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ABSTRACT 

Because of instrument imprecisions and human inconsistencies, measurements are not 

free of error. Technical error of measurement (TEM) is the variability encountered 

among dimensions when the same specimens are measured at multiple sessions. A goal 

of a data collection regimen is to minimize TEM. The few studies that actually quantify 

TEM— regardless of discipline—report that it is substantial and can affect results and 

inferences.  

Objective: This paper reviews some statistical approaches for identifying and controlling 

TEM. Statistically, TEM is part of the residual (―unexplained‖) variance in a statistical 

test, so accounting for TEM—which requires repeated measurements—enhances the 

chances of finding a statistically significant difference if one exists.  

Methods:  

It has been the author’s intention to perform a thorough review and discuss statistical 

design relating to types of error and statistical approaches to error accountability. This 

paper address’ issues of landmark location, validity, technical and systematic error, 

ANOVA, scaled measures and correlation coefficients in order to guide the reader 

towards correctly identify true experimental differences. 

Conclusions: 

Researchers commonly infer characteristics about populations from comparatively 

restricted study samples. Most inferences are statistical, and, aside from concerns about 

adequately accounting for known sources of variation with the research design, an 

important source of variability is measurement error. Variability in locating landmarks 

that define variables is obvious in odontometrics, cephalometrics and anthropometry, but 
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the same concerns about measurement accuracy and precision extend to all disciplines. 

With increasing accessibility to computer-assisted methods of data collection, the ease of 

incorporating repeated measures into statistical designs has improved. Accounting for 

this technical source of variation increases the chance of finding biologically true 

differences when they exist.  
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INTRODUCTION  

There is not much of research interest that can be measured without error. Consider 

measuring the same object like a tooth several times. Part of the inevitable variability of 

these measurements is due to the finite consistency and read-out precision of the 

instrument used to measure the object and the other is due to human inconsistency. 

Multiple measurements of the same variable will not always be the same because of 

variability in the measurement process 
1,2

. There are some obvious ways to reduce intra-

observer repeatability 
3,4

, such as exactly defining the landmarks that determine a 

measurement, enhancing observer experience (and, thus, consistency), and avoiding 

fatigue, but wholly eliminating this source of variation is difficult.  

 

Suppose a specimen’s true trait size (for some dimension of interest) is θi and that this 

dimension is repeatedly measured with some device (e.g., ruler, callipers, a computer 

program), then the observed value (Xij) will be  

                                                                Xij = θi+ ηij  

where θi is the true size of the feature being measured on specimen i, and ηij is the error of 

measurement 
5
. True size is what we want to capture when we take a measurement. In 

practice, η will seldom be zero because of variability in the measuring device and how it 

is used (i.e., variability introduced by the observer). One supposes that θi is constant (i.e., 

a theoretical construct that would be obtained if the specimen were re-measured  

innumerable times), while ηij varies among data collection sessions. One goal of data 

collection is to minimize the ηij. One goal of data analysis is to quantify this source of 

variation and, hopefully, remove its influence from interpretation of the biological 

differences being tested. A necessary statistical assumption here is that trait size (Xij) is 
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independent of the error of measurement (and this is easily testable).  

 

Innumerable dimensions of a tooth can be constructed 
6,7,8,9

, but none can be measured 

without error. In fact, there are two complementary issues: accuracy and precision 
3,10

. 

Accuracy is the closeness of measured values to the true value. Precision, in contrast, is 

the closeness of repeated measurements of the same quantity (Fig. 1). Importantly, 

―Unless there is bias in a measuring instrument, precision will lead to accuracy‖
10

. 

Consequently, unless there is some reason to suspect precision issues, attention needs to 

focus on improving measurement accuracy which means reducing intra-observer error. 

(Between-observer differences commonly are larger than within-observer differences 

11,12
, but this topic is ignored here to conserve space; moreover, most of the concepts 

reviewed here are directly applicable to issues of inter-observer reliability). The 

reproducibility of a measurement is depressed when there are problems with accuracy 

and/or precision 
2
.  

Validity  

Another term to be introduced here is validity. Validity is defined differently in 

various disciplines of research; we mention just two of these, namely (1) construct 

validity and (2) statistical validity. Construct validity is an issue of importance in fields 

such as psychology and sociology, but is seldom encountered in the biological sciences 

where the dependent variable (e.g., cell density, tissue thickness, tooth pulp volume) is 

amenable to direct mensuration. Roughly, construct validity involves methods such as 

questionnaires and preference scales to estimate an underlying latent variable such as 

beauty or intelligence or loneliness. One area of concern here is whether the test (a set of 
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questions, psychometric exercises, etc.) actually measures what it is intended to measure 

13,14
. A second, statistical concern is how to formulate the optimal test instrument that 

best quantitates the underlying construct; this procedure now relies on multivariate 

techniques, notably factor analysis 
15,16

.  

 

In contrast, statistical validity refers to the degree to which an observed result can be 

relied on not to result from technical errors of measurement plus ―other‖ statistical 

considerations, but ―other considerations‖ involve the very broad topic of appropriate 

statistical methodologies. We can do little more in this brief space other than raise the 

issue that ―Inappropriate statistical methods, as well as appropriate methods 

inappropriately used, can lead to incorrect conclusions of any research report‖ 
17

. The 

huge growth of statistical methods in recent years has made the choice of statistical 

analysis let alone how to do the tests correctly harder and harder for the researcher. Each 

journal seems to contain an occasional article criticizing the high frequency and severity 

of statistical mistakes seen in that discipline’s publications 
18-25

. These critiques, 

generally written by biostatisticians, identify errors ranging from the simple to the 

complex, and their concluding remarks typically are along the lines (1) that proper 

statistical analysis is complex, with a good dose of art as well as science in the analysis, 

so (2) the research team needs to collaborate with a statistician during all stages of the 

project. Unfortunately, these disclosures take the researcher no closer to understanding 

because, again, the field of statistical analysis has burgeoned, and the knowledge base far 

exceeds what people not wholly devoted to this specialty can claim competence in. 

Statistical validity involves a broad range of considerations, including (1) appropriate 
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research design, along with whether the data collected actually pertain to the question 

being asked; (2) appropriate level of data (nominal, ordinal, interval, ratio)
26

; (3) 

adequate sample sizes 
27

; (4) data meeting assumptions of the inferential statistical tests 

10, 28
; (5) that the tests themselves are appropriate and efficient; and (6) that inferences 

drawn from the tests are appropriate 
29

.  

 

Technical Measurement Error  

The only way to quantify TEM is by taking repeated measurements on the same objects. 

It generally is assumed that the mean of a series of repeated measurements is the best 

available estimate of an object’s true size. It has been conventional 
30

 to take just two 

measurements per specimen (one measurement and a repeated measurement), but this 

actually is just the lower limit, and it can be useful to increase the repetitions 
1,31 

to better 

assess this source of unintended variability.  

 

Why bother with repeatability error? There are several reasons, but an important 

perspective is that repeatability errors are part of the residual term in most any statistical 

test 
5,10

. Reducing repeatability error increases the among-to-within ratio of variances, 

thereby increasing the chances of finding a statistically significant difference if one 

exists.  

 

Repeatability errors can be random or systematic 
32

. Examples of systematic errors can be 

constant (due to personal biases or, perhaps, handedness) or they can occur across time 

(e.g., progressive accuracy with greater experience, or a shift in measurer’s style, or 

landmark interpretations) or among instruments. For example, radiographic 
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(cephalometric) studies are susceptible to systematic errors because the X-ray source is at 

a finite distance from the object and film, so there is some magnification. The amounts of 

magnification can differ systematically between machines 
33,34

. Not correcting for 

magnification—on the order of 6-8% for most cephalometric arrangements 
35,36

 

systematically overestimates true size, and comparing linear distances from X-rays taken 

on different machines is likely to produce systematic biases if magnification is not taken 

into account. So too, as a child’s head grows with age, his mid-sagittal plane is moved 

farther from the film, which systematically increases image magnification, and peripheral 

structures are enlarged more than those centred in the X-ray bean. The use of helical 

computer tomography and other sophisticated three-dimensional systems will help 

control for magnification error, but errors in landmark location seem unavoidable (but are 

improved with greater pixel resolution) 
37

. 

 

Systematic errors hardly are limited to cephalometrics, however. Systematic errors 

commonly are detectable with statistics that test for differences in sample means (e.g., t-

tests, ANOVA, sign tests), but variation due to random influences requires less-obvious 

sorts of analysis. The present discussion focuses primarily on random sources of 

variation, notably due to variability in an observer’s assessments 
38,39

.  

 

The comments in this overview apply to continuous (interval and ratio scale) variables, 

not those recorded using nominal or ordinal scales where other statistical methods of 

concordance are better suited 
40,41

. So, for example, when the basal area of a molar cusp 

is measured as a ratio-scale variable 
42

, repeatability error can be described using methods 

reviewed in this paper. When, instead, cusp size is recorded on an interval scale 
43

, other 
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methods of internal agreement are needed.  

 

Cameron 
44

 points out that the literature on TEM can broadly be categorized into two 

complementary approaches: One is technical, where the goal is to standardize data 

collection methods by specifying operational definitions of landmarks, standardizing 

operator styles and instrumentation and other sources of variability. There is a useful 

literature describing TEM as it relates to anthropometrics (body measurements), where 

observers’ styles of data collection can be a significant source of variability 
4,38,39,45,46

. 

Critical too are stylistic differences that can affect sample means 
2
. The latter is a 

particular problem if, as often occurs, different observers measure different groups, so the 

cause of a difference—whether it is due to measurement bias and/or a true biological 

difference cannot be disentangled.  

 

TEM is particularly influential in longitudinal studies because the sizes of measurement 

errors are large vis-à-vis the amounts of growth. The closer together the measurements 

are taken, the greater the chance that TEM can confound the biological differences 
47,48

. 

Perhaps the extreme example is where measurements are taken daily in order to study the 

episodic (―saltation and stasis‖) nature of growth 
49,50

.  

 

TEM inflates the dispersion of the measured dependent variable, as reflected in the 

sample characteristics such as variance, standard deviation, and standard error of the 

mean. Greater variability thus depresses the chances of finding a statistically significant 

difference if one exists, thereby increases chances of a Type II error (i.e., accepting the 

null hypothesis of no difference when it is false). When variance due to TEM still seems 
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a problem, but it cannot be further reduced technically, one solution is to increase sample 

size 
32,51

. Power analysis—the estimation of sample sizes needed to be reasonably 

confident of rejecting the null hypothesis when it is false—can be particularly useful at 

the beginning of a study to evaluate an experiment’s practicality with the sample sizes to 

be studied 
27

. Prior studies that used comparable data collection methods probably 

incorporate TEM as part of their own parameter estimates, so they can practicably be 

used to estimate needed sample sizes.  

 

Correlation Coefficients  

Researchers frequently understand that measurements incorporate some degree of error 

due to human inaccuracies, but it is not always evident how best to deal with this. A 

common, intuitive solution is to calculate a Pearson product-moment correlation 

coefficient (r). After all, the reasoning seems to be, correlation measures the association 

between paired sets of data. Characteristically, though, the resulting correlation is always 

fairly high unless measurement error is huge. The effect of random (but not systematic) 

errors is to reduce the strength of the correlation coefficient, but there are several other 

shortcomings of the correlation coefficient. First, r is a measure of the mutual relationship 

between two variables; it does not measure the strength of agreement 
52,53

.  

 

Strength of a correlation also depends on the range of the variables: r can be increased 

simply by choosing a greater range of variables. This is evident when examining a 

bivariate plot as in Fig. 2. Viewing the whole graph makes the arrangement of points look 

pretty linear. Focusing, instead, on any small portion of the graph and the perceived 
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association is much weaker because of the considerable local scatter. A researcher can, 

then, enhance the strength of the correlation by being sure to include a large range of 

points along the axes. Also, Pearson’s r only is sensitive to the linear association between 

two variables, which can be an unnecessarily restrictive assumption when the degree of 

reliability is of interest. That is, the correlation coefficient measures the trend throughout 

the range of the distribution of one variable to be consistently accompanied by a change 

in the other variable. A more complex model is needed to test for curvilinear associations 

54
. Correlation does not measure agreement. Consider two sets of measurements, one 

consisting of the ―correct‖ measurements and the second equal to the first but with a 1-

inch offset (Fig. 3). The correlation is not affected because the measurements still 

characterize the same straight line, but the agreement is now horrendous.  

 

Additionally, given repeated pairs of measurements, there is no logic in labelling one as 

the X (independent) and the other as the Y (dependent) variable. This assumption, in 

itself, negates the use of r as a measure of reliability. Consider that a correlation 

coefficient is computed between two columns of data: if the paired values of some rows 

are swapped, the correlation will be different. There is no fixed correlation between two 

data series; r is a variable measure of agreement subject to manipulation 
53

. 

 

Use of the intra-class correlation coefficient (ri) provides a solution to the latter problem 

of treating variables from one measurement session as independent and a second session 

as dependent 
54

. The ri is the average correlation regardless of the ordering of pairs of 

data, so that shortcoming of Pearson’s (interclass) correlation is avoided. Moreover, the ri 

can be used to evaluate any number of measurement sessions, not just two. Indeed, the 
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requisite assumption of ri is that the variables of each session have equal means and 

variances 
5
. Thus, this is a better model conceptually, and it also means that just two 

rather than four parameters need to be estimated (because a common mean and common 

variance are assumed for the two variables), so the test is more reliable. However, ri is less 

well known to researchers, and few statistical packages calculate ri directly. Instead, ri commonly has to be 

calculated from the output of a model II (repeated measures) ANOVA 
10

, and this is 

discussed in a later section. Shortcomings of the intra-class correlation are similar to 

those of other correlation coefficients:  

 

(1) it is unit-less, so it imparts no information about the magnitude of the differences 

between measurements (cf. Fig. 3) and (2) strength of ri can be manipulated by altering 

the range of observations, which means it is subject to sampling fluctuations that are 

―hidden‖ unless its confidence limits also are reported.  

 

Systemic Errors  

Systematic errors are due, for example, to different devices or different kinds of data. We 

mention here a couple of systematic tooth size differences, just because they are familiar 

to this audience. Measuring extracted teeth yields systematically larger mesiodistal 

dimensions than when the teeth are in situ. The beaks of callipers, even if machined to 

fine points, typically cannot get fully into the embrasures to yield a tooth’s maximum 

MD diameter. The situation is worse if plaster dental casts are used, because the 

impression material does not preserve the infinitesimal space between tightly 

approximated teeth. Measurements of isolated teeth therefore are systematically larger 

mesiodistally than measurements from casts of the same teeth. Another systematic 
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hindrance in measuring teeth in the living is that the gingival margins commonly overlap 

the CEJ (cemento-enamel junction), yet the maximum bucco-lingual dimensions of 

human incisors are commonly subgingival 
55

. Gingival recession tends to be age-

progressive, so it is common to find larger BL dimensions in older people 
56

. Rather than 

proving that people with bigger incisors live longer, the trend with age needs to be 

recognized as a systemic source of measurement error because the fiducial points change 

with time along the base of the crown.  

 

In concept, systematic differences are easy to detect statistically, but this assumes that the 

nature of the effect is itself simple. For example, differences between measuring sessions 

could be due to the use of different callipers with differently shaped beaks. Test for a 

mean difference between sessions can be done with a paired t-test (or a repeated-

measures ANOVA if there are more than two sessions). It is important not to rely on the 

more-familiar group comparison form of the t-test because it is relatively inefficient. 

With a paired t-test, the standard error (denominator) of the test is smaller because the 

pairs of data are correlated, so the chances of finding a difference if one exists is greater. 

The paired t-test is equivalent to testing whether the mean difference between pairs 

differs from zero. Comparably, the ANOVA design also should capitalize on the repeated 

nature of the data when testing for mean differences among sessions.  

 

Quantifying Technical Error of Measurement  

Historically, Gunnar Dahlberg was the first to provide a formula for repeatability error. 

Dahlberg first published the formula in 1926 
57

, but his statistics textbook published in 

1940 is more readily available 
30

. The well-known equation is  
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where d is the standard deviation calculated from two sets of n repeated measurements 

(set 1 and set 2) taken from i = 1 to n specimens. Consider the data in Table 1 where 20 

specimens were measured three times. Dahlberg’s d for T1 and T2 is 0.084, which is just 

less that a tenth of a millimetre. Dahlberg’s d is the standard deviation of the sample of 

double determinations, not the average difference. This is a measure of the variability, 

both random and systematic, due to technical inconsistencies. We assume (1) that this 

value is the same for all specimens otherwise there is no point in estimating it 
1
 and  

(2) by randomly selecting cases to re-measure, we assume that the estimate of method 

error can be extrapolated to the whole sample.  

 

Solow 
58

 suggests that d be termed the method error, though TEM (technical error of 

measurement) coined by Johnston 
45

 has become the favoured term in many circles. 

Dahlberg’s d (occasionally labelled s i) is sometimes labelled Solow’s error statistic 

because Solow described the formula without citing any source. The denominator is 2n 

because the variance of two observations is one-half their squared difference, so n in the 

denominator is the number of paired observations and the ―2‖ halves the value of the 

numerator 
32,59

. The square root sign in the equation yields the standard deviation from 

the variance. The ―Dahlberg formula‖ is commonly encountered in research publications, 

though its supposed formulation is rather frequently miss-stated. Mueller and Martorell 
46

 

show how the formula can be generalized (A) to multiple observers (inter-observer 

repeatability) and/or (B) to more than two sets of measurements.  
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A number of statistical notes by the statisticians Bland and Altman 
1,31,53,60

 collectively 

provide a useful guide to the estimation of repeatability error, and these are mostly 

available gratis on the internet. Bland and Altman promote the use of sw, which is the 

standard deviation of the repeatability error and, synonymously, the within-subject 

standard deviation 
1
.  

 

It is worth reviewing the simplest structure for estimating repeatability, where there are 

two measurement sessions, because this structure is so commonly encountered. Consider 

just the first two data columns (T1 and T2) in Table 1. ANOVA produces the results in 

Table 2. The mean within-subject variance is 0.007, so the within-subject standard 

deviation is the square-root of this (sw), namely 0.084 mm. This means that most (+ 1 sd) 

technical errors are expected to be in the range of -0.8 and +0.8 mm around the mean 

because 1 sd bounds 68.2% of the distribution when the sample is normally distributed. 

Comparably, + 2 sd bounds about 95% of the distribution of errors. What if, instead, we 

want to characterize the sampling distribution of the mean error (not the distribution of 

data points themselves).  

 

What Bland and Altman 
1
 point out is that √2 times sw yields the standard error of the 

mean (because a standard error is √sd/n and sw is the sd). Therefore, √2 x 1.96 x sw 

defines the 95% confidence limits of the method error. This range can be useful if 

different measurement techniques are compared 38. If, graphically, the 95% confidence 

limits of two methods do not overlap, that is suggestive that the methods’ means differ 

significantly (at alpha = 0.05). Also, a significantly more accurate measurement method 
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would be supposed to have smaller confidence limits than the other.  

 

Bland and Altman do not mention it, but when, as is common, there are two 

measurements per subject (and no missing data), their statistic sw can be rewritten as a  

variance , where d i is (X1i-X2i), showing that it is identical to the Dahlberg 

statistic. The attractiveness of sw—and the underlying repeated-measures ANOVA 

design—is that it can be extended to any number of measurement sessions, more complex 

models can be tested 
5,61

, and sample sizes among sessions need not be equal.  

 

Mention should also be made to the well-known Bland-Altman plot 
1,60,62,63

. This 

graphical approach is easy to conceptualize (Fig. 4); the means of the repeated measures 

are arrayed along the X-axis and the differences between the corresponding pairs of 

measurements are plotted on the vertical axis. If the two measurement sessions measured 

the specimens the same in an unbiased manner, the plot would show a random scatter of 

differences around a mean of zero. The plot provides a visual sense of whether 

repeatability error depends on trait size, where either smaller or larger specimens might 

be at risk of greater intra-observer discrepancies. The Bland-Altman plot was devised to 

evaluate two measurement techniques, but it likewise provides a simple test to evaluate 

trends among any sort of repeated measures. If desired, a suspected trend can be tested by 

regressing the differences on the mean sizes to assess whether trait size is predictive of 

the magnitude of TEM 
63,64

.  

 

Model II ANOVA  

There are any number of elegant repeated-measures ANOVA models that can be 
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designed to accommodate the analysis of method errors 
5,47,51

. Shrout and Fleiss 
65

 detail 

the analyses of three typical reliability designs: (1) each specimen is measured by a 

different set of observers, (2) a sample of observers measure specimens but just the 

specimens’ means are analyzed, or (3) specimens are measured by multiple observers, but 

they are only observers of interest (model I). Having said this, the most commonly 

encountered situation in the biological sciences seems to be accommodated by a single 

classification ANOVA model. Take, for example, the table of mesiodistal tooth crown 

dimensions in Table 1 for a hypothetical set of maxillary central incisors. Measurements 

were made of 20 specimens on three occasions for a total of 60 observations. The concept 

is that these teeth were chosen at random from a larger odontometric study. We care little 

about these 20 specimens themselves; instead, we want to use the results from these 20 

specimens as representative of findings applicable to the larger sample. Analogously, we 

have little interest in the three measurement sessions per se; instead, these repetitions are 

perceived as sessions chosen at random from among the indefinitely large number of 

repetitions that could have been performed.  

 

The required arrangement of the actual data differs among statistical programs. The 

JMP package (SAS Corp, Cary, NC) was used to produce Table 2. Just as in prior 

sections, the goal oftentimes is to obtain the within-subject standard deviation, which 

Bland and Altman 
1
 term sw for the within-specimen error. Other information is also 

available, such as how large the variance components are within and among subjects 

and, importantly, their relative magnitudes which includes the intra-class correlation 

(ri).  
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Ri  = 
Es-E                      0.815-0.005                      0.800 

Es+(n-1)E            0.815+(2-1)0.005                 0.820  
 

= = = 0.98 

 

Of course, there will be size variability among the teeth due to some interplay of genetic 

and environmental differences among individuals. The among-specimen variance is one 

component of the ANOVA model. If the repeated measurements for each tooth were 

identical, all of the variance would be among specimens; there would be no additional 

within-specimen variance. Predictably, though, there are some measurement 

inconsistencies, and this within-specimen variance adds to the total variance. A common 

statistical question is what is the relative magnitude of the method error?  

 

Expected specimen mean square (Table 3) is composed of a weighted combination of the 

variances within and among specimens, so the among-specimen variance  

 alone is (0.815 – 0.005)/2 = 0.405. This value (  ), divorced from measurement 

error, is the variance of the true measures estimated from the population from which the n 

specimens were selected.  

The intra-class correlation coefficient is the ratio of the among-to-total variances,  

 

With an equal number of observations per specimen, ri can also be calculated as  

 

 

 
 

which is identical accounting for round-off error. (E is the subjects mean square; Es is 

the trials mean square.)  
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However, the correlation coefficient is not linearly related to the proportion of 

explained variance, but the square of this coefficient (  ) is. Therefore,  , known as 

the coefficient of determination, is the reliability of the procedure. In a complementary 

fashion, 
1-

 is labelled the coefficient of non-determination. In other words,  is the 

reliability of the procedure based on the estimate of true scores (  ) as a ratio of the 

true scores plus the error of measurement. (Since we can never know the true size 

parameter, all efforts are estimates.) In the absence of any method error,  will be 1.0. 

If desired, one can test the statistical significance of ri against the null hypothesis that  

= 0 by using the conventional ratio of variances. In this example, F = 0.815/0.005 = 

163, which is highly significant at any reasonable level of alpha.  

 

Buschang and colleagues 
66

 illustrate another informative approach to estimating 

reliability using comparisons of complementary ANOVA models 
67

. Quite briefly, 

reliability, as above, is defined as the ratio of explained variance to total variance. In its 

simplest form, with just one dependent variable, the full model is 

                                            Y = β0+ β1X1 + ε  

While the restricted model ignoring the dependent variables is  

        Y = β0+ ε  

Consider that the one independent variable here is a measure of TEM obtained by 

repeated observations. If β1X1 is a significant amount of the total variance, then the error sum of  

squares (SSEF) for the full model would be smaller than SSER for the restricted model, 

and we would expect the difference (SSER – SSEF) to be positive and large because the 
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variance due to β1X1 has accounted for (and, thus extracted) a discernible portion of the 

variance from SSEF. If, in contrast, the difference (SSER -SSEF) is quite small, then the 

term β1X1 is of no particular help in ―explaining‖ the model and can be ignored.  

 

As described by Kirk 
67

, this difference SSER -SSEF can be rewritten (when accounting 

for the appropriate degrees of freedom) as the ratio of mean squares due to regression of 

Y on X compared to the error (unexplained) mean squares, namely MSR / MSE. This 

ratio of mean squares can be tested as an F-ratio, and it also can be expressed as a  

coefficient of determination (r
2

), which is the proportion of the total variance among the 

Y values accounted for (―explained‖ in the statistical sense) by the independent variable 

β1X1. This coefficient of determination is termed reliability, and it is the proportion of the 

overall variance due to true, biological variation. So, if TEM were absent, r
2 

would be 1.0, 

and the higher the r
2 

(range of 0 to 1), the smaller the effect of TEM.  

 

In practice (as illustrated by Buschang 
66

), several independent variables (such as race, 

sex, age) would be tested along with the measure of repeatability error to yield a more 

complete interpretation of the sources of variation in the dependent variable. Likewise, 

the coefficient of determination attributable to each independent variable would be 

estimated against the hypothesis that the restricted model without one of more of the 

independent variables explains just as much of the total variance. Nowadays, mixed 

model ANOVA designs, with one independent variable being the TEM, can evaluate the 

sources of variance more efficiently 
51

.  
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Scaled Measures of Error  

How big is the repeatability error? By itself, a value of d, sw, or so some other measure 

tells us little about its influence because the error is unrelated to the dimension measured. 

For example, a mean technical error of 1 mm probably is inconsequential when 

measuring a person’s stature, but a mean error of 1 mm is considerable for a tooth that is 

a centimetre or less in size. Various measures of relative technical error have been 

developed (reviewed in Utermohle and Zegura 1982, 1983 
11,68

); most of these scale the 

error by mean size of the measurement.  

 

Looking again at the standard deviation of the TEM (d, sw), this value can be recast as d/ 

, where  is the mean of the variable. This can also be post-multiplied by 100 to 

provide a percentage of the method error relative to the size of the variable. This is 

termed relative technical error of the method 
39

, which is unit-less. However, as 

mentioned, d is the standard deviation of errors, not the mean error as implied by the 

relative TEM. For the comparison between T1 and T2 (Table 1), relative TEM would be 

0.84 / 8.57 = 0.009 or about 1% (where 8.57 is the mean of all 40 observations). 

Promoters suggest that this yields a more intuitive sense of how large the method error is.  

 

Kieser 
12,69

 expressed average repeatability differences as a function of the mean and 

showed that reproducibility of tooth crown dimensions varies considerably among 

tooth types, evidently because the defining landmarks are more or less accessible 

and/or well delimited. They report that relative difficulty in obtaining true maximum 

crown lengths, especially for the buccal teeth, makes MD dimensions more error prone 

to measurement error than BL breadths.  
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Sokal and Rohlf 
10

 suggest that the mean absolute difference of repeated measures is a 

useful indicator of how variable a measurement technique is, though it (and other scaled 

measurements) does not have the generalisability of ANOVA methods,  

 

This is more useful than the mean difference since positive and negative results 

do not average out to a misleadingly small average.  

 

DISCUSSION  

Repeatability errors can be minimized by properly regimented data collection methods, 

but they probably cannot be eliminated. We suppose that the true trait size is itself 

invariant, which seems a safe assumption for mineralized tissues observed at one point in 

time because, for example, they are basically incompressible. On the other hand, 

Utermohle and Zegura 
11

 provide a cautionary tail that something as seemingly 

immutable as a dry skull changes size under varying ambient conditions. Kieser 
12,69

 are 

among the few to have quantified TEM for odontometrics, and they reported that TEM 

introduces a ―large and noteworthy error component‖ into data collection, that TEM 

tends to increase with time between measurement sessions, and that it may be larger for 

MD than BL dimensions, perhaps because of greater obstruction when obtaining the MD 

measurements.  

 

The dual purposes of the present study are (1) to review some methods for quantifying 

the extent of the method error and (2) to suggest some statistical designs that help control 

this confounding source of variation. We wholeheartedly agree with Houston’s 
32
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perspective that, ―Error analysis is tedious and may seem to be unrewarding,‖ but it needs 

to be viewed as a necessary step in exploratory data analysis 
70

. Repeated measures of the 

same specimens provide the most informative data on the extent of method error, but it is 

not a panacea. As an example, Lundström 
71

 points out one basic shortcoming: What if 

measurements are repeated accurately but wrongly? If dental crowding prevents correct 

calliper placement, repeated measurements may be very consistent, but wrong. 

Analogously, stylistic differences (and handedness) of an observer may account for some 

of the directional asymmetries recorded for tooth dimensions 
72

.  

 

This overview of methods shows that researchers (and disciplines) have pursued two 

complementary approaches to method error: One is characterized by the intra-class 

correlation coefficient, where the strength of the association is quantified among 

measurement sessions, with larger ri disclosing smaller random variability caused by 

method error. The correlation coefficient is dimensionless, so it does not indicate ―how‖ 

close the repeated observations are. Other researchers opt for measuring method error in 

actual units; for example, Dahlberg’s d retains the units of measurement, though the sd, 

not the mean TEM, is obtained. Baumgarter 
73

 labels these two sorts of repeatability 

measures as relative and absolute, respectively. As is common with such complementary 

approaches, the ―best‖ (most informative) solution is to investigate both.  

 

Several researchers suggest that repeatability studies are useful as a preliminary step to 

the selection of the most reliable variables, namely those with the least method error 
11

. 

This certainly is reasonable, but it contradicts what seems to be a more fundamental 

issue. Dimensions to be used in a study ought to be chosen because they are informative 
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vis-à-vis the research question, not simply because they are reproducible. Maximum 

crown dimensions are a case in point. Mesiodistal and bucco-lingual dimensions entered 

the research arena simply because they are readily obtainable with callipers, not because 

of any biological imperative 
3
.  

 

Landmark Identification  

Studies of TEM in biological settings often report that landmark location is the major 

source of variability, probably because this step depends the most on human judgment. 

Much work in this area has focused on cephalometric studies, partly because there are 

several sources of TEM along the data collection track 
74,75

 but also because treatment 

decisions and the evaluation of treatment outcomes can depend on them 
32,76,77,78

.  

 

Analogue radiographs are rapidly giving way in dentistry to digital images, which 

eliminates some sources of error but introduces others. Landmark location persists as an 

important source of TEM, though computer algorithms for edge detection 
79,80

 may one 

day minimize human subjectivity in landmark identification, but variability in image 

quality will persist. Cephalometric landmarks—and those in several other disciplines 

(craniometry, anthropometry, odontometrics, etc.)—are defined as naturally-occurring 

maxima and minima of the structures themselves. For example, Menton is the most-

inferior (caudal) point on the mandibular symphysis, and Nasion is the dorsal-most point 

at the intersection of the frontal and nasal bone. These extremes of bony contours are not 

visibly discrete points; they depend on orientation of the head in each of the three planes 

of space 
81,82

; they remodel with growth; they exhibit different morphologies among 

individuals; and their locations depend on subjective determinations that are coloured, in 
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turn, by image quality, bone density, operator experience, landmark definition 

(theoretically and operationally), and other factors. Much of the same is true of landmark 

identification in other disciplines 
45,69

.  

 

Baumrind and Frantz 
83

 show that the variability in location and the ―envelope of error‖ 

(i.e., shape of the distribution of locations) differ among landmarks. Landmarks based on 

sharper skeleton-dental curves tend to be identified most accurately. Shape of the 

envelope of error depends on the axis of curvature. For example, visually locating the 

midpoint on the right edge of this page can be done with considerable accuracy in the 

horizontal axis (because the edge is straight and runs up-and-down) but will vary much 

more along the vertical axis. The incisal edge of an incisor (sharp curvature) can be 

located more accurately on a radiograph than, say, Gnathion (inferior-anterior most point 

on mandibular symphysis) because of its more gradual curvature.  

 

Notably, variability in landmark identification is ramified when distances (2 

landmarks), angles (either 3 or 4 landmarks), or areas (multiple landmarks) are 

determined because the errors are cumulative 
84,85

.  

 

Optimal Study  

The methods reviewed here generally involve repeated measures on a sample of the data 

being analyzed. This is fine so far as it goes, but why not repeat all of the measurements? 

Lack of time and/or resources is the obvious response, but this is not a compelling reason, 

especially since repeatability studies 
11,12,32,69,83

 show consistently and dramatically that 

method error is considerable. Moreover, the statistical software to control for TEM is 
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increasingly accessible. So, rather than estimating TEM from a subgroup of the sample, 

TEM should become an integral part of the analytic model, where it can be quantified and 

removed from the interesting parts of the analysis. Accounting for TEM involves a mixed 

model statistical design 
5,51

. At its simplest, two or more repeated measurements of each 

subject are taken and these repetitions are a random effect in the statistical model, while 

the fixed effect consists of the groups under consideration (such as sex, or genotype, or 

treatment group). The goal is to remove the effects of TEM from the residual variance, 

thus enhancing the ratio of explained-to-unexplained mean squares, and it also provides a 

means of quantifying the TEM as a component of the total variance. Contemporary 

statistical packages make this relatively easy, but it is hardly a new idea. Gaito and 

Gifford 
86

 addressed exactly this issue in 1958, and they provide worked examples of 

ANOVA models showing how TEM can be separated from the residual term.  

 

Some other efforts are notable in this regard. Palmer 
87,88

, and Swaddle 
89

 describe mixed-

model ANOVA where measurement error can be extracted statistically from the study of 

left-right asymmetry. Van Dongan 
61

 provide a generalized method of controlling for 

measurement error while testing for several fixed effects.  

 

Conclusion  

In sum, researchers commonly infer characteristics about populations from comparatively 

restricted (small) study samples. Most inferences are statistical, and, aside from concerns 

about adequately accounting for known sources of variation with the research design, an 

important source of variability is measurement error. Variability in locating landmarks 



 

28 

 

that define variables is obvious in odontometrics, cephalometrics 
83

, and anthropometry 

90,91
, but the same concerns about measurement accuracy and precision extend to all 

disciplines. With increasing accessibility to computer-assisted methods of data collection, 

the ease of incorporating repeated measures into statistical designs has improved. 

Accounting for this technical source of variation increases the chance of finding 

biologically true differences when they exist.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

29 

 

REFERENCES  
 

01. Bland JM, Altman DG. Statistical notes: measurement error. BMJ 1996a; 

313 :744. 

 

02. WHO Multicentre Growth Reference Study Group. Reliability of 

anthropometric measurements in the WHO Multicentre Growth Reference 

Study. Acta Paediatrica 2006; 450:38-46.  

 

03. Simpson GG, Roe A, Lewontin RC. Quantitative Zoology. New York: 

Harcourt, Brace and Company, 1960.  

 

04. Bowles FP. Measurement and instrumentation in physical anthropology. 

Yrbk Phys Anthropol 1974 1976; 18 :174-190.  

 

05. Winer BJ, Brown DR, Michels KM. Statistical Principles in Experimental 

Design, 3rd Edition. New York: McGraw-Hill Book Company, 1991.  

 

06. de Terra M. Beitrage zu einer Odontographie den Menschenrassen. Berlin: 

Berlinishche Verlagsanstalt, 1905.  

 

07. Wood BA, Abbott SA, Graham SH. Analysis of the dental morphology of 

Plio-Pleistocene hominids. II. Mandibular molars—study of cusp areas, 

fissure pattern and cross sectional shape of the crown. J Anat 1983; 137(Pt 

2) :287-314.  

 

08. Zilberman U, Smith P, Alvesalo L. Crown components of mandibular 

molar teeth in 45,X females (Turner syndrome). Arch Oral Biol 2000; 

45:217-225.  

 

09. Hillson S, Fitzgerald C, Flinn H. Alternative dental measurements: 

proposals and relationships with other measurements. Am J Phys 

Anthropol 2005; 126:413-26.  

 

10. Sokal RR, Rohlf FJ. Biometry: The Principles and Practice of Statistics in 

Biological Research, 3rd Edition. San Francisco: WH Freeman and 

Company, 1995.  

 

11. Utermohle CJ, Zegura SL, Heathcote GM. Multiple observers, humidity, 

and choice of precision statistics: factors influencing craniometric data 

quality. Am J Phys Anthropol 1983; 61:85-95.  

 

12. Kieser JA, Groeneveld HT, McKee J, Cameron N. Measurement error in 

human dental mensuration. Ann Hum Biol 1990; 17:523-528.  

 



 

30 

 

13. Cronbach LJ, Meehl PE. Construct validity in psychological tests. Psych 

Bull 1955; 52: 281-302. 

 

14. Campbell DT, Fiske DW. Convergent and discriminant validation by the 

multitraitmultimethod matrix. Psych Bull 1959; 56: 81-105.  

 

 

 

15. Gorsuch RL. Factor Analysis, 2nd Edition. Hillsdale, NJ: Erlbaum, 1983.  

 

16. Morrison DF. Multivariate Statistical Methods. New York: McGraw-Hill, 

1990.  

 

17. Golbeck AL. Evaluating statistical validity of research reports: a guide for 

managers, planners, and researchers. General Technical Report PSW-87. 

Berkeley: U.S. Department of Agriculture, Pacific Southwest Forest and 

Range Experimental Station, 1986.  

 

18. Bryant TN. The presentation of statistics. Pediatr Allergy Immunol 1998; 

9 :108-115.  

 

19. Bryant TN. Presenting graphical information. Pediatr Allergy Immunol 

1999; 10 :4-13. 

 

20. Lorton L, Rethman MP. Statistics: curse of the writing class. J Endod 

1990; 16: 13-18.  

 

21. Jamart J. Statistical tests in medical research. Acta Oncol 1992; 31:723-

727.  

 

22. Hart A. Towards better research: a discussion of some common mistakes 

in statistical analyses. Complement Ther Med 2000; 8: 37-42.  

 

23. Kusuoka H, Hoffman JI. Advice on statistical analysis for circulation 

research. Circ Res 2002; 91:662-671.  

 

24. Martínez-Sellés M, Prieto L, Herranz I. Frequent mistakes in the statistical 

inference of biomedical data. Ital Heart J 2005; 6:90-95.  

 

25. Strasak AM, Zaman Q, Pfeiffer KP, Göbel G, Ulmer H. Statistical errors 

in medical research—a review of common pitfalls. Swiss Med Wkly 2007; 

137:44-49.  

 

26. Ellis B. Basic Concepts of Measurement. London: Cambridge University 

Press, 1966. 

 



 

31 

 

27. Cohen J. Statistical Power Analysis for the Behavioral Sciences, 2nd 

Edition. Hillsdale, NJ: Erlbaum Associates, Inc, 1988.  

 

28. Zar JH. Biostatistical Analysis, 4th Edition. Upper Saddle River, NJ: 

Prentice Hall, 1998. 

 

29. Sterne JA. Teaching hypothesis tests—time for significant change? Stat 

Med 2002; 21:985-994.  

 

30. Dahlberg G. Statistical Methods for Medical and Biological Students. 

London: George Allen and Unwin, Ltd, 1940.   

 

31. Bland JM, Altman DG. Statistical notes: measurement error proportional 

to the mean. BMJ 1996c; 313 :106.  

 

32. Houston WJ. The analysis of errors in orthodontic measurements. Am J 

Orthod 1983; 83:382-90.  

 

33. Hendee WR, Chaney EL, Rossi RP. Radiologic Physics, Equipment and 

Quality Control. Chicago: Year Book Medical Publishers, Inc., 1977.  

 

34. Athanasiou AE, Editor. Orthodontic Cephalometry. St Louis: Mosby-

Wolfe, 1995. 

 

35. Bergersen EO. Enlargement and distortion in cephalometric radiography: 

compensation tables for linear measurements. Angle Orthod 1980; 50 

:230–244.  

 

36. Dibbets JMH, Nolte K. Regional size differences in four commonly used 

cephalometric atlases: the Ann Arbor, Cleveland (Bolton), London (UK), 

and Philadelphia atlases compared. _Orthod Craniofacial Res 2002; 5:51–

58. 

 

37. Togashi K, Kitaura H, Yonetsu K, Yoshida N, Nakamura T. Three-

dimensional cephalometry using helical computer tomography: 

measurement error caused by head inclination. Angle Orthod 2002; 

72:513-520.  

 

38. Hopkins WG. Measures of reliability in sports medicine and science. 

Sports Med 2000; 30:1-15.  

 

39. Perini TA, de Oliveira GL, Ornelia JS, de Oliveira FP. Technical error of 

measurement in anthropometry. Rev Bras Med Esporte 2005; 11:86-90.  

 

40. Fleiss JL. Statistical Methods for Rates and Proportions, 2nd Edition. New 

York: John Wiley & Sons, 1981.  



 

32 

 

 

41. Agresti A. An Introduction to Categorical Data Analysis. New York: John 

Wiley & Sons, Inc., 1996. 

 

42. Kondo S, Townsend GC. Associations between Carabelli trait and cusp 

areas in human permanent maxillary first molars. Am J Phys Anthropol 

2006; 129:196-203.  

 

43. Turner CG II, Nichol CR, Scott GR. Scoring procedures for key 

morphological traits of the permanent dentition: the Arizona State 

University dental anthropology system. In: Kelley MA, Larsen CS, 

Editors. Advances in Dental Anthropology. New York: Wiley-Liss, 1991, 

p 13-31.  

 

44. Cameron N. The Measurement of Human Growth. London: Croom Helm 

Ltd, 1984. 

 

45. Johnston FE, Hamill PVV, Lameshow S. Skinfold thickness of children 6-

11 years: United States. Vital Health Stat Series 11, No. 120, 1972. 

 

46.  Mueller WH, Martorell R. Reliability and accuracy of measurements. In: 

Lohman TG, Roche AF, Martorell R, Editors. Anthropometric 

Standardization: Reference Manual. Champaign, IL: Human Kinetics 

Books, 1988, p 83-86.  

 

47. Verbeke G, Molenberghs G. Linear Mixed Models for Longitudinal Data. 

New York: Springer-Verlag, 2000.  

 

48. Singer JD, Willett JB. Applied Longitudinal Data Analysis: Modeling 

Change and Event Occurrence. Oxford: Oxford University Press, 2003.  

 

49. Lampl M, Editor. Saltation and stasis in Human Growth and 

Development: Evidence, Methods and Theory. London: Smith-Gordon, 

1999.  

 

50. Lampl M. Saltation and stasis. In: Cameron N, Editor. Human Growth and 

Development. New York: Academic Press, 2002, p. 253-270.  

 

51. Littell RC, Milliken GA, Stroup WW, Wolginger RD, Schabenberger O. 

SAS
® 

for Mixed Models, 2nd Edition. Cary, NC: SAS Institute Inc, 2006.  

 

52. Altman DG, Bland JM. Measurement in medicine: the analysis of method 

comparison studies. The Statistician 1983; 32 :307-317.  

 

53. Bland JM, Altman DG. Statistics notes: measurement error and correlation 

coefficients. BMJ 1996b; 313 :41-42.  



 

33 

 

 

54. Cohen J, Cohen P. Applied Multiple Regression/Correlation Analysis for 

the Behavioral Sciences. New York: John Wiley & Sons, 1975.  

 

55. Peck S, Peck H. Crown dimensions and mandibular incisor alignment. 

Angle Orthod 1972; 42:148-53.  

 

56. Harris EF, Potter RH, Lin J. Secular trend in tooth size in urban Chinese 

assessed from two-generation family data. Am J Phys Anthropol 2001; 

115:312-318.  

 

57. Dahlberg G. Twin Births and Twins from a Hereditary Point of View. 

Stockholm: University Press, 1926.  

 

58. Solow B. The pattern of craniofacial associations. Acta Odonol Scand 

1966; 24:1-174.  

 

59. Knapp TR. Technical error of measurement: a methodological critique. 

Am J Phys Anthropol 1992; 87:235-236.  

 

60. Bland JM, Altman DG. Statistical methods for assessing agreement 

between two methods of clinical measurement. Lancet 1986; 1 :307-310.  

 

61. Van Dongen S, Molenberghs G, Matthysen E. The statistical analysis of 

fluctuating asymmetry: REML estimation of a mixed regression model. J 

Evol Biol 1999; 12:94102.  

 

62. Bland JM, Altman DG. Comparing methods of measurement: why 

plotting difference against standard method is misleading. Lancet 1995; 

346:1085-1087.  

 

63. Mantha S, Roizen MF, Fleisher LA, Thisted R, Foss J. Comparing 

methods of clinical measurement: reporting standards for Bland and 

Altman analysis. Anesth Analg 2000; 90:593-602.  

 

64. Dewitte K, Fierens C, Stöckl D, Thienpont LM. Application of the Bland-

Altman plot for interpretation of method-comparison studies: a critical 

investigation of its practice. Clin Chem 2002; 48:799-801.  

 

65. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater 

reliability. Psych Bull 1979; 86:420-428.  

 

66. Buschang PH, Tanguay R, Demirjian A. Cephalometric reliability—a full 

ANOVA model for the estimation of true and error variance. Angle 

Orthod 1987; 57:168-175. 

 



 

34 

 

67. Kirk RE. Experimental Design: Procedures for the Behavioral Sciences, 

2nd Edition. Monterey, CA: Brooks/Cole Publishing Company, 1982.  

 

68. Utermohle CJ, Zegura SL. Intra-and interobserver error in craniometry: a 

cautionary tale. Am J Phys Anthropol 1982; 57:303-310.  

 

69. Kieser JA, Groeneveld HT. The reliability of human odontometric data. J 

Dent Assoc S Afr 1991; 46:267-270.  

 

70. Tukey JW. Exploratory data analysis. Reading, Mass: Addision-Wesley, 

1977. 

 

71. Lundström A. Tooth Size and Occlusion in Twins. New York: S. Karger, 

1948.  

 

72. Harris EF. Laterality in human odontometrics: analysis of a contemporary 

American White series. In: Lukacs JR, Editor. Culture, Ecology and 

Dental Anthropology. Chawri-Bazar, Delhi: Kamla-Raj Enterprises, 1992, 

p 157-170.  

 

73. Baumgarter TA. Norm-referenced measurement: reliability. In: Safrit MJ, 

Wood TM, Editors. Measurement Concepts in Physical Education and 

Exercise Science. Champaign, IL: Human Kinetics, 1989, p 45-72.  

 

74. Adams JW. Correction of error in cephalometric roentgenograms. Angle 

Orthod 1940; 10: 3-13. 

 

75. Björk A, Solow B. Measurements on radiographs. J Dent Res 1962; 41 

:672-683.  

 

76. Midtgård J, Björk G, Linder-Aronson S. Reproducibility of cephalometric 

landmarks and errors of measurements of cephalometric cranial distances. 

Angle Orthod 1974; 44:56-61. 

 

77. Baumrind S, Miller D, Molthen R. The reliability of head film 

measurements. 3. Tracing superimposition. Am J Orthod 1976; 70 :617-

644.  

 

78. Broch J, Slagsvold O, Røsler M. Error in landmark identification in lateral 

radiographic headplates. Eur J Orthod 1981; 3:9-13.  

 

79. Liu JK, Chen YT, Cheng KS. Accuracy of computerized automatic 

identification of cephalometric landmarks. Am J Orthod Dentofacial 

Orthop 2000; 118:535-540. 

 



 

35 

 

80. Kazandjian S, Kiliaridis S, Mavropoulos A. Validity and reliability of a 

new edge-based computerized method for identification of cephalometric 

landmarks. Angle Orthod 2006; 76:619-624.  

 

81. Cooke MS, Wei SH. Cephalometric errors: a comparison between repeat 

measurements and retaken radiographs. Aust Dent J 1991; 36:38-43. 

 

82. Mori Y, Miyajima T, Minami K, Sakuda M. An accurate three-

dimensional cephalometric system: a solution for the correction of 

cephalic malpositioning. J Orthod 2001; 28:143149.  

 

83. Baumrind S, Frantz RC. The reliability of head film measurements. 1. 

Landmark identification. Am J Orthod 1971a; 60 :111-127.  

 

84. Baumrind S, Frantz RC. The reliability of head film measurements. 2. 

Conventional angular and linear measures. Am J Orthod 1971b; 60:505-

517.  

 

85. Kamoen A, Dermaut L, Verbeeck R. The clinical significance of error 

measurement in the interpretation of treatment results. Eur J Orthod 2001; 

23:569-578.  

 

86. Gaito J, Gifford EC. Components of variance in anthropometry. Hum Biol 

1958; 30: 120-127.  

 

87. Palmer AR. Fluctuating asymmetry analyses: a primer. In: Markow TA, 

Editor. Developmental Instability: Its Origins and Evolutionary 

Implications. Dordrecht: Kluwer Academic Publishers, 1994, p 335-364.  

 

88. Palmer AR, Strobeck C. Fluctuating asymmetry analyses revisited. In: 

Polak M, Editor. Developmental Instability: Causes and Consequences. 

Oxford: Oxford University Press, 2003, p 279-319. 

 

89. Swaddle JP, Witter MS, Cuthill IC. The analysis of fluctuating 

asymmetry. Anim Behav 1994; 48:986-989.  

 

90. Spielman RS, Da Rocha FJ, Weitkamp LR, Ward RH, Neel JV, Chagnon 

NA. The genetic structure of a tribal population, the Yanomama Indians. 

VII. Anthropometric differences among Yanomama villages. Am J Phys 

Anthropol 1972; 37:345-356.  

 

91. Moss JP. The use of three-dimensional imaging in orthodontics. Eur J 

Orthod 2006; 28:416-425.  

 

 

 



 

36 

 

FIGURE LEGENDS 

 

Fig. 1. A metaphor of a ―bull’s eye‖ characterizes the concepts of precision and accuracy. 

(A) The mean of the measurements is close to the center of the bull’s eye, which 

is the true value. These measurements have low repeatability, though, because of 

their scatter and individual departures from the true value. (B) The measurements 

are close together (good precision), but all are about equally biased from the true 

value. For example, calipers might be out of kilter, so all measurements are 

exaggerated by, say,  

0.1 mm. (C) Here the measurements are all close to the measurement (high 

accuracy) and close to one another (high precision).  

 

Fig. 2. Plot of 310 double determinations of the left maxillary central incisors in a 

sample of American whites (Harris unpubl.). Measurements were made 

independently on two separate occasions several years apart using different 

calipers. The ―checkerboard‖ appearance of the dots in the dense ellipse along 

the main diagonal occurs because measurements were truncated to 0.1 mm, and 

many cases are superimposed.  

 

Fig. 3. The same data used in Figure 2 are plotted, but here 1 inch (2.54 cm) has been 

added to all of the second-determinations (Y-axis) to illustrate (A) that a 

systematic bias does not affect the correlation but, of course, (B) a TEM of 1 inch 

difference is hardly acceptable.  

 

Fig. 4. Example of a Bland-Altman graph where mean size (X1i + X2i)/2 on the X-axis is 

plotted again that pair of measurements difference X1i – X2i. If, as assumed, trait 

size is independent of measurement accuracy, the array of dots will be randomly 

arrayed and centered vertically on zero. In these contrived data, greater 

inconsistencies occur at the smaller trait sizes (the least-squares regression line is 

shown). If these data were real, one interpretation might be that smaller specimens 

are harder to measure accurately. In this example, the regression coefficient (b = -
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0.08) is significantly different from zero (P = 0.0001), which confirms the visual 

perception that the error is inversely proportional to the mean.  
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Table 1. Three hypothetical sets of measurements of the mesiodistal widths of 20 

maxillary central incisors.
1 

 

Case  T1  T2  T3  mean  sd  

A  7.9  7.9  7.8  7.9  0.06  

B  7.9  8.1  8.0  8.0  0.10  

C  8.1  7.9  7.9  8.0  0.12  

D  8.3  8.3  8.4  8.3  0.06  

E  8.3  8.5  8.4  8.4  0.10  

F  8.4  8.5  8.5  8.5  0.06  

G  8.5  8.5  8.4  8.5  0.06  

H  8.5  8.4  8.4  8.4  0.06  

I  8.5  8.4  8.5  8.5  0.06  

J  8.6  8.5  8.6  8.6  0.06  

K  8.6  8.4  8.6  8.5  0.12  

L  8.6  8.4  8.5  8.5  0.10  

M  8.6  8.7  8.7  8.7  0.06  

N  8.7  8.7  8.7  8.7  0.00  

O  8.7  8.6  8.7  8.7  0.06  

P  8.7  8.7  8.6  8.7  0.06  

Q  8.7  8.7  8.8  8.7  0.06  

R  8.7  8.6  8.7  8.7  0.06  

S  9.0  8.9  9.0  9.0  0.06  

T  10.5  10.5  10.4  10.5  0.06  

 
1

The 20 teeth are coded A through T, while the 3 sets of repeated measurements are T1, 

T2, and T3. The standard deviation of each row is in the column labeled sd.  
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Table 2. ANOVA results analyzing repeatability for the first two data columns in 

Table 1.
1 

 

Source  df  SSQ  MS  

Subjects  19  10.395  0.547  

Trials  20  0.140  0.007  

 
 

1

In this model, 20 teeth (subjects) were each measured twice (trials 1 and 2); trials is 

nested within subjects. Abbreviations are degrees of freedom (df), sum of squares (SSQ), 

and mean square (MS).  
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Table 3. ANOVA results analyzing repeatability for the three measurements sessions in 

Table 1.
1 

 

Source  df  SSQ  MS  Expected MS  

Specimens  19  15.481  0.815  
 
 σ2

  +  nσ
2 

                      A 

Trials  40  0.207  0.005  σ
2
 

 
1

20 teeth (subjects) were each measured three times; trials is nested within subjects. 

Expected mean squares are denoted in the right-hand column, where n is the number of 

specimens.  
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