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The Effect of Passive Movement on Denervated Soleus Highlights
a Differential Nerve Control on SERCA and MyHC Isoforms
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SUMMARY The sarco-endoplasmic reticulum Ca®" ATP-ase (SERCA) and myosin heavy
chain (MyHC) levels were measured in hindlimb-denervated and selectively denervated rat
soleus muscles. Selective denervation allowed passive movement of the soleus, whereas
hindlimb denervation rendered it to passivity. To minimize chronic effects, we followed
the changes only for 2 weeks. Selective denervation resulted in less muscle atrophy, a faster
slow-to-fast transition of MyHC isoforms, and less coordinated expressions of the slow vs fast
isoforms of MyHC and SERCA. Generally, expression of the slow-twitch type SERCA2a was

found to be less dependent, whereas the slow-twitch type MyHC1 was the most dependent KEY WORDS
on innervation. Our study shows that passive movement is able to ameliorate denervation- SERCA
induced atrophy of the soleus and that it also accentuates the dyscoordination in the expres- MyHC
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sion of the corresponding slow and fast isoforms of MyHC and SERCA.
(J Histochem Cytochem 56:1013-1022, 2008)

It 1s WIDELY ACCEPTED that the pattern of neuronal activ-
ity largely defines the phenotype of skeletal muscle,
whereas neurotrophic factors might exert only a supple-
mentary role (Midrio et al. 1998; Zhong et al. 2002;
recent review by Midrio 2006). Essential recent contri-
butions have shown that the neurotrophic factors tar-
get the expression of myogenic regulatory factors and
the activation of satellite cells (Hyatt et al. 2003,2006)
but that these changes have no direct effect on the mus-
cle phenotype (Kalhovde et al. 2005). The pattern of
nerve activity, however, defines the expressed myosin
heavy chain (MyHC) isoform, especially that of the
slow myosin (Ausoni et al. 1990; Whalen et al. 1990;
Baldwin and Haddad 2001; Zador and Wuytack 2003,
Patterson et al. 2006). The MyHC isoforms are the
most frequently used phenotypical markers (Schiaffino
et al. 1989; Baldwin and Haddad 2001), but they are
not the only molecules that determine muscle pheno-
type (Schiaffino and Reggiani 1996; Himaldinen and
Pette 1997; Hamaladinen and Pette 2001). For example,
although the MyHC isoforms control the speed of con-
traction, the rate of relaxation depends on the type of
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selective denervation
passive movement

sarco-endoplasmic reticulum Ca** ATP-ase (SERCA)
isoform (Schiaffino and Reggiani 1996; Berchtold
et al. 2000). The corresponding isoforms of slow and
fast MyHC and SERCA are usually coexpressed in the
muscle fibers, suggesting that they are subject to a com-
mon regulatory mechanism (Kandarian et al. 1994;
Talmadge et al. 1996; Himaildinen and Pette 1997).
However, in the denervated regenerating soleus, the
slow SERCA2a isoform persists, whereas the corre-
sponding slow MyHCT1 level declines, showing that
the expression of SERCA2a is not directly dependent
on innervation. In accordance with this, inactivation
of Ras (Zador and Wuytack 2003) or calcineurin
(Zador et al. 2005) in the regenerating soleus induced
a decline in the expression of MyHC1 but left the ex-
pression of SERCA2a unchanged. Although the ner-
vous control of muscle gene expression may differ in
the regenerating vs normal muscle (Moreno et al.
2003), a number of studies have shown that the expres-
sion of the corresponding SERCA and MyHC isoforms
are also dissociated in paralyzed cat and rat soleus
(Zhong et al. 2002; Talmadge and Paalani 2007), in
overloaded soleus (Awede et al. 1999), and in dener-
vated soleus muscles (Leberer et al. 1986; Himaildinen
and Pette 2001; Roy et al. 2002).

In this study, we hypothesized that, in the normal
soleus muscle, the impact of nerve activity on the ex-
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pression of SERCAs differs from that on the corre-
sponding MyHC isoforms. To test this hypothesis, we
denervated the hindlimb of the rat. To further refine
our study, we compared this intervention with selec-
tively denervating the soleus, thereby leaving the other
hindlimb muscles intact (Zador and Wuytack 2003).
We assumed that in selectively denervated (SD) soleus,
the adaptation to passive movement might affect the
levels of the MyHC and SERCA isoforms differently
if they are each under a different control. We assessed
the effects of our interventions after 2 weeks, because it
was reported that a longer denervation affects the nor-
mal regulatory pathways controlling the slow MyHC
expression: e.g., unlike after 1 week (Serrano et al.
2001), the expression of the slow myosin in the regen-
erating soleus is no longer dependent on calcineurin

A C
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after 15 days of denervation (Launay et al. 2006). We
found a slight dissociation in the expression of MyHC
and SERCA isoforms in hindlimb-denervated (HD) so-
leus and even more dissociation in SD soleus compared
with the normal muscle. The results showed that the ex-
pression of slow SERCA2a does not depend on innerva-
tion, like that of the slow MyHC1. These observations
are in agreement with a recent report on paralyzed so-
leus (Talmadge and Paalani 2007).

Materials and Methods

Animals and Treatments

Experiments with animals were approved by the Ethics
Committee of Animal Treatment of the Medical Fac-
ulty of the University of Szeged.
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Figure 1 mRNA levels of myosin heavy
chain (MyHC) and sarco-endoplasmic
reticulum Ca?" ATP-ase (SERCA) iso-
forms normalized to their respective
GAPDH levels in hindlimb-denervated
(HD) and selectively denervated (SD)
soleus. (A) The decline of the MyHC1
mMRNA level sets in earlier in HD than
in SD. (B) The level of SERCA2a mRNA
is only changed significantly on Day 7
in SD. (C) The MyHC2a mRNA level
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nervation) increases both in HD and
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more pronounced. (F) GAPDH mRNA
levels used as internal controls for
PCR do not change during the de-
nervation process. Vertical bars show
mean *+ SE. *p<0.05, **p<0.01, and
**%p<0.001 compared with the nor-
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symbols within the bars refer to the
SERCA1a or SERCA1b isoforms indi-
cated by the color of the bar.
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SERCA and MyHC in Muscle Denervations

Male Wistar rats 3 months of age and weighing
280-350 g were used. The rats were anesthetized with
an intraperitoneal injection of 1 ml of 4% chloral hy-
drate/100 g body weight. We treated the left hindlimbs
of the animals. In the HD group, ~1 cm of the sciatic
nerve high in the thigh was cut out. In the SD group,
0.3 c¢m of the soleus nerve was cut out. After dener-
vation, the soleus muscles were dissected at 3, 7, or
14 days and frozen in isopentane cooled by boiling
liquid nitrogen. Normal muscles were gained from
untreated animals; #=3 in all groups except in the
normal group, where 7=6. The muscles were kept at
—70C until use. We also used the soleus of normal and
ischiadic-denervated 200- to 215-g female Wistar rats
to compare our results with those of Schulte et al. (1994).

RT-PCR

RNA extraction and reverse transcription were car-
ried out as described previously (Zador et al. 1996).
Total RNA level was determined from its UV absorp-
tion at 280 nm using a NanoDrop spectrophotometer
(NanoDrop Technologies, Inc.; Wilmington, DE). Primers
and PCR conditions are as in (Z4dor et al. 1996; Mendler
et al. 1998; Fenyvesi et al. 2004). The cDNA was tran-
scribed from RNA extracts that contained 1 pg total
RNA. The PCR cycles were adjusted to the logarithmic/
linear amplification phase. The PCR products were ana-
lyzed on a 6% (w/w) polyacrylamide gel. Twenty pl of
amplified cDNA was applied on each lane. RNA levels
were deduced from the bands on the ethidium bromide—
stained gels quantified by Gel Doc 2000 (Bio-Rad Labo-
ratories; Hercules, CA) and Quantity One software. We
normalized the mRNA levels to the levels of GAPDH
mRNA (Figure 1F), and, because RT was made on 1 pg
of RNA, we multiplied by the number of micrograms of
total RNA (Table 1). In this way, the mRNA levels of the
whole muscle were calculated. Because of the larger var-
iation of SERCA2a mRNA, we took the average of two
amplifications from each individual muscle.
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Protein Determination

Total protein levels were measured by the bicinconinic
acid method using the NanoDrop spectrophotometer.
The homogenate made in the first step of the SERCA
extraction was used to determine the total protein level.

Immunoblotting

SERCA and MyHC protein isoforms were measured in
extracts of the same muscles. For SERCA determina-
tion, immunoblots from the mitochondrial-microsomal
(sarcoplasmic) fraction were used as described (Zador
et al. 1998). To extract myosin, the pellets of the first
centrifugation (1000 X g for 10 minutes) were used
(Hamaldinen and Pette 1997). Amounts of extract
corresponding to equal parts of the muscles were
loaded on each lane of the gel both for SERCA and
myosin analysis. The loaded extracts contained dif-
ferent amounts of proteins, i.e., less in the extract of
denervated muscle. The primary antibodies used in
immunoblot analysis were BA-DS (mouse, 1:100) for
MyHC1, SC-71 (Schiaffino et al. 1989) (mouse,
1:100) for MyHC2a, A3 (mouse, 1:50) for SERCA1,
and R-15 (rabbit, 1:5000) for SERCA2a. The bands
were visualized by Ni-enhanced DAB staining (Zador
et al. 1998) or, in the case of MyHC2a, by the electro-
chemiluminescent method and quantified by densitom-
etry on Gel Doc 2000 (Bio-Rad). Two control samples
were loaded on each gel as an inner standard to make
the result of different blots comparable.

IHC

We obtained 15-pum-thick cryosections from muscles
and stained these with peroxidase immunostaining as
in Zador et al. (1998). We used BA-DS5 (mouse, 1:50),
SC-71 (Schiaffino et al. 1989) (mouse, 1:20), A3
(mouse, 1:20), and R-15 (rabbit, 1:400) as primary
antibodies for MyHC1, MyHC2a, SERCAT1, and
SERCA2a, respectively.

Table 1 Muscle mass, fiber cross-sectional areas, total RNA, and total protein levels during both types of denervation

14dHD 3dsb 7dsb 14dsSD

Denervation type N 3dHD 7dHD

Muscle mass (mg) 145.60 + 8.46 122.50 + 5.43 91.50 + 2.00?

Fiber CSA (um?) 3,782 = 62.16 3,546 = 69.20° 1,975 * 35.69¢

Total RNA content 113.40 = 4.71 80.37 £ 7.61 45.74 + 10.86°
(n9)

Total RNA/muscle 0.699 =+ 0.035 0.601 £ 0.056 0.514 = 0.116
(ng/mg)

Total protein content 34.73 + 3.38 31.93 + 439 31.19 + 3.79
(mg)

Total protein/muscle 0.2705 + 0.01687 0.285 + 0.028 0.331 = 0.042

(mg/mg)

58.86 + 3.65° 127.90 = 3.64  114.90 + 10.37* 89.17 = 12.90>
1,475 = 21.919 3,179 = 62.18%¢ 2,233 + 37.25%F 1,783 + 32.11%¢
27.46 = 7.74° 131.30 + 13.05° 105.80 = 9.96° 45,58 + 12.55¢

0.404 = 0.087* 0.984 = 0.112°  0.825 + 0.062 0.614 + 0.080

10.89 + 0.48¢ 3831 + 2.96 39.78 + 5.51 19.54 * 0.84*¢

0.204 = 0.0113  0.317 * 0.029 0.413 = 0.035*  0.223 = 0.008

2p<0.05, ©p<0.01, and 9p<0.001 compared with normal level.

bp<0.05, 1p<0.01, and °p<0.001 compared with hindlimb-denervated muscle of the same day.
Values are means *= SEM. 3dHD, 3-day hindlimb-denervated; 7dHD, 7-day hindlimb-denervated; 14dHD, 14-day hindlimb-denervated; 3dSD, 3-day selectively de-
nervated; 7dSD, 7-day selectively denervated; 14dSD, 14-day selectively denervated; CSA, cross-sectional area.
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Fiber Cross-sectional Areas

The cryosections were made in the same way as in
immunocytochemistry. The sections were stained by
hematoxylin-eosin. We calculated the fiber cross-
sectional areas (CSAs) using Olympus DP-soft soft-
ware, v3.2 (Olympus; Hamburg, Germany).

Statistics

All statistical analyses were made using Prism 3.0 soft-
ware (GraphPad Software Inc.; San Diego, CA). We
used #-tests to determine the significant differences.
We considered p<<0.035 significant, p<<0.01 very signifi-
cant, and p<<0.001 highly significant.

Results
Fresh Weight, Fiber CSA, Total RNA, and
Protein Levels

The muscle weight, fiber CSA, and protein and RNA
content were measured in HD and SD soleus mus-

Szabo, Wuytack, Zdador

cles. In both conditions of denervation, the fresh
weight of the muscles decreased from Day 7 onward
(Table 1); however, this decrease was less pronounced
in SD than in HD muscles on Day 14 (p<0.05). Also,
the fiber CSA was smaller compared with normal
muscle at all stages in both types of denervation
(Table 1). On SD, this decrease was larger after Day 3,
whereas on HD, it was more pronounced after Days 7
and 14.

The RNA content decreased in HD soleus at Days 7
and 14, whereas in SD muscles, it decreased only after
2 weeks. Interestingly, in SD muscles, the RNA level in-
creased first at Days 3 and 7 compared with the level in
HD muscle (Table 1).

The total protein levels also decreased after 14 days
in both types of denervation but more dramatically on
HD than SD.

All together, the fresh weight, fiber CSA, and total
RNA and protein contents decreased more after 2 weeks
in HD than in SD soleus.

125 1504

el
]
33

|_|

~
o
=
o
S

o
o
¥+
~
i

% of normal MyHC1 level
3

% of normal MyHC2a level

N
@

5 Nt
M- #

N 3d 7d 3d 7d 14d TN 3d
HD SD

7d  14d
HD

Figure 2 MyHC and SERCA protein
levels of soleus muscles after HD and
SD. (A) The MyHC1 protein level de-
creases more quickly in SD than in
HD. (B) The SERCA2a protein level is
constant in both HD and SD. (C) The
MyHC2a protein level does not
change compared with normal level,
but at Day 14 of HD and Day 7 of SD,
it is less than in the previous stages of
the same denervation. (D) The SERCA1
protein level decreases only at Day 14
of HD. Symbols are as in Fig. 1, ex-
cept °p<0.05 and °°°p<0.001 com-

250 150
S T 1251
>
@200 I H
]
8 -
< <100 l
3] Q
150 x
w »
o = 751
@©
E100 g
g £ 50
s k]
o
38 50 2 25
0 o
N 3d 7d 14d 3d 7d 14d N 3d

HD sSD

pared with the previous stage of
the same denervation.

7d  14d
HD




>
=
L2
e
D)
<
O
O
-—
>~
)
o
>
=
B2
e
D)
e
O
O
-—
L2
I
G
O
—
c
|-
S
i<}
D)
<
l_

SERCA and MyHC in Muscle Denervations

mRNA Levels

The slow-twitch MyHC1 mRNA level (Figure 1A) de-
creased in both types of denervation. This started al-
ready from Day 7 in HD and somewhat later on
Day 14 on SD.

The level of the slow-twitch muscle-specific SERCA2a
mRNA did not respond much to either form of de-
nervation. Only on Day 7 of SD (Figure 1B) was it
significantly elevated above normal and the HD coun-
terpart (p<<0.01).

The mRNA level of the fast oxidative MyHC2a
(Figure 1C) changed differently in both types of dener-
vation: it did not deviate significantly from the normal
level in the HD group, whereas in the SD muscles, it
increased on Days 3 and 7 compared with the HD
muscles on the same days.

The level of the fast SERCA1 mRNA (Figure 1D)
was significantly increased at Day 3 in HD soleus and
at Days 3 and 7 in SD. Because SERCA1 exists in two
splice variants, a neonatal SERCA1b isoform (lacking
a 40-bp alternative exon) and an adult SERCAla
form, we also analyzed the level of both mRNAs sepa-
rately, using ratio RT-PCR (Zador et al. 1996). Both
SERCA1a and SERCA1b mRNAs were amplified by
the same pair of primers. The fragment amplified from
SERCA1a was 40 bp longer than that of SERCA1bD.
Interestingly, whereas the level of the adult SERCAla
mRNA did not increase in any of the denervated mus-
cles, the mRNA level of the neonatal SERCA1b was
higher than normal in all stages of both treatments,
except Day 14 of SD muscles. The increase of SERCA1b
mRNA levels was higher in SD than in HD soleus mus-
cles during the first week.

The MyHC2x mRNA levels (Figure 1E) showed a
pronounced increase in both types of denervations,
most remarkably on Days 3 and 7 in SD, when it was
significantly higher than in the HD muscles.

The levels of GAPDH mRNA did not change during
the denervations (Figure 1F), so it could be used as an
adequate reference control level for total mRNA.

Protein Levels

The MyHCT1 protein levels (Figure 2A) were affected
differently depending on the type of denervation; it
declined significantly only at Day 14 of HD, but it de-
creased remarkably in all stages of SD. It seems that
the loss of MyHC1 protein is slower in HD muscles
than in the SD muscles.

The SERCA2a protein levels (Figure 2B) were not
significantly altered in either type of denervation. Of
note, similar results were obtained when the SERCA2a
protein levels were compared between normal and
14-day HD soleus of female rats of the same weight
(Figure 3). The MyHC2a protein levels (Figure 2C)
did not seem to change significantly compared with
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Figure 3 The effect of 14-day HD (14dHD) on SERCA isoforms in
soleus of female rats (200-g weight). (A) The level of SERCA2a pro-
tein showed no difference in the14dHD muscles compared with the
normal muscles, whereas (B) the SERCA1 protein level significantly
decreased at 14dHD (*p=0.0361).

the normal level in any of the stages of both types of
denervation. However, at Day 3, the protein density
showed a tendency to rise in both denervation types
and showed a significant decrease at Day 14 in HD
and at Days 7 and 14 in SD compared with the pre-
vious stages of the same denervation.

The total SERCA1 (SERCA1a + SERCA1b) protein
levels (Figure 2D) dropped significantly only at Day 14
of HD, but it did not change in SD soleus muscles. In
200-g female rats, the SERCA1 protein level was also
significantly lower (41.81%; p=0.0361) after 14 days
in HD than in normal muscles (Figure 3).

IHC Results

MyHC Fiber Types. We counted fibers stained for
MyHC1 and MyHC2a in both types of denervation
(Figure 4). The percentage of slow MyHC1-positive
type I fibers decreased in all stages of both types of
denervation. The decrease was more pronounced in
SD than in HD at Day 3 (Figure 5A). The percentage
of Type I fibers was 7.39% of total fibers lower at
Day 3 and 3.77% of total fibers higher at Day 7 in
SD than in HD muscles. In agreement with this, the de-
crease in MyHC1 protein level was larger in the SD
muscles compared with the HD ones (Figure 2A).

In HD muscles, the ratio of MyHC2a-expressing
Type TIA fibers (Figure SA) increased on Days 7 and
14 in comparison with normal soleus muscles. How-
ever, in SD muscles, the percentage of IIA fibers did
not change compared with normal muscles. On Day 7,
the ratio of Type IIA fibers differed significantly be-
tween HD and SD.

Hybrid Fibers. There were more MyHC-hybrid fibers
(Figure 5A) in both types of denervation than in
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Figure 4 Fiber distributions of the
MyHC and SERCA isoforms in HD and
SD. Consecutive parallel sections of
(A) control and Days 3, 7, and 14 HD
and (B) Days 3, 7, and 14 SD soleus
muscles are stained for MyHC1,
MyHC2a, SERCA2a, and SERCA1. Note
that majority of fibers coexpress
MyHC1 with SERCA2a and MyHC2a
with SERCA1; however, there are more
hybrid fibers in denervations, particu-
larly in the SD muscles. Bar = 200 um.

normal muscles. The numbers of MyHC-hybrid fibers
were higher on Day 7 in SD soleus muscles than in
HD muscles.

SERCA Fiber Types. Parallel sections were also stained
for SERCA1 and SERCA2a. The percentage of pure
SERCA2a fibers (Figure 5B) decreased at Day 14 in
HD, whereas in SD muscles, it was already lower at
Days 3 and 7. The SERCA1-positive fibers (Figure 5B)
changed (increased) only in SD at Days 7 and 14.
Again, the number of SERCA-hybrid fibers increased
in both types of denervation, but this was more
pronounced in SD muscles (Figure 5B).

Szabo, Wuytack, Zdador

Coexpression of MyHCs With the Corresponding
SERCAs. Next we explored to what extent the expres-
sion of the corresponding slow or fast isoforms of
Ca®" pumps and myosins remained correlated during
denervation. First, we looked at the expressions of the
slow isoforms. The correlation between SERCA2a-
positive fibers and MyHC1-positive fibers was close
in the normal muscles (#* = 0.987). In HD muscles,
there was less correlation (#* = 0.222), and it totally
disappeared in SD at Day 14 (> = 0.000235; Figure 6A).
Concerning the fast isoforms, the SERCA1-positive
and MyHQC2a-positive fibers retained a relatively close
correlation during both types of denervation (Fig-
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SERCA and MyHC in Muscle Denervations

ure 6B; 7> = 0.740 in normal muscles, 7* = 0.623 in
HD, and #* = 0.813 in SD).

Discussion

We used the effect of passive movement in selective de-
nervation to highlight the difference in nerve control of
expression of MyHC and SERCA isoforms. It is an-
other novelty of our study that we showed this differ-
ence in the same non-regenerating muscles. It is clear
that the relative expression levels of slow myosin iso-
form MyHC1 and slow Ca*" pump SERCA2a are less
coordinated in denervated soleus than in the normal
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muscle. Particularly, the mRNA and protein levels of
MyHC1 decreased on denervation, whereas those of
SERCA2a did not change or increased. This shows that
SERCAZ2a is not directly dependent on the nerve in the
normal soleus. Our results do not agree with the pre-
vious report of Schulte et al. (1994), who described a
decline of SERCA2a after HD. However, Schulte et al.
(1994) used female rats weighing ~200 g, whereas we
used male rats of ~300 g. To make the comparison
more relevant, we also measured the SERCA1 and
SERCA2a protein levels in 200-g female Wistar rats
after 14 days of HD, and we obtained similar results
as from 300-g male rats (Figure 3). Therefore, the dif-
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Figure 5 Expression of (A) MyHC and (B) SERCA in fibers of de-
nervated soleus muscles. (A) The MyHC expression is shown in fibers
in the different stages of both types of denervation. The number of
Type | fibers decreases earlier in SD, whereas the number of Type lla
fibers increases only in HD. The number of hybrid fibers increases
more after the first week in SD. (B) SERCA expression is shown in fi-
bers in both types of denervation. The number of SERCA2a-positive
fibers decreases earlier in SD, but at Day 14, this difference disap-
pears. The number of SERCA1-positive fibers decreases only in SD.
The number of SERCA-hybrid fibers increases earlier and to a greater
extent in SD than in HD. Symbols are as in Fig. 2D. An arrow points to
the position where the decrease is significant but the symbol does
not fit into the bar.

ference in the results of Schulte et al. (1994) and ours
does not result from a difference in the sex and age of
the rats but rather from the applied methodology.
Schulte et al. (1994) used a cesium chloride gradient
sedimentation method and Northern blot to extract
and analyze RNA from pooled muscles (four in nor-
mal muscles and six in denervated muscles), whereas
we used the shorter version (Gauthier et al. 1997)
of the acid guanidium-phenol-chloroform method
(Chomczynski and Sacchi 1987) and RT-PCR with
specific primers to detect the mRNA levels in the indi-
vidual muscles. In our view, our analysis is more ade-
quate to calculate statistical differences in SERCA
mRNA levels than those of Schulte et al. (1994).
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Figure 6 Correlation between SERCA and MyHC isoforms in dif-
ferent types of denervations. The results are shown in individual
soleus muscles. (A) The percentage of MyHC1-positive fibers and
the percentage of SERCA2a-positive fibers on consecutive transver-
sal sections. In normal muscles, the correlation for coexpression of
the slow isoforms is strong but it is weaker in HD and SD. The
expression of MyHC1 and SERCA2a becomes totally uncorrelated
in the fibers of HD at Day 7 and of SD at Day 14. (B) The coexpres-
sion of the fast MyHC2a and SERCAT1 in fibers on consecutive trans-
versal sections. The correlation between MyHC2a and SERCA1
expression in fibers was also weaker in both types of denervations,
especially at Day 3 of SD. X, normal soleus; closed circle, Day 3 of
HD; closed triangle, Day 7 of HD; closed square, Day 14 of HD;
open circle, Day 3 of SD; open triangle, Day 7 of SD; open square,
Day 14 of SD.

The analysis of SERCA protein levels in Schulte
et al. (1994) was also different than in our study; they
extracted SERCA from microsomes and large mem-
brane fractions. We used the pellet of the first centrifu-
gation for MyHC extraction, whereas the supernatant
was further sedimented to obtain the mitochondrial-
sarcoplasmic reticulum and microsomal fractions (Zador
et al. 1998).

Unlike in Schulte et al. (1994), we did not relate the
amount of SERCA proteins to standards (Kandarian
et al. 1994). In our study, the samples represented the
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same proportion of each muscle. We chose this method
to eliminate one source of errors, because the total pro-
tein content was more variable in the denervated than
in the normal muscle extracts.

The lack of decrease in SERCA2a expression (mRNA
and protein) on denervation that we observed is in
agreement with a corresponding absence of changes
in SERCA2a levels in spinal cord isolation (Zhong
et al. 2002), in spinal cord transsection (Talmadge
and Paalani 2007), in regenerating-denervated muscles
(Zador and Wuytack 2003; Zador et al. 2005), and in
overloaded soleus muscles (Awede et al. 1999).

In contrast to SERCA2a, the level of SERCA1
clearly decreased in the soleus after 2 weeks of dener-
vation. This means that the changes in the level of the
fast muscle—specific Ca>* pump were also not coordi-
nated with those of the fast-type MyHC2a, because the
latter remained unchanged on denervation. However,
at the level of the fibers, the coordination of expression
of SERCA1 and MyHC2a was stronger than that of
SERCA2a and MyHC1.

It is worthwhile to note that, independently from the
protein, both SERCA1 mRNA isoforms were increased
at 3 days of denervation. A similar increase of these
mRNAs can be induced by stretch (Zador et al.
1999,2007). SD increased the mRNA level of both
SERCA and MyHC isoforms compared with HD. This
implies that there exist layers of regulation of gene ex-
pression at the mRNA and the protein level that might
act differently and independently (Leberer et al. 1986;
Huey and Bodine 1998).

The largest discrepancy in coordinated protein ex-
pression was found when, on SD, the MyHC1 protein
level dramatically decreased, whereas the SERCA2a did
not change. This drop in the level of MyHC1 protein
was more than could be expected from a lack of main-
tenance by innervation; it indicated that a selective
degradation of MyHCI1 protein accompanied the slow-
to-fast transformation in the muscle adapting to passive
movement. A parallel drop in the level of SERCA2a
was not observed, again showing that myosin and
Ca®" pumps respond differently to passive movement.

On denervation, the number of MyHC1-positive
and SERCA2a-positive fibers decreased more or less to-
gether, but, for both types of denervation, after 14 days,
the coordination in expression of these isoforms was
practically lost. The loss of coordination was more pro-
nounced in selective denervation. A similar, but much
less pronounced, loss of coordination was observed in
both denervations for the fast isoforms: MyHC2a
and SERCA1. The loss of coordinated expression re-
sulted in the appearance of hybrid fibers. The ratio of
MyHC1-MyHC2a hybrid fibers, SERCA1-SERCA2a
hybrid fibers (Figure 5), and mismatch fibers (ex-
pressing MyHC1, SERCA1, MyHC2a, and SERCA2a)
increased after 7 or 14 days in both types of dener-
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vation. More SERCA-hybrid fibers than MyHC-hybrid
fibers were found in SD soleus than in HD muscles,
and SERCA-hybrids appeared earlier. This also shows
that the expressions of MyHC and SERCA are differen-
tially regulated.

At longer term (i.e., denervation of >72 days), the
coexpression of the corresponding myosin and SERCA
isoforms again match (Hamaldinen and Pette 2001). A
likely explanation for this is that the general atrophy
reduces both MyHC1 and SERCA2a levels with a dif-
ferent time course. Another explanation could be that
the structure of the sarcoplasmic reticulum that houses
the SERCA is nerve activity dependent (Heck and Davis
1988; Salvatori et al. 1988) and thereby indirectly af-
fects the expression/stability of SERCA2a. The regula-
tion of gene expression for myosin heavy chains and
SERCAs are also likely to be different (i.e., the slow
myosin promoter is activated by MEF-2D, MyoD,
p300, and the calcineurin/NFATc1 pathway) (Meissner
et al. 2007); similar but different upregulators, MEF-2C
and NFATc4, have been reported for the SERCA2a pro-
moter (Vlasblom et al. 2004). In addition, in regenerating
muscle, the MyHC1 protein mostly follows its tran-
script level, whereas the SERCA2a is largely controlled
post-transcriptionally (Zador and Wuytack 2003).

In conclusion, the expression of SERCA and myosin
isoforms seems to be separately controlled by a unique
set of regulatory factors in the soleus muscle. The slow
innervation is a major controller for the slow type
myosin, whereas the fast myosin (MyHC2a) is ex-
pressed more when the slow myosin is decreased. Dis-
appearance of the slow myosin isoform on denervation
is, however, not balanced by an equimolar replace-
ment of the fast isoform. Therefore, the switch of
SERCA2a to SERCA1a isoform does not coincide with
the slow-to-fast switch of the myosin isoforms. As a
consequence, the slow-type SERCA is not expressed in
coordination with the slow type myosin in many of
the fibers, and there are more SERCA-hybrid fibers
than myosin-hybrid fibers.
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