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Abstract—It is very common in various fields that there is a
gap between theoretical results and their practical applications.
This is true for code refactoring as well, which has a solid
theoretical background while being used in development practice
at the same time. However, more and more studies suggest that
developers perform code refactoring entirely differently than the
theory would suggest.

Our paper encourages the further investigation of code refac-
torings in practice by providing an excessive open dataset of
source code metrics and applied refactorings through several
releases of 7 open-source systems. As a first step of processing
this dataset, we examined the quality attributes of the refactored
source code classes and the values of source code metrics
improved by those refactorings. Our early results show that
lower maintainability indeed triggers more code refactorings in
practice and these refactorings significantly decrease complexity,
code lines, coupling and clone metrics. However, we observed a
decrease in comment related metrics in the refactored code.
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I. INTRODUCTION

The concept of source code refactorings introduced by
Fowler [1] has been widely adopted by software engineering
practitioners and it has become the part of the everyday
processes. However, the application of theoretical results in
practice often poses new challenges due to differences in the
priorities between research and industry (e.g. time constraint,
cost effectiveness, or return on investment). This is true for
code refactoring as well. While lots of research effort is
spent on identifying refactoring opportunities with the help
of code smells and removing them by applying an appropriate
refactoring type [2], [3] as Fowler et al. suggest, Peters and
Zaidman [4] found that engineers are aware of code smells, but
are not very concerned with their impact as refactoring activity
is not focused on them. Similarly, Bavota et. al [5] revealed
that only 7 % of the performed refactoring operations on three
open-source systems actually remove the code smells from the
affected class.

These results highlight that more research is needed to
find out how developers apply refactoring in practice in order
to elaborate new techniques and methods that better suit
their needs. Our perception is that empirical investigations on
refactoring activities is currently limited by the availability of
experimental data. It is very tiresome to collect large amount
of refactoring data and map them to low-level source code
elements like classes and methods. Additionally, datasets used
by researchers are often not shared within the community or
contain very coarse-grained information (e.g. only the number

of refactorings in a file without exact code diffs or line
information as in the work of Bavota et al. [5]).

To overcome this problem, we propose a publicly available
refactoring dataset that we assembled using the Ref-Finder
tool [6] for refactoring extraction and the SourceMeter1 static
source code analyzer tool for source code metric calculation.
The dataset contains fine-grained refactoring and source code
metric information for 37 releases of 7 open-source Java
systems at the moment. Each refactoring is mapped to source
code elements at the level of methods and classes with
exact version and line information that supports reproducible
empirical investigations. Besides the source code metrics, the
dataset contains the relative maintainability indices of source
code elements, calculated by the QualityGate2 tool which
implements the ColumbusQM quality model [7]. This allows
the researcher community to directly analyze the connection
between source code maintainability and code refactoring.

We anticipate an increased number of empirical studies
on the practical application of code refactorings due to the
proposed dataset, similarly to what open bug datasets like
PROMISE [8] or Bug Prediction Dataset [9] brought to the
area of bug prediction. Although the dataset is in an early stage
(e.g. requiring manual validation of refactoring data, extension
in terms of systems and releases, addition of other extra
information like defects in the source code elements), its value
is already observable. With the help of the assembled dataset,
we examine the connection between refactorings and practical
maintainability of the code in this paper by investigating the
following research questions:

RQ1. Are classes with lower maintainability value subject
to more refactorings in practice?

RQ2. Which quality attributes (source code metrics) are
affected the most by code refactorings and to what extent?

The main contributions of this work are the following:
• We created an open dataset containing the applied refac-

torings (40+ kinds) and source code metrics (50+ kinds)
for several releases of open-source Java systems, similar
to those open bug repositories that stimulated the area of
bug prediction.

• Using the collected data we present empirical results on
the correlation between source code maintainability and
code refactorings.

1 http://www.sourcemeter.com/
2 http://www.quality-gate.com/
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• Applying statistical methods we investigate the effect of
code refactorings on the internal code quality attributes
(i.e. source code metrics).

II. RELATED WORK

There are several studies that have investigated the relation-
ship between practical refactoring activities and the software
quality through different quality attributes. Many of them used
the Ref-Finder tool [6] to extract refactorings from real-life
open-source systems, similar to us.

Bavota et al. [5] made observations on the relations between
metrics/code smells and refactoring activities. They mined
the evolution history of 2 open-source Java projects and
revealed that refactoring operations are generally focused on
code components for which quality metrics do not suggest
there might be a need for refactoring operations. In contrast
to this work, by considering maintainability instead of code
smells, we found significant, but not very strong relationship
with refactoring activities. Bavota et al. also provide a large
refactoring dataset with 15,008 refactoring operations, but it
contains file level data only without exact line information.
Our open dataset contains method level information as well
and refactoring instances are completely traceable.

In a similar work to ours Murgia et al. [10] studied whether
highly coupled classes are more likely to be targets of refac-
toring than less coupled ones. Classes with high fan-out (and
relatively low fan-in) metric consistently showed to be targets
of refactoring, implying that developers may prefer to refactor
classes with high outgoing rather than high incoming coupling.

Kataoka et al. [11] also focused on the coupling metrics
to evaluate the impact of refactorings and showed that their
method is effective in quantifying the impact of refactoring
and helped them to choose the appropriate refactoring types.

Contrary to the previous two works, we did not select
a particular metric to assess the effect of refactorings, but
rather used statistical tests to find those metrics that change
meaningfully upon refactorings. This way we could identify
that complexity, size, and clone metrics also play an important
role in connection with refactorings.

The approach presented by Tsantalis et al. [12] investigates
the refactoring activity as part of the software engineering
process and not its effect on code quality. They have identified
that the refactoring decision making and application is often
performed by individual refactoring “managers”. They found a
strong alignment between refactoring activity and release dates
and revealed that the development teams apply a considerable
amount of refactorings during testing periods.

Measuring clones and investigating how refactoring affects
them has also attracted a lot of research efforts. Our dataset
also includes clone metrics, thus clone oriented refactoring
examinations can also be performed.

Choi et al. identified [13] that merged code clone token
sequences and differences in token sequence lengths vary
for each refactoring pattern. They found that extract method
and replace method with method object refactorings are the
most popular when developers perform clone refactoring.

Again Choi et al. [14] present an investigation of actual
clone refactorings performed in open-source development. The
characteristics of refactored clone pairs were also measured.
From the results, they again confirmed that clone refactorings
are mostly achieved by replace method with method object
and extract method. We also found that refactoring activities
improve clone metrics, but we did not distinguish the effect
of different refactoring types in this work. Nonetheless, the
required data is available in the assembled dataset to conduct
similar investigations.

Similarly to us, Murphy-Hill et al. [15] empirically analyzed
how developers refactor in practice. They found that refactor-
ing tools are rarely used: 11% by Eclipse developers and 9%
by Mylyn developers. Unlike the above paper, we do not focus
on how refactorings are introduced (i.e. manually or using a
tool), rather on their effect on source code.

III. APPROACH

In order to aid research on source code refactorings in
practice, we constructed an excessive public dataset of source
code metrics and applied refactorings. As a first step in
utilizing the dataset, we investigate the connection between the
number of refactorings affecting the classes of the programs
and their various quality properties.

A. Dataset Construction

The dataset contains data of release versions of 7 open-
source Java systems available on GitHub. Table I provides
details about the projects, their names, Git URLs, number of
releases and the covered time interval by the releases.

Table I
THE SYSTEMS INCLUDED IN THE REFACTORING DATASET

System Git URL # Rel. Time interval

antlr4 https://github.com/antlr/antlr4 5 21/01/13-22/01/15
junit https://github.com/junit-team/junit 8 13/04/12-28/12/14
mapdb https://github.com/jankotek/MapDB 6 01/04/13-20/06/15
mcMMO https://github.com/mcMMO-Dev/mcMMO 5 24/06/12-29/03/14
mct https://github.com/nasa/mct 3 30/06/12-27/09/13
oryx https://github.com/cloudera/oryx 4 11/11/13-10/06/15
titan https://github.com/thinkaurelius/titan 6 07/09/12-13/02/15

These projects were found ideal for our research purposes
because of the adequate number of release versions and
the amount of the code modifications between two adjacent
releases. We investigated 3 to 8 releases of each project. For
every release version of every project, class and method-level
metrics and the number of refactorings grouped by refactoring
types (e.g. pull up method, add parameter) are provided;
23 refactoring types on class-level, and 19 on method-level.
Table II provides an overview of the total number of classes,
methods and refactorings contained in the current dataset.

The release versions of the projects were selected bearing
in mind the amount of code modifications performed from
a release to the next one. As long as the selected versions
do not differ enough, the number of refactorings mined be-
tween them are rather low, in most of the cases zero, which
do not carry any additional information and e.g. machine
learning algorithms cannot be performed efficiently. On the
other hand, there has to be a considerable number of release



Table II
TOTAL NUMBER OF CLASSES, METHODS AND REFACTORINGS

System # Classes # Methods # Refactorings

antlr4 622 5,280 248
junit 1,267 4,124 553
mapdb 850 6,180 2,973
mcMMO 505 4,767 62
mct 2,175 11,765 763
oryx 551 2,592 121
titan 2,429 14,214 3,152
Total 8,399 48,922 7,872

versions to make it possible to investigate how the metrics
and refactoring activities are varying over time. We found that
an approximately half-year interval between release dates is
an acceptable heuristic that provides a sufficient amount of
code changes which we consider appropriate for most of the
research goals. Thus, in case of every project, we dropped
those release versions that were too close to each other in
time. In the end, we left 3 to 8 release versions in the dataset
depending on the considered project.

We used the Ref-Finder refactoring reconstruction tool [6]
to reveal refactorings between two adjacent release versions.
We note that the precision of this tool is not perfect, 79% ac-
cording to the Ref-Finder authors [16]. A Ref-Finder analysis
on two versions of the source code can be started manually
and the results are displayed in the Eclipse IDE. In order to
run the analysis over the release versions we have selected,
we improved Ref-Finder to be able to perform an automatic
batch analysis. To make the further examinations possible, we
also implemented an export feature in Ref-Finder that writes
the revealed refactorings and all of their attributes into CSV
files for each refactoring type. To set up the final dataset we
mapped the refactorings to the affected code elements (class
and method) and counted their numbers. More specifically, if
a code element was touched by a refactoring, the refactoring
was counted to that code element. If a method was affected by
a refactoring it was counted to the class of this method too.
In every release version the accounted refactoring numbers
indicate how many refactorings from various types were
performed that affected the considered code element between
the current release and the previous one.

Besides code refactorings, more than 50 types of static
source code metrics were also extracted for every class and
method of the systems with the help of the SourceMeter
static code analysis tool. As an additional metric, we assigned
the so-called relative maintainability index (RMI) for each
code element as measured by the QualityGate SourceAudit
tool [17]. The RMI of a source code element reflects its level
of maintainability compared to the other code elements of
the system. It is similar to the well-known maintainability
index [18], but it is calculated using dynamic thresholds from
a benchmark database instead of a fixed formula. The technical
details of the RMI can be found in our earlier work [19].

The dataset is part of the tera-PROMISE repository [8]:
http://openscience.us/repo/refactoring/refact.html,

and available online at the following location as well:
http://www.inf.u-szeged.hu/~ferenc/papers/RefactDataSet/

B. Data Analysis Methodology

To answer our two research questions we used the new
dataset in the following way. For RQ1, we performed a
correlation analysis on the RMI values of the classes and the
number of refactorings affecting these classes. We took the
RMI values from release xi, and the number of refactorings
from release xi+1. This way we assessed whether poor quality
classes got refactored more intensively than other classes or
not. We note that in the current study we deal only with
classes, but the dataset contains RMI and refactoring values
for methods as well. Since we cannot assume anything about
the distribution of the maintainability indices nor the number
of refactorings, we performed a Spearman rank correlation
analysis.

For answering RQ2, first we calculated the differences of the
metric values between the subsequent releases. In most cases
negative differences mean an improvement, as lower metric
values (e.g. lower complexity) are better. To decide whether
there is a significant difference among the metric decreases in
the refactored and non-refactored classes, we run a Mann-
Whitney U test. The result of this test gave us a hint on
what are those metric values that improve significantly upon
refactorings. To estimate the volume of these metric changes,
we calculated two effect size measures as well, namely the
odds ratio (OR) and the Cliff’s delta value (δ).

IV. RESULTS

In this section we summarize the assessment results of the
assembled refactoring dataset regarding software maintainabil-
ity. First, we describe the results of the analysis on the main-
tainability of refactored classes to answer RQ1. Afterwards,
we present the findings on the effect of refactorings on source
code metrics to answer RQ2.

A. The Maintainability of Refactored Classes

To answer RQ1, we performed a correlation analysis be-
tween the number of refactorings affecting the classes and their
maintainability indices in the previous release (as described
in Section III). Figure 1 depicts the Spearman correlation
coefficients between the RMI values in release xi and the
number of refactorings affecting the corresponding classes in
release xi+1.

Figure 1. Correlation of maintainability and number of refactorings in classes



Figure 2. Metric improvements heat map

As can be seen, all the values are negative, meaning that the
worse the maintainability of a class is the more refactorings
touch it. Although the coefficients are moderate, they are
consistently negative and significant at the level of 0.05 (except
for the two lowest values of mcMMO and oryx). There are less
correlation coefficients than releases for some systems because
we were unable to calculate them when Ref-Finder found no
refactorings between two releases, which happened a couple
of times.

Answer to RQ1: Based on the findings on our dataset it
seems that classes with poor maintainability are subject to
higher number of refactorings during their lifetime.

B. The Effect of Refactorings on Source Code Metrics

We found that refactorings affect poorly maintainable code,
so the question arises whether applying refactorings really
improves the internal quality of the code? And if yes, what
are the source code metrics that show the highest improvement
(i.e. decrease significantly)?

According to the process described in Section III, we first
calculated the metric value differences for every class between
the adjacent releases. Then, we grouped these metric difference
values into two groups: in the first group we put the metric
differences of classes touched by at least one refactoring, and
in the second group the metric differences of non-refactored
classes. Finally, we analyzed which metrics show significant
differences between the values of the two groups with the help
of Mann-Whitney U test.

Table III
THE RESULTS OF THE MANN-WHITNEY U TEST (P-VALUES)

System name CI WMC NOI RFC TCLOC TLLOC TNOS
antlr4 0.033 0.428 0.010 0.031 0.136 0.002 0.122
junit 0.728 0.042 0.170 N/A 0.012 0.101 0.113
mapdb 0.030 0.006 0.005 0.000 0.05 0.000 0.000
mcMMO 0.005 0.608 0.003 0.013 0.066 0.257 0.594
mct 0.905 0.200 N/A 0.941 N/A 0.115 0.703
oryx 0.667 0.575 0.381 0.533 0.800 0.743 0.159
titan 0.022 0.016 0.000 0.000 0.260 0.002 0.042

Out of 50+ source code metrics, the ones listed in Table III
had the lowest p-values, meaning that the differences in the
metric value changes for refactored and non-refactored classes
are the most significant for these metrics. We observed that
coupling metrics, namely Response Set for Classes (RFC)
and Number of Outgoing Invocations (NOI) indeed decrease
significantly upon refactorings in accordance with the previous
findings of other studies [10], [11]. But besides coupling, we
found a significant decrease in size metrics as well, namely
in the case of Total Logical Lines of Code (TLLOC) and

Total Number of Statements (TNOS). This finding is not really
surprising, nor that the complexity metric Weighted Methods
per Class (WMC) also decreased significantly. What is more
interesting is that the number of Clone Instances (CI) also
decreased, thus refactoring activity seems to remove copy-
paste code parts in practice. Finally, an interesting result is that
the Total Comment Lines of Code (TCLOC) also decreased
significantly. This might mean a degradation in maintainability
if the developer did not take the time to document the
modifications, but it can also mean an improvement if out-of-
date comments were removed, or even better, if the developer
adhered to the clean code principle.

To get an impression about the magnitude of the differences
between the metric value decreases of the refactored and non-
refactored classes, we calculated the ratio of classes with
metric value decreases within the two groups. The results are
depicted on the heat map shown in Figure 2. The left columns
contain the proportion of refactored classes having decreased
metric value, while right columns show the same ratio for the
non-refactored classes. The darker values mark higher ratios.
As can be seen, all the dark values are in the left columns,
thus metric value decreases are far more frequent in the group
of refactored classes than in non-refactored classes.

To quantify what we observed visually in the heatmap, we
calculated the odds ratio (OR) and Cliff’s delta (δ) effect size
measures. The detailed results are presented in Table IV. The
average OR values vary between approximately 4-9, which
means that on average the chances of a metric value decrease
is 4-9 times higher in the classes affected by refactorings than
in the non-refactored classes. The Cliff’s δ values suggest a
similar conclusion, though not as obviously as the OR values.
Cliff’s δ measures how often the values in one distribution are
larger than the values in a second distribution. It ranges from
-1 to 1 and is linearly related to the Mann-Whitney U statistic,
however it captures the direction of the difference in its sign
as well. Simply speaking, if Cliff’s δ is a positive number,
the metric value differences (thus the metric value decreases)
are higher in the refactored classes, while negative value
means that the metric value differences are higher in the non-
refactored classes. The closer the δ is to |1|, the more values
are larger in one group than the values in the other group.
Generally, most of the Cliff’s δ values are positive (i.e. the
average δ values are positive for every metric). Nonetheless,
there are several large negative δ values for the CI and WMC
metrics. This might suggest that cloned code and complexity is
decreased by other targeted changes, while refactorings often



Table IV
EFFECT SIZE MEASURES

System name
CI WMC NOI RFC TCLOC TLLOC TNOS

OR δ OR δ OR δ OR δ OR δ OR δ OR δ

antlr4 9.38 -0.86 11.68 0.21 10.95 0.75 10.95 0.58 5.47 0.61 2.09 0.64 6.97 0.40
junit 6.04 0.13 20.14 0.69 5.31 0.35 7.07 0.06 11.73 0.50 8.43 0.69 19.94 0.35
mapdb 10.56 0.40 2.86 0.50 4.32 0.33 2.85 0.55 8.43 0.30 2.30 0.78 2.51 0.78
mcMMO 5.07 0.96 2.27 -0.22 3.57 0.89 2.80 0.79 4.63 0.63 3.77 0.30 2.82 0.19
mct 19.33 0.06 4.30 -0.89 5.95 0.00 2.42 0.13 19.33 0.00 5.80 0.59 11.90 -0.15
oryx 6.17 -0.40 6.17 0.2 12.34 0.50 15.42 0.50 7.12 0.13 3.59 -0.10 2.50 0.50
titan 3.76 0.39 5.53 0.15 4.92 0.24 4.57 0.30 4.98 0.15 4.43 0.26 4.95 0.17
Average 8.62 0.10 7.56 0.09 6.76 0.44 6.58 0.42 8.81 0.33 4.34 0.45 7.37 0.32

have a side effect to remove code clones or reduce complexity
as well. However, this phenomenon needs further investigation.

Answer to RQ2: We found that size (TLLOC, TNOS),
coupling (RFC, NOI), clone (CI), complexity (WMC) and
comment (TCLOC) related metrics decrease the most in refac-
tored classes. Regarding the volumes of the differences, we can
say that for these metrics the average chances of a decrease
is 4-9 times higher in the classes affected by refactorings than
in the non-refactored classes.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a publicly available dataset which
is indented to assist the research of refactoring activities in
practice. The dataset contains fine-grained refactoring infor-
mation and more than 50 types of source code metrics for
37 releases of 7 open-source systems at class and method
level. By utilizing the dataset, we investigated the relationship
between maintainability and refactoring activities, and we
also assessed how refactorings affect different source code
metrics. We found that classes with poor maintainability are
subject to more refactorings in practice than classes with
higher technical quality. Considering metrics, number of clone
instances, complexity, and coupling have improved, although
comment related metrics decreased. We found a significant
decrease in size metrics as well. The possible utilization of the
assembled dataset goes much beyond the early investigations
presented in this paper. We plan to reveal more complex phe-
nomena in connection with practical refactorings, especially
the relationship between bugs and refactoring activities.
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