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Salmonella Virchow infection and the immune response produced by 
poultry 

 
Anne-Marie Salisbury 

 
ABSTRACT 
Relatively little is known about Salmonella Virchow as a pathogen. Its 
prevalence varies from country to country, however it is constantly 
associated with invasive disease, particularly in children and the immuno-
compromised. The main sources of S. Virchow are humans and poultry. The 
aims of this study were to determine the genetic relatedness of S. Virchow 
isolates from difference sources in England, to characterise its infection 
biology using in vitro and in vivo based models, to establish the immune 
response produced by poultry in response to infection with the serovar and to 
begin to determine the level of protection and cross-protection that could be 
achieved against the serovar and S. Typhimurium.  
 
The genetic relatedness of the S. Virchow isolates was determined using 
molecular typing techniques including MLST and PFGE. The isolates were 
screened for the presence of 12 virulence genes that have been associated 
with adhesion, invasion and persistence. Human and avian cell lines and in 
vivo poultry infection experiments were used to characterise S. Virchow’s 
invasiveness, persistence and ability to elicit an immune response, compared 
to a well characterised S. Typhimurium isolate. Immune responses were 
evaluated by immunohistochemistry, RT-PCR and ELISA, to establish 
aspects of the innate, cellular and humoral response, as well as cytokine and 
chemokine expression. An in vivo poultry infection experiment was performed 
to gain an indication of the level of protection and cross-protection offered by 
primary infection with S. Virchow against secondary infection. Bacteriology, 
ELISA and western blot methods were used analyse this. 
 
Overall, S. Virchow appears to be a relatively clonal serovar, regardless of 
the source and the results indicate this is widespread and not solely in the 
UK. All of the isolates possessed the 12 virulence genes, which could 
contribute to its virulence in some hosts. S. Virchow was particularly 
persistent and inflammatory in the human Caco2 cells, which is consistent 
with the increased virulence previously reported in humans. The in vitro 
HD11 assay and the in vivo poultry infection experiments were consistent in 
showing S. Virchow colonises the chicken intestine to high levels, causes 
transient systemic infection and stimulates a moderate inflammatory 
response, very similar to S. Typhimurium infection. S. Virchow infection 
stimulated all aspects of the chicken immune system, characteristic of a 
broad-range serovar. Initial results from the in vivo protection experiment 
showed primary infection with S. Virchow does offer some protection against 
systemic invasion, although adequate protection against caecal colonisation 
was not found. However, 2 proteins were identified that strongly reacted and 
cross-reacted with sera from infected chickens, providing optimism that a 
vaccine to protect against S. Virchow colonisation could be developed with 
further research.            
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1.1 INTRODUCTION 

Salmonella is a Gram-negative, facultative anaerobic, bacterial pathogen that 

has a significant impact on human and livestock health worldwide (Grimont, 

2000, DuPont, 2007, Mead, 2004). The Salmonella genus belongs to the 

Enterobacteriaceae family and is split into 2 species Salmonella bongori and 

Salmonella enterica (Tindall et al., 2005, Reeves et al., 1989). Salmonella 

enterica is divided into 6 subspecies by their biochemical properties. The 

subspecies can then be further divided by the Kauffman-White scheme into 

serovars, based on their lipopolysaccharide (O) and flagella protein (H) 

antigens (Tindall et al., 2005, Le Minor, 1988). Currently, there are over 2600 

Salmonella serovars identified (EFSA, 2012).    

 

Salmonella enterica subspecies enterica (I) mainly causes disease in 

humans and warm-blooded vertebrates and contains many serovars that are 

zoonotic i.e. can be transmitted from animals to humans and vice versa. The 

majority of zoonotic Salmonella serovars can infect a broad-range of hosts 

and typically cause limited gastroenteritis (Kaiser et al., 2000). Broad-range 

serovars have also been shown to cause severe systemic infection 

depending on the infecting serovar, age of the host and host genetics 

(Morgan et al., 2004, Wigley et al., 2006, Kaiser et al., 2000). In contrast, a 

small number of S. enterica serovars are highly host-restricted. Typically 

such serovars result in severe systemic infection in a single or narrow range 

of hosts (Shivaprasad, 2000).   

 

1.2  Prevalence of S. enterica in the UK 

Since the late 1990s Salmonella infection in humans in the United Kingdom 

(UK) has generally declined each year (Cogan and Humphrey, 2003). In 

2010 there were 9685 laboratory confirmed cases of salmonellosis in the UK, 

which was nearly an 8% decline from reported cases in 2009 (DEFRA, 

2010). However, it is estimated that for every laboratory confirmed case of 

human salmonellosis reported there are approximately 4.7 unreported cases 

in the community (Tam et al., 2012). In 2010, Salmonella Enteritidis (S. 

Enteritidis) and S. Typhimurium remained the 2 most common serovars 



Chapter 1  Introduction 

3 
 

causing human salmonellosis, with S. Enteritidis accounting for 30% of cases 

(DEFRA, 2010).  

 

The number of reported incidents of Salmonella in chickens in the UK rapidly 

increased during the late 1980s and early 1990s and has generally declined 

since 1997, which is thought to be due to the introduction of a vaccine 

against S. Enteritidis (Anonymous, 2001, Cogan and Humphrey, 2003). The 

number of reported incidents increased by 27% from 196 in 2007 to 249 in 

2008; however, this is thought to be related to increased surveillance testing 

in commercial chicken flocks, rather than increased prevalence of Salmonella 

(DEFRA, 2008c). Recent reports indicate the prevalence of Salmonella 

serovars in poultry in the UK continues to decrease (DEFRA, 2010).   

 

1.2.1 Sources of human salmonellosis 

The main source of human salmonellosis is through consumption of 

contaminated food, particularly poultry meat and eggs (Little et al., 2007, 

Lublin and Sela, 2008, Currie et al., 2005, Chittick et al., 2006, Braden, 2006, 

Mead, 2004). Other sources of infection include beef, dairy products, pork 

and fish/shellfish (Anonymous, 2006, Braden, 2006). Food products such as 

salad vegetables, spices, herbs, chocolate and peanut butter have also been 

implicated in outbreaks of Salmonella (DuPont, 2007, DEFRA, 2008c, 

Anonymous, 2009, Werber et al., 2005, DEFRA, 2010). Handling reptiles in 

zoological gardens or keeping pet reptiles is also a potential risk for human 

salmonellosis, with transmission occurring through direct contact with the 

reptile or its surrounding environment (Pedersen et al., 2009).  

 

The infectious dose for human salmonellosis is estimated to be between 106 

– 108 CFU, although it has been suggested that this dose is significantly 

lower in many cases due to differences in the physiological state of the 

bacteria, temperature or pH (Mastroeni, 2006). Consistent with this, low 

numbers of bacteria are usually recovered from fatty foods implicated in 

Salmonella outbreaks, including chocolate and cheese, suggesting a low 

infectious dose caused disease (Werber et al., 2005). Clinical symptoms for 

infection include diarrhoea, abdominal pain, fever, headaches, vomiting and 
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joint pain (Santos et al., 2011). Additionally, S. enterica serovars can cause 

invasive disease in humans, resulting in bacteraemia (Jones et al., 2008). 

Prevalence of individual Salmonella serovars varies depending on the 

country (Langridge et al., 2009). The United States and Canada have a 

uniquely high prevalence of S. Heidelberg (Zhao et al., 2008). Zhao et al 

(2008) reported a 21.6% prevalence of S. Heidelberg between 2002 and 

2006 in retail meat in America, with the main source being poultry meat 

(96.6%) (Zhao et al., 2008). In under-developed countries, such as sub-

Saharan Africa, non-typhoidal Salmonella (NTS) is more associated with 

invasive disease and is therefore one of the most common causes of 

paediatric bacteraemia, resulting in high levels of morbidity and mortality 

(Ikumapayi et al., 2007).  

 

1.2.2 Sources of Salmonella infection in poultry  

Animal feed including feed ingredients and compound feed are thought to be 

a source of Salmonella infection in poultry; therefore, are also a potential risk 

for human salmonellosis (Papadopoulou et al., 2009). Animal feed can easily 

become contaminated and cross-contaminated from one site to another by 

infected rodents or other wildlife, such as gulls (Nesse et al., 2005). In 

addition, feed ingredients can become contaminated in feed mills, leading to 

contamination of animal feed (Papadopoulou et al., 2009). However, there 

are Codes of Practice monitoring this issue and animal feed contamination 

rates are low. In 2010, 0.9% of animal feedstuff and feedstuff ingredients 

were contaminated with Salmonella in the UK and only 4.7% of the 

Salmonella serovars isolated were considered of public health significance 

(DEFRA, 2010). Other sources of Salmonella infection in poultry include 

carry-over of infection from one flock to another due to inadequate cleaning 

and disinfecting of houses, cross-contamination between houses and 

reservoirs of infection on farms, such as rodents and flies (Carrique-Mas et 

al., 2008, Davies and Breslin, 2001). 

 

1.2.3 Prevalence of Salmonella in broilers  

Between October 2005 and September 2006, an European Union (EU)-wide 

survey was carried out to establish the baseline prevalence of Salmonella in 
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broiler flock holdings to determine a baseline of infection rates (Snow et al., 

2008). In the UK, 382 holdings were sampled. The prevalence of Salmonella 

was found to be 10.7%. The most common serovars isolated were S. Ohio, 

followed by S. Kedougou (Snow et al., 2008). S. Enteritidis was not isolated 

during this survey and S. Typhimurium was only found on a single holding 

(Snow et al., 2008). 

 

The Food Standards Agency (FSA) carried out a survey between May 2007 

and September 2008 of Campylobacter and Salmonella contamination of 

fresh chicken meat at the point of sale in the UK (FSA, 2009). The weighted 

prevalence of Salmonella in fresh chicken meat was 6.6%, with S. Kentucky 

being the most common serovar isolated (FSA, 2009). The prevalence of S. 

Enteritidis and S. Typhimurium on fresh chicken meat was low, which 

mirrored the picture on broiler farms (Snow et al., 2008). Factors such as 

country of purchase, country of origin, chilled or frozen chicken meat and 

whole or portioned chicken meat were found to have an impact on 

Salmonella contamination, with country of purchase causing a more 

significant impact (FSA, 2009).   

 

1.2.4 Prevalence of Salmonella in layers 

An EU survey of Salmonella infections on commercial laying farms in the UK 

was carried out between October 2004 and September 2005 (Snow et al., 

2007). 436 holdings were selected at random throughout the UK for 

sampling, with 11.7% of them found to be positive for Salmonella (Snow et 

al., 2007). S. Enteritidis, followed by S. Typhimurium, were the most common 

serovars isolated (Snow et al., 2007). However, it has been estimated that 

the prevalence of Salmonella on egg-laying holdings in the UK is higher than 

reported (Arnold et al., 2010). Using the Bayesian methods to analyse data 

from the EU survey it was estimated that the prevalence of Salmonella on 

egg-laying farms is 18%, rather than 11.7% (Arnold et al., 2010). The lower 

estimation was suggested to be due to the survey not taking into account the 

lack of sensitivity of voluntary surveillance and due to only one flock per 

holding being sampled (Arnold et al., 2010).   
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The Veterinary Laboratories Agency (VLA) carried out a follow up study on 

23 holdings identified as Salmonella positive in the EU survey (Carrique-Mas 

et al., 2008). The VLA survey aimed to identify the proportion of houses in 

which there was a carry-over of Salmonella from one flock to the next and to 

determine the efficacy of the cleaning and disinfecting procedures on the 

empty houses, once infected flocks had been removed (Carrique-Mas et al., 

2008). Results identified 11/13 cage houses and 4/7 free-range houses as 

Salmonella positive, with the majority of flocks being infected with the same 

serovar, as detailed in the EU survey (Carrique-Mas et al., 2008). Even 

though a direct relationship between the lack of effectiveness of cleaning and 

disinfecting procedures with carry-over to new flocks could not be proven in 

this study, it was clear that satisfactory cleaning and disinfecting procedures 

were not achieved in the majority of houses in this study. Reasons for 

Salmonella contamination on egg-laying farms were concluded to be due to 

poor cleaning and disinfecting procedures and the presence of a reservoir of 

infection, such as flies or rodents on these farms (Carrique-Mas et al., 2008).            

 

1.2.5 Impact of Salmonella infection 

Although cases of human salmonellosis in the UK are generally declining 

each year, Salmonella infection still remains a great burden clinically, 

economically and on morbidity and mortality. A study investigating the cost of 

S. Typhimurium and S. Enteritidis infections in England to the economy, 

estimated it to be more then £6.5 million in 2008, based on the number of 

reported cases (Santos et al., 2011). The highest cost of Salmonella infection 

was to the NHS, although cost to GP practices, GP home visits, patients 

(transport etc) and unpaid time off work were also taken into account (Santos 

et al., 2011).   

 

1.3 Control measures for Salmonella infection 

Prevention of Salmonella infection in poultry is important because that will 

control entry of it into the food chain and thereby reduce the occurrence of 

human salmonellosis. A number of disease prevention strategies to reduce 
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spread of infection in poultry have been identified and Salmonella prevalence 

in poultry is monitored closely (Snow et al., 2007, DuPont, 2007).  

 

1.3.1. Salmonella National Control Programme (NCP) in the UK  

The NCP for Salmonella in breeding flocks was implemented in 2008 and 

aimed to soon have no more than 1% of breeding flocks testing positive for 

those Salmonella serovars most significant to public health (DEFRA, 2007a). 

The serovars chosen were the 5 most frequently isolated from humans and 

included S. Enteritidis, S. Typhimurium, S. Virchow, S. Hadar and S. Infantis.  

The NCP required that all registered breeding flocks should have specific 

samples taken from them on a regular basis. The samples would then be 

submitted to a laboratory, authorised by the Competent Authority, for the 

detection of the Salmonella serovars significant to public health (DEFRA, 

2007a). If S. Enteritidis or S. Typhimurium were detected in a breeding flock, 

it would be slaughtered to prevent the serovars from entering the food chain. 

In 2010, 0.82% of flocks sampled tested positive for Salmonella (Anonymous, 

2010).  

 

Since the introduction of the NCP in breeding flocks, NCPs have also been 

introduced for layers (DEFRA, 2007b), broilers (DEFRA, 2008a) and turkeys 

(DEFRA, 2008b). The NCP for layers aimed to have a 10% reduction in 

Salmonella serovars significant to public health by the following year, with an 

initial baseline of 8% for S. Enteritidis and S. Typhimurium (DEFRA, 2007b). 

The NCP for broilers had the same initial aim as the NCP for breeders, with 

no more than 1% of flocks testing positive for Salmonella serovars significant 

to public health (DEFRA, 2008a). A baseline survey was carried out on 

turkey breeding and fattening farms between 2006 to 2007 (Snow et al., 

2011). Salmonella prevalence was found to be 20.1% in breeding turkeys 

and 37.7% in fattening turkeys (Snow et al., 2011). S. Kottbus was the most 

frequently isolated serovar in both breeding and fattening turkeys (Snow et 

al., 2011). The NCP for breeding and fattening turkeys was implemented in 

2010 and includes all 250 flocks in the UK (DEFRA, 2008b).    
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 A baseline survey has also been carried out in breeding and slaughter pigs, 

to provide information for a NCP for pigs, which will be implemented in the 

future (EFSA, 2009, EFSA, 2008b, EFSA, 2011, EFSA, 2008a). The most 

common serovars isolated from breeding and slaughter pigs were S. 

Typhimurium and S. Derby (EFSA, 2009, EFSA, 2008b). A significant 

positive association was made between Salmonella-positive holdings of 

breeding pigs and Salmonella-positive slaughter pigs (EFSA, 2011). The 

breeding pigs baseline survey also revealed a positive correlation between 

increased size of pens and increased chance of being Salmonella-positive, 

although positivity varied from country to country (EFSA, 2011). The 

slaughter pigs baseline survey showed an association between Salmonella-

positive lymph nodes and Salmonella surface contamination of pig carcasses 

(EFSA, 2008a).           

 

1.3.2. Vaccination against Salmonella infection in poultry 

Horizontal transmission of Salmonella infection in intensively reared poultry 

farms and vertical transmission to eggs is difficult to control. Vaccination is 

regarded as the optimum method of controlling and preventing spread of the 

disease (Barrow, 2007). Several vaccines have been developed and are 

available for commercial use. Although current vaccines have not succeeded 

in completely eliminating Salmonella infections in poultry, they have 

significantly reduced the prevalence of S. Enteritidis (Cogan and Humphrey, 

2003).  

 

Initially, vaccines used to prevent Salmonella infection constituted killed or 

inactivated bacteria. Nobilis Salenvac T® is a commercially available, 

inactivated, iron-restricted vaccine that immunizes poultry against S. 

Enteritidis and S. Typhimurium. Research on the efficacy of this vaccine has 

shown it greatly reduces caecal shedding of the challenge strain, compared 

to shedding in unvaccinated chickens (Clifton-Hadley et al., 2002). However, 

no difference in systemic colonisation was found between the vaccinated and 

unvaccinated chickens, suggesting not all aspects of the immune response 

are activated by the vaccine (Clifton-Hadley et al., 2002).  
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Live vaccines are commercially available and have been shown to be greater 

stimulators of the chicken immune system. The AviPro® Megan® Egg live 

vaccine is available for commercial use in the USA, New Zealand and 

Dominican Republic. This vaccine has been shown to significantly protect 

hens and their eggs against S. Enteritidis colonisation (Hassan and Curtiss, 

1997). The main vaccines currently used in the UK are the Lohmann AviPro 

TAD Salmonella vac E® and TAD Salmonella vac T® live vaccines, which 

are delivered via drinking water (http://www.bnotharel.com/apage/523. php). 

A combination of these two vaccines has been shown to greatly reduce 

reproductive tract colonisation and internal egg contamination (Gantois et al., 

2006). Live attenuated vaccines have been shown to stimulate the cellular as 

well as the humoral immune response, unlike killed or subunit vaccines. 

However, live attenuated vaccines are potentially unsafe due to the 

possibility of them becoming virulent (Barrow, 2007). To develop effective 

vaccines an understanding of the poultry immune response against 

Salmonella infection is vital (Desin et al., 2011, Beal et al., 2006b). 

 

1.3.3 Consumer awareness of the importance of food safety 

To reduce the incidence of foodborne illnesses, consumers need to be aware 

of the risk factors that would result in them becoming ill and also methods to 

avoid illness. Using a panel of 40 nationally known experts on food safety, 

the behaviours most associated with reducing the risk of contracting 

foodborne pathogens, including Salmonella, have been ranked (Hillers et al., 

2003). In total, eight behaviours were ranked as being important for the 

control of Salmonella infection, which was more than for most pathogens. 

The top ranked behaviours included avoiding food associated with 

Salmonella (raw eggs and chicken) and preventing cross-contamination by 

cleaning knifes, cutting boards and surfaces (Hillers et al., 2003). Other 

behaviours included the use of a thermometer to cook foods adequately and 

washing hands with warm soapy water before and after handling raw poultry 

meat (Hillers et al., 2003). Other studies have shown that educating 

consumers about disinfection procedures when handling food would be of 

great clinical and economic benefit (Duff et al., 2003). 
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1.3.4 Genetic resistance to Salmonella infection in poultry 

Current control and prevention methods for Salmonella infection in chickens 

have drawbacks including cost and public health issues. Breeding 

Salmonella resistant chickens has its advantages, as it is a low risk strategy 

to control colonization by the bacteria (Wigley, 2004). Several genetic loci 

have been linked to systemic resistance or susceptibility in chickens 

including, NRAMP1, MHC class I and SAL1 (Wigley, 2004). 

 Inheritance of the whole SAL1 region has been shown to be associated with 

resistance to salmonellosis in poultry (Mariani et al., 2001). Further studies 

on the SAL1 locus against Salmonella infection have shown that resistance is 

not expressed at the level of the gut but systemically by the mononuclear 

phagocyte system (Wigley et al., 2002a). Salmonella-susceptible chicken 

lines had higher systemic bacterial counts and for a longer period of time, 

when compared with resistant ones (Wigley et al., 2002a). They also 

exhibited bacteraemia and a higher level of pathology, whereas resistant 

birds showed no bacteraemia and infection was limited to the spleen and 

liver, where it was then cleared (Wigley et al., 2002a). It has also been shown 

that macrophages from Salmonella susceptible chickens phagocytose far 

less Salmonella then Salmonella-resistant lines (Wigley et al., 2006).  

 

Genetic resistance to Salmonella colonisation has also been shown at the 

level of the gut (Wigley, 2004). In-bred chickens, which are either resistant or 

susceptible to Salmonella colonisation, have differences in the rate of 

intestinal flow, the level to which the gut is colonised and the length of time 

the gut is colonised (Barrow et al., 2004). Resistance to gut colonisation by 

Salmonella is not genetically linked to the MHC, NRAMP1 or SAL1 loci 

(Wigley, 2004). It is also not thought to be linked to the adaptive immune 

response, as differences in IgG and IgA produced against Salmonella 

infection were not found between resistant and susceptible chicken lines 

(Barrow et al., 2004). Resistance to gut colonisation may be conferred by the 

innate immune response, as genetic resistance has been linked to differential 

heterophil function from resistant and susceptible chicken lines (Swaggerty et 

al., 2003). Heterophils isolated from resistant chicken lines showed 

significantly greater phagocytosis, degranulation and oxidative burst against 
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S. Enteritidis, compared to those from susceptible lines (Swaggerty et al., 

2003).     

 

1.3.5 Probiotic bacteria 

Establishment of adult-type intestinal microflora provides resistance against 

colonisation by invading pathogens. This “competitive exclusion” concept is 

now exploited by administering newly hatched chickens with saline solutions 

containing the alimentary tract contents of an adult bird, to establish adult-

type microflora (Mead, 2000). The basis of the competitive exclusion effect is 

mainly bacteriostatic, rather than bactericidal. Intestinal gut microflora are 

thought to inhibit pathogens such as Salmonella by acting as a physical 

barrier and filling all the environmental niches, reducing the caecal pH, 

producing volatile fatty acids and competing for nutrients (Mead, 2000, 

Dunkley et al., 2009). Probiotic bacteria have also been shown to have 

immuno-modulatory properties in their host. Administration of probiotics to 

chickens results in enhanced heterophil degranulation and oxidative burst 

activity after 24 hours (Farnell et al., 2006). Enhanced phagocytosis of S. 

Enteritidis in the gut and enhanced IgM and IgG titres have also been found 

after probiotic administration (Koenen et al., 2004). However, immuno-

modulatory effects of probiotics are sometimes inconsistent and are 

suggested to vary due to the age of the host, host genetics, dose of probiotic 

bacteria and type of probiotic bacteria administered (Farnell et al., 2006, 

Koenen et al., 2004).     

 

1.4 S. enterica colonisation in poultry 

S. Typhimurium is one of the most well studied zoonotic Salmonella serovars 

in poultry (Beal et al., 2006b, Morgan et al., 2004, Withanage et al., 2004, 

Barrow et al., 1987, Smith and Tucker, 1975). In 1 day old chicks, S. 

Typhimurium colonises the gastrointestinal tract (GIT) and causes rapid 

severe systemic infection, leading to high morbidity and mortality rates 

(Barrow et al., 1987). However, in older chicks S. Typhimurium is limited to 

the GIT and the chickens usually exhibit no clinical symptoms and low 

mortality rates (Barrow et al., 1987, Morgan et al., 2004). 
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1.4.1 Caecal colonisation 

Salmonella mainly infects poultry via the faecal-oral route and colonises the 

GIT rapidly. Following oral infection, S. Typhimurium can be detected in the 

caecal contents of chicks by 1 day post infection (DPI), at high levels 

(Withanage et al., 2004, Withanage et al., 2005b). The amount of S. 

Typhimurium in the caecal contents has been shown to peak at 6-7 DPI and 

then begins to decline (Withanage et al., 2005b, Beal et al., 2004). Low 

concentrations of S. Typhimurium can still be detected in the caecal contents 

around 28 DPI and chickens can still be positive for Salmonella by cloacal 

swab after enrichment past this time point (Withanage et al., 2005b, Beal et 

al., 2004). During secondary infection of chickens, lower concentrations of S. 

Typhimurium are detected in the caecal contents (Beal et al., 2004). Infected 

chickens demonstrate an enhanced clearance of S. Typhimurium and no 

viable counts can sometimes be detected in the caecal contents as early as 

14 days post secondary infection (DPSI) (Beal et al., 2004, Withanage et al., 

2005b).  

 

1.4.2 Systemic infection 

Following invasion of the gut, Salmonella is thought to be taken up by cells of 

the mononuclear phagocyte system, including macrophages and dendritic 

cells and transported via the lymphatic system to systemic sites (Chappell et 

al., 2009). Several studies have shown that Salmonella can survive within 

avian macrophages and replicate inside them, suggesting that they are the 

key for systemic invasion by Salmonella (Henderson et al., 1999, Wigley et 

al., 2002b). Salmonella has been shown to colonise systemic sites such as 

the liver, spleen, ovaries and bone marrow in poultry (Beal et al., 2004). 

Following S. Typhimurium infection of 1 week old chicks, bacteria can be 

detected in the liver by 7 DPI. However, this can be as early as 1 DPI in 1 

day old chicks (Withanage et al., 2004, Withanage et al., 2005b). Following 

secondary infection of chickens with S. Typhimurium, chickens show a high 

level of protection against systemic infection, with no bacteria detected at 

systemic sites (Withanage et al., 2005b). 
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1.4.3 Pathology and clinical symptoms 

Following primary infection with S. Typhimurium, 1 day old chicks display 

gross pathology including diarrhoea, bloody caecal contents, 

hepatosplenomegaly and early signs of anorexia (Withanage et al., 2004). As 

well as diarrhoea and anorexia, clinical symptoms include vent staining, 

disinclination to drink, lethargy, emaciation and eventually death (Barrow et 

al., 1987). In older chicks, less severe pathological findings are often 

observed at post mortem including serous typhlitis caused by inflammation of 

the caeca, hyperaemia and oedema of the caecal lamina propria and caecal 

tonsils, swelling and necrosis of single epithelial cells and dilated crypts with 

necrotic debris (Desmidt et al., 1998, Henderson et al., 1999, Withanage et 

al., 2005b). Although pathological findings can be observed in older chicks, 

they usually have no clinical symptoms of disease. This is a problem with 

animals such as broiler chickens as it allows them to shed Salmonella in their 

faeces asymptomatically, leading to horizontal transfer of infection, therefore 

increasing the frequency of serovars such as S. Typhimurium entering the 

food chain (Marin and Lainez, 2009, Kim et al., 2007). 

 

1.4.4 S. Pullorum 

S. Pullorum is highly host-adapted to poultry and rarely causes disease 

outside of this host, in which it causes severe systemic disease and 

septicaemia (Shivaprasad, 2000). In contrast to broad-range serovars, host-

restricted serovars are not limited to the GIT. Upon intestinal invasion, S. 

Pullorum only colonises the GIT to low concentrations and instead targets 

lymphatic tissue, such as the Bursa of Fabricius, and causes rapid systemic 

infection (Henderson et al., 1999). The differences in the pathogenesis of 

disease caused by broad-range and host-restricted serovars are thought to 

be due to differences in early stage pathogenesis (Chappell et al., 2009). 

  

Once the acute systemic infection has subsided S. Pullorum can develop into 

a persistent infection and survive in low numbers, in splenic macrophages, 

for months (Wigley et al., 2001). Intra-macrophage survival has been shown 

to be required for S. Pullorum persistence in poultry (Wigley et al., 2001). It 

has been reported that when a chicken reaches sexual maturity and starts 
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egg laying (commercial laying hens typically start around 17 or 18 weeks of 

age) the number of Salmonella in the spleen increases dramatically and 

spreads to the reproductive tract, leading to vertical transmission to the eggs 

(Wigley et al., 2005). As the immune system in chickens is suppressed at 

point-of-lay it has been suggested that this may play a role in the increased 

number of Salmonella and the spread of infection at this time point (Wigley et 

al., 2001, Wigley et al., 2005). 

 

1.5 Salmonella enterica pathogenesis 

Virulence genes have been identified in the Salmonella genome, which have 

been shown to be important for intestinal colonisation and systemic invasion. 

These virulence genes are often found in clusters that are termed Salmonella 

pathogenicity islands (SPI) and are thought to have been acquired through 

horizontal transfer (Parkhill et al., 2001). SPIs are important for the evolution 

of the bacteria as a pathogen (Parkhill et al., 2001). As well as containing 

virulence genes, SPIs have other characteristics including a lower GC 

content compared to the rest of the genome and an association with genes 

encoding tRNA genes (Hensel, 2004, Mills et al., 1995). Some of the SPIs 

also contain type three secretion systems (T3SS).  

 

1.5.1 Salmonella pathogenicity island 1 

SPI-1 spans a 40kb region of the 59-60 minute region of the Salmonella 

genome (Mills et al., 1995, Hensel, 2004). It contains a number of genes 

essential for invasion, including prgH and is absent from the non-invasive E. 

coli (Behlau and Miller, 1993, Mills et al., 1995). As closely related E. coli 

does not contain SPI-1, it has been suggested that SPI-1 was obtained by 

horizontal transfer from another organism and it is thought to have 

significantly advanced Salmonella as a pathogen (Mills et al., 1995).  SPI-1 

encodes a T3SS and also several proteins secreted by the T3SS (Galan, 

1996, Galan and Zhou, 2000). The T3SS forms a needle-like structure and 

translocates effector proteins into the host cell in a contact-dependent 

manner, through interactions with the host cell membrane (Galan, 1996, 

Galan and Zhou, 2000, Ehrbar and Hardt, 2005, Schraidt et al., 2010, Haraga 
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et al., 2008). Environmental factors such as growth phase and oxygen 

tension are also thought to act as cues for T3SS formation and invasion into 

host cells (Lee and Falkow, 1990). The effector proteins translocated into the 

host cell stimulate cytoskeleton rearrangement and membrane ruffling, which 

allows bacterial uptake into the cell by macropinocytosis (Galan and Zhou, 

2000, Hardt et al., 1998b, Haraga et al., 2008).    

 

Several effector proteins translocated by the SPI-1 T3SS and involved in 

bacterial invasion into host cells have been identified. Hardt et al (1998) 

identified a protein called SopE, encoded on a cryptic bacteriophage in S. 

Typhimurium and demonstrated that it is transported by the SPI-1 T3SS 

(Hardt et al., 1998b). Mutants of sopE have a decreased level of cell invasion 

compared with wild type (WT) strains (Hardt et al., 1998b, Mirold et al., 

2001).  Differences in the morphology of membrane ruffles have been 

observed with sopE mutants, suggesting the SopE protein plays a role in 

aiding bacterial entry into cells by membrane ruffling (Hardt et al., 1998b). 

Another effector protein translocated into the host cell by the SPI-1 T3SS is 

SopB, which has been shown to have phosphatase activity (Norris et al., 

1998). It is hypothesised that the SopB protein leads to the accumulation of 

inositol 1, 4, 5, 6-phosphate. This accumulation inhibits PtdIns 3, 4, 5 

phosphate from closing Cl- ion channels, therefore leading to an increase in 

Cl- ions and resulting in diarrhoea (Norris et al., 1998). Mutations in sopB 

have been shown to reduce the magnitude of secretory and inflammatory 

responses caused by Salmonella invasion by significant amounts compared 

to WT strains (Wood et al., 1998). In the case of a triple mutation of sopB, 

sopE and sopE2 Salmonella has been shown to be >100-fold less invasive 

then WT strains (Mirold et al., 2001).  

 

Some research has focused on the effect of attenuating SPI-1 on the 

pathogenicity of Salmonella in vitro in cell lines and in vivo in poultry. A range 

of SPI-1 mutant strains of Salmonella including S. Gallinarum, S. Pullorum, 

S. Typhimurium and S. Enteritidis have been studied. SPI-1 mutant strains 

were found to be significantly less invasive in non-phagocytic chick kidney 

cells (CKC) compared to WT strains (Jones et al., 2001, Wigley et al., 
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2002b). SPI-1 mutant strains have also been found to be significantly less 

invasive in human epithelial cells (Caco2) compared to WT strains (Desin et 

al., 2009). In vivo infection experiments with SPI-1 mutant strains have 

shown reduced intestinal colonisation and invasion of systemic sites, as well 

as lower mortality rates, compared to WT strains (Jones et al., 2007, Jones 

et al., 2001, Wigley et al., 2002b, Desin et al., 2009). Overall the studies 

show that SPI-1 is important for invasion, as SPI-1 mutant colony counts are 

significantly reduced in vitro and in vivo. However, the absence of SPI-1 

encoded functions only attenuates Salmonella invasion, suggesting SPI-1 is 

important but not essential for pathogenicity.  

 

1.5.2 Salmonella pathogenicity island 2 

SPI-2 is a 40 kb region of the S. enterica genome (Hensel et al., 1997). It is 

not present in S. bongori and it is thought to have been acquired after S. 

enterica diverged from S. bongori (Hensel et al., 1997). SPI-2 is 

characteristic of pathogenicity islands, having a lower GC content (41.4%) 

then the core genome and being inserted next to the tRNAVal gene (Hensel et 

al., 1997, Hensel, 2004). Another T3SS is encoded by SPI-2 (Shea et al., 

1996). The SPI-2 T3SS is thought to have been acquired at a separate time 

to the SPI-1 T3SS and it has been shown to be important for virulence 

following epithelial invasion, unlike SPI-1 T3SS (Shea et al., 1996, Jones et 

al., 2001).  

 

Salmonella replicates and survives within host cells in Salmonella containing 

vacuoles (scv). After 4-6 hours of Salmonella replication, long filamentous 

lysosomal membrane glycoprotein (lgp) structures can be observed, 

extending from the scv and connecting them (Garcia-del Portillo et al., 1993). 

The formation of lgp structures depends on viable-intracellular bacteria, an 

acidic pH and possibly host machinery to form and maintain the filamentous 

structures (Garcia-del Portillo et al., 1993). A virulence gene encoded on SPI-

2 termed sifA has been identified as being required for the formation of these 

lgp structures and has been shown to be important for virulence in mice 

(Stein et al., 1996). It has been suggested that SifA is translocated to the 

vacuolar membrane by the SPI-2 T3SS and is required to maintain the 
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integrity of the scv (Beuzon et al., 2000). Another SPI-2 effector protein 

called spiC is directly transported into the host cell cytosol by the SPI-2 T3SS 

and interferes with intracellular trafficking (Uchiya et al., 1999). The role of 

spiC protein involves directly preventing the fusion of scv with phagosomes 

containing endosomes and lysosomes (Uchiya et al., 1999).  

 

Some studies have found that SPI-2 mutants fail to persist in HD11 chicken 

macrophage-like cells, suggesting that SPI-2 is essential for intra-

macrophage survival (Jones et al., 2001). Salmonella has been shown to 

survive in macrophages by causing an up-regulation of IL-10 via a protein 

kinase A signalling pathway, in an SPI-2 dependant manner (Uchiya et al., 

2004). IL-10 has an inhibitory effect on macrophages and therefore creates a 

favourable environment for Salmonella to survive (Uchiya et al., 2004). 

However, more recently it has been found SPI-2 mutants can survive in 

HD11 cells and SPI-2 has been suggested to be more important for systemic 

distribution (Wisner et al., 2011b). SPI-2 mutant strains show no reduction of 

invasiveness in chick epithelial cell lines or in vivo in chickens (Wigley et al., 

2002b, Jones et al., 2001). However, infection of chickens with SPI-2 

mutants showed they were fully attenuated for virulence and absent from 

systemic sites (Jones et al., 2001, Wigley et al., 2002b, Jones et al., 2007). 

Infection of chickens with a S. Gallinarum SPI-2 mutant resulted in no 

morbidity and mortality, compared to 50% mortality observed in the group 

infected with a WT strain (Jones et al., 2001). These results suggest SPI-2 is 

essential for S. Gallinarum virulence and its ability to cause systemic fowl 

typhoid (Jones et al., 2001). In addition, no morbidity and mortality was 

observed during infection of 1 week old chicks with SPI-2 attenuated strains 

of S. Pullorum (Wigley et al., 2002b). Overall, the studies show SPI-2 is 

essential virulence and persistence in chickens; however, more research is 

needed to determine the role of SPI-2 in systemic survival. 

 

1.5.3 Salmonella pathogenicity islands 3-6 

Since the identification of SPI-1 and SPI-2, further clusters of virulence genes 

on the Salmonella genome have been identified and are all characteristic of 

SPIs. SPI-3 is a 17-kb pathogenicity island containing 10 open reading 
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frames (ORF) and 6 transcriptional units (Blanc-Potard et al., 1999). It has a 

GC content of 47.5% and is inserted next to the tRNA SelC locus (Blanc-

Potard and Groisman, 1997). SPI-3 contains an mgtCB operon which 

encodes essential virulence genes (Blanc-Potard and Groisman, 1997, 

Hensel, 2004). The mgtCB operon, particularly the mgtC gene has been 

shown to be required for virulence in mice and is essential for Salmonella 

replication within macrophages (Blanc-Potard and Groisman, 1997). It has 

also been shown that expression of mgtCB is essential for growth in Mg2+ 

limiting environments (Blanc-Potard and Groisman, 1997). 

  

SPI-4 is a 25kb region of the Salmonella genome located at 92 min on the 

chromosomal map (Wong et al., 1998). Publication of the whole genome 

sequence of S. Typhimurium LT2 organised the SPI-4 operon into 6 ORFs 

(McClelland et al., 2001), which have since been renamed siiA-siiF (Morgan 

et al., 2004). A type I secretion system has been shown to be encoded on 

SPI-4, as well as a 595 kDa secreted protein encoded by siiE (Morgan et al., 

2007). HilA is encoded on SPI-1 and is thought to regulate either the 

transcription or secretion of the SiiE protein (Morgan et al., 2007). In vivo 

infection experiments have shown SPI-4 has a role in enteric colonisation of 

Salmonella in mice and calves (Morgan et al., 2004, Pullinger et al., 2007).    

 

SPI-5 is inserted adjacent to the tRNA serT gene (Wood et al., 1998). It has 

been shown to encode 5 novel virulence genes named pipA, pipB, pipC, pipD 

and orfX, as well as the SPI-1 T3SS translocated SopB protein (Wood et al., 

1998). The magnitude of inflammatory and secretory responses elicited by S. 

Dublin have been shown to significantly decrease if pipA, pipB, pipD or sopB 

genes are attenuated, implicating SPI-5 in enteric pathogenesis (Wood et al., 

1998).  

 

SPI-6 is a 59-kb region of the Salmonella genome, inserted next to the tRNA 

aspV gene (Townsend et al., 2001). SPI-6 has also been termed Salmonella 

enterica centisome 7 genomic island (SCI) (Folkesson et al., 2002).  SPI-6 

encodes the saf and tcf fimbrial operons (Townsend et al., 2001, Parkhill et 

al., 2001). It also encodes putative proteins with genetic similarities to 
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virulence genes found in other Gram-negative bacteria. The SCI proteins 

have been shown to localize to cytoplasmic and periplasmic components and 

the inner and outer membranes, suggesting they have a role in secretion or 

organelle biosynthesis (Folkesson et al., 2002). In addition, SCI mutants are 

impaired when trying to invade eukaryotic host cells, suggesting the SCI 

proteins are important for invasion (Folkesson et al., 2002). 

 

1.5.4    Salmonella pathogenicity islands 7-10 

SPI 7-10 have been mainly identified in the S. Typhi genome, a serovar 

restricted to humans. Differences in the S. Typhi genome compared to other 

Salmonella serovars include the presence of these additional SPIs and a 

large number of pseudogenes. It has been suggested these differences may 

contribute towards the host specificity of S. Typhi (Parkhill et al., 2001, 

Hansen-Wester and Hensel, 2002).  

 

SPI-7 or “major pathogenicity island” is a 147kb region of the S. Typhi 

genome, inserted adjacent to the tRNA pheU gene (Hansen-Wester and 

Hensel, 2002, Hensel, 2004). This region has been shown to encode a 

number of virulence genes including the ViaB proteins, which are necessary 

for synthesis and export of the Vi capsular antigen (Hashimoto et al., 1993, 

Hansen-Wester and Hensel, 2002). It also encodes the pilL-pilV gene cluster 

encoding the type IVB pilus, which has been shown to be involved in the 

entry of S. Typhi into human intestinal cells (Hansen-Wester and Hensel, 

2002, Zhang et al., 2000). SPI-7 also encodes another virulence protein 

sopE, which is encoded within a temperate prophage in S. Typhimurium 

(Hardt et al., 1998b, Mirold et al., 2001).  

 

Based on the genome sequence of S. Typhi, SPI-8, SPI-9 and SPI-10 have 

been suggested, as they have characteristics of pathogenicity islands 

(Parkhill et al., 2001). SPI-8 has been shown to encode resistance to 

bacteriocins, SPI-9 encodes a type I secretion apparatus like SPI-4 and SPI-

10 has been shown to encode sefA-R chaperone-usher fimbrial operon, as 

well as phage 46 (Parkhill et al., 2001, Townsend et al., 2001). 
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1.6 Immune response against Salmonella  

The severity of Salmonella infection and the strength of the immune 

response produced against it are dependent on the infecting serovar, host 

genetics and host age (Morgan et al., 2004). High mortality rates are found in 

1 day old chicks infected with Salmonella (Barrow et al., 1987). However, 

older chicks have no clinical symptoms and low mortality rates, which is 

thought to be due to a developed immune response (Beal and Smith, 2007, 

Withanage et al., 2005b). In addition, Salmonella serovars infecting a broad-

range of hosts cause a different immune response to Salmonella serovars 

that are host restricted, which is thought to be due to differences in early 

stage pathogenesis (Chappell et al., 2009, Kaiser et al., 2000).     

 

1.6.1 Innate immune response in poultry 

The innate immune system is the first line of defence against pathogens 

entering the host. It includes the complement system and cells responsible 

for pathogen recognition, phagocytosis, immune modulation and activation of 

the adaptive immune response (Juul-Madsen, 2008). Physical barriers also 

prevent pathogen entry into the host and include the skin, mucosal surfaces 

and the normal commensal flora present on different surfaces (Juul-Madsen, 

2008, Mead, 2000). Following infection several acute phase proteins 

increase significantly in the blood and include proteins such as C-reactive 

protein, mannan-binding lectin and fibrinogen (Juul-Madsen, 2008).  

 

The complement system is a large component of the innate immune system 

and is found in chickens as well as in mammals (Kogut et al., 2003, Juul-

Madsen, 2008). The proteins of the complement system circulate in the 

serum in an inactive form and become sequentially activated, in a cascade 

type manner, upon stimulation by a pathogen (Juul-Madsen, 2008). The 

complement system has 3 pathways of activation including the classical, 

lectin and alternative pathways, which all result in opsonisation of the 

pathogen, leading to enhanced phagocytosis, induction of inflammatory 

responses and enhancement of B and T cell responses (Juul-Madsen, 2008, 

Carroll, 2004). 
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Cells of the innate immune response have been well characterised in 

mammals and include natural killer (NK) cells, neutrophils, macrophages and 

dendritic cells. In mammals, NK cells have been shown to have cytotoxic 

activity towards pathogens (Cooper et al., 2001). NK cells also have an 

immuno-regulatory role, through secretion of cytokines (Cooper et al., 2001). 

Several characteristics of chicken TCR0 cells have lead to the conclusion 

that they are the avian equivalent of mammalian NK cells (Gobel et al., 2001, 

Gobel et al., 1994). These include intracellular expression of CD3, as well as 

the expression of several surface molecules such as CD8α chains, a binding 

site for chicken IgG and the IL-2 receptor (IL-2R) (Gobel et al., 1994). TCR0 

cells also lack expression of CD4 and other antigens characteristic of T and 

B cells and exhibit spontaneous cytotoxic activity towards LSCC-RP9 cells, 

which are NK susceptible cells (Gobel et al., 1994). Sub-populations of NK 

cells have recently been defined in chickens including a CD3-CD8α+ 

population and a CD3-CD8αdim population (Jansen et al., 2010).  

 

Heterophils are avian polymorphonuclear cells (equivalent of mammalian 

neutrophils) that have been shown to have potent antimicrobial activity 

against bacterial species, including Salmonella (van Dijk et al., 2009). 

Heterophils exert their antimicrobial activity through oxidative burst and 

degranulation (Wu and Kaiser, 2011). Heterophils release antimicrobial 

peptides including cathelicidin-2 through degranulation, which has been 

shown to inhibit S. Typhimurium growth (van Dijk et al., 2009). Heterophils 

up-regulate multiple cytokines and chemokines upon Salmonella infection, 

showing they also have an immuno-regulatory role (Kogut et al., 2005, Kogut 

et al., 2003). The number of heterophils in the peripheral blood initially 

decreases in response to S. Typhimurium infection, but significantly 

increases again by 20 hours post infection (HPI) (Meade et al., 2009). This 

initial reduction is thought to indicate an influx of heterophils into the caecum, 

which agrees with other studies (Henderson et al., 1999, Desmidt et al., 

1998, Withanage et al., 2004, Withanage et al., 2005b). Systemic 

colonisation by S. enterica serovars stimulates heterophil infiltration into 

organs, such as the spleen and liver (Withanage et al., 2004).  
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Macrophages are always present in the circulation, acting as scavengers and  

collecting cellular debris; however, they also have an important role in 

pathogen recognition and kill pathogens by phagocytosis (Kaspers, 2008). 

Phagocytosis of S. Typhimurium by avian macrophage cell lines is 

significantly enhanced by IFN-у (Okamura et al., 2005). Once macrophages 

have phagocytosed a pathogen they will kill it by releasing reactive oxygen 

species (ROS) (Withanage et al., 2005a). Macrophage cell lines from 

chickens resistant to Salmonella infection have been shown to clear bacteria 

within 24 hours, which was associated with a strong oxidative burst (Wigley 

et al., 2002a). These findings were in contrast to the weak response seen by 

macrophages from Salmonella-susceptible chickens; therefore macrophages 

are thought to be important for resistance to Salmonella infection (Wigley et 

al., 2002a). Macrophages are also a major antigen presenting cell (APC), 

therefore they are crucial for the adaptive immune response, as well as the 

innate immune response (Wu and Kaiser, 2011). 

 

Dendritic cells are antigen presenting cells and have been shown to play an 

important role in pathogen recognition and activation of the adaptive immune 

response in mammals (Cooper et al., 2004). Two dendritic cell populations 

have been characterised, called follicular (FDCs) and interdigitating cells 

(IDCs) and have also been found in avian species (Del Cacho et al., 2009). 

FDCs have a star-shaped morphology, express molecular markers such as 

IgG, IgM, ICAM-1 and VCAM-1 and can induce B cell proliferation (Del 

Cacho et al., 2009). FDCs are present in the germinal centres of caecal 

tonsils, Peyer’s patches, Harderian gland and spleen (Wu and Kaiser, 2011). 

IDCs are distinct from FDCs as they are elongated cells rather than star-

shaped and they express different surface markers, which include CD45, 

MHC class I and selectin (Del Cacho et al., 2009). 

 

Avian thrombocytes are the equivalent of mammalian platelets and are the 

most abundant white blood cell (WBC) in avian blood (Wu and Kaiser, 2011). 

Thrombocytes have phagocytic functions and have been shown to 

phagocytose Salmonella as well as other bacteria, although to a lesser extent 

than heterophils (Wigley et al., 1999). Oxidative burst activity has been 
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shown against a range of Gram-negative bacteria, suggesting thrombocytes 

have antimicrobial properties (Wigley et al., 1999). Upon stimulation with 

bacterial lipopolysaccharide (LPS), thrombocytes have increased expression 

of IL-1β, IL-6, IL-12 and cyclooxygenase-2, suggesting they are important 

effectors of the innate immune response during bacterial infection (Wu and 

Kaiser, 2011, Ferdous et al., 2008). 

    

1.6.2 Adaptive immune response in poultry 

S. Typhimurium infection of chickens induces a strong adaptive immune 

response. Studies have consistently shown that primary infection of chickens 

with Salmonella is followed by a rise in antigen-specific serum antibodies, 

which follow a classic pattern of a rise in specific IgM, followed by a rise in 

specific IgG and IgA, which all peak around 13 DPI (Beal et al., 2004, 

Withanage et al., 2005b). IgM then declines to levels similar to uninfected 

birds (Beal et al., 2004). IgG temporarily declines around 28 DPI and then 

sharply increases and remains elevated for at least 69 days (Beal et al., 

2004). IgA remains constantly elevated for at least 69 DPI (Beal et al., 2004). 

Although the humoral response has been shown to strongly respond against 

Salmonella invasion, some studies have shown that B cells and antibodies 

are not essential for clearance of Salmonella infection (Desmidt et al., 1998). 

Furthermore, some studies have shown clearance of Salmonella is not 

affected by the absence of B cells (Beal et al., 2006a). It has been suggested 

that B cells and antibodies do play a role in Salmonella clearance, but other 

mechanisms exist to clear infection (Desmidt et al., 1998).  

 

Avian T-cell structure and function is very similar to that of mammalian T-

cells. T-cells can be divided into 2 main lineages based on the structure of 

their T-cell receptor (TCR). The 2 main lineages include, one comprising an α 

light chain and β heavy chain (αβ TCR) and the other lineage comprising a γ 

light chain and δ heavy chain (γδ TCR) (Berndt et al., 2006, Viertlbock, 

2008). Three avian T-cell subpopulations can be detected in the peripheral 

blood including TCR1+ (γδ TCR), TCR2+ (αβ vβ1 TCR) and TCR3+ (αβ vβ2 

TCR) populations (Berndt et al., 2006). The T-cell lineages can be further 

subdivided by CD4 and CD8 surface molecules into a CD4+ helper T-cell 
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population and a CD8+ cytotoxic T-cell population, although it has been 

shown some T-cell populations can express both CD4 and CD8 (Viertlbock, 

2008). Berndt et al (2006) showed that when chickens are infected with S. 

Enteritidis the amount of TCR1+ CD8α+ T-cells significantly increases, 

suggesting a role in the primary immune response against Salmonella, as 

well as the possibility of forming memory T-cells (Berndt et al., 2006). 

 

In mammals, T helper cells (Th) can be divided into Th1 and Th2 cells based 

on their function (Viertlbock, 2008). Th1 cells drive cell-mediated and 

inflammatory responses, whereas Th2 cells drive responses against 

helminthic worms and allergies (Kaspers, 2008). Both responses involve 

different sets of cytokines and chemokines. Th1 responses in chickens have 

been well documented but not much is known about Th2 responses (Avery et 

al., 2004). 

 

Upon S. Typhimurium infection of chickens, T cell proliferation has been 

detected, particularly in Salmonella resistant chicken lines and in older 

chickens, suggesting clearance of enteric Salmonella is T-cell dependant 

(Beal et al., 2005). Rapid T-cell proliferation occurs shortly after primary 

infection with S. Typhimurium (Withanage et al., 2005b, Beal et al., 2004). 

The number of T cells declines at systemic sites around 20 DPI, coinciding 

with gut clearance of Salmonella, which has been suggested to indicate T-

cell trafficking to the intestine (Beal, Powers et al. 2004; Withanage, Wigley 

et al. 2005). After this decline, antigen specific T-cell proliferation occurs 

again and T-cells remain elevated for at least 60 DPI (Beal, Powers et al. 

2004). 

 

Changes in IFN-γ mRNA levels in the spleen, coincides with changes in the 

number of T-cells (Beal et al., 2004). Following primary infection, IFN-γ levels 

peak in the spleen at 13 DPI and after declining peak again at 27 DPI (Beal 

et al., 2004). Additionally, T-cells have been shown to increase significantly in 

number between 7 and 14 DPI in the liver (Withanage et al., 2005b). 

Coinciding with the increase of T-cells in the liver, IFN- γ mRNA levels 

significantly increase up to 200-fold greater than control levels (Withanage et 
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al., 2005b). These findings support the idea of IFN- γ mediated T-cell 

responses to Salmonella infection.    

 

1.6.3 Cytokine and chemokine production in poultry 

 Cytokines are defined as regulatory peptides, with molecular weights 

typically less than 30 kDa, that act as extracellular signals between cells of 

the immune system (Eckmann and Kagnoff, 2001). Cytokines can be 

produced by nearly every cell type and have pleiotrophic effects involving 

regulating and eliciting immune responses (Kaiser, 2008). Many of the 

identified mammalian cytokines are present in avian species, although fewer 

cytokines have been identified in birds compared to mammals (Kaiser et al., 

2005). Avian cytokines typically have 25-35% amino acid identity to 

mammalian orthologues (Weining et al., 1998, Schneider et al., 2000, Degen 

et al., 2004). Currently, genes for 35 cytokines have been identified in the 

chicken genome including, 23 interleukins (IL), 8 type I interferons (IFN), IFN-

γ, granulocyte macrophage colony-stimulating factor (GM-CSF), and 2 

transforming growth factors (TGFs) (Kaiser et al., 2005). Chemokines have 

more restricted effects on the immune response compared to cytokines, 

being responsible for regulating circulation of immune cells and recruiting 

them to sites of inflammation (Kaiser, 2008). Chemokines can be divided into 

four groups based on the spacing of the first two cysteines at the amino 

termini including XC, CC, CXC and CX3C (Kaiser, 2008, Martins-Green, 

2001, Hughes et al., 2007). A study on the chicken genome has identified 24 

chemokines (Kaiser et al., 2005, Kaiser, 2008).  

 

In mammals, cytokines and chemokines can be polarized functionally into 

type 1 or type 2 immune pathways. These responses are regulated by Th1 

and Th2 cells. The chicken immune response differs from the mammalian 

immune response, as it lacks components of the Th2 response, including 

eosinophils and IgE (Kaiser et al., 2005). Additionally, a chicken orthologue 

for the Th2 cytokine IL-5 has been identified as a pseudogene (Avery et al., 

2004). This suggests chickens may have a reduced requirement for Th2 

cytokines, compared to mammals; however, a cluster of Th2 cytokines has 

been identified in chickens, encoding for IL-3, IL-4, IL-13 and GM-CSF (Avery 
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et al., 2004). Chicken IL-4 and IL-13 expression in lymphoidal tissue has 

been shown to be similar to that in mammals and co-stimulates the 

proliferation of B cells with CD154 (CD40) (Avery et al., 2004). However, IL-3 

is expressed at high levels in lymphoidal and non-lymphoidal tissue 

compared to mammalian species, suggesting it is differentially regulated in 

chickens (Avery et al., 2004).  

 

Th1 cytokine responses in avian species have been characterised in more 

detail then Th2 responses. Early production of IL-12 and IL-18 drive Th1 

inflammatory responses and production of IFN-γ (Eckmann and Kagnoff, 

2001). IL-12 is a heterodimer, consisting of two subunits, p35 and p40 

(Degen et al., 2004). Several lymphoidal cell lines including, HD11, CU91 (T 

cell derived) and DT-40 (B cell derived) produce IL-12 following stimulation 

with ligands such as LPS, CpG-ODN and chCD40 (Degen et al., 2004). 

Chicken IL-12 has been shown to stimulate significant proliferation of spleen 

cells and production of IFN-γ by T-cells (Degen et al., 2004). ChIL-18 exhibits 

about 30% sequence similarity to mammalian IL-18 (Schneider et al., 2000). 

ChIL-18 is important for systemic resistance to Salmonella infection 

(Raupach et al., 2006). Macrophages from resistant chickens produce 

significantly greater IL-18 than those from susceptible ones (Wigley et al., 

2006). This suggests that Salmonella-resistant macrophages are more 

efficient at stimulating IFN-γ production and initiating the adaptive immune 

response (Wigley et al., 2006). Biologically activate IL-18 can stimulate 

primary chick spleen cells to produce a significantly increased amount of IFN-

γ (Schneider et al., 2000). 

 

A third lineage of Th cells has been identified, called Th17, which produces 

IL-17 under the influence of IL-23 (Kaiser, 2008). There are 6 members of the 

IL-17 family in humans, of which 4 of these have been identified in the 

chicken genome (Kaiser et al., 2005). IL-17 is thought to contribute to 

inflammation in the gut, following S. Enteritidis infection of chickens 

(Crhanova et al., 2011). 
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1.7 Salmonella Virchow 

Since the 1990s, S. Virchow has increased in prevalence in the UK and is 

often reported as the third most frequent serovar isolated from human 

salmonellosis cases (Ispahani and Slack, 2000, Matheson et al., 2010). 

S. Virchow infection is most commonly associated with gastroenteritis in 

humans, but has been frequently associated with bacteraemia, especially in 

the immuno-compromised and in children (Matheson et al., 2010, Ispahani 

and Slack, 2000, Gulcan et al., 2012). In rare cases, S. Virchow has also 

been shown to cause severe complications with other illnesses, such as 

deep vein thrombosis and has been shown to cause invasive disease in 

otherwise healthy adults (Schifferdecker et al., 2009, Eckerle et al., 2010). 

The main source of S. Virchow infection in humans is thought to be poultry, 

however sporadic cases of S. Virchow from different sources have been 

reported (Bennett et al., 2003, Callaway et al., 2011, Sato et al., 2000). Five 

serovars including S. Virchow have been given priority in prevalence studies 

on farms by the EU, for control of entry into the food chain, due to their 

significant risk to public health (Arnold et al., 2010, Snow et al., 2008, Snow 

et al., 2007).   

 

S. Virchow has a uniquely high prevalence and association with invasive 

disease in some countries. In Israel, S. Virchow is 1 of 3 serovars most 

commonly isolated from human patients and accounted for 15% of all stool 

and 22% of all blood isolates between 1997 and 2002 (Weinberger et al., 

2006). Studies in Israel have found S. Virchow to be very invasive in children 

and the elderly and to have a high resistance to antibiotics (Weinberger and 

Keller, 2005, Weinberger et al., 2006, Weinberger et al., 2004). S. Virchow is 

also frequently isolated from humans in Switzerland, being ranked between 

the 4th and 8th most frequently isolated serovar between 2004 and 2009 

(Bonalli et al., 2011). In other countries, including the United States, S. 

Virchow infection in humans is uncommon compared to other serovars, 

although it has still been found to be an invasive serovar (Jones et al., 2008).    
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Clinical evidence from a combined dataset of 10 countries indicates that 

there is a high association between S. Virchow and invasive disease, 

although invasiveness of Salmonella serovars varies from country to country 

(Langridge et al., 2009, Jones et al., 2008). The invasive index for S. 

Virchow, based on the ratio of the number of blood culture positives divided 

by total isolations of each serovar, is 4.4, more than double that of S. 

Enteritidis (1.8) and S. Typhimurium (1.6) that numerically cause the greatest 

burden of non-typhoidal salmonellosis (Langridge et al., 2009).  

 

Increasing antimicrobial resistance of S. Virchow has been reported in 

previous studies. A study in France and Belgium found some S. Virchow 

isolates express the blaCTX-M-2 gene, which is located on a large conjugative 

plasmid (Bertrand et al., 2006). This gene confers resistance to ciprofloxacin, 

which is a fluoroquinolone used to treat invasive salmonellosis in immuno-

compromised patients (Bertrand et al., 2006). A high incidence of resistance 

to nalidixic acid, a quinolone used to treat invasive salmonellosis, has also 

been reported in S. Virchow, with 90% of strains isolated in Israel between 

1997 and 2004 conferring resistance (Solnik-Isaac et al., 2007).  A study 

comparing antimicrobial resistance genes in S. Virchow, S. Enteritidis and S. 

Hadar strains, isolated from humans and food-producing animals in England 

and Wales found S. Virchow strains, isolated from humans, had a greater 

number of different resistance genes compared to the other 2 serovars 

(Hopkins et al., 2007). A wider study testing non-typhoidal Salmonella 

strains, isolated from 10 different European countries, for antimicrobial 

susceptibility showed that 73% of S. Virchow isolates were resistant to at 

least one antimicrobial and had an increased resistance to all of the 

antimicrobials tested, particularly nalidixic acid (Meakins et al., 2008). 

Multiple drug resistant (MDR) clonally related S. Virchow isolates, from 

humans, have been detected that express Salmonella genomic island I 

(variant SGI I-J3), which is largely responsible for the diversity of MDR S. 

Virchow isolates (Chu et al., 2012). A widespread increase in antimicrobial 

resistance of S. Virchow is a major concern to public health, as the serovar is 

associated with invasive disease and antimicrobials are used to treat invasive 

salmonellosis.   
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1.8  Aims of this thesis 

S. Virchow is a continuing and growing public health problem in the UK and 

worldwide, being associated with invasive disease in humans and showing 

high antimicrobial resistance to therapeutic drugs. Even though S. Virchow is 

the third most common serovar isolated from humans in the UK and a highly 

prevalent serovar in other countries, not much is known about its genetic 

structure and pathogenic behaviour. Additionally, an understanding of the 

chicken’s immune response to S. Virchow would be most valuable and 

provide important opportunities to investigate the potential of developing a 

vaccine against this serovar. 

 

The aims of this thesis have been to characterise the genetic relationship of 

S. Virchow strains isolated in England, from human and avian sources, using 

molecular typing techniques; to determine the infection biology of S. Virchow 

in vitro using human and avian cell lines and in vivo in poultry; to establish 

the immune response produced by poultry against infection; begin to 

determine the potential for a vaccine against the serovar by investigating 

homologous and heterologous protection offered by primary infection with S. 

Virchow in poultry.
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2.1 Introduction 

The 12 S. Virchow strains used throughout this thesis were isolated from 

different sources, at different times, in England. The stains were compared 

using molecular typing techniques and PCR virulotyping before any in vitro 

and in vivo invasion studies, to determine the genetic relatedness of the 

isolates. Molecular typing methods are often used to compare isolates of the 

same serovar and of different serovars genetically, to show similarities and 

differences between strains and also to determine the primary source of 

bacterial contamination in foodborne outbreaks. Several molecular typing 

techniques are available to use and are chosen depending on the time taken 

to return the results, the discriminatory ability, the reproducibility of the 

results, how interpretable the results are and the resources available (Foley 

et al., 2009, Maiden et al., 1998). 

 

Restriction-, amplification- and sequencing-based methods are available for 

molecular typing (Foley et al., 2009). Restriction-based methods are based 

on digestion of the genomic DNA and analysis of the fragments produced. 

Restriction-based methods include plasmid analysis, restriction fragment 

length polymorphism (RFLP) analysis, ribotyping, insertional sequences (IS)-

RFLP and pulsed-field gel electrophoresis (PFGE). Amplification-based 

methods involve PCR of selected target genes and include amplification 

profiling, amplified fragment length polymorphisms (AFLP), random amplified 

polymorphic DNA PCR (RAPD-PCR), repetitive element PCR (Rep-PCR), 

variable number of tandem repeat (VNTR) and multiple locus VNTR analysis 

(MLVA). Sequencing-based methods identify DNA sequence polymorphisms 

at specific loci and include multi-locus sequence typing (MLST) and single 

nucleotide polymorphism (SNP) analysis. 

 

PFGE and MLST are often used to discriminate between S. enterica isolates. 

PFGE compares restriction profiles of genomic DNA that has been digested 

by a specific enzyme into smaller fragments and separated by 

electrophoresis. PFGE is currently considered the “gold standard” of 

molecular typing methods for bacterial foodborne pathogens (Foley et al., 
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2009, Cimons, 2000). Criteria to aid the interpretation of the genetic 

relatedness of bacterial isolates compared by PFGE have been published 

(Barrett et al., 2006, Tenover et al., 1995). PFGE has high discriminatory 

power, is reproducible and compares the whole genome rather than selected 

regions; however, it is often labour intensive and requires 2-4 days to obtain 

results (Foley et al., 2009, Ammari et al., 2009). MLST targets house-keeping 

genes within the genome and compares specific nucleotide base changes to 

determine the genetic relatedness of different strains. MLST is highly 

reproducible, but sometimes is not adequate enough to distinguish between 

closely related isolates, due to the low rate of genetic variability in house-

keeping genes (Foley et al., 2009, Maiden et al., 1998).      

 

Several previous studies have compared the genetic relatedness of S. 

enterica isolates to each other using PFGE and MLST and compared the 

discriminatory ability of PFGE and MLST. Comparison of 81 S. Newport 

isolates by PFGE identified 43 patterns and grouped them into 3 major 

clusters, whereas MLST defined 12 sequence types (ST), with ST 45 

encompassing 61.7% of the isolates (Harbottle et al., 2006). Antimicrobial 

susceptibility typing identified 48% of the S. Newport isolates as MDR – 

AmpC, with 97% of these isolates characterised as either ST 45 or ST 116 by 

MLST (Harbottle et al., 2006). Additionally, eBURST analysis of the MLST 

STs separated the genetically related and the distantly related STs from each 

other, showing the use of MLST as a tool to compare evolutionary changes 

(Harbottle et al., 2006). Although PFGE may not provide as much information 

as MLST, the high discriminatory power of it is more useful when determining 

the primary source during epidemiological outbreaks (Harbottle et al., 2006). 

Although MLST has proven to be a useful molecular typing method, previous 

studies have shown care needs to be taken when choosing the house-

keeping genes to target. Fakhr et al (2005) compared 85 S. Typhimurium 

isolates from cattle by MLST using a different set of house-keeping genes to 

those now available on the database online and found no differences 

between the isolates (Fakhr et al., 2005). In comparison, PFGE identified 50 

distinct patterns that grouped into 3 main clusters, showing the advantage of 
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screening the whole genome rather than targeting selected genes, 

particularly during epidemiological outbreak studies (Fakhr et al., 2005).   

 

In addition to PFGE and MLST, AFLP, rep-PCR and VNTR and MLVA have 

been used for genotypic characterisation of Salmonella. AFLP analysis 

involves digesting the whole genome with a restriction enzyme and then 

ligating short adaptor sequences complementary to the ends of the restriction 

fragments for targets during PCR (Foley et al., 2009). Following PCR, the 

fragments are separated by electrophoresis (Foley et al., 2009). AFLP has 

similar discriminatory power to PFGE and is less laborious (Torpdahl et al., 

2005). However, the reproducibility of AFLP is poor as the procedure and 

analysis is subject to person-to-person variation, making comparisons 

between different laboratories very difficult (Torpdahl et al., 2005). Rep-PCR 

amplifies sequences that flank repeat elements and the amplified sequences 

are then separated by electrophoresis (Foley et al., 2009). Rep-PCR has 

been shown to be a highly discriminatory for Salmonella (Ben-Darif et al., 

2010). Advances in sequencing of bacterial genomes have allowed the 

development of VNTR and MLVA analysis. Many areas of bacterial genomes 

contain directly repeated DNA motifs and the number of these can be highly 

variable (Foley et al., 2009). VNTR analyses the number of repeated copies 

at specific loci and MLVA targets multiple VNTR loci to distinguish between 

different bacterial strains (Foley et al., 2009). MLVA is highly discriminatory 

and rapid; however the protocol for one serovar does not often work for 

others (Kang et al., 2011). Therefore, it has been suggested MLVA in 

combination with PFGE may be useful for epidemiological outbreak 

investigations (Kang et al., 2011). 

 

Comparison of bacterial genomes to determine the presence or absence of 

virulence genes is often done because they have been shown to be 

important for invasion and survival of the bacteria in its host. Transcriptional 

changes in identified virulence genes have been shown during Salmonella 

invasion of the host’s gut. S. Enteritidis phage type (PT) 4 infection of newly-

hatched chicks showed that of the 4380 genes represented on a microarray, 

714 were up-regulated and 753 were down-regulated by bacteria isolated 
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from the gut lumen, in comparison to ones grown in vitro in broth (Dhawi et 

al., 2011). The up-regulated genes included those required for energy 

generation, carbohydrate metabolism, protein turnover, transport 

(chaperones) and stress responses, including those for oxidative stress 

(Dhawi et al., 2011). The down-regulated genes included those required for 

amino acid metabolism, translation, replication and cell wall biogenesis 

(Dhawi et al., 2011). Gene expression changes indicated a wide range of 

carbon sources were metabolised in the gut and a range of electron 

acceptors were used (Dhawi et al., 2011). A similar experiment infecting 

newly hatched chicks with S. Typhimurium F98 was conducted to determine 

the change in virulence and metabolism genes in the gut compared to the 

gene expression in vitro in broth (Harvey et al., 2011). Major changes in S. 

Typhimurium F98 gene expression were found, due to adaptation to the 

caecal environment. An up-regulation of genes required for amino acid and 

carbohydrate metabolism, co-enzymes and lipid transport was found, as well 

as a down-regulation of genes required for cell cycle regulation, translation 

and DNA replication (Harvey et al., 2011).  

 

Factors such as limited nutrients, low oxygen, temperature and osmolarity 

affect the change in gene expression of Salmonella in the host’s gut; 

however changes in virulence genes have also been found to allow adhesion 

to components of the gut extra-cellular matrix (ECM) (Berndt et al., 2009). 

Incubation of S. Enteritidis with ECM proteins resulted in an increased 

expression of the flagella subunit protein gene fliC, which is important for 

host cell invasion (Berndt et al., 2009). S. Infantis was included in this study 

as a serovar with low levels of invasiveness and did not exhibit an increase in 

fliC expression when exposed to ECM proteins (Berndt et al., 2009). In 

another study, S. Enteritidis isolates that were poorly invasive in Caco2 cells 

and in vivo in mice were found to have impaired motility and impaired 

secretion of flagella-associated proteins including FlgK, FljB and Flg or SPI-1 

TTSS proteins SipA and SipD (Shah et al., 2011).           

 

The requirement for virulence genes for host intestinal colonisation and 

systemic spread has been shown to be conserved between species and also 
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to sometimes be host-specific. Through signature tagged mutagenesis 

(STM), 119 mutants of S. Typhimurium ST4/74 were identified as having 

impaired intestinal colonisation in pigs (Carnell et al., 2007). Of the 119 

mutants, 54 were located on SPIs showing their importance for intestinal 

colonisation of pigs (Carnell et al., 2007). The safABCD operon is located on 

SPI-6 and encodes Salmonella specific putative atypical fimbriae (Folkesson 

et al., 2002, Parkhill et al., 2001). A mutation in safA has been shown to 

impair S. Typhimurium ST4/74 in intestinal colonisation of pigs but not in 

calves and chickens (Carnell et al., 2007, Morgan et al., 2004). Mutations in 

the siiA-siiF genes located on SPI-4 also impair intestinal colonisation in a 

host-dependant manner. S. Typhimurium ST4/74 siiE or siiF mutants have 

shown reduced invasion of bovine enterocytes and reduced numbers in 

intestinal colonisation of cattle (Morgan et al., 2007). However, SPI-4 mutants 

are not impaired in pigs (Carnell et al., 2007) or chickens (Morgan et al., 

2004). A study to determine the effects of mutations in virulence genes on S. 

Dublin intestinal colonisation and systemic spread in cattle has shown SPI-4 

mutants to be impaired in colonising the ileal mucosa and lymph nodes but 

not systemic sites, suggesting SPI-4 plays a role in enteric but not systemic 

disease (Pullinger et al., 2007).  

 

The importance of virulence genes in colonisation and systemic invasion of 

Salmonella in chickens has been shown through in vitro cell-based models 

and in vivo infection experiments. SPI-1 mutant strains of a range of 

Salmonella serovars including S. Typhimurium, S. Gallinarum and S. 

Pullorum have been shown to have impaired invasion of CKC cells and 

reduced intestinal colonisation in vivo in chickens compared to WT strains 

(Jones et al., 2001, Wigley et al., 2002b, Jones et al., 2007).  SPI-2 has been 

shown to be important for systemic infection in chickens, although there are 

conflicting studies concerning its role. In vivo infection experiments using S. 

Gallinarum and S. Pullorum SPI-2 mutants have shown SPI-2 is required for 

virulence and systemic persistence of these serovars in chickens (Wigley et 

al., 2002b, Jones et al., 2001). S. Typhimurium SPI-2 mutants also show 

significantly reduced systemic disease in chickens compared to the WT strain 

(Jones et al., 2007). In vitro invasion assays using HD11 chicken 
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macrophage-like cells found a S. Gallinarum SPI-2 mutant failed to survive in 

the cells and therefore concluded SPI-2 is essential for intra-macrophage 

survival (Jones et al., 2001). More recently, SPI-2 mutants of S. Typhimurium 

and S. Enteritidis were found to survive equally as well in HD11 cells 

compared to the WT strain and it has been suggested SPI-2 is important for 

systemic distribution, rather than intra-macrophage survival (Wisner et al., 

2011b).  

 

Some virulence factors have been included as potential vaccine candidates 

due to their absence resulting in attenuation of Salmonella infection. S. 

Enteritidis challenge of chickens vaccinated with either SPI-1 or SPI-2 

defective mutants showed a reduction in caecal colonisation of chickens 

vaccinated with SPI-1 mutants and no systemic spread in ones vaccinated 

with either SPI-1 or SPI-2 compared to unvaccinated chickens (Matulova et 

al., 2012). Chickens vaccinated with SPI-2 structural or effector proteins have 

also been found to elicit a strong humoral response following S. Enteritidis 

challenge (Wisner et al., 2011a). 

 

The aim of this study was to compare the S. Virchow isolates by molecular 

typing methods to determine their genetic relatedness. MLST was chosen to 

assign the isolates ST numbers and to determine their phylogenetic 

relationship. PFGE was done in combination with MLST to determine the 

genetic relatedness of the isolates, as it has been shown to sometimes have 

more discriminatory power. Additionally, the S. Virchow isolates were 

screened by PCR for 12 genes associated with virulence to get an indication 

of the array of virulence factors they possessed in comparison to each other 

and to a representative S. Typhimurium isolate.        

 

 

 

 

 

 



Chapter 2  Molecular Characterisation 

37 
 

2.2 Materials and Methods 

 

2.2.1 Salmonella isolates 

Throughout this thesis, 12 S. Virchow isolates were used to characterise the 

serovar (Table 2.1). Of these isolates, 6 were received from Dr Chris Parry, 

Medical Microbiology, University of Liverpool and were isolated from human 

gastroenteritis patients on Merseyside, between 2005 and 2008.The other 6 

isolates were provided by Professor Roberto La Ragione from the Veterinary 

Laboratories Agency, Weybridge (now AHVLA) and consisted of 4 isolated 

from live chickens, 1 isolated from a turkey and 1 environmental isolate from 

a poultry house. S. Typhimurium F98 was included in all of the experiments 

as a comparison, as it is a well characterised strain in chickens (Barrow et 

al., 1987, Smith and Tucker, 1975). S. Typhimurium 238 (DT 40) and S. 

Typhimurium 244 (DT 56) were also included in some of the experiments as 

comparisons and are highly associated with garden bird mortality (Pennycott 

et al., 2006, Hughes et al., 2008, Hughes et al., 2010). 

 

 

Table 2.1: S. Virchow isolates 

ID Source 

S. Virchow 51 Human 

S. Virchow 52 Human 

S. Virchow 53 Human 

S. Virchow 54 Human 

S. Virchow 55 Human 

S. Virchow 56 Human 

S. Virchow 57 Environmental 

S. Virchow 58 Chicken 

S. Virchow 59 Chicken 

S. Virchow 60 Chicken 

S. Virchow 61 Turkey 

S. Virchow 62 Chicken 
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2.2.2 MLST 

 All 12 S. Virchow isolates were grown in 10 ml Luria-Bertani (LB) broth in an 

orbital shaking incubator for 18 hours, at 37°C and 150 rpm. Genomic DNA 

was prepared from the broths using a Wizard® Genomic DNA Purification kit 

following the manufacturer’s instructions (Promega, Southampton, UK). 

Seven house-keeping genes were targeted by PCR and were thrA, purE, 

sucA, hisD, aroC, hemD and dnaN. The primers used were obtained from the 

Salmonella MLST database online (http://mlst.ucc.ie/mlst/dbs/Senterica) and 

are detailed in Table 2.2. The reaction mixture was the same for each gene 

and consisted of 10X buffer, 2.5 mmol/l MgCl2, 250 µmol/l each of dATP, 

dCTP, dGTP and dTTP, 25 pmol/l each of the forward and reverse primers, 1 

unit of Taq polymerase (Invitrogen, Paisley, UK) and 2 µl DNA template, 

made up to a final reaction volume of 50 µl with molecular grade water. PCR 

thermocycler conditions included an initial denaturation step of 94°C for 10 

minutes, followed by 34 cycles of 94°C for 1 minute, 55°C for 1 minute and 

72°C for 1 minute, with a final step of 72°C for 5 minutes (Ikumapayi et al., 

2007). PCR products were run on a 2% agarose gel in Tris-acetate buffer 

(TAE) at 120 volts for 40 minutes. The gel was visualised under ultra-violet 

(UV) light. 

 

PCR products were purified using a polyethylene glycol (PEG) precipitation 

method. PCR products were transferred to 96 well plates and 60 µl 20% 

(w/v) PEG8000, 2.5M NaCl was added to each well. The plates were 

incubated overnight at 4°C and then centrifuged at 2750 rcf for 60 minutes at 

4°C. To remove the PEG, plates were centrifuged inverted at 500 rpm for 60 

seconds. The DNA pellets in the wells were washed twice with 150 µl of ice-

cold ethanol by adding the ethanol to the wells and centrifuging the plates at 

2750 rcf for 10 minutes. The ethanol was removed from the wells by 

centrifuging the plates at 500 rpm for 60 seconds. Following the washes, the 

plates were air dried on the bench for 10 minutes. DNA pellets were re-

suspended in 50 µl sterile water by vortexing and then centrifuging briefly.  

 

Forward and reverse nucleotide sequences of the PCR products were 

determined using the primers listed in Table 2.3 and Big Dye ready reaction 

http://mlst.ucc.ie/mlst/dbs/Senterica
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mix (Applied BioSystems). The reaction mixture consisted of 0.50 µl Big Dye, 

3.74 µl 5X buffer, 4µl each of the forward and reverse primers and 3µl of the 

PCR product, made up to a total volume of 20 µl with molecular grade water. 

Thermocycler conditions included 30 cycles of 96°C for 10 seconds, 50°C for 

5 seconds and 60°C for 2 minutes.  

 

An ethanol precipitation method was used for the sequencing reaction clean-

up. Firstly, 52 µl of 100% ethanol and 3M sodium acetate in a ratio of 25:1 

was added to each well and the plates were vortexed and centrifuged briefly 

at 500 rpm. The plates were then incubated at room temperature for 45 

minutes and centrifuged at 2750 rcf for 1 hour at 4°C. To remove the ethanol 

and sodium acetate, the plates were centrifuged inverted, at 500 rpm for 1 

minute. The pellets were washed with 150 µl ice-cold 70% ethanol, by 

centrifuging the plates at 2750 rcf for 10 minutes. The ethanol was removed 

by centrifuging the plates inverted, at 500 rpm for 1 minute and then the 

plates were left to air dry at room temperature for 10 minutes. Following this, 

10 µl of HiDi (formamide) was added to each well, the plates were vortexed 

and then centrifuged briefly. The DNA was heat-denatured by heating the 

plates at 94°C for 10 minutes and then the plates were loaded onto an ABI 

Prism 3130x/ Genetic Analyzer sequencer (Applied BioSystems). 

 

ChromasPro version 1.42 and Mega 4.1 software were used to analyse the 

chromatograms generated by the sequencer. Sequences were submitted to 

the Salmonella MLST database online (http://mlst.ucc.ie/mlst/dbs/Senterica) 

and STs were assigned to each isolate. For further analysis eBURST version 

3 diagrams were constructed online (http://eburst.mlst.net) using the S. 

Virchow isolates in this study and S. Virchow isolates submitted to the online 

database, following the online instructions.        

 

 

 

 

 

 

http://mlst.ucc.ie/mlst/dbs/Senterica
http://eburst.mlst.net/
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Table 2.2: Salmonella MLST amplification primers 

Target  

Gene 

Primer Sequence (5’-3’) Product 

Length (bp) 

ThrA F GTCACGGTGATCGATCCGGT 852 

 R CACGATATTGATATTAGCCCG  

purE F ATGTCTTCCCGCAATAATCC 510 

 R CGAGAACGCAAACTTGCTTC  

sucA F AGCACCGAAGAGAAACGCTG 643 

 R GGTTGTTGATAACGATACGTAC  

HisD F GAAACGTTCCATTCCGCGCAGAC 894 

 R CTGAACGGTCATCCGTTTCTG  

aroC F CCTGGCACCTCGCGCTATAC 826 

 R CCACACACGGATCGTGGCG  

hemD F GAAGCGTTAGTGAGCCGTCTGCG 666 

 R ATCAGCGACCTTAATATCTTGCCA  

dnaN F ATGAAATTTACCGTTGAACGTGA 833 

 R AATTTCTCATTCGAGAGGATTGC  

 

 

2.2.3 PFGE 

All 12 S. Virchow isolates, S. Typhimurium F98 and S. Typhimurium 238 

were grown on nutrient agar plates overnight at 37°C. Bacterial colonies 

were put in bijoux bottles containing 2 ml suspension buffer and the optical 

densities were measured, until an OD610 value of 1.35 was obtained for each 

isolate. PFGE methodology was based on the Standardized PulseNet Rapid 

Escherichia coli PFGE method with slight modifications (Anonymous, 2004, 

Hughes et al., 2008, Ribot et al., 2006). Once the OD value had been 

obtained 200 µl of the cell suspension, 10 µl (20 mg/ml) proteinase K and 

200 µl molten agarose (1% PFGE agarose dissolved in 1x TE buffer and 1% 

Sodium Dodecyl Sulfate) were mixed together by pipetting briefly. The 

mixtures were transferred to duplicate plug moulds and left to set for 20 

minutes at 4°C. The plugs were transferred to 3 ml cell lysis buffer (15 µl of 

20 mg/ml proteinase K, 50mM Tris, 50 mM EDTA and 1% N-lauryl sarcosine) 

and incubated in an orbital shaking incubator for 2 hours at 54°C and 150 
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rpm. The lysis buffer was removed and the plugs were incubated with pre-

heated sterile distilled water for 15 minutes at 54°C and 150 rpm. The plugs 

were washed twice with sterile distilled water and four times with 1x TE buffer 

and then one set of plugs were incubated in 500 µl 0.1x TE buffer for 20 

minutes at 37°C and 150 rpm and the other set of plugs were stored in 2ml 

1x TE buffer at 4°C. The 0.1x TE buffer was removed and replaced with 200 

µl Xbal restriction buffer (Promega) and incubated for 15 minutes at 37°C 

and 150 rpm. The restriction buffer was removed and replaced with 200 µl 

restriction buffer containing 50U Xbal (Promega) and the samples were 

incubated statically at 37°C for 2 hours.  

 

Fragments of the digested samples were separated out on a 1% agarose gel 

(PFGE agarose, BioRad Laboratories) in 1x Tris-Borate buffer (TBE) at 210 

volts and 14°C for 19 hours. Pulse times were ramped at 2.2-54.2 seconds 

and a re-orientation angle of 120° was applied. Bacteriophage λ DNA 

concatemers were used as a molecular marker. The gel was stained for 20 

minutes in 1% ethidium bromide and the gel was visualised under UV light. 

BioNumerics version 4 software was used for image analysis. A position 

tolerance of 2% was used and a dendrogram was constructed using 

Unweighted Pair Group Method with Arithmetic Mean (UPGMA).      
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Table 2.3: Salmonella MLST sequencing primers 

Target Gene Primer Sequence (5’-3’) 

thrA F ATCCCGGCCGATCACATGAT 

 R CTCCAGCAGCCCCTCTTTCAG 

purE F CGCATTATTCCGGCGCGTGT 

 R CGCGGATCGGGATTTTCCAG 

sucA F AGCACCGAAGAGAAACGCTG 

 R GGTTGTTGATAACGATACGTAC 

hisD F GTCGGTCTGTATATTCCCGG 

 R GGTAATCGCATCCACCAAATC 

aroC F GGCACCAGTATTGGCCTGCT 

 R CATATGCGCCACAATGTGTTG 

hemD F GTGGCCTGGAGTTTTCCACT 

 R GACCAATAGCCGACAGCGTAG 

dnaN F CCGATTCTCGGTAACCTGCT 

 R CCATCCACCAGCTTCGAGGT 

 

 

2.2.4 PCR Virulotyping 

All 12 S. Virchow isolates and S. Typhimurium F98 were grown on nutrient 

agar plates overnight at 37°C. Crude boil lysate DNA samples were prepared 

by adding 2-3 bacterial colonies to 0.5 ml sterile distilled water and boiling the 

preparations at 100°C for 10 minutes. The isolates were screened for the 

presence of 12 genes associated with virulence, which were prgH, sopB, 

sopE, invA, sitC, spiC, sifA, misL, orfL, pipD, iroN and pefA (Skyberg et al., 

2006, Hughes et al., 2008), using the primers in Table 2.4. Reaction mixtures 

were the same for each gene and included 1.25 units Taq polymerase, 75 

mmol/l Tris-HCl (pH 8.8 at 25°C), 20 mmol/l (NH4)2SO4, 2.5mmol/l MgCl2, 

0.01% (v/v) Tween-20, 0.2 mmol/l each of dATP, dCTP, dGTP and dTTP, 4 

mmol/l each of the forward and reverse primers and 1 µl of DNA in a total 

volume of 25 µl (Hughes et al., 2008). PCR thermocycler conditions included 

an initial denaturation step of 94°C for 3 minutes, followed by 30 cycles of 

94°C for 1 minute, 55°C for 1 minute and 72°C for 1 minute, with a final step 

of 72°C for 5 minutes (Hughes et al., 2008). PCR products were run on a 2% 
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agarose gel in TAE buffer for 30 minutes at 120 volts. The gel was visualised 

under UV light. Amplicon size was determined by comparison with ɸ X174 

Hae III digest DNA marker (ABgene, Epsom, UK). 

 

 

Table 2.4: PCR virulotyping primers 

Virulence  

Gene 

Primer Sequence (5’-3’) 

prgH F GCCCGAGCAGCCTGAGAAGTTAGAAA 

 R TGAAATGAGCGCCCCTTGAGCCAGTC 

sopB F CGGACCGCCCAGCAACAAAACAAGAAGAAG 

 R TAGTGATGCCCGTTATGCGTCAGTGTATT 

sopE F TCAGTTGGAATTGCTGTGGA 

 R TCCAAAAACAGGAAACCACAC 

InvA F CTGGCGGTGGGTTTTGTTGTCTTCTCTATT 

 R AGTTTCTCCCCCTCTTCATGCGTTACCC 

SitC F CAGTATATGCTCAACGCGATGTGGGTCTCC 

 R CGGGGCGAAAATAAAGGCTGTGATGAAC 

SpiC F CCTGGATAATGACTATTGAT 

 R AGTTTATGGTGATTGCGTAT 

SifA F TTTGCCGAACGCGCCCCCACACG 

 R GTTGCCTTTTCTTGCGCTTTCCACCCATCT 

misL F GTCGGCGAATGCCGCGAATA 

 R GCGCTGTTAACGCTAATAGT 

OrfL F GGAGTATCGATAAAGATGTT 

 R GCGCGTAACGTCAGAATCAA 

pipD F CGGCGATTCATGACTTTGAT 

 R CGTTATCATTCGGATCGTAA 

IroN F ACTGGCACGGCTCGCTGTCGCTCTAT 

 R CGCTTTACCGCCGTTCTGCCACTGC 

pefA F GCGCCGCTCAGCCGAACCAG 

 R CAGCAGAAGCCCAGGAAACAGTG 
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2.3 Results 

 

2.3.1 MLST 

MLST was used to determine the genetic relatedness of the S. Virchow 

isolates. The genetic sequences of all 7 house-keeping genes for each 

isolate was submitted to the Salmonella MLST database online 

(http://mlst.ucc.ie/mlst/dbs/Senterica). Overall, 11 S. Virchow isolates were 

identified as ST 16. The environmental isolate differed from the others and 

was identified as a novel ST, being assigned the number ST 648. The 

environmental isolate differed by 3 bases in the dnaN gene and 2 bases in 

the purE gene compared to the other isolates. In addition to ST 16 being the 

most prevalent ST amongst the isolates in this study, it was the most 

common ST submitted to the MLST database online and was mainly isolated 

from humans (Figure 2.1). An eBURST diagram representing all of the S. 

enterica isolates submitted to the online database was constructed to show 

the relationship of S. Virchow to other serovars. S. Virchow clustered in its 

own group quite close to the S. Typhimurium cluster located in the centre of 

the diagram (Figure 2.2). 

 

 

 

Figure 2.1: eBURST ver. 3 diagram of S. Virchow isolates from this study and 

those available in the Salmonella MLST database online. The numbers in 

brackets represent the number of isolates of that particular ST. The founder 

is ST 303, which suggests this ST is related to the largest number of other 

STs. Single locus variants (SLV) are connected by a line.      

http://mlst.ucc.ie/mlst/dbs/Senterica
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Figure 2.2: eBURST ver. 3 diagram of all the S. enterica isolates in the MLST 

database. Each cluster is generally representative on a particular serovar. 

The S. Virchow cluster is highlighted by a blue box.  
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2.3.2 PFGE 

PFGE was used to further determine the genetic relatedness of the S. 

Virchow isolates. Dendrogram analysis of the S. Virchow isolates revealed 

different banding patterns or pulsotypes between them (Figure 2.3). The S. 

Virchow isolates were grouped into 2 genetically related clusters and S. 

Typhimurium F98 and S. Typhimurium 238 were grouped into a separate 

cluster (Figure 2.3). 

 

 

  

Figure 2.3: Results from a dendrogram using DICE (tolerance 1.0-1.0%) 

(Minimum height > 0.0%, minimum surface > 0.0%) (0-100%) coefficient for 

PFGE using Xbal digestion. Dendrogram of the relatedness between S. 

Virchow isolates to each other and to S. Typhimurium based on PFGE. The 

dendrogram was constructed using BioNumerics software by Unweighted 

Pair Group Method with Arithmetic Mean. 

 

100 80 60 

56 HU 

59 CH 

58 CH 

60 CH 

51 HU 

57 EN 

55 HU 

52 HU 

54 HU 

62 CH  

61 TU 
53 HU 

ST 238 

ST F98 

Dice coefficient of similarity 



Chapter 2  Molecular Characterisation 

47 
 

2.3.3 PCR Virulotyping 

The S. Virchow isolates were positive for all 12 genes, which were prgH, 

sopB, sopE, invA, sitC, spiC, sifA, misL, orfL, pipD, iroN and pefA. S. 

Typhimurium F98 was positive for 10 of the virulence genes and lacked pefA 

(Figure 2.4) and sopE (Figure 2.5). 

 

 

 

Figure 2.4: Gel image of isolates positive for pefA. Lane 1 = ɸ X174 Hae III 

digest DNA marker, Lane 2-13 = S. Virchow 51-62 isolates, Lane 14 = S. 

Typhimurium F98, Lane 15 = negative control and Lane 16 = ɸ X174 Hae III 

digest DNA marker. 

 

 

 

Figure 2.5: Gel image of isolates positive for sopE. Lane 1 = ɸ X174 Hae III 

digest DNA marker, Lane 2-13 = S. Virchow 51-62 isolates, Lane 14 = S. 

Typhimurium F98, Lane 15 = negative control and Lane 16 = ɸ X174 Hae III 

digest DNA marker. 
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2.4 Discussion 

Molecular typing of the S. Virchow isolates revealed that they are very similar 

genetically, although some differences were identified. MLST analysis 

identified 11/12 S. Virchow isolates as the same ST, ST 16. The 

environmental isolate was identified as a novel one and assigned the ST, ST 

648. Results from this study and from S. Virchow isolates submitted to the 

Salmonella MLST online database indicate ST 16 is the predominant ST for 

S. Virchow. This is evident not only in the UK but countries such as 

Germany, France and Denmark, from where S. Virchow isolates have also 

been submitted. In total, 8 different STs have been assigned to S. Virchow 

isolates submitted to the online database. Construction of an eBURST 

diagram identified ST 303 as the founder ST, which is the ST that most of the 

others deviate from by one SLV and therefore, may represent how S. 

Virchow has diversified (Figure 2.1). Except for ST 303 and ST 16, the other 

STs only consist of 1 or 2 isolates in the MLST database, indicating they are 

not as common. The eBURST diagram (Figure 2.1) showed the STs of S. 

Virchow do not vary much from the founder, as the connecting black lines are 

representative of SLVs, suggesting S. Virchow is a relatively clonal group.  

 

Previous studies have highlighted the importance of MLST as an evolutionary 

tool. The majority of S. Typhimurium isolates infect a wide range of hosts, 

mainly causing limited gastroenteritis and are identified as ST 19. However, 

some S. Typhimurium isolates have varying STs and have shown distinct 

differences in their invasive phenotype. S. Typhimurium ST 313 has been 

found to be a predominant ST causing invasive disease in humans and is 

rarely found outside of Africa (Kingsley et al., 2009). Additionally, S. 

Typhimurium ST 568 has been identified as a predominant ST in passerine 

birds, causing invasive disease and high rates of mortality, but it is rarely 

isolated in other hosts, suggesting it is host-adapted (Hughes et al., 2010). 

Although MLST may occasionally lack discriminatory ability for Salmonella 

strains of the same serovar, it has proven a great tool for showing 

evolutionary relationships of serovars and does separate strains into clusters 

of the same serovar. Therefore, it has recently been suggested that MLST 
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should be used to replace serotyping, by allowing the identification of 

genetically related strains of Salmonella enterica rather than typing based on 

‘O’ and ‘H’ antigen serology (Achtman et al., 2012).   

 

PFGE grouped the S. Virchow isolates into 2 main clusters and the S. 

Typhimurium isolates into a separate cluster, with no distinction between 

isolates from human and avian species. Within the clusters, the S. Virchow 

isolates differed by an average of 3 bands, indicating that they are closely 

related (Barrett et al., 2006, Tenover et al., 1995). PFGE is based on the 

whole genome and therefore, sometimes has more discriminatory power than 

MLST. However, it does not show the evolutionary relationship of the isolates 

like MLST does (Foley et al., 2009). Therefore, MLST and PFGE were used 

in combination in this study, to determine the genetic relatedness of the S. 

Virchow isolates. Although PFGE analysis revealed more genetic variation 

between the S. Virchow isolates than MLST, both methods showed the 

isolates to be highly genetically related and indicated S. Virchow in the UK is 

relatively clonal.  

 

PFGE has been used in previous studies to determine the genetic 

relatedness of S. Virchow, in countries where the prevalence is higher than 

others. In Israel, S. Virchow has a uniquely high prevalence in humans and is 

a dominant cause of NTS (Weinberger and Keller, 2005). During a study 

between 1997 and 2002 S. Virchow accounted for 15% of all stool and 22% 

of all blood isolates of Salmonella enterica in Israel (Weinberger et al., 2006). 

Similar to the findings in this study, Weinberger et al (2006) found PFGE 

grouped the S. Virchow isolates into 2 main clusters, which differed at most 

by 3 bands, indicating as in the UK S. Virchow is relatively clonal 

(Weinberger et al., 2006). Additional comparison of S. Virchow isolates in 

Israel between 1997 and 2004 showed an even closer relationship between 

the isolates, emphasising even more the clonality of S. Virchow (Solnik-Isaac 

et al., 2007). The study by Solnik-Isaac et al (2007) included human as well 

as poultry isolates and in agreement with this study showed isolates from 

both sources had closely related PFGE profiles (Solnik-Isaac et al., 2007). 

Switzerland is another country reporting increasing prevalence of S. Virchow 
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(Bonalli et al., 2011). Between 2004 and 2009 1.5% of all clinical isolates 

from humans were identified as S. Virchow, ranking it at between 4th and 8th 

most common serovar over the study period (Bonalli et al., 2011). PFGE 

separated the isolates into 4 clusters, with no common characteristics found 

within a particular cluster (Bonalli et al., 2011). Bonalli et al 2011 concluded 

from the PFGE that the S. Virchow strains isolated over the study period 

were closely genetically related and widespread. 

 

PFGE is often used to determine the source of Salmonella outbreaks and 

cases unrelated to the outbreak, due to its high discriminatory ability.  

Between October 2001 and March 2002 an estimated excess of 439 cases of 

S. Oranienburg was reported in Germany (Werber et al., 2005). The outbreak 

was linked to a source of chocolate and was confirmed by the Salmonella 

isolated from the chocolate and humans having indistinguishable PFGE 

profiles (Werber et al., 2005). During 2001, an international outbreak of S. 

Stanley was linked back to a particular brand of Asian-style peanuts, also 

through indistinguishable PFGE profiles from the human cases and the 

peanuts (Kirk et al., 2004). 

 

PCR virulotyping of the 12 S. Virchow isolates found that they were all 

positive for 12 genes associated with virulence, prgH, sopB, sopE, invA, sitC, 

spiC, sifA, misL, orfL, pipD, iroN and pefA. Similar sets of virulence genes 

have been used in previous studies, as they represent SPIs 1-5 and have all 

been associated with virulence of Salmonella (Skyberg et al., 2006, Hughes 

et al., 2008, Dione et al., 2011). The gene prgH is encoded in SPI-1and is a 

major component of the base structure of the SPI-1 T3SS (Kubori et al., 

2000, Schraidt et al., 2010). In vivo infection of mice with S. Typhimurium 

prgH mutants has found the bacteria to be defective in transcytosis across 

the epithelial barrier, showing the importance of PrgH to the structure of the 

T3SS (Behlau and Miller, 1993).  

 

SopB is an effector protein translocated by the SPI-1 T3SS, although it is 

encoded by SPI-5 (Wood et al., 1998). SopB is translocated into the host 

intestinal cells via a sip-dependant pathway and promotes fluid secretion and 
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an inflammatory response through phosphatase activity (Norris et al., 1998, 

Galyov et al., 1997). S. Dublin strains with mutations in sopB have been 

shown to have a decreased ability to induce fluid secretion and inflammation 

in calf intestine loops (Norris et al., 1998). SPI-5 also encodes the virulence 

genes pipA, pipB, pipC, pipD and orfX (Wood et al., 1998). Mutations in pipD 

as well as pipA and pipB significantly reduce the magnitude of the secretory 

and inflammatory responses of bovine ligated ileal loops in response to S. 

Dublin infection compared to the WT strain (Wood et al., 1998). Therefore, 

SPI-5 genes appear to be important for the enteropathogenicity of 

Salmonella, rather than systemic spread.  

 

SopE protein is encoded on a cryptic bacteriophage and is an effector protein 

of the SPI-1 T3SS (Hardt et al., 1998b). S. Typhimurium strains with 

mutations in sopE are not as invasive into host cells as WT strains and host 

cells also exhibit differences in morphology (Hardt et al., 1998b). It has been 

suggested SopE has a role in host cell invasion through the induction of 

cytoskeleton rearrangements and membrane ruffling, by activating the host 

Rho GTPases, CDC42 and Rac-1 (Hardt et al., 1998b, Hardt et al., 1998a, 

Haraga et al., 2008, Friebel et al., 2001). As sopE is encoded on a cryptic 

bacteriophage it is not present in all Salmonella serovars (Dione et al., 2011). 

The frequency of sopE in the top 10 most prevalent serovars in England and 

Wales in 2001 revealed sopE was present in 47 out of 158 S. Typhimurium 

isolates and these were definitive phage types most associated with major 

epidemics (Hopkins and Threlfall, 2004). Therefore, outbreaks of certain 

strains of a particular serovar may be due to enhanced virulence, provided by 

the presence of genes such as sopE. The presence of sopE was found in a 

large proportion of S. Virchow isolates, with only antimicrobial-sensitive 

strains negative for sopE (Hopkins and Threlfall, 2004). The presence of 

sopE in Salmonella isolates from human and animal sources in India has 

also been investigated (Rahman et al., 2004). The presence of sopE was 

found to be conserved amongst only a few serovars including S. Virchow, S. 

Enteritidis and S. Gallinarum (Rahman et al., 2004). A protein named SopE2 

has been identified that is highly homologous to SopE and unlike the sopE 

gene, is conserved in pathogenic strains of Salmonella (Bakshi et al., 2000). 
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SopE2 like SopE is a guanine nucleotide exchange factor, although they 

activate different Rho GTPase pathways (Friebel et al., 2001). Following S. 

Typhimurium infection of T84 epithelial cells, SopE2 stimulates an increase in 

IL-8 production (Huang et al., 2004). SopE2 and flagellin have been shown to 

interact to further increase IL-8 production upon invasion (Huang et al., 

2004). SopE2 has also been shown to up-regulate inducible nitric oxide 

synthase (iNOS) in a SipB-, SipC- and SipD-dependant manner upon S. 

Typhimurium invasion of murine macrophage cells (Cherayil et al., 2000). 

These results combined indicate SopE2 has a role in the induction of 

inflammation and shows the importance of SopE2 for bacterial pathogenesis. 

A sopB, sopE and sopE2 triple mutant of S. Typhimurium has been shown to 

be incapable of membrane ruffling and has >100-fold reduced invasion in 

vitro in COS7 epithelial cells (Mirold et al., 2001). 

 

SitC is encoded in SPI-1, along with 3 additional ORFs termed sitA, sitB and 

sitD (Zhou et al., 1999). The sitABCD operon has high sequence homology 

to the yfe ABC iron transport system of Yersinia pestis and is repressed 

under iron-rich growth conditions in a fur-dependent manner, suggesting that 

it encodes a putative iron transport system (Zhou et al., 1999). The sitABCD 

operon is expressed following intestinal invasion, during systemic invasion of 

mice by S. Typhimurium (Janakiraman and Slauch, 2000). S. Typhimurium 

sit null mutants are significantly attenuated in mice, indicating SitABCD plays 

an important role in iron acquisition in mice (Janakiraman and Slauch, 2000). 

Iron is important for bacterial growth, but environments within the host often 

have low concentrations of this metal, therefore iron acquisition mechanisms 

are important. Previous studies have suggested the existence of redundant 

iron uptake systems in S. enterica and other systems have been identified. 

The iroN gene is encoded in the iroA locus of S. enterica and is conserved 

throughout the species, although it is absent from S. bongori (Baumler et al., 

1998). IroN has been shown to encode a 78 kDa outer membrane protein 

that has high homology to enterochelin receptors, suggesting it also has a 

role in iron acquisition (Baumler et al., 1998). IroN has been shown to 

transport similar substrates to other outer membrane receptor proteins, such 
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as enterobactin and also to mediate uptake of selected substrates such as 

corynebactin (Rabsch et al., 1999).  

 

SpiC protein is encoded on SPI-2 and is transported into the host cell via the 

SPI-2 TTSS (Uchiya et al., 1999). S. Typhimurium infection of J774 

macrophage cells has been shown to require a functional spiC gene for 

inhibition of the fusion of Salmonella-containing phagosomes with lysosomes 

and inhibition of trafficking of vesicles (Uchiya et al., 1999). Furthermore, a S. 

Typhimurium spiC mutant was attenuated for virulence in J774 macrophage 

cells, indicating inhibition of cellular trafficking is important for Salmonella 

pathogenesis (Uchiya et al., 1999). SpiC has also been shown to up-regulate 

protein kinase A, leading to CREB phosphorylation and an increase in IL-10, 

which creates a favourable environment for Salmonella to survive within 

macrophages (Uchiya et al., 2004). In addition, SpiC protein regulates the 

transcription of FliC protein, which is a component of the flagella filaments 

(Uchiya and Nikai, 2008). Up-regulation of fliC activates MAPK pathways in 

Salmonella-infected macrophages, which stimulates an up-regulation of 

suppressor of cytokine signalling (SOCS)-3 (Uchiya and Nikai, 2008). SOCS-

3 inhibits cytokine signalling by the macrophage cells, therefore reducing the 

immune response against the bacteria (Uchiya and Nikai, 2008). Overall, 

findings indicate SpiC is important for the survival and persistence of 

Salmonella in macrophages.     

 

SifA protein is encoded on SPI-2 and transported into the host cell by the 

SPI-2 T3SS (Beuzon et al., 2000). SifA is required to maintain the integrity of 

the scv within the host cell and does this by forming lgp structures (Beuzon et 

al., 2000, Garcia-del Portillo et al., 1993, Stein et al., 1996). SifA has been 

shown to be important for virulence in mice (Stein et al., 1996) and has also 

been suggested to have a role in systemic persistence in calves (Pullinger et 

al., 2007). 

 

The MisL protein is encoded on SPI-3 and has shown similarities to the 

immunoglobulin A1 protease family of autotransported proteins, which are 

found only in pathogenic bacteria (Blanc-Potard et al., 1999). S. Typhimurium 
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misL mutants are highly attenuated in the intestinal colonisation of chicks, 

indicating that it is required for virulence in this host (Morgan et al., 2004). 

Further research to determine the role of MisL protein has shown it binds to 

intestinal ECM proteins including fibronectin and collagen IV (Dorsey et al., 

2005). MisL therefore appears to be an extracellular matrix adhesion involved 

in attachment to the intestinal cell wall and intestinal colonisation (Dorsey et 

al., 2005). 

 

Identification and characterisation of SPI-4 found putative proteins that have 

significant homology to toxin secretion proteins, suggesting SPI-4 encodes a 

Type I secretion system involved in toxin secretion (Wong et al., 1998). A 

large secreted protein called SiiE has since been characterised (Morgan et 

al., 2004). The OrfL protein, which had been previously characterised, also 

mapped to this region and has been shown to be needed for intra-

macrophage survival in mice (Wong et al., 1998, Baumler et al., 1994). In 

vivo challenge of mice with S. Typhimurium SPI-4 mutants showed them to 

be attenuated and implicated SPI-4 in intestinal colonisation (Morgan et al., 

2004).  

 

The PefA protein is encoded on a large 90 kb virulence plasmid, in a 7 kb 

region along with 4 other proteins including PefC, Orf5, Orf6 and Orf8 

(Friedrich et al., 1993). The pefA locus was found to have some sequence 

homology to various fimbrial/pilin shaft subunits found in E. coli (Friedrich et 

al., 1993). Furthermore, a transposon insertion in pefA abolishing its 

expression eliminated the production of fimbriae (Friedrich et al., 1993). 

Formation of surface filamentous structures by the pef genes and up-

regulation of the genes following in vivo infection suggest pefA has a role in 

attachment to the surface of the small intestine (Rotger and Casadesus, 

1999). 

 

The previous studies outlined above have shown the 12 virulence genes 

screened for in this study are important for adhesion, invasion and 

persistence of S. enterica in a range of hosts. Mutations in these genes result 

in attenuated virulence of the bacteria. The presence of these virulence 



Chapter 2  Molecular Characterisation 

55 
 

genes, particularly sopE and pefA, has been shown to be varied in different 

Salmonella serovars and may partly explain the differences in virulence 

observed between different serovars (Hughes et al., 2008, Gassama-Sow et 

al., 2006, Skyberg et al., 2006, Dione et al., 2011). In this study all of the S. 

Virchow isolates were positive for the 12 virulence genes, suggesting that S. 

Virchow can cause intestinal and systemic disease. 

 

Overall, the experiments in this study have consistently shown that S. 

Virchow isolates in England are genetically very similar, regardless of their 

source. Although the sample size was relatively small, additional isolates 

from the MLST database were included and confirmed further that S. Virchow 

is a relatively clonal serovar. Presence of all of the virulence genes 

examined, including sopE, indicate that S. Virchow has high levels of 

potential virulence, particularly as sopE is usually found in isolates of S. 

Typhimurium associated with epidemics in humans and animals (Hopkins 

and Threlfall, 2004).
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3.1 Introduction 

In vitro experiments using cell lines are regularly used in research to 

determine specific characteristics of a pathogen in a particular host and to 

identify the nature of the host-pathogen interaction. Characteristics of interest 

include the pathogen’s mechanisms for invading the host cell, how invasive 

the pathogen is in the host cell and if the pathogen can persist in the host 

cell. Host cell immune responses are also of importance for research aimed 

at vaccine development. Information gained from in vitro experiments can 

provide a baseline from which hypotheses for in vivo experiments can be 

generated (Babu et al., 2006). 

 

To understand a pathogen’s mechanisms for invading host cells, much 

research has focused on models that mimic the effect of conditions in the 

host on the pathogen’s growth. For example, invasiveness of Salmonella into 

Madin-Darby canine kidney cells was affected by the concentration of 

oxygen. Specifically, low concentrations of oxygen induce Salmonella 

adherence and invasiveness, indicating oxygen limitation could be an 

environmental cue that triggers expression of genes required for 

invasiveness within the intestinal lumen of the host (Lee and Falkow, 1990). 

  

In vitro cell invasion and persistence assays are important for indicating how 

virulent a pathogen can be in a host and for determining the mechanisms of 

pathogenesis. STM is a method that allows the investigation of the function of 

a gene of interest, by inactivating the gene through a mutation. For example, 

using strains of S. Typhimurium modified by STM to infect calf and chicken 

intestinal cells, mutants have been identified that can no longer infect these 

cells, therefore indicating possible roles for certain genes involved in 

pathogenesis (Morgan et al., 2004).      

 

An insight into host immune responses can also be gained through in vitro 

studies. Broad-range Salmonella serovars cause limited gastroenteritis in 

their hosts, whereas host-restricted serovars cause rapid systemic infection 

(Shivaprasad, 2000). The different mechanisms broad-range and host-
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restricted serovars have for infecting their host has been shown to result in 

different immune responses (Henderson et al., 1999). Broad-range serovars 

cause an acute inflammatory response, which is not seen with host-restricted 

serovars (Kaiser et al., 2000). In vitro and in vivo cell studies have been used 

to identify and quantify these different immune responses and may have 

important implications for future vaccine development (Kaiser et al., 2000). 

 

In vitro studies are especially important for determining pathogen-host 

interactions and immune responses in human hosts, where in vivo studies 

are inevitably very limited and rarely conducted (Salazar-Gonzalez et al., 

2004). Several cell lines are regularly used as human intestinal epithelial cell 

representatives including HT29 (enterocyte-like differentiation), T84 cells 

(secretary differentiation) and Caco2 (enterocyte-like differentiation) cells 

(Nandakumar et al., 2009, Vo et al., 2007, Shah et al., 2011). Interactions 

between these cell lines and enteropathogenic bacteria such as Salmonella, 

Campylobacter and E. coli are a focus for research (Nandakumar et al., 

2009, Vo et al., 2007, Shah et al., 2011).        

 

Several studies have documented immune responses by human intestinal 

epithelial cells against invasive and non-invasive enterobacteria. Upon 

Salmonella infection into human T84 colonic epithelial cells, IL-8 was 

secreted within 90 minutes to high concentrations (Eckmann et al., 1993). 

High concentrations of IL-8 against Salmonella infection have been shown 

using other human intestinal epithelial cell lines, such as Caco2 and HT29 

cells (Vo et al., 2007, Witthoft et al., 1998).  IL-8 is a pro-inflammatory 

cytokine suggested to be the initial signal for an acute inflammatory response 

upon bacterial invasion of mucosal surfaces (Eckmann et al., 1993). It has 

been suggested that IL-8 is produced when bacteria invade cells, as non-

invasive bacteria, such as E. coli, do not induce such a response (Eckmann 

et al., 1993). In contrast, other research has shown non-invasive bacteria do 

stimulate human intestinal epithelial cells to produce IL-8 and suggests LPS 

is the predominant signal to stimulate cells for this activity (Nandakumar et 

al., 2009).    
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Chicken cell lines are also regularly used for in vitro research into host-

pathogen interactions. Chicken cell lines currently used in research include 

HD11 (macrophage-like), MQ-NCSU (macrophage), CKC (kidney) and CEF 

(embryonic fibroblast) (Hughes et al., 2008, Withanage et al., 2005a, Kaiser 

et al., 2000). While there are currently very limited chicken intestinal epithelial 

cell lines available for use for studying immune responses against infection, 

chicken macrophage cell lines are used regularly. They are of a particular 

value as macrophages function as part of the innate immune response as 

well as providing an environment where intracellular pathogens, such as 

Salmonella, can survive and replicate (Uchiya et al., 2004, Juul-Madsen, 

2008). Survival in macrophages is thought to be important for Salmonella to 

cause systemic infection and persistent infection in poultry (Wigley et al., 

2005, Wigley et al., 2002b).  

 

Invasion assays using macrophage cell lines can be useful for modelling 

mechanisms by which these cells can become activated by a pathogen and 

for determining the immune response produced by them. Macrophages 

recognise pathogens through pathogen recognition receptors (PRRs) and 

become activated (Juul-Madsen, 2008). Toll like receptors (TLRs) are PRRs 

and are important for recognising generic patterns on pathogenic organisms 

and initiating a rapid immune response (Juul-Madsen, 2008, Barton and 

Medzhitov, 2003). Chicken TLR5 has been found to be expressed on 

different immune cells, including macrophages (Iqbal et al., 2005a). Using 

HD11 chicken macrophage cells, which bear TLR5 constitutively, it has been 

shown TLR5 recognises bacterial flagellin expressed by S. Typhimurium and 

initiates an inflammatory response (Iqbal et al., 2005b, Chadfield and Olsen, 

2001, Hayashi et al., 2001).  

 

Activated macrophages can engulf pathogens through phagocytosis and 

produce antimicrobial mediators such as ROS and nitric oxide (NO) 

(Kaspers, 2008). Cell invasion assays using RAW264.7 and J774 murine 

macrophage cell lines have shown that infection by S. Typhimurium and S. 

Dublin lead to an increase in NO via up-regulation of iNOS (Cherayil et al., 
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2000). Up regulation of iNOS and NO upon S. Dublin invasion has also been 

shown using human colonic epithelial cells (Witthoft et al., 1998).      

 

Cell invasion assays have lead to a greater understanding of the role of 

cytokines and chemokines during the immune response to Salmonella. The 

Th1 cytokine IFN-γ can prime macrophage cell lines to be more reactive 

against pathogens, resulting in significantly greater production of 

antimicrobial properties, such as ROS and NO, in the presence of microbial 

agonists, including LPS (He et al., 2011). Additionally, the chicken Th2 

cytokine IL-4 exerts bi-directional regulatory affects on macrophage 

production of ROS and NO (He et al., 2011). Although an increase in ROS 

and NO is observed following stimulation of macrophage cell lines with 

bacterial agonists, infection of MQ-NCSU macrophage cells with different 

Salmonella serovars showed the bacteria were not completely cleared from 

the cells, indicating other mechanisms are needed for Salmonella clearance 

(Withanage et al., 2005a). 

 

In vitro studies have shown broad-range and host-restricted Salmonella 

serovars can survive and replicate within macrophages, despite the 

antimicrobial properties of these cells (Henderson et al., 1999). Cell invasion 

assays have been used to determine the mechanisms Salmonella spp. use 

to survive within macrophages. SPI-2 encodes a T3SS, which is essential for 

intra-macrophage survival of S. Gallinarum within HD11 chicken macrophage 

cells; however it is not needed for survival within non-phagocytic cells, 

indicating a particular role for SPI-2 in intra-macrophage survival (Jones et 

al., 2001). Further research using in vitro cell-based models has shown that 

S. Typhimurium causes an indirect SPI-2 dependent up-regulation of IL-10 in 

macrophages (Uchiya et al., 2004). Macrophages are a main source of IL-10, 

which acts as a negative feedback mechanism to inhibit macrophage 

production of ROS and reactive nitrogen species (RNS) (Bogdan et al., 

1991). It has been suggested that stimulation of IL-10 production by 

Salmonellae provides a favourable environment for them to survive in, within 

macrophages (Uchiya et al., 2004).     
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The aim of this in vitro study was to determine key features of S. Virchow 

infection biology and to obtain an indication of how inflammatory the serovar 

is during infection. Initially, Vero cells were used to determine the 

invasiveness of S. Virchow in epithelial tissue. Following on from this, Caco2 

cells were used to model S. Virchow invasiveness and persistence in human 

intestinal epithelial tissue, as well as to show the inflammatory response in 

human tissue against S. Virchow. Finally, HD11 cells were used to determine 

S. Virchow’s invasiveness and persistence in macrophages, to indicate S. 

Virchow’s ability to cause systemic infection in chickens and to determine 

inflammatory responses produced by chickens against S. Virchow. 

 

 

3.2 Materials and Methods 

 

3.2.1 Mammalian and chicken Cell Culture 

Vero cells (Barrow and Lovell, 1989) were grown at 37°C in Eagles minimum 

essential medium (Sigma) containing 2mM L-glutamine, 100 units / 0.1mg/ml 

penicillin / streptomycin, 1x MEM non-essential amino acid solution, 0.075% 

sodium bicarbonate solution and 10% fetal calf serum (FCS). 

 

Caco2 (colorectal adenocarcinoma) cells were cultured at 37°C in Dulbecco’s 

modified Eagles medium (Sigma) containing 2mM L-glutamine, 50 units / 

0.05mg/ml penicillin / streptomycin and 10% FCS (Witthoft et al., 1998, Vo et 

al., 2007). 

 

HD11 chicken macrophage-like cells (Beug et al., 1979) were cultured at 

37°C and 5% CO2 in RPMI media (Lonza) supplemented with 2mM L-

glutamine, 100 units / 0.1mg/ml penicillin / streptomycin, 2.5% FCS, 2.5% 

chicken sera and 10% tryptose phosphate broth (Kaiser et al., 2000). 

 

3.2.2 Bacterial Cultures 

Twelve S. Virchow isolates (See Chapter 2, Table 2.1 for details), S. 

Typhimurium isolates F98, 238 and 244, LPS and a negative control were 
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included in the gentamicin protection assays. Bacterial cultures were grown 

overnight in 10ml LB broth at 37°C and 150 rpm in an orbital shaking 

incubator. Bacterial cultures were adjusted to 1x108cfu/ml and added to the 

cells at a multiplicity of infection (moi) of 10 (Kaiser et al., 2000). LPS from S. 

Typhimurium (Sigma, UK) was reconstituted to 200µg/ml and 100µl per well 

was added to triplicate cell wells.   

  

3.2.3 Gentamicin Protection Assay 

To determine S. Virchow invasiveness into epithelial tissues, gentamicin 

protection assays were performed, initially using Vero cells. Vero cells were 

passaged into 24-well plates, 24 hours prior to the start of the assay, in 

antibiotic-free media. Each isolate was added separately to cell wells in 

triplicate (100µl per well) and the cells were incubated for 1 hour at 37°C. 

After a 1 hour incubation with the Salmonella isolates the media on the cells 

was replaced with media containing 100µg/ml of gentamicin sulphate and the 

cells were incubated for 1 hour at 37°C, to kill any extracellular bacteria 

(Jones et al., 2001). Following incubation, the cells were washed twice with 

1× phosphate buffered saline (PBS) to remove any extracellular bacteria 

remaining and lysed with 1xPBS containing 0.5% Triton-X100. Serial 

dilutions of the supernatant were plated onto nutrient agar and incubated 

overnight to obtain viable bacterial counts. The assay was performed on 

three separate occasions and a mean bacterial count was taken for each 

isolate. 

 

A gentamicin protection assay was also performed using Caco2 and HD11 

cells to determine S. Virchow invasiveness in these cell lines. In addition, a 

parallel set of plates were set up during these assays. Instead of lysing the 

cells with 0.5% Triton-X100, they were incubated for a further 24HPI with 

20µg/ml of gentamicin, to determine the persistence of S. Virchow in them 

(Jones et al., 2001). At 24HPI, the cells were incubated for 1 hour at 37°C in 

media containing 100µg/ml of gentamicin. After the 1 hour incubation, the 

cells were washed, lysed and serially diluted as described above, to obtain 

viable bacterial counts. 
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3.2.4 IL-8 ELISA 

 Human IL-8 CytoSet ELISA kits (Invitrogen, UK) were used to determine IL-8 

production in the supernatant samples collected during the Caco2 invasion 

assays at 4, 8 and 24 HPI (Nandakumar et al., 2009, Vo et al., 2007). ELISAs 

were performed following the manufacturer’s instructions. Absorbance was 

determined using a microplate reader at 450nm and the concentration of IL-8 

in samples was determined using a standard curve, with a concentration 

range of 12.5pg/ml - 800pg/ml. 

 

3.2.5 NO assay 

To determine NO production by HD11 cells against S. Virchow invasion, a 

Griess reagent kit was used to measure nitrite, a stable metabolite of nitric 

oxide, in the cell supernatant (Barton and Medzhitov, 2003, Okamura et al., 

2005). Measurements were taken at 4, 8 and 24 HPI following the 

manufacturer’s instructions. Absorbance was determined using a microplate 

reader at 550nm and nitrite concentration was determined using a standard 

curve with a concentration range of 1-100µM. 

 

3.2.6 Statistical analysis 

Statistical analysis was performed using SPSS 16.0. Bacterial counts, 

concentration of IL-8 and concentration of nitrites were compared using one-

way ANOVA. Significance between the values was taken if the P value was 

<0.05. 

 

 

3.3 Results 

 

3.3.1 Vero cell gentamicin protection assay 

To determine the invasiveness of S. Virchow in epithelial cells, Vero cells 

were initially used. All 12 S. Virchow isolates showed similar levels of 

invasiveness, with the mean counts being log10 5.42-6.43 cfu/ml (Figure 3.1). 

The mean colony count for S. Typhimurium F98 was log10 4.04 cfu/ml, which 

was significantly lower than those for all 12 S. Virchow isolates (P = <0.001). 
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Figure 3.1: Mean log10 cfu/ml of S. Virchow and S. Typhimurium from Vero 

cells at 1 HPI. Error bars represent standard error of the mean. 

 

 

3.3.2 Caco2 cell gentamicin protection assay 

Viable counts of Salmonella were made 1 HPI to assess invasiveness and 24 

HPI to determine persistence in Caco2 cells. At 1 HPI, the colony counts for 

the 12 S. Virchow isolates ranged from log10 5.3 to log10 7.0 cfu/ml (Figure 

3.2). No significant difference was found between the highest and lowest 

colony count (P = >0.187). The 12 S. Virchow isolates had similar colony 

counts at 1 HPI compared to S. Typhimurium F98 and S. Typhimurium 244, 

with their counts being log10 6.90 and log10 6.70 cfu/ml, respectively. 

 

 At 24 HPI, S. Virchow colony counts ranged from log10 6.2 to log10 7.3 cfu/ml 

(Figure 3.2). S. Virchow colony counts mainly increased at 24 HPI compared 

to 1 HPI, with isolates 54, 55, 60, 61 and 62 significantly increasing in 

number (P = <0.001). S. Virchow colony counts were similar to S. 

Typhimurium F98 (log10 6.80 cfu/ml) and S. Typhimurium 244 (log10 7.90 

cfu/ml) at 24 HPI, although S. Virchow isolates 58 and 60 had significantly 

greater bacterial recovery than S. Typhimurium F98 (P = <0.038).  

2.00 

3.00 

4.00 

5.00 

6.00 

7.00 

51 
HU 

52 
HU 

53 
HU 

54 
HU 

55 
HU 

56 
HU 

57 
EN 

58 
CH 

59 
CH 

60 
CH 

61 
TU 

62 
CH 

ST 
F98 

LPS NEG 

M
e
a
n

 l
o

g
1
0
  
c
fu

/ 
m

l 

Isolate Number 



Chapter 3  In vitro studies 

65 
 

 

Figure 3.2: Mean log10 cfu/ml of S. Virchow and S. Typhimurium at 1 HPI and 

24 HPI in Caco2 cells. Error bars represent standard error of the mean.  

* = Isolate has significantly greater colony counts than S. Typhimurium F98, 

** = Isolate shows significantly greater bacterial recovery at 24 HPI compared 

to 1 HPI.  

 

 

3.3.3 IL-8 production by Caco2 cells 

The IL-8 concentration in Caco2 cell supernatant was measured at 4, 8 and 

24 HPI, for an indication of an acute inflammatory response produced by 

these cells in response to S. Virchow infection. IL-8 was detected in cell 

supernatant at 4 HPI against all 12 S. Virchow isolates (Figure 3.3). It was 

not detected in the supernatant of cells infected with S. Typhimurium F98 and 

S. Typhimurium 244 or against LPS antigen at this time point. IL-8 could be 

detected in increased concentrations at 8 HPI in the supernatant of cells 

infected with S. Virchow (Figure 3.3). At 8 HPI, a low concentration of IL-8 

could be detected against S. Typhimurium F98 and S. Typhimurium 244 

(Figure 3.3). Maximal concentrations of IL-8 could be detected at 24 HPI 

against the S. Virchow isolates (Figure 3.4). Increased concentrations of IL-8 

were detected against S. Typhimurium F98 and S. Typhimurium 244 (Figure 

3.4), although IL-8 concentrations were significantly greater against 9 S. 

Virchow isolates (P = <0.05) (Figure 3.4). IL-8 production could be detected 

against LPS antigen by 24 HPI (Figure 3.4). 
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Figure 3.3: IL-8 production by Caco2 cells at 4, 8 and 24 HPI. A = S. Virchow 

58, B = S. Virchow 59, C = S. Typhimurium F98, D = S. Typhimurium 244. 
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Figure 3.4: IL-8 production by Caco2 cells at 24 HPI in response to S. 

Virchow (51 HU-62 CH), S. Typhimurium F98, S. Typhimurium 244 and LPS. 

* = S. Virchow isolates that stimulated a significantly greater production of IL-

8 compared to S. Typhimurium isolates F98 and 244. 
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found between the isolates with the lowest (S. Virchow 60) and highest (S. 

Virchow 53) bacterial recovery (P = >0.001), showing variation in ability to 

persist until 24 HPI. A decrease in colony counts for the S. Typhimurium 

isolates at 24 HPI was observed. S. Typhimurium F98, S. Typhimurium 238 

and S. Typhimurium 244 had mean colony counts of log10 5.98 cfu/ml, log10 

5.55 cfu/ml and log10 5.41 cfu/ml, respectively. Colony counts of S. Virchow 

were similar to colony counts of S. Typhimurium at 24 HPI; however, S. 

Virchow isolates 52, 54 and 60 had significantly lower counts (P = <0.028). 

Overall, between 1 HPI and 24 HPI all of the S. Virchow and S. Typhimurium 

isolates had reduced colony counts, being significant in 5 S. Virchow isolates, 

S. Typhimurium 238 and S. Typhimurium 244 (P = <0.031) (Figure 3.5).     

 

 

 

Figure 3.5: Mean log10 cfu/ml of S. Virchow and S. Typhimurium isolates at 1 

HPI and 24 HPI in HD11 cells. Error bars represent standard error of the 

mean. * = Isolates with a significantly lower bacterial recovery at 24 HPI 

compared to 1 HPI. 
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3.3.5 Quantification of nitrites 

A Griess reagent kit was used to measure nitrites in the supernatant of HD11 

cells infected with S. Virchow at 4, 8 and 24 HPI. At 4 HPI, nitrites could be 

detected in the supernatant of cells infected with the S. Virchow isolates and 

S. Typhimurium isolates, as well as supernatant of cells incubated with LPS 

antigen (Figure 3.6). No significant difference was found between the 

concentrations of nitrites produced in response to S. Virchow compared to S. 

Typhimurium at this time point (P = >206).  

 

The concentrations of nitrites in the cell supernatants increased at 8 HPI 

compared to 4 HPI, in response to all of the S. Virchow isolates (Figure 3.6). 

The concentration at 8 HPI was significantly greater against S. Virchow 

isolates 52, 53, 54, 55, 56, 58, 59 and 60, compared to 4 HPI (P = <0.013). 

The concentration of nitrites produced in response to the S. Typhimurium 

isolates decreased slightly at 8 HPI compared to 4 HPI; however, this 

decrease was not significant (P = >0.336). A significantly higher 

concentration of nitrites was produced in response to S. Virchow isolates 52, 

53, 54, 55, 56, 58, 59 and 60 compared to S. Typhimurium F98 at 8 HPI (P = 

<0.006). At 24 HPI, the concentration of nitrites had increased in response to 

all of the S. Virchow and S. Typhimurium isolates, as well as against the LPS 

antigen (Figure 3.6 & 3.7). The concentration of nitrites at 24 HPI was 

significantly greater then at 8 HPI in response to all of the S. Virchow isolates 

and all of the S. Typhimurium isolates, as well as in response to the LPS (P = 

<0.05).     
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Figure 3.6: Concentration of nitrites in HD11 cell supernatant at 4, 8 and 24 

HPI. A = S. Virchow 57, B = S. Virchow 58, C = S. Typhimurium F98, D = 

LPS antigen.  
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Figure 3.7: The effects of different S Virchow and S Typhimurium isolates on 

the concentration of nitrites in HD11 cell supernatant at 24 HPI. Error bar 

represents the standard error of the mean. 
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motility and ability to secrete flagellin proteins or SPI-1 T3SS proteins, but not 

their ability to form biofilms (Shah et al., 2011). S. Enteritidis isolates which 

were less invasive into Caco2 cells had impaired motility and impaired 

secretion of flagella-associated proteins or SPI-1 T3SS proteins (Shah et al., 

2011). Although all of the S. Virchow isolates had a range of virulence genes 

encoded on SPI 1-5, it may have been useful to investigate motility and 

possibly biofilm formation of the isolates to account for differences in 

invasiveness into Caco2 cells.    

 

Even though the S. Virchow colony counts varied slightly they were all high 

compared to the invasiveness of S. Enteritidis isolates into Caco2 cells (Shah 

et al., 2011). In this study, isolates were grouped based on invasiveness. The 

isolates considered as having high invasiveness had an average colony 

count of log10 5.58 cfu/ml, with the highest count being log10 5.91 cfu/ml. The 

S. Virchow colony counts were comparable to, if not higher than these 

counts, suggesting that S. Virchow is more invasive than S. Enteritidis into 

human intestinal tissue. This is consistent with clinical evidence implying that 

it is an invasive serovar in humans and more invasive than S. Enteritidis and 

S. Typhimurium (Langridge, 2008). 

 

Over the 24 hour infection period, some S. Virchow isolates decreased in 

bacterial recovery; however, 8 out of the 12 isolates increased, with 5 

showing a statistically significant increase (P = <0.001). Although there are 

some differences in the colony counts of the S. Virchow isolates, those at 24 

HPI show S. Virchow can persist and replicate in Caco2 cells. Invasion and 

persistence in human intestinal epithelial tissue is essential for the serovar to 

invade cells of the mononuclear phagocyte system, such as macrophages 

and cause systemic infection (Eckmann and Kagnoff, 2001). 

 

IL-8 production by Caco2 cells in response to S. Virchow was determined at 

4, 8 and 24HPI, as an in vitro assessment of the inflammatory response 

produced by these cells against S. Virchow infection. IL-8 could be detected 

in Caco2 cell supernatant at 4HPI, which increased in concentration at 8 HPI 

and increased in concentration further at 24 HPI. In comparison, S. 
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Typhimurium F98 and S. Typhimurium 244 stimulated IL-8 production by 

Caco2 cells; however, the concentration of IL-8 produced was less than the 

concentration of IL-8 produced against S. Virchow. One hypothesis for the 

concentration of IL-8 produced in response to  a strain of Salmonella is that 

the amount of IL-8 produced is dependent on how invasive the strain is (Vo 

et al., 2007). Therefore, the higher the intracellular colony counts, the higher 

the predicted concentration of IL-8 (Vo et al., 2007). My results did not 

support this hypothesis, showing no correlation between colony count at 1 

HPI and IL-8 production. Furthermore, the S. Typhimurium isolates were 

similarly invasive into Caco2 cells compared to the S. Virchow isolates; 

however, elicited a weaker production of IL-8. 

 

A S. Typhimurium LPS control was included in the assay to determine if the 

main stimulus for IL-8 production was invasion into the cell by the Salmonella 

or extracellular stimulation by recognition of LPS. During the assays, no 

Salmonella colony counts were detected from the LPS wells. IL-8 production 

against LPS could not be detected until 24 HPI. At this time point, the 

concentration of IL-8 produced by the Caco2 cells against 10 of the 12 S. 

Virchow isolates was still significantly greater than the IL-8 produced against 

the LPS (P = <0.033). The results suggest that invasion of S. Virchow into 

Caco2 cells is the main stimulus for IL-8 production by the cells and this is 

supported by other studies. Eckmann et al (1993) showed invasive bacteria 

such as S. Dublin stimulated T84 cells (colonic epithelial) and HeLa (cervical 

epithelial) cells to produce IL-8, whereas non-invasive bacteria such as E. 

Coli DH5α stimulated hardly any IL-8 production (Eckmann et al., 1993). 

Additionally, the T84 cells responded differently depending on the invading 

bacteria. Some strains invaded the T84 cells equally as well, however T84 

cells only responded and produced IL-8 against some of them (Eckmann et 

al., 1993). These findings were comparable to the findings in this study, as S. 

Virchow and S. Typhimurium were similarly invasive into Caco2 cells; 

however, a greater IL-8 response was produced against S. Virchow. These 

results show certain cell types may respond differently to invasion depending 

on the invading strain of bacteria. Although these results suggest bacterial 



Chapter 3  In vitro studies 

74 
 

invasion is the main stimulus for IL-8 production, other mechanisms may 

initiate IL-8 release from cells.  

 

The results outlined in this study showed a low IL-8 production against LPS 

antigen; however, several previous studies have shown IL-8 production is 

stimulated by LPS interactions with host cell surface receptors. Interactions 

between LPS and TLR4 have been shown to activate host cells to produce of 

IL-8 and TNFα (Haraga et al., 2008). Other bacterial components have also 

been shown to interact with TLRs to stimulate production of IL-8, including 

bacterial flagellin and TLR5 (Chadfield and Olsen, 2001). A recent study 

using two human intestinal cell lines showed invasive and non-invasive 

bacteria can stimulate cells to produce IL-8, supporting studies that show 

interactions of bacterial surface components with host cell surface receptors, 

as well as invasion can activate cells to produce an immune response 

(Nandakumar et al., 2009). Additionally, non-invasive Vibrio cholerae 

stimulated high concentrations of IL-8 production by HT29 (enterocyte-like) 

cells; however, low concentrations of IL-8 production by T84 (crypt-like) cells, 

highlighting the differences in the immune response produced, depending on 

the cell type (Nandakumar et al., 2009).  

 

Following S. Typhimurium invasion into cells, the SPI-1 T3SS effector protein 

sopE2 stimulates IL-8 production, by activating proteins that are part of the 

TLR signalling pathways (Huang et al., 2004, Kucharzik et al., 2005). In 

addition, presence of flagellin in combination with the effects of sopE2 had an 

enhanced effect on IL-8 production (Huang et al., 2004). These results 

support both hypotheses that invasion of bacteria into cells, and bacterial 

interactions with surface TLRs, stimulates IL-8 production and also that both 

mechanisms could act synergistically to cause a greater IL-8 response 

(Huang et al., 2004).  

 

IL-8, irrespective of mechanism of production, is thought to be an initial signal 

for an acute inflammatory response and is a potent chemo-attractant of 

neutrophils in mammals (Tapping et al., 2000). Chicken IL-8 has been shown 

to have a similar function and is a strong chemo-attractant for 
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monocytes/macrophages and lymphocytes (Martins-Green, 2001). The rapid 

and high concentrations of IL-8 produced by Caco2 cells against S. Virchow 

in this study indicate S. Virchow is a highly inflammatory serovar in human 

intestinal epithelial tissue. The high inflammatory response produced by 

intestinal cells against S. Virchow is usually observed with broad range 

serovars that cause limited gastroenteritis. However, studies of clinical data 

have shown S. Virchow to be an invasive serovar in humans (Langridge, 

2008). Overall, S. Virchow appears to be a serovar that would usually cause 

limited inflammatory gastroenteritis in humans. However, S. Virchow has a 

tendency to overcome host defences and cause invasive disease and 

septicaemia, particularly in more vulnerable people, such as children with 

less developed immune systems, the immuno-compromised and the elderly 

who have weaker immune systems (Ispahani and Slack, 2000, Matheson et 

al., 2010, Gulcan et al., 2012, Weinberger et al., 2004, Schifferdecker et al., 

2009).   

 

The HD11 cell line is an avian myelocytomatosis virus (MC29) transformed 

chicken macrophage-like cell line and has been widely used for in vitro 

studies to represent chicken macrophages (Beug et al., 1979). The S. 

Virchow isolates all showed very similar levels of invasiveness into HD11 

cells, with colony counts ranging from log10 6.09 cfu/ml to log10 6.48 cfu/ml at 

1 HPI. In addition, the colony counts were very similar when comparing S. 

Virchow to S. Typhimurium at 1 HPI (P = >0.181). At 24 HPI, all of the S. 

Virchow isolates had decreased in colony count, with counts ranging from 

log10 4.57 cfu/ml to log10 5.99 cfu/ml, showing the ability of macrophages to 

limit infection. Although the colony counts had decreased at 24 HPI, 

compared to 1 HPI, they still remained high showing S. Virchow can persist 

in HD11 cells. However, the length of time they can persist in these cells may 

be limited. Some Salmonella serovars including S. Typhimurium have been 

shown to survive in HD11 cells for at least 48 hours; however, the counts 

were significantly lower at this time point than compared to earlier time points 

(Setta et al., 2012a). Intra-macrophage survival has been shown to be 

essential for systemic infection, as it allows the bacteria to disseminate to 

tissues such as the spleen, via the macrophages circulating in the blood and 
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lymphatic system (Wigley et al., 2005, Wigley et al., 2002b, Henderson et al., 

1999, Chappell et al., 2009). Therefore, the possible limited persistence of S. 

Virchow in HD11 cells is consistent with the poultry infection experiment 

(Chapter 4), showing S. Virchow causes transient systemic infection in 

poultry, being cleared from systemic sites by 26 DPI. 

 

Nitrite concentration in HD11 cell supernatant was measured at 4, 8 and 24 

HPI to determine macrophage responses to S. Virchow infection. The 

concentration of nitrites produced in response to S. Virchow was similar to 

that produced in response to S. Typhimurium and LPS at 4 HPI. However, at 

8 HPI and 24 HPI, the concentrations of nitrite detected against S. Virchow 

were much higher than nitrite detected against S. Typhimurium and LPS. The 

importance of the production of NO and ROS by activated macrophages for 

Salmonella killing has been well documented and previous studies have 

shown a large increase in NO production by HD11 chicken macrophage cells 

by 24 HPI against S. Typhimurium and S. Enteritidis (Babu et al., 2006, Setta 

et al., 2012a).   

 

Research has shown that oxidative burst activity is greater in chickens 

genetically resistant to systemic salmonellosis compared to chickens 

genetically susceptible to systemic salmonellosis, suggesting macrophage 

activity in chickens is important against Salmonella infection (Wigley et al., 

2002a). Therefore, the greater response of HD11 cells to S. Virchow 

compared to S. Typhimurium may suggest chicken macrophages are more 

resistant against S. Virchow infection. Although, this greater response did not 

reduce S. Virchow colony counts any more than S. Typhimurium colony 

counts by 24 HPI. Similar results have been shown using MQ-NCSU chicken 

macrophage cells. Infection with S. Typhimurium, S. Enteritidis and S. 

Gallinarum resulted in increased production of intracellular nitrite; however, 

the bacteria were not eliminated, suggesting other mechanisms as well as 

nitrite production are needed to eliminate Salmonella from macrophages 

(Withanage et al., 2005a).   
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In contrast, other research has shown treatment of HD11 cells with live S. 

Enteritidis culture completely abolishes NO production (He et al., 2011). It 

has been suggested that the ability of S. Enteritidis to abolish NO production 

may be a mechanism to ensure intra-macrophage survival (He et al., 2011). 

Increasing concentrations of NO against S. Virchow and S. Typhimurium in 

this study suggest these serovars do not use the same mechanism as S. 

Enteritidis to down-regulate NO. Even though an increasing amount of nitrites 

were produced against S. Virchow and S. Typhimurium, the colony counts for 

the isolates only decrease slightly over a 24 hour infection period, suggesting 

they are initially resistant to killing by phagocytosis. The greater survival of S. 

Virchow and S. Typhimurium in macrophages and the larger production of 

nitrites may suggest these two serovars are more inflammatory in chickens 

then S. Enteritidis. Other research comparing differential macrophage 

responses to S. Typhimurium and S. Enteritidis has also showed S. 

Typhimurium results in an increased inflammatory response (Okamura et al., 

2005).   

 

The size and the type of responses seen by macrophage cells reported in 

previous studies have varied according to the infecting Salmonella serovar 

and the responding cell type. Colony counts of S. Enteritidis after 1 HPI have 

been shown to be lower in J774A.1 mouse macrophage cells than HD11 

cells, indicating J774.1 cells have a more dynamic bactericidal activity and 

HD11 cells are less effective (Babu et al., 2006). Using J774A.1 cells and 

HD11 cells it has also been shown no differences in oxidative burst occur 

against host-restricted and broad range Salmonella serovars, suggesting 

host-adaption is not linked to the serovars ability to avoid oxidative bursts 

(Chadfield and Olsen, 2001).  

 

Cell lines are used regularly to determine mechanisms of pathogenesis and 

immune responses produced against a pathogen. Although useful 

information can be obtained from in vitro cell assays differences between 

results from different cell lines and between in vitro and in vivo results are 

often found and highlight the limitations of in vitro studies. Several studies 

have found that IFN-γ primes macrophages and therefore enhances the 
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production of ROS and NO against Salmonella (Okamura et al., 2005, He et 

al., 2011). In contrast, NO production is similar against Salmonella infection 

whether the macrophages are primed with IFN-γ or not (Babu et al., 2006). 

Differences in oxidative burst have also been described between primary 

macrophages and immortalised cell line macrophages (Chadfield and Olsen, 

2001). Differences between in vitro findings show the limitations of cell lines 

and the need for in vivo models of infection. 

 

This study has shown that S. Virchow is an invasive and persistent serovar in 

human intestinal epithelial cells, which is consistent with clinical data showing 

it has a tendency to cause systemic disease. High concentrations of IL-8 

detected in the Caco2 cell supernatant following co-culture with S. Virchow 

indicate that it is a highly inflammatory serovar in human intestinal tissue. 

Although S. Virchow had similar colony counts compared to S. Typhimurium 

at 1 HPI and 24 HPI, concentrations of IL-8 produced in response to S. 

Virchow were significantly higher than against S. Typhimurium. The reason 

for this difference is unclear, although S. Typhimurium F98 lacks sopE, a 

homologue of sopE2 shown to up regulate IL-8 production, which could be a 

contributing factor. 

 

S. Virchow can invade and persist in HD11 chicken macrophage-like cells 

over a 24 hour period. NO could be detected in the cell supernatant as early 

as 4 HPI against S. Virchow and increased at 8 HPI and 24 HPI. The high 

concentrations of NO produced in response to S. Virchow indicate phagocytic 

activity by the macrophage cells and the highest concentrations detected at 

24 HPI coincide with a decrease in bacterial colony counts. Although colony 

counts were lower at 24 HPI, this decrease was not significant and S. 

Virchow colony counts still remained high, suggesting S. Virchow is resistant 

to macrophage killing. S. Virchow colony counts were very similar to S. 

Typhimurium, indicating S. Virchow behaves in a similar way in chicken 

macrophages. This similar infection biology has been supported and 

confirmed in the in vivo poultry infection experiments described in Chapter 4.  
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4.1 Introduction 

Research conducting in vivo infection of chickens with Salmonella is often 

performed to establish the invasion, colonisation and persistence 

mechanisms of these bacteria. While in vitro assays are available for this, 

they have limitations and often do not provide a true representation of 

mechanisms in vivo. The main focus of research has been on broad-range 

serovars S. Typhimurium and S. Enteritidis and host-restricted serovars S. 

Pullorum and S. Gallinarum, as these serovars have caused the greatest 

burden to human health, poultry health and the economy (Santos et al., 2011, 

Shivaprasad, 2000, DuPont, 2007). 

 

S. Typhimurium and S. Enteritidis are the 2 most common serovars causing 

human salmonellosis worldwide, although prevalence of serovars does vary 

from country to country (DEFRA, 2008c, DEFRA, 2010, EFSA, 2012). The 

consumption of contaminated poultry meat and eggs is the main vehicle of 

transmission of Salmonella infection in humans (Mead, 2004, Currie et al., 

2005, Braden, 2006, Chittick et al., 2006, Little et al., 2007, Lublin and Sela, 

2008, FSA, 2009). Chickens over 5 days old usually have no clinical 

symptoms of Salmonella infection, therefore enabling undetected spread of 

the disease in breeder farms and hatcheries, as well as horizontal transfer 

from contaminated faeces, during transport to the slaughterhouse or during 

slaughter (Kim et al., 2007, Marin and Lainez, 2009, Davies and Breslin, 

2001, Corry et al., 2002). A better understanding of how Salmonella serovars 

commonly found in the human food chain infect and colonise chickens is 

essential for developing preventative methods against infection and 

subsequently reducing the pathogen’s entry into the food chain (Dunkley et 

al., 2009).  

 

In chickens older than 3-4 days, S. Typhimurium infection usually causes 

limited gastroenteritis (Morgan et al., 2004, Barrow et al., 1987). As part of 

this process, S. Typhimurium will colonise the intestinal lumen and target 

epithelial cells for invasion, using the SPI-1 T3SS, which injects effector 

proteins into the target cell in a contact-dependant manner to induce 
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membrane ruffling and cytoskeleton rearrangement, aiding entry into the cell 

(Ehrbar and Hardt, 2005, Hardt et al., 1998b). Colonisation of the intestinal 

tract and invasion into the epithelial cells by S. Typhimurium causes an acute 

inflammatory response in chickens, leading to an influx of heterophils and 

secretion of cytokines and chemokines (Meade et al., 2009, Withanage et al., 

2004, Withanage et al., 2005a).  

 

S. Enteritidis is highly associated with human salmonellosis via the 

consumption of contaminated eggs (Braden, 2006, Dunkley et al., 2009, Little 

et al., 2007). Vertical transmission of S. Enteritidis via the trans-ovarian route 

has been suggested for the mechanism of egg contamination (Okamura et 

al., 2001). Following intravenous infection of mature laying hens, S. 

Enteritidis colonised the reproductive tissue to significantly higher levels than 

the other Salmonella serovars, indicating that it has a higher affinity or 

tropism for reproductive tissues (Okamura et al., 2001). Furthermore, out of 

the six different serovars ,S. Enteritidis was the most frequent serovar 

detected in laid eggs (Okamura et al., 2001). A similar study that 

intravenously inoculated mature laying hens with a range of serovars 

including S. Enteritidis found it colonised the reproductive tract to significantly 

higher levels than the other serovars, except S. Typhimurium (Gantois et al., 

2008). S. Typhimurium, S. Virchow, S. Hadar and S. Heidelberg all showed 

the ability to grow in egg albumen and penetrate the yolk sac at 25°C; 

therefore, the ability of S. Enteritidis to contaminate eggs was attributed to its 

preference for reproductive tissues and its enhanced ability to survive at 

42°C, rather than its ability to grow in eggs (Gantois et al., 2008).   

 

Previous studies have found that S. Enteritidis colonises the yolk more 

frequently than the albumen (Gast and Holt, 2000). However, other data from 

contaminated eggs from naturally infected hens has shown that there is a 

delay before yolk invasion and rapid growth of Salmonella because the 

vitelline membrane in fresh eggs inhibits yolk invasion by Salmonella 

(Humphrey and Whitehead, 1993). More recently, it has been shown S. 

Enteritidis can grow to significantly greater levels then the inoculum used in 

egg albumen, once it reaches a threshold of 250 cells per 25ml (Cogan et al., 
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2001). Two possible reasons were suggested for this observation. At the 

threshold the combined enterochelin activity is able to out-compete 

ovotransferrin for iron (Cogan et al., 2001). Alternatively, the death of some 

cells in the albumen allows others to utilise them as a source of iron, or an 

energy source (Cogan et al., 2001). S. Heidelberg has also been shown to be 

frequently associated with human salmonellosis through consumption of 

contaminated eggs (Chittick et al., 2006).     

 

In contrast to broad-range serovars, host-restricted serovars, S. Pullorum 

and S. Gallinarum, do not colonise the intestinal tract to high levels 

(Henderson et al., 1999). Host-restricted serovars have been shown to target 

gut-associated lymphocytic tissue (GALT), such as the bursa of Fabricius, 

rather than intestinal epithelial cells for invasion (Henderson et al., 1999, 

Shivaprasad, 2000).  This leads to an acute systemic infection, which can 

become persistent with S. Pullorum surviving in low numbers in splenic 

macrophages for months (Wigley et al., 2001). During invasion of S. Pullorum 

into GALT, the inflammatory response that occurs with broad-range serovars 

is not seen (Chappell et al., 2009). Differences in the disease caused by 

broad-range and host-restricted Salmonella serovars have been suggested 

to be due to these differences in early-stage pathogenesis (Kaiser et al., 

2000).   

 

S. Pullorum and S. Gallinarum are avian-specific serovars and cause rapid 

severe systemic infection in poultry, leading to pullorum disease and fowl 

typhoid respectively (Shivaprasad, 2000). In countries where these serovars 

are not under control, substantial economic losses in the poultry industry can 

occur. Therefore, understanding the mechanisms S. Gallinarum and S. 

Pullorum use to invade poultry, which result in high morbidity and mortality 

may help prevent and control infection by these serovars and reduce 

economic losses, as well as improve poultry health. 

 

Additionally to S. Enteritidis, S. Pullorum has been shown to infect eggs via 

vertical transmission and can cause persist infection, surviving in low 

numbers in splenic macrophages for months following experimental infection 



Chapter 4  Poultry Infection 

83 
 

of chickens (Wigley et al., 2001). When chickens reach sexual maturity and 

start egg laying, the number of S. Pullorum in the spleen increases 

dramatically and colonises the reproductive tract, leading to the 

contamination of eggs (Wigley et al., 2001). At point-of-lay the hen’s immune 

system is temporarily suppressed and this is thought to play a role in the re-

emergence and spread of bacteria at this time point (Wigley et al., 2001, 

Wigley et al., 2005). 

 

S. Virchow is the third most common serovar resulting in human 

salmonellosis in the UK and is common in other countries (Matheson et al., 

2010, Weinberger and Keller, 2005, Bonalli et al., 2011). Between 2009 and 

2010, S. Virchow was the 9th most common serovar isolated from broiler 

meat in the EU, accounting for 1.3% of isolates (EFSA, 2012). Although S. 

Virchow is commonly isolated from chickens, its invasion mechanisms and 

pathogenic behaviour are poorly understood compared to S. Typhimurium 

and S. Enteritidis (Bertrand et al., 2006, Fashae et al., 2010, Marin and 

Lainez, 2009). One study has shown, during intravenous infection of poultry 

with S. Virchow and several other serovars, that S. Virchow colonises 

systemic sites such as the spleen to similar levels as S. Enteritidis and S. 

Typhimurium (Gantois et al., 2008). However, this study is somewhat limited 

given that faecal-oral infection is by far the main route of infection. 

Additionally, previous studies have investigated the ability of S. Virchow to 

survive in eggs, although it is uncommon in eggs. Findings have shown S. 

Virchow can survive in yolk, however it has a very limited ability to survive on 

egg shells and in albumen (Lublin and Sela, 2008, Gantois et al., 2008). This 

suggests the main vehicle of transmission of S. Virchow to humans is via 

poultry meat rather than eggs.  

 

The aims of this study were to conduct in vivo poultry infection experiments, 

initially to determine if S. Virchow colonises the caeca and extra-intestinal 

sites, such as the spleen and to what levels it does so. Following on from 

this, the aims were to infect poultry for a longer period of time to observe the 

pattern of colonisation and to determine the effects S. Virchow has on the 

caeca and spleen by histological analysis.       
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4.2 Materials and Methods 

 

4.2.1 Bacterial isolates and chickens 

Experiment 1: Thirty two 1-day old specific pathogen free (SPF) Rhode 

Island Red chicks were obtained from the Institute of Animal Health, 

Compton, UK. They were housed separately in 6 groups of 5 or 6 chickens at 

a temperature of 30°C, which was reduced to 20°C at 3 weeks of age. The 

chickens were given ad-libitum access to a vegetable protein-based diet 

(SDS, Witham, Essex) and water. All experiments were conducted within 

local ethical guidelines and according to national legislation. 

 

S. Virchow 55, 56, 59, 60 and S. Typhimurium F98 and 238 were included in 

this experiment (See Chapter 2, Table 2.1 for details). The isolates were 

grown in LB broth for 18 hours in an orbital shaking incubator at 37°C and 

150rpm to late log phase. 

 

Experiment 2: Forty five 1-day old SPF Rhode Island Red chicks were 

obtained from the Institute of Animal Health, Compton, UK. They were 

housed separately in 3 groups of 15 chickens at a temperature of 30°C, 

which was reduced to 20°C at 3 weeks of age. The chickens were given ad-

libitum access to food and water, as described above. All experiments were 

conducted within local ethical guidelines and according to national legislation. 

 

S. Virchow 60 and S. Typhimurium F98 were included in this experiment 

(See Chapter 2, Table 2.1 for details) and were grown overnight as described 

above. 

 

4.2.2 Experiment 1 – Pilot poultry infection experiment 

At 26 days of age, the chickens were infected orally with 108 cfu/ml of 

Salmonella culture in a 0.3 ml volume of LB broth. Each group was infected 

with a different serovar (S. Virchow 55, 56, 59, 60 and S. Typhimurium F98 

and 238) and the groups were kept in separate rooms. The chickens were 
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checked twice a day for any signs of being unwell. At 3 DPI, the chickens 

were killed by cervical dislocation for bacteriological analysis. 

 

4.2.3 Experiment 2 – Poultry infection experiment 

At 7 days old, the chickens were infected orally with 108 cfu/ml of Salmonella 

culture in a 0.3 ml volume of LB broth. Group 1 was infected with S. Virchow 

60, group 2 was infected with S. Typhimurium F98 and group 3 was left 

uninfected as a control. The chickens were checked twice a day for any signs 

of being unwell. At 5, 11 and 26 DPI 5 birds from each group were killed be 

cervical dislocation for bacteriological and histological analysis.  

 

4.2.4 Post mortem and bacteriology 

During both experiments, the caecal contents and spleen were taken 

aseptically at each post mortem. Spleen and caecal contents were added to 

1 x PBS in a 1:10 dilution. Spleen samples were homogenised using a 

MicroStomacher 80 (Seward, UK) and the caecal contents were vortexed to 

form a suspension. Spleen and caecal content samples were serially diluted 

in 1 x PBS to 10-5 and 10-11 respectively and plated onto Brilliant Green agar 

(BGA) (Oxoid, UK). The plates were incubated at 37oC for 18 hours and then 

the bacteria were enumerated. 

  

During post mortem analysis for experiment 2, additional samples were 

collected and stored for histology and for the immunological experiments 

outlined in Chapter 5. Ileum and spleen samples were collected and stored in 

4% paraformaldehyde at room temperature for histology. Ileum, spleen and 

caecal tonsil samples were embedded onto cork in O.C.T. compound (tissue-

tek), snap frozen in liquid nitrogen and stored at -80°C for 

immunohistochemical analysis. Ileum, spleen and caecal tonsil samples were 

also stored in RNAlater (Sigma-Aldrich, UK) at -20°C for RT-PCR. Serum 

samples were collected from the heart using 21 mm needles. The serum was 

centrifuged at 13000 x g for 5 minutes. The supernatant was removed and 

stored at -20°C for ELISA and western blot.  
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4.2.5 Histological analysis 

Ileum and spleen tissue samples from experiment 2 were stored in 4% 

paraformaldehyde for histological analysis. Tissue samples were placed in 

plastic cassettes and put on a tissue processor overnight, to dehydrate the 

tissue and embed it in paraffin wax. A microtome was used to cut 4 µm 

sections of the tissue samples, which were collected onto slides. 

 

The sections were stained using haematoxylin and eosin. Samples were 

dewaxed in xylene for 5 minutes and then transferred to containers of 

descending grades of alcohol (100%, 96%, 86% and 70%) to distilled water. 

Sections were stained for 5 minutes using Mayer’s Haemalum and then 

placed under running water for 6 minutes. Following this, sections were 

stained with Eosin for 2 minutes. Sections were dehydrated in 3 containers of 

95% alcohol for 1 minute per container (repeated 3 times), 3 containers of 

absolute ethanol and 3 containers of xylene and then mounted in D.P.X.  

 

 

4.3 Results 

 

4.3.1 Experiment 1 – Pilot poultry infection experiment 

Colony counts of Salmonella were taken at 3 DPI. All of the S. Virchow 

isolates colonised the gut to high levels, with caecal content counts ranging 

between log10 5.5-7.4 cfu/g (Figure 4.1). No significant differences were 

found between caecal content colony counts for the S. Virchow infected 

groups (P = >0.233). The S. Virchow isolates had similar caecal content 

colony counts to S. Typhimurium F98 and S. Typhimurium 238, which had a 

counts of log10 6.40 cfu/g and log10 6.00 cfu/g respectively. No significant 

differences were found between the S. Virchow colony counts and the S. 

Typhimurium colony counts (P = >0.107). 

 

S. Virchow isolates 55, 59 and 60 showed the ability to systemically colonise 

the chickens by 3 DPI, with spleen counts ranging between log10 1.5-2.1 cfu/g 

(Figure 4.1). The 3 S. Virchow isolates showed similar levels of colonisation 
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in the spleen compared to S. Typhimurium F98 and S. Typhimurium 238. The 

spleen colony counts for S. Typhimurium F98 and S. Typhimurium 238 were 

log10 2.00 cfu/g and log10 1.80 cfu/g respectively. No significant differences 

were found between colony counts of the S. Virchow infected groups and the 

S. Typhimurium infected groups in the spleen (P = >0.148).  

 

 

 

Figure 4.1: Experiment 1: Log10 colony counts for the caecal contents and 

spleen at 3 DPI. S. Virchow = 55 HU, 56 HU, 59 CH and 60 CH; ST F98 = S. 

Typhimurium F98; ST 238 = S. Typhimurium 238. Error bars represent the 

standard error of the mean, which was calculated from 5 birds per time point. 

 

 

4.3.2 Experiment 2 – Poultry infection experiment 

Colony counts of Salmonella were taken at 5, 11 and 26 DPI from the caecal 

contents and spleen. S. Virchow 60 was present in the caecal contents by 5 
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11 DPI and declined to log10 7.0 cfu/g by 26 DPI (Figure 4.2). S. Virchow 60 

showed a similar pattern of infection to S. Typhimurium F98, which was at a 

concentration of log10 9.0 cfu/g at 5 DPI, log10 12.0 cfu/g at 11 DPI and log10 
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significant differences to counts of S. Typhimurium F98 at each time point (P 

= >0.068).  

S. Virchow 60 was isolated from the spleen at a concentration of log10 3.0 

cfu/g at 5 DPI and at 11 DPI; however, it was cleared from the spleen by 26 

DPI (Figure 4.3). S. Typhimurium F98 increased from log10 2.0 cfu/g at 5 DPI 

to log10 4.0 cfu/g at 11 DPI; however it was also cleared from the spleen by 

26 DPI and was not significantly higher in the spleen than S. Virchow at any 

time point (P = >0.136).   

 

 

 

 

 

Figure 4.2: Experiment 2: Log10 caecal content counts at 5, 11 and 26 DPI. 

Error bars represent the standard error of the mean, which was calculated 

from 5 birds per time point. 

 

 

1.00 

3.00 

5.00 

7.00 

9.00 

11.00 

13.00 

5 11 26 

M
e
a
n

 l
o

g
1
0
 n

u
m

b
e
r 

o
f 

c
fu

/g
  

 

Number of days post infection 

S. Virchow 60 

S. Typhimurium F98 



Chapter 4  Poultry Infection 

89 
 

 

Figure 4.3: Experiment 2: Log10 spleen counts at 5, 11 and 26 DPI. Error bars 

represent the standard error of the mean, which was calculated from 5 birds 

per time point. 

 

 

4.3.3 Histology 

Tissue sections of the ileum and spleen were cut and stained with 

haematoxylin and eosin to determine structural and cellular changes to the 

tissue in response to S. Virchow infection. At 5 DPI, mild oedema of the ileum 

lamina propria could be observed in chickens infected with S. Virchow. The 

results were similar for the S. Typhimurium F98 infected group where, in 

addition, lymphocytic infiltration, mild lymphocytic exocytosis and mild villi 

fusion could also be observed. At 11 DPI, mild lymphocytic infiltration of the 

ileum lamina propria of S. Virchow infected chickens could be observed, 

which could still be observed in S. Typhimurium F98 infected chickens. In 
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and mild hyperaemia in the S. Virchow infected chickens (Figure 4.4). Mild 

lymphocytic infiltration was observed in the S. Typhimurium infected group. At 
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number of lymphocytes and macrophages could be seen in the spleen of S. 
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Virchow and S. Typhimurium F98 infected chickens, indicating an immune 

response had occurred.  

 

 

 

  

  

Figure 4.4: Photomicrographs of H&E stained sections of the ileum showing 

some of the effects of Salmonella infection. A = S. Virchow infected chicken, 

ileum shows villi fusion (10X magnification). B = Uninfected chicken, ileum of 

healthy chicken (10X magnification). C = S. Virchow infected chicken, 

showing early lymphocyte infiltration (20X magnification). D = Uninfected 

chicken, showing no lymphocyte infiltration (20X magnification). 
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4.4 Discussion 

This study has shown that S. Virchow has similar infection biology to that of 

S. Typhimurium in chickens. Salmonella serovars can be split into 2 broad 

groups based on their host range and infection biology. S. Typhimurium and 

S. Enteritidis infect a broad range of hosts and typically cause limited 

gastroenteritis by colonising the caeca (Morgan et al., 2004, Barrow et al., 

1987). However, serovars S. Gallinarum and S. Pullorum, which are host-

restricted to poultry, cause rapid severe systemic infection that may result in 

high mortality rates (Shivaprasad, 2000). The data presented here indicates 

that S. Virchow falls within the former, milder phenotype of these groups. 

 

During experiments 1 and 2, S. Virchow was found in the caecal contents at 

a range of log10 5.5-7.4 cfu/g at 3 DPI and at log10 8.0 cfu/g at 5 DPI 

respectively. These counts were similar to those of S. Typhimurium F98 in 

this study and to those seen with F98 in other studies at similar time points 

post infection (Withanage et al., 2004, Beal et al., 2004). The highest counts 

for S. Virchow and S. Typhimurium F98 in the caecal contents were at 11 

DPI, as by 26 DPI the counts had begun to decline. The high bacterial caecal 

content counts from this study show that S. Virchow can colonise the chicken 

intestine to high levels and is similar in this regard to S. Typhimurium F98, 

unlike host-specific serovars such as S. Gallinarum and S. Pullorum, which 

are less concentrated in the intestine and instead target GALT (Jones et al., 

2001, Wigley et al., 2001).     

 

S. Virchow showed the ability to colonise the spleen as early as 3 DPI during 

experiment 1 and 5 DPI during experiment 2, although the bacterial counts 

from the spleen were considerably lower than those from the caecal 

contents. The isolates were cleared from the spleen by 26 DPI, whereas they 

were still found at high levels in the caecal contents at this time point. Slightly 

higher numbers of S. Virchow have been found in the spleen during a 

previous study; however, this can be attributed to the use of an intravenous 

inoculation route, rather than an oral route (Gantois et al., 2008). During this 

experiment, Gantois et al (2008) found that S. Virchow had similar colony 
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counts in the spleen compared with S. Typhimurium (Gantois et al., 2008). 

These findings are consistent with the findings during this study and both 

indicate S. Virchow is characteristic of a broad-range serovar. In contrast to 

the low level of systemic colonisation seen with broad-range serovars S. 

Typhimurium, S. Enteritidis and S. Virchow, host-restricted serovars S. 

Gallinarum and S. Pullorum can cause high and rapid systemic colonisation 

that may lead to septicaemia (Shivaprasad, 2000).     

 

During the period the chickens were infected they showed no clinical signs of 

disease and there was no mortality or morbidity due to S. Virchow and S. 

Typhimurium F98 infection. Clinical signs exhibited by chickens during 

infection with Salmonella during other studies have included anorexia, 

distress with ruffled feathers, lethargy, disinclination to drink and eat, 

diarrhoea, vent staining and emaciation (Barrow et al., 1987, Withanage et 

al., 2004, Desmidt et al., 1997, Okamura et al., 2001). Clinical symptoms of 

Salmonella infection and high mortality rates, other than with S. Gallinarum or 

S. Pullorum infection, are usually observed when the chicks are less than a 

week old (Desmidt et al., 1997). In older chickens, clinical symptoms are 

usually absent and Salmonella is shed in the caecal contents 

asymptomatically. This can result in horizontal transmission to other 

chickens, contamination of poultry meat at slaughter and subsequently entry 

into the food chain, resulting in human salmonellosis (Corry et al., 2002, 

Davies and Breslin, 2001, Kim et al., 2007, Marin and Lainez, 2009). 

       

During experiment 2, pathological findings included blood in the caecal 

contents and inflammation of the ileum in the S. Virchow infected group and 

mild hepatosplenomegaly and inflammation of the ileum in the S. 

Typhimurium F98 infected group, by 11 DPI. These findings and others have 

been described in previous studies during S. Typhimurium and S. Enteritidis 

infection of chickens (Desmidt et al., 1997, Henderson et al., 1999). 

 

Histological analysis of the ileum showed mild oedema of the lamina propria, 

mild lymphocytic infiltration, moderate villus fusion and mild multifocal 

hyperaemia throughout the experiment, in chickens infected with S. Virchow. 
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Similar results were seen with the S. Typhimurium infected group, indicating 

the chickens are similarly susceptible to S. Virchow infection as to S. 

Typhimurium infection. These findings have been described in other studies 

during Salmonella infection of chickens (Desmidt et al., 1997, Desmidt et al., 

1998).  

 

Although the results indicate that S. Virchow displays the pathogenesis of 

broad-range serovars rather than host-restricted ones, which would cause 

rapid severe systemic disease and high morbidity and mortality rates, S. 

Virchow is rarely isolated from species other than man and chickens (Fashae 

et al., 2010, Bonalli et al., 2011). In comparison, broad-range serovars such 

as S. Typhimurium may be isolated from many species including humans, 

chickens, pigs, sheep, cattle and domestic animals (DEFRA, 2008c, Fashae 

et al., 2010, DEFRA, 2010). Additionally, previous studies have shown S. 

Virchow to be an invasive serovar in humans, particularly in children, the 

immuno-compromised and the elderly (Weinberger et al., 2004, 

Schifferdecker et al., 2009, Matheson et al., 2010, Ispahani and Slack, 2000). 

Therefore, although S. Virchow demonstrated a similar biology of infection in 

poultry to S. Typhimurium in this study and has many of the features 

associated with broad-range serovars, in reality S. Virchow may have a 

narrower host range. 

 

This study has shown that S. Virchow exhibits similar infection biology to S. 

Typhimurium in the chicken. S. Virchow can be isolated at high levels from 

the caecal contents and can be isolated from systemic sites, although it is 

cleared fairly quickly from the spleen. During this study S. Virchow did not 

make the chicks clinically ill, although evidence of structural changes and 

inflammation in the ileum were found during post mortem and histological 

analysis. The results from this study show that S. Virchow behaves differently 

in chickens than in humans. Previous research has shown S. Virchow can 

often cause invasive disease in humans, whereas the results from this study 

show it causes a more mild infection in chickens (Eckerle et al., 2010, 

Schifferdecker et al., 2009).  
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The main route for Salmonella infection in chickens is the faecal-oral route; 

therefore, oral inoculation during these experiments was the most relevant 

method, as it indicates what is most likely to happen during uncontrolled 

infection on farms. The results indicate S. Virchow can be shed for a long 

period in the faeces, with the chicken showing no clinical symptoms; 

therefore, increasing the likelihood of it entering the food chain and causing 

human salmonellosis and in some cases invasive disease, leading to 

septicaemia. This is of particular concern as previous studies have shown an 

increasing resistance of S. Virchow to antimicrobial drugs that are used 

regularly to treat invasive disease, making entry of S. Virchow into the food 

chain a greater risk to human health than other less invasive serovars 

(Meakins et al., 2008, Weinberger and Keller, 2005, Weinberger et al., 2006).    
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5.1 Introduction 

Poultry meat and eggs are the main source of human salmonellosis 

worldwide (DEFRA, 2008c, Mead, 2004, Currie et al., 2005, DEFRA, 2010, 

Braden, 2006). Therefore, methods to control Salmonella infection in food 

production animals are of great importance to prevent entry into the food 

chain. Developing vaccines to increase resistance of poultry to Salmonella 

infection through stimulation of the immune response is a useful tool for 

controlling infection. Understanding the immune response of poultry against 

Salmonella infection is essential for the development of new vaccines and to 

improve the efficacy of current vaccines against infection (Berndt and 

Methner, 2004). 

 

A large amount of research has been done to characterise the immune 

responses produced by poultry against Salmonella infection. The immune 

response produced in the chicken intestinal tract is of great interest, as this is 

where Salmonella initially invades and colonises its host. Subsequently, 

Salmonella is shed in the faeces, usually asymptomatically and spreads by 

horizontal transfer to other chickens. The chicken intestinal tract is a tubular 

structure enclosed by a single layer of polarized epithelial cells, which are 

attached to a basement membrane (Smith, 2008). The epithelial cells form 

protruding villus structures, which are interspersed by indentations called 

crypts (Smith, 2008). The intestinal gut is composed of the small intestine 

(duodenum, jejunum and ileum) and the large intestine (caecum and a short 

colon). Research has examined the immune responses to Salmonella 

throughout the intestinal gut. 

 

The immune responses produced by chickens against Salmonella infection 

depend on the infecting serovar, the age of the host and host genetics (Setta 

et al., 2012b, Beal et al., 2005, Schokker et al., 2012, Berthelot-Herault et al., 

2003). Infection and colonisation of the avian gut by broad-range Salmonella 

serovars causes an acute inflammatory response including secretion of 

several cytokines/chemokines, followed by an influx of heterophils (Chappell 

et al., 2009, Henderson et al., 1999, Kaiser et al., 2000, Meade et al., 2009). 
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Several in vitro and in vivo studies have documented changes in pro-

inflammatory cytokines in the gut, in response to Salmonella infection. S. 

Typhimurium infection of 4 day old broiler chickens stimulates an up-

regulation of IL-1β, IL-6 and IFN-γ mRNA and a down-regulation of IL-10 

mRNA in the small intestine (Fasina et al., 2008). Similar findings in the small 

intestine have been found by infecting newly hatched and 1 week old SPF 

Rhode-Island Red chicks with S. Typhimurium (Withanage et al., 2005b, 

Withanage et al., 2004). However, differences in cytokine and chemokine 

production have been found depending on the invading serovar. During 

infection of 1 day old chicks S. Enteritidis and S. Typhimurium are more 

invasive and virulent than S. Hadar and S. Infantis (Berndt et al., 2007). 

During this study, S. Enteritidis and S. Typhimurium were shown to be 

stronger inducers of the chicken immune response during infection. 

Expression of IFN-γ, IL-2, IL-12, IL-18, LITAF, IL-8 and MIP-1β mRNA in the 

caecum were up-regulated in all of the infected groups, however this was 

generally most pronounced in the S. Enteritidis infected group (Berndt et al., 

2007). This is in agreement with other studies that have found S. Enteritidis 

to be a strong inducer of the inflammatory response in the caecal tonsil 

(Setta et al., 2012b). Differences in cytokine and chemokine mRNA 

expression in chickens depending on the infecting serovar have also been 

shown using primary CKC cells (Kaiser et al., 2000). Infection with broad-

range serovars S. Typhimurium and S. Enteritidis stimulate a significant 

increase in IL-6 by the CKC cells, in contrast to host-restricted S. Gallinarum, 

which has little effect (Kaiser et al., 2000). The failure of S. Gallinarum to 

induce an inflammatory response is thought to be due to its host specific 

nature and prevents it from being limited to the gut (Kaiser et al., 2000).  

 

Heterophils have been shown to express an array of cytokines and 

chemokines in the gut following Salmonella infection, showing they have a 

role in immuno-regulation (Kogut et al., 2003). Following phagocytosis of S. 

Enteritidis, mRNA expression of IL-6 and IL-8 increases in heterophils (Kogut 

et al., 2003). The production of IL-8 by heterophils indicates that they can 

promote their own recruitment to sites of inflammation (Kogut et al., 2003). 

LPS on its own can also stimulate heterophils to produce cytokines and 
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chemokines in a TLR-4-dependant manner (Kogut et al., 2005). Up-

regulation of IL-1β, IL-6, IL-18, CXCLi1, CXCLi2, CCLi4 and the CXC 

receptor occurs following LPS stimulation of heterophils (Kogut et al., 2005).   

 

Following an acute inflammatory response there is a strong influx of 

macrophages and T lymphocytes into the gut (Van Immerseel et al., 2002, 

Schokker et al., 2012). S. Enteritidis infection of one day old chicks 

stimulates a significant increase in T cells expressing CD3, CD4 and CD8 in 

the gut by 7 DPI (Asheg et al., 2002). CD3 is part of the TCR complex and 

triggers signal transduction following antigen recognition (Viertlbock, 2008). 

CD4 and CD8 are co-expressed with CD3 on subsets of the T cell 

population. CD4 is primarily expressed on Th cells, whereas CD8 is primarily 

expressed on cytotoxic T cells (Viertlbock, 2008). CD8 consists of 2 chains 

and can be expressed in two forms including CD8αα homodimer and CD8αβ 

heterodimer, although the majority of chicks express the CD8αβ heterodimer 

(Viertlbock, 2008).  Infection of 1 day old chicks with S. Enteritidis and other 

serovars including S. Typhimurium, S. Hadar and S. Infantis have also been 

shown to increase CD4, CD8α and CD8β expression, as well as that of γδ T 

cells in the gut (Berndt et al., 2007). In chickens, a small subset of T cells 

express γδ TCRs, rather than αβ TCRs. The γδ T cells can be further 

subdivided based on their expression of CD8 (Berndt et al., 2006). During 

Salmonella infection, up-regulation of CD8α and CD8β chains occurs, 

particularly the CD8α chain (Pieper et al., 2011). Characterisation of γδ T 

cells has shown they exhibit a wide range of functions including antigen 

presentation and they also provide a link between innate and adaptive 

immune responses (Brandes et al., 2005, Scotet et al., 2008). During 

infection, γδ TCR+ cells show an increase in IFN-γ expression, suggesting 

they contribute to Th1 responses (Pieper et al., 2011). 

 

Differences in the host genetics influence the cellular responses against 

Salmonella infection in the gut (Schokker et al., 2012). Macrophages in fast 

growing chickens produce a faster and stronger response compared to slow 

growing chickens, showing they have an enhanced response against 

Salmonella infection compared to slow growing chickens (van Hemert et al., 
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2007). A decrease in CD4+ cells and an increase in CD8+ cells in the 

intestine were also found in this study, which is unusual as most studies 

report an increase in both CD4 and CD8 in the gut following Salmonella 

infection. However, differences in the number of each cell type has been 

found for T cell markers depending on location in the digestive tract, infection 

dose, infecting serovar, time post infection, age of the host and genetic 

background (van Hemert et al., 2007, Berndt et al., 2007). 

 

Antibodies to major markers, including Bu1a and Bu1b, have been developed 

to stain for chicken B cells. During S. Enteritidis infection of 1 day old chicks, 

B cells increase in the caecum by 10 DPI (Asheg et al., 2002). Staining for 

specific immunoglobulins in the caecum, following S. Typhimurium infection 

of 1 day old chicks, showed an increase in IgA and IgM from 3 DPI (Berndt 

and Methner, 2004). Only a few studies have measured antibody secretions 

in the gut, as measurements of antibody production during Salmonella 

infection are usually analysed in serum (Beal and Smith, 2007). IgA can be 

detected in intestinal secretions by 3 weeks post infection (WPI) in 1 week 

old chickens infected with S. Enteritidis (Berthelot-Herault et al., 2003). A 

decline in S. Enteritidis colonisation in the gut follows a peak in IgA 

concentration in intestinal secretions, suggesting intestinal IgA antibodies 

contribute to the elimination of it from the gut in the later stages of infection 

(Berthelot-Herault et al., 2003). During this infection IgM and IgG were 

detected in only very low concentrations in intestinal secretions (Berthelot-

Herault et al., 2003). Reports have also found an increase in IgA, IgG and 

IgM in the small intestine during S. Typhimurium infection (Brito et al., 1993). 

An increase in these immunoglobulins, particularly IgA, has been found in 

bile, which is drained from the liver directly into the duodenum (Brito et al., 

1993, Rose et al., 1981, Lebacq-Verheyden et al., 1974). Although an 

increase in B cells occurs in the gut following Salmonella infection, some 

studies have shown B cells and antibodies are not required for clearance of 

infection (Desmidt et al., 1998, Beal et al., 2006a), therefore suggesting a 

cell-mediated immune response is more important for clearance of 

Salmonella infection.               
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The chicken intestinal tract contains GALT, which is also found in the 

mammalian intestinal tract. Mammalian GALT is highly organised and well 

characterised, unlike chicken GALT, which has been shown to form less well 

defined aggregates throughout the intestinal tissues. The best studied 

components of the avian GALT includes the bursa of Fabricius, Peyer’s 

patches and caecal tonsils (Casteleyn et al., 2010). The bursa of Fabricius is 

a primary lymphoid organ located at the dorsal side of the proctodeum 

(Casteleyn et al., 2010). The bursa mainly consists of lymphoid follicles and 

is encapsulated by connective tissue (Casteleyn et al., 2010). It is densely 

populated with B lymphocytes and macrophages (Casteleyn et al., 2010). 

Peyer’s patches are a secondary lymphoid organ and up to six can be found 

scattered throughout the avian gut (Olah, 2008, Casteleyn et al., 2010). 

Some Peyer’s patches can be consistently found, for example in the distal 

ileum and the proximal ileum (Vaughn et al., 2006). Microscopic evaluation of 

Peyer’s patches has shown that they consist of a large amount of organised 

lymphoid follicles, which mainly contain B cells (Casteleyn et al., 2010, 

Vaughn et al., 2006). T lymphocytes can be found in the interfollicular regions 

(Casteleyn et al., 2010).     

 

The avian gut contains 2 caecal tonsils located at the end of the caeca, near 

the caeco-ileal junction. The caecal tonsils are composed of several lymphoid 

nodular units, separated by thin connective tissue (Kitagawa et al., 1998). 

The function of the caecal tonsils is still quite uncertain, but it has been 

shown that follicle-associated tissue of the tonsils contains M cells. The 

function of avian M cells may be to take up particles present in the gut, 

therefore bringing them closer to lymphocytes present in the caecal tonsil 

(Kitagawa et al., 2000, Casteleyn et al., 2010). Caecal tonsils appear in the 

late embryonic stage and most of their development occurs after hatching 

(Gomez Del Moral et al., 1998). Avian caecal tonsils will reach adult 

histological condition 4 days post hatching, but will continue to grow until 6 

weeks post hatching (Gomez Del Moral et al., 1998). During development of 

the caecal tonsils, changes in the number of B and T lymphocytes are 

observed (Gomez Del Moral et al., 1998). In the first two weeks of life the 

caecal tonsils contain mainly T lymphocytes however, by the time the birds 



Chapter 5  Immunological studies 

101 
 

are 6 weeks old, the chicken caecal tonsils are dominated by B lymphocytes 

(Gomez Del Moral et al., 1998).  

 

Cytokine and chemokine changes occur in the caecal tonsil following 

Salmonella infection in chickens. IFN-γ mRNA is significantly up-regulated by 

3 DPI following S. Typhimurium infection of 1 week old chickens (Withanage 

et al., 2005b). IFN-γ T cell mediated responses are thought to play a central 

role in Salmonella clearance. IL-6 also increases in the caecal tonsils later 

on, by 14 DPI (Withanage et al., 2005b). The late increase in IL-6 has been 

suggested to be associated with lymphocyte or macrophage development, 

regulation and activation, rather than initiation of the inflammatory response 

(Withanage et al., 2005b). A significant up-regulation in the gene expression 

of IL-10 and the chemokines CXCLi1 and CXCLi2 in the caecal tonsil also 

occurs following Salmonella infection, although this varies slightly depending 

on the age of the chicken and the infecting serovar (Setta et al., 2012b). The 

up-regulation of IL-10 following Salmonella infection is in contrast to other 

findings that have reported a down-regulation of it (Fasina et al., 2008).  

 

Following Salmonella infection of chickens, changes in immune cell markers 

occur in the caecal tonsil. Macrophages and B cells increase in the caecal 

tonsil in response to infection by a range of serovars including S. Enteritidis, 

S. Infantis, S. Gallinarum and S. Pullorum (Setta et al., 2012b). Sasai et al 

(2000) infected 16 day old chickens with either a low or a high dose of S. 

Enteritidis to determine changes in caecal tonsil lymphocyte subpopulations 

between 0 and 6 DPI (Sasai et al., 2000). IgM+, and IgG+ B lymphocytes 

increased in the caecal tonsil, whereas no changes were found in IgA+ B 

lymphocytes (Sasai et al., 2000). Additionally, CD3+ and CD8+ T lymphocytes 

decreased in the caecal tonsils, whereas CD4+ T lymphocytes increased. 

The increase in CD4+ T lymphocytes was suggested to stimulate 

immunoglobulin class switching, as a significant increase in IgG+ B 

lymphocytes was observed soon after CD4 up-regulation (Sasai et al., 2000). 

Additionally, the group infected with a low dose of S. Enteritidis sometimes 

exhibited a greater immune response compared to the group infected with a 

high dose, indicating that a high infection dose of S. Enteritidis can cause 
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immuno-suppression in the caecal tonsil (Sasai et al., 2000). Changes in 

caecal tonsil lymphocyte subpopulations in older chickens infected with S. 

Enteritidis have also been studied (Holt et al., 2010). Following infection at 34 

and 41 weeks of age, CD4+ and CD8+ T lymphocytes increased in the caecal 

tonsil; however, CD4+ cells were more prevalent (Holt et al., 2010). Changes 

in TCR subtypes were also found. The predominant TCR was αβ Vβ1, 

followed by αβ Vβ2, whereas γδ was sparse throughout the tissue (Holt et al., 

2010). The less dramatic changes in T cell subsets found during this 

experiment compared to Sasai et al 2000, could be attributed to the different 

age of the chickens infected in the two different studies and therefore the 

differences in the maturity of the immune system between young and older 

chickens (Holt et al., 2010).   

 

Following intestinal invasion, Salmonella is thought to be taken up by the 

host’s macrophages and transported via the lymphatic system to systemic 

sites such as the spleen (Chappell et al., 2009). Macrophages express TLRs 

and become activated via TLRs upon bacterial invasion of the host (Iqbal et 

al., 2005a, Iqbal et al., 2005b). Uptake of Salmonella into macrophages 

occurs by phagocytosis and by bacterial invasion (Setta et al., 2012a). 

Following activation, macrophages produce ROS and NO against Salmonella 

infection and also up-regulate several cytokines and chemokines including 

IL-1β, IL-6, CXCLi1 and CXCLi2 (Setta et al., 2012a, Okamura et al., 2005, 

Wigley et al., 2006). However, differences in cytokine and chemokine 

expression have been found depending on whether the macrophages are 

isolated from chickens genetically resistant or susceptible to systemic 

salmonellosis (Wigley et al., 2006). Differences have also been found 

depending on the infecting serovar, suggesting that Salmonella serovars 

modulate key cytokines and chemokines differentially (Setta et al., 2012a). 

Intra-macrophage survival has been shown to be essential for systemic 

Salmonella infection (Jones et al., 2007, Jones et al., 2001, Wigley et al., 

2002b). S. Pullorum is thought to modulate IL-10 production by 

macrophages, as IL-10 has an inhibitory effect on macrophages producing 

IFN-γ and ROS, creating a favourable environment for bacteria to survive 
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within these cells, enabling persistent infection (Bogdan et al., 1991, Uchiya 

et al., 2004, Wigley et al., 2005).    

 

The spleen is considered to be an important secondary lymphoid organ and 

provides a site where lymphoid and non-lymphoid cells can interact (Olah, 

2008). The spleen is surrounded by a thin layer of collagen and reticular 

fibres and consists of red and white pulp (Olah, 2008). Haematopoiesis is 

restricted to the red pulp and after this ceases, the main function of the red 

pulp is to filter out senescent erythrocytes (Olah, 2008). The white pulp 

constitutes the largest secondary lymphoid organ and receives antigens from 

the blood circulation (Olah, 2008). T lymphocyte subpopulations are present 

in the spleen and changes in the dynamics of the subpopulations, after 

Salmonella infection, has been investigated. Upon Salmonella infection CD4+ 

T lymphocytes significantly decrease in the spleen at 7 DPI and CD3+ and 

CD8+ T lymphocytes significantly decrease at 14 DPI (Asheg et al., 2002).  A 

decrease of cells in the spleen and circulation has been suggested to be due 

to cell trafficking to the intestinal gut. An increase in γδ T lymphocytes has 

been found to occur in the spleen following infection; however, as with other 

T cell markers, an increase occurs more rapidly in the caecum (Pieper et al., 

2011).  

 

The humoral response to Salmonella infection has been well studied in 

chickens. High titres of specific antibodies can be found in chicken serum 

after infection. A classical pattern of an initial rise of IgM followed by IgG and 

IgA with all three classes peaking at 13 DPI has been shown (Withanage et 

al., 2005b, Beal et al., 2004). Following the 13 DPI peak, IgM steadily 

declines to concentrations found in uninfected birds, whereas IgG and IgA 

remain elevated for at least 69 days (Beal et al., 2004). Elevated levels of 

serum IgA has been shown to correlate with secretory IgA in the gut lumen, 

suggesting a possible mechanism of clearance of Salmonella from the gut 

(Beal et al., 2004, Rose et al., 1981, Brito et al., 1993). Immunohistochemical 

markers to detect B cell changes in the chicken during Salmonella infection 

have also been used to study the humoral response. During S. Enteritidis 

challenge of 1 day old chicks, a significantly raised number of Bu1b+ cells 
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were found in the caecum (Asheg et al., 2002). An increase of Bu1b+ cells 

was also seen in the spleen during infection (Asheg et al., 2002). More 

specific staining for B cells in the spleen has shown IgA+ and IgM+ B 

lymphocytes increase following S. Enteritidis infection (Sasai et al., 1997).  

Less dramatic changes in Bu1b+ cells in the caecum of chickens infected with 

S. Enteritidis have been shown (Van Immerseel et al., 2002). Markers 

targeting specific Ig expressing cells in chickens have also been used. Berndt 

et al (2004) showed a significant increase of IgM+ and IgA+ cells in the 

caecum in chickens infected with S. Typhimurium (Berndt and Methner, 

2004). The studies outlined showed a significant humoral response as well 

as a cell-mediated response occurs during Salmonella infection in chickens. 

This suggests that the raised humoral response may be important for 

clearing Salmonella infection from the host. However, other studies 

performed on bursectomised (B cell-free) chickens have shown B cell 

lymphocytes are not required to clear Salmonella infection (Desmidt et al., 

1998, Beal et al., 2006a). 

 

The aims of this study were to determine the dynamics of the humoral, cell-

mediated and cytokine responses during primary infection of 7 day old 

chickens with S. Virchow. The humoral immune response was determined by 

ELISA using serum collected during infection and also by 

immunohistochemical staining for B cells. The cell-mediated immune 

response was determined by immunohistochemical staining. Changes in key 

cytokines and chemokines were detected using RT-PCR.  

 

 

5.2 Materials and Methods 

 

5.2.1 Soluble antigen preparation 

See Chapter 6. 

 

5.2.2 ELISA 

See Chapter 6.   
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5.2.3 Western blot 

See Chapter 6. 

 

5.2.4 Immunohistochemistry – Sample preparation 

During the poultry infection experiment outlined in Chapter 4, spleen, ileum 

and caecal tonsil were embedded on cork in OCT and snap frozen in liquid 

nitrogen for immunohistological analysis. Serial 10 µM sections of each 

sample were cut, using a cryostat; at least 8 sections were cut for each 

sample. Sections were adhered to poly-l-lysine coated slides (VWR 

International) and air dried. Sections were incubated in 100% acetone, for 10 

minutes at room temperature, to remove OCT from the slide. Slides were 

stored at -80ºC until staining.    

 

5.2.5 Immunohistochemistry – Staining 

The sections were incubated in 1 x TBS for 15 minutes at room temperature, 

to remove any excess OCT. To reduce non-specific binding of the reagents 

to endogenous peroxidases, the sections were incubated for 15 minutes in 

360 ml methanol containing 6 ml of hydrogen peroxide. The sections were 

washed in sterile distilled water for 5 minutes and washed briefly a second 

time, before putting the slides on Shandon cover plates using 1 x TBS. The 

chamber of the plates was filled with 1 x TBS and incubated for 5 minutes. 

Following this, 100 µl of horse serum was added to each chamber and the 

sections were incubated for 10 minutes, to reduce any non-specific binding of 

the secondary antibody. Specific mouse monoclonal anti-chicken antibodies 

were added separately to individual sections. Antibodies for chicken CD3, 

CD4, CD8α, CD8β, MHC II, KuL01, γδ TCR and Bu1a (Southern 

Biotechnology, Cambridge, UK) were included. Antibodies were diluted 1:100 

in 1 x TBS, except for Bu1a, which was diluted 1:50. Sections were incubated 

overnight at 4ºC with 100 µl of primary antibody. The sections were washed 

by filling the chambers with 1 x TBS and incubating at room temperature for 5 

minutes. A Vectastain Elite ABC kit (Vector Laboratories, Peterborough, UK) 

was used for the detection of stained cells. The biotinylated horse anti-mouse 

secondary antibody was diluted 1:100. The sections were incubated with 100 

µl of the secondary antibody for 30 minutes at room temperature. Following 
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the incubation, the sections were washed with 1 x TBS and incubated with 

ABC (avidin biotin complex) solution for 30 minutes. The plate chambers 

were filled with 1 x TBS and incubated for 5 minutes, before removing the 

slides from the plates and washing them briefly 3 times in sterile distilled 

water. The specific colour reaction in the sections was developed by 

incubating the slides with 0.2 g 3’3-diaminobenzidine in 400 ml imidazole 

buffer (280 ml 0.1M imidazole : 120 ml 0.42M hydrogen chloride, pH 7.18-

7.21) for 30 minutes on a magnetic stirrer (Berndt and Methner, 2004, Asheg 

et al., 2002, van Hemert et al., 2007). The sections were washed 3 times in 

sterile distilled water, for 5 minutes per wash, and then counter-stained in 

haematoxylin for 1 minute. The sections were washed under running water 

for 5 minutes. To dehydrate the sections, they were incubated in 96% 

ethanol, followed by 2 incubations in 100% ethanol for 1, 2 and 3 minutes 

respectively. To remove excess ethanol, the slides were incubated in 3 

containers of xylene for 2, 3 and 3 minutes respectively. The slides were 

mounted in DPX using 40mm cover slips.  

 

5.2.6 Immunohistochemistry – analysis 

Slides were analysed using a Nikon eclipse microscope, version 5.03 and 

NIS-elements BR 3 software. 

 

Five images of the spleen and caecal tonsil were taken at X40 magnification 

for each sample. The first image was taken at the centre of the tissue. The 

magnification was then changed to X20 to move the slide up, down, left and 

right of the central image, for the other four images. Cell numbers were 

manually counted for all five images and then an average cell count was 

taken for each chicken. A different approach was taken for the Bu1a+ cells as 

these cells formed follicles in the caecal tonsil. The area of every stained 

follicle present on the tissue was measured to determine if the follicles 

changed size during infection. An average follicle area was taken for each 

chicken. 

 

No one part of the ileum was more heavily stained than other parts; 

therefore, cell counts were determined in the villi. Images were taken at X20 
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magnification of villi that covered the length of the computer screen. An 

average of 10 images was taken and an average cell count was determined 

for each chicken.              

   

5.2.7 Cytokine expression by 2-ΔΔCT RT-PCR 

Changes in IL-1β, IL-6, IL-4, cxcLi2 and IFN-γ mRNA were measured in the 

spleen and caecal tonsil, using a Rotor-Gene Q (Qiagen, UK). RNA samples 

were prepared from tissues stored in RNAlater at -20°C, using the RNeasy 

mini kit and following the manufacturer’s instructions (Qiagen, UK). Primers 

and probes for 28S and cytokine specific amplification have been previously 

described and are listed in Table 5.1 (Kaiser et al., 2000, Setta et al., 2012a). 

One-Step RT-PCR was performed using the Rotor-Gene Probe RT-PCR 

Master Mix (Qiagen: includes RT stage) in a final concentration of 1 x 0.25 µl 

Rotor-Gene RT mix, 0.8 µM of both the forward and reverse primers, 0.2 µM 

of the probe and 1 µl RNA made up to a total volume of 25 µl with RNase-

free water. The following cycling conditions were used for amplification: 50°C 

for 10 minutes, 95°C for 5 minutes, followed by 40 cycles of 95°C for 5 

seconds and 60°C for 10 seconds.    

 

5.2.8 Analysis of 2-ΔΔCT RT-PCR 

For the RT-PCR experiments, each sample was run in triplicate and an 

average CT value was taken for each group. The threshold for CT values was 

set between 0.20 and 0.23. CT values were normalised firstly to the 

endogenous control and then to the uninfected control group (Livak and 

Schmittgen, 2001). Expression levels in the infected groups were 

represented as the fold-change in expression compared to the uninfected 

control.   
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Table 5.1: Primer and probe sequences for 2-ΔΔCT RT-PCR. F = forward 

primer, R = reverse primer, P = probe. 

Target  Probe/Primer Sequence (5’-3’) 

28S F GGCGAAGCCAGAGGAAACT 

 R GACGACCGATTTGCACGTC 

 P (FAM)-AGGACCGCTACGGACCTCCACCA-(TAMRA) 

IL-1β F GCTCTACATGTCGTGTGTGATGAG 

 R TGTCGATGTCCCGCATGA 

 P (FAM)-CCACACTGCAGCTGGAGGAAGCC-(TAMRA) 

IL-6 F GCTCGCCGGCTTCGA 

 R GGTAGGTCTGAAAGGCGAACAG 

 P (FAM)-AGGAGAAATGCCTGACGAAGCTCTCCA-(TAMRA) 

CXCLi2 F GCCCTCCTCCTGGTTTCAG 

 R TGGCACCGCAGCTCATT 

 P (FAM)-TCTTTACCAGCGTCCTACCTTGCGACA-(TAMRA) 

IL-4 F AACATGCGTCAGCTCCTGAAT 

 R TCTGCTAGGAACTTCTCCATTGAA 

 P (FAM)-AGCAGCACCTCCCTCAAGGCACC-(TAMRA) 

IFN-γ F GTGAAGAAGGTGAAAGATATCATGGA 

 R GCTTTGCGCTGGATTCTCA 

 P (FAM)-TGGCCAAGCTCCCGATGAACGA-(TAMRA) 

 

 

5.3 Results 

Following Salmonella infection of 7 day old chicks (Chapter 3), 5 birds from 

each group were killed by cervical dislocation at 5, 11 and 26 DPI. At post 

mortem, samples were collected for immunohistochemistry, RT-PCR and 

ELISA, to determine the cellular, humoral and cytokine response following 

infection. 

  

5.3.1 Immunohistochemistry 

To characterise the cellular immune response to S. Virchow infection, the 

spleen, ileum and caecal tonsil tissues were stained for several cell markers 
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including CD3, CD4, CD8α, CD8β, MHC II, KuL01, γδ TCR and Bu1α 

(Figures 5.1-5.3). 

 

In the spleen, several of the markers increased or decreased in the infected 

groups compared to the uninfected group (Figure 5.4). The cell counts in the 

S. Virchow and S. Typhimurium infected groups were very similar in the 

spleen throughout the infection for all markers. At 5 DPI, CD3+ cells 

decreased in the spleen in groups 1 and 2, compared to group 3, although 

had returned to similar levels by 11 and 26 DPI (P = >0.201). CD4+ cells 

were significantly higher in the spleen in groups 1 and 2 compared to group 3 

at 5 and 11 DPI (P = <0.05) and were still higher at 26 DPI. CD8α+ cells were 

higher in groups 1 and 2 compared to group 3 at 5 DPI. At 11 and 26 DPI, 

CD8α+ cells had increased even further in the infected groups, being 

significantly raised in group 1 at both time points (P = <0.034) and in group 2 

at 26 DPI (P = <0.026). CD8β+ cells were similar in all 3 groups at 5 and 11 

DPI; however, at 26 DPI the cells in groups 1 and 2 were significantly higher 

than in group 3 (P = <0.025). KuL01+ cells were up-regulated in groups 1 and 

2 compared to group 3, at 5 and 11 DPI, being significantly higher at 11 DPI 

(P = <0.003). At 26 DPI, KuL01+ cell counts were similar to group 3. At 5 DPI 

γδ TCR+ cells were significantly lower in groups 1 and 2 compared to group 3 

(P  = <0.009). At 11 and 26 DPI, γδ TCR+ cells were similar to group 3. Cell 

counts could not be determined for MHC II and Bu1a staining in the spleen. 

Hardly any specific staining could be found for either marker. 

 

In the ileum, the cell markers increased in the Salmonella infected groups 

compared to the uninfected group (Figure 5.5). In some cases, a significantly 

greater response was seen in response to S. Virchow compared to S. 

Typhimurium. CD4+ cell counts increased at each time point in groups 1 and 

2 and were higher than CD4+ counts in group 3. Although counts were higher 

in group 2 as well as group 1, considerably more CD4+ cells were found in 

group 1 compared to groups 2 and 3. CD4+ cell counts in group 1 were 

significantly higher at each time point compared to group 3 (P = <0.001). 

CD8α+ cells were higher at 5 and 11 DPI in groups 1 and 2 compared to 

group 3. At 11 DPI, a significant number of CD8α+ cells were found in group  
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Figure 5.1: Immunohistochemistry staining showing CD3+ (A), CD4+ (B), 

CD8α+ (C), CD8β+ (D), KuL01+ (E) and γδ TCR+ (F) positive cells in the 

spleen of chickens infected with S. Virchow at 5 DPI.  
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Figure 5.2: Immunohistochemistry staining showing CD4+ (A), CD8α+ (B), 

CD8β+ (C), MHC II+ (D), KuL01+ (E) and γδ TCR+ (F) positive cells in the 

ileum of chickens infected with S. Virchow at 5 DPI. 
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Figure 5.3: Immunohistochemistry staining showing CD3+ (A), CD4+ (B), 

CD8α+ (C), CD8β+ (D), MHC II+ (E), KuL01+ (F), γδ TCR+ (G) and Bu1a+ (H) 

positive cells in the caecal tonsil of chickens infected with S. Virchow at 5 

DPI. 
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1 compared to groups 2 and 3 (P = <0.001). At 26 DPI, counts in the infected 

groups were similar to those in group 3. CD8β+ cells were higher in groups 1 

and 2 compared to group 3, with group 1 having significantly higher counts 

than groups 2 and 3 at 11 DPI (P = <0.036). MHC II+ cell counts were 

significantly higher in groups 1 and 2 compared to group 3 at 5 (P = <0.028) 

and 11 DPI (P = <0.011) and still remained higher at 26 DPI. At 5 DPI, 

KuL01+ cell numbers were similar in the infected groups compared to the 

uninfected group. KuL01+ cells significantly increased in both of the infected 

groups at 11 DPI (P = <0.016) and increased slightly more at 26 DPI (P = 

<0.016). γδ TCR+ cells were similar in all 3 groups at 5 DPI. At 11 DPI, a 

significant increase was seen in group 1 compared to groups 2 and 3 (P = 

<0.001); however, this had decreased to the levels seen in the uninfected 

group by 26 DPI. No specific staining could be found in the ileum for CD3 

and Bu1a. 

 

In the caecal tonsil, the cell markers mainly increased in the infected groups 

during the infection period, however some cell markers decreased in number 

(Figure 5.6 & 5.7). At 5 DPI, CD3+ cells were significantly higher in the 

infected groups compared to group 3 (P = <0.016). At 11 DPI, CD3+ counts 

increased further in group 1, although by 26 DPI the counts in groups 1 and 2 

were similar to those in group 3. CD4+ cells were similar in all 3 groups at 5 

DPI; however, by 11 DPI, CD4+ cells were significantly higher in group 1 (P = 

<0.05) and also higher in group 2, compared to group 3. At 26 DPI, CD4+ cell 

counts were similar in all 3 groups. CD8α+ cell counts in the infected groups 

were similar to the uninfected groups at each time point, being slightly higher 

at 26 DPI. CD8β+ cell counts were higher in groups 1 and 2 compared to 

group 3 at 5 DPI, but had returned to similar levels as group 3 at 11 and 26 

DPI. MHC II+ cells were significantly lower in groups 1 and 2 compared to 

group 3 at 5, 11 and 26 DPI (P = <0.045). KuL01+ cells were significantly 

higher in group 1 compared to group 3 at all time points and significantly 

higher in group 2 at 26 DPI (P = <0.006). γδ TCR+ cell counts were similar in 

group 1 compared to group 3 at all time points; however, group 2 cell counts 

increased above the uninfected group at 11 and 26 DPI. The area of all the  
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Figure 5.4: Numbers of CD3 (A), CD4 (B), CD8α (C), CD8β (D), KuL01 (E) 

and γδ TCR (F) positive cells in the spleen during S. Virchow and S. 

Typhimurium F98 infection. Error bars represent standard error of the mean. 

* = Significant difference compared to the uninfected group.  
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Figure 5.5: Numbers of CD4 (A), CD8α (B), CD8β (C), MHC II (D), KuL01 (E) 

and γδ TCR (F) positive cells in the ileum during S. Virchow and S. 

Typhimurium infection. Error bars represent standard error of the mean. * = 

Significant difference compared to the uninfected group.   
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Figure 5.6: Numbers of CD3 (A), CD4 (B), CD8α (C) and CD8β (D) positive 

cells in the caecal tonsil during S. Virchow and S. Typhimurium infection. 

Error bars represent standard error of the mean. * = Significant difference 

compared to the uninfected group.   
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Figure 5.7: Numbers of MHC II (A), KuL01 (B), γδ TCR (C) and Bu1α (D) 

positive cells in the caecal tonsil during S. Virchow and S. Typhimurium 

infection. Error bars represent standard error of the mean. * = Significant 

difference compared to the uninfected group.   
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Bu1a+ follicles in the tissue was measured and an average area was taken. 

At 5 and 11 DPI, the Bu1a+ follicles were larger in the infected groups than in 

the uninfected group. At 26 DPI the follicles had returned to a similar size as 

the infected group.         

 

5.3.2 Cytokine expression by comparative 2-ΔΔCt RT-PCR 

Expression of IL-1β, IL-6, IL-4, CXCLi2 and IFN-γ mRNA was measured in 

the spleen (Figure 5.8) and caecal tonsil (Figure 5.9) at 5, 11 and 26 DPI to 

determine changes in key cytokines and chemokines during S. Virchow 

infection. 

 

In the spleen, IL-1β increased at 5 DPI in the S. Virchow and S. Typhimurium 

infected groups by 4.23 and 7.58-fold respectively, compared to the 

uninfected group. By 11 and 26 DPI, no difference in IL-1β expression was 

found between the groups. IL-6 also increased at 5 DPI by 5.9 and 7.62-fold 

in the S. Virchow and S. Typhimurium infected groups, respectively and had 

returned to levels found in the uninfected group by 11 DPI. CXCLi2 was up-

regulated in the spleen by 2.99-fold, 1.71-fold and 1.22-fold at 5, 11 and 26 

DPI, respectively in the S. Virchow infected group. In the S. Typhimurium 

infected group, CXCLi2 was slightly higher than in the S. Virchow infected 

group at 5 DPI, being 3.46-fold higher than levels in the uninfected group. 

Although at 11 and 26 DPI, CXCLi2 in the S. Typhimurium infected group 

was similar to the uninfected group and was 1.21-fold and 1.17-fold higher 

respectively. Spleen IFN-γ levels increased at different time points in the S. 

Virchow and S. Typhimurium infected groups. At 5 DPI, IFN-γ expression 

was similar to the uninfected group in the S. Virchow infected group. 

However, at 11DPI, IFN-γ had increased by 2.19-fold and was still 2.04-fold 

higher at 26 DPI. In the S. Typhimurium infected group, IFN-γ had increased 

by 1.89-fold at 5 DPI, although by 11 DPI IFN-γ had decreased to 1.21-fold 

and returned to the same level of expression as in the uninfected group, by 

26 DPI. IL-4 was not expressed in the spleen at any time point during the 

infection period.  
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Some changes in mRNA expression were found in the caecal tonsil during 

infection, although there was considerable variation within groups for some 

cytokines and chemokines. IL-1β increased at 5 DPI in the S. Virchow 

infected group by 1.46-fold and then returned to expression levels seen in the 

uninfected group for the rest of the infection period. In the S. Typhimurium 

infected group no IL-1β expression was detected in 3 of the chickens. 

However, in the other 2 chickens expression increased by an average of 

6.19-fold at 5 DPI. At 11 and 26 DPI, IL-1β expression was similar to that in 

the uninfected group. IL-6 increased slightly, by 1.25-fold, in 3 of the chickens 

in the S. Virchow infected group at 5 DPI and then remained similar to the 

uninfected group at 11 and 26 DPI. Caecal tonsil IL-6 did not change in the 

S. Typhimurium infected group for the duration of the infection experiment. 

CXCLi2 was higher in the S. Virchow infected group than the uninfected 

group at each time point. CXCLi2 expression was increased by 7.73-fold, 

1.65-fold and 1.80-fold at 5, 11 and 26 DPI, respectively. The increase in 

expression was found in 3 birds at 11 DPI and 4 at 26 DPI, as a CXCLi2 

increase was not detected in the other birds within the group. CXCLi2 

increased by an average of 5.39-fold in 2 birds from the S. Typhimurium 

infected group at 5 DPI. At 11 and 26 DPI, the expression had declined back 

to similar levels to those found in the uninfected group, being 1.18-fold and 

1.21-fold higher, respectively. IFN-γ expression did not change much in the 

S. Virchow infected group, although it had increased slightly by each time 

point. At 5, 11 and 26 DPI IFN-γ had increased by 1.29-fold, 1.34-fold and 

1.56-fold respectively, compared to the uninfected group. In the S. 

Typhimurium infected group IFN-γ expression was similar to the uninfected 

group at 5 DPI, however had increased by 3-fold at 11 DPI. At 26 DPI IFN-γ 

expression had decreased and was 1.33-fold higher than the uninfected 

group. IL-4 expression was not detected in the caecal tonsil for the duration 

of the experiment.         
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Figure 5.8: Relative expression of IFN-γ (A), CXCLi2 (B), IL-1β (C) and IL-6 

(D) in the spleen of chickens infected with S. Virchow and S. Typhimurium 

F98 compared to uninfected chickens, at 5, 11 and 26 DPI. Error bars 

represent standard error of the mean.   
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Figure 5.9: Relative expression of IFN-γ (A), CXCLi2 (B), IL-1β (C) and IL-6 

(D) in the caecal tonsil of chickens infected with S. Virchow and S. 

Typhimurium F98 compared to uninfected chickens, at 5, 11 and 26 DPI. 

Error bars represent standard error of the mean. 
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5.3.3 ELISA 

Serum was prepared from blood taken from the chickens at post mortem at 

5, 11 and 26 DPI to measure specific IgA, IgM and IgG against S. Virchow 

and S. Typhimurium F98. At 5 DPI, the level of IgM was similar to that in 

uninfected chickens (P = >0.128) (Figure 5.10). Between 5 and 11 DPI, IgM 

rapidly increased in both infected groups, reaching a peak level at 11 DPI (P 

= <0.005). At 26 DPI, IgM had declined in both infected groups, towards 

levels found in the uninfected group (P = >0.508). IgA and IgG increased 

more slowly but to greater levels then IgM during infection with S. Virchow 

and S. Typhimurium. At 5 DPI, IgA in infected chickens was at similar levels 

to that in uninfected chickens (P = >0.093) (Figure 5.11). At 11 DPI, IgA 

levels in the infected chickens had slightly increased above those in 

uninfected chickens. Between 11 and 26 DPI, a sharper increase in IgA in 

both of the infected groups occurred. At 26 DPI, both of the infected groups 

had significantly greater IgA compared to the uninfected group (P = <0.030). 

At 5 DPI, IgG was at similar levels in the infected groups compared to the 

uninfected group (P = >0.113) (Figure 5.12). After 5 DPI, IgG increased 

steadily throughout the infection period. IgG levels were significantly higher in 

both of the infected groups compared to the uninfected group at 11 DPI (P = 

<0.026). At 26 DPI, IgG in the S. Virchow and S. Typhimurium infected group 

was higher than that in the uninfected group, with the levels in the S. 

Typhimurium group being significantly higher than levels in the uninfected 

group (P = <0.003).      
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Figure 5.10: Serum IgM response to S. Virchow and S. Typhimurium F98 

infection. Error bars represent the standard error of the mean. 

 

 

Figure 5.11: Serum IgA response to S. Virchow and S. Typhimurium F98 

infection. Error bars represent the standard error of the mean. 

 

 

Figure 5.12: Serum IgG response to S. Virchow and S. Typhimurium F98 

infection. Error bars represent the standard error of the mean. 
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5.3.4 Western blot 

Coomassie brilliant blue staining solution was used to visualise the protein 

bands on the SDS-PAGE gel, to confirm the presence of the Salmonella 

proteins (See Chapter 6, Figure 6.6). Once the presence of proteins had 

been confirmed, the antigen preparation was separated by SDS-PAGE, 

electroblotted onto a nitrocellulose membrane and incubated with chicken 

serum from all 3 groups to determine the reactivity and cross-reactivity of the 

serum with the proteins on the gel. A band, ~38 kDa in size, reacted and 

cross-reacted with the serum samples from the infected groups, as well as 

the uninfected group (Figure 5.13). Another band, ~80 kDa in size, reacted 

and cross-reacted with the serum samples from the infected groups, but not 

sera from the uninfected group (Figure 5.13).  

 

 

 

 

 

                  

Figure 5.13: Western blot using chicken serum from 26 DPI. Two proteins of 

~34 kDa and ~80 kDa reacted with chicken serum from each group. Each 

serum sample was incubated with S. Virchow and S. Typhimurium antigens, 

respectively. L = Broad-range ladder, SV = S. Virchow antigens, ST = S. 

Typhimurium antigens. 

Molecular weight ladder 

 

 

 

 

 

 

              

                      

   

 

 

 

88 kDa...... 

45 kDa...... 

31 kDa...... 

118 kDa..... 

Group 1                  Group 1          Group 2          Group 2              Group 3 

L   SV ST                L   SV   ST      L   SV    ST    L   SV   ST     L     SV   ST 



Chapter 5  Immunological studies 

125 
 

5.4 Discussion 

The data presented here indicate that S. Virchow stimulates immune 

responses in chickens, similar to those seen against broad-range serovars. 

Upon infection with broad-range serovars, such as S. Typhimurium and S. 

Enteritidis, an acute inflammatory response is produced in the gut (Chappell 

et al., 2009). In contrast, host-restricted serovars do not cause an acute 

inflammatory response seen with broad-range serovars. A relationship has 

been shown between the invasiveness of broad-range serovars in the gut 

and the intensity of the immune response elicited by the serovar. Infection of 

1 day old chicks with several broad-range serovars, including S. Enteritidis 

and S. Infantis, showed S. Enteritidis to be highly invasive and S. Infantis to 

be significantly diminished in systemic sites (Berndt et al., 2007). The high 

level of invasiveness seen with S. Enteritidis correlated with a strong immune 

cell influx into the gut, whereas a weak immune cell influx into the gut was 

found against S. Infantis (Berndt et al., 2007). During the infection experiment 

outlined in Chapter 4, slightly higher caecal content and spleen bacterial 

counts were found in the S. Typhimurium infected group compared to the S. 

Virchow group, although counts followed the same pattern. Although some 

differences were found in the immune responses overall the response 

against S. Virchow was similar to that against S. Typhimurium, showing that 

the serovars stimulate the immune system to similar intensities. Differences 

in the immune response depending on the infecting serovar have been 

shown in other studies (Setta et al., 2012b, Brito et al., 1993, Okamura et al., 

2005). 

 

Immunohistochemical analysis of the ileum, caecal tonsil and spleen detailed 

the cell-mediated immune response that occurs during S. Virchow infection. 

At 5 DPI, CD4+, CD8α+ and CD8β+ cells had increased in the ileum and 

remained elevated for the duration of the infection period. An increase in 

these cell markers in the gut following Salmonella infection is consistent with 

previous studies and shows a T helper as well as a cytotoxic T cell response 

(Berndt et al., 2007). An increase in CD4+ and CD8+ cells have also been 

shown in the ovaries and oviducts of laying hens following S. Enteritidis 
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infection (Withanage et al., 2003).  In contrast, a decrease of CD4+ cells has 

also been found in the gut following S. Enteritidis infection of 1-day old chicks 

and was suggested to be due to them not being immunologically mature (van 

Hemert et al., 2007). T cell influx into the gut following Salmonella infection 

has been shown to be variable depending on location in the GIT, infection 

dose, age at the time of infection and the genetic background of the chickens 

(van Hemert et al., 2007, Asheg et al., 2002, Beal et al., 2005, Berndt et al., 

2007). Asheg (2002) found a significant increase in CD3+, CD4+ and CD8+ 

cells in the gut of chickens infected with a high dose of S. Enteritidis, which 

was not as quick or prolonged in the group infected with a low dose of S. 

Enteritidis (Asheg et al., 2002). 

 

MHC II+ cells increased in the ileum throughout the infection experiment in 

both of the infected groups. The major histocompatibility complex (MHC) can 

be found on most cells and antigens are presented to T cells in combination 

with MHC (Kaufman, 2008). MHC can be divided into class I and class II 

molecules based on their structure (Kaufman, 2008). MHC class I molecules 

are found on nearly all cells and are recognised by CD8+ cytotoxic T 

lymphocytes, whereas MHC class II molecules are found on APCs and are 

recognised by CD4+ T helper cells (Kaufman, 2008). The continued increase 

in MHC class II+ cells in the ileum in this study correlates well with the 

increase seen in KuL01+ cells and suggests APCs have an important role in 

control of S. Virchow infection. Increased MHC II could also indicate local 

activation of macrophages, as a response to infection.   

 

At 11 DPI, γδ TCR+ cells increased in the ileum in both the S. Virchow and S. 

Typhimurium infected groups, although the number of these cells in the 

former group was significantly greater than in the S. Typhimurium infected 

group and the uninfected group. An increase in γδ TCR+ cells in the caecum 

has been shown previously against S. Typhimurium infection; however, this 

increase was seen earlier, peaking at 4 DPI (Pieper et al., 2011). An earlier 

increase of γδ TCR+ cells in the caecum has also been found in chicks 

infected with S. Enteritidis and S. Hadar (Berndt et al., 2007).  The difference 

between time points may be due to different areas of the gut being sampled. 
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The changes in cell subpopulations were less prolonged in the caecal tonsil 

compared to the ileum and there were clear differences between the S. 

Virchow infected group and the S. Typhimurium infected group. CD3+ and 

CD8β+ cells increased early in the infected groups by 5 DPI, followed by an 

increase in CD4+ cells at 11 DPI and CD8α+ cells by 26 DPI. During infection 

of 1 day old chicks with S. Enteritidis, CD4+ cells were shown to increase in 

the caecal tonsil at 4 DPI (Sasai et al., 2000). Following this, an increase in 

IgG+ B lymphocytes was seen at 6 DPI, suggesting CD4+ lymphocytes are 

involved in Ig class switching in the caecal tonsil (Sasai et al., 2000). This 

mechanism could explain why, in this study, CD4+ cells were only up-

regulated in the caecal tonsil at 1 time point, which was at 11 DPI. The size 

of Bu1a+ follicles in the caecal tonsil increased in area in the infected groups 

compared to the uninfected group at 5 and 11DPI, indicating the humoral 

immune response does have a role in clearance of Salmonella infection.   

 

Throughout the infection experiment, MHC class II+ cells decreased in the 

caecal tonsil, whereas KuL01+ cells continually increased. An increase in 

KuL01+ cells in the caecal tonsil following S. Enteritidis infection has been 

shown previously (Setta et al., 2012b) and could indicate antigen 

presentation to immune cells located in the caecal tonsil. No changes in γδ 

TCR+ cells were found in the caecal tonsil of chickens infected with S. 

Virchow; however, an increase was found at 11 and 26 DPI in chickens 

infected with S. Typhimurium. Small numbers of γδ TCR+ cells has also been 

found in the caecal tonsil during S. Enteritidis infection (Holt et al., 2010). The 

findings from this study show that although S. Virchow and S. Typhimurium 

induce a similar immune response in chickens, there are subtle differences.      

 

At 5 DPI, CD3+ and γδ TCR+ cells decreased in the spleen in infected 

groups, before returning to levels seen in the uninfected group at 11 DPI. 

Following a decrease of γδ TCR+ cells in the spleen, they had increased in 

the ileum at 11 DPI, which could indicate cell trafficking of γδ TCR+ cells from 

the spleen to the gut. Although in this study CD3+ staining of the ileum was 

not done, previous studies have shown that a decrease in CD3+ cells in the 

spleen coincides with an increase in the ileum (Asheg et al., 2002). CD4+ and 
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CD8α+ cells increased in the spleen in infected groups and remained 

elevated for the duration of the experiment. CD8β+ cells did not increase in 

the spleen until 26 DPI in the infected groups. Varying results have been 

found for these subpopulation changes in the spleen and could be a result of 

age of the chickens when infected, infecting serovar or dose (Asheg et al., 

2002, Sasai et al., 2000, Berndt et al., 2006).   

 

Changes in IFN-γ, CXCLi2, IL-1β and IL-6 were found in the spleen and 

caecal tonsil during S. Virchow and S. Typhimurium infection. The magnitude 

of the response varied within groups, which can be seen by the standard 

error bars (Figure 5.8 & 5.9). This was particularly seen in the caecal tonsil 

as some chickens would exhibit a response, whereas others would not. 

Variability in cytokine and chemokine response in the caecal tonsil within the 

same group has been shown in previous studies and may be due to 

differences in immunological maturation from chicken to chicken (Sasai et al., 

2000, Beal et al., 2004). Also, although RT-PCR is currently the most 

sensitive and reliable method to measure changes in mRNA expression, it 

may not directly correlate with bioactive protein in the cells (Kogut et al., 

2005).  

   

At 5 DPI, IL-1β and IL-6 increased in expression in the infected groups in the 

spleen and caecal tonsils. At 11 DPI, expression of both had returned to 

similar levels as in the uninfected group, except for IL-6 in the spleen, which 

was raised until 26 DPI. IL-1β and IL-6 are both pro-inflammatory cytokines 

(Weining et al., 1998, Ferro et al., 2005, Jones, 2005). Transient increases in 

IL-1β and IL-6 in the spleen and caecal tonsils have been shown in previous 

studies and a rapid decline in these cytokines could be due to an increase in 

the anti-inflammatory cytokine IL-10 or TGF-β4, which prevent over-

expression of pro-inflammatory cytokines (Kogut et al., 2003, Beal et al., 

2005, Withanage et al., 2004, Withanage et al., 2005b, Beal et al., 2004).  

Late expression of IL-6 has been associated with lymphocyte and 

macrophage development rather than initiation of the inflammatory response 

and could explain why IL-6 expression was still up-regulated at 11 DPI in this 

study (Withanage et al., 2005b). A large increase in CXCLi2 was found in the 
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spleen and caecal tonsil of infected groups at 5 DPI and although expression 

had declined by 11 DPI, CXCLi2 remained higher than in the uninfected 

group until the end of the experiment. CXCLi2 is a pro-inflammatory 

chemokine that is highly homologous to human IL-8 and is important for early 

immune responses in the gut, including an influx of heterophils (Kogut et al., 

2005, Kogut et al., 2003, Martins-Green, 2001). The increase in IL-1β, IL-6 

and CXCLi2 in the spleen and caecal tonsils shows that like S. Typhimurium 

and other broad-range serovars, S. Virchow elicits a strong immune 

response in the chicken, causing a rapid inflammatory response upon 

infection, unlike host-restricted serovars such as S. Pullorum and S. 

Gallinarum.      

 

IFN-γ expression was higher in both of the infected groups compared to the 

uninfected group at every time point, in both the spleen and caecal tonsil, 

throughout the experiment. IFN-γ enhances oxidative burst by macrophages 

against Salmonella infection (He et al., 2011). Elevated levels of IFN-γ 

support the idea that S. Virchow clearance is dependent on IFN-γ T-cell 

mediated responses. The increased level of IFN-γ, in combination with the 

lack of IL-4 expression (Th2 cytokine) (Avery et al., 2004), suggests S. 

Virchow clearance is primarily Th1 dominated.  

 

Serum humoral responses followed a classical pattern of a rapid rise in IgM 

followed by a rise in IgG and IgA, against S. Virchow infection. The humoral 

immune response was slightly stronger against S. Typhimurium than S. 

Virchow throughout the infection experiment, although it did follow the same 

pattern in both infected groups. Serum IgA has been shown to correlate with 

secretory IgA in the gut (Rose et al., 1981). IgA and IgG continued to 

increase throughout the infection experiment. CD4+ cells have been 

suggested to have a role in Ig class switching, which is indicated in this study 

by the increasing rise in CD4+ cells in the gut and spleen as well as a late 

rise in the caecal tonsil, combined with the continued increase in IgA. 

Increased serum Ig and increased amounts of Bu1a+ cells in the caecal tonsil 

suggest the humoral response has a role in S. Virchow clearance.  
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Western blot analysis showed the serum from the infected groups to react 

against 2 proteins, ~34 kDa and ~80 kDa in size (Figure 5.13). Serum from 

the uninfected group was also found to cross-react with the 34 kDa protein, 

but not the 80 kDa protein. Previous studies have found porins, heat shock 

proteins (HSPs) and fimbriae, which are all similar sizes to the proteins in this 

study, to react with serum from chickens infected with Salmonella (See 

Chapter 6). 

 

This study has shown that S. Virchow induces an inflammatory response in 

chickens, similar to that found against S. Typhimurium. A wide range of 

changes representing the innate, humoral and cellular immune responses 

were found against S. Virchow and S. Typhimurium. Rapid up-regulation of 

CXCLi2, IL-6 and IL-1β cytokines are representative of the inflammatory 

response initiated by infection. Elevated levels of IFN-γ and increased 

expression of T lymphocyte cell markers show the importance of Th1-

mediated immune responses against S. Virchow infection, whereas no IL-4 

expression indicates the lack of a Th2-mediated response. Increased 

expression of serum immunoglobulins and Bu1a+ cells show the humoral as 

well as the cell mediated immune response plays a role in clearance of S. 

Virchow infection.  These findings provide valuable information about 

indicative and protective immune responses to S Virchow in chickens and 

should, after further studies, enable immunologically based preventative or 

therapeutic approaches.    
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6.1 Introduction 

Control of the spread of zoonotic diseases in animals is important to prevent 

entry of pathogens into the food chain and subsequently disease and illness 

in humans. The main source of human salmonellosis is through the 

consumption of contaminated poultry meat and eggs (EFSA, 2012). 

However, control of Salmonella infection in poultry is difficult because once 

the chickens are more than a few days old they rarely exhibit any clinical 

symptoms of disease. Therefore, infected chickens can shed Salmonella in 

their faeces without detection, leading to horizontal transmission of the 

disease. In addition, after infection with serovars such as S. Enteritidis, 

chickens can become carriers. At the onset of lay, S. Enteritidis can spread 

to the reproductive organs and contaminate eggs by vertical transmission 

(Withanage et al., 2003).  

 

The optimum method for controlling and preventing spread of Salmonella 

infection in poultry is through vaccination (Barrow, 2007). Effective vaccines 

for controlling the spread of infection are now even more important due to the 

emergence of multiple antibiotic-resistant bacteria (Barrow, 2007, Ngwai et 

al., 2006, Chu et al., 2012, Kingsley et al., 2009). Research has focused on 

identifying bacterial ligands that stimulate the host immune response, as 

potential vaccine candidates.  

 

Ligands of TLRs are important stimulators of the host’s immune response 

and potential vaccine candidates. TLRs are PRRs that recognise pathogens 

by their expression of conserved molecular structures known at pathogen 

associated molecular patterns (PAMPs) (Akira, 2004).  TLRs induce signals 

through TIR (Toll/IL1-R) domains that interact with different adapter proteins 

such as MyD88, resulting in the activation of NF-kB and the mitogen-

activated protein kinase signalling cascade (Barton and Medzhitov, 2003). 

Different PAMPs are ligands for specific TLRs; for example, LPS is a ligand 

for TLR4. Upon activation, TLRs induce responses such as an up-regulation 

of cell proliferation/maturation, production of cytokines and chemokines and 

production of other effector molecules (Akira, 2004). Expressed sequence 



Chapter 6  Immunological protection studies 

133 
 

tags (EST) have been identified for several chicken TLRs and show that 

some are expressed in the majority of tissues and some are more restricted 

to certain tissues, such as immunological ones (Iqbal et al., 2005a). In 

addition, cells of the innate immune system express a broad range of TLRs, 

showing they are important for the early activation of the immune response 

(Iqbal et al., 2005a). A range of tissues derived from the chicken gut, 

including the duodenum, jejunum, ileum, caecum and colon, also express a 

wide range of TLRs, most likely due to the combination of somatic and 

immunological tissues and for early pathogen detection (Iqbal et al., 2005a).  

 

Bacterial LPS has been identified as a potent stimulator of the host immune 

response and is recognised through TLR4. LPS, derived from S. Minnesota 

and E. coli, has been shown to mediate human cellular activation via TLR4 

and be a main signalling molecule in human whole blood (Tapping et al., 

2000). Salmonella LPS stimulation of the chicken immune response via TLR4 

has also been demonstrated (Kogut et al., 2005). LPS activation of TLR4 

expressed on chicken heterophils causes a 2-fold increase in heterophil 

degranulation and an increase in the expression of pro-inflammatory 

cytokines and chemokines (Kogut et al., 2005). LPS stimulation of 

heterophils also stimulates the processing of pre-cursor proteins to mature 

cathelicidin-2, which is released by heterophils and has potent antimicrobial 

and immuno-modulatory activities (van Dijk et al., 2009).  

 

Bacterial flagellin is a potent stimulator of the host immune response and is 

recognised by TLR5 (Hayashi et al., 2001, Vo et al., 2007). TLR5 is 

expressed on a wide range of tissues and is expressed by cells of the 

immune system (Iqbal et al., 2005b). Exposure of chicken TLR5+ cells to S. 

Typhimurium derived flagellin stimulates the up-regulation of the pro-

inflammatory cytokine IL-1β (Iqbal et al., 2005b). In addition, a poultry 

infection experiment showed an aflagellated S. Typhimurium mutant 

colonised systemic sites to significantly higher levels than a WT flagellated 

strain, in the first 24 hours (Iqbal et al., 2005b). These results show how 

important recognition of a pathogen through identification of flagella is for the 

early activation of the host immune response. Poultry specific serovars, S. 
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Gallinarum and S. Pullorum lack flagella, which could be a contributing factor 

to their ability to cause rapid systemic infection and hardly any gut 

inflammation.          

 

DNA motifs containing unmethylated CpG motifs are recognised by the 

chicken immune response via TLR21, the orthologue to mammalian TLR9 

(Brownlie et al., 2009). The chicken immune system has also been shown to 

respond to CpG motifs through TLR15, which is absent in mammals (Ciraci 

and Lamont, 2011). Research has been carried out to investigate the 

effectiveness of CpG-ODN in stimulating the chicken immune response and 

increasing resistance to Salmonella. In ovo injection of eggs with CpG-ODN 

has been shown to result in a significant reduction of bacteria isolated from 

the caecal contents during S. Enteritidis infection  and also an increase in 

heterophil function (Mackinnon et al., 2009). In addition, administration of 

CpG-ODN, IFN-γ, double-stranded RNA (Poly I:C) and squalene as an 

adjuvant, in combination with whole killed Salmonella as an experimental 

vaccine, gave significant protection against caecal colonization compared to 

the killed Salmonella vaccine without the adjuvant (Hartley et al., 2012).  

 

Recently, research has focused on the development of adjuvants, which are 

potent immuno-stimulatory molecules (Lowenthal et al., 2000). The use of an 

adjuvant with killed Salmonella or with virulence sub-units is more beneficial 

than using live, attenuated vaccines, the main reason being that it is safer for 

consumers (Barrow, 2007). However the level of protection offered by a 

vaccine against infection depends of several factors including the strain of 

Salmonella, the route of administration, the infection dose, the age of the 

birds and the species of birds (Barrow, 2007, Hartley et al., 2012).  

 

The use of virulence factors to stimulate the immune response and be 

included as potential vaccine candidates has also been researched. The SPI-

1 T3SS injects virulence proteins into the host cell and is an important 

virulence factor for invasion (Schraidt et al., 2010, Jones et al., 2007). 

Vaccination trials in poultry with PrgI (a major SPI-1 needle component) and 

SipD (needle-tip) showed these proteins significantly decreased the bacterial 
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load in internal organs. However, they did not affect the bacterial load in the 

caecal contents and the number of chickens that were Salmonella positive in 

the vaccinated group compared to the unvaccinated group was the same 

(Desin et al., 2011). However, significantly higher antibody titres were found 

in the vaccinated group and western blot analysis revealed SipD protein to be 

immunogenic (Desin et al., 2011). SPI-1 T3SS proteins may therefore be 

important components of subunit vaccines. Further research using SPI-1 or 

SPI-2 mutants as vaccines, where the whole pathogenicity island had been 

removed revealed significantly less systemic spread in the vaccinated groups 

(Matulova et al., 2012). At 4 days post challenge, the number of birds positive 

for Salmonella in the caecum was similar in all of the groups, but by 14 days 

post challenge the SPI-1 vaccinated group had significantly fewer Salmonella 

positive chickens compared to the unvaccinated group (Matulova et al., 

2012). Significantly higher concentrations of antibodies and significantly 

higher expression of cytokines were found in vaccinated birds at 4 days post 

challenge, showing vaccination resulted in a quicker immune response 

(Matulova et al., 2012). 

 

IroN is an OMP involved in iron acquisition in iron-limiting environments and 

is an important Salmonella virulence factor. Immunization of chickens with 

iroN + Freund’s incomplete adjuvant followed by intravenous challenge with 

S. Enteritidis revealed a significant difference in mortality rates between the 

vaccinated and unvaccinated groups (Kaneshige et al., 2009). This study 

suggests iroN is a good candidate for vaccine research. However, further 

research would need to be done to assess the protection offered against 

caecal and systemic colonisation.     

 

Novel vaccine ideas using bacteriophages to protect chickens against 

Salmonella infection have also been published. Bacterial ghosts are 

produced by the activation of bacteriophages and contain the bacterial 

membrane, with the cell surface structures intact, but none of the cytoplasmic 

contents present (Jawale et al., 2012). Immunization of chickens via 

intramuscular, subcutaneous or oral routes with a S. Enteritidis ghost 

vaccine, resulted in significant stimulation of the humoral and cellular immune 
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response compared to controls vaccinated with PBS (Jawale et al., 2012). 

Groups vaccinated with the ghost vaccine were significantly protected 

against S. Enteritidis systemic colonisation (Jawale et al., 2012). Additionally, 

groups vaccinated via the intramuscular or subcutaneous routes were 

significantly protected against caecal colonisation (Jawale et al., 2012). As 

using whole bacteriophages has drawbacks, such as reduced efficacy under 

anaerobic conditions, the emergence of phage-resistant bacteria and the risk 

of horizontal transfer, the use of certain components such as tail spike 

proteins (Tsps) has been investigated (Waseh et al., 2010). Oral 

administration of P22 phage Tsp, 1 hour after infecting chickens with S. 

Typhimurium, significantly reduced colonisation of bacteria in the caecum, 

liver and spleen (Waseh et al., 2010). An in vitro assay showed presence of 

the Tsp in agar significantly inhibited the motility of S. Typhimurium, 

indicating a possible mechanism for inhibition in vivo (Waseh et al., 2010).   

 

The development of vaccines against S. Enteritidis infection in laying hens 

has succeeded in significantly reducing human salmonellosis cases from 

infected eggs in several countries, including the UK (Cogan and Humphrey, 

2003). Initially, the vaccines used in the UK were based on killed bacteria. Of 

these, an inactivated S. Enteritidis vaccine grown under iron-restricted 

conditions (Intervet Nobilis Salenvac) was shown to significantly reduce egg 

contamination, reduce the extent of diarrhoea and offer systemic protection 

after intravenous challenge  (Woodward et al., 2002). Subsequently, a 

bivalent killed vaccine Nobilis Salenvac T (Intervet, Milton Keynes, UK), 

containing both S. Enteritidis and S. Typhimurium, grown under iron-

restricted conditions was produced (Clifton-Hadley et al., 2002). This vaccine 

significantly reduced shedding of S. Typhimurium into the environment 

(Clifton-Hadley et al., 2002). Although the study showed the humoral immune 

response had been activated, no differences between the vaccinated and 

unvaccinated groups were found for systemic spread and clearance of 

Salmonella, suggesting not all aspects of the immune response had been 

activated (Clifton-Hadley et al., 2002).  
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Salmonella is an intracellular pathogen, therefore activation of the cellular 

immune response is considered essential. Live vaccines are considered to 

be greater stimulants of the cellular immune response, due to expression of 

all the appropriate antigens in vivo (Barrow, 2007). A number of live vaccines 

are available for commercial use. The AviPro® Megan® Egg live vaccine is 

available for commercial use in the USA, New Zealand and Dominican 

Republic (http://www.lah.de/Salmonellosis.131.0.html ?&no_cache=1&tx 

_kbshop_pi1[selected]=28). This vaccine significantly protects layers against 

S. Enteritidis colonization of the gut and systemic sites, including the spleen 

and reproductive tract (Hassan and Curtiss, 1997). Additionally, the vaccine 

protects against egg colonisation and during molt (Hassan and Curtiss, 

1997). Protection against S. Enteritidis colonisation lasts throughout the 

laying period (Hassan and Curtiss, 1997). TAD Salmonella vac® E and TAD 

Salmonella vac® T are live vaccines, also available commercially 

(http://www.bnotharel.com/apage/523. php) and are the main vaccines 

currently used in the UK.  A combination of these two vaccines has been 

shown to greatly reduce reproductive tract colonisation and internal egg 

contamination (Gantois et al., 2006). Disadvantages of live vaccines include 

public acceptability and consumer safety, due to the possibility of the live 

bacteria becoming virulent (Barrow, 2007).  Indeed some countries including 

France do not permit the use of live Salmonella vaccines in poultry. 

Therefore, inactivated or sub-unit vaccines are often safer and preferred 

methods of protection. 

 

Although bivalent vaccines are available commercially to protect against the 

two most common Salmonella serovars associated with human 

salmonellosis, the third most common serovar associated with human 

salmonellosis (S. Virchow) in the UK is associated with invasive disease in 

humans (Matheson et al., 2010, Ispahani and Slack, 2000, Langridge et al., 

2009). Thus a greater understanding of the immune response produced by 

poultry against infection is essential for developing new vaccines, improving 

the efficacy of current vaccines and particularly developing multivalent 

vaccines, to protect poultry against several Salmonella serogroups.  

 

http://www.lah.de/Salmonellosis.131.0.html%20?&no_cache=1&tx%20_kbshop_pi1%5bselected%5d=28
http://www.lah.de/Salmonellosis.131.0.html%20?&no_cache=1&tx%20_kbshop_pi1%5bselected%5d=28
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The aims of this study were to determine if primary infection of S. Virchow in 

poultry offered any protection against secondary infection with this bacterium 

or any cross-protection against secondary infection with S. Typhimurium. 

During secondary infection, IgA, IgG and IgM antibody titres were determined 

in the serum, to characterise the humoral immune response to secondary 

infection. In addition the Salmonella-specific antigens with which the serum 

reacted and cross-reacted with were determined by western blotting.  

 

 

6.2 Materials and Methods 

 

6.2.1 Bacterial isolates and chickens 

Forty-eight 1-day old SPF Rhode-Island Red chicks were obtained from the 

Institute for Animal Health, Compton, UK. Chicks were housed separately in 

2 groups of 24, at a temperature of 30ºC, which was reduced to 20ºC at 3 

weeks of age. Chickens were given ad-libitum access to water and a 

vegetable protein based diet (SDS, Witham, Essex, UK). All experiments 

were conducted within local ethical guidelines and according to national 

legislation. 

 

S. Virchow 60 (See Chapter 2, Table 2.1) was selected to infect the chickens, 

based on the first two poultry infection experiments (Chapter 4). S. 

Typhimurium F98 was included in the infection experiment, during re-

challenge, to determine cross-protection offered against secondary challenge 

with a heterologous serogroup. Bacteria were grown from -70ºC stocks, in 

10ml LB broth, in an orbital shaking incubator overnight, at 37ºC at 150rpm.  

 

6.2.2 Poultry infection experiment 

At 7 days of age, chickens in Group 1 were infected orally with 108cfu/ml S. 

Virchow in 0.3ml LB broth. Group 2 remained uninfected, to act as an age-

matched control. The chickens were checked twice daily, for any signs of 

morbidity and for any mortality. At 2, 4, 5, 7, 8, 10 and 11 WPI cloacal swabs 

were taken from 5 chickens in each group. Swabs were directly plated onto 
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BGA and then enriched in selenite broth for Salmonella detection. BGA 

plates and enriched swabs were incubated overnight at 37ºC and the 

enriched swabs were re-plated and incubated overnight at 37ºC. At 13 weeks 

post-primary infection (WPPI), group 1 and group 2 were both divided in half. 

Half of each group was (re-)challenged with 108cfu/ml S. Virchow and half 

with 108 cfu/ml S. Typhimurium F98. The infection regime is outlined in Table 

6.1. At 3 and 5 DPI, half of each group were killed by cervical dislocation for 

bacteriological analysis.  

 

 

Table 6.1: Infection protocol 

Group Primary Infection Secondary Infection 

1 S. Virchow S. Virchow 
2 S. Virchow S. Typhimurium 
3 Uninfected S. Virchow 
4 Uninfected S. Typhimurium 

 

 

6.2.3 Post mortem and bacteriology 

At post mortem, caecal contents and spleen were taken aseptically and 

added to 1 x PBS in a 1:10 dilution. Spleen samples were homogenised 

using a MicroStomacher 80 (Seward, UK) and the caecal contents were 

vortexed to form a suspension. Spleen and caecal content samples were 

serial diluted in 1 x PBS to 10-5 and 10-11 respectively and plated onto BGA. 

The plates were incubated at 37oC for 18 hours and the colonies counted.  

During post mortem blood was collected from the heart using 21mm needles, 

for ELISA and western blot and was centrifuged at 13000 x g for 5 minutes. 

The serum was removed and stored at -20°C.   

 

6.2.4 Production of soluble Salmonella lysate antigen 

Overnight cultures of 10 ml LB broth inoculated with S. Virchow 60 or S. 

Typhimurium F98 were prepared from frozen stocks stored at -70ºC and 

incubated in an orbital shaking incubator at 37ºC and 150 rpm. The overnight 

cultures were used to inoculate 100 ml LB broth, which was then incubated 

overnight at 37ºC and 150 rpm. Cultures were aseptically poured into sterile 
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tubes and centrifuged at 4080 x g for 25 minutes at 4ºC (Beal et al., 2004). 

Supernatant was poured off and the bacterial pellet was suspended in 20 ml 

1 x PBS. Bacterial suspensions were then incubated in a waterbath at 65ºC 

for 5 hours. Suspensions were plated onto nutrient agar and incubated at 

37ºC overnight to confirm that no viable Salmonella remained. Following this 

check, the bacterial suspensions were sonicated in 10 ml volumes in 20 

second bursts on ice, a total of 10 times, allowing the suspension to cool for 

1 minute between each burst. Bacterial suspensions were centrifuged at 

4080 x g for 20 minutes at 4ºC. The suspension was then ultra-centrifuged at 

30000 x g for 20 minutes at 4ºC (Beal et al., 2004). The supernatant was 

aseptically poured into sterile tubes and protein concentrations were 

measured using a Lowry kit. The soluble antigen preparations were aliquoted 

into 1 ml volumes and stored at -20ºC until used. 

 

6.2.5 ELISA 

Flat-bottomed 96-well plates were coated with 100 µl/well of S. Virchow 60 or 

S. Typhimurium F98 soluble antigen, diluted in carbonate-bicarbonate buffer 

(pH 9.6) to a concentration of 16.2 µg/ml and incubated overnight at 4°C 

(Withanage et al., 2005b). Following overnight incubation, the plates were 

washed three times with PBS Tween-20 (0.05%) and then incubated with 

100 µl of 3% blocking buffer for 1 hour at 37°C. After the 1 hour incubation, 

the plates were washed once with PBS Tween-20 (0.05%). Chicken serum 

samples were diluted in blocking buffer for detection of IgA (1:25), IgM 

(1:400) and IgG (1:400). Plates were incubated with 100 µl of the diluted 

chicken serum for 1 hour at 37°C and then washed three times with PBS 

Tween-20 (0.05%). Specific antibodies were detected by incubating samples 

with 100 µl alkaline phosphatase conjugated to either goat anti-chicken IgA 

(1:20000) (Serotec, Oxford, UK), IgM (1:1000) (Serotec, Oxford, UK) or IgG 

(1:2000) (Serotec, Oxford, UK) diluted in blocking buffer, for 1 hour at 37°C. 

Plates were washed with PBS Tween-20 (0.05%) and incubated with 100 µl 

p-nitrophenyl phosphate in the dark for 30 minutes at room temperature. The 

reaction was stopped by addition of 100 µl 3N sodium hydroxide. 

Absorbance was determined using a microplate reader at 405 nm.       
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6.2.6 Western Blot 

Soluble antigen preparations of S. Virchow 60 or S. Typhimurium F98 were 

mixed in a 1:1 ratio with Laemmli loading buffer (containing 1/20th β-

mercaptoethanol) and heated at 100°C for 10 minutes. The proteins were 

separated by SDS-PAGE by loading 15 µl/well of the antigen preparations 

onto a gel and running the gel in 1 x electrophoresis running buffer at 100v 

for 90 minutes.  A pre-stained broad range ladder (Bio-Rad) was included on 

the gel as a size marker. To confirm the presence of the proteins on the gel, 

it was agitated on a rocker at room temperature in Coomassie brilliant blue 

staining solution (Bio-Rad) for 2 hours. Following this, the gel was agitated in 

de-staining solution for 2 hours at room temperature and then incubated in 

fresh de-staining solution overnight.  

 

After running the antigen preparations out on the gel, to perform a western 

blot (instead of staining the gel), the proteins were transferred to a 

nitrocellulose membrane, using an iBlot dry blotting system (Invitrogen, UK), 

according to the manufacturer’s instructions. The membrane was incubated 

with 3% blocking buffer on a rocker, for 1 hour at room temperature. 

Following this, the membrane was incubated with chicken serum diluted 

1:100 with 3% blocking buffer, overnight at 4°C. After the overnight 

incubation the membrane was washed 3 times with PBS Tween 20 (1%) for 5 

minutes each time on a rocker at room temperature. IgG conjugated to 

alkaline phosphatase was diluted 1:500 in 3% blocking buffer and added to 

the membrane, which was then incubated for 1 hour on a rocker at room 

temperature. The membrane was washed three times with PBS Tween 20 

(1%), before incubation with 5-bromo-4-chloro-3-indolyl phosphate 

(BCIP)/nitroblue tetrazolium (NBT) (Abcam, UK), to stain identified bands 

(Desin et al., 2011).     
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6.3 Results 

Following secondary (re)-challenge, 5 birds from each group were killed by 

cervical dislocation, at 3 and 5 DPI. At post mortem, spleen and caecal 

contents were taken for bacteriology and serum was taken to determine the 

humoral immune response. 

 

6.3.1 Bacteriology 

Chickens in group 1 were infected with S. Virchow 60 at 7 days old. Cloacal 

swabs were taken from groups 1 and 2 every 1-2 weeks. At 11 WPI, group 1 

had cleared S. Virchow infection. Group 2 remained negative for Salmonella 

for the duration of primary infection of group 1.  

 

Following challenge at 13 WPPI, the bacterial load was determined in the 

caecal contents and spleen at 3 and 5 DPI (Figure 6.1 and 6.2). Salmonella 

was detected in the caecal contents of all 4 groups at similar levels. Group 1 

had the lowest caecal content counts, which were log10 4.47 cfu/g and log10 

4.05 cfu/g, at 3 and 5 DPSI respectively. Bacterial recovery was lower than 

that for group 3, which was log10 5.11 cfu/g at 3 DPI and log10 5.07 cfu/g at 

5DPI. Although the bacterial load in group 1 was lower than that in group 3, 

no significant difference was found between the groups at 3 (P = >0.070) and 

5 DPI (P = >0.104). Bacterial counts for group 2 were log10 5.06 cfu/g and 

log10 5.39 cfu/g at 3 and 5 DPSI, respectively. The counts for group 2 were 

slightly lower than counts for group 4, which were log10 5.71 cfu/g on 3 and 5 

DPI. No significant difference was found between group 2 and group 4 at 3 

(P = >0.320) and 5 DPI (P = >0.607). Bacterial load was lower in group 1 

compared to group 2 but the difference was also not significant (P = >0.062). 

No Salmonella could be detected in the spleen for all 4 groups at 3 and 5 

DPSI by direct plating. Therefore, the spleens were enriched in Selenite broth 

and scored as positive or negative (Figure 6.2). The enriched spleens of 

group 1 and group 2 were all negative at 3 and 5 DPSI. Group 3 spleens 

were negative at 3 DPSI; however, at 5 DPSI 57% of the group were positive 

for S. Virchow. Positive spleens were detected at both time points in group 4, 

with 20% positive at 3 DPSI and 40% positive at 5 DPSI.  
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Figure 6.1: Mean log10 Salmonella numbers in the caecal contents at 3 and 5 

DPI. Group 1 and 2 were primarily infected with S. Virchow and re-

challenged with S. Virchow and S. Typhimurium, respectively. Group 3 and 4 

were kept uninfected and then challenged with S. Virchow and S. 

Typhimurium, respectively. Error bars represent the standard error of the 

mean, which was calculated from 5 birds per time point.  

 

 

Figure 6.2: Percentage of positive spleens at 3 and 5 DPI. Group 1 and 2 

were primarily infected with S. Virchow and re-challenged with S. Virchow 

and S. Typhimurium, respectively. Group 3 and 4 were kept uninfected and 

then challenged with S. Virchow and S. Typhimurium, respectively.  
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6.3.2. Humoral Response 

During the post mortems, serum samples were collected to determine the 

humoral response produced by the chickens in response to primary and 

secondary S. Virchow and S. Typhimurium infection. Serum IgA antibodies 

increased in all four groups between 3 and 5 DPI (Figure 6.3). IgA antibody 

titres were considerably higher in group 1 compared to group 3, but this was 

not significant at either time point (P = >0.052). At 3 DPSI, IgA titres in group 

2 were similar to those in both of the control groups (P = >0.166). However, a 

large increase in IgA was seen in group 2 between 3 and 5 DPSI. At 5 DPSI, 

the level of IgA in group 2 was significantly higher than in group 4 (P = 

>0.039). The IgA titre in group 1 was higher than in group 2 at both time 

points, particularly at 3 DPSI; however, the differences were not significant (P 

= >0.073). 

 

Serum IgG antibodies increased in all 4 groups between 3 and 5 DPI (Figure 

6.4). As with serum IgA, the serum IgG titres were highest in group 1 at both 

time points. IgG titres were greater in group 1 compared to group 3, with this 

difference significant at 5 DPI (P = <0.003). Group 2 IgG titres were higher at 

both time points compared to group 4 and significantly higher at 5 DPI (P = 

<0.039).  

 

Serum IgM antibodies decreased between 3 and 5 DPI in all 4 groups (Figure 

6.5). IgM titres were similar between all four groups, although the highest IgM 

titres were still seen in group 1, followed by group 2. No significant 

differences were found when comparing group 1 to group 3 (P = >0.186) and 

group 2 to group 4 (P = >0.061).    
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Figure 6.3: Serum IgA response at 3 and 5 DPSI. Error bars represent the 

standard error of the mean. 

 

 

Figure 6.4: Serum IgG response at 3 and 5 DPSI. Error bars represent the 

standard error of the mean. 

 

 

Figure 6.5: Serum IgM response at 3 and 5 DPSI. Error bars represent the 

standard error of the mean. 
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6.3.3. Western Blot 

Coomassie brilliant blue staining solution was used to visualise the protein 

bands on the SDS-PAGE gel, to confirm the presence of the Salmonella 

proteins (Figure 6.6) (Steinberg, 2009, Sasse and Gallagher, 2009, Bradford, 

1976). Once the presence of proteins had been confirmed, the antigen 

preparation was separated by SDS-PAGE, blotted onto a nitrocellulose 

membrane and incubated with chicken serum from all 4 groups to determine 

the reactivity and cross-reactivity of the serum with the proteins present on 

the gel. IgG secondary antibody, conjugated to alkaline phosphatase was 

used to detect proteins the serum reacted with. Two S. Virchow and S. 

Typhimurium proteins, ~38 kDa and ~80 kDa in size, reacted and cross-

reacted strongly, with the chicken serum from all 4 groups at 3 and 5 DPI 

(Figure 6.7).    

 

 

 

 

 

Figure 6.6: Coomassie brilliant blue staining of an SDS-PAGE gel. L = Broad-

range molecular weight ladder, SV60 = S. Virchow antigen preparation, 

STF98 = S. Typhimurium F98 antigen preparation, LPS = S. Typhimurium 

lipopolysaccharide.  
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Figure 6.7: Western blot using chicken serum from 3 DPSI. Two proteins of 

~34 kDa and ~80 kDa reacted with chicken serum from each group. Each 

serum sample was incubated with S. Virchow and S. Typhimurium antigens, 

respectively. L = Broad-range ladder, SV = S. Virchow antigens, ST = S. 

Typhimurium antigens. 

 

 

 

 

Figure 6.8: Western blot using chicken serum from 5 DPSI. Two proteins of 

~34 kDa and ~80 kDa reacted with chicken serum from each group. Each 

serum sample was incubated with S. Virchow and S. Typhimurium antigens, 

respectively. L = Broad-range ladder, SV = S. Virchow antigens, ST = S. 

Typhimurium antigens. 
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6.4 Discussion 

This study has shown that primary infection with S. Virchow offers some 

protection against secondary infection with this serovar. This was particularly 

noticeable at systemic sites, as no bacteria were detected in the spleen 

samples from group 1 (primary infection with S. Virchow, followed by 

secondary infection with S. Virchow) after enrichment. The bacterial load in 

the caecal contents of group 1 decreased from log10 4.47 cfu/g at 3 DPSI to 

log10 4.05 cfu/g at 5 DPSI, whereas in group 3 (uninfected, followed by 

infection with S. Virchow) the load was log10 5.11 cfu/g at 3 DPSI and 

similarly log10 5.07 cfu/g at 5 DPSI. Although the bacterial load in group 1 is 

lower than in group 3, no significant difference was found between the 

groups, indicating the protection offered against caecal colonisation is limited. 

Primary infection with S. Virchow offered less cross serogroup protection 

following secondary infection with S. Typhimurium. Although, no Salmonella 

was detected in the spleen showing protection offered against systemic 

invasion, bacterial load in the caecal contents was very similar in both 

groups, being only slightly lower in group 2 (primary infection with S. Virchow, 

followed by secondary infection with S. Typhimurium) compared to group 4 

(uninfected, followed by infection with S. Typhimurium) (P = >0.320).  

 

Serum antibody titres were measured to determine the humoral immune 

response against primary and secondary Salmonella infection. Salmonella-

specific IgA, IgG and IgM were detected in all 4 groups but levels were 

always highest in group 1. These results show that the chicken immune 

system responds quicker and greater against secondary infection with S. 

Virchow compared to primary infection, indicating the development of an 

antigen-specific immune response. Additionally, the quicker and greater 

immune response observed in group 2 compared to group 4 indicate the 

immune response cross-reacts against S. Virchow and S. Typhimurium. 

 

Research to investigate the possibility of multivalent vaccines that protect 

chickens against serovars across different serogroups has previously 

focused on S. Enteritidis and S. Typhimurium. A poultry infection study to 
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determine cross-protection and cross-reactivity of the immune response after 

homologous or heterologous re-challenge with S. Enteritidis and S. 

Typhimurium showed reduced counts in the caecal contents and the spleen 

compared to age-matched controls (Beal et al., 2006b). Cross-protection 

offered by primary infection with S. Typhimurium against secondary infection 

with S. Enteritidis was more effective than primary infection with S. Enteritidis 

followed by secondary infection with S. Typhimurium (Beal et al., 2006b). 

Therefore, although in the current study there is evidence of cross-protection 

against colonisation of systemic sites, primary infection with S. Typhimurium 

may have protected more effectively against secondary infection with S. 

Virchow. Similarly to the results here, this study found a high level of antibody 

cross-reactivity between the serovars (Beal et al., 2006b).  

 

A vaccination study using the commercially available live S. Enteritidis 

vaccine Gallivac® Se or a combination of this with S. Enteritidis-S. 

Typhimurium inactivated vaccine Gallimune® Se+St, to immunize Lohmann 

Brown chickens, before infecting them with either S. Typhimurium or S. 

Enteritidis, found a significant reduction in liver and caecal content 

colonisation in the vaccinated groups (Springer et al., 2011). The results 

show that vaccination with live or live and attenuated vaccines can offer 

significant protection against Salmonella colonisation. Significantly higher 

levels of circulating antibodies were also found in the vaccinated groups 

compared to the unvaccinated groups (Springer et al., 2011). Previous 

studies assessed the protection offered by S. Typhimurium vaccines against 

serovars from several serogroups including groups B (S. Heidelberg), C (S. 

Kentucky) and E (S. Anatum), as well as serogroup D (S. Enteritidis) (Jiang 

et al., 2010). The vaccine vector used in this study, strain x9241-tHP, 

reduced colonisation and invasion of S. Heidelberg and S. Typhimurium and 

cross-protected against S. Enteritidis (Jiang et al., 2010).  

 

Western blot analysis revealed 2 major proteins of ~38 kDa and ~80 kDa, 

which reacted strongly with serum Salmonella-specific antibodies from all 

four groups (Figure 6.7 & 6.8). Serum from the S. Virchow infected group 

cross-reacted with S. Typhimurium antigen and vice versa, also showing the 
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cross-reactivity of the immune system against the two serovars (Figure 6.7 & 

6.8). Previous research has focused on the identification of immunogenic 

antigens as possible vaccine candidates.  

 

OMPs have often been identified as highly immunogenic antigens, probably 

due to being more exposed to the host’s immune cells than intra-cellular 

antigens. Gram-negative bacterial porins are OMPs found in abundance on 

the cell surface. They form hydrophilic channels that allow restricted entry of 

required nutrients into the cell (Achouak et al., 2001). Porins have been 

shown to be highly immunogenic in several hosts including chickens, humans 

and mice. Bacterial porins have been identified as ~34 kDa in molecular 

weight (Gomez-Verduzco et al., 2010). Therefore, one of the immunogenic 

proteins in this study could have represented porins and makes these worthy 

of further study, as identified by other researchers. To determine passive 

immunity against S. Gallinarum 200 broiler breeder hens were 

subcutaneously immunized with either 10 µg or 30 µg of S. Gallinarum 

porins. Eggs were then collected and hatched and the chicks were 

challenged with different doses of S. Gallinarum (Gomez-Verduzco et al., 

2010). Determination of serum IgG responses showed a significantly higher 

concentration in immunized hens and their eggs compared to non-immunized 

ones, showing porins on their own are potent stimulators of the chicken 

immune response (Gomez-Verduzco et al., 2010). Immunized chicks also 

had a survival rate of 53 to 70% dependant on the dose of S. Gallinarum, 

whereas all of the chicks in the non-immunized group died after challenge 

with S. Gallinarum (Gomez-Verduzco et al., 2010).  

 

The possibility of using S. Typhi porins to immunize humans against typhoid 

fever has been investigated (Salazar-Gonzalez et al., 2004). Fifteen healthy 

male volunteers were immunized with S. Typhi porins at a concentration of 

20 µg. Venous blood was collected before vaccination and 7 and 14 days 

post vaccination, to determine specific antibody responses and cytokine 

profiles. An increase in porin-specific IgG and IgM was observed in 

immunized volunteers at 7 and 14 days post immunization (Salazar-

Gonzalez et al., 2004). An increase in IFN-γ at 7 and 14 days post 



Chapter 6  Immunological protection studies 

151 
 

immunization was also seen, indicating a Th1 response had been induced 

(Salazar-Gonzalez et al., 2004). These results show S. Typhi porins are 

immunogenic in humans and can stimulate the humoral and cellular immune 

responses (Salazar-Gonzalez et al., 2004). 

 

Bacterial porins have been shown to react strongly with serum from 

uninfected chickens, as well as chickens naturally infected with S. Enteritidis 

(Ochoa-Reparaz et al., 2004). As bacterial porins are conserved in many 

bacterial species this reaction was suggested to be due to immune cross-

reaction between S. Enteritidis and other enterobacteria the chickens have 

come into contact with (Ochoa-Reparaz et al., 2004, Simonet et al., 1996). 

During this study the 34 kDa band reacted with serum from an uninfected 

control (Data not shown). Due to the conserved nature of porins, this may 

have been due to exposure of the chicken immune system to gut flora and 

the antigens they express. 

 

Shigella dysenteriae type 1 porins have been shown to be immuno-

stimulatory in mice peritoneal cavity B-2 cells (Ray and Biswas, 2005). S. 

dysenteriae porins were found to up-regulate TLR2 and TLR6 expression on 

B-2 cells, as well as up-regulate B-2 cell expression of CD80, NF-KB, IgM, 

IgG2a and IgA (Ray and Biswas, 2005). Overall, research so far has shown 

bacterial porins to be highly immunogenic and therefore good candidates for 

vaccine research. Evidence from the literature suggests the 34 kDa protein 

reacting with chicken serum in this study could be porins. Further 

investigation of this protein as a potential candidate for a vaccine may 

therefore be useful.  

 

Microbial HSPs are a highly conserved group of proteins that have been 

shown to be involved in the pathogenesis of disease and have been shown 

to be immuno-stimulatory (Lo et al., 2004). High titres of antibodies against 

Hsp 60 have been found in egg yolks from hens naturally infected with S. 

Enteritidis (Dera-Tomaszewska et al., 2003). The protective role of HSP 60 

has been investigated. Following immunization of mice with HSP 60 + 

Freund’s adjuvant, the mice were challenged with S. Typhi (Paliwal et al., 
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2008). Immunized mice had significantly greater serum IgG following 

infection, compared to uninfected mice. Immunization with HSP 60 also 

conferred 70-90% protection against lethal doses of S. Typhi or S. 

Typhimurium (Paliwal et al., 2008). Additionally, lymphocyte cells isolated 

from immunized mice showed significantly greater proliferation and 

splenocytes showed significantly greater production of IL-4 and IFN-γ, 

compared to cells from uninfected mice (Paliwal et al., 2008). The identity of 

the larger protein that reacted with the chicken serum from infected chickens 

is still uncertain; however, a HSP is a possibility.  

 

OMPs of 82.3 and 75.6 kDa have been shown to be expressed during 

attachment of S. Enteritidis to human intestinal cells (Fadl et al., 2002). 

Polyclonal antibodies against these 2 OMPs significantly reduce the binding 

of S. Enteritidis to these cells (Fadl et al., 2002). Additionally, infection of 

chickens with S. Enteritidis, following immunization with these OMPs, 

significantly reduced colonization in the intestine of the chickens (Khan et al., 

2003). Therefore the ~80 kDa protein detected in this study could also be 

fimbriae or another OMP involved in attachment and invasion.  

 

Overall, the data in this study show there is some protection and cross-

protection offered by primary infection with S. Virchow against secondary 

infection with S. Virchow or S. Typhimurium, particularly against invasion of 

systemic sites. However, the aim of a vaccine is to reduce the spread of 

infection and the main route of infection for Salmonella is faecal-orally. No 

significant reduction of bacterial load in the caecal contents of group 1 and 

group 2 were found compared to group 3 and group 4 respectively. This 

suggests that primary infection with S. Virchow does not offer adequate 

protection or cross-protection against caecal shedding of secondary infection 

and therefore the spread of infection. 

 

High antibody titres and sometimes significantly high antibody titres were 

detected in the sera of chickens from group 1 and group 2 compared to the 

age-matched controls. This shows that during secondary infection with S. 

Virchow, a stronger and quicker antigen-specific immune response is 
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produced and also the immune system cross-reacts against S. Virchow from 

serogroup C and S. Typhimurium from serogroup B. During western blotting, 

serum from chickens infected with S. Virchow strongly cross-reacted against 

S. Typhimurium antigens and vice versa. The cross-reactivity of the chicken 

immune system against S. Virchow and S. Typhimurium suggests that there 

is potential for a multivalent vaccine that will protect against both serogroups. 

The reactivity and cross-reactivity against ~34 kDa and ~80 kDa proteins 

suggest these two proteins may be good potential vaccine candidates. 

However, research of the efficiency of vaccines has so far shown that while 

they do offer some protection against colonisation, they only succeed in 

reducing colonisation in the intestine, rather than preventing it. This is 

possibly due to killed or subunit vaccines not activating all aspects of the 

immune response (Barrow, 2007). Therefore, to reduce Salmonella infection 

in chicken flocks other methods of prevention such as disinfection programs 

and rodent control are needed as well as vaccines.           
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Although S. Virchow is a less common cause of human salmonellosis then S. 

Enteritidis and S. Typhimurium, it has increased in prevalence since the 

1990s, it has shown increased resistance to antimicrobials and it is 

associated with invasive disease in humans (Langridge et al., 2009, 

Matheson et al., 2010, Bertrand et al., 2006, Hopkins et al., 2007). The aims 

of this study were to compare 12 S. Virchow strains isolated in England from 

different sources, using molecular techniques, to determine their genetic 

relatedness and to characterise the infection biology of S. Virchow in vitro 

using cell invasion assays and in vivo in poultry. Of particular importance was 

the aim to investigate the immune responses produced by poultry as a 

consequence of S. Virchow infection, for the potential of developing a 

vaccine to control the serovar in poultry and towards the development of 

multivalent vaccines that protect across all serogroups. 

 

Molecular techniques have been used in several studies to characterise S. 

Virchow in countries where its prevalence is high and it has been shown to 

be particularly associated with invasive disease (Solnik-Isaac et al., 2007, 

Weinberger et al., 2006, Bonalli et al., 2011). PFGE results from these 

studies suggest that S. Virchow is a relatively clonal serovar over a 

widespread area. During this study molecular characterisation of 12 S. 

Virchow isolates from different sources in England was undertaken. PFGE 

revealed similar findings to those obtained in previous studies in different 

countries, indicating that S. Virchow is a relatively clonal serovar. 

Additionally, MLST analysis agreed with the PFGE, identifying 11/12 isolates 

as ST 16. Comparison of the S. Virchow isolates from this study to others 

submitted to the Salmonella MLST online database revealed ST 16 as a 

predominant ST, suggesting that it is widespread throughout Europe. Further 

analysis of the S. Virchow isolates through constructing eBURST diagrams 

showed ST 16 is likely to have evolved from ST 303, which was identified as 

the founder ST. As ST 16 is the most prevalent ST this could indicate the 

evolutionary development from ST 303 to ST 16 could confer an advantage 

for survival.  
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Understanding the evolution of infectious agents such as Salmonella is 

important for determining why a strain has become more virulent or resistant 

to treatment. Horizontal gene transfer of virulence genes or genes conferring 

antimicrobial resistance can occur amongst bacterial species and can result 

in epidemics (Bertrand et al., 2006). Another tool used to study the evolution 

of infectious agents, as well as the biology and mechanisms of host 

adaptation, is complete genome sequencing. Complete genome sequences 

are available for a number of Salmonella isolates including S. Typhi CT18, S. 

Typhimurium LT2, S. Pullorum RKS5078, S. Enteritidis PT4  isolate P125109 

and S. Gallinarum 287/91 (Feng et al., 2012, Parkhill et al., 2001, McClelland 

et al., 2001, Thomson et al., 2008). These serovars represent those that 

target a broad host range and those that are host-adapted, which has 

allowed comparisons between the 2 groups to understand how these 

serovars have evolved to be as they are. Although the host-adapted serovars 

are adapted to different hosts, they have all evolved to barely colonise the 

intestinal tract and to cause severe systemic infection (Shivaprasad, 2000). 

Genomic sequencing and analysis has found that host-adapted serovars 

possess a significantly higher number of pseudogenes, in addition to 

insertions and deletions, compared to serovars that can target a broad host 

range (Thomson et al., 2008, Feng et al., 2012, Parkhill et al., 2001). A large 

number of pseudogenes known in host-restricted serovars were identified 

virulence genes and are therefore, thought to account for the main 

differences in host range between Salmonella serovars.  

 

A reference whole genome sequence has been generated by the Wellcome 

Trust Sanger Institute (Cambridge) for S. Virchow, although it has currently 

not been published (http://www.sanger.ac.uk/resources/downloads/bacteria/ 

salmonella.html). Comparison of the S. Virchow genome to other Salmonella 

serovars would provide great insight into the mechanisms of its 

pathogenesis. Although this study has shown S. Virchow to have similar 

infection biology to S. Typhimurium in chickens some differences between 

the 2 serovars are apparent. Firstly, S. Typhimurium is isolated from a wide 

range of hosts including humans, mice, chickens, pigs, cattle and sheep 

(DEFRA, 2008c, DEFRA, 2010). S. Virchow, although it could cause an 
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infection in these hosts is rarely reported to be isolated from hosts other than 

humans and chickens (Bonalli et al., 2011, Fashae et al., 2010). Therefore, 

although this study has characterised S. Virchow as a broad range serovar, it 

is likely to be more host-adapted than S. Typhimurium.  Secondly, although 

S. Virchow causes similar infection biology in chickens compared to S. 

Typhimurium F98, it has been shown to be highly invasive in humans and 

has a significantly higher invasive index compared to S. Typhimurium 

(Langridge et al., 2009, Jones et al., 2008). It would be very interesting to see 

if S. Virchow showed some evidence of genome degradation or an increase 

in pseudogenes, seen in other serovars, to explain its relative host-

adaptation compared to S. Typhimurium and its tendency to cause invasive 

disease in humans.  

 

In vitro experiments using cell lines are used regularly to begin to understand 

the mechanisms that the pathogen uses to interact with the host. Gene 

knockout mutants are often used to infect cell lines, to determine if the 

particular gene has an effect on the virulence of the pathogen, before the 

mutant is used for in vivo experiments (Jones et al., 2001). Therefore in vitro 

experiments can be used to provide a baseline for in vivo experiment 

hypotheses. Throughout this study S. Virchow was found to encode 12 

virulence genes (prgH, sopB, sopE, invA, sitC, spiC, sifA, misL, orfL, pipD, 

iroN and pefA), which have all been associated with adhesion, invasion and 

persistence in the host (Hughes et al., 2008, Dione et al., 2011, Skyberg et 

al., 2006). It would be interesting to see if mutants in some of these genes, 

particularly pefA and sopE that are absent from some serovars, impair S. 

Virchow in the invasion and persistence assays that were performed in 

Chapter 3. Additionally, if complete genome sequencing identified any 

virulence genes present in S. Virchow that were absent in S. Typhimurium, it 

would be exciting to see if they affected S. Virchow’s pathogenesis in these 

cell models.  

 

The in vitro cell models in this study have shown that S. Virchow can invade 

and persist in human and avian cells for at least 24 hours. In vitro human cell 

models are regularly used and are especially useful for attaining an insight 
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into host-pathogen interactions, as in vivo experiments are inevitably very 

limited (Vo et al., 2007, Shah et al., 2011, Nandakumar et al., 2009, Salazar-

Gonzalez et al., 2004). The results from Chapter 3 have shown S. Virchow is 

invasive and persistent in human Caco2 cells. Such behaviours are required 

to invade the mononuclear-phagocyte system and cause systemic infection. 

Therefore, these results are consistent with S. Virchow’s invasive nature in 

humans. S. Virchow infection of Caco2 cells induced a significantly higher 

inflammatory response compared to S. Typhimurium F98 and LPS, although 

the mechanisms for this remain unclear, as S. Typhimurium showed similar 

levels of invasiveness. Upon identifying potential genes for S. Virchow 

virulence, it would be interesting to see if the any of these mutants affected 

S. Virchow in the Caco2 cell model, where it was shown to be significantly 

more inflammatory than S. Typhimurium F98.  

 

Invasion and persistence of Salmonella in avian macrophage cells has been 

studied widely and is of great interest, as macrophages are part of the innate 

immune response against the pathogen, but are also an environment 

Salmonella can survive in during systemic and persistent infection (Wigley et 

al., 2005, Wigley et al., 2002b, Chappell et al., 2009). The results from 

Chapter 3 show that S. Virchow can invade HD11 macrophage-like cells and 

persist in them; however, counts declined slightly by 24 hours, suggesting the 

time it can persist in avian macrophage cells may be limited. It may have 

been useful during this study to do a longer time point, for example cell 

counts at 48 hours, to further characterise S. Virchow’s persistence in avian 

macrophage cells. The concentration of nitrites produced against S. Virchow 

was higher at 8 and 24 HPI than produced against S. Typhimurium F98, 

indicating that S. Virchow is inflammatory in avian cells. 

 

Although in vitro studies using cell lines have undoubtedly been valuable for 

studying pathogen-host interactions, in vitro experiments have limitations and 

the necessity of in vivo infection models has been highlighted by some 

studies. An understanding of how Salmonella proliferates, spreads and 

distributes in organs can only truly be determined using in vivo infection 

models, which has recently been achieved using advanced molecular and 
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bioimaging techniques in combination with mathematical models (Mastroeni 

et al., 2009). Fluorescence microscopy studying the intracellular distribution 

of Salmonella has shown the infection loci within an organ only consists of a 

low number of bacteria and following replication the bacteria do not increase 

in numbers within the loci, they spread to new sites (Sheppard et al., 2003). 

This distribution pattern of S. Typhimurium has been suggested to be a 

mechanism of evading the immune response, as the distribution occurs in 

parallel with the escalation of the host immune response (Sheppard et al., 

2003). The main mechanism of bacterial growth is thought to be through 

necrotic cell death of host cells and therefore release of the bacteria into the 

extracellular space (Sheppard et al., 2003, Mastroeni et al., 2009, Brown et 

al., 2006). A proposed model in which the burst rate of infected cells is 

independent of the net growth rate of the bacteria is consistent with this idea 

of intracellular bacterial distribution (Brown et al., 2006, Mastroeni et al., 

2009).          

 

The in vivo findings in Chapter 4 show that S. Virchow has similar infection 

biology to S. Typhimurium in chickens. S. Virchow colonised the caeca at 

high levels and caused transient systemic infection, although bacterial counts 

were always slightly lower than S. Typhimurium. These results indicate that 

S. Virchow is characteristic of a broad-range Salmonella serovar, rather than 

a host-restricted one, which would cause rapid, severe systemic infection 

(Shivaprasad, 2000). During infection, the chickens exhibited no clinical 

symptoms of being unwell, indicating S. Virchow and S. Typhimurium have 

low pathogenicity in chickens. However, both S. Virchow and S. Typhimurium 

have been shown to be invasive and cause systemic disease depending on 

the strain and the host they are infecting (Gulig and Doyle, 1993, Kingsley et 

al., 2009, Sato et al., 2000, Schifferdecker et al., 2009).  

 

Previous studies have used whole genome microarrays to identify genes 

expressed by Salmonella in the intestine of the host and have found that 

expression is different to that in vitro in broth (Dhawi et al., 2011, Harvey et 

al., 2011). Additionally, expression of genes in the intestine and during 

systemic invasion by Salmonella has been shown to be conserved when the 
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bacteria invade different species and also to be host-specific (Carnell et al., 

2007, Morgan et al., 2007, Morgan et al., 2004). It would be interesting to use 

whole genome microarrays to determine what virulence genes S. Virchow 

expresses in the chicken intestine during infection and to compare this with 

expression in other hosts and in vitro.  

 

A large body of research has focused on understanding the immune 

response produced by poultry against Salmonella infection; however, the 

response can vary according to the infecting serovar, the host’s age, the 

host’s genetic background and the dose of the infecting serovar, making 

generalisation of findings impossible (Beal et al., 2005, Berthelot-Herault et 

al., 2003, Schokker et al., 2012, Setta et al., 2012b). The results in Chapter 5 

show that S. Virchow stimulates an immune response in 7 day old chickens 

similar to that caused by S. Typhimurium F98, indicating further that S. 

Virchow is characteristic of a broad-range serovar. Evidence of an acute 

inflammatory response was found in the ileum of chicks infected with S. 

Virchow including, an increase in cytokines IL-1β and IL-6 and an increase in 

the chemokine CXCLi2 by 5 DPI. Following this, an increase in IFN-γ and an 

increase in T cells positive for CD4, CD8α, CD8β, MHC II, KuL01 and γδ 

TCR were found in the ileum, indicating an innate immune response, a T 

helper as well as a cytotoxic T cell response and an IFN-γ T cell mediated 

response had occurred. Immune responses were found in the caecal tonsil 

and systemically in the spleen, which were also representative of an 

inflammatory immune response and an IFN-γ T cell mediated response. An 

increase in IFN-γ and lack of IL-4 throughout the experiment suggests the 

immune response against S. Virchow is primarily Th1-mediated rather than 

Th2-mediated, as shown with other serovars during infection of chickens (He 

et al., 2011). However, despite the lack of IL-4 expression a strong humoral 

immune response occurred during S. Virchow infection, shown by a classical 

pattern of a rise in serum IgM, followed by a rise in IgA and IgG. Additionally, 

staining of the caecal tonsil with the B cell marker Bu1a showed an increase 

in the number of positive cells during S. Virchow infection.  

 



Chapter 7  General Discussion 

161 
 

The findings in Chapter 5 present valuable information showing the immune 

responses produced by chickens against S. Virchow and could be built on to 

enable immunological preventative or therapeutic approaches. Although RT-

PCR has the drawback of measuring mRNA expression levels, which may 

not necessarily correlate with the amount of activate protein, it is a highly 

sensitive method that can be used widely to reliably quantify avian cytokines 

and chemokines and could be used further to characterise the immune 

responses against S. Virchow in poultry. IL-17 is a pro-inflammatory cytokine 

produced by a T cell subpopulation characterised as the Th17 lineage, which 

is distinct from the Th1 and Th2 lineages (Weaver et al., 2007). IL-17 has 

been identified in chickens and shares 37 – 46% amino acid sequence 

identity to the mammalian homologue (Min and Lillehoj, 2002). IL-17 has 

been shown to be produced in the caecum of chickens following S. Enteritidis 

infection and is thought to contribute to inflammation in the gut during 

infection and indicates the Th17 arm of the immune response is also involved 

in the chicken immune response against Salmonella (Crhanova et al., 2011). 

It would be interesting to see if this part of the immune response was also 

activated following S. Virchow infection. Additionally, the array of cytokines 

measured in this study did not include anti-inflammatory ones. Previous 

studies have found a rapid decline in inflammatory cytokines, such as IL-1β 

and IL-6, correlates with an increase in anti-inflammatory cytokines, such as 

IL-10 and TGF-β4, which prevent over-expression of pro-inflammatory 

cytokines that could start to cause harm to the host (Kogut et al., 2003, 

Withanage et al., 2004, Withanage et al., 2005b).         

 

An understanding of the host’s immune response to infectious pathogens, 

such as Salmonella, is necessary to be able to develop effective preventative 

measures against the spread of infection. Vaccination is seen as the 

optimum method to control Salmonella infection in chickens (Barrow, 2007). 

Vaccines have been developed that have successfully reduced S. Enteritidis 

contamination of eggs and subsequently a bivalent vaccine has been 

developed for S. Enteritidis and S. Typhimurium that has reduced caecal 

shedding of the serovars (Cogan and Humphrey, 2003, Clifton-Hadley et al., 

2002). Since the development of these vaccines, research has focused on 
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developing one with increased efficacy. A range of virulence factors have so 

far been selected as potential candidates for a vaccine including ligands of 

TLRs, SPI structural and effector proteins and OMPs; however, have 

demonstrated limited efficacy by reducing Salmonella colonisation and 

caecal shedding, but not eliminating the spread of the disease (Kogut et al., 

2005, Matulova et al., 2012, Kaneshige et al., 2009). 

 

The experiments in Chapter 6 were designed to determine if primary infection 

of S. Virchow offered any protection against secondary infection with S. 

Virchow or cross-serovar protection against S. Typhimurium F98 and to 

establish the differences in the immune response produced during secondary 

infection. The results revealed some protection against systemic invasion by 

both serovars; however, primary infection with S. Virchow offered limited or 

no protection against re-infection with this serovar or S. Typhimurium. 

Measurements of serum Ig revealed a stronger and greater immune 

response against secondary infection, as well as cross-reactivity between S. 

Virchow antigens and serum from chickens infected with S. Typhimurium and 

vice versa. Western blotting identified 2 proteins ~80 kDa and ~38 kDa that 

reacted and cross-reacted strongly against serum from infected chickens. It 

would be interesting to further characterise these proteins and to find out 

there immunogenic potential. Firstly, to identify what the 2 proteins are, which 

has been done previously using monoclonal and polyclonal antibodies 

(Ochoa-Reparaz et al., 2004). Following on from this, it would be worthwhile 

determining if the 2 proteins elicit any immune responses in vitro using avian 

epithelial cells, before trialling the proteins in vivo (Khan et al., 2003, Paliwal 

et al., 2008). Additionally, it would be of use to establish the T cell mediated 

immune response against these proteins. Previous studies have focused on 

the humoral immune response during trials of potential vaccine candidates 

and while this is useful cell-mediated immunity is considered more important 

for control of Salmonella infection (Barrow, 2007, Gomez-Verduzco et al., 

2010).                           

 

Currently there is very little information available for S. Virchow. Previous 

studies have focused on the epidemiology of the serovar in countries where it 
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is more prevalent and have found it to be a particularly invasive serovar in 

humans (Weinberger et al., 2006, Weinberger and Keller, 2005, Weinberger 

et al., 2004, Matheson et al., 2010, Ispahani and Slack, 2000, Langridge et 

al., 2009). Additionally, some research has characterised the resistance of S. 

Virchow to antimicrobials, which is of concern because of its invasive 

behaviour in humans (Meakins et al., 2008, Bertrand et al., 2006, Ammari et 

al., 2009, Hopkins et al., 2007, Martin et al., 2001, Solnik-Isaac et al., 2007). 

The experiments outlined in this study aimed to characterise the genetic 

relationship of S. Virchow strains isolated in England, to determine the 

infection biology of it in vitro in avian and human cell lines and in vivo in 

chickens; to establish the consequent immune responses following infection 

and to investigate the potential of a vaccine through determining the immune 

protection offered by primary infection with S. Virchow.  

 

S. Virchow isolates in England appear to be closely genetically related, which 

is consistent with findings in other countries. All of the isolates possess 

genes associated with increased adhesion, invasion and persistence during 

infection that are often absent in other serovars and could contribute to the 

virulence of S. Virchow. During in vitro experiments, S. Virchow stimulated 

significantly greater IL-8 production by Caco2 cells than S. Typhimurium, 

indicating it is highly inflammatory in human epithelial cells. In vitro and in 

vivo experiments consistently showed S. Virchow exhibits similar infection 

biology to S. Typhimurium F98 in poultry. S. Virchow colonises the intestinal 

tract to high levels following oral infection of 7 day old chickens. It also 

causes transient systemic infection shown by the bacterial counts in the 

spleen and consistent with the HD11 invasion assay, suggesting the ability of 

S. Virchow to persist in macrophage cells is limited. S. Virchow stimulated all 

aspects of the immune system including the innate, humoral and cell 

mediated responses and caused an increase in pro-inflammatory cytokines, 

characteristic on a broad-range serovar. Additionally, the immune response 

was typical of a Th1-mediated one, rather than a Th2-mediated response. 

Initial findings in Chapter 6 suggest the protection offered by S. Virchow 

against secondary infection is not adequate enough to prevent colonisation of 

the intestinal tract and caecal shedding of the serovar. However, evaluation 
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of the humoral immune response showed a strong and fast reaction to 

secondary infection compared to primary infection and therefore the potential 

of a vaccine candidate for S. Virchow warrants further investigation.     
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