the interpretation of
new infections in the analysis. The methods range from classifying them as a treatment failure or success,
censoring them or removing them from the analysis completely, which obviously will have a profound
impact on the results. A further point to consider, which to date is often overlooked, is accounting for
the probability of a random match of alleles. An individual that has the same alleles before and after
treatment is classified as a recrudescence. There is, however, a possibility that a new infection bears the
same alleles as those present in the recrudescent clones. In this case, the clone would in fact be a new
infection but would be misclassified as recrudescent. We will use the method of Greenhouse et al. [16]
to account for this by calculating the probability of a random match and then reweighting the number of
recrudescences accordingly. More specifically, we can make the following corrections:

(1) Let fi denote the proportion of times allele i is contained in the population of q alleles detected at
marker M , where i D 1; : : : ; q.M /.

(2) For individual j, Nj;post denotes the number of alleles present at the ToF. Generate all
!C Dq.M /

Nj;post

"
combinations of alleles. For each combination c, calculate the corresponding probabilities pc , by
pc D QNj;post

iD1 fi .
(3) Let Aj;pre be the vector of alleles present prior to treatment for individual j . If we look through

all combinations C , a match has occurred if at least one allele from Aj;pre is present in combina-
tion c D 1; : : : ; C . We calculate the probability of a match for each marker M by the sum of the
combination probabilities that match divided by the sum of all combination probabilities,

p.M /
match D

CP
cD1

pcI
!
any Aj;pre D c

"

CP
cD1

pc

(1)

where I.!/ D 1 if the condition in parenthesis is true and 0 otherwise.
(4) The product is taken over the markers to obtain an overall estimate of pmatch for each individual,

and Npmatch denotes the average across all individuals. The reweighted number of recrudescent
infections is then given by

nrecru D nobs. recru " Npmatch ! ntotal

1 " Npmatch
(2)

where nobs. recru is the number of initially classified recrudescent infections and ntotal is the number
of subjects with parasites at the end of the study.
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3.4. Per-clone analysis

When we estimate the efficacy of a treatment on a per-clone basis, the problem of randomly matching

alleles also occurs. Denote the i th allele in subject j , present at time k for marker M , by A.M /
i;j;k , where k

is pre-treatment or post-treatment. There are n subjects in the study, and denote the number of alleles at
time k in subject j as Nj;k . If A

.M /
i;j;pre D A

.M /
i;j;post, the clone is likely a recrudescence, whereas otherwise,

the clone is probably a new infection. To correct for the probability of a random match, we assume that
the occurrence of an allele is independent of the subject (i.e. each subject is equally susceptible to each

clone), and consequently P.A
.M /
i;j;pre D a.M /jnew infection/ D P.A

.M /
i;j;post D a.M /jnew infection/ D

P.A.M / D a.M /jnew infection/, where a.M / is an available allele from the distribution of alleles for
marker M . We then estimate the probability of an allele being seen given it is a new infection using
Equation (3). This equation sums over all alleles in all individuals, selecting those that match the allele a.

P.A.M / D a.M /jnew infection/ D

P
kDfpre, postg

nP
j D1

Nj;kP
iD1

I
!
A.M /

i;j;k D a.M /
"

P
kDfpre, postg

nP
j D1

Nj;k

(3)

Using the definition of conditional probability, we find that

P.A.M / D a.M /jnew infection/ D P.A.M / D a.M / & new infection/

P.new infection/
(4)

We can easily find an estimate for the probability of a new infection, P.new infection/, from the
data once an initial classification of the alleles (i.e. not accounting for the probability of a random
match) has been made. Finally, to obtain an estimate for the probability of a random match, P.A.M / D
a.M / & new infection/, we can then use P.A.M / D a.M /jnew infection/ ! P.new infection/. Because
these probabilities are calculated for each marker, we use the product of the probabilities as an overall
estimate of matching by chance. It is clear that an infection with a high probability of randomly matching
the alleles is more likely to be a new infection.

The adjusted cure rate is then estimated as

ACR D 1

n

nX
j D1

1

Nj;pre

Nj;preX
iD1

P
!
A.M / D a.M /

i;j;k & new infection
"

(5)

A few things should be pointed out for this method. Firstly, using the initial classification to estimate
the probability of a new infection introduces bias into the results. This is because the number of new
infections is calculated from the initial classification of infections before any reweighting has occurred.
Using the probability of a match increases the probability of a new infection as they would initially be
incorrectly classified as a recrudescence. A simple way to eliminate this bias is by iteratively reweighting.
Specifically, we repeated the whole method, including the reweighting using the probability of a random
match, using the previous value for the probability of a new infection until the probability of a new
infection converged. Usually, it takes 5–10 iterations for convergence. We then use the estimate after
the last iteration to obtain the probability of a random match and subsequently the average cure rate. In
our investigations, we found, however, little, if any improvement, suggesting that the probability of a
new infection is not highly influential for the adjusted cure rate. In contrast, the frequency of the alleles
proved to be more important.

The second point for consideration concerns the combination of the probabilities across the markers.
Greenhouse et al. [16] used the product of the probabilities based on the assumption of independence of
markers. Under this assumption, the product of the individual estimates provides an unbiased estimator
for the probability of a random match. In contrast, if there was perfect correlation between the markers,
then one would only need to consider one marker. Although it is often argued that linkage equilibrium
holds for the markers typically used, the actual relationship may still be somewhere in between the two
extremes. To gain some insight into the behaviour of the estimator based on the independence assump-
tion and the assumption of perfect correlation, we include a comparison of the estimators based on
taking the product and the average and just using msp-2 to estimate the probability of a random match.
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We also included the average as it considered the standard method of combining several results to obtain
an overall value. Additionally, we investigate the benefit from including more markers by increasing the
number of markers from 1 to 3.

4. Results

4.1. Per individual

In the following, we will present our comparison of methods for analysing malaria trials on a per-
individual basis. Figure 3 provides the estimated cure rates across 20 distinct simulated datasets of size
500 for patients using AL90 and AL80. Note that we have undertaken the same evaluations for the
other two treatments, but because they are qualitatively the same, we have omitted them for brevity. We
have applied the five different classification methods as described in Table I and four of the analysis
methods (Table II) and summarised the results for each combination in box plots. Specifically, the
methods of analysis used are B1, B2, B3 and C1, which we subsequently refer to as ‘new=exc’,
‘new=succ’, ‘new=fail’ and ‘Surv (new=cens)’, respectively. As a baseline for the performance of the
analysis methods, we have applied each method to the datasets, assuming perfect classification. In
Table III, horizontal lines denote the DC rate at ToF and the TC rate. The different classification methods
appear to only have a small impact on the results except that classification II gives slightly higher results.
When we look at the impact of the classification of new infections, however, it becomes apparent that
for some methods, the results are closer to the baseline than others. Treating new infections as successes
or censoring them provides similar results, but treating them as failures drastically reduces the estimated
cure rate. In particular, it is clear that results for censoring new infections or treating them as successes
give estimates closest to the truth, relative to alternative methods, for all classification methods.

When we look at the impact of classification on the results more closely, it is notable that the cure
rate, when a new infection is treated as a failure, is constant for classification methods I–IV. This is
because the estimated cure rate does not depend on the mixed outcomes but only the total number of
mixed outcomes. For the same reasons, classification V yields a higher cure rate in this case as all mixed
infections have been removed. Overall, it is difficult to choose between classification methods as the
results are so similar. There is little difference between methods I and III except for the treatment of
ETF, which in our datasets does not seem to play a major role. The ordering of the methods is the same
regardless of the classification method. Method II produces the highest cure rate as the methods result
in a greater number of new infections rather than recrudescences. As method IV uses the proportion of
a half to decide the individual outcome, it is reasonable to explain that this is why the result is between
methods I and II.
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Figure 3. Per-individual results: summary of estimation results for (a) AL90 and (b) AL80 based on 20
datasets of size 500 using various methods for analysis and classification . New=exc: new infections excluded;
new=fail: new infections treated as failures; new=succ: new infections treated as successes; Surv (new=cens):
new infections are censored. TC = true cure rate; DC = detectable cure rate. Baseline values assume perfect

classification but use different definitions of success in the analysis.
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Figure 4 illustrates the same methods for analysis and classification on a single dataset of size 500 for
all four different treatments. In addition to the raw estimators, they also include the estimators reweighted
for the probability of a random match [16]. All four plots show similar patterns although less pronounced
in the AS_MQ results. Correcting for the probability of a match either leaves the cure rate unchanged
or increases it. The method does not correct by a constant amount across the datasets, however. We can
see that the correction is greater for the AL results than for the AS_MQ dataset, where little impact is
seen. In general, it therefore seems that correcting for the probability of a random match does generally
improve estimation, although for low cure rates, its impact is negligible.

Applying the different methods of analysis and classification to the dataset from Tororo, Uganda
(Figure 5), shows similar patterns as seen before, but this time more pronounced. Because the true values
are no longer known, we have used the values obtained in [16] as a reference: 0.79 before and 0.87 after
the correction. Methods I and III once more have similar results, whereas method II has the highest
cure rates. Treating new infections as failures is constant regardless of classification method; censoring
and classing new infections as successes are similar, whereas excluding new infections is in between.
The correction for random matching depends on the number of new infections, resulting in a large
impact of the correction for method II. Because of very low numbers (3 out of 199) of initially classified
recrudescent infections in method II, using the Greenhouse correction results in values greater than 1.
This is because the correction aims to reduce the number of infections that have been incorrectly classi-
fied as a recrudescence when they are actually new infections. With only three recrudescent infections,
the correction suggests that the true number of recrudescent infections should be !13:76, which is of
course not possible.
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Figure 4. Per-individual results: results for one dataset of four different treatments including the impact of
correcting for random matches. Note that no correction for random matching is used in the survival analysis
and that in some cases, such as ‘new=failure’, correcting for random matching results in exactly the same cure

rates as without. TC = true cure rate; DC = detectable cure rate.
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Figure 5. Per-individual results: comparisons of analysis and classification methods on dataset from Tororo,
Uganda.

4.2. Per clone

We now focus on investigating the performance of the method of estimating cure rate on a per-clone
basis and evaluate the impact of reweighting to account for random matching. Figure 6 shows the results
from the per-clone analysis for the 20 different datasets of size 500 using AL90 and AL80. We give box
plots for estimation without reweighting for random matching alleles and reweighted estimation results
using the single markers and then a combination of all three by means of a product or average. The initial
classification (before reweighting) is a slight overestimate of the DC rate although this difference is very
small. Looking at the DC rate on the day of failure (Table III) averaged over the 20 datasets (0.972, 0.894)
and the average across the 20 estimated cure rates in the AL datasets (0.974, 0.895) gives a difference
of only 0.002 and 0.001. This suggests that the estimation on a per-clone basis is highly accurate even
before random matching of alleles is accounted for. As a consequence, the various methods used to
reweight the estimate do not improve the estimate as seen in the per-individual analysis, suggesting that
the correction is not necessary. Investigating the impact of correcting for random matching on data with
lower cure rates based on the average across 20 datasets of size 500 (Figure 7) once again shows that
hardly any improvement can be seen by correcting for random matching in the per-clone analysis. Note
also that although it appears in the graph that the cure rate for CQ is overestimated, the estimate is only
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Figure 6. Per-clone results: summary of estimation results for (a) AL90 and (b) AL80 based on 20 datasets of
size 500 with and without reweighting for random matching. TC = true cure rate, DC = detectable cure rate.
Before = before reweighting, msp-1/msp-1/TA109 = using one marker to correct for random matching,

Product/Average = using the product/average of the three markers to correct for random matching.
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Figure 7. Per-clone results: evaluation of different analysis methods for four different treatments. Reweighting
is based on product of marker-specific reweighting, and results are averaged across 20 independent datasets.

AL = artemether–lumefantrine; AS_MQ = artesunate–mefloquine; CQ = chloroquine.

Table VI. Table of the cure rates for the per-clone analysis applied to a real dataset from Tororo, Uganda.

Before reweighting msp-1 msp-2 TA40 Product Average

Cure rate 0.7784 0.7779 0.7777 0.7777 0.7776 0.7778

slightly higher than the detectable value (!1%) and that the detectable value is contained in the box
plots of the individual estimates of the 20 datasets.

Finally, we investigate the results of analysing the real dataset in Table VI. We estimate the cure rates
in the same way as for the simulated data. As before, the impact of reweighting is very small, suggesting
that this correction is not required in the per-clone analysis.

5. Discussion

The first aim of this study was to compare existing methods employed in the analysis of malaria clinical
trials using simulated data where the true and DC rates are known. The methods differ mainly in the
classification of mixed infections and in the way new infections are incorporated into the analysis. We
find that the method of classifying mixed infections had little impact on the results and that the most
appropriate method for classifying new infections was as successes or censoring. We initially felt that
the approach to classify new infections as successes was based on wishful thinking, and hence, the per-
formance of this approach was a big surprise to us. Considering a re-infection rate of 12 per year, for
example, would imply that on average 1 month after treatment, a new infection would emerge. If the
treatment failed to clear the initial infection, the recrudescence would therefore have a substantial head
start over the new infection so that it seems plausible that treatment failure would have been recognised
before a new infection becomes apparent. Essentially, a new infection would therefore indicate that no
recrudescence has occurred, giving some justification for classing new infections as a success. The esti-
mates obtained improve slightly when correcting for random matching. In our second aim, we introduce
the per-clone method of analysis and evaluate the estimators produced. We find that a per-clone analysis
does estimate the cure rate adequately. In contrast to the per-individual analysis, correcting for randomly
matching alleles does not yield any notable improvement.

In practice, most cure rates will be greater than 90%, and consequently, the performance of the method
for such cure rates is of most practical importance, which is why the AL90 dataset was included. In our
investigations, we did, however, evaluate the methodology across a wide range of cure rates and found
that for both the per-individual and per-clone analyses, the performance of the methods did not differ
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depending on the underlying cure rates. Throughout our investigations, we have made a few simpli-
fying assumptions, however. We assume perfect detection of clones, which is not the case in reality
because PCR technology only usually detects the numerically dominant clones and any genetic signals
less than around 30% of the major signal are usually ignored as ‘noise’ [18]. Similarly, the sequestration
of certain stages of the blood means around 50% of clones present at the time of treatment do not con-
tribute a genetic signal and so are not detected. We ignore this effect here as the relative merits of the
methods will remain. For an evaluation of how close the estimates are to the TC rates, however, further
evaluations will be necessary.

In our work, we have recreated and examined data from high-transmission areas because they are the
most methodologically challenging. Low-transmission areas are simpler because MOI at treatment is
low, so genetic matching due to chance is much reduced, and the rate of acquisition of new infection
is much slower. This makes the data far less ambiguous than in high-transmission areas. In addition,
the added value of the per-clone analysis is greater if more than one infection is present in a patient as
otherwise the result will be identical to the per-individual estimate. We have also made the unrealistic
assumption that we have complete data. We believe that the presence of missing data results in a clearer
distinction between treating new infections as successes, which inherently assumes complete data, and
survival analysis where incomplete data still contribute to the estimation. In light of the added informa-
tion, we therefore agree with the recommendation by the WHO that survival methods ought to be the
method of choice unless a per-protocol analysis is of interest in which case only complete data would
be considered. A final limitation to the work presented here lies in the focus on point estimates although
standard errors and confidence intervals are of equal importance. The number of different approaches
investigated prevented a thorough treatment of these in this manuscript. To obtain standard errors for any
of the methods discussed, we can, however, use bootstrap confidence intervals [19].

A challenge encountered in this work was defining the ‘TC rate’ on an individual basis. If an individual
carries several infections, some of which have cleared, some that have returned and some that are new,
it is unclear how to define the clinical outcome of such a subject. For this study, we classified mixed
infections as recrudescences. The reason for this choice was that at least one recrudescent clone must be
present in the individual in this case, and therefore, the treatment has failed to clear the infection present
at the start of the study. This is the usual definition of a drug failure.

Analysing infections on a per-clone basis poses an entire different set of challenges. It is, for example,
not always clear how many clones an individual is carrying at the time of treatment or ToF because of
multiple clones having the same allele at the measured markers. We have treated the number of clones
at the time of treatment/ToF as a fixed known value despite only being able to estimate it. It is in fact
a random quantity. Additionally, we assumed that alleles present initially and at ToF correspond to the
same clone if such a match is present on all markers. If these assumptions do not hold, the cure rate
would be higher as fewer clones would be classed as recrudescences.

Our main conclusions are as follows:

(a) Survival methods should be used for estimating drug effectiveness on a per-individual basis.
(b) Classification of mixed infections is not highly influential to the overall performance.
(c) The introduced per-clone estimator is accurate and yields additional insight in the performance of

the treatment.

And the final recommendations based on this work are therefore to do the following:

(a) Use survival methods when possible
(b) Report the per-clone failure rate in addition to the per-individual failure rate
(c) Use three markers for genotyping. More markers will improve the results further, although the

improvement is only small.

Appendix A. Data generation

The methods used to generate the datasets presented here are an extension of those published in [14]. We
chose to investigate three antimalarial drug treatments, two are current first-line ACTs: AL and AS_MQ.
The third treatment was CQ monotherapy, which although no longer officially deployed in the formal
health sector was included here for historical comparison. Winter and Hastings validated the dosing
regimens of the drugs investigated and the PK/PD parameters used [14].

It is important to note that when parameters within the model are assigned, the fates (survival/death)
of the separate clones in each human are non-independent, as they share the same host environment.
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For example, background levels of immunity and rates of drug metabolism vary substantially between
humans; if a human has a low level of immunity or rapidly metabolised a drug, then all the clones
present during treatment shared this (relatively benign) human environment. Consequently, we consid-
ered PK parameters to be a human attribute, unique to each human but common to all clones within a
human. Although we allowed for environmental similarities, we assumed no genetic relatedness between
clones within a human, and so we assigned the PD properties (IC50, maximum parasite kill rates and
slope factor), the parasite growth rate and the initial numbers present to each clone independently.

The model discussed in [14] required the following three modifications.

(i) The presence of more than one clone at the start of treatment
Molecular studies have demonstrated that a patient with malaria can be simultaneously infected

with multiple, genetically distinct clones of Plasmodium falciparum [11]. The number of ‘clones’
present in the patient is called the MOI and can be found using hypervariable genetic ‘markers’
such as msp-1 and msp-2. Following antimalarial treatment, outcome is currently measured as
success or failure per human, but an association between MOI and both clinical episodes and
treatment failure has been demonstrated [20, 21] although not conclusively established. If true,
this implies that a cure is always easier to achieve in areas of low transmission where only a single
clone has to be cleared by treatment compared with high-transmission areas where success may
require numerous clones to be cleared simultaneously. If this is the case, it is not feasible to
compare the drug success rates of different studies with different levels of transmission. To
address this problem and allow for comparison between studies, we would like to calculate
treatment outcome on a per-clone as well as per-human basis.

We assigned the number of clones present at the start of treatment to each patient using
data collected by Nsanzabana [22]. We collected the data from an area of high transmission in
Tanzania where the MOI typically ranged from 1 to 8 (Figure A.1). The probability of a patient
being assigned a specific MOI was dependent on this frequency distribution of MOI measured.
We chose the initial number of parasites present at the start of treatment for each clone from a
uniform distribution between 1010 and 1012.

(ii) The acquisition of new infections during the course of treatment
We adapted the model to allow patients to acquire new infections during the course of follow-

up. We assign the number of new infections to each patient at the beginning of the simulation and
found it using the average number of re-infections occurring per patient per year. In this case, we
used re-infection data from Northern Ghana [3] where maximum likelihood estimates suggested
that on average any individual would acquire 16 new infections per year. We could crudely obtain
other estimates using data on effective ACTs. For example, Burkirwa et al. [15] reported that
more than 50% of patients developed recurrent parasitaemia within a month of treatment. If we

Figure A.1. The probability of a patient being assigned a specific multiplicity of infection (MOI) was dependent
on the frequency distribution of MOI measured in the field. Nsanzabana [22] collected the data plotted here.
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assume that re-infections can occur at any time in the month following treatment, we can pre-
dict that each patient will acquire approximately six new infections each year. However, if we
know patients were taking effective ACTs with long half-lives, we can crudely assume that no
new infections became established for the first 2 weeks. Following treatment (because of their
long half-life), 50% of patients have new infections in a 2-week period and so are more likely to
receive an average of 12 new infections each year. We found the probability of a new infection
occurring during the designated follow-up period by dividing the number of re-infections per
year by the number of days in a year and then multiplying by the number of days in the patient
follow-up period. We added variation by randomly choosing the exact number of new infections
from a Poisson distribution.

In cases where patients were re-infected during follow-up, we assumed that parasites first
became susceptible to drug treatment on emergence from the liver. Initial parasite number was
therefore based on the emergence of 105 merozoites, whereas random sampling determined the
specific day parasites emerged.

(iii) Tracking of individual clones using molecular markers
In principle, we can distinguish re-infections from drug failures by their molecular signatures

or ‘markers’. Genotyping is the current method recommended by the WHO [17] to distinguish
a new infection from a recrudescent infection, with the majority using up to three markers. We
chose to incorporate the commonly used markers msp-1 and msp-2 alongside the microsatellite
TA109. At the beginning of each simulation, we assigned each clone present at the start of
treatment or later appearing in a new infection a specific allele for each of the markers.

We took the allele frequency data for msp-1 and msp-2 from a study in Papua New Guinea [23]
with raw data provided by Ingrid Felger (Figure A.2). Porter et al. [25] noted that the insensitivity
of nested PCR to small changes in the number of base pairs means variants differing by less than
20 bp are routinely considered to be the same allele. The raw data contained details of allele length
(bp), class and codes; however, for simplicity in the model, we arbitrarily numbered the 24 msp-1
and 35 msp-2 alleles and ignored any potential misclassification of alleles as a result of base pair
repeats. We used the frequency with which alleles were measured in the field to determine the
probability of a clone containing that allele in the simulation. Anderson et al. originally described
the microsatellite marker TA109 (14 alleles) [26]; however, the distributions used here came from
a more recent dataset collected in Malawi [24]. Again, each allele was arbitrarily numbered, and
the probability of a clone containing a given allele corresponded with the frequency with which
that allele was seen in the field.

A.1. Simulation details

We simulated a population of 10 000 individuals for each of the three treatment regimens. Each patient in
the simulation had a malaria infection in which the original host infection could include multiple clones
and were at risk of acquiring new infections during the period of follow-up. We assigned these details
along with the timing of new infections (if any), patient PK and parasite PD parameters to the patient at
the beginning of the simulation. The model tracked drug concentration and parasite number for 100 days

MSP1 alleles from a dataset from PNG MSP2 alleles from a dataset from PNG TA109 alleles from a dataset from Mawali

Figure A.2. The allele frequency distribution of msp-1 and msp-2 markers, the data were taken from a study in
Papua New Guinea [23] and a study of the microsatellite marker TA109 in Malawi [24].

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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following the first treatment dose. It ran in half-day time steps for the first 7 days, allowing multiple
drug dosages to be administered, but to speed up simulations, we modelled all subsequent days in 1-day
time steps.

We recorded a large amount of data about both the patient and the parasites. For each human, this
included the specific PK parameters, their initial MOI, the number of new infections that occurred and
the day new infections emerged from the liver. For each parasite clone present at any point during the
follow-up period, we recorded the initial parasitaemia, the growth rate, the specific PD parameters, the
associated genotype and the exact number of parasites present on each day of the follow-up period.
We could then use these data to determine the day each original clone in the infection first becomes
undetectable in the blood (i.e. <108), the day a clone is cleared from the body if treatment is successful
and the day recrudescence occurs (becomes patent, i.e. >108) if treatment fails (Figure 1).

A.2. Justifications

The widespread resistance of parasites to CQ and MQ made it difficult to find recent papers with reliable
IC50 estimates for fully sensitive parasites. The IC50 values presented for CQ and MQ are therefore
higher than those that have since been validated in [14]. However, there is no point analysing simulated
results in which everyone is cured, and so the IC50 values used allow us to analyse drugs with varying
degrees of resistance. Descriptions of the allele frequencies have been collected in Uganda [27] and
more recently in Burkina Faso, So Tom, Malawi, Tanzania and Uganda [28]. We incorporated variation
into the model by assuming that all model parameters were normally distributed with a coefficient of
variation of 30%.

As is necessary with all models, we made assumptions during this model’s construction. The
assumptions were as follows:

(i) Drugs were instantly absorbed and converted (if necessary) to their active metabolite. Although
absorption lag time may be negligible for drugs with a long half-life (in this case CQ, lumefantrine
and MQ), it becomes more important for the artemisinins with half-lives as short as 40 min.

(ii) We allocated the number of new infections independently of initial MOI; this ignores potential
issues of spatial heterogeneity. Intuitively, those patients with a higher MOI are more at risk of
acquiring new infections and hence more likely to become re-infected during patient follow-up.

(iii) Patients complied fully with the designated treatment regimen.
(iv) There is no genetic relatedness between the clones; infections within a host consist of multiple

genetically distinct parasite clones.
(v) There was no sequestration of malaria-infected erythrocytes. This is a usual characteristic of

infections with P. falciparum. Koepfli et al. [29] reported that parasites can be sequestered in the
internal organs for up to 20 h of the 48-h life cycle. Naturally, if parasites are sequestered in the
organs, they will not be present in the peripheral blood, thus increasing the risk of missing clones
when genotyping in a single blood sample.
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Chapter 5  
 

OpenMalaria 
 

1. Introduction 
 

1.1. Project Background 
 

There are many effective interventions now available for malaria control. These 

typically include those targeting the vector population for example, insecticide-treated 

nets (ITNs) and indoor residual spraying (IRS), or those targeting the host population 

either through prevention of an infection (i.e. intermittent preventive treatment in 

pregnancy (IPTp) in infants (IPTi) or children (IPTc)) or through diagnosis and 

effective treatment of an established infection. However, both the parasite and vector 

have proven adept at acquiring and rapidly spreading resistance to the currently 

available antimalarial drugs (see for example (378)) and insecticides (232). 

Considering the complexities of the malaria parasite lifecycle and the resource poor 

setting in which malaria occurs, it is easy to see why current control efforts are 

struggling to meet the ambitious goal of global eradication (118). An invaluable tool 

in a comprehensive malaria control program would undoubtedly be a safe, effective 

malaria vaccine however research towards this end has been challenging. 

Development has been hindered by the extensive antigenic variation present within 

the parasites (291), the complexity of the parasite life-cycle and our limited 

understanding of how the parasites interact with the human immune system (183). 

Despite the challenges, research into a malaria vaccine is progressing with a number 

of vaccine candidates currently in phase I and II of clinical trials (reviewed in (71)) 

and RTS,S, the most clinically advanced vaccine, in phase III trials (347).  
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While the last decade has seen significant progress towards a safe and effective 

malaria vaccine, testing potential vaccines in the field is a very costly process usually 

taking several years. Clinical trials must determine the effectiveness of the vaccine in 

various risk populations and if successful, the vaccine must be integrated into the 

existing public health system (272). With a number of vaccine candidates available, 

determining how best to prioritise the development of different programs, the best 

methods of vaccine deployment and the cost-effectiveness of deployment strategies 

was a particular concern. When looking at other infectious diseases, this decision-

making process has previously benefitted from the use of mathematical models. In 

2003, the Swiss Tropical and Public Health Institute (Swiss TPH, then Swiss Tropical 

Institute) began developing micro-simulation models of the clinical epidemiology of 

malaria with funding from The Bill & Melinda Gates Foundation (BMGF) and 

support from the both PATH Malaria Vaccine Initiative (MVI) and GlaxoSmithKline. 

Their aim was to provide mathematical models of malaria epidemiology capable of 

exploring the potential of the vaccine candidate RTS,S with emphasis on vaccine 

supply, demand, benefits and cost; details of this model were published in a 

supplement to the American Journal of Tropical Medicine and Hygiene (204, 275, 

276, 309, 310, 313). 

 

The Swiss TPH model has now been incorporated in to a Malaria Vaccine Model 

(MVM) by MVI (256). The MVM connects the outputs generated by Swiss TPH 

models with a demand forecast model to provide a comprehensive picture of new 

vaccines’ potential in terms of demand, public health and finance. The demand 

module estimates the vaccine dosage schedule over a defined period based on United 

Nations population data, UN Children’s fund (UNICEF) and WHO vaccine coverage 

rates and the required vaccine uptake entered by the user (255). The public health 

module predicts the impact of vaccine deployment using epidemiological models 

developed at Swiss TPH. The models determine the number of cases, deaths and 

disability-adjusted life years (DALYs) averted (based on disease burden data from 

WHO and the Malaria Atlas Program (MAP)) to quantify the impact of specific 

vaccine deployment scenarios. Finally, the financial module calculates the investment 

needed to achieve the desired public health impact (255). 
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Through development of the MVM it became evident that the individual stochastic 

malaria models could be extended to investigate a wider range of potential vaccines, 

vector control methods and intermittent preventative treatment in infants (IPTi) (311). 

Consequently, the original project was extended in 2006 (again with financial support 

from BMGF) to allow simulations of malaria at either a village or district level. 

Subsequent extensions (2008 and 2012) allowed for the inclusion of malaria mosquito 

vector dynamics and including improved simulations of diagnosis, drug action, host-

seeking behaviour, the contribution of the informal sector and of the implications of 

both IPT and transmission-reducing interventions (311). The core software 

“OpenMalaria” is an open source program written in C++ currently under 

development by teams from the Swiss TPH, Liverpool School of Tropical Medicine 

(LSTM) and the Network Dynamics and Simulation Science Laboratory at Virginia 

Bioinformatics institute.  

 

OpenMalaria is constructed in a modular way with several distinct components 

designed to capture the relevant aspects of malaria epidemiology. The details of the 

original models were previously published in a supplement to the American Journal 

of Tropical Medicine and Hygiene with an overview of the mathematical description 

included in the first paper (313) and an overview of the model implementation is 

detailed here in appendix 1.The model currently contains components representing 

infection of humans, blood stage parasite densities, infectiousness of humans to 

mosquitoes, incidence of morbidity and mortality (312). It is capable of simulating the 

dynamics of malaria parasitaemia throughout an infection, the transmission dynamics 

of the mosquito vector (59, 61), the dynamics of host immunity, the processes leading 

to illness and death within a patient and predicting the epidemiological impact of 

interventions (including vaccines (257, 314, 331), IPT (277, 278) and vector control 

(60)), cost-effectiveness analyses (203). 

 

1.2. LSTM’s role in the project 
 

LSTMs remit was to incorporate antimalarial drug resistance in to OpenMalaria. A 

strategic decision was made to do this using pharmacological-based models 

describing the effect of drug treatment on parasite burden. My role, which constitutes 
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the contents on this thesis, was to implement this strategy. Due to the size and 

complexity of the OpenMalaria program, the basic methodologies were first 

investigated using a stand-alone model written in R (270) (described in Chapters 2 

and 3). The stand-alone model used pharmacokinetic-pharmacodynamic (PK/PD) 

models to calculate the rate of change in parasite density in a single patient over time 

following treatment. The changing density was dependent on initial parasitaemia, the 

parasite multiplication rate, the proportion of parasites killed by antimalarial drugs 

and the proportion cleared by host immunity. After establishing the methodology, we 

had to develop a strategy to incorporate the mathematics developed to describe the 

antimalarial drug effects in the stand-alone model into OpenMalaria. In OpenMalaria, 

existing within-host models track the parasite density, parasite multiplication rate, and 

effects of host immunity while a case management models make all decisions 

regarding treatment choice, timings and dosages (discussed in more detail below).  

 

In this chapter I focus on how the drug treatment model was developed and 

implemented, including how it interacts with other model elements (Figure 1). A brief 

overview of how this model fits into to the broader context of OpenMalaria and how 

the larger program is run can be found in Appendix 1. To successfully integrate the 

drug effect methodology required the code be converted from the R programming 

language to C++ and re-written to allow interactions with existing models, 

specifically the within-host and clinical management models (Figure 1). A short 

summary of modelling within the C++ programming environment can be found in 

Appendix 2. 

 

The main methodologies utilised to describe antimalarial drug treatment were 

developed using stand-alone models (described in Chapters 2 and 3) and adapting 

these methods to run within the framework of OpenMalaria was challenging. 

OpenMalaria is a large program with multiple collaborators writing and committing 

code. As such, it was impossible for me to implement the drug treatment models into 

such a complex program without considerable help from two computer programmers 

(Tiago Antao (previously based at LSTM) and Diggory Hardy (previous based at the 

Swiss TPH)) and some decisions regarding the running of the drug treatment models 

were the result of group discussions. I will now discuss who implemented each 
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section of the code for the drug treatment models and outline the group decisions 

made throughout its development before continuing with the model methodology. 

 

Prior to beginning my PhD, Tiago Antao worked on the OpenMalaria program and 

wrote the code for three of the classes in the PkPd namespace (LSTMPkPdModel, 

LSTMdrug and LSTMDrugType). He designed them to accept details about the drug 

treatment regimen (via the medicate command, see later) from the clinical 

management module and to return the output of the drug treatment models (later 

termed the “drug factor”) to the within-host modules. These classes did not include 

any of the methods required to model drug action and calculate the drug factor, both 

of which are the focus of this chapter. 

 

It was decided by myself, Ian Hastings, Melissa Penny (responsible for the within-

host models), Valerie Crowell (responsible for the clinical management models) and 

Diggory Hardy that the drug treatment model would calculate and return a single 

“drug factor” to the within-host models each day. This was done primarily so the 

models output would fit with the one-day time steps required by the clinical 

management models (see section 2.2.1). The “drug factor” was therefore required to 

represent the action of all drugs present in the body at the start of the time step and 

any new dosages given though out the time step (see methods below) 

 

The methodology to describe antimalarial drug effect was developed, calibrated and 

validated using our stand-alone PK/PD model (364) developed in R (270). These 

methods were developed with a view to ultimately incorporating them in to 

OpenMalaria and so I re-wrote the relevant methods describing drug action in to the 

C++ programming language used by OpenMalaria. I incorporated these methods into 

the three classes (LSTMPkPdModel, LSTMdrug and LSTMDrugType) within the PkPd 

namespace; this required a comprehensive understanding of the class system 

previously implemented by Antao (described below). Diggory Hardy then checked 

the general running of the drug treatment model for syntax errors or bugs in the code. 

While I was with Hardy for this initial trouble-shooting phase he decided that it would 

be quicker for him to perform the checks and me to clarify any problems he 

encountered (rather than him explaining how to perform the relevant checks within 

OpenMalaria). Note that this “policing” check is required to ensure I/we did not 
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Figure 1. The population simulated within OpenMalaria is defined by a number of 

models (outlined in Appendix 1.3); an overview of the interactions between these 

models and the drug treatment model is shown above. The drug treatment model 

consists of four classes contained within the PKPD namespace; PkPdModel, Drug, 

DrugType and DrugAllele. At the beginning of each time step the treatment schedule 

is passed to the PkPdModel class via medicate. What follows is a series of decisions 

(shown in the flow chart above) that determine the drug factor (DF) for each time step 

based upon the contents of the medicate command. This drug factor is then returned 

to the within-host models.  

Shape key: The square boxes surround models while the ovals represent the classes 

within a model and the diamond indicates input files. 

Colour key: Red indicates the function of a particular model or class, blue described 

the information exchanged between two components and the green details the options 

being assessed within the model. 
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inadvertently introduce bugs or ambiguities that would affect the whole program. We 

later improved the methodology of the PK/PD model to allow for artemisinin 

absorption and conversion (described in Chapter 3) and subsequently included these 

methods with OpenMalaria. I converted the new methods to C++, updated the 

methods used within the drug treatment model and Hardy again helped check the 

running of the new code. The resulting drug treatment model was able to successfully 

reproduce the drug concentration profiles and parasite kill rates generated within by 

our stand-alone model. 

 

The methodology required to model the action of intravenous (IV) drugs was 

developed at the request of Crowell to allow investigation into treatment outcomes for 

patients with severe malaria. Modelling drug action via continuous IV infusion 

required an additional duration parameter to represent the duration of the infusion. As 

the clinical management model is responsible for all decisions regarding drug 

treatment (passed to the drug treatment model via the medicate command), it was 

logical to extend the medicate command to include the duration parameter. While I 

was responsible for developing the IV dosing methodology, Hardy wrote the code for 

the new methods in OpenMalaria; as the main computer programmer working on the 

project at the time he was deemed better equipped to safely deal with the technical 

aspects of the coding changes. To implement the model I therefore explained the 

model changes required to use the new dosing methods (i.e. which equations tracked 

the drug concentration over time, how they would change if a drug is given via IV and 

the need for the additional duration parameter) and Hardy implemented the changes. 

Given there were now two methods available for the calculation of drug effect 

(depending on the required method of drug administration), we needed to include a 

means for the model to determine which methods were required. Through discussions 

with Hardy we decided the most efficient way to do this would be to use the duration 

parameter essentially as a switch. So, if the duration parameter is zero or missing, we 

assume oral drug administration and the model uses the oral dosing methods. 

However, if the duration parameter is present and greater than zero, we assume the 

drug is given via IV and the IV dosing methods are used.  

 

As mentioned above, we eventually aim to use the drug treatment model to 

investigate drug resistance. This will require parasite PD parameters to represent 
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increasingly drug resistant parasites rather than the fully sensitive values we use now. 

After communicating this to Hardy he/we decided to set up a new class 

LSTMDrugAllele which will eventually be used to pick parasite PD parameters based 

upon the alleles present within an infection and determine the drug factor for each 

clone. The current status of this class is described below.  

 

 

2. Methods 
 

2.1. Basic Model 

 
The primary role of the drug treatment model was to quantify the parasiticidal effect 

of all antimalarials present within a human over a one-day time step. For the purposes 

of OpenMalaria, this drug-dependent killing was described using a single value 

termed the ‘drug factor’, which is the proportion of parasites that will survive the day. 

It therefore takes a value always between zero and one; a value of zero indicates 

parasites were fully cleared by the drug while a value 1 indicated there was no drug 

effect.  

 

The drug factor (f(C)) was calculated using the standard Michaelis-Menten equation.  
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where C is the drug concentration (mg/l) which decays over time, V is the maximal 

drug-killing rate (per day),  IC50 is the concentration at which 50% of the maximal 

drug killing occurs (mg/l) and n is the slope of the dose response curve.  

 

Defining the change in C over time depends on the method of drug administration and 

the assumptions we make about the drugs absorption and conversion. The validated 

PK/PD model of Winter & Hastings (364) describes how C varies if we assume 
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instantaneous absorption and conversion (included here in Chapter 2, equation 3), this 

methodology was later extended in Kay-Winter & Hastings (168) to allow for 

artemisinin absorption and its subsequent conversion to its active metabolite DHA 

(included here in Chapter 3, equations 5-8).  

 

While oral dosing is often the cheapest, most convenient and safest method of 

administration it is not always an option. For example, the patient may be unable to 

swallow the tablet or the drug may need to be administered very quickly. One of the 

fastest methods of administration is intravenous (IV) infusion as it allows the drug to 

be administered directly into the blood stream and also has the advantage of providing 

more control over the level of drug in the blood. There are currently two drugs 

recommended by WHO for IV administration: artesunate (AS) and quinine (QN), 

with a preference for AS in both adults and children where possible (380). For the 

purposes of modelling, the duration of IV AS is so short (usually a single injection 

lasting a few seconds) that we can assume instantaneous absorption and use the 

methods described above following oral administration to describe the change in C.  

However, rapid administration of quinine is unsafe (380). It must be administered as a 

slow, rate-controlled infusion and so calculating the change in C over time t must 

account simultaneously for the instant absorption of QN into the blood and the 

gradual elimination of QN from the body. This process was described using a 

differential equation  

 

! 

dC
dt

= R " kC
 

 [2] 

 

where R is the rate of infusion (mg/kg/day), found by dividing the dose (mg) by the 

patients weight (kg) and multiplied by the IV duration (days), and k is the elimination 

rate. Equation 2 was integrated using laplace transformations (appendix 3) to find the 

concentration at time t  

! 

C =
R

k •Vd
1" e"kt( ) +C0 • e"kt

 
 [3] 

where Vd is the volume of distribution.  
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After the infusion ends, the concentration declines in the normal manner 

 

! 

Ct = C0e
"kt  

 [4] 

where C0 is the concentration when the infusion end. 

 

2.2. Model implementation and architecture  
 

This chapter focuses on the development of a drug treatment model to quantify the 

effects of the antimalarial drugs on parasites in patients. To do this, the model must 

exchange information with both the clinical management models and the within-host 

models in each time step and so here I present a brief overview of these interactions 

(show visually in Figure 1) and go on to describe the architecture and implementation 

or the drug treatment model.  

 

2.2.1. Clinical management models 
 

The clinical management models determine whether, when and how a sickness is 

treated (assuming the pathogenesis model has first determined the patient has a 

malaria infection and has classified it as either uncomplicated or severe although 

presumptive treatment of non-malaria fevers can occur). There are currently two 

different clinical models implemented in OpenMalaria, one running in 5-day time 

steps and the other in 1-day time steps, each utilising different methods to predict the 

clinical and parasitological outcomes. In the 5-day model, outcomes are determined 

immediately within the clinical model and patients have a simple cure/fail response to 

treatment. In the more recent 1-day model, the effect of treatment on parasite density 

is calculated daily using the full PK/PD modelling techniques. In this case, the clinical 

model must work together with the models for drug action, severe outcomes and 

within-host dynamics and requires an event-scheduler model. The event-scheduler 

includes both a clinical outcomes element to schedule of sickness events (fever 

start/end, recovery/death outcomes) and a case-management model. The case-

management model contains decision trees to determine the treatment-seeking 

behaviour and health-system outcomes of each individual with treatment schedules 
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split according to infection type i.e. uncomplicated or severe. The treatment scheduler 

passes a description of the chosen drug regimen to our drug models using a command 

called medicate.  

 

2.2.2. Within-host models 
 

The within-host models track the parasite densities within the human hosts and are 

designed to cover the liver/pre-patent stage of an infection, the asexual blood stage 

(merozoites), the sexual blood stage (gametocyte) (275) and acquired natural 

immunity (204). Natural immunity in this model is acquired only after considerable 

exposure to parasites during an infection (310) mainly acting by controlling parasite 

densities (204). To update the parasite density at the end of each time step the within-

host models require a drug factor from the drug treatment model to quantify the 

parasiticidal effect of all drugs present. Given their direct effect on parasite densities 

the drug treatment model can be considered part of the within host models but it is 

important to note that they are contained within the PkPd namespace (and not the 

WithinHost namespace and class). 

 

2.2.3. Drug treatment model 
 

We developed a drug treatment model to run within OpenMalaria capable of 

interacting with the clinical management and within-host models described above, 

and the XML schema file (containing the models input parameters, described in 

Appendix 1). Briefly, the model receives all details surrounding drug treatments (i.e. 

which drug/s are given, the route of administration, the dosages and timings) from the 

clinical management models via the medicate command, retrieves the drug PK (Vd 

and k) and parasite PD (IC50, V and n) information from an XML schema file and 

passes a drug factor to the within-host models. General details regarding the set-up 

and running of OpenMalaria, the structure of XML schema files and a brief 

description of the models interacting the drug treatment model are contained within 

appendix 1 while the structure of programs written in C++ and their associated 

terminology are outlined in appendix 2.  The code describing the drug treatment 
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model is contained within the PkPd namespace and split across four classes; 

LSTMPkPdModel, LSTMdrug, LSTMDrugType and LSTMDrugAllele.  

 

The LSTMPkPdModel class is the pharmacokinetic and pharmacodynamic interface 

used by each human’s within-host model. The within-host model calls the 

LSTMPkPdModel class each time step to obtain a drug factor and thus calculate 

infection densities in the next time step. The drug factor must take into account the 

action of all drugs present in the body at the start of the time step and any new 

dosages given though out the time step. The implementation required to calculate the 

drug-specific drug factors was built into the LSTMdrug class (see below). The 

LSTMPkPdModel base class collates all drug factors calculated by the separate 

instances of the LSTMdrug class to find the combined drug factor of all the drugs 

acting within a human in that specific time step; it is this combined drug factor that is 

then returned to the within-host models. 

 

The LSTMdrug class is a derived class (appendix 2) of the LSTMPkPdModel class, 

included to reflect the need to model several drugs. Each drug present within a 

simulated human is represented by a separate instance (appendix 2) of the LSTMdrug 

class. If treatments include a new drug then a new instance is created and if an 

existing drug is eliminated from the body than the relevant instance is removed. Each 

instance of this class accesses the drugs PK and PD information from the XML 

(extensible mark-up language) input file (appendix1) via the LSTMDrugType class 

(explained below) and determines the drug factor for each drug over the course of a 

single time step. 

 

All decisions regarding a patients treatment are made within the case management 

models and details of new dosages to be administered are passed to the LSTMdrug 

class of the drug treatment models via the medicate function. This is done at the end 

of each time step to allow treatments to be administered at the immediate start of the 

next time step. Medicate is made up of four elements including a drug type (available 

codes are specified in the drug library, see details of the LSTMDrugType class below), 

the hour of drug administration to allow multiple dosages within each day, the dosage 

to be given and the treatment duration. If the duration parameter is zero or missing 

then the drug is assumed to be administered orally and the dosage is therefore in mg 
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of active ingredient. If a non-zero value is given, the dose is administered via 

continuous IV infusion. In this case the duration parameter represents the duration of 

the infusion (in hours) and the specified dosage is given in mg of active ingredient per 

kg weight of the patient.  

 

The drug factor may need to be calculated more than once within a single time step to 

reflect for example, the effect of any drug concentrations carried forward from the 

previous time step and any new dosages administered throughout the current time 

step. Implementation of the drug factor calculations was contained within the 

LSTMDrugAllele class (a class derived from the LSTMdrug base class). Each drug 

factor is therefore calculated within the LSTMDrugAllele class and returned to the 

LSTMdrug instance where they are combined into a single drug factor representing 

the combined effect of the existing and new drug dosages, of a single drug, over one 

time step. This single drug factor is then returned to the LSTMPkPdModel class to be 

combined with those of other LSMTdrug instances. At the end of a time step, the drug 

concentration is updated and the day’s dosages cleared. Instances are then passed 

from one time step to the next until the drug concentration is deemed negligible at 

which point the class instance is removed and no longer associated with that human. 

 

The LSTMDrugType class is a derived class of LSTMdrug and as mentioned above, 

provides each instance of LSTMdrug with the PK/PD parameters require to track drug 

concentration and determine the drug factor. I included a library of the PK/PD 

parameters for all currently calibrated drugs into OpenMalaria’s XML input file. Each 

time a new instance of LSTMdrug is created, the LSTMDrugType class is called. It 

begins by using the drug abbreviation defined by medicate to check whether the drug 

exists within the XML library and whether it is already present within the human. If 

the drug exists in the library and is not already present in another LSTMdrug instance 

it accesses the relevant pharmacological data directly from the XML.  
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3. Discussion 

 
The goal of OpenMalaria is to provide a mathematical model of malaria epidemiology 

with which the scientific community can investigate the effects of various 

intervention strategies including malaria vaccines, vector control strategies and 

antimalarial drug treatment. The model is capable of analysing different deployment 

scenarios and their associated costs alongside their effect on patient morbidity and 

mortality. The work within this chapter describes the development and 

implementation of the drug treatment models designed to allow OpenMalaria to 

explicitly model antimalarial drug effectiveness.  

 

The calibration and validation of the drug treatment model described here was carried 

out using the stand-alone R model described in Chapters 2 and 3 (168, 364) and the 

model outputs have been shown to provide a good fit to field data. It is important to 

note however that the PK/PD parameters used within OpenMalaria currently do not 

allow for heterogeneity and assume all parasites are fully sensitive to the antimalarial 

drugs. While this is an acceptable assumption when developing the models it does not 

reflect real-life field conditions. In reality, parasites sensitivity ranges from 

completely sensitive to fully resistance. To address this, the model will be developed 

to allow for a choice of parasite PD parameters based upon the alleles present within 

an infection. The specific alleles present will be assigned randomly according to their 

initial frequency within the population. While it was not possible to implement this 

methodology within the time constraints of the thesis, the current drug treatment 

model provides valuable insight into the effectiveness of antimalarial treatment 

regimens.  

 

It was decided early in the development of OpenMalaria that all individuals within the 

simulation should follow the same age-weight growth curve. To incorporate our drug 

treatment module into the confines of OpenMalaria we were forced to adopt this 

assumption however, in reality, the weight of individuals of the same age varies 

largely both within and between countries (344).  This lack of age/weight distribution 

within the model limits the potential questions we can ask. For example, variation in 

age/weight is most pronounced in children so investigating drug effectiveness in 
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children must allow for the natural differences in age/weight observed in the field. 

Recent work by van Buuren et al. (344) and Hayes (136) has focussed on optimising 

age-based dosing regimens for antimalarials. They began by prioritising the 

development of growth reference curves rarely available in resource poor settings and 

pooled the limited data available to provide centile curves of weight-by-age at both 

country and regional levels (136, 344). I discussed the inclusion of variable 

age/weight distributions into OpenMalaria with some of the programming project 

members however it was ultimately decided that the benefits of adding age/weight 

distributions to the model were out-weighed by disadvantages of adding another level 

of complexity to the model and hence the increase in model run time.  

 

Despite the limitations imposed by working within the existing OpenMalaria 

program, the model described herein has been successfully implemented. The results 

have been compared with that of the validated stand-alone models described in 

Chapters 2 and 3 and provide a good match to field data. However, while the drug 

treatment model is capable of predicting drug effectiveness against fully sensitive 

parasites, the clinical management and within-host models are still under 

development. The results presented within this thesis were therefore generated using 

our stand-alone model. Our comparatively simple stand-alone models allowed us 

much more flexibility when developing the model methodology and investigating the 

implications of increasing drug resistance.  
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Appendix 1.  
 

OpenMalaria 
 

Specific details of the set-up and running of OpenMalaria 

 

1.1. Running OpenMalaria 
 

Simulations run using OpenMalaria require a number of steps and always begin with 

an initial set-up and warm-up period to create the human and, if necessary, mosquito 

populations. This ensures the modeller has a stable population (i.e. run to equilibrium) 

available on which their intervention of interest can be applied. Each of the simulated 

malaria infections within each individual have distinct parasite densities which vary 

by time step while the level of malaria transmission can be assumed to vary 

seasonally (312). All details of the intervention period are calculated sequentially with 

the state at time t dependent on the state immediately before time t; for a typical 

simulated population of humans the models run in either 1-day or 5-day time steps. 

The results of each updated time step is determined by multiple model components 

acting together to describe new infections, parasites densities, acquired immunity, 

uncomplicated and severe malaria episodes, direct and indirect mortality, 

infectiousness to mosquitoes, and case management (312); an overview of this 

process is described in Figure A1.  
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Figure A1. Recreated using the figure currently available on the OpenMalaria wiki 

(http://code.google.com/p/openmalaria/wiki/ModelsOverview). It provides an 

overview of malaria infection cycle assumed by the model.  

Colour key: green arrows represent an increase in parasite number while red arrows 

represent a decrease.  

Shape key: oval nodes are processes affecting something, and boxes surround models. 
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1.2. Model software and fitting 
 

The individual-based stochastic simulations performed using OpenMalaria are 

computationally intensive and so, in an effort to improve performance and flexibility, 

they  

were written in the C++ programming language (see appendix 2 for an overview of 

programming with C++). There are currently two main ways of running predictive 

simulations  

1. The model can be run as a stand-alone program on the user’s computer however 

population size is important and larger populations increase computational time 

and RAM (Random-access memory; a form of computer data storage) usage. 

Generally, populations of 100,000 individuals for the 5-day time-step model or 

10,000 individuals for the one-day time-step model should require roughly two 

hours of computation (http://code.google.com/p/openmalaria/). Running the 

program on an individual computer can be done in one of two ways, either by 

installing openmalariaTools (recommended) or by building the executables from 

the source (requiring a significant amount of knowledge about computer 

programming).  The openmalariaTools is a GUI (Graphic User Interface) created 

to allow easy interaction with OpenMalaria, the user simply chooses the required 

options in the GUI rather than inputting different commands in a terminal.  

2. Running more complex, time-consuming, power-intensive simulations, for 

example model fitting, sensitivity analysis and exploration of multiple 

intervention strategies all require a huge amount of computational power. In this 

case the models can be run using the Berkeley Open Infrastructure for Network 

Computing (BOINC) (http://boinc.berkeley.edu/), an open-source software for 

volunteer computing. BOINC takes applications (like OpenMalaria) that have 

large computational requirements and divides the work across multiple volunteer 

computers. Members of the public usually provide the volunteer computing 

power by downloading the BOINC software to their computer, which runs when 

their computers are not being used. Specific information about how OpenMalaria 

uses the volunteer computing power can be found on www.malariacontrol.net  
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Each simulation performed using OpenMalaria requires an input file from the user to 

define their desired scenario. A scenario details the user’s population of choice for 

example the population age structure, the level of transmission and the health system 

attributes, and the user’s choice of intervention strategy/strategies. OpenMalaria 

requires this input file be written in Extensible Mark-up Language (XML), a typical 

XML scenario file includes the following elements 

- Scenario element to encloses everything within the file. It is used to indicate the 

start and end of the input parameters included to tell the program when to begin 

and end reading data in from the XML.  

- Demography element to describe the population size and age structure. The 

standard age-structure data comes from Ifakara, Tanzania with the population 

size determined by the user (population size has a major impact of the run time 

and amount of noise (or variation) resulting from model stochasticity) 

- Monitoring element detailing the output type required. This can either be 

continuous reporting of single values or survey data that may be irregular and 

usually sub-divided by age group. 

- Intervention element describing the type and timing of the interventions to be 

deployed. 

- Health system element of which there are currently two possible models available 

(see below for more detail). 

- Entomology element including a description of the transmission model. There are 

two transmission models available, independent of the length of a time step. The 

first is a simple model, termed “non vector” and allows for a response to human 

infectiousness and uses a forced infection rate from mosquitoes. The second 

model is a more detailed model of vector transmission allowing the modelling of 

vector stage interventions. 

- Pharmacology element describing all the PK and PD parameters required in the 

1-day time step model to determine drug effectiveness. This will be developed in 

the future to include initial levels of resistance and the corresponding parameters 

- Model element which groups together the remaining data required by the model 

i. Clinical data includes only a healthSystemMemory attribute which 

determines if/when a sickness bout occurs 
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ii. Parameter data describes a list of parameters that were fitted, for example 

the pathogenesis model requires a severe malaria threshold while the within 

host models require parameters describing immunity decay.  

iii. Model attributes include the number of days in a time-step, the number to 

seed the random-number generator and the number of time steps by which 

blood-stage infection is delayed after biting. 

Model outputs are written to text files and typically contain predictions of age- and 

time-specific epidemiological qualities (infection prevalence and density, multiplicity 

of infection, incidence and severity of morbidity and levels of intervention coverage) 

(312) but this can be tailored to the users needs. 

 

The parameters used within the OpenMalaria (with the exception of those used by the 

drug treatment models) were estimated by fitting to a set of 61 database covering ten 

different epidemiological scenarios (for full details see text S1 and table 1 in (311)). 

The parameters required for the drug treatment models were calibrated and validated 

independently of OpenMalaria using the stand-alone R model described in Chapters 2 

and 3 before incorporation in the XML scenario files.  

 

 

1.3. Model Components 
 

The simulated human populations within OpenMalaria are defined by a number of 

models including the demography model, transmission models, within-host models, 

pathogenesis models and it necessary, the clinical management models.  

 

Demography Model 

The demography model is responsible for maintaining the core features of the human 

population structure. For example, humans may be out-migrated to maintain the age 

structure whilst newborns are added to maintain the population size. Humans may 

also be removed from the model as a result of indirect deaths (i.e. those not caused by 

malaria), malaria deaths or if/when they reach the maximum age of the model.  
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Transmission Model 

The transmission models regulate the inter-human transmission of malaria; the 

infectiousness of humans at the end of each time-step translates into a risk of 

exposure to infectious mosquitoes in the next time-step. The number of P.falciparum 

inoculations (per person per year, denoted by the EIR: Entomological Inoculation 

Rate) is calculated each time-step and new infections initiated.  

 

Within-host Model 

The within-host models are responsible for calculating and updating the parasite 

density of each infection, each time-step, allowing for the effect of host immunity and 

drug therapies.  

 

Pathogenesis Model 

The pathogenesis models use the parasite density to determine whether an individual 

is sick and if so, whether the infection is classified as uncomplicated or severe (276, 

313) . After classification of the infection, the clinical management models determine 

the treatment seeking behaviour of the patient.  
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Appendix 2.  
 

Object Orientated Programming (OOP) 
 

To fully understand the architecture of the OpenMalaria program it is crucial to have 

at least a basic understanding of the object orientated programming (OOP) and the 

technical jargon that accompanies it. In this appendix I provide a brief overview of 

OOP in C++ and its associated terminology.  

 

 

2.1. Object orientated programming  
 

Object orientated programming (OOP) is a conceptual approach to designing 

computer programs. Simple, non-OOP programs tend be a long to-do list of 

commands. As programs increase in complexity, programmers tend to group together 

smaller sections of code that carry a specific task into functions. However, the data 

contained within these programs tends to be ‘global’ i.e. accessible to all parts of the 

program. As the programs grow further in size and complexity, allowing any function 

to modify any piece of data tends to lend to bugs in the code. In contrast, the object 

orientated approach encourages the programmer to place data where it is not directly 

accessible by the rest of the program and instead to use specially written functions 

which act as intermediaries for retrieving or modifying data. These intermediaries are 

the objects and therefore the eponyms in OOP. Each object contains data with a set of 

methods for accessing and managing it. In essence an OOP is a collection of these 

interacting objects and although each object is an independent entity they are capable 

of receiving messages, processing data and sending messages to each other. These 

features become especially useful when more than one programmer is contributing 

code (i.e. a collection of commands) to a project. 
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2.2. Classes and instances 
 

Classes in C++ are collections of variables and functions used to represent an object, 

essentially like a buildings blueprints. The purpose of a class is to make the program 

more modular (a process termed “encapsulation”) and each class contains the data to 

describe an object and the code (or functions) to access and modify the data. An 

instance in OOP is an occurrence (or a copy) of an object, and instances of the same 

class share the same common features but with a different set of specific attributes. 

For example, if we consider a class ‘Drug’ which describes all the common features 

of a drug such as its pharmacokinetic (PK) parameters and dosage schedule, and 

includes the methods (i.e. functions) required to calculate its concentration in the body 

and subsequent effect (Figure A2). For the purposes of the program, each ‘Drug’ class 

is essentially the same in so far as they all contain the drug PK parameters, a dosage 

schedule and a defined list of functions. The different instances of the class have 

different attributes. In this example, the two instances shown in Figure A2 represent 

two different drug types (artesunate and mefloquine) and while they have the same set 

of data and functions, the specific attributes (or values) of the data differ in each 

instance e.g. differing pharmacological parameters and dosing schedules.  

 

The modular structure provided by classes allows for the concept of information 

hiding and encapsulation. The premise being that all data within the program does not 

need to be ‘global’ (globally available data is accessible to all parts of the program 

simultaneously). Each class comes with one or more access specifiers whose primary 

purpose is to separate the class interface (the code that allows the class to interact 

with the aspects of the program) from the class implementation (the code describing 

the object). These access specifiers control the level of access other program elements 

have to data contained within the class and how classes inherit such constraints. 

Access specifier typically include one of three levels of restriction  

i. Public restriction allows any part of the program, including those outside the 

class, to access all the code within the class 

ii. Protected restriction allows the class itself and any derived classes (see 2.3. 

Inheritance) to access and inherit the data while essentially hiding it from all 

other classes. 
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Figure A2. A class is used to describe the form of an object and contains the data 

representation and methods (functions) for maintaining the data in one package. The 

box on the left of the figure represents a class “Drug” and includes the data required 

to describe a drug and the methods to manipulate the data, in this case to calculate the 

drug concentration and parasiticidal effect. In OOP, an instance is essentially a copy 

of an object. The two instances shown here on the right represent the two instances of 

the same class “Drug”. They share the same common features (i.e. the same data and 

methods) but have different attributes. 

 

 

 

iii. Private restriction makes the code accessible to only the class in which it is 

contained; this is the highest level of data hiding.  

 

An additional feature of the C++ language is the ability to declare a function as a 

“friend” of a class. Such ‘friend’ functions may access the class code deemed as 

private or protected. This approach is typically used if a function needs to access 

private data in objects from two different classes. However it should be used with 

caution, too many external functions declared as friends of a class with protect or 

private data reduces the advantages gained by encapsulating the separate classes in 

the object-orientated approach.   
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The final requirement of a class is that it contains two functions termed the 

constructor and destructor. These are special functions responsible for creating and 

disposing of function variables belonging to the class. The constructor is used to 

initialise the variables while the destructor essentially cleans up after the class and 

frees any memory allocated within the class. Both the access specifiers of both the 

constructor and destructor functions must be public to allow the class data to be 

created (if private, the constructor cannot be called when the object is created and so 

function variables cannot be created) . 

 

 

2.3. Inheritance  
 

In addition to the design of stand-alone classes (described above), C++ allows for a 

more advanced design based on the concept of inheritance between classes. 

Inheritance is an important feature in OOP in which classes can be organised into a 

hierarchical structure. It allows the programmer to create classes that are derived from 

other classes, known as the base classes, so that they automatically include all the 

variables and functions of the base classes. This means, when creating a new class, 

the programmer can reuse the data and functions from within the base class thereby 

reducing implementation time. Classes can also be derived from more than one class, 

inheriting the data and functions from multiple base classes.  

 

The example depicted in Figure A2 described a class ‘Drug’ with two instances 

representing two new drug types. If we extend this example and consider that drugs 

can either be administered orally or via IV infusion. The inheritance feature in C++ 

allows for the creation of two derived classes of the base ‘Drug’ class (Figure A3). 

Both derived classes contain the common properties of the base class such as the 

class attributes and common functions but they allow existing functions to be edited 

and/or new functions to be created within a specific the derived class (Figure A3). In 

this example, the derived classes are modified to represent the different methods of 

drug administration (Figure A3). As before, different instances of the same derived 

class can be created and share the same common data and methods but with their own 

unique attributes.  
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Figure A3. The base ‘Drug’ class show in the left box describes an objects data and 

the methods required to manipulate the data. Using the inheritance feature in C++, it 

is possible to create two derived classes. The derived classes inherit the common 

features (i.e. data and functions) of the base class and allow us to modify these 

features as required. Here, the methods in the derived classes (centre boxes) have 

been modified to reflect the different routes of drug administration. Different 

instances of these derived classes contain all the features of the derived class but have 

different attributes; in this case, the attributes are those applicable to AS and MQ.  

 

 

 

2.4. Namespaces 
 

In C++ namespaces allow entities like classes, objects and functions to be grouped 

under one name thus dividing the global scope of the program into ‘sub-scopes’ each 

with their own name. This feature is designed to simplify the writing of programs that 

combine pre-existing code from several contributors (like OpenMalaria). When 

multiple users contribute to a single computer program there is an increased risk that 

two classes/functions/variables will inadvertently have the same name, this causes a 
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particular problem for the program as it is unable to distinguish between the defined 

versions. Namespaces essentially allow the contributor to package their code into a 

unit called a namespace. All classes/functions/variables can then be referred to with 

respect to their namespace by using the namespace as a prefix, for example 

namespace :: function.  
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Appendix 3. 
 

IV drug administration 
 

For drugs administrated from IV infusion, the change in concentration C over time 

can be described as  

 

! 

dC
dt

= R " kC
 

 [A3.1] 

 

where R is the rate of infusion (mg/kg/day), found by dividing the dose (mg) by the 

patients weight (kg) and multiplied by the IV duration (days), and k is the elimination 

rate. Equation 2 was integrated using laplace transformations to find the concentration 

at time t  

 

To find the concentration C at time t, equation A3.1 was integrated using laplace 

transformations and the convention (209) of overhead bars to indicate transformed 

variables  

 

! 

sC "C 0( ) =
R
s
" kC

 
 [A3.2] 

where C(0) is dependent on the drug concentration in the blood at the immediate end 

of the previous time step C’ augmented by any new doses D (mg/kg), so 

 

! 

C0 = " C + D
Vd • W
# 

$ 
% 

& 

' 
( 
 

 [A3.3] 
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Equation A3.2 rearranges to give  

 

! 

C s+ k( ) =
R
s

+C0 

 

! 

C =
R

s s+ k( )
+

C0

s+ k( )
 

 

Back transforming into the time domain gives 

 

! 

C =
R
k
1" e"kt( ) +C0 • e"kt

 
 [A3.4] 

 

Using equation A3.4 gives the amount (mg) of drug in the body at time t. To 

determine how the drug affects parasite density this amount was converted into a 

concentration by dividing the amount in the body (mg) by the volume of distribution 

(l/kg) 

 

! 

C =
R

k •Vd
1" e"kt( ) +C0 • e"kt

 
 [A3.5] 

 

Note the body weight multiplier in R cancels the weight factor in the denominator. 

 

The effect of the intravenously administered drug is found by substituting Equation 

A3.5 into the Michaelis-Menten killing equation described in Equation 1 
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f C( )" dt =V
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k
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( 
) 
n

+Kn
" dt  

 [A3.6] 

It is not possible to find the integral of this equation so it is solved numerically in C++ 

between the defined limits of 0 and t. 
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Chapter 6 
 

Estimating the windows of selection for 

antimalarial drugs. 
 

 

ABSTRACT 

 

One force driving drug resistance through a population is resistant parasites’ ability to 

survive “residual” drug levels persisting from previous treatment. High levels of drug 

use and long drug half-lives mean a high proportion (up to 80%) of the population 

may have residual drug levels selecting for resistance. Field studies can quantify the 

second force by estimating a window of selection (WoS), defined as the time 

difference between the earliest detection of increasingly resistant clones. We 

investigate whether these field data accurately estimate the true window of selection 

using standard pharmacokinetic-pharmacodynamic models. The simulated results 

were consistent with field data and effective ACTs were able to clear sensitive (and 

mildly resistant) infections when treated directly. Clinical estimates of WoS routinely 

overestimated the ‘true’ WoS following both AR-and AS-MQ treatments. The ‘true’ 

WoS were much lower than anticipated with a 50-fold IC50 increase resulting in a 2 

or 5 day WoS for AR-LF and 4 or 11 days for AS-MQ (10th and 25th centile 

respectively). In this case, clinically estimated WoS were shown to be poor predictors 

of the ‘true’ WoS and urge authors to use the methodology within to evaluate the 

accuracy of clinical WoS for other drugs/regimens.
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1. Introduction 
 

Artemisinin combination therapies (ACT) are now widely deployed, very effective, 

first-line treatments for uncomplicated Plasmodium falciparum malaria in most 

endemic countries (380). The artemisinin component is extremely fast acting and 

highly potent but rapidly eliminated so they are always co-administered with a second 

partner drug with a longer half-life. The long half-lives of the partner drugs are 

clinically beneficial, providing prophylaxis after treatment (305, 307), but the rapid 

elimination of artemisinin means the partner drugs persist as a monotherapy for 

extended periods of time after treatment thereby selecting for resistant parasites. 

Tolerances to increasing concentrations of long half-life drugs (in this case the 

‘partner’ drugs) may gradually evolve in parasite populations to the point where full 

therapeutic failure of ACTs may occur. Field studies have observed this increasing 

tolerance for SP (132, 133, 352), LF (305) and MQ (267) whose half-lives are 

approximately 4 days for sulfadoxine (109), 8 days for pyrimethamine (109), 4-5 days 

for LF (96) and 2-3 weeks for MQ (355). Aduik et al. (1) have also shown that the 

addition of an artemisinin to a failing drug with a long half-life does not fully restore 

drug effectiveness. This ability of the long-lasting ‘partner’ drug to evolve resistance 

is arguably the Achilles heel of ACTs. 

 

The genetic process whereby parasites evolve increasing tolerance to the partner drug 

is usually quantified as a window of selection (WoS). As a specific example, Watkins 

and Mosobo (352) noted parasites with the dhfr108 mutation could be observed in 

patients 15 days after treatment with SP (sulfadoxine-pyrimethamine) , whereas wild-

type infections were only observed after 50 days; thus implying a WoS of 35 days. 

Similarly Sisowath et al. (305) estimated a WoS of 15 days associated with the 

pfmdr1 D1246Y mutation after lumefantrine treatment. Routine genotyping in clinical 

trials means such data are readily available and there is increased interest in using 

these data to estimate WoS (130, 133, 305, 352). In endemic areas people often take 

antimalarial drugs presumptively on a regular basis to treat any type of fever. This is 

likely to result in lengthy selection windows for most drugs for example, if 5 courses 

of SP are taken per year then there will be 5x35=175 days per person in which  
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Figure 1. Potential problems that may arise when using patency to estimate the 

‘clinical’ windows of selection (WoS). Field studies typically measure the WoS by 

comparing the times different genotypes become detectable in patients. The data at 

the top of the figure are field data from Sisowath et al. (305), showing that resistant 

parasites bearing the pfmdr1 D1246Y mutation (top row; blue squares) become 

detectable in patients approximately 20 days after treatment and about 15 days earlier 

than sensitive parasites (bottom row; green squares). We are interested in whether 

these ‘clinical’ WoS are good representations of the ‘true’ WoS. 

For each new infection we assumed 105 parasites emerged from the liver and became 

detectable when there were 108 parasites (horizontal dashed lines), the black line 

shows the decrease in drug concentration over time (for illustration we assume a 

single dose regimen). Lines A and B show two clones that emerge on the same day 

but grow at different rates as a result of differing IC50s, become patent several days 

apart. Here, field estimates based on the day parasites become detectable would 

quantify a window of selection of around 5 days when in fact there is none. Lines C1-

C3 illustrate how the earliest emerging parasites may not necessarily correspond to the 

first patent infection. C1 is the earliest successfully emerging clone but residual drug 

levels cause an initial drop in parasite numbers and so C2, which emergences slightly 

later, is able to become patent sooner. Similarly, by the time C3 emergences from the 

liver, drug levels have fallen sufficiently that it no longer effects the newly emerged 

clone and so C3 is able to emerge before both C1 and C2. The ‘clinical’ WoS is 

actually wrong: the true order of survival is C1, C2, C3 but the clinical order is C3, C2, 

C1. This effect is not genotype-specific but it introduces an element of chance that 

may reduce the correlation between ‘true’ and ‘clinical’ WoS.
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persisting drug concentrations are selecting for the dhfr108 mutation. This implies 

that selection for resistance via WoS may be widespread and intense. 

 

These WoS estimates are widely cited and we refer to them as ‘clinical’ WoS to 

denote their origin in clinical observations. In fact the ‘true’ WoS is the period in 

which infections bearing the mutation can emerge from the liver (we assume the 

drugs do not kill the parasites while in the liver stage) and survive to produce a patent 

(i.e. detectable) infection while sensitive parasites are killed by residual drug 

concentrations (321). Unfortunately, it is impossible to directly observe ‘true’ WoS 

because the 105 parasites that emerge from the liver are below patency so we are 

forced to rely on clinical WoS i.e. the time at which they have grown to patency 

(assumed to be 108). However, it is not clear how well the clinical WoS estimates the 

‘true’ WoS and there are several plausible reasons why they may be poor estimators 

(Figure 1).  This paper uses the pharmacokinetic-pharmacodynamic (PK/PD) model 

described in Winter & Hastings (168, 364) to simulate WoS for increasingly resistant 

infections with the aim to quantifying how accurately clinical WoS estimate the ‘true’ 

window of selection.  

 

 

2. Method 
 

We used the validated mechanistic PK/PD model of Winter & Hastings (364), with 

the additional absorption and conversion phases for the artemisinins, and the 

parameter specific estimates of variation as described in Winter & Hastings (168) 

(Table A1). The model was applied to two treatment combinations artesunate-

mefloquine (AS-MQ) and artemether-lumefantrine (AR-LF), both highly effective 

ACTs currently used to treat malaria. Using the model, we determined the probability 

that parasites survived residual drug levels and used this probability to determine 

whether the clinically observed WoS accurately predicts the ‘true’ WoS. We focus 

solely on increasing resistance to the partner drugs and incorporate it into simulations 

by increasing the IC50 of the partner drug. We do not consider resistance to the 

artemisinins because they are present in the body for such a short time they are 
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unlikely to impact estimates of WoS; however we include the artemisinin component 

in simulations determining the fate of parasites emerging on days 1, 2 and 3.  

 

For each treatment arm we modelled 2500 patients; all patients were treated at day 0 

and followed for 365 days. The patients drug pharmacokinetic (PK) parameters were 

assigned using the means and distributions in Table A1 and each patients infection 

consisted of one parasite clone with the parasites PD parameters randomly allocated 

using the means and distributions given in Table A1. We assumed there were no 

parasites present on the day of treatment (i.e. day 0) but that 105 parasites emerged 

from the liver the day after treatment (i.e. day 1). These parasites encountered residual 

drug levels persisting from the initial treatment and we investigated the fate of the 

clone, scored as either survival or death, each day following liver emergence. If the 

clone survived, the time to patency (i.e. >108 parasites) was determined by standard 

PK/PD modelling and recorded. If the clone did not survive, we repeated the above 

steps assuming that parasites emerged from the liver on day 2, then assuming they 

emerged on day 3 and so on until we found the earliest day each clone could 

successfully emerge in the patient (the patient scored as “missing data” if their 

infection failed to become patent by day 100). This process generated a distribution of 

earliest possible emergence days for the 2500 human / parasite combinations. 

 

We repeated the process described above to simulate “alleles” encoding increasing 

drug resistance; each of the 2500 patients retained their PK parameters to ensure 

consistency across alleles while the parasite PD parameters were re-assigned. We 

simulated six resistance alleles whose mean IC50 was increased 2, 10, 15, 20, 25 and 

50-fold greater than the mean (Table A1); each allele therefore generated a 

distribution of 2500 earliest emergence days occurring over the simulated one year 

period. In reality, patients in clinical trials are rarely (if ever) followed for more than 

the recommended 63 days for drugs with a long half-life (368). To reflect this we also 

looked at the effect of reducing the duration of the patient follow-up to that more 

typical of a clinical trial and include the results of the censored population (i.e. only 

patients with infections present before day 63).  

 

The question then arises as to how to translate these distributions into WoS. It would 

be inappropriate to define the start of the WoS as the lowest possible emergence day 
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in the distribution, because this will depend on chance and on sample size. We 

therefore defined the day the WoS opened for any allele as the day post treatment on 

which !25% of clones could survive residual drugs (we also used a definition of 10% 

but this made little difference, see later). The WoS acting between 2 alleles is 

therefore the time difference between the openings of their respective WoS.  

 

Having established the “true” (i.e. according to our simulations) WoS, it is necessary 

to investigate how well field data generated by clinical trials recovers them. We 

simulate 2500 patients, all treated on day 0 and followed up for 100 days, with PK 

parameters drawn from Table A1. We assume that on average any individual would 

acquire 16 new infections per year based on data from Northern Ghana (284). For 

each individual, the specific number of new infections was chosen from a Poisson 

distribution with this mean value, 16. To maintain the population size, if an individual 

had no new infections  (i.e. if a value of zero was chosen) another number was 

selected in the same way. The day on which each of the new infections emerged from 

the liver was randomly sampled from the follow-up period. Each newly emerging 

infection had PD values chosen from Table A1. In humans with more than one new 

emergence, each emergence was genetically distinct (i.e. had different PD values). 

The fate of each emergence in a human was determined as before (survival/death and, 

if survival, time to patency). The simulated patient was then categorized as having 

“no re-infection” (if no patent infection appeared before day 100 of follow-up) or “re-

infected” with a time of first patency. This generates a distribution of times to first 

patency analogous to the data of Sisowath et al. (305) shown on Figure 1. We repeat 

this process for each of the six resistance alleles; the 2500 humans had their PD 

parameters reassigned for each allele with increasing IC50 values. Once again, the 

problem arises as to how to define when the WoS opens for each allele in the 

simulated field data. Most observers “eyeball” the data (e.g. the Sisowath et al. (305) 

data on Figure 1) and compare the earliest patency days; as noted above this is 

unsatisfactory because it depends on chance and the sample size  of each allele 

(determined by its frequency). For consistency, we chose to compare field estimates 

of WoS by assuming they opened at the 25th centile of the distribution of earliest 

patency days (again checking the results are consistent with a definition using a 10% 

centile). As before the WoS between different allele is the time difference between 

their WoS opening. 
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The probability of surviving direct ACT treatment was also recorded to provide a 

baseline probability of successful treatment, against which the survival probabilities 

of later emerging parasites could be compared. This allowed us to determine whether 

the WoS can be estimated when observed drug failure rates are high. We assumed that 

between 1010 and 1012 parasites (chosen from a uniform distribution) from a single 

clone were present at the time of treatment, simulated the outcome (i.e. 

survival/death) and determined the probability of each IC50 “genotype” surviving 

direct treatment. 

 

 

3. Results 
 

The choice of model parameters were previously validated in Winter & Hastings 

(168, 364) and the results generated herein are again highly consistent with field data. 

Fully effective ACTs were able to clear infections with either fully sensitive or mildly 

resistant parasites when treated directly (Figure 2). All clones emerging on day 2 were 

highly unlikely to survive treatment with either AR-LF (Figure 2A) or AS-MQ 

(Figure 2B). When LF resistance was low (i.e. equal to or two-fold greater than the 

default value) it typically took 20-25 days before 50% of new infections could 

successfully emerge from the liver (Figure 2A); Sisowath et al. (305, 307) found 

reinfections with LF-sensitive parasites occurring 24 to 30 days after treatment. The 

probability of successful reinfection (with LF sensitive parasites) then increased 

rapidly to approximately 90% by day 40. For LF-resistant infections in which the 

IC50 was between 10 and 50-fold greater than the mean, the chance of parasites 

successfully emerging from the liver increased rapidly from less than 5% on day 2 to 

more than 90% on day 40. Following treatments with AS-MQ (Figure 2B), new 

infections with sensitive and mildly resistant (i.e. IC50 just 2-fold greater than the 

mean) parasites remained low (<30%) for the first 15-20 days after treatment. The 

probability of these emerging clones resulting in successful new infections increased 

to 60-70% 40 days post-treatment. As resistance to MQ increased, parasites were able 

to cause new infections earlier. Between 20 and 50% of new infections with resistant 

parasites (i.e. IC50s 20-fold greater than the mean) were able to survive 5 days after 
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Figure 2. The probability of drug resistant parasites emerging from the liver and 

surviving to cause a patent new infection 2, 5, 10, 15, 20, 25, 30, 35 or 40 days after 

treatment with (a) artemether-lumefantrine or (b) artesunate-mefloquine. Note the 

probability of surviving treatment (POST) with monotherapies are shown to 

immediate right of the x-axis. 
* POST – Probability of surviving therapy
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treatment, this increased to more than 90% survival on day 30. The simulated results 

show AS-MQ was able to prevent new infections by sensitive and mildly resistant 

parasites for longer than AR-LF. This implies MQ has the longer post-treatment 

prophylactic period and we note Sagara et al. (283) reported reinfections in Peru 

occur less frequently in their follow-up period of 28 days following AS-MQ treatment 

than AR-LF.  

  

The probabilities that each genotype survived direct treatment with either ACT are 

given in Figure 2 and Table A1. Most infections treated with AR-LF had less than a 

0.15 probability of surviving direct treatment, only when the IC50 was increased 50-

fold did the probability of survival increase to 0.19. In contrast, treatment of 

infections with AS-MQ in which the IC50 is more than 2-fold greater than the mean 

had >0.15 probability of surviving direct treatment. This increased to as much as 0.46 

and 0.73 for infections with IC50 values 25 and 50-fold greater than the mean.  

 

While the probability of surviving treatments differs between the two ACTs, both 

show the largest increase in survival occurring between days 2 and 5. This is likely to 

be due to the presence of the artemisinin component on day 2 and its absence by day 5 

(by convention, treatment starts on day 0 so artemisinins are present on days 0, 1 and 

2). Somewhat counter intuitively, the probability of surviving direct treatment was 

always greater than the probability of parasites surviving emergence on day 2. The 

most likely explanation is that the established infections treated on day 1 are present 

in much greater numbers (1010-1012) than the newly emerging parasites in day 2 (105).  

 

To accurately estimate the WoS, the time difference between detection of different 

“genotypes” (observed in the field when they become patent i.e. >108 parasites) must 

be approximately equal to the time difference between the earliest emergences of 

different genotypes from the liver (Figure 2, Table A1). The key research question is 

therefore to determine whether the clinical WoS reliably estimates the ‘true’ WoS. 

This appears to be true for clones treated with AR-LF; estimated WoS were accurate 

to within 1-4 days (Table 1), indicating that the observed patency was a good 

predictor of true WoS. Clinical estimates of WoS following AS-MQ treatment were 

much less accurate. The true WoS was consistently overestimated by as much as 19 

days (Table 1). While these results were determined using the 25th centile cut-off 
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Table 1. Simulations of 2500 patients (followed for one year after treatment) infected 

with increasingly drug resistant parasites and treated with either (A) AR-LF or (B) 

AS-MQ a  

AR-LF 
  10th centile 25th centile 

IC50 True 
WoS   Clinical 

WoS 
True 
WoS   Clinical 

WoS 
default to 2-fold 0   4 0   3 
2-fold to 10-fold 1 [1 vs 13] 7 4 [4 vs 13] 8 
10-fold to 15-fold 0   2 0   2 
15-fold to 20-fold 1   1 1   1 
20-fold to 25-fold 0 [1 vs 4] 1 0 [1 vs 5] 1 
25-fold to 50-fold 0   2 0   3 

              

AS-MQ 
  10th centile 25th centile 

IC50 True 
WoS   Clinical 

WoS 
True 
WoS   Clinical 

WoS 
default to 2-fold 0   8 2   11 
2-fold to 10-fold 3 [3 vs 33] 19 6 [9 vs 43] 25 
10-fold to 15-fold 0   6 1   7 
15-fold to 20-fold 0   3 1   5 
20-fold to 25-fold 1 [1 vs 10] 2 0 [2 vs 14] 2 
25-fold to 50-fold 0   5 1   7 

a The square brackets indicate the cumulative differences in WoS (i.e. default to 15-fold and 15- to 50-

fold) 

 

 

described in the methods and 16 new infections per year, the results were consistent 

when using the 10th centile cut-off (Table A2) and/or the number of new infections 

per year was reduced to 8 (results not presented). It is important to note however that 

these errors are cumulative and if we consider larger increases in IC50 the ability of 

clinical trials to estimate the ‘true’ WoS is reduced for both regimens. The 25th centile 

results for AR-LF show the ‘true’ WoS is over estimated by 9 days when the IC50 is 

increased from the default value by 15-fold and by 4 days when the IC50 is increased 

from 15-fold to 50-fold greater than the mean (Table 2). The poor predictive ability of 

clinical ‘WoS’ are particularly evident following AS-MQ treatment (25th centile) 

where the ‘true’ WoS is overestimated by 33 days (15-fold IC50 increase) and 12 

days (15 to 50-fold increase).  
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Table 2. Simulations of 2500 patients (followed for 63 days after treatment) infected 

with increasingly drug resistant parasites and treated with either (A) AR-LF or (B) 

AS-MQ a  

AR-LF 
 10th centile 25th centile 

IC50 True WoS  Clinical 
WoS True WoS  Clinical 

WoS 
default to 2-fold 0  3 0  2 
2-fold to 10-fold 1 [1 vs 13] 8 4 [4 vs 12] 8 
10-fold to 15-fold 0  2 0  2 
15-fold to 20-fold 1  1 1  2 
20-fold to 25-fold 0 [1 vs 5] 1 0 [1 vs 6] 1 
25-fold to 50-fold 0  3 0  3 

       
AS-MQ 

 10th centile 25th centile 

IC50 True WoS  Clinical 
WoS True WoS  Clinical 

WoS 
default to 2-fold 0  -1 1  2 
2-fold to 10-fold 2 [2 vs 9] 7 5 [7 vs 12] 7 
10-fold to 15-fold 0  3 1  3 
15-fold to 20-fold 0  2 1  3 
20-fold to 25-fold 1 [1 vs 8] 2 0 [2 vs 10] 2 
25-fold to 50-fold 0  4 1  5 

a The square brackets indicate the cumulative differences in WoS (i.e. default to 15-fold and 15- to 50-

fold) 

 

 

 

Censoring the results to reflect follow-up periods typical of a clinical trial had mixed 

results (Table 2 and Figure A2). Following AR-LF treatment, all individuals had a 

successfully emerging infection prior to day 63 and so the ‘true’ WoS remained 

unchanged by the reduced follow-up period (Figures S1 and S2). In contrast, 

approximately half of the earliest patent infections (with fully sensitive parasites) 

occurred after the 63-day follow-up period (Figure A2) and so the censored estimates 

following AR-LF treatment saw the clinically estimated window opening earlier (at 

both the 25th and 10th centile cut-offs). Despite the earlier opening of the clinical WoS 

the relative time the windows were open was almost identical (clinically estimated 

WoS were always within one day of the uncensored results). AS-MQ treatment has 
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been shown to result in fewer new infections than AR-LF (e.g. (283)) and our results 

show that only a fifth of the simulated infections (in fully sensitive parasites) occur 

before the 63-day cut-off of clinical trials. The reduced follow-up period has an even 

greater effect on estimates of the earliest patent infections, less than 300 of the 2500 

patients simulated had a patent infection (with fully sensitive parasites) within the 63-

day follow-up period. This reduced follow-up period resulted in estimates of the 

earliest patent infection almost half that seen when patients were followed for a year 

(Figures S1 and S2). So, rather than comparing the 10th/25th centile values as intended 

when following patients for a full year, we are actually comparing much lower 

centiles. When uncensored, the clinical WoS for AS-MQ overestimated the true 

window by approximately 10-fold  (10th centile) and 3- to 6-fold (25th centile). When 

the results were censored this overestimation was reduced to 3 to 8-fold and 2 to 5-

fold (10th and 25th centile respectively).  

 

 

4. Discussion 
 

The aim of this paper was to discover how accurately genotyping data obtained during 

antimalarial drug clinical trials are able to estimate windows of selection. The results 

show that estimating WoS from the clinically observed patency of different genotypes 

is a poor surrogate for the ‘true’ WoS, particularly when IC50 increases are large. The 

results in Table A2 show the earliest emergence day of parasites from the liver occur 

up to four weeks earlier than the emergence of the fastest patent infections seen in the 

field (clones C1 versus C3 in Figure 1) while the day the earliest parasites become 

patent occurred up to two weeks later than the fastest patent infections. This is likely 

to be a result of the delay in growth rate caused by residual drug levels in the earliest 

emerging infections, they typically required up to two weeks longer than the later 

(and hence faster) emerging clones to reach patency (i.e. >108). We do note that when 

simulating field data (to determine the ‘clinical’ WoS) we ignore heterogeneity in the 

biting rate and hence (presumably) liver emergence rate. 

 

There is currently interest in the improved diagnostics of malaria treatment, both 

through technical assistance for improved microscopy, and through provision of rapid 



! "$&!

diagnostic tests (RDTs). The primary purpose of these interventions is to ensure 

treatment is restricted to confirmed malaria case so that treatment is appropriate to the 

condition, to reduce use of expensive ACTs and ensure patient treated for the true 

underlying condition if it is not malaria. As further justification, reducing overall drug 

use will reduce selection for resistance. For example, if a drug had a WoS of 15 days 

and a patient was given 6 treatments throughout the year, there would be 90 days or 

approximately 25% of the year in which the resistant parasites were preferentially 

selected for. A decrease in overall drug use will lead to a decrease in this selection 

pressure which can only be quantified by true WoS hence the importance of verifying 

whether clinical WoS accurately reflect the true WoS.  

 

Three processes drive drug resistance: the ability to survive treatment, the WoS and 

intra-host dynamics (126). The ability of a mutation to survive treatment can already 

be quantified by clinical trials. The role of WoS required confirmation that the true 

WoS for a mutation is closely quantified by the clinically observed WoS, as has been 

investigated here. Quantifying intra-host dynamics is less easy although some 

progress has been made in mouse models (351) and through inference from clinical 

data (125). Thus, we can be reasonably confident that we can accurately quantify 2 of 

the 3 forces driving resistance. The results presented here provide compelling 

evidence that clinically observed WoS do not adequately estimate the ‘true’ WoS for 

AR-LF or AS-MQ treatments. It should therefore be noted that this is only applicable 

to the two drug regimens investigated. We would urge authors to use the methodology 

contained within this and previous papers (168, 364) to determine the accuracy of the 

clinical WoS for other drugs and/or drug regimens.  

 

The clinically estimated WoS appear to be poor predictors of true WoS particularly 

when looking at the cumulative results (given in square brackets, Table 1). The true 

WoS is much lower than most people would expect a priori. For example, the WoS 

following a default to 50-fold IC50 increase was 2 or 5 days for AR-LF (10th and 25th 

centile respectively) or 4 or 11 days for AS-MQ. Censoring the results to simulate the 

duration of a clinical trial (i.e. 63 days of follow-up) improved the predictive ability 

of AS-MQ (although it had little effect of AR-LF which tended to emerge before the 

63-day cut off). Despite this improvement, the ‘true’ WoS was still overestimated by 

2- to 8-fold thus confirming the poor predicative ability of the clinical WoS.
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Appendix 
 

We use this Appendix to include data that support and expand some of the 

interpretations and conclusions drawn in the main text, but whose inclusion would 

detract from the main argument
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Table A1. Dosages and mean antimalarial drug parameters for artesunate, artemether, DHA, lumefantrine and mefloquine with the 

corresponding coefficient of variation estimates given in square brackets 

 Artesunate-Mefloquine Artemether-Lumefantrine 
 Artesunate DHA Mefloquine Artemether DHA Lumefantrine 

Dosage Regimen 4mg/kg/day artesunate with 8.3mg/kg/day mefloquine for 
three days (380) 

1.7mg/kg artemether with 12mg/kg lumefantrine 
twice daily for three days (380) 

7.1(236) 1.49(236) 20.8(359) 5.21(140) 3.7(140) 21(68) Volume of distribution 
(Vd) [94(224)] [48(210)] [38(165, 302)] [82(4)] [48(210)] [263(16, 40)] 

252(236) - - 23.98(140) - - Absorption rate 
constant (x) [112(326)]   [68(4, 345)]   

30.96(236) - - 11.97(140) - - 
Conversion rate (z) 

[36.2(326)]   [65(4, 345)]   

- 25.4(236) 0.053(350) - 44.15(140) 0.16(110, 212, 350) Elimination rate 
constant (k)  [23(57, 83, 237, 326)] [63(165)]  [23(57, 83, 237, 326)] [5(83)] 

0.0016(4, 109) 0.009(210) 0.027(44) 0.0023a 0.009(210) 0.032(44, 321) Concentration 
producing half the 

desired effect (IC50) [86(210)] [117(210)] [78(210)] [79(264)] [117(210)] [102(210)] 
First order rate 

constant of parasite 
killing (V) 

27.6(364) 27.6(364) 3.45(359) 27.6(364) 27.6(364) 3.45(359) 

Slope Factor (n) 4(321) 4(321) 5(321) 4b 4(321) 4(321) 
a Unpublished data from Liverpool School of Tropical Medicine 
b Assumed to be like AS 
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Table A2. Simulations of 10,000 patients infected with increasingly drug resistant 

parasites and treated with either (A) artemether-lumefantrine or (B) artesunate-

mefloquine. The probability of surviving therapy (POST*) was calculated to provide 

a baseline probability of treatment failure assuming between 1010 and 1012 parasites 

were present on the day of treatment. The earliest parasite emergence was defined as 

the first day an IC50 “genotype” had more than a 25% chance of survival. The earliest 

emergence (and the day it subsequently became patent) did not necessarily result in 

the fastest patent infection (i.e. Figure 1 shows C3 becomes patent before C1) and so 

the day the fastest genotype became patent (and the day it would have emerged from 

the liver) was also recorded.  

 

(A) Artemether-lumefantrine 

IC50 POST* Earliest 
emergence 

Patency of earliest 
emergence 

Fastest 
emergence 

Patency of fastest 
emergence 

Mean 0.02 10 40 30 50 
x2 0.03 10 37 27 46 
x10 0.07 6 28 18 36 
x15 0.09 6 25 17 35 
x20 0.11 5 24 16 33 
x25 0.12 5 23 15 31 
x50 0.19 5 21 12 28 
 
(B) Artesunate-mefloquine 

IC50 POST* Earliest 
emergence 

Patency of earliest 
emergence 

Fastest 
emergence 

Patency of fastest 
emergence 

Mean 0.03 14 61 49 81 
x2 0.04 12 53 40 70 
x10 0.16 6 33 22 45 
x15 0.27 5 27 17 38 
x20 0.36 4 25 14 33 
x25 0.46 4 24 13 31 
x50 0.73 3 21 9 24 
a All units are in days after treatment, except POST* which is a probability.
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Figure A1. Estimates of the ‘true WoS was determined from the distribution of 

earliest emerging infections (top row). The ‘clinical’ WoS was estimated using the 

distribution of the earliest patent infections (bottom row). The true and clinical WoS 

was estimated for two drug regimens, AR-LF (left column) and AS-MQ (right 

column), with patients infected with increasing resistant parasites (top graphs show 

the mean IC50 increasing to x2, x10, x15, x20, x25 and x50 greater than the mean in 

the bottom graph) and followed for one year after treatment.
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Figure A2. Estimates of the ‘true WoS was determined from the distribution of 

earliest emerging infections (top row). The ‘clinical’ WoS was estimated using the 

distribution of the earliest patent infections (bottom row). The true and clinical WoS 

was estimated for two drug regimens, AR-LF (left column) and AS-MQ (right 

column), with patients infected with increasing resistant parasites (top graphs show 

the mean IC50 increasing to x2, x10, x15, x20, x25 and x50 greater than the mean in 

the bottom graph) and followed for 63 days (the length of a typical clinical trial). 
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Chapter 7 
 

Discussion 
 

 

Mathematical models, in this case of antimalarial drug therapy, have the potential to 

provide valuable insights into questions that cannot be easily answered in the field 

either because they are too expensive, unethical or too complex (i.e. they would 

require many trials to disentangle the effects). However, the current choice of 

pharmacological models for antimalarial drug treatment is limited in large part to 

those investigating monotherapies. Given that WHO now recommends drug 

combinations, preferably artemisinin combination therapies (ACTs), be used to treat 

uncomplicated malaria (379), the future value of such models is limited. The purpose 

of this thesis was to develop the methodology of pharmacological models so their 

results are more compelling for the new generation of ACTs and use them to 

investigate the effectiveness of antimalarial drug treatment.  

 

The previous thesis chapters describing the development of the basic PK/PD model 

(Chapter 2), the extensions to the model (Chapters 3 and 4) and the simulations of 

field data aimed at optimising clinical trial analysis (Chapters 4 and 6) were all 

written with the intention to submit the work for publication. As such, each chapter 

includes a lengthy discussion of our major findings, their significance and the models 

strengths / limitations (including the model assumptions). This discussion chapter will 

therefore focus first on a recent paper discussing the development of antimalarial 

PK/PD models and go on to summarise the extent to which this thesis meets its 

original aims.   
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1. Recent Publications  
 

To ensure a thorough analysis of the antimalarial PK-PD models currently available, I 

now discuss a recent PK-PD model described by Zaloumis et al. (399) with reference 

to our own model and the recent murine malaria model described in Patel et al. (254). 

Both models (254, 399) were published after developing the model described herein 

(Chapters 2 and 3; (168, 364)) and so are not discussed in earlier chapters.  

 

Zaloumis et al. (399) focus on how the distribution of parasite age changes post-

treatment as a consequence of the concentration of the antimalarial drug. They track 

the number of parasites in each developmental stage hourly and compare the 

simulated distribution of parasites with those in patients. They use the model to 

attempt to assess the utility of PK/PD models for determining treatment outcome in 

patients. While we (364) focus on how robust drug regimens are to small changes in 

parasite sensitivity and, how vulnerable regimens are to the evolution of drug 

resistance.  

 

There are a number of methodological differences between our PK/PD model and that 

of Zaloumis et al. (399). Primarily, their model allows for the stage-specificity of 

drug action by incorporating the age distribution of the parasite population (as 

describe in the discrete-time model of Saralamba et al. (285) and originally outlined 

by Hoshen et al. (143, 145)). This addition requires their model to run in hourly time 

steps as opposed to the half- and full-day time steps used in Winter & Hastings (364). 

Both papers model three first-line treatments for malaria (AR-LF, AS-MQ and DHA-

PQ) but the choice of PK/PD parameters and their associated distributions differ 

between the two models. Given the large amount of variation in PK/PD data reported 

by field studies this is not surprising but should be considered when comparing model 

outputs (see later).  

 

Our model generated results consistent with field data and we used the model to 

identify the most important factors effecting treatment outcome. Zaloumis et al. (399) 

primarily fitted their model to clinical data for the first 3-5 days following treatment 

but found their results were a poor fit to the data. They went on to compare different 
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AS-MQ and DHA-PQ dosing regimens with increasing EC50 (drug concentrations in 

vivo that correspond to 50% parasite killing) values, but conclude that their model did 

not provide the results expected from clinical efficacy studies. Both papers (364, 399) 

examine the models sensitivity to changes in parameter values, specifically the IC50, 

the slope factor (i.e. the slope of the concentration effect curve) and the parasite kill 

rate constant (Vmax) of the artemisinin and partner drug in AR-LF, AS-MQ and 

DHA-PQ combination therapies. Winter & Hastings (364) also consider the effects of 

initial parasite number, the parasite growth rate, and the volume of distribution and 

elimination rate of both the artemisinin and partner drug while the analysis of 

Zaloumis et al. (399) includes the parasite multiplication factor (fixed to 10 in our 

model), the mean age distribution of initial parasite burden, and the standard deviation 

of the initial parasite burden. The general conclusion of both papers is that the IC50 

and Vmax of the partner drug (with the exception of PQ Vmax, see below) are 

particularly important determinants of treatment outcome while the IC50 and Vmax 

of the artemisinin drug have only a marginal effect on the treatment outcome. Both 

papers also agree that the slope factor of either the artemisinin or the partner drug had 

no association with treatment outcome for any of the ACTs modelled. The models 

differ in their opinion of the importance of PQ Vmax on treatment outcome. The 

parameter analysis described in Winter & Hastings (364) ranks PQ Vmax as the most 

important parameter (of all PK/PD model parameters) when determining DHA-PQ 

treatment outcome while Zaloumis et al. (399) found it to be only weakly associated 

with the proportion of patients cured.  

 

The conflicting opinions of the two papers, particularly in terms of the models 

predictive ability, is likely to be the result of a number of factors. As mentioned 

above, the choice of model parameters and their associated distributions differ 

significantly and would inevitably result in different conclusions even if the same 

model were used. However, the primary reason for the difference of opinion is likely 

to be due to the length of the modelling time steps. Zaloumis et al. (399) use one-hour 

time steps to look at the hourly change in parasites of different ages. In contrast, we 

examine treatment outcome using half- and full-day time steps; our model was 

developed with the intention to eventually incorporate the methodology into 

OpenMalaria and so the one-day time steps used therein largely influenced our choice 
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A recent paper by Patel et al. (254) describes a mechanism-based growth model for 

P.berghei in murine malaria, reflecting the four erythrocytic stages (rings, early 

trophozoites, late trophozoites and schizont) of the parasite life-cycle, and 

incorporates the parasite killing effect of DHA. Their resulting model highlights the 

statistical superiority of a delayed effects model (rather than immediate drug killing) 

when describing DHA PK/PD. The superiority of this delayed effects model maybe 

the result of a lag time in drug action following administration of an artemisinin. 

Previous studies have noted an initial increase in parasite number following the first 

dose of an artemisinin (112, 300), although the reasons for this are not entirely clear. 

Gordi et al. (112) hypothesise that an initial increase in parasitaemia may be the result 

of time lags arising either as drugs distribute to the site of action, as drugs are 

converted to an active metabolite, and/or as parasites rapidly return from the site of 

sequestration to circulation. Despite the potential reasons, it is apparent that when 

modelling drugs with short half-lives (such as the artemisinins) and using hourly time 

steps, incorporating this lag time is crucial. Patel et al. (254) also found the inclusion 

of a schizont efflux pathway to represent the sequestration of parasites or trapping of 

parasites in the microvasculature, allowing subsequent return to the circulation 

significantly improving their final model. The problems encounter by Zaloumis et al. 

(399) hourly time step model are therefore likely to be the result of their assumptions 

regarding instantaneous drug effect and may have been improved by including a 

schizont efflux pathway. 

 

 

2. General discussion 
 

In the introduction to this thesis I outline the historical progression of mathematical 

models and summarise previous work utilising PK/PD models to investigate 

antimalarial drug treatment. In the discussion above, I extend this summary to include 

the recent developments of two pharmacological models. Despite the diverse range of 

mathematical models available, their potential as a tool for investigating drug action 

and their ability to predict the probable consequences of evolving drug resistance has 

yet to be realised. The primary purpose of this thesis was to develop pharmacological 

models of antimalarial drug treatment with particular consideration for modelling the 
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newest class of antimalarials, the artemisinins. I will now discuss the extent to which 

this work meets this aim, its subsequent inclusion in the OpenMalaria project, and its 

application to optimise clinical trial analysis.  

 

In Chapter 2 we investigate how robust drug regimens are to small changes in parasite 

drug sensitivity or how vulnerable the regimens are to the evolution of resistance. 

These questions can only be answered retrospectively in the field and so we 

developed a pharmacological model of antimalarial drug treatment that was 

sufficiently compelling to address these questions in silico.  

 

PK/PD models are the consensus method of modelling the effects of antimicrobial 

treatments (73), and track the change in parasite number in the body over time 

following treatment. We utilised these methods with three key extensions to the basic 

methodology for malaria. First, antimalarials typically include multiple doses and so 

the calculation of the drug concentration was adapted to reflect its dependence on the 

existing concentration of drug in the body augmented by the administration of new 

dosages. Second, it is now customary to deploy antimalarials as combination therapies 

to improve therapeutic efficacy and delay the development of drug resistance. As 

such, we extend the basic methodology to allow for the action of two drugs acting 

simultaneously on the parasite burden assuming they act independently of each other 

in the combination. Finally, we briefly incorporate acquired immunity using the data 

of Pongtavornpinyo et al. (262) to simulate clinical trials as a proof of principal.  

 

The simulated cure rates, parasite clearance times and periods of chemoprophylaxis 

(i.e. the time until new infections are noted) for various antimalarial therapies were 

shown to closely match field observations. The model was first used to examine the 

relative importance of model parameters. We concluded the maximal parasite kill rate 

(V) of the partner drug consistently had the largest effect on treatment closely 

followed by the parasite growth rate (a) for most treatments. The analyses also show 

the slope factor of the concentration-effect curve (n) (for either drug in the 

combination) to be relatively unimportant to the ultimate outcome of treatment. As 

mentioned above, Zaloumis et al. (399) have since shown with their model that the 

value of V was equally important and n equally unimportant in the ultimate success or 

failure of a specific treatment regimen. The only unexpected result of our simulations 
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was the small apparent effect of the initial parasite number on treatment outcome. The 

implications behind the relative importance of model parameters and the possible 

reasons for this unexpected result are discussed within Chapter 2.  

 

When the model was applied to “clinical trial” simulations we found good 

consistency with most features considered in clinical trials but show the predictive 

ability of day 7 serum levels was surprisingly poor. It is thought that low day 7 

concentrations are associated with an increased risk of treatment failure and it has 

been suggested that measurement of day 7 serum levels becomes a routine part of 

clinical trials (362). This proposal has been widely accepted and promoted by several 

influential bodies including reference laboratories, WWARN and the WHO (23, 193, 

385). While our analyses show that low drug levels on day 7 are associated with 

increased odds of failing treatment the predicative ability of serum levels, assessed as 

sensitivity, specificity and area under the ROC curve, was generally poor. This led us 

to recommend that clinical trials report the results of a ROC analysis alongside the 

typical odds ratio of treatment failure associated with low day 7 serum levels.  

 

The model was finally used to investigate the implications of the increasing tolerance 

and possible resistance to artemisinins recently observed in the field (32, 241, 260, 

282, 285, 384). The key question was whether there was likely to be a gradual decline 

in the protectiveness afforded to the partner drug or, whether we should expect a 

worst-case scenario in which there is a rapid decline in the protective effect. We 

concluded that the latter scenario was most likely and as such, support the assertions 

that measures are urgently need to prevent the evolution and spread of artemisinin 

resistance (50, 87, 377).  

 

The work within Chapter 2 illustrates the value mathematical models provide when 

capable of generating results consistent with field data. While we do not suggest they 

will ever replace the vital knowledge gained from clinical trials, they do allow us to 

make predictions about the potential impact of different scenarios (in this case the 

consequences of increasing tolerance and possible resistance to artemisinins) and 

offer invaluable insights into areas that cannot be addressed either ethically or 

financially in the field. While the results of this modelling approach were a success, 

we do note it relied upon a number of necessary assumptions. These assumptions 
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were all biologically justifiable and included at the time to minimise the complexity 

of both the model methodology and calibration. 

 

Treatment choice for uncomplicated malaria has recently shifted towards the use of 

combination therapies including two or more drugs, preferably the ACTs (380). 

However, the methodologies used in PK/PD models typically rely on the assumption 

that only one drug is used in treatment (three notable exceptions that model two drugs 

include (148, 364, 399)), that the drug is immediately available in its active form at 

the site of action and that the parent drug is not further converted to active 

metabolites. Given that antimalarial therapy now typically includes a short acting 

artemisinin drug, which is converted to a second active metabolite, and a longer 

lasting partner drug, these assumptions will potentially limit the future application of 

PK/PD models. In Chapter 3, we address these assumptions and develop the 

methodology in a number of specific directions allowing for (i) the time lags and the 

drug concentration profiles of drugs absorbed across the gut wall and, if necessary, 

converted to another active form (ii) multiple drugs within a treatment combination 

(iii) differing modes of action of drugs in combination (iv) modelling drugs converted 

to an active metabolite with similar modes of action. This refined and substantially 

extended model produced results consistent with field data and was subsequently used 

to investigate the public health implications of increasing drug tolerance and 

resistance for two first-line ACTs. Our results predict that as artemisinin resistance 

spreads there is likely to be a rapid decline in ACT effectiveness thus emphasising the 

importance of containing artemisinin resistance before it results in widespread drug 

failure.  

 

Good quality, comprehensive PK/PD data in the literature is surprisingly scarce and 

so correctly calibrating the models has proven to be one of the most time-consuming 

and subjective steps in the modelling process. We note in Chapter 3 that previously 

published estimates of the artemisinin maximal parasite kill rates are likely to have 

underestimated the true value. Parasite killing by a drug is usually assumed to occur 

throughout the parasites 48-hour life cycle and while this seems reasonable for drugs 

with a long half-life it unlikely to be true for the artemisinins. Their short half-lives 

mean they are only present in the body and hence available to act upon parasites, for 

approximately 6-8 hours post-treatment. Allowing for this shortened period of activity 
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led us to estimate artemisinin kill rates approximately seven-fold higher than 

previously assumed. We found the generally poor reporting of PK/PD data severely 

limits it value for subsequent re-application and has the potential to reduce the 

predictive power of mathematical models. We end Chapter 3 by making three specific 

recommendations to improve this situation thus maximising the potential of costly 

clinical trials. 

 

Our aim in Chapter 4 was to simulate clinical trial data as a resource for optimising 

clinical trial analysis. In 2003 WHO attempted to standardise protocol for the design 

and analysis of malaria clinical trials (368) however, in practice the analytical analysis 

and classification methods employed still vary (67). We identified four key 

questions/issues arising during analysis of field data (i) dealing with the data of 

patients who don’t attend all follow-up appointments (ii) calculating drug 

effectiveness on a per clone basis (iii) the best use of genetic markers to distinguish 

new infections from reinfections (iv) the extent to which genotyping 

resolution/sensitivity affects results. It is impossible to investigate these issues in the 

field where the true results (in the absence of analytic bias) are unknown. Instead 

mathematical models capable of reproducing realistic clinical trial data provide ideal 

opportunities to assess the different methods of analysis given the true results are 

known. We simulated the clinical trial data using a modified version of the model 

described in Chapter 2 (364). Briefly, these modifications allow for the presence of 

multiple clones in the initial infection, the acquisition of new infections during follow 

up and molecular genotyping of infections. This work was done in collaboration with 

Alice Parry (masters and PhD student) from Lancaster University; she performed all 

the model analyses and made the decision to focus on only one of the research 

questions outlined above. The resulting paper by Jaki et al. (158) uses our simulated 

data to evaluate the capability of the different analysis methods used in malaria 

clinical trials and introduces the novel concept of evaluating drug effectiveness on a 

per clone basis. The paper concludes that of the currently available analysis methods, 

survival analysis provides the best estimation of drug effectiveness. The newly 

developed method to determine treatment effectiveness on a per clone basis is 

accurate and provides additional insights into treatment performance.  
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This thesis was funded by the BMGF as part of the Swiss TPH OpenMalaria project 

with the remit to develop a drug treatment model capable of investigating drug 

resistance. The project background, its current status and my contributions to the 

project are outlined in Chapter 5. Given the size and complexity of the OpenMalaria 

program, the drug treatment model was largely developed through the stand-alone 

models described in Chapter 2 and 3. These stand-alone models ran much faster and 

provided us with much more flexibility than would have been possible within 

OpenMalaria.  

 

After establishing the methodology, we successfully incorporated the mathematics 

describing the antimalarial drug effects into the existing structure of OpenMalaria. It 

should be noted that to work within the boundaries of OpenMalaria addition model 

assumptions (not present in chapters 2 and 3) were required. These included a lack of 

heterogeneity in PK/PD parameters and hence the assumption that all parasites were 

fully sensitive to the antimalarial drugs. We recognise that while acceptable for the 

purposes of the models this does not reflect the situation in the field. To address this, 

variability in the PD parameters based upon the alleles present within an infection 

should be included however the time constraints of the thesis have prevented us from 

implementing this. It was also decided that there would be no variation in the weight 

of individuals of the same age within the model. This lack of age/weight distribution 

has the potential to limit the questions we can ask of the simulated data. For example, 

if all children follow the same growth curve we cannot adequately investigate the 

dosing bands of age-based dosing regimens. I discussed the possible inclusion of 

variable age/weight distributions using the region specific growth centile curves 

described in van Buuren et al. (344) with the modelling group. However it was 

ultimately decided by more senior members of the project that this added an 

unnecessary level of complexity to an already complex model. Despite the constraints 

imposed within OpenMalaria, the drug treatment model now has the potential to 

answer key questions about the effectiveness of antimalarial drug therapies. 

 

Windows of selection (WoS) are important drivers of drug resistance and in Chapter 6 

we aimed to discover how accurately field trials estimate the ‘true’ WoS. Drug 

resistance spreads through a population because (i) parasites can survive direct 

treatment and/or (ii) survive “residual” drug levels persisting from previous treatment. 
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This force of resistance can be quantified in field studies by estimating a window of 

selection (WoS) and is typically estimated by comparing how soon after treatment 

different genotypes become detectable. WoS estimates are widely cited and we refer 

to them as ‘clinical’ WoS to denote their origin in clinical observations. In fact the 

‘true’ WoS is based upon the earliest emergence of different genotypes from the liver. 

Unfortunately, it is impossible to observe this emergence because parasites (assuming 

105 emerge) are below the microscopic limit of detection (assumed to be 108) and so 

we are forced to rely on ‘clinical’ WoS i.e. the time at which they have grown to 

patency. To determine how accurately field observations estimate the ‘true’ WoS we 

applied the validated mechanistic pharmacokinetic-pharmacodynamic model describe 

in Chapters 2 and 3 to simulate the WoS for increasingly resistant infections.  

 

The results showed that the estimates of WoS taken from clinical trials were a poor 

predictor of the ‘true’ WoS. The ‘true’ WoS was routinely over estimated by up to 12 

or 9 days (15-fold IC50 increase, 10th and 25th centile respectively) following AR-LF 

treatment and up to 30 or 34 days following AS-MQ (15-fold IC50 increase, 10th and 

25th centile respectively). Censoring the results to reflect the reduced follow-up period 

typical of clinical trials (i.e. 63 days) improved the predictive ability of the later 

emerging AS-MQ but had little effect on AR-LF. We also note the ‘true’ WoS were 

much shorter than would be expect a priori; 2 or 5 days for AR-LF and 4 or 11 days 

for AS-MQ (50-fold IC50 increase; 10th and 25th centile respectively). We conclude 

that previous studies, based on clinically obtained WoS, are likely to have greatly 

over-estimated the ‘true’ WoS and hence the impact of long drug half-lives in driving 

resistance. 

 

 

3. Limitations 
 

Any modelling approach has limitations; here I focus on three previously 

unmentioned limitations that appear to be most relevant.  
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3.1. Protein binding 
 

Protein binding generally refers to the binding of a drug to proteins in the blood 

plasma. The level of protein binding is dependent on a drugs affinity for the plasma 

proteins and has the potential to influence drug efficacy. Only the unbound fraction of 

drug is responsible for its pharmacological effect and so the less bound a drug is, the 

larger its effect will be. When developing our models we used estimates of IC50 

assuming they accounted for the level of protein binding. However some models, 

such as that of Zaloumis et al. (399) described above, use IC50 estimates measured in 

vitro (uncorrected for binding) and calculate the free (i.e. unbound) drug by 

multiplying by the unbound fraction in the in vitro testing media.   

 

3.2. Modelling time steps 
 

We developed the models described herein with the specific intention of incorporating 

the relevant drug killing methodologies into OpenMalaria. To aid this process we 

chose to develop our model using the one-day time steps required by the 

OpenMalaria. While these one day time steps were a logical choice for our model, it 

would be straightforward enough to either lengthen or shorten the time step length as 

necessary (for example, we use half-day time steps in the first seven days to allow 12 

hourly dosing). 

 

7.3. Impact of drugs on transmission 
 

This work focuses on the ability of antimalarial drugs to cure the disease but we 

recognise that they also have the potential to affect transmission and understanding 

this affect would allow us to maximise the impact of available resources. To 

effectively reduce transmission antimalarials must target the sexual stage gametocytes 

within an infection but it is the asexual parasite stages that are responsible for the 

symptomatic disease, so antimalarials are primarily active against the latter forms. 

Antimalarial drugs with a gametocytocidal effect are limited to CQ (partial activity 

against immature gametocytes (41)), the artemisinins (highly active against immature 

gametocytes (63, 268, 327)), the ACTs (associated with lower rates of gametocyte 
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carriage (40, 251, 317)), methylene blue (broad activity against both mature and 

immature gametocytes (70)) and primaquine (effective against mature gametocytes 

(42, 63, 268, 298)). A comprehensive review of the epidemiology and infectivity of 

P.falciparum and P.vivax gametocytes, including a detailed summary of the current 

status of antimalarials with gametocytocidal effects is provided by Bousema & 

Drakeley (41). Some antimalarials, such as pyrimethamine and proguanil, are also 

able to affect transmission by killing developing ookinetes in the mosquito midgut 

when transferred to the mosquito during a blood meal (48). This activity is termed 

sporontocidal and while the drugs do not directly kill gametocytes their ultimate 

effects on transmission are analogous to the gametocytocidal drugs (48).  

 

The announcement of the malaria elimination agenda (337) has renewed interest in 

antimalarials targeting gametocyte carriage, particularly primaquine. The WHO 

currently recommends the addition of a single dose of primaquine to treatment 

regimens for P.falciparum malaria in areas where transmission is low and where 

artemisinin resistance is a threat (380). The rationale being that its gametocytocidal 

activity has the potential to reduce the transmission (see for example, (41, 392)). 

However, these recommendations come with a caveat that states “when the risk for 

G6PD (glucose-6-phosphate dehydrogenase) deficiency is considered low or testing 

for deficiency is available”. Unfortunately these safety concerns have limited the use 

of primaquine as a transmission blocker in Africa given the high frequency of the 

G6PD deficiency polymorphism in the population. The lack of evidence regarding 

primaquines ability to block transmission and whether it is ultimately safe for use in 

Africa, lead to a meeting of group experts March, 2012 (95). The primary outcome of 

the meeting was a suggested series of phase 1, 2, 3 and 4 studies designed to measure 

primaquines PK and PD and test the drugs efficacy both ex vivo and in vivo, 

particularly in high risk groups (95). This risk/benefit trade-off could be further 

informed by modelling the impact of drug use on transmission. 

 

Modelling the gametocytocidal effect of antimalarials to investigate their affect on 

transmission was outside the remit of this thesis and while not a simple task we do 

note its inclusion in our model is entirely plausible. It would require us develop the 

model to (i) track the gametocyte population within an infection (rather than just the 

total number of parasites) (ii) to mathematically quantify a drugs gametocytocidal 
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activity (iii) to transform the number of gametocytes in the patient to a measure of 

host infectivity to mosquitoes. Modelling the stage-specific action of antimalarials is 

well documented (143, 145, 254, 285, 399) and would be straight forward to include 

in our current PK/PD model; we have avoided it thus far in the interest of simplicity. 

Possibly the most complex step involves determining a patient’s infectivity to 

mosquitoes from the number of gametocytes in their infection. This has been done 

indirectly by Ross et al. (275) to specifically model host infectivity within 

OpenMalaria. The process of gametocytogenesis is poorly understood and to avoid 

incorporating it directly Ross et al. (275) estimate host infectivity using patient’s 

asexual parasite density. When fitted to data from malaria patients they were able to 

reliably reproduce gametocyte densities in modelled patients and explain observed 

patterns of infectiousness in human hosts.  

 

 

4. Future directions 
 

The work conducted in this thesis has successfully developed the methodology of 

PK/PD models and highlighted just a few of the ways they can be utilised. I will now 

discuss how the modelling approach described herein has/will form the basis for 

further work.  

 

Through out this thesis we have repeated called attention to the ability of PK/PD 

models to answer questions that are simply unethical to address in the field. Typical 

examples include the effects of poor patient compliance (e.g. delayed, reduced or 

missing doses) or administration of doses above or below recommended therapeutic 

dose ranges, particular in the most vulnerable groups such as infants and children. 

This concept formed the basis of a recent Medical Research Council (MRC) grant 

titled “Pharmacological modelling in decision support of antimalarial drug dosing 

regimens” (principal investigator Dr Ian Hastings and co-applicant Dr Dianne (Anja) 

Terlouw). One of the grants primary aims is to develop a model of antimalarial drug 

treatment that can be applied to optimise drug deployment strategies. It will focus 

specifically on the development of robust, effective drug dosing regimens based on 

age-, height- and weight-bands for programmatic use in children. van Buuren et al. 
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(344) recently developed regional weight-for-age reference curves using data from 

target populations in malaria endemic regions of Africa, Asia and Latin America and 

used them to predict optimal age-based dosing regimens for the ACTs (unpublished). 

This work will test those predictions by combining these weight-for-age distributions 

with our extended PK/PD model (168). To date, Eva Maria Stähli-Hodel (LSTM) has 

combined the models and used the simulated data to investigate extreme but plausible 

treatment scenarios (mainly of compliance) that would be ethically impossible to 

measure in the field (318) (Appendix).  

 

In Chapter 4 we identified key questions / issues arising during clinical trials analysis 

and simulated clinical trial data using our modified PK/PD model to address them. 

This work was done in collaboration with statisticians from Lancaster University, 

they performed the statistical analysis of the simulated results and chose to focus was 

on one of four key issues identified (158). The results of our simulations now provide 

the basis for a further MRC grant application currently under review, titled 

“Improving the design and analysis of drug efficacy/effectiveness studies in malaria 

and in selected neglected tropical diseases (NTDs)” (principal investigator Ian 

Hastings (LSTM) with co-applicants Thomas Jaki (Lancaster University) and Russell 

Stothard (LSTM)) (decision due in July). The grant proposes to use data generated by 

our extended PK/PD model (described in Chapter 3) to improve analysis of malaria 

drug trials. I will update the model methodology described in Chapter 4 to allow for 

the absorption and conversion of the artemisinins (as described in Chapter 3) when 

treating patients with ACTs and simulate treatment outcome for large samples of 

patients (i.e. >10,000 patients). These data would initially be used to address the issue 

of clones undetected during molecular analysis, specifically (i) quantifying the bias 

and loss in accuracy in methods of analysis when clones are undetected (ii) 

developing efficient designs relating to data collection (iii) developing improved 

methodologies for analysis that accounts for the non-detecting of clones. The grant 

would then go on to use the simulated data to optimise the design and analysis of drug 

effectiveness studies and eventually extend these modelling techniques to drug studies 

in other tropical parasitic infections. 

 

 



! $+"!

5. Concluding remarks 
 

In this thesis I describe the development of a pharmacological model of antimalarial 

drug treatment. The methodology focuses specifically on two previously neglected 

areas, modelling combination therapies that include two or more drugs and modelling 

the newest class of antimalarials, the artemisinins. There is widespread concern about 

the increasing tolerance and possible resistance to the artemisinins currently observed 

in the field. We apply our model to investigate the potential implications of this and 

make verifiable predictions about the expected effect on treatment outcome if this 

trend continues. We further demonstrate the importance of mathematical models by 

simulating ‘field data’ with which we assess the best methods of measuring the period 

of chemoprophylaxis (i.e. time until new infection), determine the value of ‘window 

of selection’ estimates and optimise analysis of clinical trials.  

 

The work draws attention to the distinct lack of comprehensive, good-quality PK/PD 

datasets in the literature. This, more than any of our model assumptions, has the 

greatest potential to limit the future applications of the model. We recognise that 

clinical trials require a huge investment of both time and money and so it seems 

prudent to maximise their potential to inform future work. We make suggestions to 

improve this situation and identify the key PK/PD data that can, and should, be 

measured and reported in future field studies. Despite the difficulties described above, 

our results and conclusions are clear. We have shown the detailed pharmacological 

models developed here can produce results consistent with field data. With them we 

can quantitatively predict the future effectiveness of antimalarial drug treatments 

focussing specifically on the likely impact of evolving drug resistance. Finally, we 

demonstrate how models can be used to investigate techniques currently used in the 

field. 

 

Great progress has been made over the past century in the modelling of malaria and it 

is clear that to achieve the ambitious goal of malaria eradication the usefulness of 

mathematical models should not be overlooked. This is a sentiment shared by the 

recent malaria eradication research agenda (malERA) (336) and the roll back malaria 

program (384). To fully integrate mathematical models into future policy decisions 
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and research agendas will require substantial collaboration between the models end 

users (i.e. the health policy decision makers, program implementers, funding bodies 

and other researchers) and those developing and implementing the models. 
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The standard drug development process for antimalarials
and other drugs uses weight-based dosing (mg/kg) to pre-
dict blood concentrations of the drug, and hence their
effect. Consequently, the current World Health Organiza-
tion Guidelines for the treatment of malaria [1] provide
target doses and therapeutic dose ranges in mg/ kg/day.
However, in resource-poor settings, age-based dosing is
often employed instead of weight-based dosing because of
the scarcity of correctly functioning weighing scales out-
side of clinical settings. Due to the wide variation in weight
by age this approach inevitably results in over- and under-
dosing of a proportion of the population.
We have recently developed a modelling method to

create statistically robust global and regional malaria-spe-
cific weight-for-age references representative of the
malaria-endemic countries [2] and employed it to predict
optimized age-based regimens for artemisinin-based
combination therapies (ACTs) for case management of
uncomplicated malaria (unpublished). The presented
work now assesses the robustness of these age-based
regimens using an in silico model of antimalarial drug
treatment to predict treatment outcome based on indivi-
dual infection parameters such as parasite numbers, var-
iation in patient pharmacokinetics, and parasite variation
in their drug sensitivity [3]. This extended pharmacoki-
netic/pharmakodynamic model for ACTs allowed us to
investigate extreme treatment scenarios in a large num-
ber of patients over long follow-up periods that for ethi-
cal reasons could not be applied in clinical trials: typical
examples include poor adherence (e.g. delayed, reduced
or missed doses) or administration of doses above or

below recommended therapeutic dose ranges and parti-
cularly in most vulnerable individuals such as infants and
young children. Pharmacological modelling of antimalar-
ial treatment cannot replace the gold standard of clinical
trials, but the model outputs can identify patient groups
that are at higher risk of treatment failure due to under-
dosing or adverse events due to over-dosing.
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