
I 
  

	
	
	
	
	
	
	
	
Zeeshan Ahmed 
	
 
 
ANALYSIS	 AND	 DE-NOISING	 OF	 PARTIAL	 DISCHARGE	
SIGNALS	IN	MEDIUM	VOLTAGE	XLPE	CABLES 
 
 
 
 
 
 
 
School of Electrical Engineering 
 
Master’s	Thesis	submitted	in	partial	fulfilment	of	the	requirement	for	the	degree	
of	Master	of	Science	in	Technology. 
 
Espoo 
 
 
 
 
 
 
 
Thesis supervisor: 
 
Prof. Matti Lehtonen 
 
Thesis instructor: 
 
Mr. Ghulam Amjad Hussain 
 
 

  



II 
 

Aalto University 

School of Electrical Engineering                  ABSTRACT	OF	THE	MASTER’S	THESIS 

Master’s Programme in Electrical Engineering                          

Author: Zeeshan Ahmed 

Title: ANALYSIS	 AND	 DE-NOISING	 OF	 PARTIAL	 DISCHARGE	 SIGNALS	 IN	
MEDIUM	VOLTAGE	XLPE	CABLES 
Number of pages:  11+94                                      Date: 14-12-2015                                 
Language: English 
Department: Electrical Engineering 
Professorship: Power Systems and High Voltage Engineering                                                                    
Code: S-18 
Supervisor: Professor Matti Lehtonen 

Instructor :  Mr. Ghulam Amjad Hussain 

Abstract 
 
The partial discharge (PD) measurements have been widely used in the field of 
insulation diagnostics. The presence of partial discharges inside the cable indicates 
the degradation of insulation material. This thesis deals with the development of 
insulation diagnostic method based on the partial discharge measurements. The 
useful information about the partial discharge activity and insulation defects is 
extracted by the experimental results. 
 
A measuring test setup was established in the high voltage laboratory. Artificial 
cavity was introduced inside the MV XLPE cable by using the traditional needle-
plane configuration. The aim of study was to interpret the variations in the partial 
discharge characteristics over the insulation ageing period in terms of physical 
phenomenon’s taking place in PD sources. The statistical characteristics formulated 
with the help of PRPDA technique and ultra-wideband discharge characteristics by 
using HFCT sensor were studied and analyzed. The variations in these characteristics 
allow to diagnose the insulation conditions as well as detect the type of discharge 
mechanisms.   
 
In the second part of thesis, detailed analytical study about the de-noising techniques 
has been conducted. In order to design an efficient de-noising filter for onsite and 
online PD monitoring system, various factors such as optimal wavelet selection, 
number of decomposition levels and threshold setting has been studied. An 
automated self-adaptive de-noising algorithm based on the frequency characteristics 
of partial discharge signals has been presented in this study.    
 
Keywords: Partial Discharge characteristics, XLPE insulated cables, insulation 
degradation, monitoring, diagnostics, PRPDA, De-noising, wavelet transformation, 
Adaptive De-noising, Thresholding 
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Chapter 1 INTRODUCTION 
 
1.1 Background 
 
Nowadays, Medium Voltage (MV) distribution networks include a large infrastructure of 
expensive underground power cable systems. These cable systems are constructed with 
either oil-paper or Cross-linked Polyethylene (XLPE) insulation materials. The use of 
XLPE insulated cables has been expanding in the MV networks over the last few decades. 
All the new installations and repairing of the old cables are performed by using the XLPE 
insulated cables [1].  
 
During normal operation, power cables are subject to various kind of stresses which results 
in insulation deterioration and degradation. The breakdown of the insulation may lead to 
complete failure of high voltage equipment which results in large outages and disturbances 
across the distribution networks. Hence, preventive measures must be performed in order 
to keep the system reliable and avoid costly damages. Insulation diagnostics has been used 
to examine the cable insulation system. Traditionally, the diagnostics are performed 
periodically after a certain defined period of operation. This requires the complete 
shutdown of the equipment and may result in unnecessary maintenance activity. Therefore, 
predictive maintenance techniques such as condition based maintenance is becoming more 
common. Condition monitoring also designated as on-line monitoring system constantly 
monitors the operating characteristics which can project the equipment’s health and 
predicts the expected failure [2].   
 
The partial discharge (PD) measurements have been widely used in the field of insulation 
diagnostics. Partial discharges are localized electrical discharges which partly bridges the 
insulation between the electrodes. The detection and continuous monitoring of PD data can 
provide useful information regarding the insulation condition. As PD occurs before the 
complete breakdown, PD monitoring can alarm for necessary emergent actions in order to 
remove the system component before the occurrence of catastrophic failure [3].  Further, it 
has been observed that polymeric insulation materials, like XLPE, may have a complete 
breakdown within a few days after the inception of partial discharge. Therefore, many 
researchers still aim to relate partial discharge to the lifetime of insulation materials. 
However, defining such a quantitative relationship is difficult to confirm.  
 
Partial discharge measurements are performed with the help of Phase Resolved Partial 
Discharge Analyzer (PRPDA). This technique is used to analyze the PDs with respect to 
the phase angle of applied voltage [4]. The PD pattern recorded with the help of PRPDA 
can be used to recognize the insulation defects which are the root cause of partial 
discharges. The aim of many researches regarding the PD measurements is to automate the 
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PD pattern recognition process which allows predicted behavior of partial discharge 
activity. It is believed that each type of PD mechanism has a unique set of statistical 
parameters like skewness, kurtosis [2-4]. The variations in PD pattern with respect to phase 
angle can be reflected by change in these statistical quantities. Different techniques of 
automated learning such as neural networks, fuzzy logic and clustering are used to compare 
the PD patterns which allows to predict insulation degradation. Furthermore, the ultra-
wideband characteristics of the individual discharge pulses observe by means of non-
conventional PD detection methods allows to detect various type of ageing mechanisms 
taking place inside the insulation [5].  Thus, it is quite possible to devise an intelligent and 
automated insulation diagnostic system based on the quantification of the partial discharge 
signals.   
 
1.2 Objective of Thesis 
 
This thesis work is divided into two parts. The first part is related to study about the partial 
discharge phenomenon in detail. The aim is to interpret the variations in the partial 
discharge characteristics over the insulation ageing period in terms of physical 
phenomenon’s taking place in PD sources. The results of this work are based on the partial 
discharge measurements for lifetime tests conducted over the MV XLPE cable samples at 
High Voltage Laboratory.  
 
Second part of the thesis work is related to analyzing the de-noising methods with the aim 
to create an automated and self-adaptive de-noising algorithm. The devised algorithm de-
noises the partial discharge signals coupled with different kind of noises without the human 
participation which is the key requirement in establishing an online partial discharge 
monitoring system.  
 
1.3 Organization of Thesis 
 
The thesis is organized into the following chapters: 
 
Chapter 2 gives general background about the XLPE insulation. The process of XLPE 
manufacturing is studied and different type of partial discharge mechanisms are 
investigated that affect the cable insulation.  
 
Chapter 3 deals with the in depth study about the partial discharge theory. The discharge 
mechanisms and an approach to model the partial discharge process has been studied.  
Furthermore, the partial discharge characteristics both statistically and time & frequency 
domain analysis has been examined.  
 
Chapter 4 describes the experimental setup established for measuring the partial discharge. 
The results from the laboratory measurements and analysis has been provided. 
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Chapter 5 gives introduction about the de-noising of partial discharge signals. Different 
existing DSP techniques for de-noising have been examined.  
 
Chapter 6 introduces the Wavelet transformation (WT). Different stages of WT has been 
studied and investigated. Conclusions have been made for each step of WT.  
 
Chapter 7 deals with algorithms of different de-noising methods presented in the literature 
with their analysis on the basis of various performance indices.  
 
Chapter 8 presents the novel self-adaptive technique. The basis of this algorithm and 
methodology has been presented. Performance comparison with the other existing de-
noising methods has been also provided at end.  
 
Chapter 9 summarizes the results and present the conclusions observed by the experimental 
work. Few ideas about the future research in this field has been discussed as well.  
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Chapter 2 CROSS-LINKED POLYETHYLENE (XLPE) 
INSULATION 

 
2.1 XLPE Manufacturing 
 
XLPE is formed by mixing low density polyethylene (LDPE) with the activation chemical 
agent i.e. dicumyl peroxide. During the cable manufacturing, the mixture is pressed on to 
the conductor for forming the inner conductor screen, main insulation and outer semi-
conducting layer. This method is known as triple extrusion as all the layers are extruded at 
the same time. XLPE is finally formed when the insulated core is passed through 
pressurized and heated nitrogen gas. High heat and pressure effects the polyethylene 
molecular crosslinking structure which results in improved physical and electrical 
properties [1].  
 
During XLPE manufacturing process, several crosslinking byproducts are formed. These 
include water bubbles forming inside the crosslinked polyethylene. Other harmful and 
reactive chemical agents such as acetophenone and cumyl alcohol are also formed during 
crosslinking polyethylene [6]. In addition, while cooling down the cable, residual 
mechanical stresses are formed inside the insulation due to difference in the temperature 
gradients. These stresses may not be uniformly distributed across the cable insulation 
resulting in large number of stress points. It is reported that these residual mechanical 
stresses or stress points are the weakest points in insulation where electrical trees can be 
originated which eventually leads to cable breakdown [7]. 
 
2.2 Degradation of XLPE 
 
The mechanisms involved in XLPE ageing are not fully understood. The XLPE insulated 
transmission cables are aged under different kind of stresses such as thermal, mechanical 
and electrical over long periods of their operation. Ageing of XLPE insulation also depends 
on the environmental conditions. It has been observed that the insulation dielectric strength 
reduces much faster in wet conditions as compare to dry conditions [8].    
 
Ageing factors are classified as either extrinsic or intrinsic. Extrinsic aging is due to 
presence of voids, small imperfections, contaminants etc. in the insulation core. They can 
either grow during the manufacturing process or during the normal operation. On the other 
hand, intrinsic ageing is due to changes in physical and chemical properties or due to the 
presence of trapped charges inside the insulation. Intrinsic ageing affects the properties of 
insulation material, e.g. the loss of tensile strength in polyethylene degradation. However, 
these changes may not necessarily lead to electrical breakdown [8]. The extrinsic ageing 
affects the insulation only at the localized channels whereas the intrinsic ageing is 
considered to have larger impact on greater part of insulation. For example, thermal 
degradation of the insulation material.   
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The polymers do not achieve their crystalline structure right after the manufacturing 
process. The process of curing can take several years. During this time, micro cavities and 
locally dense areas may form inside the polymeric insulation. These areas may accelerate 
the electrical degradation process and eventually lead to electrical breakdown [1].   
 
2.2.1 Electrical Degradation  
 
Electrical, mechanical and chemical stresses are the major mechanisms for polymeric 
insulation degradation. However, electrical degradation is considered most dangerous for 
creating severe defects in the polymeric insulation. Electrical degradation is a local 
phenomenon as compare to other degradation methods which affects the whole cable length 
[1]. Electrical degradation of insulation takes place in the form of partial discharges, 
electrical treeing and water treeing phenomenon’s. The presence of contaminants, defects, 
protrusions and voids (CDPV) inside the insulation are the major stress points for these 
degradation phenomenon’s. It is impossible to remove the presence of CPDVs completely 
from the polymeric insulated cables. Cable terminations and joints are most likely sites for 
the formation of CPDV’s and considered as most vulnerable to insulation ageing. However, 
CDPV’s influence on the insulation ageing is relatively small if their intensity is controlled 
to very low levels during XLPE manufacturing process [9].  
 
2.2.2 Water Treeing 
 
The major part of medium voltage cable network is installed underground. Therefore, the 
power cables are exposed to moisture contents available in the environment. This makes 
the underground cable susceptible to water treeing degradation. The water trees can be 
initiated by penetration of water inside the insulation from the outside environment through 
faulty joints or terminations [1]. The polyolefin’s are capable of absorbing 2000 to 5000 
ppm of water depending on the crystalline structure which in the case of polyethylene is 
directly related to the material specific density [6]. Also, the presence of impurities inside 
the insulation will increase the risk of water tree initiation. Small water bubbles are formed 
while crosslinking polyethylene during XLPE manufacturing [8]. Water tree retardant’s 
like polyphenol compounds are used to cease the initiation of water trees.  
 
Two types of water trees exist in extruded type cable insulation, bow tie and vented or 
streamer trees. Bow tie trees grow due to the presence of the soluble contaminants or water 
filled voids inside the insulation. The bow tie trees tend to grow only for some tens of  µm 
and do not cause a significant effect on insulation degradation at the stress levels used in 
the medium voltage cable networks i.e. 2kV/mm [9]. On the other hand, the vented trees 
grow at the interfaces such as between semi-conducting screens and insulation. The vented 
trees propagate continuously in the direction of electric field and may cover the whole 
insulation thickness. The vented trees may take a longer time to initiate, however, they 
cause more severe degradation as compared to bow tie trees [1].  
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The presence of water inside the insulation accelerates the degradation process by 
providing free ions and forming electrolytes. The resulting water trees cause local stress 
enhancement which may initiate the electrical tree sites. In addition, at high temperature 
significant amount of oxidation may occur inside the water trees. This can lead to increase 
absorption, higher conductivity and eventually thermal runaway [9]. However, at lower 
temperatures the oxidation phase is slow which results in longer time for converting them 
into electrical trees. It has been observed that the partial discharges do not occur in the 
water trees. Only when the electrical trees are originated from the water trees then the PD’s 
may occur. Water trees are formed at lower electrical field strength 𝐸 < 10P	𝑉𝑚TU  as 
compare to electrical trees 𝐸 < 10V	𝑉𝑚TU. Hence, it is necessary to protect the cable from 
the water contaminations particularly if installed at the moist environments.  
 
2.2.3 Electrical Treeing 
 
The presence of CPDV’s within insulation and formation of gas bubbles during the 
manufacturing and installation of cables results in a partial breakdown of insulation under 
high electric fields. Consequently, positive ions and electrons are formed which degrades 
the insulation due to their collisions with the insulation surface. The partial breakdown 
phenomenon can lead to formation of a locally concentrated region of degradation inside 
the insulation. A tree or bush-like conducting canal starts to develop. This conducting canal 
is known as an electrical tree [1]. Figure 2-1, shows few examples of discharge channels 
developing in the insulation material [10]. 
 
Electrical trees are small conductive channels formed inside the insulation that propagates 
relatively quicker within insulation to cause complete failure. They can be initiated from 
the eroded surfaces in the void, water trees or due to increased stress enhancements at 
microcavities within the polymer insulation. For the latter cause, there are two phases of 
formation of electrical trees [9]: 
 

 
Figure 2-1 Different types of electrical treeing structures [10] 
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1. The first phase is the formation of a small void. The charge motion (0,1 – 0,2 pC) 
during each half cycle of applied voltage degrades the strength of insulation 
resulting in the formation of a small void. 

2. The growth phase is the formation of tree-shaped electrical network from the initial 
void due to the occurrence of PD within the conductive branches. 
  

The presence of impurities, contaminants or defects which are produced accidently during 
the manufacturing and synthesis of XLPE play a central role in the initiation phase of 
electrical trees.  Due to electric field enhancement at these sites, phenomenon’s such as 
charge injection and electroluminescence occurs inside the insulation.  Above a certain 
threshold voltage, polymeric insulation emits light in the visible and ultraviolet spectra due 
to injection of the electrons and holes and their recombination at luminescent centers. It is 
recognized that the UV light photo-degrades the insulation due to photochemical reactions 
which create free radicals and break bonds, ultimately leads to the formation of a micro 
cavity and subsequently an electrical tree.  The presence of oxygen in the free volume of 
the insulation also plays a significant role in the photo degradation of the material. The 
absence of oxygen inside the insulation will result in higher tree inception voltage as 
compared to that of the normal polymer [11].  
 
During the growing phase of an electrical tree, cracks and voids produce partial discharges 
and counter discharges which can provide more than 10eV of kinetic energies to the 
electrons.  These micro-cavity discharges can lead to increase in the cavity size and higher 
discharge energies but the formation of the free radicals limits the massive failure 
expansion [6]. However, discharges of 5 pC energy are sufficient to create thermal runaway 
and extensive thermal degradation of the polymer [8].    
 
The growth rate of electrical tree depends on the applied electrical stress, temperature and 
environmental conditions. Total breakdown of the insulation can happen when the branch 
of electrical tree bridges the electrodes. However, it is also possible that the electric 
breakdown may occur before the electrical tree bridges the electrodes [1]. 
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Chapter 3      PARTIAL DISCHARGE THEORY 
 
3.1 Partial Discharge in Cavities 
 
As previously mentioned in chapter 2, due to the presence of impurities and formation of 
gas bubbles during the manufacturing and installation of the cable, micro-cavity and stress 
enhancement sites are formed within the solid insulation. Formally, a cavity is defined as 
gas-filled void in a solid insulation material. A cavity is a weak point of insulation as it has 
relatively lower electrical permittivity and breakdown strength as compared to rest of solid 
insulation. This leads to local electric field enhancement which may exceed the intrinsic 
field strength resulting in the ignition of self-sustaining electron avalanches [10]. Partial 
discharge occurs within the cavity at higher voltage stresses. Partial discharges inside the 
cavity degrade the insulation material through the combination of chemical, mechanical, 
thermal and radiative processes [12]. All these mechanisms lead to local electric field 
enhancement which eventually results in the concentration of PDs at the cavity site. 
 
3.1.1 Partial Discharge (PD) 
 
Partial discharge is defined as localized small electric discharge either on the surface or 
inside the insulation which does not completely bridge the electrodes. These discharges 
appear as pulses having a duration of much less than 1 µs.  Partial discharges deteriorate 
the insulation but it does not cause immediate failure or breakdown. If the partial discharges 
continue to occur for a long time, it might take up to several years for the complete failure 
of the insulating properties [13]. There are two necessary conditions for initiation of partial 
discharges within a cavity: 
 
1. The electrical field strength must be larger than certain critical value 
2. Free electrons must be available to start the electron avalanche 

 
If the electric field is below the critical field, the amount of electron generation is not 
sufficient to keep the discharge self-sustained [12]. The phenomenon of partial discharges 
is associated with the ionization of gas molecules as shown in Figure 3-1 [12]. PD’s ionize 
the gas in the cavity and the resulting charges move towards cavity surfaces in the direction 
of electric field. These charges get trapped at the cavity surface resulting in net 
accumulation of the cavity charge which opposes the applied electric field. Thus, leading 
to the extinction of the discharge within a cavity.   
 

 
Figure 3-1 Schematic representation of PD inside a cavity [12] 
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3.1.2 Statistical Time Lag 
 
During the PD activity, it is quite possible that the electrical field in the cavity exceeds the 
critical value for PD ignition without the start of any discharge. This might happen due to 
lack of free electrons. The average waiting time for a free electron to appear given that the 
electrical field condition for PD is fulfilled is known as statistical time lag (𝜏XYZY) [12].  
 
The effect of statistical time lag is to shift the PDs forward in phase at larger values of the 
applied electric field. This results in larger PD magnitudes. The statistical time lag 
decreases with the increase in the rate of electron emission inside the cavity [14].  
 
The initial free electrons are generated through the surface emissions at the cavity walls 
during an ongoing PD event. In addition, the electrons are also released due to ion and 
photon impact. These events can be best described by Richardson –Schottky law for 
thermionic emissions. On the other hand, in the virgin cavity where no PD event has 
occurred the free electrons are released due to radiative gas ionization. The rate of electron 
emission during this initial phase is relatively constant [15].  
 
3.1.3 Surface Charge Decay 
 
Due to surface conduction and recombination, the trapped charges at the cavity surface 
decreases with time. The trapped charges diffuse into deeper traps in the surface which 
further reduces the availability of free electrons. Subsequently, the electron emission as 
well as the electric field in the cavity reduces [15,16]. In the case of charge diffusion, the 
electron emission decreases as electrons in deeper traps are difficult to be emitted as 
compared to the electrons in surface traps. However, the charge diffusion process has a less 
significant effect on the reduction of electrical field [14]. 
 
3.1.4 Ageing Mechanisms 
 
As discussed earlier, the partial discharges inside a cavity cause degradation of the cavity 
surface. Partial discharge activity is accompanied by several other aging mechanisms 
which accelerate the degradation process. It is observed that during the aging of polymeric 
insulation, the gas pressure inside the cavity reduces and a layer of discharge by-products 
are formed on the cavity surface which changes the cavity surface properties [16]. The 
experimental results presented in [17] concludes that the surface conductivity of cavity 
increases during initial few hours of PD exposure and then tends towards saturation point. 
Also, this increase in surface conductivity is not necessarily be accompanied by the 
increase of discharge amplitude. However, the change in cavity surface properties affects 
the PD activity. Different type of discharge mechanisms such as streamer-like, Townsend-
like and pitting discharges are observed inside the cavity during the time of PD exposure 
[16].     
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3.2 Partial Discharge Modeling  
 
It is a matter of great interest for researchers to somehow correlate the actual PD activity 
with different modeling methods. It is a quite challenging task to suggest a single model 
for PD activity due to the involvement of many physical parameters which are hard to 
determine. In order to analyze PD activity, simple geometrical shape cavity surfaces such 
as cylindrical, spherical and elliptical cavities are investigated instead of more realistic 
imperfections are taken into account. The main aim of these models is to describe the 
sequence of PDs in cavity against a time scale which is comparable with the time period of 
applied voltage [12].  
 
An approach based on sub-dividing a PD model was suggested by [15]. His method is 
based on dividing the PD event into five parts:  classification and characterization of a 
defect, local electric field enhancement, generation of initial electrons, discharge process 
and finally charge. A brief introduction to these modeling steps is presented in the 
following sections. 
 
3.2.1 Defect Classification and Characterization 
 
The defects are classified on the basis of parameters which are dependent on the geometry 
and size of the defect.  The first parameter is normalized voltage 𝑈 at the defect site 
compared to the applied voltage 𝑈\ i.e. 𝜇^ =

`
`a

 . It defines how the insulation system 

controls the electric field at the defect location. The second parameter 𝜆\ characterizes the 
location of the defect to the electrode at which the PD signal is measured. A detailed 
theoretical background of these parameters is presented in reference [15]. Furthermore, the 
nature of defect boundary also affects the partial discharge activity. For example, the 
insulating surface (insulated cavity) has the discharge characteristics different from the 
conducting surface (electrode bounded cavity) [12]. 
 
3.2.2 Local Electric Field Enhancement   
 
The electric field inside the cavity is composed of two parts: the local field due to the 
surface charges left by the previous PD event and the background field due to the applied 
voltage. Depending on the choice of method used to calculate the local electric field inside 
the cavity, PD models are divided into different groups. Among them, an electric circuit 
model known as Capacitive (abc) PD model has been widely used by researchers. Due to 
various limitations of capacitive PD model, an alternative PD model based on dipole 
moment was introduced by Pedersen.  
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A. Capacitive PD Model 
 
Figure 3-2 (a) [12] shows the schematic diagram of the Capacitive PD model introduced 
by Whitehead and Kruger in 1950s. This model has been extensively used in research for 
calculating the relationships between the detectable external PD charge and the internal PD 
charge at the cavity site. 𝐶d represents the cavity capacitance; 𝐶ef  and 𝐶eff represents the 
stray capacitance of healthy insulator between cavity and electrodes whereas 𝐶Zf  and 𝐶Zff 
are the capacitance of the bulk insulator between cavity and electrodes. The equivalent 

circuit is reduced to the form shown in Figure 3-2 (b) [12] by putting 𝐶e = 	
gh
i	gh

ii

gh
ij	gh

ii and 

𝐶Z = 	𝐶Zf + 𝐶Zff . Due to these characteristic capacitances, this equivalent model is 
traditionally referred as abc-model. 

 
Figure 3-2 Capacitive (abc) model [12] 

The critics of abc-model are of the viewpoint that PD activity cannot be modeled by the 
equivalent capacitance which does not reflect the physics of the gas discharges insides the 
cavity [10,18]. Ionization of gas molecules inside the cavity creates space and surface 
charges due to which the cavity surface can not be represented as an equipotential surface. 
Therefore, the concept of capacitance is not well suited for describing the PD activity.  
 
B. Dipole Model 
 
A concept based on dipole moment was established in order to describe the method for 
estimating the charge inside the cavity [10,15,18,19]. Due to the presence of space charges 
of both polarities on the cavity boundary as a consequence of the ionization process, a 
dipole moment is established. Figure 3-3 [10] illustrates the formation of the dipole model 
inside the cavity discharge.  Field due to the space charges is referred as Poisson field which 
opposes the electrostatic field (background field) due to the applied voltage. Therefore, 
during ionization process of PD discharge, the discharges are quenched immediately within 
nanoseconds range.  
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Figure 3-3 Dipole Model of Cavity Discharge [10] 

The dipole moment is given by the term 𝑃m = 𝑒. 𝑛q. 𝑑d for the PD model described in figure 
above. The charge delivered from the electrodes of the test object i.e. cavity boundary can 
be written in terms of dipole moment by the following equation [10]:  
 
 𝑞Z = 𝑒. 𝑛q. 𝑑d.

𝐸q
𝑉q
= 𝑃m.

𝐸q
𝑉q

 (1) 

where 𝐸q represents the inception field strength. 
A comparison between the abc-model and dipole model based on the computer simulations 
is given in the section 4.8.1. Also, in order to ascertain the models validity, the experimental 
PD results are compared with simulation values.   
    
3.2.3 Initial Free electrons generation 
 
Initiation of the first electron in order to start the avalanche of the ionization process is 
considered as the most necessary condition for starting partial discharge activity. The 
initiation of free electron also controls several statistical parameters such as charge delay, 
frequency of occurrence and distribution of discharge with respect to the phase of applied 
voltage. In order to model the electron generation mechanism, an approach based on 
estimating the electron generation rate is usually used. Two major factors distinguish the 
electron generation rate, first the generation of free electrons due to the background 
radiation and second due to field emission from the cavity surface [15]. While modeling 
the electron generation rate, it is assumed that the electron generation due to field emission 
is much more dominant than due to background radiation.   
 
The electron generation rate can be modeled with the help of using Richardson-Schottky 
law. The modified form of this law is given by equation (2) where 𝑁u (number of electrons 
generated per unit time) is electron generation rate, 𝑁u^ is constant, 𝑈dZv is voltage over 
the cavity center and 𝑈dwqY is the critical voltage for discharge process to takes place [20].  
  
 

𝑁u 𝑡 = 𝑁u^ exp
𝑈dZv 𝑡
𝑈dwqY

 (2) 
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Provided that the electric field condition is satisfied ( 𝑈dZv > 𝑈dwqY	), the probability of free 
electron generation inside the cavity during the time interval [𝑡, 𝑡 + ∆𝑡] is assumed 
as	𝑁u 𝑡 ∆𝑡. The corresponding probability distribution function is given by equation (3). 
Using the Monte Carlo procedure, the partial discharge event can be simulated in the 
following way: 
1. Random number (R) uniformly distributed in range [0,1] is generated for each time step. 
2. The future values of 𝑁u are calculated to estimate the value of	𝐹 from equation (3). 
3. If F > R, PD event occur at the time step, otherwise it is not. 
                      
 

𝐹 𝑡 = 1 − exp − 𝑁u 𝑡f 𝑑𝑡f
Y

\
	  (3) 

                                                                 
3.2.4 Discharge Process 
 
The most common approach to model the actual discharge process in a cavity is estimating 
the instantaneous voltage drop across the cavity. The voltage drop instantaneously effects 
the charge across the cavity surface. The voltage drop can be determined from the critical 
voltage, statistical time lag and critical extinction voltage of PD [15,21]. In the most 
common PD models based on capacitive (abc) model, the discharge process is modeled 
with a streamer resistance.   
 
An alternative approach based on the increase in conductivity inside the cavity can be used 
to model the discharge process [20]. The increase in surface conductivity results in a current 
flow through cavity which subsequently decrease the cavity voltage	𝑈dZv. As 
𝑈dZv	decreases below a critical voltage  𝑈u�Y , the surface conductivity decreases which 
quenches the discharge. It is common to assume that a PD in a cavity affects the whole 
cavity. Hence, the surface conductivity discharging radius can be considered constant for 
the whole process. 
 
3.2.5 Charge  
 
Most common PD models describing the physical phenomenon of PD calculates the 
physical charge on the basis of voltage drop across the cavity. In case of abc-model the 
physical charge is given by the following equation: 
  
 𝑞��� = 𝐶d∆𝑈d (4) 

 
Similar approach is used in the model proposed by Niemeyar [15] in which the capacitance 
is expressed by a constant ‘g’. However, in these capacitive PD model, the apparent charge 
is related to physical charge by the 𝜆	function which is defined earlier in defect 
classification section. 
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In the case of dipole model, the charge is calculated on the basis of current caused by the 
charge carriers which are moving inside the cavity like the displacement current [10]. Using 
this approach, the detectable external PD charge must be equal to the internal PD charge 
flowing inside the cavity. The detectable charge calculated on the basis of dipole model is 
given by the equation (1) 
  
3.3 Partial Discharge Characteristics 
 
During PD measurements, it is impossible to measure the true shape of PD current pulses 
owing to the fact that exact PD defect location is not accessible. Therefore, the PD signals 
are measured at the test object terminals. Under this condition, the useful frequency content 
of the measured PD signal is reduced due to attenuation and dispersion while propagating 
from the PD source to test object terminals. Nevertheless, it is common to describe the 
characteristics of partial discharge on the basis of two methods; statistical parameters and 
time & frequency domain discharge pulse characteristics. The statistical analysis includes 
the phase resolved partial discharge pattern classifications. The statistical analysis is 
performed to calculate different fundamental quantities related to PD over definite 
acquisition period which can be further used to deduce various statistical operators. The 
second method is to analyze the shape parameters of the discharge pulse which includes 
both time and frequency domain waveforms of individual PD pulses.  
 
3.3.1 Statistical Analysis 
 
A large number of discharge quantities can be determined in order to study the behavior of 
several statistical parameters over the insulation lifetime. These quantities can be 
subdivided into three categories with respect to the observation time as shown in Figure 
3-4 [22]: 
 
1. The fundamental quantities, which are observed during one voltage cycle. 
2. The derived quantities, which are integrated values of fundamental quantities over 

several voltage cycles depending on the set acquisition period. 
3. Statistical operators, which are statistically deduced parameters from the derived 

quantities.  

 
Figure 3-4 Block diagram for statistical analysis of PD related quantities 
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A. Fundamental Quantities 
 
Three fundamental quantities: discharge magnitude 𝑞q, ignition voltage 𝑈q and discharge 
position with respect to phase angle ∅q of test voltage can be used to represent the partial 
discharge activity. In addition, the number of discharges N for each half period of voltage 
cycle can also be processed to describe the whole discharge process.  
 
B. Derived Quantities 
 
The derived quantities are used to analyze the behavior of partial discharge activity as a 
function of phase angle and as a function of time. In order to derive these quantities from 
the fundamental quantities, the observation period must be longer than the duration of the 
voltage cycle.  
 
It is known that during the course of aging period the PD activity goes through statistical 
variations both in magnitude as well as the temporal behavior of discharges. These 
variations may take place partly due to the changes in the discharge sites e.g. creation of 
several conductive discharge channels. Therefore, the derived quantities such as a number 
of discharge pulses over half cycle period 𝑁(𝑡)  and time variation of the inception voltage 
𝑈q(𝑡) are processed to describe the condition of insulation at discharge sites. 
 
The derived quantities as the function of phase angle are usually observed in order to 
describe the recurrence behavior of the PD activity. The commercially available phase 
resolved partial discharge analyzers (PRPDA) records the partial discharge activity by 
dividing the whole voltage cycle into phase windows (0 to 360°) for some certain 
acquisition period. Therefore, it is possible to determine the several discharge quantities 
for each phase window over several voltage cycles. These discharge quantities include: 
sum of discharge magnitudes, number of discharges, average value of discharges and 
maximum value of discharges. The observation of these discharge quantities over the 
whole phase angle axis can provide the distribution of discharge recurrence as a function 
of the phase angle. These pulse distributions as function of phase angle provide useful 
information on the phenomenon causing these distributions [22]. Following phase-position 
quantities are usually observed during the experimental PD studies:  
 

• Pulse count phase distribution 𝑯𝒏(∅) which is used to represent the number of 
discharges in each phase window as a function of phase angle. 

• Mean pulse height phase distribution 𝑯𝒒𝒏(∅) which is used to represent the 
average amplitude of discharges in each phase window as a function of phase angle. 
It can be derived from the total discharge amount in each phase window 𝑯𝒒𝒔(∅) 
divided by pulse number of discharges 𝑯𝒏(∅) for the same phase window.  
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• Maximum pulse height phase distribution 𝑯𝒒𝒎(∅) which is used to represent 
the maximum amplitude of discharges in each phase window as a function of phase 
angle. 
 

Figure 3-5, gives an example of the type of phase-position distributions for one particular 
acquisition period for both the positive and negative half of voltage cycle. Similar discharge 
patterns and distributions can be expected for each half of the voltage cycle if the internal 
discharge inception conditions remain same. According to many researchers, the time 
dependence of 𝑯𝒒𝒏(∅) and 𝑯𝒏(∅)  provides information about the changes in the discharge 
patterns. For example, 𝑯𝒏(∅) quantity allows the recognition of discharge sources and 
their behavior in time.   

 
Figure 3-5 Typical distribution of phase-position quantities, 𝐻�(∅) pulse count distribution and 𝐻��(∅)mean 

pulse height phase distribution 

 
C. Statistical Operators 
 
Several statistical operators such as skewness 𝑆𝑘 and kurtosis 𝑘𝑢 provides significant 
information about the shape of distribution. They can be used to characterize the 
distribution functions 𝑯𝒒𝒏(∅) and 𝑯𝒏(∅)  more precisely [22]. In addition, many other 
derived statistical operators are also defined in order to study the difference between the 
distributions in both halves of the voltage cycle. Brief introduction about these statistical 
operators is given below: 

a. Skewness 𝑺𝒌 & Kurtosis Ku 
 
Skewness indicates the asymmetry of the distribution as compared to the normal 
distribution.  It is calculated by the following equation: 
 
 

𝑆𝑘 =
𝑥q − 𝜇 �. 𝑃q
𝜎�  (5) 

 
where  𝜇 is the mean value of distribution, 𝜎I is the variance of distribution, 𝑥q Is the 
magnitude of discharge quantity in phase window ‘i’ and 𝑃q is the probability value for 
phase window ‘i’ calculated from the probability distribution function of the distribution.  
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Skewness is zero for totally symmetric distribution, it is positive for the left skewed 
asymmetric distribution and negative for the right skewed asymmetric distribution. In 
contrast to skewness, kurtosis indicates the sharpness of the distribution with respect to the 
normal distribution. Kurtosis is positive for sharper distribution and negative if distribution 
is flatter than normal distribution. It is calculated according to following equation: 
 
 

𝐾𝑢 =
𝑥q − 𝜇 �. 𝑃q
𝜎�	 − 3 (6) 

 
For normal distribution kurtosis is 3. Therefore, the kurtosis value is subtracted by 3 as 
illustrated in the equation 6.  

b. Discharge Asymmetry 
 
The discharge asymmetry defined as 𝑄 is given by the following equation: 
 
 𝑄 =

𝑄XT	/		𝑁T

𝑄Xj	/		𝑁j (7) 

 
where 𝑄XT and 𝑄Xj are the sum of discharges of the 𝑯𝒒𝒏(∅) for the positive and negative 
half of voltage cycle; 𝑁T and 𝑁j   are the number of discharges of the 𝑯𝒏(∅) for the 
positive and negative half of voltage cycle. 

c. Phase Asymmetry 
 
The phase asymmetry 𝜗 is used to study the difference in inception voltage for the positive 
and negative half of the voltage cycle. It is given by the following equation: 
 
 𝜗 =

𝜗q�T 	
𝜗q�j 	

 (8) 

 
where 𝜗q�T  and 𝜗q�j  are the inception phase of the 𝑯𝒒𝒏(∅) for the positive and negative half 
of voltage cycle. 
 
Both discharge and phase asymmetry are defined in such a way that they are equal to one 
in case of totally symmetric distributions and less than one in case of asymmetric.  

d. Cross-correlation factor 
 
The cross-correlation factor 𝑐𝑐 is used to describe the difference in the shape of 
distributions 𝑯	𝒒𝒏

j ∅  and	𝑯𝒒𝒏
T (∅).  It is defined by the following formula: 

 



 

18 

 
𝑐𝑐 =

𝑥𝑦 −	 𝑥 	 𝑦 𝑛	
𝑥I − 𝑥 I 𝑛 [ 𝑦I − 𝑦 I 𝑛 ]

 (9) 

 
where 𝑥 and 𝑦 are the mean discharge magnitudes of the positive and negative half of 
voltage cycle for corresponding phase windows and 𝑛 is the total number of phase windows 
in one half voltage cycle.  
 
Cross-correlation value of 1 indicates complete symmetry whereas cc value of zero means 
totally asymmetry. The cc value does not indicate the height of the distribution. However, 
using phase and charge asymmetry the distribution height can be defined. Therefore, an 
operator mcc is defined by multiplying the three asymmetry factors [20]. 

e. Modified cross-correlation factor 
 
This factor 𝑚𝑐𝑐 as defined above is used to describe the discharge patterns in the positive 
and the negative voltage cycle. It is evaluated as the product of phase asymmetry	𝜗, charge 
asymmetry 𝑄 and cross-correlation factor	𝑐𝑐.   
 
 𝑚𝑐𝑐 = 	𝜗. 𝑄. 𝑐𝑐 (10) 

 
3.3.2 Ultra-wideband (UWB) Partial Discharge Characteristics 
 
Recently, the time-resolved measurements gained significant importance in the field of 
studying discharge mechanisms on different kinds of insulations. The availability of highly 
sensitive and large bandwidth RC type detectors for measuring partial discharge signals 
has made it possible to observe and analyze shape characteristics of discharge pulses both 
in time and frequency domain. 
 
Formerly, due to the phase shaping circuitry and low bandwidths of the detection system, 
it was not possible to preserve the shape of electrical discharge pulse. Furthermore, if the 
time constant of the detector is longer than the width of discharge pulse, integration of 
discharge pulse is performed which is not a well-suited method to study the discharge 
mechanisms. The ultra-wideband or time resolved system can be used to study the temporal 
behavior of the discharge process in the nanoseconds range [5]. With the development of 
ultra-wideband digital oscilloscopes having bandwidth up to several GHz, the true pulse 
shape can be preserved and can be further related to physics of discharge process.        
 
A. Time Resolved Discharge Parameters 
 
When the partial discharge signal is recorded with the help of UWB detection circuit, 
several discharge parameters can be measured to describe the true shape of PD pulse. 
Figure 3-6 illustrates the discharge pulse shape parameters which are described below: 
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• Rise Time: the time interval between 10% and 90% of PD pulse amplitude. 
• 50% pulse width: it’s the time interval between 50% PD pulse amplitude during 

rise and fall of pulse. 
• 20% pulse width: it’s the time interval between 20% PD pulse amplitude during 

rise and fall of pulse. 
• Pulse height: The maximum PD pulse amplitude. 

 

 
Figure 3-6 Time resolved partial discharge parameters 

 
B. Characteristic Discharge Pulses 
 
The recognition of partial discharge characteristics based on the time-resolved parameters 
provide significant information regarding the physics of discharge process. It has been 
observed that the shape of PD pulse changes significantly over the prolonged insulation 
aging [5]. Discharge pulses with extremely short rise time and pulse width are observed 
during the initial phase of an electrical tree inside the insulation. These discharge pulses 
have characteristics similar to streamer like discharge pulses. 
 
After the severe degradation of the insulation over a long period, the discharge pulses show 
characteristics of very high-intensity discharge activity. The pulses have characteristics 
quite similar to pitting type discharge pulses indicating the formation of small pits across 
the discharge cavity. These discharge pulses have very small rising time and relatively 
smaller discharge pulse widths. The very fast rising front of discharge pulse also indicates 
the presence of high-frequency energy contents in the frequency spectrum. These discharge 
theories have been observed during the lifetime tests of insulation aging and verified by 
the experimental results provided later in this study.   
 
3.4 PD Diagnostics 
 
Depending on the nature of the insulation material, different diagnostic methods are used 
in order to detect the actual condition of the insulation or to monitor the changes in the 
insulation condition. For example, in paper and oil insulation systems, primarily 
diagnostics are performed in order to analyze the moisture content or detect the formation 
of gasses inside the insulation. However, in polymeric insulation’s dielectric response and 
lately the partial discharge measurements are used as diagnostic methods. Further, the 
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diagnostic methods are divided into two categories: destructive and non-destructive 
methods. In recent years, the concept of online condition monitoring of electrical 
equipment has gained significant importance which requires the diagnostic methods to be 
non-destructive in nature [23].  
 
PD diagnostic method is extensively used for early detection and localization of the failure 
inside the electrical insulation of the underground cable. The accuracy of diagnostics 
depends on the technique used for measurement, continuous or periodic monitoring method 
and performance of the PD detecting sensor. The continuous monitoring of the system 
involves obtaining the data from the equipment under observation with the help of 
implemented sensors. After that, the data is analyzed using calculations, historical trends 
or by signatures which provide enough information to evaluate the state of equipment. 
 
Due to PDs low amplitude and high-speed transient nature they cannot be detected with 
the help of conventional protection system or by the smart fault location devices and 
algorithms. Therefore, high-frequency sensing technologies are needed to monitor the PD 
activity. However, during the PD activity energy is released in the form of heat, acoustics, 
sound, electromagnetic radiations or ultraviolet light. Considering the high frequency and 
bandwidth requirements for PD detection, induction sensors like HFCT and HFRC are 
usually preferred for the underground cable network [23].  
 
3.4.1 PD Pattern Recognition 
 
The PD patterns as described earlier are helpful in predicting the insulation degradation 
behavior. Theses patterns can also be used to distinguish between the different PD 
mechanisms.  This allows the experts to analyze the PD pattern after regular time intervals 
and diagnose the condition of electrical insulation. However, in order to reduce the human 
involvement, the continuous PD monitoring requires the techniques to automate the pattern 
recognition process. Different methods based on neural networks, fuzzy logic and cluster 
analysis have been proposed in research. All these methods require distinctive learning 
techniques for the discharge patterns [2].  
 
The use of neural networks for automated PD recognition requires pre-processing of the 
PD data in terms of statistical parameters. The learning process can be online and 
continuous or it can be based on previously processed statistical data. Once the learning 
process completes, the undetermined PD pattern can be compared and processed in order 
to evaluate the cause of PD defect.  
 
Another PD pattern recognition tool which characterizes the PD parameters with the 
physical phenomenon is based on the fuzzy logic [2,24]. This method defines the number 
of vague and non-specific set of rules on the variables deduced from the actual PD 
characteristics.  For example, the PD pulse magnitudes are set as one variable and set of 
rules then define the cause and size of the PD defect. However, in order to define the PD 
mechanism, numerous variables are required. There are many possible variations in these 
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variables making the whole pattern recognition process random and complex. In addition, 
a large number of rules have to be devised which complicates the application of fuzzy logic.  
 
The fuzzy logic is usually performed on the clusters of the 3D PD patterns created by the 
PRPDA [25]. Figure 3-7 [13] illustrates the process of discriminating different failure 
mechanisms on the basis of identifiable clusters. This technique is also known as fractal 
analysis.     
  

 
Figure 3-7 Cluster mapping of variables [13] 

 
3.4.2 Limitations of Applying PD Diagnostics in Cables 
 
In distribution network systems, a large number of parallel MV feeders originate from the 
primary substation to distribute the electrical power. The distribution network follows the 
interconnected network by using the ring main units (RMUs) which require a large number 
of cable branches and sections for better system reliability. Each RMU has multiple 
incoming and outgoing cables, all of them contains numerous cable joints and terminations. 
Therefore, it is difficult to judge the exact location of the PD faults as they can be located 
anywhere in the network [23].     
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Chapter 4  TEST SETUP & EXPERIMENTAL RESULTS 
 
It was known that degradation of the XLPE insulated cables can be detected by means of 
electrical measurements and the cable age must have a correlation with the experimental 
electrical measurements which in this study are partial discharge measurements. Hence, an 
experimental setup was established to perform the lifetime tests in the High Voltage 
laboratory of Aalto University. The tests were carried out on XLPE insulated medium 
voltage cables. 
 
4.1 Preparation of Specimen 
 
Specimen preparation setup was established with the aim of producing similar and small 
size cable samples with minimum mechanical stresses applied during their preparation. 
Careful considerations regarding the preparation of cable sample were taken into account.   
The major problem expected was the inception of corona at the cable terminals at low 
voltages which hinder the establishment of discharge free experimental setup.  
 
4.1.1 Cable Sample 
 
As mentioned earlier, cable samples of 24kV rated light power MV cables with XLPE 
insulation thickness of 4.3mm were used. Due to limitations of mechanical tools used in 
sample preparation, 50 cm small cables samples were prepared. The outer jacket and 
insulation screen were removed which leaves the cable with XLPE insulation and 
conductor screen with center conductor as shown in the Figure 4-1. The mechanical tools 
which are used in order to prepare the test specimens are also shown in same figure. To 
produce a more realistic test specimen, the insulation screen was not removed from the 
center of cable where the voltage stress was applied.  
  

 
Figure 4-1 Cable Specimen and  mechanical tools used in sample preparation 
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4.1.2 Creation of Artificial Cavity 
 
In order to produce an artificial cavity inside the insulation, a steel needle-plane geometry 
was opted. This approach is widely used in research for simulating the electrical stress 
enhancements and initiating the electrical treeing inside the polymeric insulation. The 
insertion of the sharp needle inside the polymer creates a micro-void at the tip of the needle 
resulting in the inception of partial discharge activity at relatively low voltages [11].   
 
Suitable steel needle of 1.5 𝑚𝑚 diameter with a tip radius of 10 𝜇𝑚 was inserted inside the 
insulation to 2.5 𝑚𝑚 depth in order to realize the internal discharge phenomenon. This 
gives around 1.8 𝑚𝑚 of remaining insulation for the treeing propagation. The needle was 
carefully inserted to the specified depth with the help of dial indicator as shown in Figure 
4-2. The needle was moved back by 0.5	𝑚𝑚 in order to create an air-filled cavity in 
addition to the micro-cavity at the tip of the needle. This approach was used so that different 
type of discharge mechanisms could be observed. High voltage terminal was connected to 
the steel needle electrode whereas one end of the cable was connected to the ground.  
 

 
Figure 4-2 Needle-plane electrode configuration for creation of artificial cavity and the use of dial indicator 

4.2 Corona Free Test Setup 
 
The main difficulty in establishing the PD measurements test setup is to create an 
environment around the test specimen which is free from discharges other than the 
specimen own internal discharges. The inception of corona at low voltages is observed at 
cable terminations at relatively low voltages. In order to avoid this situation, a proper test 
setup must be built. Placing the specimen inside silicone oil bath is one of the possible 
ways to resolve this problem [26]. However, in order to develop a cable test arrangements 
similar to the field applications, proper cable terminations were arranged in this study.  
These terminations were installed at the cable terminals to ensure that only internal 
discharges will be recorded by the measuring instruments.  
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4.2.1 Measurement Procedure 
 
1. Voltage magnitude was kept constant through out the lifetime test at the rated voltage 

of MV cable i.e. 12 kV RMS phase voltage. 
2. The end criterion for the test was selected as the final breakdown of the insulation.   
3. The partial discharge intensity was monitored with Phase Resolved Partial Discharge 

Analyzer (PRPDA). The PD data was recorded for one minute after every three minutes. 
The data obtained was post processed to obtain the parameters such as average charge, 
accumulated charge etc. for analyzing the insulation degradation by means of partial 
discharges. Furthermore, variations in the statistical parameters such as skewness, 
kurtosis of different phase distributions for each acquired data were also calculated.  

4. In order to identify the shape parameters of individual PD pulses and their variation with 
time, 12bit, 2GHz oscilloscope was used. PD pulses after every five hours of stress were 
recorded with the help of High Frequency Current Transformer (HFCT) sensor.  

5. The progression of electrical treeing inside the insulation was observed by means of 
special arrangement of optical microscope.  

 
4.3 Phase Resolved Partial Discharge Analyzer (PRPDA)  
 
The PRPDA technique has been widely used by the commercially available PD diagnostic 
systems. This technique records the apparent charge with respect to the phase of the voltage 
cycle for each PD detected. In this study, PD-ICM (Insulation Condition Monitoring) 
system software was used to monitor and record the PD values. The system records the PD 
data for each acquisition period in the form of image pixels. The image file represents the 
mapping of charge values for each pixel. The whole image is divided into 256x256 pixels. 
Each horizontal pixels represent the phase value along the phase axis dividing the positive 
and negative half cycles into 128 pixel windows. The corresponding vertical pixels 
represents the discharge magnitude and intensity. Similarly, positive and negative charge 
values are divided into 128 pixel windows. Figure 4-3 describes the decrypted mapping 
image used by the ICM system. The decryption of the image file saved by the ICM system 
is one of the most difficult tasks in this study. The data saved in the image file is in the 
binary form to utilize less memory. It was the requirement of this study to analyze the data 
over long periods and manually analyze the recorded data was not a feasible procedure. 
Hence, a post processing program was developed in Matlab which allowed detail analysis 
of data recorded in these encrypted data files.  

 
Figure 4-3 Decrypted mapping image of ICM system. 
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4.4 Non-Conventional PD Detection 
 
In order to observe the ultra-wideband discharge characteristics, PD measurements were 
being observed by means of non-conventional PD detection system. This requires the 
installation of highly sensitive and large bandwidth sensor across the ground connection of 
test object.  For this purpose, HFCT sensor was being used. Fixed contact HFCT sensor 
has a large bandwidth and reliable frequency response up to 100 MHz. The PD discharge 
pulses have frequency contacts concentrated largely in the frequency range of 10 to 30 
MHz.  
 
The PD pulses were observed by 12bit, 2GHz LeCroy digital oscilloscope. The observed 
data size was selected as 400K samples for one discharge pulse. This limits the file size as 
well as requires less computational time for analysis. Figure 4-4 shows the whole PD 
measurement setup. 
 

 
Figure 4-4 Measurement Setup 

 
4.5 Results 
 
After establishing a satisfactory partial discharge measurement setup, tests were carried out 
with the aim to study the time behavior of partial discharge characteristics and estimate the 
time to breakdown for one particular PD test setup. Tests were carried out at constant rated 
voltage of cable i.e. 12 kV (phase voltage).  
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4.5.1 Lifetime Tests 
 
Primarily tests were carried out on specimens for estimating the average time to breakdown 
(TBD) while keeping the test conditions same. Phase-resolved analysis of partial discharge 
activity were recorded with the help of partial discharge diagnostic box (PDIX). Initially, 
ten (10) cable samples were prepared. The average TBD values of 5 cable samples are 
provided in Table 4-1.  Two cable samples namely cable 2 and cable 3 were observed to 
breakdown in very early stages of electrical stress. The peculiar behavior shown by these 
two samples can be due to inconsistent cable sample manufacturing process. The tools used 
in sample preparation mechanically stress the cable, hence, introducing additional stress 
concentrated points which are considered to be the cause of these cable samples 
breakdown. Subsequently, careful measures were being taken to avoid the formation of 
additional stress points. However, these samples results are not considered further in the 
analysis. Rest of the cable samples were used to study the behavior of electrical tree growth.     
 

Table 4-1 Time to breakdown (TBD) values 

Sample No. Time to Breakdown 
(TBD) [hrs] 

Sample No. Time to Breakdown 
(TBD) [hrs] 

Cable 1 72 Cable 2 6.9 
Cable 4 82.1 Cable 3 7.3 
Cable 5 94   
Cable 6 95.4 
Cable 7 78.6 

 
A. PD Monitoring 
 
The conventional method of PD detection allows to correlate the recorded PD signal 
amplitude with the apparent charge. Hence, the observed PD data can be processed to 
obtain different parameters such as average charge, accumulated charge, charge frequency 
and charge per second during each acquisition period.  Figure 4-5 illustrates the PD 
intensity pattern in terms of the average charge for each acquisition period over the lifetime 
of the cable samples used in the experiment. It can be observed that the PD intensity pattern 
shows almost similar behavior for all the cable samples. The discharge pattern can be 
divided into four stages; initiation of the PD, concentration of charge, insulation disruption 
(initiation of electrical treeing) and breakdown.    
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 Figure 4-5 Behavior of Partial Discharge intensity over the insulation aging period 

As it can be seen, the PD intensity tends to increase initially in the range of 50 to 400 𝑝𝐶. 
This indicates the increase in surface conductivity of the cavity wall due to the erosion and 
chemical reactions creating dissociation products of air. This results in roughness of the 
surface and formation of more localized solid by-products, for example, the formation of 
hydrated oxalic acid crystals [16,27,29]. In the case of cable 1, 4 and 7 the increase in 
surface conductivity can be observed within first 10 hours of aging. However, cable 5 and 
cable 6 shows relatively constant PD behavior indicating very slow insulation deterioration. 
Consequently, these two cable samples had the largest breakdown time as given in Table 
4-1. For a larger period of the insulation aging, PD intensity tends to stabilize with very 
small variations. For example, in cable 1 the period between 15 to 60 hrs. of insulation 
aging the PD intensity remains around 200 𝑝𝐶. It is believed that during this phase the PD 
process tends to localize in a certain areas forming field enhancement at the tips of the 
crystal structures which can eventually result in the initiation of the electrical treeing [16]. 
This phase can be described as charge concentration phase. Also, as described earlier in the 
partial discharge theory section, the surface conductivity of cavity increases during initial 
few hours of PD exposure and then tends to saturation point. This increase in surface 
conductivity is not necessarily be accompanied by the increase of discharge amplitude PD 
intensity. However, the PD intensity increases sharply once the electrical treeing starts, 
resulting in severe degradation of the insulation.  
 
PD intensity drops to almost zero for very short period of time before the cable breakdown. 
According to research [28], this may take place as a result of carbonization of the partial 
discharges inside the void. This phenomenon prevents the voltage build up across the void 
and creating a very low resistive path for very high currents flow. These high current pulses 
are known as ‘tiny arcs’. It results in increased heating and severe insulation deterioration.  
The intense heat can cause molecular and chemical breakdown of the insulation which 
further accelerates the deterioration process.  
 
One of the main goals of this study was to evaluate the detection threshold which allows 
the Distribution companies to take emergent action in order to keep the system reliable and 
avoid the devastating effects of the insulation breakdown. The partial discharge pattern for 
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the insulation aging allows detection of the progressive phases of insulation deterioration. 
The time before the breakdown when the partial discharge activity limits to very small 
value were calculated for the cable samples and are expressed in Table 4-2. For the 
particular PD setup, the detection threshold time is not consistent and have no clear 
correlation with the time to breakdown values. However, the minimum detection threshold 
time observed is 32 minutes for cable 7 and overall average detection threshold time for 
five cable samples is 83 minutes.  
 

Table 4-2 Detection threshold values 

Sample No. Time before breakdown 
 (Detection threshold) [min] 

Cable 1 124 
Cable 4 64 
Cable 5 56 
Cable 6 140 
Cable 7 32 

 
As mentioned earlier, during the detection threshold period the resistive component of the 
insulation has reduced to such an extent where the partial discharge activity vanishes and 
allows the direct path for current flow. The reduction in insulation resistance can be 
detected by means of traditional methods of measuring insulation resistance or Megger 
testing. Thus, partial discharge trend identification together with traditional insulation 
resistance testing can provide an effective solution for insulation diagnostics. 
 
B. Stress Indicator 
 
Many researchers have tried to formulate stress indicators for partial discharge activity. 
Models based on the maximum applied voltage, 𝑉mZ� or recently the apparent 
current/cycle, 𝐼Z has been proposed. These stress indicators can be used to establish life 
models for insulation aging [26]. The models based on 𝐼Z depicts the actual degradation 
behavior and is considered more efficient as compared to models based on 𝑉mZ�.  
Therefore, only the 𝐼Z as stress indicator is calculated for this study. 
 
C. Apparent Current/cycle 𝑰𝒂 
 
The data recorded by the PRPDA was analyzed for each acquisition period to compute 
several partial discharge quantities. These quantities include 𝑄Z defined as charge per cycle 
and is computed by the following equation:  
 

𝑄Z =
𝑁q	 ∗ 𝑞qI¤¥

q¦U

t(,2	 ∗ f	
 (11) 
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where ‘i’ indicates the phase window, t(,2 is acquisition time and f is fundamental 
frequency. The quantity in the numerator is defined as accumulated charge and is a useful 
indicator for the intensity of PD phenomenon. 
 

 
Figure 4-6 Behavior of charge/cycle quantity over the insulation aging 

The behavior of 𝑄Z as shown in Figure 4-6 is an important indicator for the inception of 
the electrical treeing inside the cable insulation. The value of 𝑄Z increases rapidly after the 
onset of electrical treeing. Similar kind of behavior was observed for the other cable 
samples as shown in Figure 4-7. The slope of this rise in 𝑄Z value is called ‘apparent current 
per cycle’, 𝐼Z. This calculated  𝐼Z value can be used as a stress indicator [26].  
 

Table 4-3 Stress Indicator values 

Sample No. Stress Indicator (𝑰𝒂) 
(𝒑𝑪/𝒔𝒆𝒄) 

Time to Breakdown (TBD) 
[hrs] 

Cable 1 2.12e3 72 
Cable 4 2.25e3 82.1 
Cable 5 396 94 
Cable 6 561 95.4 
Cable 7 1.62e3 78.6 

 

 
Figure 4-7 Charge/second Qa behavior 
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The  𝑄Z pattern observed during the experiments can be best fitted and described with the 
help of high degree polynomials. Taking the maximum value for the derivative of these 
high degree polynomials gives the desired 𝐼Z value for each cable sample which are 
provided in Table 4-3.  
 
D. Life Predicting Model 
 
It can be seen from Table 4-3 that with few exceptions the stress indicator 𝐼Z indicates 
correlation with the time to breakdown values. Cable samples (1,4 and 7) having larger 
values of 𝐼Z has shorter breakdown time whereas, cable 5 and cable 6  having larger 
breakdown period have very small values of 𝐼Z. Hence, the stress indicator can be related 
to the time to breakdown value by using the inverse power law.  
 
The generic inverse power law for the stress indicator 𝐼Z and time to breakdown TBD is 
given by the equation:  
 𝑻𝑩𝑫 = 𝑨	 ∗ 	𝑰𝒂T𝑩 

 
(12) 

 

 
Figure 4-8 The inverse power law plot for stress indicator Ia vs time 

Figure 4-8 shows the plot of stress indicator 𝐼Z vs the TBD values for five cable samples 
used in experimental work.  The parameters of the inverse power law A and B can be 
estimated by using the linear regression techniques.  The analysis provides the estimated 
numerical values with the determination coefficient values as given in Table 4-4. 
 

Table 4-4 Estimated parameters values for life prediction model 

A B R
2 SSE RMSE 

4.37e3 -4.46 0.89 2.391e05 282 
  
The determination coefficient value of 0.89 and relatively moderate root mean square error 
value signifies the validity of the inverse power law model. Also, the stress indicator 𝐼Z 
takes into account the actual degradation process i.e. growth of electrical treeing by the 
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partial discharge phenomenon. Therefore, selecting 𝐼Z as stress indicator provides much 
more accurate life prediction model and also allows improved monitoring of electrical 
treeing aging phenomenon.    
 

4.6 Statistical Parameters 
 
As already discussed, the statistical parameters defining the  𝐻�(∅),𝐻��(∅) and 𝐻�m(∅) 
distribution profiles are useful in providing the information regarding the partial discharge 
pattern and insulation condition. In particular, the electrical treeing phenomenon follows a 
specific discharge pattern which can be observed with different statistical parameters such 
as skewness and kurtosis.   
 
Figure 4-9 illustrates the behavior of skewness and kurtosis parameters for 𝐻�(∅),𝐻��(∅) 
and 𝐻�m(∅) distribution profiles. The parameters were calculated separately for positive 
half and negative half of voltage cycle in order to observe the asymmetrical behavior of the 
discharge patterns.  It can be seen that the phase distribution profiles are characterized by 
strong fluctuating values of statistical parameters for a better period of aging time. 
However, after the electrical treeing inception i.e. after 60 hours of stress, the parameters 
tend to follow a specific pattern. The skewness as well as the kurtosis for 𝐻��(∅) and 
𝐻�m(∅) for both positive and negative half cycle phase distributions starts to decrease 
indicating the movement of charge symmetry from left to right along the phase axis. 
Skewness greater than 0 indicates that the distribution profile is right skewed with its right 
tail longer. The decreasing skewness value is the indication of the distribution profiles 
moving right along the phase axis. This behavior can be supported by the fact that the 
electrical tree propagates along the insulation creating more branches or bushes in the form 
of conducting channels or micro-cavities. Partial discharges in these conductive channels 
develop at relatively larger voltage magnitude as compare to the previous discharge sites 
which are deteriorated over a long period. An alternative explanation for the movement of 
charge symmetry is on the basis of an increase in statistical time lag. Due to degradation of 
the cavity surface, the free electrons get trapped inside the discharge sites due to surface 
conduction and recombination. This phenomenon as explained in chapter 3 is known as 
surface charge decay. The surface charge decay and increase in statistical time lag shift the 
PDs forward in phase at larger values of the applied electric field. Also, the PD magnitude 
increases with increase in statistical time lag which is evident from the mean pulse height 
phase distributions shown in Figure 4-10. As we can see in this figure, the mean pulse 
height phase distribution tends to increase in magnitude as well as shifting towards right 
along the phase angle axis with the insulation aging period. This behavior is quite accurate 
in the case of positive half cycle phase distribution as compared to negative half cycle phase 
distribution.  It can also be noticed that the distribution becomes flatter as compared to 
normal distribution with insulation aging due to electrical tree propagation. This can also 
be verified by the corresponding variations in the kurtosis values indicated in Figure 4-9 
(c&d). Similar kind of behavior is shown by the maximum pulse height phase distribution 
profile as evident by the Figure 4-11.  
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      (a) 
 

 
(b) 

 

 
(c) 

 
(d) 

Figure 4-9 Behavior of Skewness and Kurtosis for different phase-position distributions over the insulation ageing 
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Figure 4-10 Mean pulse height phase distributions after the inception of electrical tree . (a) For positive half cycle 

(b) For negative half cycle 

 

 
Figure 4-11  Maximum pulse height phase distributions after the inception of electrical tree . (a) For positive half 

cycle (b) For negative half cycle 

On the other hand, skewness and kurtosis for 𝐻�(∅)  distribution profile have shown rising 
behavior after the onset of electrical tree particularly in the positive half of voltage cycle. 
One of the possible explanation for this behavior is the charge concentration in the multiple 
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sites or micro-cavities which have a higher frequency and repetition rate of PDs as 
compared to the new and virgin cavities which are formed as a result of the electrical tree.   

 

 
Figure 4-12 Pulse count phase distributions after the inception of electrical tree . (a) For positive half cycle (b) 

For negative half cycle 

It has been observed that during the positive half of the voltage cycle, the phase position 
distributions show many clear and distinctive patterns as compared to the negative half. 
The asymmetry of distributions for positive and negative half cycles are represented with 
different statistical operators as explained earlier. The behavior of these parameters over 
the insulation ageing is shown in Figure 4-13. As we can see, the pattern of these operators 
is not consistent indicating the occurrence of several discharge mechanisms during the 
insulation aging. The 𝑚𝑐𝑐 is a reliable operator for explaining the different type of 
discharge mechanisms. It is calculated by multiplication of the other three operators i.e. 
𝑐𝑐, 𝑄	𝑎𝑛𝑑	𝜗	. A higher value of 𝑚𝑐𝑐 is the indication of the insulated bounded discharge 
activity which accounts for the charge accumulation whereas, lower 𝑚𝑐𝑐 value indicates 
the occurrence of treeing phenomenon [22].  
 
Large values of phase asymmetry during the initial stages of insulation ageing indicate that 
the PD activity during the positive cycle incepts at higher voltage magnitude as compared 
to the PD activity inception during negative cycle. During the greater part of aging period, 
the charge asymmetry 𝑄 remains constant at a value of 1 indicating the total symmetry in 
the occurrence of positive and negative PDs. However, as it can be seen, the amplitude 
asymmetry tends to increases after the inception of electrical tree. On the other hand, 
𝜗	becomes constant to the value of around 0.4. The correlation coefficient 𝑐𝑐 remains 
almost constant around 0.7 with very small variations. However, its value starts to decrease 
significantly after the onset of treeing phenomenon.  
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Figure 4-13 Behavior of statistical operators describing the partial discharge  asymmetry between positive and 

negative half cycles 

 
All the statistical operators which are calculated in this study and provided in the literature 
are useful in creating a PD distribution pattern which can provide important information 
regarding the condition of insulation. Particularly, the discharge mechanisms involved in 
the PD activity can be recognized by comparing the variations in the statistical operators. 
The theoretical knowledge and experimental results along with the physical inspection of 
the discharge sites can provide a detailed diagnostic analysis.     
 
4.7 Time & Frequency domain characteristics 
 
In addition to statistical calculations based on phase resolve analysis, ultra-wideband 
discharge characteristics were observed by means of time resolved discharge 
parameters and energy contents of discharge spectrum. Figure 4-14 and 4-12 shows the 
behavior of discharge parameters i.e. rise time and 50% pulse width of the individual 
partial discharge pulses respectively. It is evident from the figures that both the rise 
time and 50% discharge pulse width of discharge pulses over the insulation ageing 
period tends to decrease particularly before the final breakdown.  
 

 
Figure 4-14 Behavior of time rise of individual discharge pulses 
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Figure 4-15 Behavior of 50% pulse width of individual discharge pulses 

 
As explained earlier in the theory about ultra-wideband discharge characteristics, the 
discharge parameters provide very useful information regarding the physics of partial 
discharge mechanisms. The discharge pulses observed during the initial stages of 
insulation ageing are observed to have characteristics similar to pitting type discharges. 
These discharge pulses are characterized by smaller rise times and pulse widths.  
However, the discharge pulses during the charge concentration period have 
characteristics similar to streamer type discharge pulses. Streamer pulses are observed 
to have larger rise times and pulse width durations. However, before the breakdown of 
cable the discharge pulses again show the characteristics of pitting type discharge 
pulses. The type of streamer and pitting type discharges observed during the 
experiments are shown in the Figure 4-17. 
 
In the frequency spectrum, the discharge pulses have energy density mostly 
concentrated in the range of 1 to 25 MHz frequency range. High frequency energy 
contents in the range of 50 to 100 MHz and very small energy contents in the range of 
100 to 200 MHz are observed in the discharge pulses after long ageing times. These 
discharge pulses also have high energy contents as compared to discharge pulses 
observed during initial ageing periods. The energy density in the frequency spectrum 
for several discharge pulses observed during the insulation ageing is shown in Figure 
4-17 . Table 4-5 summarizes the energy distribution in the frequency spectrum with 
respect to the insulation ageing time.  

 
(a) 

 
(b) 

Figure 4-16 Characteristic discharge pulses. (a) Streamer like discharge pulses (b) Pitting type discharge pulses 
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Figure 4-17 Frequency contents of discharge pulses 

From the observations and experiment results, it can be concluded that the UWB 
characteristics are useful in evaluating the condition of insulation as well as can explain 
the discharge mechanisms taking place inside the cavity. However, this method of 
insulation diagnostics requires high bandwidth oscilloscopes for observing the true 
shape of discharge pulses. Continuous monitoring by means of these highly expensive 
oscilloscopes may not be a cost effective method.  
 

Table 4-5 Frequency content of discharge pulse with respect to ageing time 

Ageing time 
(hrs) 

Discharge Energy  
frequency contents 

0~10 850 KHz~7MHz 
10~70 0~50MHz 
70~90 0.9~50 , 100~200  MHz 

 
4.8 Electrical Tree Growth 
 
The propagation of electrical treeing inside the insulation was also observed. Due to the 
unavailability of CCD camera, it was not possible to monitor the tree growth continuously 
and without any means of non-destructive methods. After primary tests, an estimated 
average time to breakdown was calculated based on which the partial discharge behavior 
can be predicted over the insulation ageing. Therefore, it was decided that the cable samples 
will be removed from the test setup after stressing for a certain period of time and observe 
the electrical treeing growth with the help of special arrangement of the optical microscope 
as shown in Figure 4-19. The short-circuited cable samples were being observed under the 
microscope. Figure 4-20 shows the development of electrical tree inside the cable 
insulation at the needle tip. It can be seen that the electrical treeing has bush type 
morphology.  Because of the carbon left over at the discharge site due to the short circuit 
after cable breakdown, the treeing pattern can be seen clearly. However, during the normal 
operation, the conductive channels or micro-cavities formed as a result of the electrical tree 
has very thin patterns inside the insulation which is very difficult to observe. To study these 
patterns, a very delicate slicing tool for insulation is required. The thin films obtain from 
slicing tool can then be analyzed under the microscope. Due to destructive nature of this 
method and also the random behavior of the partial discharge activity, the results obtained 
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may not have an accurate estimation of the tree propagation rate. A better and more 
research designated approach can be the installation of CCD (Charge Coupling Device) 
camera across the test sample. This scheme will allow to detect and continuously monitor 
the discharge movement across the XLPE insulation core by means of digital imaging.  Due 
to the limited research period for this master’s thesis study and also the limitations of 
cutting tools available in the laboratory it was not possible to measure the propagation rate 
of electrical tree. However, computer simulations based on the partial discharge models 
were performed in order to realize the behavior of partial discharge with the increase in 
depth of cavity and results are compared with the experimental observations.   
 
4.8.1 Partial Discharge Simulation 
 
As explained in chapter 3, the partial discharge can be modelled by several different 
approaches. The capacitive abc model and dipole model based on the Poisson’s 
equation has been used in this study for modeling the partial discharge activity. Figure 
4-18 provides the schematics of the partial discharge model built in the Matlab 
Simulink environment. The simulation was performed in order to observe the partial 
discharge intensity with respect to the varying the cavity depth. The parameters of MV 
cable used in the experimental laboratory work has been used in the simulations. The 
Matlab program has been designed accordingly. The program calculates the PD 
intensity for every 0.1mm increase in the depth of cavity. The charge value based on 
the dipole model and abc model has been studied. 
 

 
Figure 4-18 Simulink Model for partial discharge simulations 
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Figure 4-19 Microscope arrangement for observing the treeing propagation 

 

 
 

Figure 4-20 Bush type electrical tree morphology 
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The charge value for the dipole model can be calculated from the equation (1).  The 
dipole moment is calculated by considering the worst case, i.e. for the streamer like 
discharge mechanism. According to Lemke publication [19], this dipole moment has 
been approximated by the following equation: 
 
 𝑃m = 270	𝑝𝐶/𝑚𝑚 . 𝑑dI. (13) 

By calculating the dipole moment from above equation and inserting its value in 
equation (1) provides the value of charge. 
 
For ABC-model, the charge is calculated by calculating the capacitance and voltage 
across the cavity. Another approach for calculating the charge value is from the output 
voltage obtained from the detection circuit. The charge value, in this case, is given by 
the following equation: 
 

𝑄 =
𝐸. 2
𝑉 =

2. 𝑉I𝑡
𝑅. 𝑉  (14) 

where R=50Ω and 𝐸 is the energy across capacitor. 
 
 The results obtained after the simulations are given in Figure 4-21.  
 

 

Figure 4-21 Partial discharge simulation results based on abc-model and dipole model 

  

The dipole model presents an almost linear increase in PD value with the increase in 
depth of the cavity.  The laboratory results provided earlier in the PD monitoring section 
also illustrates the increasing behavior after the initiation of electrical tree, though the 
behavior is not as linear as presented by the computer simulations. Whereas, the PD 
activity represented by the abc-model has quite different pattern. From the simulation 
plot, it can be observed that the intensity of partial discharge is quite low around 50 to 
100 𝑝𝐶. It rises sharply if the distance between the conductor and the cavity is very 
small. The PD intensity observed in the laboratory work given in Figure 4-5 has shown 
that the maximum PD value after prolong insulation ageing is around 800 𝑝𝐶. The 
charge value evaluated on the basis of dipole model has been in the same range.  
 
The PD models are helpful in describing the discharge intensity, however, their validity 
can only be examined by interpreting the results according to the physical phenomenon 
taking inside the PD source.  
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Chapter 5 INTRODUCTION TO PARTIAL DISCHARGE 
SIGNALS DE-NOISING 

 
Partial discharge measurements have been widely accepted as an efficient online insulation 
condition assessment method in high voltage equipment [33]. Recently, the on-site 
measurements and online condition assessment of the electrical equipment have gained 
significant importance over the traditional periodic maintenance due to various factors [42]. 
Detection of the partial discharge (PD) signals in the early stages of their development by 
continuous monitoring is an effective solution to prevent the complete breakdown failure. 
Also, the online continuous monitoring requires no interruption in the service supply for 
diagnostic measurements. However, during the on-site measurements, the measured partial 
discharge signals encounter the wide range of disturbances in the shape of noise signals. 
The application of the non-conventional sensors such as HFCT, D-dot etc. in the online 
condition monitoring has increased the sensitivity of the measurement system which results 
in coupling of these undesired noise signals with useful partial discharge signals [34]. This 
may affect the reliability of the PD data and consequently the false assessment of insulation 
conditions. Therefore, the online PD measurement system requires an efficient signal 
processing technique in order to reject the disturbing signals from the measured signals. 
Recent developments in modern Digital Signal Processing (DSP) techniques has provided 
vast scope in removing these interferences. One of the DSP techniques, Wavelet analysis 
has come of an age in detecting the real time transients like PD pulses from the noisy 
environment [33].  
 
The major external interferences encountered during the on-site PD measurements are 
divided into following categories [36,37]: 
 

• Discrete Spectral Interference (DSI) from radio, TV or other mobile 
communication networks is a narrowband interference. Using band pass filters 
centered on the communication channel frequencies can easily block such kind of 
interference. 

• Periodic pulse shaped interferences from the periodic switching of the power 
electronic devices i.e. thyristor firing circuit. They can easily be removed by 
implementing the gating circuit. 

• Stochastic pulse shaped interferences are random pulses produced due to 
switching operations, lightning or by the arcing between the contacts.  

• White noise is the Electromagnetic Interference (EMI) caused by the measuring 
instrument or other surrounding equipment’s. 

 
During the online testing, the test equipment is exposed to pulsive interferences from the 
grid which have characteristics (both in time and frequency) quite similar to those of the 
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PD pulses. These pulsive interferences are the main challenge in implementing a successful 
online PD measurement setup.  Therefore, this study includes an in-depth analysis of de-
noising techniques which can be applied to recover the measured PD signals from these 
intermittent kind of noises. In this regard, a novel adaptive de-noising technique has been 
proposed on the basis of frequency analysis of the noise and PD signals. The efficiency and 
performance of this technique are evaluated by applying the algorithm on different kind of 
measured on-site PD signals which are coupled with the different type of noise signals. The 
PD signal measurements are recorded with the help of non-conventional HFCT sensors in 
the laboratory. Whereas, the onsite disturbances are observed with the D-Dot sensors at 
switchgear feeding an industrial load in Helsinki region. De-noising results are compared 
with several existing de-noising techniques proposed earlier in research on the basis of 
various performance indices.   
 
A brief introduction to existing de-noising algorithms and their limitations for applicability 
in online condition monitoring systems is given below: 
 
5.1 Noise Reduction Algorithms 
 
Generally, the de-noising techniques are divided into following two categories [43]: 
 

1. Closed Loop 
2. Open Loop 

 
The closed loop techniques are used in order to reduce the DSI and radio communication 
frequency noise signals which are centered on certain band frequencies and are periodic in 
nature. Whereas, the open loop techniques imply the comparison between the signal 
characteristics of the PD signal and noise to eliminate the noise from the measured signals. 
The open loop techniques are more effective for broadband white noises and stochastic 
pulsive interferences as compared to closed loop noise reduction techniques [43]. These 
de-noising techniques are implemented with the help of various DSP methods and circuits 
depending on the kind of noise to be eliminated.  
 
5.1.1 Fast-Fourier Transform Based De-Noising 
 
This method is generally implemented in recovering the PD signal from sinusoidal noise 
with peaks occurring at periodic intervals.  Discrete Fourier transform (DFT) is used in 
order to evaluate the Fourier coefficients of the signal under analysis. Threshold is set on 
the basis of the varying frequency of the signal and is calculated according to the following 
equation [33]:  
 
 𝑡ℎ𝑟 = (𝑗 − 1)I×	60 + 10	 (15) 

 
For N points FFT the value of j=1,..,N.    
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The Fourier coefficients with values larger than the threshold are dropped off. The 
reconstructed de-noised signal is obtained by applying the inverse discrete Fourier 
transform. The Fourier transform based de-noising methods have limitations for both 
intermittent type noises and pulsive interference which requires analysis in both time and 
frequency domain.  This method is also known as FFT thresholding technique [36]. 
 
5.1.2 Least Mean Square Method (LMS) 
 
This method assumes the fact that the characteristics of the desired output signal are well 
known before performing the de-noising analysis. It is an iterative approach which tries to 
minimize the error vector by calculating the difference between the desired output and the 
actual output of the filter [45]. 
 
Consider a filter with its coefficient vector as ‘W’ and the noisy input signal as ‘X’. The 
filter’s output after applying the least mean square method is given according to the 
equation [45]: 
 
 𝑊 𝑛 + 1 = 𝑊 𝑛 + 𝜇×𝐸 𝑛 ×𝑋(𝑛)	 (16) 

 
where E(n) is the error vector and 𝜇 is filter dependent constant value.  
 
The Infinite Impulse Response (IIR) filter is one of the variants of the least mean square 
method which is used quite significantly in analyzing the transient type signals. However, 
for the online monitoring system, the application of this method has limitations because of 
the fact that the PD signals possess random characteristics which are dependent on various 
factors and are not predictable.  
 
The LMS method is relatively slow and exhibits a non-uniform convergence. These 
shortcomings are overcome by using recursive least square method. Weighting factor α is 
introduced in equation (14) which accounts for recursion procedure. The recursive least 
square method is governed by following equations: 
 
  
 𝑊 𝑛 + 1 = 𝑊 𝑛 + 𝛼×𝑅TU 𝑛 ×𝐸 𝑛 ×𝑋 𝑛  (17) 

where 𝑅TU 𝑛  is given by : 
 
 

𝑅TU 𝑛 = 𝑅TU 𝑛 − 1 −	
𝑅TU 𝑛 − 1 	𝑋 𝑛 	𝑋½	 𝑛 𝑅TU 𝑛 − 1 	

1 + 𝑋½ 𝑛 𝑅TU 𝑛 − 1 	𝑋 𝑛  (18) 

 
This method is computationally more complex but it converges quite rapidly and produce 
more efficient results as compared to LMS.  
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5.1.3 Frequency Domain Adaptive Filtering 
 
The LMS filtering technique is limited to time domain analysis. Further, the technique is 
also non-adaptive for the transient’s type signals.  The LMS technique can be implemented 
in the frequency domain by using any of the signal processing techniques available such as 
discrete Fourier transform, discrete cosine transforms or the discrete wavelet transform 
[45].  The equation (14) in this case modifies to  
 
 𝑊q 𝑛 + 1 = 𝑊q 𝑛 + 𝜇×𝐸 𝑛 ×𝑋q∗(𝑛)	 (19) 

 
where W, E and X can be outputs of any of the above mentioned transforms. Comparing 
to LMS this method is computationally less complex and more efficient for analysis of 
transients. 
 
The frequency domain adaptive filtering technique was first used by Su [46]. He 
implemented this technique by injecting the calibration pulses as a reference signal to the 
equipment terminals. So in order to apply the frequency domain adaptive filtering 
technique, prior knowledge of the noise and PD signal frequency characteristics must be 
known. This limits its applicability in the online condition monitoring system. 
 
Besides these useful DSP techniques, various other application dependent filtering 
techniques have been introduced in the literature. For instance, the notch filters are 
specifically used in de-noising the sinusoidal noise present in the signal [33]. Matched 
filtering technique has been used in order to recover the PD signal by matching the impulse 
response of the filter to input signal [47]. The application of these methods in the on-line 
condition monitoring system is restricted mainly because of the following reasons: 
 
1. These techniques require human involvement in order to manually perform the de-

noising process on the data which is being transferred to remote end for analysis.  
2. These techniques are dependent on the specific type of noise characteristics such as the 

periodic sinusoidal noises or DSI type communication channels interferences.  
 

Wavelet Analysis has been successful in de-noising techniques in the field of digital 
imaging and signal processing. Recently, its application in the HV engineering as a 
powerful tool for recovering the PD signals from the noisy environment has been greatly 
accepted. Various distinct features of the wavelet transformation namely the time and 
frequency domain analysis and multi-resolution analysis distinguish it from the other DSP 
techniques.  
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Chapter 6    WAVELET TRANSFORMATION 
 
The on-site noises such as white noise and PD signals exhibits different frequency 
characteristics; thus frequency domain analysis can be fruitful in rejecting the white noise. 
However, the periodic pulse shape noises require the signal analysis in the time domain. 
Hence, the extraction of the PD signal from the noisy environment requires knowledge of 
both time domain and frequency domain. Comparing to the Fourier transform which 
provides only the frequency domain analysis on the basis of moving sinusoidal coefficients, 
the wavelet transformation is helpful in providing both time and frequency domain analysis 
[35]. The wavelet transformation involves the selection of single wavelet function also 
known as mother wavelet. Wavelet transformation decomposes the original signal into 
several small signals by scaling and shifting the original wavelet function. This 
decomposition procedure is known as Multi-resolution Signal Decomposition (MSD). The 
choice of an optimal wavelet function in the de-noising methods is a topic of significant 
importance in research nowadays.  
 
6.1 Wavelets 
 
A wave is an oscillating function either of time or space i.e. a sinusoidal wave. Similarly, 
a wavelet is a small wave of limited duration with zero mean value [32]. In contrast to 
smooth sinusoids of Fourier transform, the wavelets are asymmetric and irregular in shape 
and considered more suitable for analyzing the transient type PD signals. Few example of 
wavelets is shown in Figure 6-1.  

 
Figure 6-1. Various Wavelet Functions 

6.1.1 Mathematical Representation of wavelets 
 
Similar to Fourier transform, which decomposes the signal into sine waves of various 
frequencies, wavelet transform decomposes the signal into a basic set of wavelet functions 
which are scaled and shifted version of the single wavelet also known as mother wavelet. 
These wavelet functions are obtained after scaling and shifting as shown by the following 
equation: 
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Where ‘a’ is the scaling factor which determines the amplitude and duration of the wavelet 
and ‘b’ is shifting factor which determines the delaying or hastening of the wavelet. 
Therefore, the properties of a signal under analysis can be determined both in the time and 
frequency domain simultaneously while using these wavelets [38].   
 
6.2 Discrete Wavelet Transformation (DWT) 
                                                                                        
Discrete Wavelet Transformation calculates the wavelet coefficients on the basis of dyadic 
scales and positions i.e. based on the power of two.  This system can be implemented by 
using a pair of filters, high pass filter produces the ‘details’ of the signal and the other low 
pass filter produces ‘approximations’ of the signal. The details are low scale, high 
frequency components of the signal whereas the approximations are the high scale, low 
frequency components of the original signal. The high and low pass filters used in the 
decomposition of the signal are called as quadrature mirror filters (QMF) [32]. 
 
6.2.1 DWT Algorithm 
 
Consider a signal ‘X’ of length ‘N’. At level 1, DWT decomposes X into two sets of 
coefficients by convolving it with low pass filter and high pass filter followed by down 
sampling by two to obtain approximation coefficients vector CA1 and detail coefficient 
vector CD1 respectively. The length of each filter is equal to twice the length of original 
signal i.e. 2N.  Down sampling divides the filtered signal of length N into N/2 length signal 
by keeping the even indexed elements as shown in Figure 6-2 [30]. For multilevel 
decomposition, the lower frequency approximation coefficient vector CA1 further 
decomposes into a set of approximation and detail coefficient vectors. This continues for 
each decomposition stage. This decomposition procedure as explained above is known as 
the Multi-Resolution Signal Decomposition (MSD).  
 

 
Figure 6-2. Discrete Wavelet Transformation Procedure [30] 

The general De-noising methods using the discrete wavelet transformation are based on 
following steps: 
1. Find the number of decomposition levels (N). 
2. Choose the optimal wavelet function from the set of wavelets library. 
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3. Apply the discrete wavelet transformation to obtain the detail and approximation 
coefficients for levels 1 to N. 

4. Apply thresholding on the detail coefficients or on the selected detail coefficients to 
obtain the modified detail coefficients. 

5. Reconstruct the signal by using the modified detail coefficients and the original 
approximation coefficients. 

Reconstruction of the signal involves the inverse discrete wavelet transformation which is 
explained in next section. 
 
6.2.2 IDWT Algorithm 
 
The reconstruction of the signal is completely inverse of the signal decomposition 
procedure. Starting from the detail coefficient vector CD and approximation coefficient 
vector CA at level N as shown in the Figure 6-3 [30], the IDWT reconstructs the 
approximation vector at level N-1 by up sampling the original vectors and then convolving 
the resultant vectors with the low pass and high pass filters for approximation and detail 
coefficient vectors respectively. For next level i.e. N-1, approximation vector obtained by 
reconstruction at level N is used as signal input. This continues for each level until N =1.  
 

 
Figure 6-3. Inverse Discrete Wavelet Transformation Procedure [30] 

 
The up sampling of the vectors involves the addition of zeroes in the coefficient vectors to 
equalize the length of the signal.  
 
6.3 Selection of Optimal Mother Wavelet 
 
Lately, the selection of optimal wavelet for performing the de-noising techniques based on 
wavelet transformation has been considered of great importance. Techniques based on the 
maximum correlation coefficient value between the PD signal and wavelets, energy based 
wavelet selection or lately the SNR based wavelet selection has been introduced. 
Correlation based wavelet selection methodology best correlates the PD signal with the 
wavelet functions under study and apply the selected wavelet on all the decomposition 
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levels. Level dependent wavelet selection methods were introduced on the basis of 
selecting the wavelet function for each level that maximize the energy of approximation 
coefficients [32].  
 
The optimal wavelet for analyzing the given signal is the one which is capable of generating 
as many coefficients with maximum values as possible within the time scale domain [38]. 
This can be realized by considering PD pulse and perform its wavelet transformation up to 
five scales by using db2 and db7 wavelets. The wavelet deformation pattern for both 
wavelets is depicted in Figure 6-4 and 6-5 respectively. As we can see, the PD pattern can 
be characterized within 5 levels but the wavelet coefficients have slightly different values 
for both wavelets. Hence, for analyzing this PD pulse, db2 is more appropriate then db7 as 
it has restored more of the original PD signal energy within a smaller number of 
decomposition levels.  Later, this concept will be used in determining the maximum 
number of decomposition levels for wavelet transformation.  

 
Figure 6-4. Wavelet Deformation pattern for typical PD signal by using db2 wavelet function 

 
Figure 6-5. Wavelet Deformation pattern for typical PD signal by using db7 wavelet function 

The most suitable wavelet families for performing the PD data analysis should have the 
properties such as compactness, orthogonality and asymmetrical. Among the available 
wavelet families, Daubechies (dbN), Symlets (symN) and Coiflets (coifN) wavelet families 
exhibit all the desired properties suitable for analyzing the transient type signals [32]. 
Therefore, in this study only these mother wavelets have been considered for analysis.  
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6.3.1 Correlation based Wavelet Selection (CBWS) 
 
In statistical analysis, correlation coefficient (γ) is commonly used for measuring the 
strength of two signals. Perfectly correlated data will have correlation coefficient value of 
1 and uncorrelated data will have correlation coefficient value of 0.  Therefore, correlation 
coefficient γ can be used as efficient criteria for selecting the optimal wavelet [38].  
 
Correlation coefficient value is calculated according to equation (19). The calculations 
require the two signals to be of equal length with their peaks matching at the same position. 
The procedure of matching the signals length is known as the normalization of the signal. 
 
 

𝛾 =
(𝑥q − 𝑥)(𝑦q − 𝑦)�

q¦\

(𝑥q − 𝑥)I�
q¦\ (𝑦q − 𝑦)I�

q¦\
 (21) 

 
where the variable 𝑥q and 𝑦q are the ith sample values and x and y are their mean values.  
 
A. CBWS Algorithm 
 
The CBWS algorithm works on the principle of maximizing the correlation coefficient 
value for the PD signal with different wavelet functions from the wavelets library.  Later, 
the selected wavelet function will be applied for each decomposition level of wavelet 
transformation.  
 
The CBWS algorithm works on the following steps: 
1. From the list of pre-selected wavelet families, choose wavelet function. 
2. Perform the iterations on the wavelet function until its size becomes equal to the size of 

PD signal under analysis. 
3. Shift either the PD signal or wavelet function so that peak of both will be at the same 

position.  
4. Calculate the correlation coefficient γ between the two signals. 
5. Choose the next wavelet function and repeat steps 2-4. 
6. Select the wavelet function, which gives the maximum correlation coefficient value. 
 
For performing the iterations in step 2, the Matlab inbuilt function wavefun produces the 
approximations of the wavelet and scaling functions. The function uses the ITER as an 
input variable, which provides the extent to which the wavelet function approximations can 
be refined. Figure 6-6, shows the refinement of db7 wavelet function up to 14 iterations 
having 106497 data points which are slightly larger than the PD signal 100002 data points 
under analysis.   
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Figure 6-6. Refinement of the wavelet function ‘db7 ’ for iterations 1 to 14 

The wavelet function is shifted according to the PD signal so that the peak of the two will 
be at the same point. Zero padding technique can be used in order to add zeroes to the front 
or end of the signal. It is observed that the two signals are not necessarily of equal or 
normalized magnitude as suggested in [31] however, they must be of equal lengths with 
the peaks at the same position in order to calculate the correlation coefficient.  
 

 
Figure 6-7. Time shifted PD signal and wavelet function ‘db7’ with peaks occurring at same position 

B. Results 
 
The CBWS method was applied to 20 different PD signals measured by HFCT sensor each 
coupled with 10 different type of noise signals. One of the significant features of CBWS 
method is its application in finding the optimal wavelet function for a particular type of PD 
detection circuit i.e. type of sensor being used to detect the PD signal [32]. Therefore, this 
method was used to evaluate the optimal wavelet function for the HFCT sensor which is 
being now widely used in the on-site PD measurements.  
 
Figure 6-8 and Table 6-1,  illustrates the results of CBWS algorithm for 200 signals under 
analysis. It can be observed that lower order wavelet functions of each wavelet family i.e. 
db2, db3 of Daubechies, sym2 and sym3 of Symlets and coif 1 of Coiflets family have a 
higher number of correlation coefficient γ. 
 
Figure 6-9 and Figure 6-10 represents the maximum correlation coefficients value for each 
PD signal corresponding to the optimal wavelet function selected. Db2 and db3 clearly 
have the largest number of matchings with the PD signals under analysis i.e. 77 and 73 
respectively. The lower order wavelet functions produce significant results with respect to 
HFCT detected PD signals.  
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Figure 6-8. Results of Correlation Coefficient values for different wavelet functions 

 
Table 6-1.  Optimal Wavelets Selection on the basis of Correlation Based Wavelet Selection 

PD
 S

ig
na

ls
 

Noise Type 
 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 

S1 db2 db3 db3 db3 sym2 db3 db3 db3 db3 db6 
S2 db2 db3 db3 db2 db2 db2 db2 db3 db3 db6 
S3 db2 db3 db3 db2 db2 db2 db2 db2 db3 coif2 
S4 db2 db3 db3 db2 db2 sym2 sym2 db2 sym4 db6 
S5 db2 db3 db3 db3 db2 db2 sym4 db3 db3 db2 
S6 db2 db3 db3 db3 db2 db2 db2 db3 db3 db9 
S7 db2 db3 db3 db2 db2 db2 db2 db2 sym4 db6 
S8 db2 db2 db2 sym9 db2 sym2 sym2 sym2 sym4 sym2 
S9 db2 db3 db3 db2 db2 db2 db2 db2 db3 db6 

S10 db2 db3 db3 db3 db2 db3 sym4 db3 db3 db6 
S11 db2 db3 db3 db2 db2 sym2 sym2 db2 sym4 sym2 
S12 db2 db3 db3 db3 db2 db3 db3 db3 db3 db6 
S13 db2 db3 db3 db3 db2 db3 coif1 db3 db3 coif1 
S14 sym3 db3 db3 db2 db2 sym2 sym4 sym4 sym4 db8 
S15 db2 db3 db3 db2 db2 db2 db2 db2 db2 db2 
S16 db2 db3 db3 db3 db2 db3 sym4 db3 db3 coif1 
S17 db2 db3 coif1 db3 db2 sym7 db4 db3 sym4 db9 
S18 sym5 db3 sym3 db2 db2 db2 coif2 db2 db2 db4 
S19 db2 db3 coif1 db3 db2 db3 coif1 db3 db3 coif1 
S20 db2 db3 db3 db3 db2 db3 db4 db3 db3 sym12 

 
C. Conclusions 
 
The selection of the mother wavelet is dependent on the type of the detection circuit used 
in the PD measurements [32]. 90% of PD signals detected by the HFCT sensor has damped 
type exponentially decaying PD pulse waveform. The lower order wavelet functions (db2, 
db3 sym2 and coif 1) are more suitable for performing de-noising analysis on these type of 
PD pulses. This can be observed by considering the waveform of  PD signal S19 as shown 
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in Figure 6-11. The PD signal waveform has similar characteristics and properties as 
compared to wavelet function db3 which is shown in Figure 6-12.  On the other hand, the 
higher order wavelet functions are more suitable for analyzing the PD signals having high 
frequency oscillations. This can be observed by comparing the high frequency oscillating 
PD signal of Figure 6-13 with high order optimal wavelet function sym12 shown in Figure 
6-14.  
Correlation Coefficient algorithm has an average run time of 8 seconds for wavelet 
selection of one PD signal. The algorithm requires a large number of computations in order 
to perform the function iterations, normalization of the signals and zero padding technique. 
These complex computations make the CBWS algorithm inappropriate for real 
time/adaptive de-noising techniques. On the contrary, the results also concluded that for a 
particular type of sensor, the CBWS method provides a unique wavelet function i.e. db2 or 
db3.  Later, comparison has been done between the performances of CBWS based wavelet 
selection and pre-selected wavelet functions (db2 and db3) in multi-level de-noising 
method. The comparison concludes that there is only a slight difference in the performance 
parameters by selecting the single wavelet function instead of using CBWS algorithm. 
Hence, it can be concluded that for HFCT PD measurements, either db2 or db3 as wavelet 
functions can be used for de-noising algorithms.  

 
Figure 6-9. Maximum Correlation Coefficients value for each PD signal under analysis 

 
Figure 6-10. Maximum number of Correlation coefficients matching for different Wavelet 
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Figure 6-11. Damped Exponential type PD pulse measured with HFCT sensor 

 
Figure 6-12 Wavelet function 'db3' 

 
Figure 6-13. Damped Oscillating type PD pulse measured with HFCT sensor 

 
Figure 6-14. Wavelet function 'sym12' 

 
6.3.2 Energy Based Wavelet Selection (EBWS) 
 
The energy based wavelets selection presented in [31] is level dependent wavelet selection 
method. This means for each decomposition level, the EBWS algorithm computes a new 
optimal wavelet function suitable for de-noising analysis. The method works on the 
principle of maximizing the energy percentage in the approximation coefficient 
considering the fact that the detail coefficient will have lesser energy content if the optimal 
wavelet function produces the approximation coefficient of maximum energy. This energy 
percentage is calculated according to the following equation [31]: 
 
 

𝐸Z =
𝑎Á,ÂIÂ

𝑎Á,ÂIÂ +	 𝑑Á,Â
I

Â
Á
q¦U

 (22) 

 
Where 𝒂𝒋 = [𝑎Á,U, 𝑎Á,I, … . . 𝑎Á,Â] and	𝒅𝒋 = [𝑑Á,U, 𝑑Á,I, … . . 𝑑Á,Â] are approximations and 
details coefficient vectors at level j.  
 
Figure 6-15 & Figure 6-16 illustrates the energy distribution of typical PD waveform when 
decomposed into detail and approximation coefficients from level 1 to 9 respectively. let’s 
consider the energy distribution at the level 8. Wavelet function Coif5 produces the largest 
energy concentration in the approximation coefficient of that particular level compare to 
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other wavelet functions. Correspondingly, the equivalent detail coefficient has the least 
energy concentration. It is known that the de-noised signal will lose less energy and have 
smaller waveform distortion if the detail coefficient 	𝒅𝒋 is set equal to zero or minimum 
[31]. Using this concept, energy based algorithm selects the optimal wavelet function at 
each decomposition level which maximizes the energy concentration of the approximation 
coefficients. 
 
A. EBWS Algorithm 
 
For N level decomposition of the PD signal, the EBWS algorithm works as follows: 
 
1. For level 1, select the wavelet function from the wavelet family library. 
2. Perform a single level wavelet decomposition on the signal to obtain the approximation 

and detail coefficient of level 1. 
3. Calculate the energy concentration of the approximation coefficient according to 

equation (20).  
4. Choose the next wavelet function from the wavelet family library and repeat the steps 

(2&3).  
5. After computing the energy percentage of approximation coefficients for all the wavelet 

functions, determine the optimal wavelet function on the basis of maximum energy 
concentration value. 

6. For the next level decomposition, set the decomposition signal to be the approximation 
vector from the last level and perform the steps 1-6.  

7. Obtain the optimal wavelet functions for each level. 
 

The selection of the optimal wavelets on the basis of EBWS for one typical noisy PD 
waveform is given in Figure 6-17 and Table 6-2 for 16 levels decomposition. The optimal 
wavelets chosen on every level is different defining the maximum concentration of the 
energy in that particular level. EBWS procedure tries to concentrate the maximum energy 
on the approximation coefficients by considering the fact that the detail coefficients will 
have minimum energy concentration at that particular level. However, once again consider 
the Figure 6-15 where at level 7 the energy (60%) is much more concentrated in detail 
coefficients rather than in approximation coefficients. The EBWS algorithm still tries to 
maximize the energy of the approximation coefficients which lies around only 20%. Hence, 
the wavelet function selected for this level is not the optimal wavelet function. 
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Figure 6-15.Energy concentration of the details coefficients from level 1 to 9 for different wavelet families 

 
Figure 6-16.Energy concentration of the approximation coefficients from level 1 to 9 for different wavelet families. 

 

 
Figure 6-17. Selection of Optimal wavelet functions for 16 levels decomposition on the basis of EBWS and their Energy 

concentrations 

 
Table 6-2. Selection of Optimal Wavelets for each level by EBWS method 

Level Wavelet 
Function Level Wavelet 

Function Level Wavelet 
Function 

1 db13 7 coif1 13 db4 
2 db14 8 db12 14 db15 
3 db13 9 db2 15 sym9 
4 db14 10 db2 16 db3 
5 db15 11 db4   
6 db4 12 db15   
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6.3.3 SNR Based Wavelet Selection 
 
An alternative method for selecting the wavelet function on the basis of energy 
concentration is presented in [34]. This method known as SNR Based Wavelet Selection 
(SNRBWS) introduces two types of bands; signal band and the noise band. Signal band is 
defined as the band having the maximum absolute coefficient value of either the detail or 
approximation coefficients vector. The other vector is assumed to have less information 
about the original PD signal and is called the noise band. Wavelet function is then chosen 
among the wavelets family on the basis of having the largest signal to noise ratio between 
the two selected bands. 
  
The SNRBWS method assumes that the coefficient vector having the highest absolute 
value corresponds to highest energy concentration. Hence, by finding the maximum valued 
coefficient vectors among the details and approximations this method concentrates the 
energy of the PD signal in a smaller number of coefficients with larger amplitudes as 
compare to EBWS method [34]. The SNR variations for wavelet functions at different 
levels for one of the noisy PD signals are given in Figure 6-18. At each level, different 
wavelet function produces the maximum SNR.  
 
Consider now a noisy PD signal as shown in Figure 6-19. The signal and noise bands 
selected on each level are shown in Figure 6-20 and Figure 6-21 respectively. It can be 
seen that the signal bands correspond to the original PD signal and noise bands mostly 
concentrates the white noise in the signal.  
 

 
Figure 6-18. SNR variation among wavelet functions at different decomposition levels 

 
Figure 6-19. Noisy PD signal for SNRBWS analysis 
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Figure 6-20. Signal Bands at each level by SNRBWS method 

 
 

Figure 6-21. Noise Bands at each level by SNRBWS method 

A. SNRBWS Algorithm 
 
For N level decomposition of the PD signal, the SNRBWS algorithm works as follows: 
 
1. At level 1, select the wavelet function from the wavelet family library. 
2. Perform a single level wavelet decomposition on the signal to obtain the approximation 

and detail coefficient of level 1. 
3. Calculate the maximum absolute value of the detail and approximation coefficients and 

assign the coefficients with maximum value to signal band and other to noise band.  
4. Calculate the signal to noise ratio according to the equation: 
 
 

𝑆𝑁𝑅 =
max 𝑠𝑖𝑔𝑛𝑎𝑙	𝑏𝑎𝑛𝑑
max	(|𝑛𝑜𝑖𝑠𝑒	𝑏𝑎𝑛𝑑|)  (23) 

 
5. Choose the next wavelet function from the wavelet family library and repeat the steps 

2-4.  
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6. After computing the SNR for all the wavelet functions, determine the optimal wavelet 
function on the basis of maximum SNR value. 

7. For the next level decomposition, set the decomposition signal to be the approximation 
vector from the last level and perform the steps 1-6.  

8. Obtain the optimal wavelet function for each level. 
 
6.4 Selection of Number of Decomposition Levels 
 
Generally, the number of decomposition levels are selected on the basis of hit and trial 
method or by selecting the maximum number of decomposition levels which is suitable to 
provide better de-noising results. However, the random selection of the decomposition 
levels may result in wastage of computational time for the de-noising process. 
 
The maximum number of decomposition levels (N) for a signal of length (X) and the 
wavelet filters length (𝑋Í) is given by equation [30]: 
 
 𝑁mZ� = 𝑓𝑖𝑥 logI

𝑋
𝑋Í − 1

 (24) 

 
This method for the maximum number of decomposition levels is suitable for using in the 
multi-level de-noising schemes. However, as described later the level dependent de-noising 
schemes requires the wavelet functions to be different at each level. In this case the 
equation (22) modifies to	𝑁mZ� = 𝑓𝑖𝑥 logI 𝑋  [34].    
 
In order to avoid the excessive computation and selection of an appropriate number of 
decomposition levels, a procedure based on the lowest frequency component of the signal 
known as the number of wavelet decomposition levels selection (NWDLS) was 
presented in [34]. Figure 6-22 describes the energy spectral density of the polluted PD 
signal. The vertical dashed line corresponds to the minimum frequency (𝐹mq�) at which the 
signal energy is greater than a certain percentage of the total signal energy which is shown 
as horizontal dashed line. The number of decomposition levels is then given as: 
 
 𝑁 = 	𝑓𝑖𝑥 logI

𝐹X
𝐹mq�

 (25) 

 

 
Figure 6-22. Energy Spectral Density of Noisy PD signal 
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All the lower energy components which are of lesser importance in the de-noising process 
are discarded by selecting the appropriate number of levels. If the number of decomposition 
level exceeds the maximum number of decomposition levels, 𝑁mZ�  given by equation (22) 
must be assumed.  
 
6.4.1 Results 
 
The performance of NWDLS on the signals under analysis is as follows: 
 
1. 80 out of 200 PD signals (40%) under analysis have a number of decomposition levels 

higher than the maximum number of decomposition values. 
2. The average number of decomposition levels comes out 12, whereas the maximum 

number of decomposition levels by using equation (22) are 14 for a data size of 100002 
and wavelet filters of ‘db3’.  

 
6.5 Threshold Determination 
 
Consider the wavelet patterns of the noisy PD signal and the noise as shown in Figure 6-23. 
It can be observed that they present different wavelet patterns which allow us to extract the 
PD pattern on the basis of the PD feature extraction. A threshold selection technique must 
be applied in order to retain the wavelet coefficients which are associated with the PD pulse 
patterns and discarding the rest of wavelet coefficients which corresponds to noise in the 
signal [38].  
 
The threshold estimation procedure is considered the most difficult part of the de-noising 
process. The estimation can be done on the basis of trial and error by manually selecting 
the coefficients which are similar to PD signature or by prior knowledge of the PD and 
noise characteristics. Several threshold estimator models have been introduced which are 
well suited for the purpose of eliminating the white noise. They include the adaptive 
threshold selection based on the Stein’s unbiased risk estimate known as rigrsure threshold 
selection or on the basis of minimaxi principle which is used in statistics for the purpose of 
finding the estimators [30]. However, both these functions are ineffective in eliminating 
the indeterminate noise [40]. Performance evaluation of different thresholding techniques 
is discussed later in the de-noising algorithm section. 
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   (a)         (b)  

 
 
   (c)      (d)  
 
Figure 6-23. Wavelet Patterns for noise and polluted PD signals (a&c) for noise signals , (b&d) for Polluted PD signals 

 
6.5.1 Automated Threshold Determination 
 
For designing an adaptive and fully automated de-noising technique, a universal threshold 
rule introduced by Donoho and Johnston can be used [39]. Their threshold level is defined 
by:  
 
 𝜆 = 𝜎	. 2× log 𝑋  (26) 

 
where 𝜎 is a noise estimating rescaling factor and 𝑋 is the length of the original signal 
under analysis.  
 
This universal threshold level given by the equation (24) is recommended to be used on the 
detail coefficients at each level and on the approximation coefficient of the last level across 
the decomposition by wavelet transformation [40]. The level dependent threshold 
estimation can be achieved by replacing 𝑋 in equation (24) by the length of the detail 
coefficient associated with the particular level.  The multiplicative threshold rescaling 
factor given in equation (24) estimates the noise level in detail coefficients by calculating 

54

Levels

321-20
0

20
time (7sec)

40
60

0.3

0

0.1

0.2

0.4

80

Am
pl

itu
de

 (m
V)

54

Levels

321-20
0

20
time (7sec)

40
60

0.3

0

0.1

0.2

0.4

80

A
m

pl
itu

de
 (m

V
)

5
4

3

Levels
2

1-20
0

time (7sec)

20
40

60

0

0.1

0.05

80

A
m

p
li

tu
d

e
 (

m
V

)

5
4

3

Levels
2

1-20
0

time (7sec)

20
40

60

0.1

0

0.05

80

A
m

p
li

tu
d

e
 (

m
V

)



 

62 

the standard deviation of details from the input signal. The Median Absolute Deviation / 
0.6745 estimator is used for this purpose. The equation (24) is modified as: 
 
 𝜆q = 𝜎q	. 2× log 𝑋q  (27) 

 
where 𝜆q is the estimated threshold value of the detail coefficient at level i. 𝜎q is the 
multiplicative threshold rescaling factor given by 𝜎q 	=

mÒ
\,¥P�¤

 ,  𝑚q is the median value of 

absolute deviation. 𝑋q is the length of detail coefficients at level i. 
 
The de-noising process can be carried out by applying either the soft or hard thresholding 
techniques. These techniques will determine how the wavelet coefficients are shrinked or 
zeroed so that the noise can be eliminated most efficiently.  Hard thresholding works on 
the principle of keeping the wavelet coefficients whose absolute values are larger than the 
threshold value estimated by equation (25) and set the rest to zero. This can be expressed 
mathematically as: 
 
 𝛿ÔÕ = 	

𝑥		𝑖𝑓	 𝑥 > 𝜆
0	𝑖𝑓	 𝑥 ≤ 𝜆  (28) 

 
The soft thresholding shrinks the coefficients towards zero value as it can be seen from the 
mathematical expression: 
 
 

𝛿ÔÕ = 	
𝑥 − 𝜆									𝑖𝑓	𝑥 > 𝜆
					0													𝑖𝑓	 𝑥 ≤ 𝜆
							𝑥 + 𝜆						𝑖𝑓	𝑥 > 	−𝜆

 (29) 

 
Later the de-noising results prove that the hard thresholding is much better than soft 
thresholding in producing a better PD signal to noise ratio.  
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Chapter 7 DE-NOISING METHODS 
 
7.1 Level Dependent De-Noising 
 
The level dependent wavelet transformation methods use the optimal wavelet function 
selected on the basis of energy based wavelet selection or SNR based wavelet selection 
method for each decomposition level. The level dependent Denoising applies all the major 
steps of DWT mentioned in section 6.2. However, the application of wavelet function for 
each level requires a single stage decomposition for DWT of the original signal and single 
level reconstruction for IDWT. This can be explained further in the level dependent 
algorithm.  
 
7.1.1 Level Dependent De-Noising Algorithm 
 
The algorithm works on following steps: 
 

1. Find the number of suitable decomposition levels (N) on the basis of method described 
in section 6.4. 

2. Apply the energy based wavelet selection or SNR based wavelet selection algorithm for 
wavelet function selection at level 1. 

3. Apply single level discrete wavelet transformation using the selected wavelet function by 
step 2 to obtain the detail and approximation coefficient vectors. 

4. Apply the automated threshold function as defined in section 6.5.1 to the detail coefficient 
vector to obtain the threshold value. 

5. Apply hard thresholding to obtain the modified detail coefficient. 
6. Set the approximation coefficient vector as a next level signal for decomposition. 
7. Repeat steps 2-6 for each level to obtain the modified detail coefficients until the last level 

N. 
8. Starting from level N, reconstruct the signal by applying the single level inverse discrete 

wavelet transformation to modified detail coefficient vector and approximation 
coefficient vector at level N.   

9. Obtain the reconstructed approximation vector at level N-1. 
10. Apply zero padding technique if required in order to equalize the length of detail 

coefficient vector at level N-1 and reconstructed approximation vector obtained at step 9. 
11. Repeat steps 8-10 until the first level to obtain the reconstructed de-noised signal. 

 

7.2 Multilevel De-Noising 
 
Compare to the level-dependent Denoising, multi-level Denoising is a level independent 
technique which uses only a single wavelet function for the decomposition of the signal 
into N levels.  Correlation based wavelet selection method can be used in order to select 
the wavelet function for the de-noising process. As already mentioned the correlation based 
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wavelet selection method is not suitable for applying in the real time onsite data 
measurements because of large computational time, however, an optimal wavelet function 
based on the knowledge of the detection circuit can be used as concluded earlier. 
Comparison between the performance indices of the multi-level de-noising based on 
correlation based wavelet selection and single pre-defined wavelet function is provided at 
the end of this section which proves that using a single wavelet function instead of the 
correlation based wavelet function results in only a slight variation of the performance 
indices.   
 
7.2.1 Multi-Level De-Noising Algorithm 
 
As described above, the multi-level de-noising algorithm is level independent and hence 
less complex as compared to level dependent de-noising. The main steps of de-noising 
process are more or less similar to the common DWT algorithm.   
 
The algorithm works on following steps: 
1. Find the number of suitable decomposition levels (N) depending on the size of the 

signal. 
2. Choose the optimal mother wavelet on the basis of correlation based wavelet selection 

or pre-defined wavelet function. 
3. Apply the 1-D multi-level wavelet decomposition on the signal using the mother 

wavelet from step 2.  
4. Extract the detail coefficients at each level and approximate coefficient of the last level 

from the decomposition structure.  
5. Apply appropriate thresholding technique on the detail coefficients at each level to 

obtain the modified detail coefficients. 
6. Reconstruct the signal by using the modified detail coefficients and the approximate 

coefficient at level N. 
 
 

 
Figure 7-1. Decomposition Structure by using Wavedec Function [30] 

Multi-level decomposition of the signal under analysis is performed by using the Matlab 
function wavedec instead of using a single level discrete wavelet transformation. The 
function performs decomposition on the signal on the basis of specific wavelet or filters at 
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level N. The output of the function is a decomposition structure having approximate 
coefficient at level N and detail coefficients of each level.  Figure 7-1 describes the 
decomposition principle use by wavedec function [30]. 
 
7.3 Analysis of De-noising methods  
 
7.3.1 Performance indices  
 
The de-noising process may result in the attenuation and distortion of the original PD signal 
which needs to be recovered from the polluted PD signal. In order to evaluate the 
performance of de-noising techniques various indices are defined which indicates how 
efficiently the noise is suppressed with minimum attenuation and distortion of the PD pulse 
[36]. Following indices are used in this study for comparison of different de-noising 
techniques: 
 
A. Signal to Noise Ratio (SNR) 
 
If the de-noised signal is given by 𝑋×u and the original PD signal as 𝑋 and both signals are 
of length N, then the signal to noise ratio is defined by the equation: 
 
 

𝑆𝑁𝑅 = 10× log
𝑋×uI 𝑖Ø

q¦U

𝑋 𝑖 − 𝑋×u 𝑖
IØ

q¦U

 (30) 

 
Positive SNR value indicates that the power of the PD signal is greater than of noise and 
negative value implies a greater power of the noise as compared to the PD signal [36]. 
 
B. Reduction in Noise Level 
 
As in practical situation, there is no reference PD signal which can be used to compare the 
signal to noise ratio by applying the equation (28).  Hence, the extent to which the noise is 
suppressed can be found by applying the equation (29) which uses the original noisy signal 
as reference [36]. Reduction in noise level is given in dbs. 
 
 

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑖𝑛	𝑁𝑜𝑖𝑠𝑒	𝑙𝑒𝑣𝑒𝑙 = 10×𝑙𝑜𝑔
1
𝑁 𝑍 𝑖 − 𝑋×u 𝑖

IØ

q¦U

 (31) 

 
C. Mean Square Error 
 
The mean square error calculation on the basis of average noise power is another factor for 
evaluating the de-noising methods. For a noisy PD signal 𝑍 and de-noised signal  𝑋×u  the 
mean square error (MSE) is given by: 
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𝑀𝑆𝐸 =
[𝑋×u 𝑖 − 𝑍(𝑖)]IØ

q¦\

𝑁 ∗ 𝑃𝑛𝑜𝑖𝑧𝑒  

 
(32) 

where 𝑃𝑛𝑜𝑖𝑧𝑒 is the total average power of the noise signal.  
Now, if the de-noising process removes all the noise the value of MSE from equation (30) 
will be unity. Therefore, an efficient de-noising method will have MSE value near to unity 
or larger.  
 
D. Reduction in PD pulse Amplitude 
 
The attenuation of the PD signal due to the de-noising process can be calculated on the 
basis of calculating the peak values of the de-noised and the original PD signal. The 
percentage reduction in amplitude is given by: 
 
 %𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑖𝑛	𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =

𝑋 − 𝑋×u
𝑋 ×100	 (33) 

 
where 𝑋 and 𝑋×u are original PD signal and de-noised signal respectively. 
 
E. Correlation Coefficient 
 
Statically, the correlation coefficient defines a measure of the degree of linear relationship 
between the two variables. It measures the extent to which the linear model may describe 
the relationship between the two variables [41]. Hence, the correlation coefficient can be 
applied to measure the degree of similarity and distortion between the PD signal and the 
de-noised signal by using the equation: 
 
 

𝛾 =
𝑋q − 𝑋 (𝑋×uq − 𝑋×u)

�
q¦\

(𝑋q − 𝑋)I�
q¦\ (𝑋×uq − 𝑋×u)I

�
q¦\

 (34) 

 
where 𝑋 and 𝑋×u are the mean values of the original X and de-noised signal 𝑋×u 
respectively. 
 
The correlation coefficient may take a value between -1 to +1. The sign of correlation 
coefficient indicates the direction of the relationship. A positive correlation means as the 
value of one variable increases the other variable increases and vice versa. However, taking 
the absolute value of the correlation coefficient measures the strength of the relationship. 
Therefore, both +1 and -1 indicates a perfect relationship between two variables [41].   
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7.3.2 Measurements 
 
A. Partial Discharge Measurements 
 
Partial discharge signals measurements were made in MV switchgear inside the laboratory. 
The measurement setup  with the artificial PD source in the MV switchgear is shown in the 
Figure 7-2. High frequency current transformer (HFCT) is used in order to detect twenty 
different PD signals. The capturing time of the PD signal was 100µs at sampling frequency 
of 2Ghz. 
 
The artificial PD is created with the help of a voltage indicator circuit used inside in the 
MV switchgear panel which comprises insulation (silver part) and capacitor unit inside the 
mastic. The capacitor unit in this setup acts as a protective device and is placed between 
high potential terminal and ground through switchgear.  
 

 
(a)                                                       (b) 

 

 
(c)       (d) 

Figure 7-2 PD Measurement Setup (a &b ) MV Switchgear with artificial PD source, (c) Voltage transformer for 
creating artificial PD, (d) HV transformer and coupling capacitor arrangement for conventional PD measurements 
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B. On-Site Measured Noise 
 
The noise signals used in the study are measured at HELEN substation with the help of a  
D-Dot sensor placed inside switchgear feeding an industrial load. Various types of noises 
were recorded by D-Dot sensor at the on-site conditions. D-Dot sensors are preferred in the 
measurements because of its high sensitivity.  Table 7-1 shows the SNR values of the 10 
type of different noises observed. The lower SNR signals N1, N4, N6, N8 and N10 are 
shown in Figure 7-3. These noise signals when coupled with the PD signals exhibits the 
pattern quite similar to the original PD signals and are difficult to eliminate by de-noising 
methods. 
 

Table 7-1. SNR of noise signals 

Noise SNR Noise SNR 
N1 0,2871 N6 0,2174 
N2 3,3281 N7 6,7870 
N3 7,4532 N8 0,5632 
N4 1,5109 N9 7,0240 
N5 8,3451 N10 1,1276 

 
The noise signals set comprises almost all of the noises referred in the introduction section 
except the DSI type interference. For removal of DSI, wide band filters centered on the 
communication frequencies can be used in the de-noising algorithms. Further, noise N9 is 
a periodic repetitive pulse which can be removed by using the gating circuit. The 
implementation of both these circuitries are beyond the scope of this study and not 
considered further in the analysis. 
 

 
Figure 7-3. Measured Noise signals with lower SNR values 
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Figure 7-4. Measure noise signal with high SNR values 

 
C. Selection of Wavelet Functions Library 
 
As already discussed in the optimal wavelet selection methods, the wavelet function is 
chosen on the basis of maximum similarity to the PD signal under analysis. On the basis 
of literature review and realizing the desired properties of analyzing the transit type PD 
signals, following wavelet families with their corresponding wavelet functions are selected 
in this study for analysis.  
 

1. Daubechies wavelets (db2-db15)  
2. Symlet Wavelets (sym2-sym12) 
3. Coieflet Wavelets (coif1-coif5) 

 
7.4  Analysis and Results 
 
Figure 7-5 shows one of the PD signals under observation coupled with the noise signal for 
evaluating the performance of the level-dependent and multi-level de-noising algorithms. 
Let’s say this signal be S1. The method is applied considering both the EBWS and 
SNRBWS algorithms for selecting the wavelet function at each level for level dependent 
de-noising and correlation based wavelet selection for the multi-level de-noising. 
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(b) 

 
(c) 

Figure 7-5. Signal for analysis of level dependent and multi-level de-noising techniques (a) Original measured PD 
signal, (b) White Noise Signal (c) PD coupled with noise signal 

 
The wavelet functions selected on the basis of EBWS and SNRBWS are shown in Table 
7-2. As it can be seen, the wavelet functions selected on the basis of EBWS and SNRBWS 
are totally different from each other. Figures (7-2 & 7-3) compares the original and 
modified detail coefficients obtained by the level dependent de-noising algorithm with the 
multi-level de-noising algorithm.  

 
Table 7-2. Wavelets Selected on the basis of EBWS and SNRBWS methods 

Level EBWS SNR BWS Level EBWS SNR BWS 
1 sym8 db12 6 db3 coif1 
2 db11 coif4 7 sym5 db15 
3 db9 db10 8 db2 sym11 
4 db2 db15 9 sym2 db13 
5 db2 db9    
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(b) 

Figure 7-6  Decomposition structure with detail coefficients for each level (a) Decomposition by using the EBWS 
method and number of decomposition levels selected on the basis of  NWLDS method (b) Decomposition by using the 

CBWS method on the basis of maximum number of decomposition levels 

It is observed that there is no significant difference between the decomposition structure 
by the EBWS and SNRBWS methods. Hence, for comparisons, only one of the 
decomposition structures for level dependent de-noising method is shown in Figure 7-6. 
The level dependent decomposition produces the detail coefficients which have wave 
pattern much similar to the PD signal as compared to the multi-level Denoising 
decomposition structure. This can be realized by considering the detail coefficients d5 and 
d7 of the two methods.  
 
The thresholded detail coefficients referred as the modified detail coefficient vectors have 
almost similar patterns for both the level dependent and multi-level de-noising methods. 
However, it can be observed that multi-level den-noising method suppresses the high 
frequency noises more efficiently as compared to lower frequencies as seen at modified 
detail coefficients vector d1 in Figure 7-7.  
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(b) 

Figure 7-7. Modified Detail Coefficients after Thresholding (a) level dependent method (b) multi-level Denoising 
method 

Both algorithms successfully de-noises the noisy PD signal as shown in Figure 7-8. Both 
methods EBWS and SNRBWS for the level dependent de-noising produces almost similar 
results with no major differences in the performance evaluation indices as well. However, 
the SNRBWS produces a much more refined de-noised signal as can be seen from the 
figure as well as the evaluation parameters given in Table 7-3. 
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(c) 

 
(d) 

 
(e) 

 
(f) 
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(g) 

 
(h) 

 
(i) 

Figure 7-8. De-noising results (a, b & c) comparison of the de-noised signal with noisy PD signal, (d, e & f) 
comparison of the de-noised signal with original PD signal, (g, h & i) Zoomed analysis of the de-noised signal for 
analyzing the wave pattern for level dependent (EBWS, SNRBWS) and multi-level de-noising methods respectively. 

As expected, due to selective wavelet function for each level the performance indices for 
the level-dependent de-noising is slightly better as compared to the multi-level de-noising. 
Also, for multi-level de-noising the de-noised signal has slightly distorted wave pattern 
compares to the other which is also indicated by the lower value of correlation coefficient 
for correlation based method given in Table 7-3. 
 

Table 7-3.  Comparison of performance indices for level dependent (EBWS & SNRBWS ) and multi-level de-noising 
techniques 

Signal (S1) Correlation 
Coefficient 

Mean Square 
Error 

Reduction in 
amplitude 

(%) 

Reduction 
in noise 

level (dB) 
SNR 

EBWS 0.691 0.258 11.225 -52.889 2.636 
SNRBWS 0.721 0.266 15.899 -53.460 2.811 

Correlation 
Based 0.677 0.234 13.138 -53.311 2.14 

 
For multi-level de-noising, the comparison between the correlation based wavelet selection 
and pre-defined wavelet selection for the 200 signals under analysis is performed in order 
to understand the significance of using the optimal wavelet for wavelet transformation. The 
average values of the performance indices are provided in Table 7-4. 
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Table 7-4. Performance indices for evaluation of correlation based wavelet selection method and pre-defined wavelet 

selection 

Multi-Level 
Denoising 

Correlation 
Coefficient 

Mean Square 
Error 

Reduction 
in 

amplitude 

reduction in 
noise level 

(dB) 
SNR 

db2 0.7284 0.4002 5.8066 -56.2377 5.2113 
Correlation 0.7289 0.3989 7.9924 -56.2631 5.2154 

db3 0.7256 0.4015 9.4832 -56.2208 5.1824 
 
As it can be seen, there is no significant difference between the performances indices and 
using the time consuming correlation based wavelet selection method is baseless. Hence, 
it can be concluded from the observations made in the study that for PD measurements 
made by the HFCT sensor, the optimal wavelet functions to be used for multi-level de-
nosing techniques are db2 and db3. 
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Chapter 8 SELF-ADAPTIVE DE-NOISING TECHNIQUE 
 
As previously discussed, the performance of online and on-site PD diagnostics of an 
electrical equipment is hindered by the presence of the noise in the surrounding 
environment which may completely swamp the PD signal. The elimination of the noise and 
recovery of the PD signal of interest is a major challenge in the implication of the online 
condition assessment system. Further, an efficient de-noising technique may result in 
reducing the amount of data to be transferred from the site location to the local control 
center for monitoring and asset management purpose [37]. Another challenging factor is 
the processing time for analyzing the PD data. The repetition rate of PD pulses is very high 
and single PD pulse has a pulse duration in nano-seconds. This requires the on-site online 
system to have de-noising process which computes and sends data as fast as possible. 
Considering all the above mentioned facts, an improved adaptive de-noising method based 
on the dominant frequency and amplitude of the signal has been proposed in this research.  
 
According to research publication in the reference [42], the noise can be separated from 
the PD signal on the basis of various factors. One of the factors includes a comparison of 
the frequency spectrum of the noise signal with the PD signal which concludes that the 
central band which is the dominant frequency component of the signal is three to five times 
larger than the side bands. These side bands are considered to have noise content of the 
signal whereas the useful PD signal is concentrated much in the dominant frequency bands 
as depicted in Figure 8-1. The research also concludes that the noise levels measured during 
the onsite measurements are much smaller as compared to the PD signals. Using these 
conclusions, self-adaptive de-noising method is implemented by carefully selecting the 
detail coefficients on the basis of the dominant frequency and amplitude comparisons.   

Central Band

Side Band Side Band

 
Figure 8-1. FFT of the typical PD and noise signal [42] 

Consider a noisy PD signal with the frequency spectrum as shown in Figure 8-2. Dominant 
frequency is defined as the frequency at which the signal has the highest amplitude in the 
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whole frequency spectra. As it can be seen, the dominant frequency for this particular signal 
is 1595 KHz  

 
Figure 8-2. Frequency Spectrum of noisy PD signal 

Now let’s analyze the frequency spectra of the decomposition structure of this signal. 
Figure 8-3 illustrates the detail coefficients and their frequency spectrum for 12 levels 
decomposition of polluted PD signal by using ‘db2’ wavelet filters.  
 

 
Figure 8-3. Decomposition structure for 12 levels using the 'db2' wavelet filter 

The detail coefficients having the dominant frequencies comparable with that of the signal 
have the PD pattern similar to the original PD signal i.e. detail coefficients 7, 8 and 9. 
Besides these useful detail coefficients detected on the basis of the dominant frequencies, 
the detail coefficients 5, 6 and 7 have a pattern similar to the PD signal as well. By 
analyzing the peak to peak amplitude of the noisy PD signal and compare it with the peak 
to peak values of the detail coefficients these useful detail coefficients can also be selected.  
All the useful selected coefficients are then reconstructed by using the thresholding 
techniques described in section 6.5 to obtain the de-noised signal.  This shortlisting of the 
coefficients based on the amplitude and frequency comparison and discarding the rest of 
components results in not only improved computational time but the sensitivity of the PD 
detection measurement system is greatly enhanced. The experimental results presented in 
section 8.2 confirms the above statement. 
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8.1  Self-Adaptive De-Noising Algorithm 
 
The basic DWT steps as discussed in section 6.2 
are implemented in this adaptive de-noising 
technique which includes the selection of the 
decomposition levels, wavelet filters and applying 
the threshold values on the selected detail 
coefficients. The de-noised signal is obtained by 
applying the inverse discrete wavelet transform on 
the modified detail coefficients and the last level 
approximation coefficients. The major challenge 
in implementing the algorithm was setting the 
limits to compare the dominant frequencies and 
amplitude of detail coefficients with the noisy PD 
signal. The results in section 8.2 show that setting 
the dominant frequency limits to ± 30% and 
amplitude limits to ± 60% results in optimum de-
noising results. 
 
The flow chart of the algorithm is given in Figure 
8-4. Implementing the band stop filtering and 
gating circuit will eliminate the DSI and periodic 
pulses from the polluted PD signal. The refined 
PD data with most probable white noise and 
pulsive noise is subject to the de-noising process. The basic steps of the algorithm are as 
follows: 
 
1. Select the appropriate number of decomposition levels by the method described in 

section6.4. 
2. Choose a mother wavelet on the basis of Correlation based mother wavelet selection as 

described in section 6.3.1. 
3. Apply the FFT to find the dominant frequency of the noisy PD signal under analysis. 

Set the limits to maximum and minimum percentage of dominant frequency. 
4. Calculate the peak to peak amplitude of the noisy PD signal under analysis. Set the limits 

to maximum and minimum percentage of amplitude. 
5. Apply multi-level wavelet decomposition as described in section 7.2 by using the 

wavelet function selected on the basis of the correlation based wavelet selection method. 
6. Obtain the detail coefficient vector for each level and apply the FFT to compare the 

frequency spectra with the limits set in step 3. Similarly, compare the peak to peak 
amplitude of each detail coefficient vector with the limits set in step 4. Select the detail 
coefficients which lies within the limits. 

Figure 8-4. Flow chart of Self-Adaptive De-noising technique 
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7. Select the threshold values for selected detail coefficients and apply hard thresholding 
to obtain the modified detail coefficients. 

8. Reconstruct the signal with the modified detail coefficients by using the inverse discrete 
wavelet transformation.  

 
8.2 Performance Evaluation of the Adaptive De-Noising 
 
For setting the frequency and amplitude limits, an analysis was performed on the set of 
signals in order to observe the variations in the performance parameters for selecting the 
optimized limits for de-noising algorithm. Figure 8-5 and Table 8-1 indicates that selecting 
the frequency limits to ±30% and Amplitude to ±60% produces the best de-noising results.  

 
Figure 8-5. Frequency and Amplitude limits setting for self-Adaptive de-noising based on various performance indices 

 
Table 8-1. Performance indices for different frequency and amplitude limits settings 

Limits (±) % 
(Frequency, 
Amplitude) 

MSE SNR Correlation 
Coefficient 

(20,60) 2.6530 10.1884 0.7061 
(30,60) 2.6535 10.1697 0.7059 
(40,60) 2.6563 9.8480 0.7044 
(50,60) 2.1271 9.5496 0.7126 
(20,70) 1.3964 4.9451 0.7314 
(30,70) 1.3970 4.9268 0.7312 
(40,70) 1.3997 4.7142 0.7300 
(50,70) 0.8687 4.1967 0.7385 
(20,80) 1.1806 4.1587 0.7388 
(30,80) 1.1812 4.1406 0.7386 
(40,80) 1.1825 3.8882 0.7382 
(50,80) 0.7935 3.2932 0.7462 

 
For efficiency evaluation of the adaptive de-noising method, consider two partial discharge 
signals with single and double pulses in one measurement respectively. Figure 8-6 
illustrates the original PD signal (S1), applied noise signal and the noise coupled PD signal. 

(Frequency,Amplitude) Limits
(20,60) (30,60) (40,60) (50,60) (20,70) (30,70) (40,70) (50,70) (20,80) (30,80) (40,80) (50,80)

0
1
2
3
4
5
6
7
8
9

10
11
12

Average MSE
Average Correlation Coefficient
Average SNR



 

80 

 
As shown in Figure 8-7, the adaptive de-noising method yields an effective de-noising 
results as compared to the other techniques. Correlation coefficient γ between the original 
and de-noised signal has a value of 0.811 and less than 2% reduction in the PD pulse 
amplitude which shows a greater similarity between the original and de-noised signal. 
Consider another noisy PD signal (S2) with two recorded PD pulses in one cycle as shown 
in Figure 8-9. Detail Coefficients 8 and 9 are detected on the basis of frequency and 5,6 
and 7 on the basis of amplitude. Reconstructing them gives the de-noised signal as shown 
in Figure 8-10. The algorithm successfully de-noises the whole signal and recover both the 
PD pulses buried inside the noise. The performance indices of the adaptive de-noising for 
the above mentioned two noisy PD signals are shown in the  
 

 
(a) 

 
(b) 

 

(c) 
Figure 8-6.  Signal (S1 ) for analysis of Self-Adaptive de-noising technique (a) Original measured PD signal, (b) White 

Noise Signal (c) PD coupled with noise signal 

As concluded in the section 6.3.1, the HFCT sensor produces the damped exponentially 
decaying pulse (DEP type).  Ma et al observe that the wideband white noise when 
with the DEP type PD signal, the frequency spectrum of the noise overlaps with that of 
PD signal which results in less efficient de-noising results particularly when the signal 
noise ratio is very low [38]. Comparison of the average performance indices for the de-
noising of the signals with very low SNR and relatively high SNR are tabulated in  

Time (7sec)
-20 0 20 40 60 80 100

Am
pl

itu
de

 (m
V)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
Original PD Signal

Time (7sec)
-20 0 20 40 60 80 100

Am
pli

tud
e (

mV
)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
Noise Signal

Time (?s)
-20 0 20 40 60 80 100

Am
pli

tu
de

 (m
V)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
PD + Noise



 

81 

Table 8-2. Performance indices for signals S1 and S2 de-noised by adaptive de-noising 
technique 
Adaptive 

De-Noising 
results 

Correlation 
Coefficient 

Mean Square 
Error 

Reduction in 
amplitude 

(%) 

Reduction in 
noise level 

(db) 
SNR 

S1 0,813 0,118 1,516 -56,29 3,36 
S2 0,788 0,178 0,990 -54,492 2,614 

 

Table 8-3. This method performs quite efficiently for both low and high SNR value signals.   
 

 
(a) 
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(d) 

Figure 8-7. De-noising results for Adaptive de-noising technique (a) De-noised signal (b)De-noised signal with noisy 
PD signal (c) de-noised signal with original measured PD signal (d)zoomed analysis of the de-noised signal for wave 

pattern analysis. 

 
 

Table 8-2. Performance indices for signals S1 and S2 de-noised by adaptive de-noising technique 

Adaptive 
De-Noising 

results 

Correlation 
Coefficient 

Mean Square 
Error 

Reduction in 
amplitude 

(%) 

Reduction in 
noise level 

(db) 
SNR 

S1 0,813 0,118 1,516 -56,29 3,36 
S2 0,788 0,178 0,990 -54,492 2,614 

 
Table 8-3. Comparison of performance for Low SNR noises with high SNR noises 

Adaptive 
De-noising 

Average 
Correlation 

Average 
Mean 

Square 
Error 

Average 
Reduction in 

amplitude 

Average 
reduction in 
noise level 

average 
SNR 

High SNR 0,7787 1,5322 10,9364 -57,6054 4,9977 
Low SNR 0,6989 0,8290 5,1234 -55,4136 3,2915 

 
The satisfactory performance of the adaptive de-noising can be observed in the histograms 
of performance indices as illustrated in Figure 8-8. More than 70% of the de-noised signals 
have correlation coefficient value larger than 0.6. The reduction in amplitude is also limited 
within 1 to 20% with relatively moderate SNR value between 2 to 6. 
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Figure 8-8. Performance indices for the set of signals under study 
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8.2.1 Performance comparison with other techniques 
 
The three methods discussed in this study namely the level dependent de-noising, multi-
level de-noising and adaptive de-noising have impressive de-noising results as 
illustrated before. However, the simulation results suggest that the adaptive de-noising 
method has slightly better performance indices as shown in  
Table 8-4. Key performance indices correlation coefficient γ, MSE and reduction pulse 
amplitude for adaptive de-noising method have best values among the three methods 
discussed. Furthermore, comparisons with respect to set of noises are shown in Figure 8-11 
which also verifies the better performance of adaptive de-noising technique.  

 
 

 
(a) 

 
(b) 

Figure 8-9 Signal (S2) for analysis of Self-Adaptive de-noising technique (a) Original measured PD signal, (b) PD 
coupled with noise signal 

 
Figure 8-10. De-noised signal with two PD pulses recovered 
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Table 8-4. Comparison of Performance indices for three methods 

Methods Average 
Correlation 

Average 
Mean Square 

Index 

Average 
Reduction in 

amplitude 

Average 
reduction 
in noise 

level 

average 
SNR 

Energy Based 0,7292 0,7259 8,0962 -56,6201 5,0653 
Multilevel 

Correlation 
based 

0,7289 0,7597 7,9924 -56,2631 5,2154 

SNR based 0,7313 0,7330 6,4269 -56,5510 5,1190 
Adaptive De-

Noising 0,7388 1,0806 4,1587 -56,5095 4,1446 

 
 
 

 
(a) 

 
(b) 

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

A
ve

ra
ge

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t v

al
ue

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Adaptive Level Dependent (Energy, SNR Based) Multi-Level Correlation based

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Av
er

ag
e 

Si
gn

al
 to

 n
oi

se
 ra

tio

-1

0

1

2

3

4

5

6
Adaptive Level Dependent (Energy, SNR Based) Multi-Level Correlation based



 

86 

 

 
(c) 

 

 
(d) 

 
(e) 

Figure 8-11. Average values of performance indices for different noises (N1 to N10) coupled with 10 different PD 
signals de-noised by three methods (a) correlation coefficient (b) SNR (c) reduction in noise level (d) reduction in PD 

pulse amplitude (e) Mean Square Error 

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

A
ve

ra
ge

 R
ed

uc
tio

n 
in

 n
oi

ze
 le

ve
l

-60

-50

-40

-30

-20

-10

0
Adaptive Level Dependent (Energy, SNR Based) Multi-Level Correlation based

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

A
ve

ra
ge

 re
du

ct
io

n 
in

 P
D

 p
ul

se
 A

m
pl

itu
de

0

5

10

15

20

25

30

35
Adaptive Level Dependent (Energy, SNR Based) Multi-Level Correlation based

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

A
ve

ra
ge

 M
ea

n 
Sq

ua
re

 E
rr

or

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Adaptive Level Dependent (Energy, SNR Based) Multi-Level Correlation based



 

87 

8.2.2 Run Time Comparisons 
 
The significant factor in evaluating the performance of the de-noising technique is the run 
time of the algorithm. The adaptive de-noising method is computationally less complex as 
compared to the other methods. Hence, it can produce results swiftly which is the major 
requirement in implementing the online condition monitoring system. Table 8-5 provides 
the results of run time analysis of the three methods discussed. The simulations were run 
on the Matlab 2015 interface on 2.4 GHz i-7 intel processor. The data measurements were 
made at 100002 samples per signal which makes the computations more time consuming. 
However, for practical implementation smaller data sets can be used which will shorten the 
run time of algorithm. 
 

Table 8-5. Run time comparisons 

Run time’s 
Multi-Level De-noising based 
on Correlation Coefficient 
wavelet selection 

Level dependent 
de-noising Adaptive De-noising 

200 signals 650 seconds 430 seconds 286 seconds 
Per signal 3.25 seconds 2.15 seconds 1.43 seconds 
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Chapter 9 CONCLUSIONS AND FUTURE WORKS 
  
9.1 Conclusions 
 
Part I 
 
The experimental results and research methodology established by this study has laid the 
foundation for conducting a broader research in the field of quantification of the partial 
discharge signals. This study started with the aim to analyze the characteristics of partial 
discharge pulses which can allow us to predict the behavior of insulation deterioration and 
degradation. The whole study was part of learning and discovering the issues related to 
conducting research in such a wide field of random partial discharge phenomenon. The 
extensive literature review and the successful experimental work lead to many conclusive 
results. Particularly, a variety of quantities has been studied and examined which can 
provide useful information about the temporal behavior of partial discharge activity.  
 
The establishment of the discharge (Corona) free testing setup is one of the key success. 
Thorough understanding of the PRPDA technique has been gained during the experimental 
work. Post processing Matlab software program has been developed which can provide 
continuous PD data recorded with the decrypted ICM system data file. The PD 
measurement setup and computer programs developed can be used further for any kind of 
long term partial discharge measurements.  
 
Long term PD monitoring has been performed in order to observe the progressive stages 
of partial discharge. The typical PD pattern observed has four stages. Initially, the discharge 
sites start to accumulate charge across the cavity surface resulting in the formation of by-
products and also surface erosion. Also, during this phase the surface conductivity of the 
cavity is believed to have increased. Second stage of partial discharge activity is the charge 
concentration period at the discharge site. This is characterized with stable partial discharge 
intensity. After prolonged insulation ageing, the electrical treeing phenomenon starts to 
develop at the tip of the crystal structures. High intensity as well as high frequency of 
partial discharge signals are observed during this stage. The last stage is the final 
breakdown of the insulation. Before the insulation breakdowns, it has been observed that 
the discharge intensity decreases to very low levels which allows time for taking some 
emergent action. Also, during this stage, the insulation resistance reduces. Apart from 
monitoring analysis, the partial discharge activity can also be observed with the help of 
different statistical operators as well as by the study of the individual discharge pulses in 
time and frequency domain. The variations in these quantities can be used to distinguish 
between the ageing mechanisms and also predict the partial discharge activity behavior. 
However, only the experts with experience can analyze the patterns and requires 
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continuous monitoring. Therefore, the development of automated pattern recognition 
methods based on machine learning has gained significance in research nowadays. In 
addition, the time & frequency domain analysis of the individual discharge pulses provides 
useful information regarding the physics of discharge mechanisms involved during the 
partial discharge activity. 
   
Part II 
 
The onsite PD measurements are badly affected by the presence of several interferences 
present around the equipment surroundings. These interferences have characteristics which 
are quite similar in nature to typical PD signals.  This work has studied the various possible 
methods to eradicate the noise and recover the PD signal efficiently with as little loss of 
information as possible. In order to design an efficient de-noising filter for onsite and online 
PD monitoring system, various factors such as optimal wavelet selection, number of 
decomposition levels and threshold setting has been studied.  The characteristics of PD 
signal measured with the HFCT sensor were explored which concludes that the wavelet 
functions ‘db2’ and ‘db3’ are optimal wavelet functions which can be used in the wavelet 
transformations. An efficient way to select the number of decomposition levels based on 
energy concentration of the signal is presented. This method reduces the computational 
time of algorithm. An automated thresholding technique based on the analyses of the noise 
content in the signal has been used. Hard thresholding is preferred over the soft 
thresholding.  
 
In this work, a novel technique for de-noising of measured PD signals has been presented. 
This technique has been analyzed over a wide range of disturbances measured at the on-
site conditions. It performed satisfactorily for all the available data sets used in this study 
and can be used as an effective solution for the online condition monitoring system.  
 
The PD signals measured in the laboratory are relatively larger in magnitude as compared 
to the noise signal measured at the onsite conditions. The proposed algorithm will work 
efficiently for de-noising of laboratory measured PD signals, however, in practical 
applications where the charge magnitude in the initial stages of partial discharge 
development has very low value and the PD signal may gets completely buried inside the 
noise signal, the performance of this algorithm may not be accurate. Nevertheless, these 
low magnitude developing PD signals are comparatively less important in insulation 
condition assessment and diagnostic systems.   
  



 

90 

 
9.2 Future Works 
 
Part I 
 
1. The continuation of work related to estimating the propagation rate of electrical tree 

phenomenon. As mentioned earlier, the efficient method is the use of latest technology 
i.e. CCD camera. The continuous monitoring can provide very useful information 
regarding the onset of tree and the propagating properties. 

2. Similar kind of study can be performed for the different type of partial discharge 
sources. This may include the study about surface discharges and also the long term 
study without the use of electrode configurations. 

3. The next stage of partial discharge quantification is automated pattern recognition. This 
includes formation of large number of discharge parameters libraries. These pattern 
libraries for different type of discharge sources can then be used for mapping and 
clustering analysis. The efficient learning algorithm can be developed for creating an 
intelligent insulation diagnostic system.   

4. Life prediction model described in this study can be strengthened by including several 
other parameters in addition to the stress indictor. For example, the variation in the 
partial discharge activity with respect to depth, diameter and location of the cavity  

5.  The evolution of PWM inverters and other power electronic devices has significantly 
effected the power quality by introducing voltage harmonics in the power network. 
These harmonics has been reported to have an accelerating effect on the electrical 
treeing process. A study can be conducted in order to understand the effect of voltage 
harmonics on electrical treeing on XLPE [26].  
 
Part II 

 
1. Practical implementation of the algorithm at on-site conditions to explore its 

applicability and observe the issues related to on-site de-noising. 
2. Detailed analysis for understanding the nature and characteristics of the challenging 

pulsive type interferences.  
3. The implication of the Wigner-Ville Distribution based de-noising method. This method 

is similar to wavelet transformation based de-noising on the account that both methods 
provide the frequency and time domain analysis. The significance of this new method 
involves the masking of the noise components in the noisy signal which sets the 
threshold values accordingly as compare to the fixed sqtwolog method used by wavelet 
transformation analysis [44]. 

4. Study of the bi-orthogonal wavelet function such as bior family which has been used 
recently by researchers in de-noising methods [35]. 
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