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a b s t r a c t 

Background: Modulation of P-glycoprotein (ABCB1) and evaluation of the collateral sensitivity effect are 

among the most promising approaches to overcome multidrug resistance (MDR) in cancer. In a previous 

study, two rare 12,17-cyclojatrophanes ( 1–2 ) and other novel jatrophanes ( 3–4 ), isolated from Euphorbia 

welwitschii, were screened for collateral sensitivity effect. Herein, the isolation of another jatrophane ( 5 ) 

is presented, being the broader goal of this work to investigate the role of euphowelwitschines A ( 1 ) and 

B ( 2 ), welwitschene ( 3 ), epoxywelwitschene ( 4 ) and esulatin M ( 5 ) as ABCB1 modulators and/or collateral 

sensitivity agents. 

Methods: Compounds 1–5 were evaluated for ABCB1 modulation ability through combination of transport 

and chemosensitivity assays, using a mouse T-lymphoma MDR1 -transfected cell model. Moreover, the na- 

ture of interaction of compound 4 with ABCB1 was studied, using an ATPase assay. The MDR-selective 

antiproliferative activity of compound 5 was evaluated against gastric (EPG85-257) and pancreatic 

(EPP85-181) human cancer cells and their drug-selected counterparts (EPG85-257RDB, EPG85-257RNOV, 

EPP85-181RDB, EPP85-181RNOV). The drug induced cell death was investigated for compounds 4 and 5 , 

using the annexin V/PI staining and the active caspase-3 assay. 

Results: The jatrophanes 1–5 were able to modulate the efflux activity of ABCB1, and at 2 μM, 3–5 main- 

tained the strong modulator profile. Structure activity results indicated that high conformational flex- 

ibility of the twelve-membered ring of compounds 3 –5 favored ABCB1 modulation, in contrast to the 

tetracyclic scaffold of compounds 1 and 2 . The effects of epoxywelwitschene ( 4 ) on the ATPase activity of 

ABCB1 showed it to interact with the transporter and to be able to reduce the transport of a second sub- 

trate. Drug combination experiments also corroborated the anti-MDR potential of these diterpenes due to 

their synergistic interaction with doxorubicin (combination index < 0.7). Esulatin M ( 5 ) showed a strong 

MDR-selective antiproliferative activity against EPG85-257RDB and EPP85-181RDB cells, with IC 50 of 1.8 

and 4.8 μM, respectively. Compounds 4 and 5 induced apoptosis via caspase-3 activation. A significant 

discrimination was observed between the resistant cell lines and parental cells. 

Conclusions: This study strengthens the role of jatrophane diterpenes as lead candidates for the develop- 

ment of MDR reversal agents, higlighting the action of compounds 4 and 5 . 

© 2016 Elsevier GmbH. All rights reserved. 
Abbreviations: ABC, ATP binding cassette; ABCB1, ATP-binding cassette, sub- 

family B; EPG85-257P, parental gastric cancer cells; EPG85-257RDB, gastric can- 

cer cells selected against daunorubicin; EPG85- 257RNOV, gastric cancer cells se- 

lected against mitoxantrone; EPP-181 RDB, pancreatic cancer cells selected against 

daunorubicin; EPP-181P, parental pancreatic cancer cells; EPP-181RNOV, pancre- 

atic cancer cells selected against mitoxantrone; FAR, fluorescence activity ratio; 

FL-1, mean fluorescence intensity; MDR, multidrug resistance; MDR1, multidrug re- 

sistance gene 1; L5178Y-MDR, MDR1 transfected L5178Y mouse T-lymphoma cells; 

L5178Y-PAR, parental L5178Y mouse T-lymphoma cells; Pi, inorganic phosphate; PI, 

propidium iodide; RR, relative resistance. 
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The emergence of cancer multidrug resistance (MDR) has been

ointed as one of the major hurdles for a successful chemother-

py. In such scenario, cancer cells develop resistance to drugs that

re structurally unrelated and with distinct mechanisms of action.
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he adaptive responses attributed to the cancer MDR phenotype

re far from being completely understood, and the general con-

ensus is that they are likely to occur simultaneously or in a cas-

ade of events during the establishment of the MDR phenotype

 Lage, 2008; Szakács et al., 2006 ). Some of the most common

ellular mechanisms include: alterations in the cell cycle check-

oints; failure of the apoptotic mechanisms; repair of damaged cel-

ular targets; alterations in drug targets; drug activation and inac-

ivation; decreased drug uptake; and reduced drug accumulation

hrough drug efflux or vesicular sequestration by ATP binding cas-

ette (ABC) transporters ( Holohan et al., 2013; Kartal-Yandim et al.,

015 ). The most known and studied mode of resistance has been

ssociated with P-glycoprotein (ABCB1/Pgp), the first human ABC

ransporter to be described. The overexpression of ABCB1 results

n reduced intracellular concentration of anticancer drugs to lev-

ls that lead to treatment failure, causing cross-resistance to sev-

ral cytotoxic drugs ( Gottesman et al., 2002 ). To enhance the effi-

acy of chemotherapy, several approaches have been proposed to

ircumvent MDR. The development of molecules that are able to

mpair the drug efflux mediated by ABCB1 and development of

ollateral sensitivity agents lay among the most promising strate-

ies ( Callaghan et al., 2014; Szakács et al., 2014 ). The collateral

ensitivity effect is an old concept that nowadays is gaining more

trength as powerful tool to study MDR. This concept was pri-

arily observed in bacteria, in the early 1950s by Szybalski and

ryson, which concluded that resistant Escherichia coli was simul-

aneously hypersensitive to other unrelated drugs ( Szybalski and

ryson, 1952 ). Therefore, cancer cells that developed in vitro resis-

ance to one agent can be more sensitive to alternate agents than

he original parental cell line ( Callaghan et al., 2014; Szakács et al.,

014 ). Thus, this approach can lead to the selection of compounds

hat are highly effective against drug-resistant phenotypes. 

Natural products present a key role in drug discovery programs

or cancer MDR. Consequently, a large number of compounds have

een investigated ( Eid et al., 2015; Palmeira et al., 2012; Wu et al.,

011 ). Among those, the polyoxygenated jatrophane and lathyrane-

ype macrocyclic diterpenes from Euphorbia species have shown

otential anti-MDR activities, by ABCB1 modulation and/or by se-

ective targeting of MDR cancer cells ( Corea et al., 2009; Ferreira

t al., 2014; Vasas and Hohmann, 2014 ). These encouraging results

ed to the development of in silico studies, as well as structure ac-

ivity studies towards lead optimization for a promising MDR re-

ersal agent ( Ferreira et al., 2011; Matos et al., 2015; Reis et al.,

013, 2012; Sousa et al., 2012; Vieira et al., 2014 ). Despite all these

dvances, there is still a great need to explore their anti-MDR

ode of action. 

We have recently reported four newly 12,17-cyclojatrophane

 1–2 ) and jatrophane ( 3–4 ) constituents of Euphorbia welwitschii

 Reis et al., 2015 ). Our preliminary results on MDR-selective an-

iproliferative activity of these compounds pointed epoxywel-

itschene ( 4 ) as a potential MDR reverser ( Reis et al., 2015 ). In

rder to enrich the knowledge of the constituents of E. welwitschii,

ts phytochemical study was extended, giving rise to esulatin M

 5 ), a known jatrophane that was reported as modulator of ABCB1

 Vasas et al., 2011 ). Thus, it was of interest to look further into its

nti-MDR activity. Therefore, the aim of this work was to assess

ompounds 1–5 ( Fig. 1 ) for their potential MDR reversal activity,

sing an integrative approach: through modulation of ABCB1 and

he collateral sensitivity effect. In this way, euphowelwitschines A

 1 ) and B ( 2 ), welwitschene ( 3 ), epoxywelwitschene ( 4 ) and esu-

atin M ( 5 ) were tested for modulation of ABCB1 efflux using a

DR1 -transfected mouse T-lymphoma L5178Y cell model. In addi-

ion, the MDR-selective antiproliferative activity mode of action of

poxywelwitschene ( 4 ) and esulatin M ( 5 ) was analyzed in regard

o apoptosis and caspase-3 activation events using the human tu-

or gastric (EPG85-257) and pancreatic (EPP85-181) cell models
drug sensitive and drug resistant sublines), well characterized for

DR ( Hilgeroth et al., 2013; Lage et al., 2010; Reis et al., 2014 ). 

aterial and methods 

lant material 

Aerial parts of Euphorbia welwitschii Boiss. & Reut. (synonym

uphorbia paniculata subsp. welwitschii (Boiss. & Reut.) Vicens,

olero & C. Blancheé) were collected in the garden of Palácio

a Pena, Sintra, Portugal (June 2010). The plant was identified by

r. Teresa Vasconcelos (plant taxonomist) of Instituto Superior de

gronomia, University of Lisbon, Portugal. A voucher specimen (no.

82/2010) has been deposited at the herbarium of Instituto Supe-

ior de Agronomia. 

solation of compound 5 

Dried aerial parts of E. welwitschii were exhaustively extracted

ith methanol, as previously described ( Reis et al., 2015 ). Briefly,

he MeOH extract (595 g) was suspended in MeOH/H 2 O solution

nd extracted with EtOAc. The ethyl acetate soluble fraction (225 g)

as chromatographed (2 kg SiO 2 ) using mixtures of n -hexane-

tOAc (1:0 to 0:1) and EtOAc-MeOH (9:1 to 3:7) in increasing gra-

ients of 5%, of 2 L each eluent. According to differences in com-

osition as indicated by TLC, nine crude fractions were obtained

fractions A-I). Fraction G (21.3 g), eluted with n -hexane/EtOAc (7:3

o 13:7), was subjected to subsequent fractionation giving rise to

ractions G 1 –G 5 , from where compounds 1 –4 were isolated ( Reis

t al., 2015 ). Fraction G 3 (3.2 g) was chromatographed using

everse-phase C-18 column (100 g) chromatography (MeOH/H 2 O,

:1 to 1:0, used in increasing gradients of 5%, 300 ml each eluent),

riginating six fractions (G 3A -G 3F ). Flash chromatography (CHCl 3 as

luent) of subfraction G 3B (549 mg) yielded 19 mg of compound 5 . 

sulatin M ( 5 ) 

To characterize compound 5 the following spectroscopic data

ere collected: optical rotation (PerkinElmer 241 polarimeter); in-

rared spectra (Affinity-1, Shimadzu); NMR spectra (Bruker 400 Ul-

ra Shield). The low resolution mass spectrometry was taken on

 Triple Quadrupole mass spectrometer (Micromass Quattro Micro

PI, Waters). 

White powder; [ α] 24 
D 

– 15.4 (c 0.1, CHCl 3 ); IR (CH 2 Cl 2 ) νmax 

524, 2949, 1765, 1375, 1215 cm 

−1 ; 1 H NMR (400 MHz, C 6 D 6 )

9.59 (1H, s, 9-ONic-H-2 ′ ), 8.44 (1H, d, J = 4.9 Hz, 9-ONic-H-6 ′ ),
.11 (1H, d, J = 7.8 Hz, 9-ONic-H-4 ′ ), 6.65 (1H, dd, J = 7.8, 4.9 Hz,

-ONic-H-5 ′ ), 6.14 (1H, d, J = 16.0 Hz, H-11), 6.12 (1H, bs, H-5),

.84 (1H, dd, J = 16.0, 9.1 Hz, H-12), 5.76 (1H, bs, H-3), 5.42 (1H,

s, H-17a), 5.29 (1H, bs, H-17b), 5.23 (1H, dd, J = 7.3, 2.9 Hz, H-

), 5.19 (1H, dd, J = 6.5, 2.9 Hz, H-7), 3.73 (1H, m, H-13), 3.33

1H, dd, J = 13.9, 7.7 Hz, H-1a), 3.16 (1H, d, J = 2.7 Hz, H-4), 2.40

1H, m, H-2), 2.32 (1H, m, H-8a), 2.29 (1H, m, H-8b), 1.99 (1H,

, 7-OCOC H (CH 3 ) 2 ), 1.75 (3H, s, 5-OCOC H 3 ), 1.74 (1H, m, H-1b),

.71 (3H, s, 3-OCOC H 3 ), 1.66 (3H, s, 15-OCOC H 3 ), 1.43 (3H, d,

 = 6.7 Hz, H-20), 0.95 (3H, s, H-19), 0.91 (3H, s, H-18), 0.81 (3H,

, J = 7.0 Hz, 7-OCOCH(C H 3 ) 2 ), 0.67 (3H, d, J = 6.9 Hz, H-16), 0.64

3H, d, J = 7.0 Hz, 7-OCOCH(C H 3 ) 2 ) ppm; 13 C NMR (101 MHz, C 6 D 6 )

212.7 (C-14), 176.1 (7-O C OCH(CH 3 ) 2 ), 170.1 (15-O C OCH 3 ), 169.3

3-O C OCH 3 ), 169.0 (5-O C OCH 3 ), 164.2 (9-O C Nic), 153.9 (9-ONic-C-

 

′ ), 151.6 (9-ONic-C-2 ′ ), 148.7 (C-6), 138.2 (C-11), 136.6 (9-ONic-C-

 

′ ), 131.5 (C-12), 126.1 (9-ONic-C-3 ′ ), 123.5(9-ONic-C-5 ′ ), 110.0 (C-

7), 93.4 (C-15), 76.6 (C-3), 75.9 (C-9), 69.0 (C-7), 69.0 (C-5), 53.6

C-4), 49.7 (C-10), 46.7 (C-1), 43.9 (C-13), 38.7 (C-2), 34.9 (C-8),

3.9 (7-OCO C H(CH 3 ) 2 ), 26.6 (C-18), 23.6 (C-19), 21.0 (5-OCO C H 3 ),

0.8 (3-OCO C H ), 20.7 (15-OCO C H ), 19.0 (7-OCOCH( C H ) ), 18.0
3 3 3 2 
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Fig. 1. Compounds evaluated for their potential MDR reversal activity. 
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(7-OCOCH( C H 3 ) 2 ), 13.3 (C-16) ppm; ESIMS (positive mode) m/z (rel.

int.) 670 [M + H] + (100). 

Compounds tested 

Compounds 1–5 ( Fig. 1 ) were tested for their potential as MDR

modulators, against different cancer cells. The isolation and iden-

tification of compounds 1–4 have been previously reported ( Reis

et al., 2015 ). All compounds were dissolved in DMSO. 

MDR mediated by ABCB1: rhodamine 123 accumulation assay 

L5178Y mouse T-lymphoma cells (ECACC catalog no. 87,111,908,

U.S. FDA, Silver Spring, MD, USA) and the L5178Y mouse

T-lymphoma MDR1 -transfected cells were established and cultured

as described ( Pastan et al., 1988; Reis et al., 2013 ). The cells were

adjusted to a density of 2 ×10 6 /ml, resuspended in serum-free

McCoy’s 5A medium and distributed in 500 μl aliquots. The test

compounds were added at 2 and 20 μM, verapamil (positive con-

trol, EGIS Pharmaceuticals PLC, Budapest, Hungary) at 20 μM and

DMSO at 2% (v/v) as solvent control. The samples were incubated

for 10 min at room temperature, after which 10 μl (5.2 μM final

concentration) of rhodamine-123 was added to the samples. After

20 min incubation at 37 ºC, the samples were washed twice, resus-

pended in 500 μl phosphate-buffered saline (PBS) and analyzed by

flow cytometry (Partec CyFlow® Space instrument, Partec GmbH,

Münster, Germany). The resulting histograms were evaluated re-

garding mean fluorescence intensity (FL-1), standard deviation and

peak channel of 20,0 0 0 individual cells belonging to the total and
ated populations. The fluorescence activity ratio (FAR) was cal-

ulated as FAR = (L5178Y-MDR FL-1treated / L5178Y-MDR FL-1control ) /

PAR FL-1treated / PAR FL-1control ). 

DR mediated by ABCB1: ATPase assay 

ABCB1 ATPase activity was determined using the SB-MDR1

READEASY ۛ ATPase Kit (SOLVO Biotechnology, Szeged, Hungary)

ccording to the manufacturer’s instructions. Briefly, the purified

f9 insect membrane vesicles (4 μg protein/well), expressing high

evels of human MDR1 , were incubated in 50 ATPase assay buffer,

ompound 4 and 2 mM MgATP, for 10 min at 37 °C. Final concen-

ration of DMSO in experiment was 2% (v/v). ATPase reaction was

topped and the inorganic phosphate (Pi) produced was measured

olorimetrically (optical density was read at 630 nm). The amount

f Pi liberated by the transporter is proportional to its activity.

ence, ATPase activities were determined as the difference of the

easured Pi liberation with and without the presence of 1.2 mM

odium orthovanadate (vanadate-sensitive ATPase activity). This

TPase kit includes two different tests: the activation and inhibi-

ion assays. The activation assay detects compounds that are trans-

orted by ABCB1 and thus stimulate baseline vanadate-sensitive

TPase activity, such as, verapamil (40 μM) that was used as posi-

ive control. In the inhibition assay, the compounds were incubated

n the presence of verapamil (40 μM), and thus, inhibitors may re-

uce the verapamil-stimulated vanadate-sensitive ATPase activity.

n some cases inhibitors may inhibit the baseline transporter AT-

ase activity as well, such as cyclosporine A (40 μM), also used as

ositive control. 
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DR mediated by ABCB1: antiproliferative and drug combination 

tudies 

The antiproliferative assay was based on MTT (thiazolyl blue

etrazolium bromide) staining and was performed according to

hat was described ( Reis et al., 2013 ). Briefly, L5178Y mouse

-lymphoma cells (PAR and MDR1 -transfected) were seeded at

 ×10 5 /ml and incubated with a concentration gradient of ja-

rophanes (final volume of 200 μl/well) for 72 h (5% CO 2 at

7 ºC). Final concentration of DMSO in experiment was 1% (v/v).

ell growth was determined by measuring the optical density

OD) at 550 nm (ref. 630 nm) with a Multiscan EX ELISA reader

Thermo Labsystems, Cheshire, WA, USA). The percentage of

nhibition of cell growth was determined as: 100 – [(OD sample –

OD mediumcontrol )/(OD cellcontrol – OD mediumcontrol )] ×100. Mean IC 50 

alues were obtained by best fitting the dose-dependent inhibi-

ion curves in GraphPadPrism5 program, from three independent

xperiments for each cell line. 

Drug combinations of doxorubicin (Teva) and the compounds

ere designed and evaluated according to Chou using the soft-

are CalcuSyn Version 2 ( Chou, 2010, 2006 ). Because the opti-

al concentration range for the combination is not known, the

ost appropriated experimental design is by using several con-

entrations of each agent, with data points above and below IC 50 

o make the assay more accurate. Therefore, the experimental de-

ign followed the checkerboard microplate method, where dilu-

ions of doxorubicin were made in a horizontal direction and the

ilutions of resistance modifiers vertically in a microtiter plate to a

nal volume of 200 μl of medium per well. The L5178Y-MDR cells

ere distributed at 2 × 10 5 cells/ml per well and were incubated

or 48 h under the standard conditions. The cell growth rate was

etermined after MTT staining, as previously described ( Reis et al.,

013 ). Each drug combination produces an effect and constant ra-

ios ([compound]/[doxorubicin]) can be taken from the diagonals

f the checkerboard. The effect of each constant ratio across a

oncentration gradient was computed in CalcuSyn software. Each

ose–response curve (individual agents as well as combinations)

as fit to a linear model using the median-effect equation ( Chou,

010, 2006 ): F a / F u = ( D / D m 

) m or log( F a / F u ) = m log( D ) −m log( D m 

)

1) 

In this equation, D is the dose of drug, D m 

is the median– ef-

ect dose (IC 50 ), F a is the fraction affected by dose D (% of growth

nhibition), F u is the unaffected fraction ( F u = 1 −F a ), and m is the

lope of the dose–effect curve ( Chou, 2010, 2006 ). The goodness-

f-fit of the data was assessed by the linear correlation coefficient

, and only data from analyses with r > 0.90 are presented. 

As can be deduced, the dose and the effect are interchangeable

ince the dose ( D ) for any given degree of effect ( F a ) can be de-

ermined if the values for D m 

and m are known. Therefore, Eq. (1)

an be rearranged as D = D m 

[ F a /1 −F a )] 
1/ m and F a = 1/[1 + ( D m 

/ D ) m ].

hese equations allow the calculation of the dose–effect relation-

hips at IC 50 ( Chou, 2010, 2006 ). 

The extent of interaction between drugs was ex-

ressed using the combination index (CI) for mutu-

lly exclusive drugs. The CI value is extracted through

he following equation: CI = ( D ) 1 /( D x ) 1 + ( D ) 2 /( D x ) 2 or

I = ( D ) 1 /( D m 

) 1 [ F a /(1 −F a )] 
1/ m1 + ( D ) 2 /( D m 

) 2 [ F a /(1 −F a )] 
1/ m 2 . In this

quation, ( D x ) 1 and ( D x ) 2 represent the doses of doxorubicin

ndcompounds alone, required to produce an effect at a deter-

ined level, and ( D ) 1 and ( D ) 2 are the doses of doxorubicin and

ompounds that in combination produce the same effect. The CI

as computed by CalcuSyn software for each constant ration at

he IC 50 level and was classified as: CI < 0.1: very strong syner-

ism; 0.1 < CI < 0.3: strong synergism; 0.3 < CI < 0.7: synergism;

.7 < CI < 0.9: moderate to slight synergism; 0.9 < CI < 1.1: nearly
[  
dditive; 1.10 < CI < 1.45: moderate antagonism; 1.45 < CI < 3.30:

ntagonism ( Chou, 2010, 2006 ). 

ollateral sensitivity assays: antiproliferative assay 

Cell culture procedures of the human carcinoma cell lines

EPG85-257P and EPP85-181P) and their drug-resistant sub-

ines (EPG85-257RNOV, EPG85-257RDB, EPP85-181RNOV, EPP85- 

81RDB) have been described previously ( Reis et al., 2014 ).

riefly, 5 × 10 3 /ml (EPG85-257P and EPP85-181P) and 7.5 × 10 3 /ml

EPG85-257RNOV, EPG85-257RDB, EPP85-181RNOV, EPP85- 

81RDB) were seeded. After 48 h attachment, a particular com-

ound was added in a dilution series for 5 days incubation (5%

O 2 at 37 ºC). Final concentration of DMSO in experiment was 0.3%

v/v). Cell growth was based on sulforhodamine B (SRB) staining

nd was performed according to what was described ( Reis et al.,

014 ) . Cell growth was measured at 562 nm against the reference

avelength of 690 nm. Mean IC 50 values were obtained by best

tting the dose-dependent inhibition curves in GraphPadPrism5

rogram, from three to four independent experiments in triplicate

or each cell line. Relative resistance (RR) values were determined

s: IC 50(resistant cells) /IC 50(parental cells) . 

nnexin V/PI staining and active caspase-3 assay 

For detection of cytotoxic drug-induced apoptosis, a FITC An-

exin V apoptosis detection kit (BD Pharmingen ۛ, BD Biosciences)

as used. Detection of intracellular presence of active caspase-

 was also performed using FITC active Caspase-3 Apoptosis

it (BD Pharmingen ۛ, BD Biosciences). Both assays followed the

ame experimental design. Briefly, 6 ×10 4 cell/ml of parental cell

ines (EPG85-256P and EPP85-181P) and 1 × 10 5 cell/ml of resis-

ant cell lines (EPG85-256RNOV, EPG85-256RDB, EPP85-181RNOV 

nd EPP85-181RDB) were seeded in six-well plates in complete

edium and allowed to attach for 24 h. On the next day, the

edium was discarded and new medium, with 30 μM of the

ested compounds, was added to the gastric and pancreatic cancer

ells. Final concentration of DMSO in experiment was 0.3% (v/v).

amptothecin (Cayman Chemicals, USA) was used as positive con-

rol (1 μM). Cells were further incubated for 72 h, in 5% CO 2 at

7 ºC. The concentration of compounds and positive control and in-

ubation time were optimized in order to assure a good sampling

or flow cytometry measurement of the apoptotic process (data

ot shown). After this incubation period, cells were trypsinized,

ashed in PBS and stained according to each kit manufacturer’s in-

tructions. Stained cells were analyzed using BD Accuri C6 flow cy-

ometer (BD Pharmingen ۛ, BD Biosciences) and data were processed

ith BD Accuri C6 software. Each sample was assessed using a col-

ection of 10 0 0 0 events. The mean values and standard deviations

ere calculated from three independent experiments. 

tatistical analysis 

Statistical evaluation of the apoptosis assays data was per-

ormed with the two-tailed unpaired Student’s t test using Graph-

adPrism5 software. Probability value p < 0.05 was considered sta-

istically significant (further t -test details at supplementary mate-

ial). 

esults 

sulatin M ( 5 ) 

Compound 5 , [ α] 24 
D 

– 15.8, was isolated as an amorphous white

owder. Its ESIMS presented a pseudomolecular ion, at m/z 670

M + H] + , consistent with the molecular formula, C 36 H 47 NO 11 . The
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Fig. 2. Effects of com pounds 1–5 on the ABCB1 mediated rhodamine-123 efflux. (A) Flow cytometry histograms of rhodamine-123 accumulation showing MDR reversion in 

L5178Y-MDR cells, at 2 and 20 μM. (B) Structure-activity comparisons between compounds 1–5 and their FAR values, at 2 and 20 μM. FAR = (L5178Y-MDR FL-1treated /L5178Y- 

MDR FL-1control )/(PAR FL-1treated /PAR FL-1control ). FL-1: mean fluorescence intensity of the cells. Verapamil (20 μM): FAR = 12.5. DMSO (2% v/v): FAR = 0.87. 
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13 C NMR data suggested compound 5 to be a polyester

�6(17), �11-jatrophane-type diterpene. From the NMR spectra, five

ester residues could be identified as: three acetoxyls, one isobu-

tyryloxyl group and one nicotinoyloxyl moiety. The conjugation of

COSY, HMQC, and HMBC spectra allowed the full establishment of

the diterpenic core. Therefore, the typical low field olefinic sig-

nals corresponding to the 11,12-endocyclic double bond appeared

at δH 6.14, 5.84 and δC 138.2, 131.5. Moreover, the presence of two

broad singlets at δ 5.42 and 5.29, with HMQC correlations with

a carbon at δ 110.0, corroborated the presence of the exomethy-

lene group. The relative stereochemistry of compound 5 was in-

vestigated through a NOESY experiment. According to its full spec-

troscopic data and comparison with literature data, this compound

was identified as esulatin M ( 5 ), firstly isolated from the methanol

extract of Euphorbia esula ( Vasas et al., 2011 ). 

Modulation of ABCB1 efflux 

Aiming to evaluate the potential ABCB1 modulation effect of

compounds 1 –5 , a cell line overexpressing this transporter (L5178Y

mouse T-lymphoma cell line transfected with MDR1 ) and its

parental counterpart (L5178Y-PAR) were employed. The L5178Y-

MDR cell line exclusively expresses ABCB1, and thus constitutes

a good model for the design and evaluation of MDR reversal ex-

periments. Therefore, compounds 1–5 were tested at 2 and 20 μM

in the rhodamine-123 efflux assay. This experiment gives a direct

quantitative assessment whether a compound modulates the ef-
ux, given the fluorescence activity ratio (FAR), which is the cy-

oplasmic accumulation ratio of rhodamine-123 between L5178Y-

DR and L5178Y-PAR cells. ABCB1 modulation takes place when

AR value is higher than 1, hence, when this ratio is higher than

0, compounds can be classified as strong modulators ( Voigt et al.,

007 ). Verapamil, a well-known modulator, was used as positive

ontrol in this assay. The FAR values are presented in Fig. 2. 

The diterpenes 1–5 showed to be able to revert the MDR phe-

otype, at 20 μM ( Fig. 2 ), being two-fold ( 1 and 5 ) and three-

old ( 3 and 4 ) more effective than the positive control verapamil

FAR = 12.5 at 20 μM). At 2 μM, only compounds 3–5 maintained

he strong modulator feature (FAR > 10). 

ffects on ABCB1 ATPase activity 

The ABCB1 mediated efflux is coupled to ATP hydrolysis, be-

ng often stimulated by the transported substrates ( Chufan et al.,

015 ). Measurement of this catalytic activity is an approach to

nvestigate whether a candidate modulator acts as substrate or

nhibitor ( Chang et al., 2006 ). Therefore, epoxywelwitschene ( 4 ),

he strongest modulator of this set of molecules, was examined

or its effect on the ATPase activity of ABCB1. This activity was

easured using purified insect membrane vesicles (Sf9) express-

ng high levels of human ABCB1. The inorganic phosphate resul-

ant directly from ABCB1 ATP hydrolysis was assessed as vana-

ate sensitive ATPase activity. Vanadate is a phosphate analog

hat inhibits ABCB1 ATPase activity. Therefore, two complementary
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Table 1 

Antiproliferative activity of compounds 1 –5 on L5178Y mouse T-lymphoma cells. 

Compound L5178Y-PAR IC 50 ( μM ± SD) L5178Y-MDR IC 50 ( μM ± SD) Relative resistance (RR) 

Euphowelwitschine A ( 1 ) > 50 > 50 –

Euphowelwitschine B ( 2 ) > 50 > 50 –

Welwitschene ( 3 ) 27.86 ± 2.30 7.24 ± 1.70 0 .26 

Epoxywelwitschene ( 4 ) 48.50 ± 2.28 32.49 ± 2.25 0 .67 

Esulatin M ( 5 ) 16.64 ± 5.91 14.13 ± 0.81 0 .85 

Doxorubicin – 2.98 ± 1.01 –

Values of IC 50 are the mean ± standard deviation of three independent experiments. 

Relative resistance (RR) = IC 50 MDR cells/IC 50 PAR cells. 
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Fig. 3. Effect of epoxywelwitschene ( 4 ) on ABCB1 ATPase activity. Activation assay: to test the effect on the basal ATPase activity. Inhibition assay: to test the effect on 

drug-stimulated ATPase activity, measured in the presence of verapamil (40 μM). Results are expressed as the mean ± SD. The effects of compounds were presented as the 

relative ATPase activity, in which, the verapamil-stimulated vanadate-sensitive ATPase activity is taken as 100% and the baseline vanadate-sensitive ATPase activity as 0%. 
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ssays compose the ATPase experiment: activation and inhibition

ssays. In the activation assay, compounds can be ranked as stim-

lators or inhibitors of the baseline vanadate sensitive ATPase ac-

ivity. The inhibition assay, which is performed in the presence of

 known ABCB1 activator, is primarily used to characterize efflux

nhibitors (or slowly transported substrates) through the reduction

f verapamil-stimulated vanadate-sensitive ATPase activity by the

ested compound. Verapamil (40 μM) and cyclosporin A (40 μM)

ere used as positive controls in the activation and inhibition as-

ays, respectively. 

Hence, epoxywelwitschene ( 4 ) was tested in a dose-dependent

anner and the effects were presented as the relative ATPase ac-

ivity, in which the stimulated vanadate-sensitive ATPase activity

s taken as 100% and the base line vanadate-sensitive ATPase ac-

ivity as 0%. In this way, jatrophane 4 stimulated the ABCB1 AT-

ase activity, at concentrations ranging from 0.78 to 100 μM, 1.5

o 4 fold higher than verapamil, being the effect more pronounced

t lower concentrations ( Fig. 3 , activation assay). Moreover, the in-

ibition assay indicated that epoxywelwitschene ( 4 ) inhibited the

erapamil-stimulated ATPase activity, more pronouncedly at higher

oncentrations, being a complete inhibition attained at 50 and

00 μM ( Fig. 3 , inhibition assay). 

hemosensitization: reversion of drug-induced resistance 

Since the studied diterpenes 1–5 showed activity as ABCB1 ef-

ux modulators, the following step was to address what would

e the MDR reversal effects after long exposure and what would

e the outcomes of a combination with an antineoplastic drug,
uch as doxorubicin. Therefore, the antiproliferative activity of

ompounds 1–5 was evaluated in the L5178Y mouse T-lymphoma

ell model by the MTT assay ( Table 1 ). After 72 h incubation, the

2,17-cyclojatrophanes 1 and 2 did not have antiproliferative effect.

onversely, jatrophanes 3–5 showed an interesting activity since

hey were more active in ABCB1 overexpressing cells than in the

arental cell line, being welwitschene ( 3 ) the most potent present-

ng an IC 50 = 7.24 ± 1.70 μM (RR = 0.26). 

Drug interaction studies were planned according to the Chou–

alalay method ( Chou, 2010 ) and were assessed by the combi-

ation index (CI) as synergistic, additive or antagonistic ( Fig. 4 ).

elwitschene ( 3 ) showed an antagonistic nature at 400:1 ratio

CI = 1.6) and nearly additive at 200:1 ratio (CI = 0.93); except for

hese two, all the other tested ratios synergistically enhanced the

ytotoxicity of doxorubicin (CI = 0.5 – 0.4). Furthermore, euphowel-

itschines A ( 1 ) and B ( 2 ), epoxywelwitschene ( 4 ) and esulatin M

 5 ) synergistically enhanced the cytotoxicity of the drug (CI < 0.7)

t all tested ratios. 

ollateral sensitivity effect 

In our preliminary data, compounds 1–4 were evaluated for

heir potential selective antiproliferative activity against parental

astric (EPG85- 257) and pancreatic (EPP-181) human cancer

ells and their drug-resistant counterparts, selected against mi-

oxantrone (RNOV) or daunorubicin (RDB), respectively, using a

roliferation assay ( Reis et al., 2015 ). Epoxywelwitschene ( 4 )

as pointed as a potential MDR reverser due to its MDR-

elective antiproliferative activity against EPG85-257RDB, EPP85- 
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Fig. 4. Effect of compounds 1 –5 in combination with doxorubicin in L5178Y-MDR cells. Drug combination ratio [compound]/[doxorubicin]. Combination index (CI) values 

are mean ± standard deviation for an inhibitory concentration of 50% (IC 50 ). CI < 0.1: very strong synergism; 0.1 < CI < 0.3: strong synergism; 0.3 < CI < 0.7: synergism; 

0.7 < CI < 0.9: moderate to slight synergism; 0.9 < CI < 1.1: nearly additive; 1.10 < CI < 1.45: moderate antagonism; 1.45 < CI < 3.30: antagonism ( Chou, 2010, 2006 ). 

Table 2 

Antiproliferative activity of esulatin M ( 5 ) against pancreatic carcinoma cells: EPP85-181P (parental), 

EPP85-181RNOV (MDR phenotype) and EPP85-181RDB (MDR phenotype) and on gastric carcinoma 

cells: EPG85-257P (parental), EPG85-257RNOV (MDR phenotype) and EPG85-257RDB (MDR phenotype). 

Esulatin M ( 5 ) Cisplatin Etoposide 

IC 50 ( μM ± SD) RR IC 50 ( μM ± SD) RR IC 50 ( μM ± SD) RR 

EPP85-181P 12.7 ± 2.2 – 0.1 ± 0.01 – 0.6 ± 0.03 –

EPP85-181RNOV 11.2 ± 3.9 0 .9 2.6 ± 0.2 34 4.5 ± 0.7 7 .8 

EPP85-181RDB 4.8 ± 0.7 0 .4 0.1 ± 0.01 1 .2 62.0 ± 4.2 106 .9 

EPG85-257P 10.7 ± 0.6 – 4.4 ± 0.4 – 0.1 ± 0.01 –

EPG85-257RNOV 9.7 ± 0.1 0 .9 2.6 ± 0.2 0 .6 1.6 ± 0.1 14 .8 

EPG85-257RDB 1.8 ± 0.1 0 .2 4.0 ± 0.3 1 6.2 ± 0.3 59 

IC 50 value indicates the mean ± SD of n = 3–4 independent experiments (each concentration was per- 

formed in triplicate per experiment). Relative resistance (RR) = IC 50 (MDR cells)/IC 50 (parental cells). 
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181RNOV and EPP85-181RDB cells. Pursuing our research on this

topic, esulatin M ( 5 ) was investigated for its potential collat-

eral sensitivity effect on the same cancer entities. The MDR-

selective activity was assessed by the relative resistance ratio

(RR = IC 50(resistant) /IC 50(parental) ). When RR < 1 indicates the com-

pound kills MDR cells more effectively than parental cells, but

if RR < 0.5, then a collateral sensitivity effect is taking place

( Hall et al., 2009 ). The cytotoxic agents etoposide and cis-

platin were used as positive controls. The antiproliferative activ-

ity and collateral sensitivity effects of esulatin M ( 5 ) are pre-

sented in Table 2 . For the pancreatic cell lines, a MDR-selective

antiproliferative effect was observed on EPG85-181RDB cells with

IC 50 = 4.77 ± 0.72 μM, and RR = 0.37. A strong collateral sensitivity

effect was observed towards the resistant gastric cell line EPG85-

257RDB with IC = 1.8 ± 0.1 μM and RR = 0.2. On this cell line,
50 V  
sulatin M ( 5 ) presented an antiproliferative activity higher than

he positive controls cisplatin and etoposide ( Table 2 ). 

Given the promising results shown by esulatin M ( 5 ) and

poxywelwitschene ( 4 ) ( Reis et al., 2015 ), compounds 4 and 5 were

elected for apoptosis induction studies. 

poptosis induction and active caspase-3 assays 

Once the antiproliferative effects were determined, it was of in-

erest to assess whether the mechanism of cell death was apop-

osis or necrosis. The membrane phospholipid phosphatidylserine

as used as marker of apoptosis. In the earlier stages of apop-

osis, phosphatidylserine is translocated from the inner to the

uter leaflet of the plasma membrane. Therefore, the annexin

/propidium iodide (PI) staining allows the identification of early
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Fig. 5. Induction of apoptosis in pancreatic cancer cell lines after 72 h incubation with compounds 4 and 5 (30 μM). (A) Representative flow cytometry analysis after 

annexin V-FITC/PI staining. The FL1 and FL2 axis represent the fluorescence intensities of Annexin V-FITC and PI, respectively. Camptothecin (1 μM) was used as internal 

positive control. (B). Total apoptosis was considered the sum of early and late apoptotic events (cells annexin V-FITC positive/PI negative plus cells annexin V-FITC positive/PI 

positive). The results were expressed as the ratio between treated samples with untreated. Each column represents the mean ± SD of three independent experiments. 

Statistical significance was calculated for the difference between treated resistant cell lines and treated parental cells using a two-tailed unpaired Student’s t test. Level of 

significance ∗p < 0.05. ∗∗p < 0.01. ∗∗∗p < 0.001. 
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poptotic cells (PI negative, annexin V positive) and late apoptotic

ells (PI positive, annexin V positive), where membrane integrity is

ost (cells with intact membranes exclude PI) ( Chen, 2009 ). The as-

essment of induction of apoptosis by compounds 4 and 5 (30 μM)

as measured with the annexin V/PI assay, for 72 h ( Figs. 5 and 6 ).

he results were presented as total apoptosis (early and late apop-
otic events) and the effects were expressed as fold increase (ratio

etween treated samples and untreated samples). 

Regarding the pancreatic cancer cells, compounds 4 and 5

ere able to induce apoptosis in about 2-fold ( Fig. 5 B). Statistical

ignificant discrimination between resistant pancreatic cell lines

EPP85-181RNOV; EPP85-181RDB) and EPP85-181P cells could not
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Fig. 6. Induction of apoptosis in gastric cancer cell lines after 72 h incubation with compounds 4 and 5 (30 μM). ( A ) Representative flow cytometry analysis after annexin V- 

FITC/PI staining. The FL1 and FL2 axis represent the fluorescence intensities of Annexin V-FITC and PI, respectively. Camptothecin (1 μM) was used as internal positive control. 

(B). Total apoptosis was considered the sum of early and late apoptotic events (cells annexin V-FITC positive/PI negative plus cells annexin V-FITC positive/PI positive). The 

results were expressed as the ratio between treated samples with untreated. Each column represents the mean ± SD of three independent experiments. Statistical significance 

was calculated for the difference between treated resistant cell lines and treated parental cells using a two-tailed unpaired Student’s t test. Level of significance ∗p < 0.05. 
∗∗p < 0.01. ∗∗∗p < 0.001. 
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be observed ( Fig. 5 B), despite the collateral sensitivity effect shown

by esulatin M ( 5 ) ( Table 2 ). A different scenario was found for

the gastric cell lines; the incubation with jatrophanes 4 or 5 did

not caused early or late apoptosis in EPG85-257P cells (parental)

( Fig. 6 B). Nevertheless, both compounds ( 4 and 5 ) were able to

elicit statistical significant differences in the gastric MDR pheno-
ypes ( Fig. 6 B). For EPG85-257RNOV cells, compound 4 caused a

.5-fold increase of total apoptosis and compound 5 showed a 2.6-

old increase. In terms of EPG85-257RDB cells, both compounds

resented a similar effect causing apoptosis in about 2.5 fold. 

Once epoxywelwitschene ( 4 ) and esulatin M ( 5 ) killed the

ells by apoptosis, it was interesting to follow if this involved
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Fig. 7. Active caspase-3 in pancreatic (A) and gastric (B) cancer cell lines after 72 h incubation with compounds 4 and 5 (30 μM). The results were expressed as the ratio 

between treated samples with untreated. Each column represents the mean ± SD ( n = 3). Statistical significance was calculated for the difference between treated resistant 

cell lines and treated parental cells using a two-tailed unpaired Student’s t test. Level of significance ∗p < 0.05. ∗∗p < 0.01. ∗∗∗ , p < 0.001. Representative flow cytometric 

analysis of populations after active caspase-3 staining at Supplementary material. 
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aspase activation. Activated caspases cleave and activate other

ownstream caspases, as well as other targets in the cytoplasm

 e.g. Bcl-2), and in the nucleus ( e.g. PARP). Caspase-3 plays a

entral role in the execution of apoptosis, being pro-caspase-3,

he penultimate enzyme for execution of the apoptotic process

 Tan et al., 2009 ). Therefore, the quantification of active caspase-3

as assessed by flow cytometry after 72 h of exposure, at 30 μM

 Fig. 7 ). The results were expressed as fold increase (ratio between

reated samples and untreated samples). 

In terms of active caspase-3 in the pancreatic cells, a statisti-

al significant discrimination was observed between the resistant

ell lines and parental cells ( Fig. 7 A). Compound 4 caused a 7-fold

ncrease in EPP85-181RNOV and about 3-fold in EPP85-181RDB.

s for jatrophane 5, a 3.5-fold increase was observed for EPP85-

81RNOV and 5-fold for EPP85-181RDB cells. No significant differ-

nces were found between the gastric cancer phenotypes ( Fig. 7 B).

iscussion 

The research on potent ABCB1 reversal agents has been sub-

ect of massive endeavor, nevertheless no ABCB1 modulator is cur-

ently in clinical usage. Some of the drawbacks were attributed to

he toxic effects derived from simultaneous inhibition of ABCB1

nd the drug metabolizing cytochrome enzyme P450 (CYP3A4 iso-

orm), and to the inability of modulators/inhibitors to discriminate

etween ABCB1 expressed in normal tissues and ABCB1 expressed

n cancerous ones ( Callaghan et al., 2014 ). Such selective action

s one of the most desired traits of anti-cancer MDR therapy. In

he course of drug discovery process, collateral sensitivity can offer

ew insights into this problem. The mechanisms of MDR-selectivity

re still under investigation. For instance, some works associated it

o the expression of ABC transporters; nevertheless, others found

t to be independent ( Hall et al., 2009; Szakács et al., 2014 ). There-

ore, it is of relevance to study the effect of compounds in ABCB1

nd collateral sensitivity. 

In a previous study, we had investigated the potential collateral

ensitivity effect of the two rare 12,17-cyclojatrophanes ( 1–2 ) and

ther novel jatrophanes ( 3–4 ) isolated from Euphorbia welwitschii

 Reis et al., 2015 ). In order to continue this study, we further eval-

ated the MDR mechanisms of these compounds ( 1 –4 ) on ABCB1

odulation, along with esulatin M ( 5 ). This compound was iso-

ated during the extension of the phytochemical study of E. wel-

itschii. Despite the fact that esulatin M ( 5 ) has been reported as
odulator of ABCB1 ( Vasas et al., 2011 ), it was of interest to look

nto its anti-MDR activity in more detail and compare it with the

ther novel compounds. As referred, ABCB1 modulation results in-

icated compounds 1 –5 as potential efflux modulators ( Fig. 2 A).

nteresting structure-activity findings were obtained from the FAR

alues at 2 μM ( Fig. 2 B). As could be observed, the high conforma-

ional flexibility of the twelve-membered ring of jatrophanes 3–5

romotes ABCB1 modulation, in contrast to the 5/8/8 fused ring

ystem of euphowelwitschines A ( 1 ) and B ( 2 ). Similar observations

ere also found for rearranged polycyclic jatrophanes, based on

egetane, paraliane and pepluane skeletons. Those showed a lower

BCB1 modulatory efficiency when compared with molecules with

he macrocyclic jatrophane-type scaffold ( Corea et al., 2009; Fer-

eira et al., 2014 ). 

Some physicochemical properties (molecular weight, molecu- 

ar volume, logP, molar refractivity, topological polar surface area,

ccessible solvent area) of compounds 1–5 were also computed.

owever, due to the low variability obtained, no conclusions could

e established (data not shown). 

Epoxywelwitschene ( 4 ) was found to be the strongest efflux

odulator of this set ( 1 –5 ) of molecules. Therefore, in order to

nderstand the relation between its activity and ABCB1 ATP hy-

rolysis, the catalytic activity of this transporter was evaluated

n the presence and absence of a second transported substrate.

he results of the ATPase activity indicated that epoxywelwitsch-

ne ( 4 ) interacted with ABCB1, and reduced verapamil transport.

ence, taking together the results, it might be concluded that com-

ound 4 was able to impair the transport of rhodamine-123 and

f verapamil due to direct interaction with ABCB1. Rhodamine-123

nd verapamil have distinct binding sites within the drug bind-

ng pocket of ABCB1 ( Chufan et al., 2015 ). Epoxywelwitschene ( 4 )

ight affect the affinity of these molecules to ABCB1 by acting

s a modulator ( Ferreira et al., 2013; Zinzi et al., 2014 ) and/or

 slowly transported substrate. These assumptions were also cor-

oborated by the combination assay results. The synergic effect

f epoxywelwitschene ( 4 )/doxorubicin restored the cytotoxicity of

oxorubicin in the ABCB1-mouse T-lymphoma cell line. This is a

elevant finding because doxorubicin’s cytostatic efficacy is known

o be hampered by ABCB1 activity ( Gottesman et al., 2002; Sza-

ács et al., 2006 ). It is also worth to note that the other tested

ompounds ( 1–3 and 5 ), besides their effect on rhodamine-123 ef-

ux, also presented a synergistic interaction with doxorubicin. This
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work highlights the importance of these compounds as ABCB1-

MDR reversers, because their activity is in accordance with the as-

sumption that a promising ABCB1 modulator will consequently be

able to increase the action of a cytotoxic drug, due to greater efflux

impairment. 

In respect to the selective targeting of MDR phenotypes, esu-

latin M ( 5 ) showed collateral sensitivity effect in both pancreatic

and gastric cell lines resistant to daunorubicin. This compound

( 5 ) and epoxywelwitschene ( 4 ), whose collateral sensitivity effects

have been evaluated in a previous study ( Reis et al., 2015 ), were

selected for further investigation. Indeed, it was verified that, in

the pancreatic MDR phenotypes, the selective activity of epoxy-

welwitschene ( 4 ) and esulatin M ( 5 ) occurred through an apop-

totic caspase-dependent pathway. As for the gastric cancer cells,

although discrimination between resistant and parental cell lines

was not so evident in terms of active caspase-3, it can be con-

sidered that the selective cytotoxicity was also modulated by the

same apoptotic pathway. 

In summary, this study demonstrates the role of macrocyclic ja-

trophanes as lead candidates for the development of MDR reversal

agents. The compounds epoxywelwitschene ( 4 ) and esulatin M ( 5 )

appear particularly interesting, due to their dual activity: as ABCB1

modulators and MDR-selective antiproliferative compounds. 
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