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ABSTRACT: DNA origami structures can be programmed into arbitrary shapes with nanometer 

scale precision, which opens up numerous attractive opportunities to engineer novel functional 

materials. One intriguing possibility is to use DNA origamis for fully tunable, targeted and 

triggered drug delivery. In this communication, we demonstrate the coating of DNA origami 

nanostructures with virus capsid proteins for enhancing cellular delivery. Our approach utilizes 

purified cowpea chlorotic mottle virus capsid proteins that can bind and self-assemble on the 

origami surface through electrostatic interactions and further pack the origami nanostructures 

inside the viral capsid. Confocal microscopy imaging and transfection studies with a human 

HEK293 cell line indicate that protein coating improves cellular attachment and delivery of 

origamis into the cells by 13-fold compared to bare DNA origamis. The presented method could 

readily find applications not only in sophisticated drug delivery applications but also in 

organizing intracellular reactions by origami-based templates. 

DNA origami technique enables the formation of arbitrary, exact and complex two- and three-

dimensional nano-objects with custom twists, curvatures and tension.1–8 Traditionally, origamis 

are formed by folding a scaffold strand, i.e. a long single-stranded DNA (ssDNA), into desired 

shape with the help of a predefined set of oligonucleotides, but recently also scaffold-free 

designs have been reported9,10. All oligonucleotides in the designed structures are unique in 

sequence and readily open for a variety of modifications. Therefore, these DNA-based motifs 

can act as versatile templates for directing spatial arrangement of wide range of materials,11 e.g. 

proteins,12 carbon nanotubes,13,14 and metal nanoparticles15–19 with nanometer level accuracy. In 

addition, single-molecule chemical reactions can be conducted on an origami platform20 and the 

formation of the origamis can be controlled using external trigger signals.21 
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The structural versatility and biocompatibility8,22 of DNA origami nanostructures open up 

opportunities for effective, tunable and targeted transport of molecules into the cells. In principle, 

a single DNA origami structure could facilitate all functions necessary for drug delivery or 

docking molecules inside cells, since its configuration can be changed and the structure may 

include both cell-targeting ligands and spatially organized drug molecules or functionalized sites. 

Recently, cellular transfection of origamis and DNA nanoassemblies containing drugs such as 

DNA intercalator doxorubicin23–25 has been demonstrated. In addition, a logic-gated DNA 

origami nanorobot that can release molecular payloads when triggered by cell surface proteins 

has been introduced.26 There are also reports showing that DNA nanotubes,27,28 DNA cages29,30 

and CpG-sequence-coated DNA origamis31 could be taken up by cells. Due to its polar nature, 

DNA as such transfects poorly and in order to achieve an efficient uptake of DNA-based 

systems, cationic polymers or lipid formulations are commonly employed. However, efficient 

transfection of DNA, especially in the case of DNA origami structures,32 is challenging and thus 

novel and versatile approaches are needed. One attractive option to enhance and improve the 

delivery of drugs and other functional DNA origamis would be to combine modularity of DNA 

structures with the ability of virus particles to encapsulate nucleic acids and target different tissue 

types (tropism). Several studies have already shown how viral nanoparticles and virus-like 

particles can be utilized as carriers in drug delivery and imaging.33–36 Furthermore, drug-loaded 

DNA micelles have been applied as templates for virus capsid assembly when studying virus 

nanocarrier loading.37 It has also been demonstrated that double-stranded DNA can be adopted as 

a template for virus capsid proteins to gain long tubular structures.38 

In this communication we show how DNA origamis can be coated with virus capsid proteins 

in order to facilitate efficient cell transfection (see Figure 1).  
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Figure 1. Self-assembly of DNA origamis with CPs. Origami-CP ratio controls the morphology 

of the resulting complex (wrapped or coated). Transfection efficiency increases with increasing 

concentration of CP.  

 

For this, we employed ligated39 rectangular DNA origami structures (72 nm x 92 nm)1 to 

template the self-assembly of cowpea chlorotic mottle virus (CCMV) capsid proteins (CP). 

CCMV has become an important model system for chemical virology and is well-known to 

accept various synthetic and protein guest macromolecules inside the capsid.40,41 CP dimers were 

isolated from the native virus particles by removing the viral (+)ssRNA genome. The purified 

CPs preserve their positively charged N-terminus, which allows the CPs to bind and self-

assemble on the DNA origami nanostructures with high yields. Under the assembly conditions, 

oligomeric protein subunits are unable to form higher-order assembled structures (capsids, tubes 

etc.) without the DNA origami structure that functions as a template on which the capsid proteins 

assemble. Importantly, here the anisotropic shape of the origami can direct the assembly of the 

capsid proteins into structures that are significantly different from the native icosahedral 

symmetry. Binding of CPs on the origami structures and morphology of the resulting complexes 

were studied by gel electrophoretic mobility shift assay (EMSA), ethidium bromide (EthBr) 

fluorescence-quenching displacement assay and transmission electron microscopy (TEM). 

Furthermore, the ability of DNA origami–CP complexes to bind and transfect human cells was 

investigated. As shown by confocal microscopy and high content screening (HCS) microscopy, 
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transfection efficiency of DNA origami–CP complexes was 13 times higher compared to plain 

DNA origami structures. 

DNA origamis and CCMV capsid protein dimers were prepared using standard annealing and 

calcium chloride precipitation procedures respectively (see the Supporting Information). The 

DNA origami–CP interaction was studied over a wide CP/DNA origami ratio and to achieve 

straightforward comparison between different samples and results gained with distinct methods, 

we define a ratio parameter γ, which is given by the number of CPs divided by the number of 

DNA base pairs (bp) in the sample solution (nCP/nDNA (bp)). 

Electrostatic binding of CP on the negatively charged DNA origami surface was initially 

analyzed by gel electrophoretic mobility shift assay (EMSA) (Figure 2, top).  

 

Figure 2. Gel electrophoretic mobility shift (top inset) and EthBr fluorescence-quenching 

displacement assays. Agarose gel EMSA of a constant amount of DNA origami complexed with 

increasing amounts of CP shows that DNA origami band shifts upward as a function of 

increasing CP concentration indicating binding (the gel visualized with EthBr). In sample E 

(excess CP) the amount of CP is drastically increased leading to the immobilization of the 
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complexes. A similar trend of binding can be seen in EthBr fluorescence assay, which shows 

how the DNA-bound EthBr fluorescence intensity decreases with increasing γ values. 

Electrophoretic mobility of DNA origami decreases as CP binds on it and therefore EMSA 

samples were prepared by adding increasing amounts of CP to solutions with constant DNA 

origami concentration. With low amount of CP (γ = 00.032), the migration of DNA origami 

was unchanged. However, increasing the ratio to γ = 0.08 and further to 0.32, DNA origami 

migration was hindered indicating decrease in mobility and thus efficient binding of CPs to 

origamis. Furthermore, the migration was almost fully prevented at high ratios (γ = 3.2). These 

results strongly support that CPs bind to DNA origamis and the EMSA follows similar trend 

observed previously with CCMV CPs and linear dsDNA.38 In addition to this experiment, 

electrostatic binding of CP without N-terminus (CPΔN), avidin and bovine serum albumin 

(BSA) to DNA origami structures was also studied (see the Supporting Information Figure S3). 

Results demonstrate that CP is unable to bind to DNA origami without the positively charged N-

terminus and that the binding affinity of the proteins depends on their structure and isoelectric 

point: BSA (pI4.8) does not bind at all and positively charged avidin (pI10.5) induces a 

notable shift in the gel bands already at low γ ratios (γ = 0.032─0.08). 

To complement the EMSA results, DNA origami–CP interaction was examined with EthBr 

fluorescence-quenching displacement assay (Figure 2, bottom). The assay determines how DNA-

intercalating EthBr is released, or quenched, in the presence of CP by monitoring EthBr 

fluorescence intensity. The highest fluorescence intensity was measured from a solution 

containing only DNA origami (base pair concentration 170 nM) and EthBr (480 nM) (γ = 0). By 

adding CP to the solution, EthBr fluorescence intensity decreased as a function of increasing CP 

concentration and reached plateau at γ  1. This was a clear indication of EthBr replacement with 
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CP on the surface of the DNA origami. The result further supports the formation of a complex 

between DNA origami structures and CPs. 

Transmission electron microscopy (TEM) was conducted in order to visualize the morphology 

of the DNA origami–CP complexes (Figure 3, see the Supporting Information Figure S5 for 

additional images).  

 

Figure 3. TEM micrographs from samples 1 (a), 4 (b) and 6 (c) showing how the morphology of 

the DNA origami–CP complexes changes while increasing the fraction of CP. Top left insets: 

schematic illustrations of three different morphologies (free rectangles, tubular and fully 

encapsulated. d) Magnified view of complexes presented in a (left), b (middle) and c (right). 

DNA origami concentration is constant in each sample, whereas CP concentration is increased so 

that γ grows as follows; (a) γ = 0, (b) γ = 0.08, (c) γ = 0.64. When the CP/DNA origami ratio is 

increased to γ = 0.08, capsid proteins start to attach onto the origami surfaces causing wrapping 

of the origamis. Further increase in the protein concentration leads to higher surface coverage of 
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CPs and thus to a complete encapsulation of open origami tiles (γ = 0.64). The scale bar in each 

figure is 200 nm. 

Experiments were performed using the same γ values as in the EMSA measurement. Figure 3a 

presents plain DNA origami structures (sample 1, γ = 0) imaged with TEM. The expected 

rectangular shape of the origami can clearly be observed. When CP is added to the DNA origami 

solution, the capsid proteins bind to the origami surface and at a ratio of γ = 0.08 capsid proteins 

start to bend the DNA origami into tube-like conformations in large extends (Figure 3b, sample 

4). Wrapping at a low protein concentration could be attributed to a high flexibility and 

significantly twisted natural shape of a rectangular origami in the solution due to the square 

lattice packing42 (see also the Supporting Information Figure S1). Plausibly, twisting and bowing 

of the origamis can be further enhanced by positively charged CPs attached to the origami 

surface, since the positively charged residues could effectively reduce repulsion between the 

adjacent DNA helices. The length of the tubes was determined to be on average 80±3 nm, which 

matches well with a short side of a rectangular origami (72 nm) plus the thickness of CP coating 

(5 nm on both sides). In addition to perfect rolls, a small fraction of partly open origami 

structures were found, which made it evident that the complexes were formed from DNA 

origami substrates. When γ was further increased to 0.64, round and chunky complexes were 

observed instead of rolled structures (Figure 3c, sample 6). Because of the round but partly 

irregular shape of the complexes their size was challenging to quantify, but the diameter at the 

widest part for most structures was between 110130 nm, which again matches well with the 

maximum cross-section of DNA origami (117 nm) supplemented with protein coat. Interestingly, 

in these samples the surface of complexes appeared to be granular when compared to bare DNA 

origamis. In addition, the open morphology increases the surface area of the origami and allows 
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maximal amount of CPs to bind on the origami surface. Taken together the observations indicate 

that the DNA template surface was completely covered with the CPs resulting in the 

encapsulation of the origamis. 

The ability of DNA origami–CP complexes to enter cells was examined by confocal 

microscopy (see Figure 4a and 5). 

 

Figure 4. DNA origami transfection. a) Confocal microscopy (z-stack images) of HEK293 cells 

treated with DNA origami complexed with different amounts of CP. Top panel presents Hoechst 

channel (cell nuclei), middle panel Cy3 channel (DNA origamis) and bottom panel overlay of 

Hoechst and Cy3 channels b) Quantification of DNA origami–CP positive cells with HCS 

microscopy. Colored open bars indicate measurements from individual samples; black filled bars 

are calculated mean values of the triplicate samples. 

Human embryonic kidney cells (HEK293) cells were incubated with Cy3-labeled origamis 

complexed with CP for 4 hours, after which aggregates of labeled origamis were observed within 

the fixed cells. The effect was clearly dependent on a CP concentration: only a few aggregates 

were seen in samples 1-3 (γ = 0, γ = 0.016, γ = 0.032), whereas samples 4-6 (γ = 0.08, γ = 0.32, 

γ = 0.64) displayed gradually increasing number and brightness of aggregates. The effect was 
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Figure 5. Confocal microscopy image (z-stack projection) of sample 6 with orthogonal cross 

sections (x and y views). Nuclear staining with Hoechst is shown in blue and Cy3-labeled DNA 

origami–CP complexes in green. z-stack projection image and orthogonal slices show that the 

Cy3-labeled origamis are in close proximity or within the cell nuclei, thus implying the 

intracellular localization of DNA origami–CP complexes. 

quantified in a separate experiment using high content screening (HCS) microscopy of cells 

(transfected with GFP for visualization) incubated with Cy5-labeled DNA origami–CP 

complexes. Cy5-labeled samples 1 and 2 (γ = 0 and γ = 0.016) showed background levels of 

fluorescent positive cells, whereas samples 3─6 (γ = 0.032, γ = 0.08, γ = 0.32, γ = 0.64) clearly 

increased the fraction of labeled cells (see Figure 4b). Sample 6 showed on average 13-fold 

enhancement of transfection capability compared to sample 1 (DNA origami only). The 

transfection efficiency of DNA origami–CP complexes far exceeded that of the commercial 

Lipofectamine 2000 (L2K) transfection reagent used as a positive control. During the time 

course of the experiment no significant cell toxicity was apparent, as examined by a 

methylthiazol tetrazolium (MTT) cytotoxicity assay (see the Supporting Information Figure S7). 
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Figure 5 shows in detail the co-localization of Cy3-labeled DNA origami–CP complexes and 

Hoechst-stained cell nuclei in sample 6, verifying the delivery of the complexes inside cells. 

In summary, we have shown that DNA origami structures can interact with virus capsid 

proteins in a controllable way to form new nanostructures and that coating of origamis by these 

proteins can be exploited to significantly enhance delivery of DNA origamis into human cells. 

Interestingly, transfection efficiency could be gradually raised with increasing CP concentrations 

up to a level at which DNA origamis were completely covered by the capsid proteins. Although 

the present approach of using plant virus derived capsid proteins is not optimized and could 

probably be improved by adding cell targeting/penetrating ligands or by employing entirely 

different viruses, the obtained results conceivably make this self-assembly based method an 

excellent starting point for the development of diverse biomedical applications. The complete 

encapsulation gives a possibility to deliver multiple functionalized DNA origamis into cells and 

in this way use programmable combinations of specific drugs for attainable treatment 

procedures. In the future, organization of reactions inside the cell could be realized using 

modular docking sites on the origami,43 similarly as earlier demonstrated for RNA-based 

assemblies44. 
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