
Advanced robots such as mobile 
manipulators offer nowadays great 
opportunities for realistic manipulators. 
Physical interaction with its environment is 
an essential capability for service robots 
when acting in unstructured environments 
such as homes. Thus, manipulation and 
grasping under uncertainty has become a 
critical research area within robotics 
research. 
This dissertation explores approaches to 
address the challenges in grasp planning for 
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using sensors. 

A
alto-D

D
 9

/2
016 

9HSTFMG*aggbjg+ 

ISBN 978-952-60-6619-6 (printed) 
ISBN 978-952-60-6620-2 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 (printed) 
ISSN 1799-4942 (pdf) 
 
Aalto University 
School of Electrical Engineering 
Department of Electrical Engineering and Automation 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

E
katerina K

olycheva (née N
ikandrova) 

G
rasp planning under uncertainty 

A
alto

 U
n
ive

rsity 

2016 

Department of Electrical Engineering and Automation 

Grasp planning under 
uncertainty 

Ekaterina Kolycheva (née Nikandrova) 

DOCTORAL 
DISSERTATIONS 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80718202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Aalto University publication series 
DOCTORAL DISSERTATIONS 9/2016 

Grasp planning under uncertainty 

Ekaterina Kolycheva (née Nikandrova) 

A doctoral dissertation completed for the degree of Doctor of 
Science (Technology) to be defended, with the permission of the 
Aalto University School of Electrical Engineering, at a public 
examination held at the lecture hall AS1 of the school on 22 January 
2016 at 12. 

Aalto University 
School of Electrical Engineering 
Department of Electrical Engineering and Automation 
Intelligent Robotics group 



Supervising professor 
Prof. Ville Kyrki 
 
Thesis advisor 
Prof. Ville Kyrki 
 
Preliminary examiners 
Dr. Renaud Detry, Montefiore Institute University of Liege, 
Belgium 
Prof. Matei Ciocarlie, Columbia University, 
USA 
 
Opponents 
Prof. Carl Henrik Ek, University of Bristol, 
UK 

Aalto University publication series 
DOCTORAL DISSERTATIONS 9/2016 
 
© Ekaterina Kolycheva (née Nikandrova) 
 
ISBN 978-952-60-6619-6 (printed) 
ISBN 978-952-60-6620-2 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 (printed) 
ISSN 1799-4942 (pdf) 
http://urn.fi/URN:ISBN:978-952-60-6620-2 
 
Unigrafia Oy 
Helsinki 2016 
 
Finland 
 



Abstract 
Aalto University, P.O. Box 11000, FI-00076 Aalto  www.aalto.fi 

Author 
Ekaterina Kolycheva (née Nikandrova) 
Name of the doctoral dissertation 
Grasp planning under uncertainty 
Publisher School of Electrical Engineering 
Unit Department of Electrical Engineering and Automation 

Series Aalto University publication series DOCTORAL DISSERTATIONS 9/2016 

Field of research Automation Technology 

Manuscript submitted 10 August 2015 Date of the defence 22 January 2016 

Permission to publish granted (date) 16 December 2015 Language English 

Monograph Article dissertation (summary + original articles) 

Abstract 
Advanced robots such as mobile manipulators offer nowadays great opportunities for realistic 

manipulators. Physical interaction with the environment is an essential capability for service 
robots when acting in unstructured environments such as homes. Thus, manipulation and 
grasping under uncertainty has become a critical research area within robotics research. 

This thesis explores techniques for a robot to plan grasps in presence of uncertainty in 
knowledge about objects such as their pose and shape. First, the question how much 
information about the graspable object the robot can perceive from a single tactile exploration 
attempt is considered. Next, a tactile-based probabilistic approach for grasping which aims to 
maximize the probability of a successful grasp is presented. The approach is further extended 
to include information gathering actions based on maximal entropy reduction. The combined 
framework unifies ideas behind planning for maximally stable grasps, the possibilities of 
sensor-based grasping and exploration. 

Another line of research is focused on grasping familiar object belonging to a specific 
category. Moreover, the task is also included in the planning process as in many applications 
the resulting grasp should be not only stable but task compatible. The vision-based framework 
takes the idea of maximizing grasp stability in the novel context to cover shape uncertainty. 
Finally, the RGB-D vision-based probabilistic approach is extended to include tactile sensor 
feedback in the control loop to incrementally improve estimates about object shape and pose 
and then generate more stable task compatible grasps. 

The results of the studies demonstrate the benefits of applying probabilistic models and using 
different sensor measurements in grasp planning and prove that this is a promising direction 
of study and research. Development of such approaches, first of all, contributes to the rapidly 
developing area of household applications and service robotics. 

Keywords Grasp planning, probabilistic models, MCMC, GPR, entropy, PSO, optimization 

ISBN (printed) 978-952-60-6619-6 ISBN (pdf) 978-952-60-6620-2 

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942 

Location of publisher Helsinki Location of printing Helsinki Year 2016 

Pages 167 urn http://urn.fi/URN:ISBN:978-952-60-6620-2 





Preface

The work for this dissertation has been started at the Machine Vision and

Pattern Recognition Laboratory of the Faculty of Technology Management

in Lappeenranta University of Technology in 2011. Already in my Mas-

ter’s studies I have become very interested in robotics and especially in

manipulation planning under uncertainty. In my Master’s thesis I devel-

oped a method, which allows updating a simulation object model based on

actual measurements to achieve a success of a planned task. In 2013 I

moved to the new Intelligent Robotics research group created by my su-

pervisor Prof. Ville Kyrki in the Department of Electrical Engineering

and Automation at the Aalto University. Last year of my doctoral stud-

ies I were working remotely. The department and Aalto ELEC Doctoral

School were responsible for most of the funding.

First of all, I am very thankful to my instructor and supervisor Prof.

Ville Kyrki for his valuable advices and financial support. He introduced

me the world of intelligent robotics. His continuous support and guidance

has taught me a lot about research and science. He encouraged me to go

further in my research which finally allowed me to write this dissertation

even working remotely. I want to also thank the pre-examiners of my dis-

sertation, Dr. Renaud Detry and Prof. Matei Ciocarlie, for their valuable

comments.

This work would not have been possible without all my colleagues and

friends both in the MVPR laboratory and in the Intelligent Robotics group.

I am particularly indebted to Jonna Laaksonen, Nataliya Strokina, An-

drey Maglyas, Joni Pajarinen, Polychronis Kondaxakis, Alberto Monte-

belli, Rajkumar Muthusamy and many others for numerous inspiring dis-

cussions about robotics, machine learning and life in general.

My special thanks go to my mother for her love and support, and espe-

cially to my grandmother who encouraged the best in me.

1



Preface

Last but not least, I express my deepest gratitude to my dearest hus-

band Aleksandr for his love, patience and support during the preparation

of this work.

Saint Petersburg, Russian Federation, December 16, 2015,

Ekaterina Kolycheva (née Nikandrova)

2



Contents

Preface 1

Contents 3

List of Publications 5

Author’s Contribution 7

1. Introduction 13

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Objectives and scope . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 18

2. Learning from touch in uncertain environments 19

2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Learning about objects from haptic exploration . . . . . . . . 21

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. Grasping known objects under pose uncertainty 25

3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Planning for the maximally stable grasp . . . . . . . . . . . . 29

3.3 Exploration: planning for the most informative grasp . . . . 33

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4. Category-based grasping 41

4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Task specific vision-based grasping . . . . . . . . . . . . . . . 46

4.3 Using tactile feedback to improve the performance . . . . . . 52

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3



Contents

5. Conclusion 59

References 63

Errata 73

Publications 75

4



List of Publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I E. Nikandrova and V. Kyrki. What do contacts tell about an object?.

In Proceedings of the 2012 4th IEEE RAS & EMBS, International Con-

ference on Biomedical Robotics and Biomechatronics, pages 1895-1900,

Roma, Italy, June 2012.

II J. Laaksonen, E. Nikandrova and V. Kyrki. Probabilistic Sensor-based

Grasping. In 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 2019-2026, Vilamoura, Algarve, Por-

tugal, October 2012.

III E. Nikandrova and V. Kyrki. Explorative sensor-based grasp plan-

ning. In Towards Autonomous Robotic Systems (TAROS), pages 197-

208, Bristol, UK, August 2012.

IV E. Nikandrova, J. Laaksonen and V. Kyrki. Towards informative sensor-

based grasp planning. Robotics and Autonomous Systems, Volume 62,

Issue 3, pages 340-354, March 2014.

V E. Nikandrova and V. Kyrki. Category-based task specific grasping.

Robotics and Autonomous Systems, Volume 70,pages 25-35, August 2015.

VI E. Kolycheva and V. Kyrki. Task-specific Grasping of Similar Objects

by Probabilistic Fusion of Vision and Tactile Measurements. Accepted

5



List of Publications

for publication in IEEE-RAS International Conference on Humanoid

Robots (Humanoids 2015), November 2015.

6



Author’s Contribution

Publication I: “What do contacts tell about an object?”

The background review about learning from haptic exploration was done

by the author. Together with the second author she developed the idea of

the simulation-based approach in order to answer the question how much

information about the environment can be obtained from a single tactile

exploration attempt. The technique implementation based on minimizing

the difference between predicted and real sensor measurements and con-

duction of experiments were also done by the author. The author studied

several optimization algorithms and made their performance comparison.

She had the main responsibility of the manuscript writing.

Publication II: “Probabilistic Sensor-based Grasping”

The author participated in improving the performance of stability max-

imization approach for grasping proposed and implemented by the first

author by modifying the way of representation the grasp stability proba-

bility using Particle Swarm Optimization approach. She also contributed

to writing of the publication.

Publication III: “Explorative sensor-based grasp planning”

The author proposed the idea of explorative entropy-based probabilistic

framework for grasp planning. She extended the initial stability maxi-

mizing approach implemented by the second author. She proposed and

implemented the entropy-based model and carried out the experiments in

7



Author’s Contribution

simulation. The article was mostly written by the author. V. Kyrki con-

tributed actively to revising of the publication, provided discussion and

comments on the publication.

Publication IV: “Towards informative sensor-based grasp planning”

The background research, the design, detailed analysis and implemen-

tation of methods at the base of the exploration stage was done by the

author. She also ran the simulation experiments. J. Laaksonen developed

the stability maximizing part of the framework and ran experiments on a

real platform. The writing of the article was a collaborative effort of the

first and the third authors. J. Laaksonen participated in the manuscript

revision and provided comments.

Publication V: “Category-based task specific grasping”

The author together with V. Kyrki designed the probabilistic framework

for sensor-based task-specific grasping of objects with shape variations

inside the category. She co-developed the probabilistic models and imple-

mented them. She was responsible for carrying out the experiments both

in simulation and on a real robot. The article was written by the author,

with cooperation with the co-author.

Publication VI: “Task-specific Grasping of Similar Objects by
Probabilistic Fusion of Vision and Tactile Measurements”

The author extended the vision-based framework from the Publication V

by including tactile feedback in optimization in order to improve the sta-

bility quality of the grasps, implemented the general methods, run exper-

iments in simulation and on a real robot and performed the comparison

between the new and earlier approach. She was mainly responsible for

article writing. V. Kyrki actively provided discussion and comments on

the publication and contributed to writing of the publication

8



List of Abbreviations

CGDB Columbia grasp database

DOF Degree of freedom

FITC Fully independent training conditional

GP Gaussian process

GPR Gaussian process regression

GRAB Guaranteed recursive adapting bounding

MCMC Markov chain Monte Carlo

PF Particle filter

POMDP Partially observable Markov decision process

PSO Particle swarm optimization

QM Stability quality metric

RBPF Rao–Blackwellized particle filter

RGB-D Red, green, blue plus depth

SLAM Simultaneous localization and mapping

9



List of Abbreviations

10



List of Symbols

A Action attributes

E[.] Expected value

G Grasp configuration

i Index variable

k Index variable

m̂ Fixed known measurement value

M Sensor measurements

O Object attributes

�p Object pose

P (X) Probability or probability density of X

P (X|Y ) Conditional probability of X given Y

P (X,Y ) Joint probability of X and Y

q Stability metric

S Success metric (grasp stability)

t Time counter

T Task constraint compatibility

w Shape goodness-of-fit weight

x Scalar coordinate

z Scalar coordinate

α Angle of rotation

11



List of Symbols

δ Fitting error

ε Epsilon grasp quality measure

θ Model grasp location

φ(δ) Fitting error

ψ(q) Stability weight

∧ AND logical operator

12



1. Introduction

Robotics is a rapidly developing field with a large number of open research

problems. Manipulation and especially grasping under uncertainty is one

of the currently critical research questions for future service robots, which

need to act in unstructured and uncertain environments such as homes.

To cope with the uncertainty, the environment needs to be perceived us-

ing sensors while acting in it. Tactile sensors are particularly valuable

sources of information in manipulation. Moreover, vision sensors are

widely used in robotics to estimate object pose or shape. Nevertheless,

modern sensors are far from ideal and their measurements are noisy and

uncertain. Thus, development of grasp planning algorithms contributes

to traditional and service industries, health sector and especially to the

rapidly developing field of household applications.

The main emphasis of the research presented in this dissertation is on

developing methods that cope with imperfect knowledge and uncertain

senses in robotics using probabilistic mathematical models. Such grasp

planning approaches will be able to reduce costs, enhance the safety, effi-

ciency and productivity.

1.1 Background

Grasp planning is a fundamental problem in the field of robotics that

has been attracting an increasing number of researchers during recent

decades. Grasping has been traditionally studied in the physical context

of attaining a form or force closure. The quality of a grasp is usually

measured using quality metrics [1]. The principles of kinematics and dy-

namics are used to determine the contact locations on the object and the

hand configurations. The computation of stable grasp using screw theory

[2, 3], potential function method [4] was extensively studied already in
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late seventies - eighties. Even in these early studies [5] it was concluded

that the choice of a good grasp does not depend only on object attributes

but mostly on the task that needs to be performed with this object. Thus,

a good grasp should be task-oriented.

Nowadays, the study of force closure determination is developed by tak-

ing task specificity in consideration [6]. However, physics-based methods

require perfect knowledge of object models and robot poses in order to

guarantee a resulting stable grasp.

Another group of methods in robotic grasping are data-driven approaches.

They do not assume perfect knowledge of robot and object parameters. In

contrast, in order to find relatively good grasp for some object they re-

quire a comprehensive database of objects and appropriate grasp configu-

rations.

The development of data-driven approaches started with availability of

grasp simulation environments like Graspit! [7] and OpenRave [8]. They

allow to generate thousands of grasp candidates, fully control the envi-

ronment and its attributes without needing to build expensive hardware.

For instance, Columbia Grasp Database [9] was created using GraspIt!.

It takes a grasp planning algorithm based on the data in the database

and computes best grasps for a set of hundreds of object models. Re-

cently, Kappler et al. in [10] proposed a new large-scale simulation-based

database containing hundreds of thousands of grasps annotated with dif-

ferent stability metrics generated for a large set of objects from numerous

categories. The dataset was constructed using OpenRave simulation en-

vironment. However, the collection of big amount of data, needed for good

generalization, is a time and resource-consuming process.

Contrary to physical (analytical) methods, data-driven approaches de-

pend more on graspable object representation and perceptual data pro-

cessing, like object recognition and classification based on similarity met-

rics or pose estimation. Based on a-priori knowledge about an object, data-

driven approaches can be divided into three categories: grasping of known

objects, familiar objects and unknown objects [11].

Grasping of known objects usually assumes the existence of an experi-

ence database consisting of different object models and associated grasp

configurations. A query object belongs to the database. The goal is to

recognize an object, define its pose and retrieve a suitable grasp.

Grasping of familiar objects considers the problem of finding grasps for

objects similar to previously encountered ones. The similarity can be de-
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fined differently, either simply by shape or texture, or on higher level, for

example, by object category. The main problem of such approaches is to

measure the similarity between objects and transfer grasps accordingly.

For unknown objects there are no grasp models or grasp experience

available. These approaches extract various features from sensory data.

The grasps are generated and ranked based on these features.

An important aspect for grasp generation is a source of information from

which the robot acquires knowledge about its environment. The control

of the robot system given a complete world model is a well-defined and

solvable task. However, such models are usually unavailable. Perception

through sensors allows to compensate the lack of prior information. There

exist different types of sensors, which are used in robotics for the extrac-

tion of meaningful world features. Vision-based and tactile sensors can be

highlighted among others as the most significant.

Vision is a powerful sense, which provides an enormous amount of infor-

mation in order to intelligently interact with an environment. In robotics,

vision is used for locating objects [12], estimating the shape of the object

[13], object recognition [14] and classification [15].

Vision is a rich source of information about the environment and tasks.

However, visual sensors are not perfect, they incorporate some noise. The

sense of touch is the only one without which humans are not able to hold

or safely manipulate objects [16]. Tactile sensors allow to compensate the

lack of information about objects in unstructured environments. Tactile

sense is particularly important in robotic manipulation as it provides data

to estimate object properties like stiffness, geometry, and contact charac-

teristics.

Tactile sensors are widely used in robotics. Initially, they were mainly

applied for object recognition [17, 18]. Over the past years, they have been

extensively used for solving problems like object classification [19], pose

estimation [20, 21] and dexterous grasping [22].

Tactile feedback can be also used to improve the initial estimate of the

grasp obtained, for example from vision, and to perform necessary robot

hand adjustments [23]. Both tactile and visual information was used for

estimating stability of the grasps planned onto novel objects using part-

based grasp planner, composed of grasp prototypes learned from experi-

ence [24].
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1.2 Objectives and scope

This thesis is focused on grasp planning for known or similar objects un-

der uncertainty in location or shape. In industrial robotics the problem of

object manipulation and grasping is solved. Robots are tuned to the par-

ticular tasks and there is no uncertainty in the environment. However,

in many real-world scenarios, like household environments, knowledge

about world state cannot be exact. The errors in object’s and robot’s at-

tributes can be crucial while performing a manipulation task.

The objective of this thesis is to show how to deal with different types

of uncertainty using tactile and visual sensor data in order to find stable

grasp configurations, which take into account given manipulation tasks

constraints.

1.3 Contributions

The core contributions of this dissertation are worked out in the six au-

thor’s publications. This thesis starts by looking at how much information

about an object a robot can optimally learn from a single tactile explo-

ration attempt and goes further by developing a probabilistic approach for

grasp planning under object pose uncertainty unifying the ideas of stabil-

ity maximization, information gathering by minimizing the entropy and

using sensor’s feedback. Next step is to look at uncertainty in object shape

and consider the term “category” in the scope of grasping as well as taking

into account task applicability. Finally, the idea of on-line sensory infor-

mation for grasp planning is applied for the case of shape uncertainty.

The major scientific contributions in this thesis are summarised in the

following list:

• A simulation-based approach that allows to study how much informa-

tion a robot can optimally learn from a single tactile exploration at-

tempt. The approach is based on minimizing the difference between

predicted and measured sensor readings. To avoid bias in the results

due to the concrete implementation the algorithms used include both

directional methods (Steepest descent) and metaheuristics (Simulated

Annealing, Particle Swarm optimization and Firefly algorithm). An im-

portant finding is that the inference is surprisingly difficult from a single

explorative action. The level of difficulty varies a lot for different object
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attributes.

• A probabilistic approach combining information collection (exploration

based on entropy prediction) and stability maximization under uncer-

tainty. For the entropy calculations a computationally efficient discrete

entropy estimate that uses only particle weights was developed. The ex-

perimental results demonstrated that the approach allows to accomplish

statistically optimal grasp planning, while simultaneously reducing un-

certainty about an object’s pose. It was shown that each successive grasp

reduces the probability of an unstable grasp by refining the belief of the

object pose. Moreover, a combined approach with entropy-based explo-

ration stage outperforms the results over only maximally stable action

selection.

• A probabilistic approach for task-specific stable grasping of objects with

shape variations inside the category. The idea of maximizing grasp sta-

bility is taken in the novel context to cover shape uncertainty. It was

shown that by combining information over multiple grasps and multi-

ple objects, the proposed approach results in more stable grasps com-

pared to the classical approach of using the most similar model’s grasp.

In addition, the technique can cope with a sparse training set in con-

trast to most data-driven approaches. Moreover, the method does not

require large amount of data. It requires only an incomplete point cloud

obtained from a single RGB-D image.

• An extended probabilistic framework, which combines the ideas of plan-

ning for the maximally stable grasp, using vision as a source for initial

guess and online sensory-based grasping. It was shown that combina-

tion of vision and tactile sensors performed better than solely vision-

based technique. Moreover, it was demonstrated that the iterative na-

ture of the method allowed to finally succeed and find a stable grasp

even if first rounds were unsuccessful by collecting more information

and using previous results as starting values for the next round of opti-

mization.
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1.4 Structure of the thesis

The remainder of this thesis consists of two parts: an introductory part of

four more chapters and publications. Chapter 2 presents an overview of

related work about robot learning from touch in uncertain environments

as well as author’s contributions in determining what can be learned from

haptic exploration. Chapter 3 starts with the related background in the

area of grasping known objects under pose uncertainty. It continues by

author’s contributions to planning for the maximally stable and the most

informative grasps. The existing approaches of category-based grasping

are presented at the beginning of Chapter 4. The second part of the chap-

ter is focused on the author’s probabilistic approaches for task-specific sta-

ble grasping based on vision information and extended by incorporating

tactile feedback are studied. Finally, the thesis is concluded and summa-

rized in Chapter 5.
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2. Learning from touch in uncertain
environments

Robotic manipulation, especially grasping, is a research area highly af-

fected by different types of uncertainties. Nowadays robots are increas-

ingly being used to act in unstructured environments. The sense of touch

is the one, which is the most important to safely manipulate objects [25].

People with impaired tactile sensibility have significant difficulties with

in-hand manipulation because a brain lacks the contact information needed

to control manipulation activities [26].

Similar to humans, tactile sensing in robotics can help to organize the

interaction with objects. Despite the great number of recent works about

using tactile sensors in solving robotic manipulation problems, the learn-

ing aspect is not thoroughly investigated. This chapter covers the re-

search question: How much and what information can be learned about

the robot environment from a haptic exploration attempt?

2.1 Related work

Early works about using tactile sensors in robotics were concentrated

on industrial applications and especially workpiece localization problem

[27, 28]. Hillis in [18] proposed a robot manipulator incorporating a tac-

tile sensor, which was able to recognise various fastening devices, like

nuts and bolts. One of the first overview papers about the perspectives of

robotic tactile sensing appeared already in 1984 [29]. After the creation

of first advanced multifingered robot hands in 1980’s, the tactile sensors

began to be used for control of dexterous manipulation [30].

More recent works about tactile perception are focused on object classifi-

cation, recognition and localization problems. A range of works addresses

the task of recognition various object properties, such as ridges and bumps

on surface of an object [31], object materials [32] or even internal states
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Learning from touch in uncertain environments

of an object such as presence of liquid or open/closed state [33].

Traditionally, contact information has been used to recover 3D object

models by constructing a convex hull of collected contact points [34], cre-

ating volumetric models [35] or using superquadrics [36]. Alternative ap-

proaches directly use the haptic sensor data to classify an object without

building a 3D model of the object [19]. Several recent works adapt the

“bag-of-features” approach from vision-based object recognition for object

identification using low-resolution intensity images from tactile sensors

[37, 38].

Another important application area for tactile sensors is grasp stabil-

ity estimation. For example, Bierbaum et al. in [39] presented a method

to generate grasp affordances based on reconstructed from extracted fea-

tures faces of an object through tactile exploration. Dang et al. in [22]

proposed a machine learning approach called blind grasping to predict

stable grasps on an unknown object based on tactile feedback and hand

kinematic data. Bekiroglu et al. [40] presented a probabilistic learning

framework to assess grasp stability while grasping an object using infor-

mation from tactile sensors.

Object localization using tactile measurements can be performed using

two different approaches. First is based on cost function minimization in

order to find a solution, which best fits the measurements [41, 42]. Al-

ternatively, probabilistic formulations can be used to represent current

belief about object location, which allows to incorporate different types of

uncertainty [43]. In [21], the authors presented a decision-theoretic ap-

proach which minimizes the uncertainty in the relative pose between the

robot and objects using arm trajectories to enable task specific grasps on

objects. Tactile sensors were used to detect contacts between the hand

and objects. Petrovskaya et al. in [20, 44] proposed a Bayesian approach

for 6DOF global object localization via touch. This is a Monte-Carlo ap-

proach, which performs a series of refinements using annealing. Recently,

Chebotar et al. in [45] address the problem of in-hand object localization

and object manipulation with tactile feedback.

Despite the great number of recent researches which use tactile infor-

mation for solving various robotics tasks the question to what extent prop-

erties of the robot environment can be inferred from the tactile sense was

not previously considered. Thus, an approach presented in Publication

I first among other related studies tries to answer the question to what

degree a robot can use tactile sense to learn about its environment.
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2.2 Learning about objects from haptic exploration

A novel simulation-based approach that allows to study how much infor-

mation a robot can optimally learn from a single tactile exploration at-

tempt was presented in Publication I. The term “information” in this con-

text denotes different attributes of a graspable object. The distinguishing

feature of the approach is that the simulator [8] is used both as an in-

ternal model of the environment for the robot and as substitution for the

real world. Thus, the robot is able to try out actions in simulation before

executing them for real. More than that, simulation provides an ideal en-

vironment without measurement errors. This made it possible to focus on

studying how much can be inferred using the tactile sensors in the ideal

case, rather than how good sensors are used in experiments.

The method proposed in Publication I is based on optimization, as the

robot environment does not contain measurement uncertainty. The goal

is to minimize a difference between predicted and measured sensor read-

ings. To ensure that the robot will succeed in its task the simulation

model is updated based on error minimization. The general scenario of

robot learning through simulation is shown in Figure 2.1.

Figure 2.1. Learning process: Initialization: robot obtains an initial guess about object
attributes (e.g. location); Planning: using the predicted values robot plans to
complete the task; Trial: robot tries the trajectory and obtains teal sensor
measurements; Update: robot searches for the new state of its world model
by minimizing the difference between planned and real values. Adapted from
Publication I.

Traditionally, simulation is used in robotics for planning or trying some

actions. However, in the proposed approach simulation is applied to up-

date the world model and change the action plan before its execution on

a real platform. This new idea transforms simulation into the internal

mental view of the robot.

The approach presented in the Publication I is based on optimization.

Thus, the choice of the fitness function affects dramatically the method

convergence properties and, thereby, the whole approach performance.

The form of the fitness function was obtained after several trials. Final
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version includes information about contacts between robot and object and

information about finger joint angles. The function typically has only one

global minimum and few flat areas. A more detailed description of error

function can be found in Publication I.

Due to multimodality and non-linearity of the fitness function the error

minimization was not a trivial task. Moreover, such factors as accuracy

and computational complexity had to be accounted in the choice of the

optimization method. Thus, to avoid a bias in the results because of the

particular algorithm, several approaches including directional methods

and metaheuristics were also studied. As a directional method, Steep-

est Descent approach, widely used in optimization, was implemented. To

cope with problems of several local optima and deceptivity in some regions

of the fitness function metaheuristics approaches were studied. First,

Particle Swarm Optimization approach (PSO), which is an efficient non-

derivative simple to implement global search algorithm with low num-

ber of parameters [46]. However, its weak points are slow convergence

and weak local search ability. Second, Simulated Annealing, which is a

robust general technique which can deal with highly nonlinear models,

noisy data and many constraints [47]. On the other hand, it requires to

tune a lot of parameters to convert into an actual algorithm. The last is

Firefly algorithm, which as PSO considers particles moving in the search

space according to specific dependencies [48]. In contrast to PSO, Firefly

algorithm deals more efficiently with multimodal functions.

For the experiments an object transportation task was chosen. Geomet-

ric attributes namely an object pose and size were set as unknown param-

eters. Contact sensors which detect the presence or absence of contacts be-

tween the robot hand and a target object together with information about

joint angles of the fingers after closing the hand were used as sources of

information. All experiments were done in OpenRave simulator [8] us-

ing Barrett WAM arm with the Barrett hand models. For generalization

purpose the set of testing objects included objects with simple geometrical

shape as well as mostly symmetrical entities and more complex examples.

The experimental results of performing optimization after single grasp-

ing attempt for 3DOF case (uncertainty in location and orientation) showed

that tactile readings received during a single manipulation action carry

quite limited amount of information about an object. Even PSO, which

performed consistently well for all testing objects, resulted in significant

angular error values. Thus, the possibility to learn about the object ori-
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entation from a single grasp is highly object and hand dependent. For

symmetrical objects it is impossible to find a correct orientation. There

is a complex interplay between Cartesian and angular position variables

affecting the fitness function value. Given exact Cartesian position, an-

gular position can be predicted quite precisely. However, object location is

usually uncertain. The experimental results for 4DOF case (3DOF + size)

showed that size information can be estimated very precisely and fitness

error values are small.

2.3 Discussion

Publication I introduced a simulation-based approach to find the limita-

tions of tactile sensing in optimal conditions from single exploration at-

tempt. The studies conducted in the paper relate mostly to pose esti-

mation, although the scale of the object is considered in addition. The

technique is based on minimizing the fitness function, which models the

difference between predicted and real sensor measurements, including

contact and joint angles components.

The main conclusion of the study is that learning about the environment

from a single tactile exploration attempt is surprisingly difficult, even in

optimal conditions without any sensor noise. Moreover, the difficulty of

estimating different attributes varies significantly: experimental results

showed that object location and scale factor can often be estimated rela-

tively well, but the accuracy of orientation estimation is very object and

robot hand dependent. More than that, the estimation problem can be

ambiguous, for example, due to symmetries in object shape.

In order to increase the accuracy in predicting all parameters an ini-

tial planning for object exploration to maximize information gain could

be done. This step can be especially benefiting for objects with asymme-

tries on a small area. However, such attempts seldom result in stable

grasps and further exploration is needed. Planning of exploration in un-

certain conditions is a non-trivial task, which may require construction

of probabilistic models. In contrast, in Publication I the exploration is a

by-product of a grasp attempt.

The work in Publication I is restricted to ideal sensing modeled in sim-

ulation without contact uncertainty. However, the information from real

sensors could be applied in the approach. Moreover, more complex error

measurements could be used instead of single Euclidean distance. One
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more possible extension direction is to include multiple tactile exploration

attempts. The study in this direction is performed by Vazquez et al. in

[49]. Similarly to Publication I, they address the question of how good

is a tactile sensor for tactile exploration. Apart from aforementioned ex-

tensions, the use of a more dexterous robot model could improve results

due to the possibility to collect more contact information from a single

manipulation attempt.
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3. Grasping known objects under pose
uncertainty

A grasp planning process for known objects consists of an offline plan-

ning phase and on-line operation. In the offline stage, a grasp experience

database for every object model is generated. The major part of grasp

candidate generation approaches use force-closure grasps and rank them

according to the ε quality metric. The on-line phase includes object recog-

nition and usually at least pose estimation. After that, the associated

grasp hypotheses are retrieved from the database. In most cases when

speaking about grasp planning of known objects it is assumed that ob-

ject models are precise. However, uncertainty in object attributes, such as

pose, can be crucial while performing manipulation tasks. More than that,

even though geometrical models are good approximations of real objects,

they are usually inaccurate especially for everyday household items.

3.1 Related work

If an object model is given together with already generated set of grasps

candidates, the only problem is to determine an object pose and then find

the best possible candidate grasp. When a 3D object model is known the

challenge is to automatically generate a set of good grasp candidates. The

quality of the grasp is usually based on physical properties and defined by

quality measures such as the widely used ε-metric [50].

To simplify the process, many methods use different types of object de-

compositions to reduce total number of feasible grasps without trying

them on objects. Some authors approximate objects with a collection of

primitive shapes, likes boxes, cylinders or spheres. For example, Huebner

et al. in [13] propose hierarchical minimum volume bounding box de-

composition approach to approximate object shapes and, thereby, reduce

the search space for good grasps. Instead of boxes superquadrics can be
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used for object shape approximation like in [51]. Przybylski et al. in [52]

present a grasp planning approach, which operates on the grid of medial

spheres object representation. To rank the grasps they calculate epsilon

measure for force-closure. All above mentioned approaches have been im-

plemented and tested in simulation.

One of the biggest criticism against using ε-metric and force-closure to

rank grasp candidates is that a relatively fragile grasp can be classified

as a force closure stable grasp [53]. To overcome this problem extra noise

can be added to grasp attributes and only grasps for which some percent-

age of neighbouring grasps are also force-closure can be chosen. Such an

approach is adapted by Weisz and Allen in [54]. They focus particularly

on the ability of the ε-metric to predict grasp stability under object pose

error.

Another way to generate grasp hypothesis is learning from human demon-

stration, which produces an experience database offline. De Granville et

al. in [55] present a technique that learns mapping from object to grasp

from human demonstration for reach-to-grasp actions. Detry et al. in [56]

use human demonstrations to collect initial data, from which object spe-

cific grasp empirical density is built. The density is then used to sample

grasp hypotheses. Romero et al. in [57] present a human-to-robot map-

ping system, where demonstrated human hand posture, including both

grasp type and hand orientation, is classified and mapped to a specific

robot hand. The method is first evaluated in simulation using 3D object

models. The approach is also demonstrated on the humanoid platform

[58]. A motion capture system is used to capture human grasp activities.

Human upper body tracking, object tracking and hand pose estimation

techniques are applied to analyze human grasps, which are then repro-

duced on the robot. Ekvall and Kragic in [59] present a method for gener-

ating grasps based on shape primitives and human demonstration. The

system observes a human teacher, wearing a data-glove with magnetic

trackers and recognizes the grasp type. The grasp type is then mapped

on the set of robot hands. Finally, an approach vector is selected from an

offline generated experience database. The authors conduct experiments

with a simulated pose error in the simulation environment only.

Instead of grasp experience information a database of standard gras-

pable objects can be constructed. Columbia grasp database [9] includes

grasps for hundreds of objects and several robot hands. In this context

grasp planning problem consists of recognizing an object, estimating its
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pose and retrieving a suitable grasp from the database. The authors also

extend the work to deal with 3D partial range sensor data collected from

a small number of viewpoints [60].

Another way for finding grasps is object affordance modeling. In cog-

nitive robotics, the concept of affordances [61] describes the relationship

between the agent and its environment through the effect of agent’s in-

teraction with the environment. A grasp affordance corresponds to the

different ways a robot hand can be placed near an object to generate sta-

ble grasp after closing the hand. In the grasping related works, grasp

affordances consider either the overall stability of the grasp [62, 63], or,

for instance, accounting for a spesific task [64].

Learning is a powerful instrument in robotic systems as it allows to cope

with uncertainties to some extent. In [63] learning based on experience is

used on a real robot to acquire grasp affordances of an object. The learning

process reduces a vision bootstrapped distribution of grasps to a smaller

set containing only good grasps. Over the past years, reinforcement learn-

ing has been applied to various robotic manipulation problems including

grasp planning. For example, in [65] reinforcement learning is applied to

search for policies that optimize the chance of grasp success.

Multi-modal uncertainties are frequent in manipulation, especially based

on tactile perception. While allowing to cope with model uncertainties re-

inforcement learning techniques do not usually consider uncertain beliefs,

or use simple (e.g. Gaussian) uncertainty models. Tactile measurements

are local in nature, and one tactile exploration attempt is not usually

enough for precise object pose estimation.

One essential problem is how to represent such multi-modal errors. One

way is to use particle filters (PFs). PF is a MCMC method, which repre-

sents probability distribution using a cloud of particles. Initially, particle

filters were applied in robotic manipulation mainly for pose estimation

[66, 67, 20]. Later, Platt et al. in [68] explore the idea of using Bayesian

filtering to localize features embedded in flexible materials during robot

manipulation. Zhang and Trinkle in [69] consider Grasp-SLAM problem

as a filtering problem. They propose an approach that apply particle filter

to improve knowledge of the system’s physical parameters while simulta-

neously tracking the object during visual occlusion.

An alternative approach to solve grasping problem is probabilistic for-

mulation. Already in nineties Goldberg et al. in [70] apply Bayesian

framework to a grasping problem in the presence of an object’s pose un-
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certainty. The method is evaluated on a parallel-jaw gripper grasping a

2D object. No sensor information is utilized by the approach. Later, Hsiao

et al. in [71] propose a method for planning under uncertainty for robotic

manipulation by partitioning the configuration space into a set of regions

that can be treated as states in a partially observable Markov decision

process (POMDP). The authors demonstrate the approach on simple pla-

nar problem of unknown object pose in a long time horizon. However, in

contrast to the current study their work was mostly conceptual and ad-

dressed only small problems.

In [21] the authors present a decision-theoretic approach for task-driven

manipulation of objects when there is uncertainty in relative pose be-

tween an object and a robot. Tactile sensors are used to detect contacts

between the robot and the object. The approach operates with discretized

observation and belief states. The resulting grasp is found as a maxi-

mum a posteriori belief. Petrovskaya et al. in [72] elaborate a new infer-

ence method, called Guaranteed Recursive Adapting Bounding (GRAB)

for pose estimation problems. The method is tested in both simulation

and on a real platform and it is further extended in [44]. Nevertheless,

the approach is applied only for object localization. Moreover, in both [21]

and [44] geometrical models of objects are given and stability informa-

tion is not accounted during grasp planning. On the contrary, the pre-

sented work uses particle representation for the object attributes models

and finds the most stable grasp by maximizing the expected stability.

Veiga and Bernardino in [73] propose an approach that uses Bayesian

Optimization methods to search for the best grasp configuration by itera-

tively optimizing a suitable grasp criterion. They evaluate the methodol-

ogy only in simulation on known objects.

A Bayesian framework for grasp planning under object pose or shape

uncertainty as well as robot motion error is described in [74]. The frame-

work combines the results from multiple object detectors and multiple

grasp planning approaches and tries to find a consensus among them in

order to result in a grasp robust to errors in both perception and execu-

tion. The authors claim that the use of a Bayesian formulation is essen-

tially valuable, so that maximizing the expected success is clearly superior

to executing the best action based on the maximum likelihood solution of

the object attributes. The similar idea was expressed also by [54]. The

approach is based on the grasp stability maximization over a uniform

uncertainty in the object pose. This thesis is based on this line of work
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and extends it by considering the time series nature of sequential actions,

looking at maximization of accumulated reward and updating the belief

in the case of an unsuccessful attempt.

In some cases when, for example the predicted stability of a grasp is

relatively small, it would be better to perform an exploration step to re-

duce the uncertainty in object attributes. Dragiev et al. in [75] present a

framework for iterative grasping that utilizes two motion primitives: an

explorative and exploitative grasp. However, the approach is focused on

grasping previously unknown objects.

One way to find the most informative grasp is to use the measure of

information content such as entropy. One big challenge is to estimate the

entropy of the posterior distribution of object attributes represented by a

set of particles.

Most studies in robotics which utilize information gathering approaches

are related to SLAM applications and using Rao–Blackwellized particle

filter (RBPF) [76, 77]. Stachniss et al. in [76] introduce an integrated

approach for exploration, localization and mapping. They use RBPF to

represent the posterior about the map and poses. The entropy is divided

into 2 components: the entropy of the robot trajectory posterior and the

map uncertainty weighted by the likelihood of the corresponding trajec-

tory.

A similar approach for touch-based registration is proposed by Taguchi

et al. [78]. The method performs 6DOF registration in a RBPF frame-

work. Next robot motion is selected as a motion that provides the maxi-

mum information gain. An information gain from a proposed robot motion

is estimated by the expected entropy that the RBPF distribution. The au-

thors compare three methods for a particle-based density entropy estima-

tion. An approximation based on kernel density estimation and estima-

tion using particle weights only were shown to be superior for general dis-

tributions. In Publications III-IV a computationally efficient weight-based

entropy estimation technique was elaborated. Comparing to Taguchi’s

work the method uses a basic particle filter instead of RBPF and solves a

completely different task - stable grasp planning.

3.2 Planning for the maximally stable grasp

A probabilistic framework for grasp planning under uncertainty using on-

line sensor information and simultaneously updating knowledge of object
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pose is described in Publications II-IV. When there exists a significant

uncertainty in knowledge about object parameters a first grasp trial can

easily fail. However, the failure can be detected using tactile sensors.

The proposed approach utilizes the sensor measurements in order to re-

fine information about object attributes. The most stable grasp is then

found by maximizing the expected stability. Thus, the presented stability-

maximizing approach allows planning and executing statistically opti-

mally stable grasps, as well as collecting measurements and performing

corrective motions, which reduce the uncertainty about the environment.

The necessary probabilistic models are built using Gaussian process re-

gression (GPR). A Markov Chain Monte Carlo approach is applied to es-

timate a goal object’s pose and grasp stability while performing grasp at-

tempts. A Bayesian approach is used allowing the marginalization over

current knowledge to obtain estimates. The most stable grasp is, then,

found by maximizing the posterior probability given models for object at-

tributes and grasp stability.

The sequence of actions describing grasp stability maximization approach

is shown in Figure 3.1. The process can be iterated until stability condi-

Figure 3.1. Stability maximizing framework model: Step 1: an initial uncertain
estimate for oblect’s pose is obtained (e.g. from vision); Step 2: planning
for a grasp with uncertainty from the initial estimate is performed; Step 3:
planned grasp is performed providing sensor measurements; Step 4: grasp
stability is estimated using sensor data; Step 5: if the grasp is not stable, ob-
ject attribute values are updated, new measurements are collected followed
by re-planning for a new grasp. Adapted from Publication IV.

tions are satisfied.

The choice of probabilistic models for sensor-based manipulation and

object knowledge refinement plays a key role in the performance of the

approach. In a general form, a sensor-based manipulation model is de-

picted in Figure 3.2. From the Figure 3.2 it can be seen that the belief

about object attributes O is updated over the time. Knowledge of O is,

thus, refined using information from the performed action A and collected
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Figure 3.2. Probabilistic manipulation model (process of object knowledge re-
finement): object attributes (6DOF object’s pose) O; success metric (grasp
stability) S; action attributes (pose of the end-effector while grasping) A; on-
line sensor measurements M. Adapted from Publication IV.

measurements M . The success S is determined by the action A (grasp)

and object attributes O. More than that, measurement for the particular

time stamp can be collected only after the action is taken. So, the predic-

tion model of measurements should be defined.

To formulate planning for sensor-based grasping a probabilistic approach

from [43] was applied. Two models are required to build a working sys-

tem:

• P (M |A,O) to describe relation between object attributes, grasp attributes

and sensor measurements;

• P (S|A,O) describing stability as a function of grasp action and object

attributes.

Using these models the most stable grasp can be found as a maximum of

the posterior distribution

max
A

∫
P (S|A,O)P (O)dO. (3.1)

To build the models GPR was applied. It allows, firstly, to build and up-

date models quickly without using a simulator, which makes it possible

to use them in a real environment. Moreover, GPR ensures generativity,

so that models are able to account for the whole state space. More de-

tailed description of using GPR for model building in the system is given

in Publications II and IV. Readers interested in GPs can get a deeper un-

derstanding from [79]. Additionally, to reduce the computation time of

the GP the Fully Independent Training Conditional (FITC) model [80]

was utilized.

The theoretical framework was implemented using a particle based rep-
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resentation for object attributes, which is updated using Metropolis al-

gorithm [81]. A benefit of particle based representation is that it is non-

parametric and, thus, can represent any distribution. Each particle evolves

independently and particles with low weights are reinitialized by resam-

pling to preserve the representative power. The stability probability was

maximized using Particle Swarm Optimization (PSO), an efficient global

search algorithm. The reader can find more information about PSO in

[82]. For the algorithm, which describes the proposed stability-maximizing

grasp planning approach the reader is referred to Publications II and IV.

The framework was demonstrated both in simulation and on a real plat-

form. GraspIt!-simulator [7] was chosen as a simulation environment for

experiments. Barrett hand model was used in all experiments. Testing

set consisted of two primitive-shaped objects, a cube and a cylinder, and

3 complex-shaped models, two different mugs and a pitcher. A table-top

scenario and only top grasps were considered. Thus, the uncertainty was

represented in three dimensions (x, z, α), where x, z are Cartesian coordi-

nates and α is an orientation in degrees. Moreover, it was assumed that

all objects are stationary during the process.

The main goal of the experiments was to demonstrate that using the

proposed approach it is possible to refine the initially uncertain pose of

the object during several grasp attempts while simultaneously improv-

ing grasp stability given estimates of object attributes and sparse mea-

surement data collected during grasp attempts. Because of probabilistic

nature of the approach the experimental results were represented using

posterior distributions. Each run consisted of four grasps (the number of

grasps was fixed instead of defining grasp stability threshold). For illus-

tration, Figure 3.3 shows the initial and the final runs of the evolution of

the second mug pose posterior. As can be seen the initial posterior distri-

Figure 3.3. Grasping the mug at pose (-32,38,68): red cross denotes real object pose,
QM is a stability quality metric computed in GraspIt! (ε-metric); Stab. Prob
indicates predicted grasp stability probability. Adapted from Publication II.
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bution is quite sparse, as it reflects the uncertainty in mug orientation.

The final posterior is denser. Stability probability and ε-metric increase

from run to run after each grasp attempt.

To show that the proposed probabilistic grasp planning framework ac-

tually improves the grasp quality, repeated experiments (100 runs) were

performed for all 5 objects. The goal was to show that each successive

grasp decreases the probability of unstable grasp and at the same time

improves knowledge about the object pose. The results showed that the

approach is able to refine object pose and, therefore, find stable grasp

considerably more often after a few grasps. In general, the results can

be compared to [21], where it was shown that 4 actions is required to

achieve 80% − 90% probability of grasping an object in the similar table-

top scenario for a specific grasp. However, the authors of [21] use grid

representation for object attributes instead of particle based one.

The method was also validated using a physical system consisting of

a Melfa RV-3SB 6-DOF arm and a Robotiq 3-finger hand. The test object

was a cardboard box. The stability S was a binary variable, defined exper-

imentally by lifting the object. The positions from three finger actuators

were recorded as the measurement data M . The goal was to show that the

framework is able to find a stable grasp under uncertainty. After the first

grasp, the posterior converged close to true position and the object aligned

in the hand, but the orientation remained ambiguous (the stability proba-

bility only 26%). However, after the second grasp the probability increased

up to 99% and the lifting of the object was successful. In the second ex-

periment, the exploration capabilities of the approach were analyzed. The

object was displaced such that the robot fails to grasp it during the first

attempt. In this case posterior distribution consisted of two modes. After

exploring the first mode wrong by chance the second grasp attempt also

failed. However, the collected measurements supported the second mode

and the third grasp was successful. This experiment demonstrated the

benefit of the exploration stage in order to increase probability of achiev-

ing stable grasp. This lead to the idea of creating an explorative approach

presented in Publications III-IV.

3.3 Exploration: planning for the most informative grasp

When uncertainty about an object pose is large, the predicted stability

can be relatively small and such grasp can fail when executing. In these
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cases an exploration would be more beneficial than stability maximiza-

tion. Publications III-IV present an extension of stability maximizing

framework, which allows to balance between information gathering and

grasp stability maximization. Whenever grasp stability probability is

small, an exploration grasp is executed instead. This exploration grasp

is chosen to minimize the expected entropy of the object attributes at the

next time step given current knowledge of the object attributes. A partic-

ular challenge is to determine entropy for particle-based distributions. In

Publications III-IV an efficient discrete estimate, which utilizes particle

weights only, is proposed.

An extended by exploratory stage framework for probabilistic grasp plan-

ning can be described by Figure 3.4. As in the basic stability maximizing

Figure 3.4. Exploratory framework model: An initial uncertain guess about the ob-
ject’s pose is known (e.g. from vision); Planning for maximally stable grasp
using probabilistic stability model is performed; Grasp stability is predicted
before execution; If the stability is less than a threshold re-planning for the
most informative grasp is made (current grasp); If the stability is larger than
a threshold maximally stable grasp is chosen as the current step; Chosen
grasp is performed providing sensor measurements; Real grasp stability is
estimated using sensor data; If the grasp is not stable re-planning for a new
grasp with an updated belief is initiated. Adapted from Publication IV.

approach the process can be iterated until grasp stability criteria are sat-

isfied.

The process of finding the most informative grasp is based on the en-

tropy minimization for the posterior of object attributes P (Ot|at, Ot−1),

given a grasp configuration at and previous object attributes estimate

Ot−1. Objects are assumed to be stationary during the process, so that

Ot = Ot−1. However, if required, the motion model P (Ot|Ot−1) can be

included. To find the distribution the marginalization over unknown tac-

tile measurements, which will be obtained after performing grasp using

current object’s pose estimate, can be done:

P (Ot|at, Ot−1) =

∫
Mt

P (Ot|at, Ot−1,Mt)P (Mt|at, Ot−1)dMt (3.2)
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The first factor describes the evolution of object attributes and can be

derived using Bayes formula by applying stationarity assumption and

marginalizing over uncertain object knowledge to obtain the normaliza-

tion evidence term. As object distribution is represented by a particle set,

an integral can be approximated by a weighted sum over particles. The

second term describes the probability of measurements Mt after perform-

ing grasp at for current object belief Ot. The problem is to solve integral

in Equation 3.2. A stochastic approach based on drawing random sam-

ples from P (Mt|at, Ot−1) is applied for this. This is possible, because GP is

used for the measurements. So, one can draw particles from P (Mt|at, tt,j),
where the index j is selected proportional to the weights of the particle

set O. For the detailed derivations and the algorithm, which illustrates

this process the reader is referred to Publications III-IV.

One major challenge is to calculate the entropy for the distribution rep-

resented by the weighted set of particles. In Publication IV two techniques

were introduced: weight-based and kernel-based approaches. The advan-

tage of the weight-based method is its simplicity, only particle weights

ignoring spatial locations are used for the entropy estimation. The set

of particle weights is treated as a set of probability masses of a discrete

probability distribution and the entropy for the discrete distribution is

calculated. This approach does not produce absolute entropy values for

different particle sets, because it does not consider the distance between

particles. Nevertheless, the results can be compared for the same particle

locations with different weights, which is enough to find the most informa-

tive action. Moreover, this approach is computationally efficient compared

to more complex kernel-based estimation. Unlike the first technique,

kernel-based entropy estimation is a non-parametric method, which uti-

lizes kernel estimate composed of the collection of position samples and

corresponding weights. Corresponding equations can be found in Publica-

tion IV.

As a basic stability-maximizing framework, the combined approach was

evaluated in simulation using a similar setup. In all experiments a 2DOF

case with uncertainty in x and z coordinates was considered. The first

experiment followed the Figure 3.4. Examples of the initial and the final

posterior distributions for the mug are shown in Figure 3.5. The poste-

rior distribution for the object’s pose converges faster when applying the

combined approach, which unifies the stability evaluation and entropy

minimization to obtain more information about an object.
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Figure 3.5. Particle distributions for grasping a mug: initial (left) and final (right).
Adapted from Publication IV.

For both testing objects, a cube and a mug, the approach outperformed a

method based purely on maximization of the stability metric. The quality

metric increased from step to step, so that the uncertainty in the object’s

pose decreased and, as a result, both stable and informative grasp was

found. To compare the approaches an experiment with the mug, where

four maximally stable grasps were performed in a sequence each time

updating the belief about object’s pose according to the initial approach,

was conducted. Resulting stability probability was slightly smaller than

for the exploratory framework. However, ε-metric was not positive, which

means that the found grasp was not force-closure.

Repeated experiments were performed to show that the grasp quality

is actually improving also for the extended approach. The results after

thirty tests on three test objects (cube, mug and cylinder) for randomly

chosen object’s poses reflected the general trend of increasing the ε-metric

value after each exploratory step done for all testing objects.

To ensure that exploratory framework in practice allows effectively re-

duce the uncertainty, an additional experiment for two step optimization

was conducted. Thus, the entropy was calculated for both initial particle

set and the set updated after the grasp execution. Three different grasp

configurations were chosen according to their predicted entropy values.

These grasps as well as the predicted entropy landscape for different ac-

tions are depicted in Figure 3.6. After performing the grasps object at-

tributes were updated and entropy values were recalculated. Although

using weight-based entropy estimation the resulting absolute entropy val-

ues are not comparable over time, the prediction correctly preserved the

order, that is, the case where the smallest entropy was predicted resulted

in the smallest entropy and vice versa.
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(a) The shape of the entropy function for 2DOF case: red circle

- configuration with a smallest entropy(best grasp); green triangle -

configuration with a small entropy(good grasp); magenta triangle -

configuration with a large entropy(worst grasp).

(b) Grasps with different entropy values

Figure 3.6. Two step optimization experiment
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To study that the stochastic approach is applicable for entropy estima-

tion one more experiment was performed. The goal was to analyze be-

haviour of the entropy function dependent on the number of iterations in

the estimation procedure. The entropy estimates were computed for the

cube in case of 1DOF uncertainty in x coordinate for 1000 and 10000 itera-

tions. The results showed that in both cases the entropy change behaviour

is similar. Moreover, an error in best grasp location is not high for the case

of smaller number of iterations. However, for the case of 1000 iterations

the function is smooth in general, but contains some noise peaks because

of randomness. Thus, to obtain smoother behaviour more iterations can

be performed.

To justify the choice of a weight-based technique for entropy estima-

tion a comparison with a kernel-based method was performed. To demon-

strate that more computationally efficient weight-based estimation pro-

vides similar results to more complicated and time consuming kernel-

based estimation the ”surface maps” of the entropy using both approaches

were built. The hills and valleys in both cases are in the same locations,

which confirms that the results are consistent. Thus, the simpler and

computationally more efficient weight-based technique provides results

similar to the kernel-based method and, therefore, it should be preferred.

3.4 Discussion

Publications II-IV propose a novel probabilistic framework for sensor-

based grasp planning. The framework allows planning for stable grasps

while simultaneously reducing uncertainty about the environment. All

models used within the framework are purely data-driven, so perfect knowl-

edge about object and manipulator attributes is not required. Two ap-

proaches utilizing general framework were presented. The first one is

based on stability maximization. The second one extends the first one

by employing an entropy-based exploration procedure, which allows the

interplay between information gathering and maximizing grasp stability.

Both approaches are demonstrated using MCMC methods, particle rep-

resentation for object attributes, and PSO for optimizing the grasps. A

computationally efficient and simple weight-based technique is used for

entropy estimation. Results of experiments conducted in simulation lead

to the following conclusions. First of all, the proposed probabilistic grasp

planning framework improves the grasp quality, as each successive grasp
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increases the grasp stability probability by reducing the uncertainty in

the object’s pose. Both approaches successfully prove the viability of the

probabilistic grasp planning framework and provide reasonably good re-

sults for different test objects, which indicate that both of them can be ap-

plied for different grasp planning tasks. The resulting posterior distribu-

tions are adequately dense in both methods and stability probabilities are

improved with each subsequent grasp attempt. The extended exploratory

framework outperforms basic stability maximizing framework in both sta-

bility probabilities and quality metrics. Thus, an information gathering

step reduces more efficiently the uncertainty about an environment when

the predicted success probability is low. Additionally, real experiments

confirm the viability of the framework and demonstrate the benefits of

utilizing an exploration procedure.

Despite the promising results of the framework more experiments both

in simulation for repeatability and especially on a real platform should

be conducted. Only stability maximization approach is experimentally

validated, which is enough to demonstrate the viability of the general

probabilistic approach. However, the entropy minimizing approach could

be also tested with a real robot and different test objects. The approaches

are tested on a small set of mostly simple-shaped objects. Thus, the frame-

work could be verified using more complex objects. The major simplifica-

tion of the paper is the modeling of the grasping. Only top grasps are

considered. So, the issue of higher-dimensional uncertainty is an impor-

tant point to be addressed in the future work.

To improve the performance of the framework the probabilistic models

can be modified. For example, grasp stability probability model P (S|A,O)

could be extended to include tactile measurements P (S|A,O,M), which

already was done in [40]. Adding sensor readings could benefit pose and

stability estimation, as, for example, it would allow measuring contact

surface types and shapes. Including a motion model into the framework

would allow more accurate detection and tracking of the changes in the

object pose during grasp attempts. One possible direction of extension is

multi-step optimization, where the goal is to find a sequence of actions

which maximize a success metric in a time horizon. Another direction is

to modify the framework to deal with other types of uncertainties, like

object shape and category as well as looking at the task-specific grasps.

This direction is studied in Publications V-VI.
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4. Category-based grasping

Object manipulation and especially grasping are important abilities for

a robot acting in an unstructured environment. Many everyday objects

share common features and characteristics, so that they can be grouped

into categories. When a robot is required to grasp familiar objects, one

can speak about category-based grasping. For manipulation and grasp-

ing tasks such natural criteria for categorization is functionality aspects,

object’s utility in performing a certain task [83]. Similar objects can be

grasped in a similar way. Moreover, grasping can be constrained by a par-

ticular task, e.g. pouring or transporting. Thus, category-based grasping

is closely related to task specification, because particular tasks cannot be

performed with arbitrary objects, but only with objects belonging to a spe-

cific category. This chapter is focused on task-specific grasping of similar

objects from a known category using visual information as well as utiliz-

ing tactile feedback.

4.1 Related work

Category-based grasping is most often performed by data-driven approaches.

In case when a comprehensive database of object models and associated

grasp configurations is available the task is easy to solve - there is always

an object in the database which is a good fit for a goal object to be grasped.

However, usually such databases are not available and their construction

is a time-consuming and computationally intensive task. More than that,

finding a similar object in the database is not trivial, because real mea-

surements obtained from sensors are partial and noisy and fitting such

data is difficult.

A broad review of data-driven approaches for grasp synthesis and method-

oligies for grasp sampling and ranking is provided by Bohg et al. in [11].
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Speaking about grasping familiar objects they distinguish the following

categories of methods: discriminative approaches, which learn a discrim-

inative function to separate bad and good grasp configurations, methods

for grasp synthesis by comparison, in which grasp hypothesis for a spe-

cific object are found by searching for a similar object or its graspable part

in the database containing associated good grasps, and approaches, which

learn generative models of the whole grasp process.

Discriminative approaches mainly differ in object features which are

used and also in a way how grasp candidates are parametrized. Some

methods consider only graspable parts of objects, others learn multiple

contact points or full grasp configurations.

Among approaches which are based on 3D data the study of El-Khoury

and Sahbani [84] can be mentioned. They present a method which imi-

tates human choice of the graspable component of the object, its handle.

First, the object is decomposed into parts and each part is approximated

by a superquadric. An artificial neural network is used then for classifi-

cation. A grasp can be obtained by computing force-closure grasps on the

handle. Pelossof et al. [85] use a single superquadric to approximate an

object. They utilize Support Vector Machine to define what is a good grasp

for a robot hand. Both of the aforementioned approaches were experimen-

tally validated only in simulation with the assumption that precise 3D

object models are known.

Boularias et al. in [86] propose a probabilistic approach for grasp learn-

ing based on Markov Random Fields. The goal of the method is to find the

maximum a posteriori labeling of point clouds for new objects. Although

the method also relies on 3D data for learning, it was tested not only in

simulation, but on real 3D scans of different types of objects. However, it

remains unclear how the approach would generalize to more object classes

and sensor data.

There are number of techniques which mainly rely on more simple 2D

data to distinguish bad and good grasp locations. For example, Saxena et

al. in [87] propose a grasp learning algorithm that predicts points where

to grasp an object as a function of images. Instead of using labeled train-

ing dataset as in [87], Montesano and Lopes in [88] present an algorithm

that actively learns good grasping points by autonomously exploring dif-

ferent feature values on different objects. The approach combines beta-

binomial distributions and non-parametric kernel technique to define full

grasping probability distribution. The approach was tested using a real
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humanoid platform.

Even though algorithms that utilize 2D data are easier to implement, it

is not always possible to infer a full grasp configuration using 2D alone

as the problem is underconstrained. That is why the approaches that use

both 2D and 3D visual data allow to learn functions that can take more

parameters of a grasp into account. For instance, Saxena et al. [89] ex-

tend their earlier work [87] by incorporating 3D point cloud features in

addition to 2D features, which enhances the prediction of grasp stability

and allows to infer more grasp parameters like approach vector and fin-

ger spread. Rao et al. in [90] utilize segmentation on color and depth cues

in order to achieve good classification rates. They employ a supervised

learning method using both image and depth data to determine whether

a given segment is graspable or not. Le et al. in [91] propose a method

that learns the most stable fingertip placements. They apply Support Vec-

tor Machines to learn grasp hypotheses using relevant features extracted

from both 2D and 3D data. Bohg and Kragic in [92] present a method that

instead of local features apply the concept of shape context, which encodes

global 2D object shape. For learning they use a supervised learning ap-

proach, in which the classifier is trained on labeled synthetic images.

A second group of approaches is based on finding similar objects or their

parts in an experience database for which good grasp configurations are

available. Thus, Curtis and Xiao in [93] build a comprehensive knowledge

base for grasping consisting of 3D object types in simulation environment.

The types are represented using Gaussian distributions over basic shapes.

To infer a good grasp for a new object its low-level features are used to find

the most similar type in the knowledge database.

Higher-level features are utilized by Hillebrand and Roa in [94]. They

propose a method for transferring grasps between objects of the same cat-

egory through warping the surface geometry along with the contact points

of a grasp. The warped contacts are, then, locally replanned to ensure

grasp stability. The approach is tested only on one mug category. More-

over, full 3D models for both source and target objects are required, which

might not be always available. Failures on the most dissimilar mug show

that the method generalizes poorly in case of large shape variability in-

side a category. Ben Amor et al. in [95] adapt the similar idea of contact

warping onto new objects. They present an imitation learning approach

for learning and grasp generalization based on human demonstrations.

They demonstrated the approach on a real robot and objects from a mug
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category. However, their goal is not to find stable grasp configurations but

to generate reach-and-grasp actions.

Recently, Stouraitis et al. [96] extend the work in [94, 95] to include

functional grasps and tests on a wider set of objects. They modify the

warping process to avoid mapping the complete geometry of the source

and target objects. The approach exploits global and local shape simi-

larities to wrap contact points. However, the method still requires full

3D object models and requires improvements in functionality prediction.

Moreover, the authors validate the approach only in simulation environ-

ment.

Few studies are devoted to learning generative models for grasp syn-

thesis that is based on identifying common structures from a number of

examples. On example is given by Montesano et al. in [97], where they

address the problem of learning affordances through robot-environment

interaction. The general model utilises Bayesian networks to capture de-

pendences between actions, objects and effects and to infer causality rela-

tionships. The method was validated in an imitation game, where a robot

should repeat an effect demonstrated by a human with a a object. Thus,

a robot should perform inference in the learned network to choose the ac-

tion with the highest success probability. Song et al. in [64, 98] consider

the problem of inferring full grasp configuration using object category to-

gether with task constraints as variables in the Bayesian network. The

effectiveness of the approach was demonstrated using synthetic data and

human hand model only.

In real-world scenarios a good grasp should not be only stable but it

should be suitable for a particular task to be performed with an object.

Thus, task constraints should be accounted during the process of grasp

synthesis. Traditional approaches study task-specific grasping mainly in

the force domain [3, 6]. Le et al. in [99] describe a data-driven approach

to grasp synthesis. They begin with constructing a database of human

grasps. To identify candidate grasp they introduce a shape-matching al-

gorithm that utilizes shape features that contain contact normal informa-

tion. Finally, they perform a task-based pruning using an anatomically-

based grasp quality metric. The approach is dedicated for human-like

hands only and was tested just in virtual environments.

Usually, both category and task should be accounted in order to find

a useful grasp [64, 98]. Dang and Allen [100, 101] propose an example-

based approach to generate semantic grasps, stable grasps that are func-
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tionally stable for a specific task. An affordance semantic map relates

local object features to a set of predefined semantic grasps for different

tasks. The resulting grasp is synthesized using the Eigengrasp planner

[102]. The approach was demonstrated both in simulation and on a real

platform. Nevertheless, the method requires full 3D models of objects.

In case when only partial sensor data is available a full object model can

be estimated from multiple observations. Goldfeder and Allen in [103]

use only synthetic data to construct a knowledge base and also utilize

the Eigengrasp planner to generate grasps. Nevertheless, they utilize

observations from real sensors to look up the most similar object and its

pose in the database.

Some approaches combine 3D partial data and 2D images [104, 105].

They account for object category and task, but grasps are generated for

objects that already exist in the database. Bohg et al. in [106] present

an approach towards autonomous grasping of objects according to their

category and a given task that also uses both 2D and 3D data. The grasp

is predicted by a Bayesian network using only the most similar object

model from the database.

The way how object and grasps are represented plays an important role

in transferring grasps between objects. Recently, Pokorny et al. [107, 108]

present a novel representation, the Grasp Moduli Space, in which objects

are parametrized using smooth differentiable functions. This space can

be utilized to continuously deform various surface/grasp configurations in

order to generate grasps for a new object. However, the method is appli-

cable only for objects without holes and full point clouds, as the smooth

parametrization deteriorates when only partial data is available. Detry et

al. in [109, 110] construct a low-dimensional space in which object parts

with a similar shape are close to each other. The aim is to generalize

grasps to novel objects by defining the object parts by which objects are

often grasped. The overall shape similarities and object categories are not

considered in the process. The method was tested using synthetic data as

well as on a robot using real sensor measurements.

The approach proposed in Publications V belongs to the class of grasp-

ing familiar objects and more specific to the group of grasp synthesis by

comparison. Unlike other grasp synthesis by comparison approaches dis-

cussed earlier the proposed framework does not require full 3D models

for test objects. The method uses partial sensor data only and does not

require the construction of a large database of models. What is distin-
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guishes the proposed framework from all aforementioned methods is that

the approach accounts for all training objects in the category during the

optimization process, which allows to better generalize for new objects

and handle larger shape variations.

The general methodology of maximizing grasp stability under uncer-

tainty is presented in Publications II-IV. The vision-based approach for for

task-specific grasping of novel objects from a known category presented

in Publication V adopts the similar concept with different realization con-

sidering uncertainty in object’s shape instead of pose. Publication VI ex-

tends the probabilistic framework from Publication V by incorporating

tactile feedback in order to improve the estimate and sequentially replan

increasingly stable grasps.

4.2 Task specific vision-based grasping

In many applications optimal grasps should not be only stable in physical

aspect but also viable for a particular task. For instance, tools such as

screwdrivers, knives or hammers, need to be grasped by their handles

to use them. Task specific grasping is closely related to category-based

grasping, because in real scenarios a specific task can be performed only

with objects from a particular category.

A probabilistic approach for task-specific stable grasping of objects with

shape variations inside the category is proposed in Publication V. Firstly,

the approach is able to generalize from a sparse set of example objects and

associated grasps to novel objects from the same category. Moreover, the

method does not require full 3D object models, it operates with incomplete

measurements from a single RGB-D image. The main contributions of the

work are: (a) the idea of maximizing grasp stability is modified to cover

the shape uncertainty; (b) the method accounts for all training objects

during optimization step, which ensures better generalization for new ob-

jects and allows to cope with larger shape variations; (c) unlike most data-

driven techniques the approach deals with a sparse training set; (d) the

method exploits partial point clouds obtained from a single RGB-D snap-

shot. To concentrate on grasping, such problems as category recognition

and detection of affordances were left out the scope of the work.

The general framework for task-specific category-based grasping can be

informally described by the diagram in Figure 4.1. The procedure consists

of offline and online parts. During the offline stage a training set together
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Figure 4.1. Category-based grasp generation framework: OFFLINE stage: 1) the
training set of objects, that expresses shape variability, is chosen; 2) task
specific grasps for each object are obtained (i.e. using user interaction), rel-
ative poses and corresponding stability metrics are stored; ONLINE stage:
1) partial point clouds for new objects are extracted from RGB-D image and
registered against each training model to obtain fitting scores (metric of sim-
ilarity); 2) fitting scores and stability weights are used during optimization
process to determine the grasp with maximum expected stability that consis-
tent with the training grasps. Adapted from Publication V.

with model grasps are generated and grasp stabilities are stored. It is

done once per each category. The online phase is executed for each new

object in the category and includes registration and optimization parts.

The output from the online operation is a task-specific grasp with maxi-

mum expected stability.

It is assumed that category of objects is known a-priori and several 3D

models from this category are given together with one or several corre-

sponding task-specific grasps. The goal of the framework is to generalize

from known examples to a novel object that is not included in the train-

ing dataset. The generalization is gained by applying a probabilistic ap-

proach to find the grasp which is maximally stable and at the same time

consistent with a given task accounting for shape differences and possible

variability in grasp location.

The general model for finding an optimal grasp as the maximum of the

expected gasp stability and task compatibility over object shape variabil-

ity can be described by the following equation

argmax
A

E[P (S ∧ T |A, δ)] = argmax
A

∑
i,k

P (Ti,k|A,Oi; θi,k)P (Si,k|Oi)P (Oi|δi) =

argmax
A

∑
i,k

P (A|Ti,k, Oi; θi,k)ψ(qi,k)φ(δi),

(4.1)

where A is a 6DOF pose of the robot hand relative to the object, S denotes

grasp stability and T denotes task constraint compatibility. P (Ti,k|A,Oi; θi,k)

is a probability that a grasp located at A is task compatible given model

grasp location θi,k. P (Si,k|Oi) ≡ ψ(qi,k) is a probability (stability weight)
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that the training grasp k for model i is stable as a function of stability

metric qi,k. P (Oi|δi) ≡ φ(δi) denotes a probability (fitting weight) that

the model i can be used to generate grasps for the target object with fit-

ting error δi obtained from the registration. The final equation can be

obtained by applying the Bayes formula with uniform prior to the first

term and omitting normalization terms because of maximization. For the

density function P (A|Ti,k, Oi; θi,k) three options were studied: Gaussian

distribution, regularized Gaussian distribution (to avoid local optima) and

Laplace distribution. For a more detailed description and formulation of

model distributions the reader is referred to Publication V.

To find a stable task compatible grasp for a new object inside the cate-

gory, a numerical optimization approach constrained by the environment

geometry was applied. The process repeated the number of times equals

to the number of training objects each time starting at the grasp con-

figuration generated for the model object (local optimal solution). This

process ensured that the final grasp would be in the neighbourhood of

the grasps for the similar objects in the database. Finally, the result cor-

responding to the maximum of the objective function was selected. To

obtain fitting weights the registration procedure was performed. A sin-

gle RGB-D snapshot from a Kinect stereo camera was used to obtain a

partial point cloud of an object after applying a planar supporting surface

heuristic. Fast Point Feature Histrogram [111] and Iterative Closest Point

algorithm [112] were used for alignment. More details about registration

are given in Publication V.

The approach was tested both in simulation and using a real robot. The

experiments in simulation were conducted in order to show that using

several models in order to generate stable grasp is more beneficial com-

pared to utilizing just the best match object. More than that, several

task-specific grasps were generated to see how the method generalizes

over several categories and tasks. Graspit! simulation environment with

Barrett hand model were chosen for the experiments. Columbia Grasp

Database [9] with object models from Princeton Shape Benchmark [113]

was selected as a source for object categories. A leave-one-out cross vali-

dation was performed for two object categories: mugs (7 models) and bot-

tles (11 models). Three task-specific grasp configurations (from the top,

side and handle) for the mugs and one configuration (from the side) for

the bottles were generated in simulation. Both object and robot hand

poses together with automatically generated epsilon quality measures
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were stored for these grasps. The approach based on selecting the grasp

corresponding to the best match object in the database with the highest

fitting score (best single grasp) was used as a baseline approach for meth-

ods comparison. The registration part was performed using Point Cloud

Library, and the algorithmic part was implemented in Matlab.

Experimental results with mug and bottle categories using both pro-

posed framework and baseline best single grasp approach showed that

the new approach using Laplace distribution outperformed the baseline

technique for both mugs and bottles. The basic Gaussian approach per-

formed the worst because of getting stuck in the local optima and was not

used later in the real experiments. Regularized Gaussian approach just

slightly outperformed the baseline. Thus, to show the advantages of the

new approach, experiments on a real platform were conducted. Moreover,

there could be a bias in the simulation results because of utilizing com-

plete models of target objects. However, in failure cases baseline approach

most often initially collided with the object or did not touch it at all. In

case of regularized Gaussian and Laplace approaches the main problem

was the lack of precision, so that small perturbations in robot hand loca-

tions could make such grasps stable.

An additional experiment with tools (4 hammers and 2 knives) was con-

ducted in order to show that the proposed approach is able to generate

stable grasps not only for objects inside the same category but also for

other objects similar to the training models. Both hammer and knife have

elongated shape and can be divided into handle and working parts. One

grasp from the handle was manually generated for hammers as train-

ing data. As a result of the experiment, the task-specific category-based

technique outperformed the baseline approach and found stable grasps

for both knives. Thus, the proposed approach was able to generate stable

grasps for objects from the other class, which are similar to the models in

the database.

A KUKA LBR4+ robotic arm with a 3-fingered Barrett BH8-282 hand

was used for real experiments. The testing set consisted of 5 mugs vary-

ing in shape and size. The training set was the same as in simulation. The

stability of the grasp was evaluated from human observations after lifting

and manually disturbing the object. The experimental results demon-

strated that the proposed approach outperformed the baseline method

with both distribution types, with the Laplace method performing the

best. For the proposed approach the most frequent reason for failures was
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reachability problem, when the robot was not able to find an Inverse Kine-

matics solution. This problem can be solved by including more constraints

in the optimization process. The baseline approach failed the most often

because of shape dissimilarities. In this case the best match model in the

database considerably differed from the target object in size or shape. The

proposed approach avoided this problem because it accounted not only the

most similar model but all training objects. Figure 4.2 shows an example

for one mug when the baseline approach failed and the Laplace approach

was able to find stable grasp. More experimental details can be found in

Publication V.

Figure 4.2. Resulting grasps: (left) Best single match; (right) Laplace model.
Adapted from Publication V.

To further analyze the proposed method it was studied how the use of

several models changes the grasps. For this purpose real object point

clouds were registered with the models, then the grasp was optimized

and projected back to the models using the corresponding registration re-

sult. The goal was to see how the resulting grasp differs from the model

grasps. Figure 4.3 illustrates grasps generated for one of the testing mugs

projected back to model objects. The main observations from the experi-

ments were: resulting grasps differ from model grasps (the approach in-

terpolates over multiple models and provides a degree of generalization);

the registration can fail for single object model as the fitting weight is not

able to capture if the object was registered correctly (i.e. model 3 in Fig-

ure 4.2 was registered upside down), but the use of several models can

solve this problem; small fitting weights often indicate registration fail-

ures (see model 4 in Figure 4.2), however, low probabilities decrease the

effect of such models on the final grasp.
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Figure 4.3. Resulting top grasps generated for the white mug: (left) model grasp;
(center) regularized Gaussian model; (right) Laplace model; fit_weight - fit-
ting probabilities (weights). Adapted from Publication V.
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4.3 Using tactile feedback to improve the performance

The framework presented in Publication V was extended to incorporate

tactile sensor feedback in order to improve the estimate and to sequen-

tially replan increasingly stable grasps. Experimental results showed

that the initial approach described in Publication V sometimes produces

partially stable grasps. Vision is able to provide an initial estimate for

the grasp, but because of sensor errors and self-occlusion it is not ac-

curate enough to ensure the stability of the resulting grasp. The mod-

ified approach combines the ideas of planning for maximally stable and

task compatible grasps, using vision for producing initial estimates, and

tactile-based grasping. Knowledge about object parameters such as shape

and pose, represented by probability distributions over the model objects,

are updated based on collected tactile feedback. Thus, if the grasp re-

sulting from the vision-based approach is not sufficiently stable, tactile

information is used to replan the most stable task-specific grasp.

The overall process of finding an optimal grasp for the new object in-

side the particular category can be expressed by the sequential pipeline

shown in Figure 4.4. The upper part of the diagram corresponds to the

basic visual-based approach presented in Publication V. The lower part

conforms to the updates based on the tactile feedback.

The extended approach updates object shape and pose estimates by max-

imizing a posteriori probability given tactile measurements, current esti-

mates and executed grasp configuration. Mathematically the process of

model updating from time t− 1 to t can be expressed by:

argmax
wi(t),�pi(t)

P (wi(t), �pi(t)|M(t), G(t− 1), wi(t− 1), �pi(t− 1)) = (4.2)

argmax
wi(t),�pi(t)

P (M(t)|wi(t), �pi(t), G(t− 1))P (wi(t− 1), �pi(t− 1)), (4.3)

where wi(t) is a shape goodness-of fit weight (probability), �pi(t) is an ob-

ject pose for each model i, M(t) denotes tactile measurements and G(t)

indicates a grasp configuration. The resulting Equation (4.3) is obtained

by applying the Bayes formula and omitting constants which do not affect

the maximization.

The update of shape and pose attributes is performed independently.

First, goodness-of-fit weights and tactile measurements M = m̂ are fixed

and object poses �pi are optimized. To find the pose a standard uncon-

strained nonlinear trust-region optimization approach is used to maxi-
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Figure 4.4. Combined framework for task-specific grasping of similar objects:
Vision-based technique provides initial estimates of objects parameters ex-
pressed by shape goodness-of-fit weights (probabilities) wi(0) and object poses
�pi(0) for each model i. An initial grasp configuration G(0) is optimized by us-
ing visual estimates and accounting for task constraints (T) modeled as pose
similarity to demonstrated task-specific grasps. If the grasp after execution
is not stable enough tactile information M(t) is collected. Model is, then,
updated to find pose and shape estimates, wi(t) and �pi(t), with maximum
a posteriori probability using current estimates of shape and pose, executed
grasp configuration and tactile measurements. Next, grasp optimization is
repeated by considering both task specificity and grasp stability (T+S). After
that grasp is executed, new tactile data is collected and the decision about
new round of optimization is made. Adapted from Publication VI.
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mize the probability

�pi(t) = argmax
�pi

P (M = m̂|�pi(t), G(t− 1))P (�pi(t− 1)), (4.4)

The probability of measurements is modeled using GPR and FITC (to re-

duce computations) with data from simulation. The prior about the pose

is modeled using a Gaussian distribution. After all new poses �pi(t) are

found, goodness-of-fit weights can be updated for each model i as a ratio

of the likelihood of each model to the total likelihood

wi(t) =
P (M = m̂|�pi(t), G(t− 1))∑
i P (M = m̂|�pi(t), G(t− 1))

. (4.5)

The process of updating poses and fitness weights can, then, be iterated

in order to improve the resulting grasp configuration.

The updated object pose and shape estimates are further utilized dur-

ing grasp optimization. The general model for finding stable task-specific

grasp can be formulated as:

P (S ∧ T |G,w, �p) = P (S|G,w, �p)P (T |G,w, �p) (4.6)

The main assumption is that stability is independent of task constraints

given object poses and goodness-of-fit weights. The task compatibility is

defined as similarity to manually generated task-specific grasps and is

modeled by a sum of Laplace distributions, each centered at a demon-

strated grasp. The stability probability is modeled using GPR and is eval-

uated using the negative exponential mapping function. All equations

and detailed descriptions of the models used in the approach are given in

Publication VI.

To test the hypothesis that tactile feedback can increase the quality of

the grasps, experiments in simulation were conducted. Graspit! simu-

lator in combination with Matlab and models from CGDB mug category

were used as experimental setup. 100 top grasp configurations were ran-

domly generated in the manually defined area to approximate the re-

sults from the vision-based approach. Cross-validation leave-one-out test

was applied with the mugs. GPR was used to construct the probabilistic

models of tactile measurements (finger joint angles) and stability of the

grasp. The process of generating data for GP and defining hyperparame-

ters is discussed in Publication VI. In general the experiment followed the

flowchart shown in Figure 4.4. Out of 100 trials 45 resulting grasps be-

come more stable than initial grasps, 34 less stable and 21 remained the

same (both initial and resulting grasps were unstable). Overall the proce-

dure improved the quality of the grasps, because the approach resulted in
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25 stable grasps having initial unstable guesses and failed to find stable

grasps for initial stable proposals only in 21 cases. For equal and worse

groups of grasps tactile information collected from only one grasp was not

able to decrease the uncertainty in the model poses. To see how the re-

sults can be further improved using the proposed approach another two

rounds of optimization were performed. From totally 42 initially unsta-

ble grasps 15 stable grasps were obtained after the second round and 5

more after the third round. This demonstrated the ability of the method

to collect more information about an object and, as a result, incrementally

improve the quality of the grasps over the time horizon. The sequence of

sequential improvements of grasps is illustrated in Figure 4.5.

Figure 4.5. Sequence of resulting grasps: (left) initial unstable grasp, (middle) un-
stable grasp after first round of grasp optimization, (right) stable grasp after
second round of grasp optimization. Adapted from Publication VI.

To study the superiority of the combined approach over the purely vision-

based technique and to show how the grasp quality can be improved after

collecting more tactile information experiments with a real robot were

performed. A KUKA LBR4+ robotic arm with a 3-fingered Barrett Hand

BH8-282 were utilized in experiments. Similarly to the previous study

the table-top scenario and top grasp configurations were considered. The

test set consisted of 8 mugs varying in shape and size, and also differing

from the training models (the same CGDB mugs as in simulation). For

real experiments the models using GPR were rebuilt with different mean,

covariance and hyperparameters. This step is described in Publication VI

experimental part. The combined approach was tested by following the

general procedure described by equation 4.6. The search was performed

in 4DOF space (top configuration fixed 2DOF). First, the modified vision-

based approach was applied, the resulting grasp was performed and it

was decided continue or not. If the grasp was unstable the tactile up-

date was performed and the stability was checked again. If the grasp

was still unstable, a second round of optimization was applied. If at any

stage the grasp was considered stable, the mug was lifted and the stabil-

55



Category-based grasping

ity was checked manually. For all objects 2 or 3 trials were done (totally

19 sequences). The baseline approach succeeded only in 3 of 19 cases,

the modified approach improved 5 out of 16 grasps already after the first

round and 6 out of 9 (2 grasps failed during the first round) after the

second round. Figure 4.6 shows a sequence of resulting grasps. Thus,

Figure 4.6. Resulting grasps (3 steps sequence): left - vision-based approach, middle
- combined approach (first trial), right - combined approach (second trial).
Adapted from Publication VI.

the modified approach incrementally improved the quality of the grasp by

collecting more information about the graspable object. The most typical

failure case was when the mug slipped out the hand after closing the fin-

gers. This problem can be solved by modifying the closing hand procedure.

4.4 Discussion

In Publication V, a novel approach for task-specific stable grasping of ob-

jects with shape variations inside a category was presented. The method

accounts for all training objects during the optimization according to their

importance based on fitting and stability aspects, which ensures better

generalization properties to handle larger shape variability compared to

the traditional approaches based on most similar model’s grasp. The pro-

posed method is close to data-driven approaches during the model build-

ing stage, but it does not require a construction of a large experience

database as it operates already with a single task-specific stable grasp

per object. Because of its probabilistic nature the general model for find-

ing stable grasps for familiar objects can cope with shape uncertainties

and is able to find a grasp that is at the same time the most stable and

task compatible. The experimental results with tools showed that the ap-

proach can generalize also for similar objects from different categories.
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The results from the simulation and on a real platform demonstrated

the superiority of the new approach over the baseline best match grasp

technique. So, these findings demonstrate the ability of the statistical

data-driven approach to generalize from individual examples. This can

be treated complementary to approaches that perform deformable shape

alignment or grasp adjustment to achieve generalization. However, the

advantage of the statistical approach is that it can deal with partial data

of the target object, which is a challenging task for deformable alignment.

Nevertheless, they are several open problems in applying the approach.

First of all, the reachability problem that can be solved by modifying the

set of constraints in the optimization part. Secondly, the registration pro-

cedure should be improved to provide better results in case when there is

no perfect match between the target and model objects. Partially stable

grasps (objects moved a bit inside the hand during lifting) can be improved

by performing further adjustments. One possible way, which was imple-

mented in Publication VI is to collect sensor measurements, e.g. from tac-

tile sensors, and use this feedback to replan the grasp. In Publication V

an object category is assumed to be known. The study can be extended to

deal with uncategorized objects and as a first step perform category recog-

nition. Moreover, the detection of affordances, i.e. if an object affords a

particular action, is not considered. The task-based criterion of a grasp

comes from human demonstration and represents a label for the training

data. However, this criterion can be learned from human demonstrations,

e.g. [64, 98].

In Publication VI the vision-based method for task-specific grasping of

objects from a known category was modified to include tactile feedback

in order to improve the quality of the grasp. Thus, the new approach

combines RGB-D and tactile measurements in a probabilistic framework

which allows to decrease the uncertainty about object pose and shape by

incrementally collecting more information about the object and generat-

ing more stable grasps. The approach accounts for both task constraints

learned from human annotated grasps and grasp stability modeled us-

ing GPR. Experimental results demonstrated that including tactile mea-

surements in the optimization process can improve the grasp performance

over vision even for objects significantly varying in shape. More than that,

further iterations of collecting tactile experience can further improve the

grasp quality in case when earlier grasps are not satisfactory.

To improve the performance of the method and avoid failure cases the
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closing fingers procedure can be modified, e.g. by slowing down the robot

motion. The generalizability of the approach has not been experimentally

studied. Thus, experiments with categories other than mugs should be

done to verify the generalization boundaries of the framework.
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5. Conclusion

This dissertation concentrates in developing approaches to address the

challenges in grasp planning for known and familiar objects under dif-

ferent types of uncertainty such as object location and shape by perceiv-

ing the environment using sensors. Prior grasp planning approaches of-

ten assume perfect knowledge about target object attributes. However,

in real applications geometric models of the objects are often incomplete

and inaccurate. Firstly, the lack of exact geometric information can be

compensated by sensory feedback. Moreover, probabilistic formulation of

grasp planning can provide a robot with the capability to cope with un-

certainties. Application of probabilistic models in robotic manipulation

is a prominent direction because probabilistic models allow to represent

uncertain beliefs and some of them can handle even multi-modal uncer-

tainties, e.g. in tactile manipulation because of the local nature of tactile

measurements. The publications in this thesis propose methods that in

presence of uncertainty in object attributes allow to find stable and useful

grasps.

The initial research towards grasp planning under uncertainty was pre-

sented in Publication I by looking at how much information a robot can

optimally learn from a single tactile exploration attempt. Going further,

Publication II proposed a probabilistic approach for grasp planning under

pose uncertainty using on-line sensory information and simultaneously

updating the knowledge about object attributes. MCMC methods were

utilized to sample the evolving probability distributions and Bayesian ap-

proach was used to obtain the result by marginalizing over the current

knowledge. The core of the approach was a Bayesian network for object

knowledge refinement based on grasp stability maximization that mod-

elled the relationships between object attributes, action (grasp) attributes,

on-line sensor readings and success metric. This general framework al-
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lowed to accomplish statistically optimal grasp planning, while simul-

taneously reducing uncertainty about the environment. The model can

be further extended to include more dependences between variables. In

Publications III-IV an extension of the basic stability maximizing frame-

work was developed. The modified approach unified the ideas of stabil-

ity maximization, information gathering by minimizing the entropy and

using sensor’s feedback. An information gathering was performed by ex-

ploratory entropy-based procedure. An efficient discrete entropy estimate

that uses only particle weights was proposed to measure the entropy of a

distribution of the object pose attributes represented by a set of particles.

Thus, the combined approach allowed to alternate between stability max-

imization and entropy minimization that allowed to improve the stability

of the resulting grasp by decreasing the uncertainty in knowledge about

object attributes.

All aforementioned techniques were focused on grasping known objects.

The studies in Publication IV-V were concentrated on grasping familiar

objects belonging to the same known category. Moreover, the task aspect

was also taken into consideration because usually the target grasp should

be not only stable but compatible for a particular task to be performed

with an object. A task-specific category-based probabilistic method de-

scribed in Publication IV allowed to generalize from a sparse set of train-

ing examples to novel objects. The idea of stability maximization from

Publication II was taken in the new context to cover shape uncertainty.

An approach used RGB-D vision data and dealt with partial point clouds.

An approach in Publication VI extended the vision-based method by incor-

porating tactile sensor feedback in order to iteratively improve the beliefs

about unknown object pose and shape and to generate better grasps.

The experimental results in simulation and on a real platform showed

the viability of the proposed methods. More experiments with other test

objects and categories as well as models modifications can be done in or-

der to improve the performance. In the future it would be interesting to

apply deformable object registration for a grasp planning to obtain fuzzy

correspondences by modeling the deformation between the sparse point

sets [114, 115]. In this dissertation a task for a grasp is assumed to be

known, although, the framework could benefit by including a detection of

object affordances. Moreover, grasping of unknown objects is a prominent

research area and further studies could be conducted in this direction.

The results of Publication VI showed that using both visual and tactile
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sensors is more beneficial for grasp performance comparing to a single

sensor. So, a set of sensors could be used in order to reduce the uncer-

tainty by collecting more information about a goal object and improve a

quality of a grasp. One more possible direction of progress is to go further

to multi-step optimization in order to find a series of actions which maxi-

mizes the success metric in a longer time horizon. For instance, partially

observable Markov decision process [116, 117] can be used to model a

process of planning under uncertainty with imperfect sensing . Neverthe-

less, in general, the work presented in this dissertation is a step towards

creating autonomous robot which can be placed in a new unstructured

environment and which then knows how to adapt its behaviour to a new

environment in order to perform a particular task.
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Advanced robots such as mobile 
manipulators offer nowadays great 
opportunities for realistic manipulators. 
Physical interaction with its environment is 
an essential capability for service robots 
when acting in unstructured environments 
such as homes. Thus, manipulation and 
grasping under uncertainty has become a 
critical research area within robotics 
research. 
This dissertation explores approaches to 
address the challenges in grasp planning for 
known and familiar objects under different 
types of uncertainty such as object location 
and shape by perceiving the environment 
using sensors. 
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