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Abstract: 

 

Ionic liquids (ILs) are a novel class of solvents which have been in the focus of interest during the last 

few years due to their desirable properties such as high thermal stability or low vapor pressures. Some 

of them have the ability to dissolve cellulose without any derivatization. Different mechanisms are 

presented in the literatures for the dissolution of cellulose in ILs. However, the effect of the molecular 

weight of cellulose on the solubility in ionic liquid-water mixtures hasn´t been studied yet. 

The IONCELL-P is a process, which can quantitatively separate pulps into pure cellulose and 

hemicellulose fractions using IL-water mixtures. In this work we aim to explain the mechanism of the 

IONCELL-P fractionation. Ozone treatment was used to degrade cotton linter (CL) to a lower 

molecular weight range which is the same molecular weight range as the hemicelluloses and low molar 

mass cellulose in commercial pulps. The ozone treated CLs were treated with the IONCELL-P process 

using 1-ethyl-3-methylimidazolium acetate ([emim]OAc) and water mixtures. Different IL-Water 

ratios with water content between 13.5 and 19 wt% in the mixture were tested. The MMD of dissolved 

and undissolved cellulose were evaluated. According to these results, the effect of the molecular 

weight of cellulose in IL-water mixture is determining and the hypothesis of cellulose dissolution in 

ILs being based on the size of the polymers is supported.  

To validate this effect, the thesis also compares the results of the experimental data with that reported 

earlier by Carmen et al [30] for IONCELL-P fractionation in [emim] OAc-water using birch pulp, 

which contains numerous biopolymers of various chemical structures, such as cellulose and 

hemicellulose. 

 

Keywords: Ionic Liquid, Cellulose, Hemicellulose, IONCELL-P, Ozonation, Cellulose degradation, MMD, 

Cellulose Fractionation, IL-Water system   
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1. INTRODUCTION 

Over the last centuries, rapid progress in the health sciences and life style 

improvements have led to a dramatic increase in the world‟s population. This has 

significantly increased the demand for food and textiles. Since available fertile 

farmland is restricted, new sources of raw materials will be required to meet the 

demand of the textile and food industry [1].  

Traditionally, cotton has been a key plant due to its vast number of applications. 

Recently, the price of the cotton fiber have risen significantly because of the growing 

demand rate for cotton fiber and limitation of supply sources [2]. For several years, 

this growing trend in fiber demand has been met by petroleum based synthetic fibers. 

However, the new approach to clean technologies and the environmental issues have 

pushed some industries to invest in finding new sources and more environmentally 

friendly methods to produce high purity biopolymers.  

 

One potential alternative to cotton is to use wood as a biopolymer source. Wood 

grows generally in forests on marginal land using natural irrigation and as a 

consequence wood has a smaller carbon footprint than cotton in addition to different 

environmental benefits. These all turned the interest of many industries towards 

wood derived dissolving pulps. Such pulps can be produced by using acid sulfite and 

pre-hydrolysis Kraft treatments, the two most common processes. . However, for 

these processes further poet-treatment is required to achieve an adequate degree of 

purity. The degree of purity is typically specified as the content of residual 

hemicelluloses and alkali resistance. Based on the harsh condition of the treatment in 

the mentioned processes, severe losses of cellulose (15-30%) that is caused by 

peeling-off reactions is reported.  [3]. 

 

The classic methods for xylan (a group of hemicelluloses) removal include 

hydrolysis by using steam and elevated pressure, enzymatic treatments/oxidative and 

reductive treatments. These methods are often accompanied by a certain degree of 

biopolymer degradation [4]. Defining a new environmentally friendly, economically 
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attractive process that allows recovery of hemicelluloses and dissolving pulps with 

high yields and high purity is a topic of interest in the field of biorefinery. 

IONCELL-P process shows the same desirable advantages in order to use in different 

cellulose applications. IONCELL-P is a dissolution process in which the 

hemicellulose and cellulose are selectively separated by using ionic liquid (IL)-water 

mixture. Treatment of the cellulose by using ionic liquids (ILs) is often applied as a 

pretreatment or as a complete dissolution of cellulose. Treatments of cellulose with 

different ILs such as NMMO,[emim] DMP, [emim] OAc, DBNH OAc have been 

studied over the last decades. 1-Ethyl-3-methylimidazolium acetate - [emim] OAc - 

is one of the most researched ILs for cellulose. [emim]OAc presents properties such 

as low viscosity and selectively fractionation which facilitates cellulose dissolution 

tremendously compared to several other ILs.  

Thus, understanding of the principle behavior of cellulose in ionic liquid solutions is 

essential to improve the IONCELL-P process and to commercialize this process in 

the near future. However, the effects of chemical and physical properties of 

biopolymers in ILs had not been evaluated at the time that this thesis was written. 

The aim of this thesis is to experimentally determine the effect of biopolymer 

molecule size on the dissolution of cellulose in [emim] OAc-water system under 

different water concentration. To validate this effect, the thesis also compares the 

results of the experimental data with that reported earlier by Carmen et al [30] for 

IONCELL-P fractionation in [emim] OAc-water using birch pulp, which contains 

numerous biopolymers of various chemical structures, such as cellulose and 

hemicellulose. 
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2. LITERATURE REVIEW 

This chapter describes the principles of cellulose, Ionic liquids(ILs) and the effect of 

cellulose dissolution in Ionic Liquid (IL) with different water contents as a co-

solvent. Thus, the first section of this chapter (2.1) describes the structure of 

cellulose. Sections 2.2 and 2.3 introduce wood and cotton linter as two most common 

sources for cellulose. Dissolution of these two cellulose‟s sources in IL, as well as 

the specification and structure of ILs are discussed in Section 2.4. Different 

mechanisms for cellulose degradation are introduced in Section 2.5. Ozonation  

which is the selected degradation method in this thesis to mimic the desired cellulose 

substrate is discussed more in detailed. The final section of this chapter describes the 

method used to determine the molar mass distribution (MMD) of cellulose. 

 

2.1  INTRODUCTION TO CELLULOSE 

Cellulose is the world‟s most abundant natural polymeric raw material with 

fascinating structure and properties. It took about a century before the molecular 

structure of cellulose was established [5]. Cellulose shows great chemical variability 

based on linear macromolecular chain of 1-4 linked β-D-glucopyranose structure.  

Cellulose has four different crystalline forms named cellulose I-IV. The crystal 

structure of cellulose I in native cellulose can be converted to cellulose II by 

dissolution and regeneration or mercerization [6]. The original parallel-chain crystal 

structure of cellulose I changes to anti-parallel chains of cellulose II during the 

process of regeneration or mercerization. This phenomenon happens when cellulose 

fibers are converted into swollen state and micro fibers assembly and orientation are 

disrupted. [7]. The most studied forms of cellulose are Cellulose I and II. The natural 

crystal is made up of metastable cellulose I with all cellulose stands in a highly 

ordered parallel arrangement [8].  

An anhydroglucose is the monomer of cellulose; The β(1-4)-linked dimer of two 

glucose residues is  called cellobiose, which is the structural repetitive unit of the 

cellulose chain. The hydroxyl groups on the cellulose units enable hydrogen bonding 

between two adjacent polymer chains and intra molecular bonding as well.  The 
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degree of polymerization is determined by the number of monomers which compose 

each cellulose chain (Brown et al., 1996). 

In the 
4
C1 chair conformation, the equatorial orientation of the hydroxyl groups of 

the polysaccharide chain units makes the glucose monomers very stable. Each 

cellulose chain contains a reducing and a non-reducing end: a hemiacetal structure 

and an alcoholic hydroxyl group respectively [9]. The structure of the cellulose is 

shown in Figure 1. 

 

 

 

Figure 1. The structure and the inter- and intra-chain 

hydrogen bonding pattern in cellulose I. Dashed line: inter-

chain hydrogen bonding. Dotted lines: intra-chain hydrogen 

bonding. [10] 

Degree of the crystallinity, accessibility and reactivity of the cellulose chains are 

important properties of the cellulose. The high degree of crystallinity, the hydrogen 

bonded structure and hydrophobic interactions contribute to the recalcitrance of 

cellulose towards dissolution in water and common organic solvent.  

Cellulose can be provided from different sources, and this thesis will use and discuss 

two major sources: wood and cotton plant. 

2.2  WOOD 

Wood is known as one of the best alternatives for cotton plant substitution to provide 

the growing demand for cellulose. Cellulose, hemicelluloses and lignin are three 
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major biopolymers of wood‟s structure. In addition to these three main components, 

small amount of pectin, protein, extractive and ash are defined in wood‟s structure as 

well. Depending on the source of wood, different relative proportions of cellulose 

(40-50%), hemicelluloses (20-40%) and lignin(18-25%) content are reported in pulp 

and paper references as shown in Figure 2[11]. Hemicelluloses are a branched 

heteropolymers, consisting of different sugar monomers including glucose, xylose, 

mannose, galactose and etc., with 500-3000 sugar units per molecule depending on 

their sources [12]. Lignin is relatively hydrophobic and aromatic in nature, but lacks 

a defined primary structure. Softwood lignin is mainly composed of guaiacyl units 

and hardwood lignin is composed of both guaiacyl and syringyl units [10]. 

 

Figure 2. General composition of wood [11] 

2.3 COTTON LINTER 

The cotton linter is used as a raw material in this study. Cotton linters are considered 

as a world-wide valuable cellulose raw material for paper manufacture, cellulose 

derivatives and regenerated fibers. Bleached cotton linter fibers are used for many 

applications in paper industry. The cotton linter usually is used alone or mixed with 

other pulps, for special application like technical papers, security paper, insulating 

paper, filter paper and fine paper such as art paper. Beside the use of cotton fibers in 

paper industry, cotton is also used to make a number of textile products with 

different quality and uses, these include: terrycloth, denim, cambric, corduroy, 

seersucker, cotton twill and etc. Due to the high purity of cellulose in cotton linter 

which is more than 99%, it is used in this study as a cellulose substrate that 

represents a single chemical structure. 
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The cotton plant – botanically Gossypium – is categorized as part of the Mallow 

Family (Malvaceae). By the blooming of the ripe cotton capsules the cotton fibers 

have passed three development stages known as: elongation, thickening and 

maturation to get ready for harvesting. 

The cross section of the ready cotton seed is shown in Figure 3. As it can be seen 

from this figure, there are two kind of different fibers from each cotton seed that are 

called lint and linter. The long-fibers which develop first are called lint or staple 

cotton. When the lint is formed, the shorter and thick-walled fibers are developed and 

appear as fuzz, known as linter [9].    

 

Figure 3. Cross-section view of cotton seed [2] 

Many varieties of cotton seeds based on different cotton species can be grown under 

various conditions in different environments. The most common specie is G.hirsutum 

which accounts for about 87 % of world production [13]. 

2.3.1 Morphology of Cotton linter fibers: 

Development of the cotton fibers can be divided into two stages; During the first 

stage of development that is known as elongation period, the thin membrane 

identified as „‟Primary wall‟‟ is produced. By establishing the fiber length, the fiber 

stops growing and from this point, the second stage of fiber formation takes place. 

During the second stage which is identified as the „‟ thickening stage‟‟ a different 

layer is produced on the inner surface of the primary wall. The secondary wall (S2) is 

formed during the thickening stage and is shown in Figure 4.    
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Figure 4. Morphology of a cotton linters fiber. [14] 

The cuticle layer on the fiber consists of wax and pectin material. The primary is a 

layer composed of cellulosic fibers. The majority of the secondary wall (S2) also 

consists of cellulose. The rest of the cellulose can be found in the lumen wall [15]. 

2.3.2  Cotton linter processing technologies 

 The cotton linter processing technologies can be summarized in four main stages: 

1. The cotton is harvested manually or by machine. The product in this stage is 

the cotton balls. 

2.  In roller ginning the staple fibers are separated from cotton balls. 

3. The separated staple fibers are sent to spinning and the residual cotton seed 

that contains linter fuzz is delivered to oil mills. 

4. The oil mills final product is the cotton seed oil, but besides the final product 

there are also byproducts of the process such as cotton linter, seed hulls and seed 

cake. 

Depending on type of the oil mill three different kinds of linter fibers are generated: 

first-cut, second cut and millrun. The first delinting stage results to first-cut, the 

product after a second delinting stage results to second-cut and if the oil mills 

contains only one delinting stage the produced product will be millrun linter. 

2.3.3  Raw Cotton Components 

The overall composition of the cotton fiber can be found as Table 1: 
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Table 1. Composition of linters [13] 
Cellulose 80-90% 

Water 6-8% 

Waxes and fats 0,5-1% 

Proteins 0-1,5% 

Hemicelluloses and pectin’s 4-6% 

Ash 1-1,8% 

The cellulose purity of the cotton fibers is typically around 80% and the natural 

components, such as pectins, hemicelluloses, proteins, fat, and waxes are the 

remaining percentage. A large amount of these natural and often non-natural 

contaminates are released during the linter treatment processes which consists of 

mechanical cleaning, alkaline cooking and bleaching. After the treatment and 

releasing the impurities from the linters, the natural contaminants are removed by 

boiling the linters with dilute aqueous sodium hydroxide in an inert atmosphere. 

After cooking and bleaching, the fiber is 99% cellulose. The degree of 

polymerization of cellulose from cotton is 9,000-15,000 [16]. The degree of 

polymerization (DP) of the cellulose can be adjusted by the selection of temperature 

and caustic soda concentration during the alkaline cooking. The final cotton linter 

cellulose is free of lignin, low in ash, carbonyl, carboxyl and aldehyde groups [9,17]. 

2.3.4 The Degree of Polymerization of cellulose 

The degree of polymerization (DP) for some natural cellulose samples may reach 

value of more than 15000. The pre-treatments and other main treatments may cause 

change in this value. The DP of different types of cellulose is shown in Figure 5. 

 

Figure 5. Degree of polymerization (DP) of different types of cellulose 

[18] (BC: bacterial cellulose, BMCC: bacterial microcrystalline 

cellulose, MCC: microcrystalline cellulose, CL: cotton linters, NC: 

natural cotton). 



9 
 

High molecular weight celluloses are often used in industrial application as 

polymeric component due to their rheological and structure-forming properties. 

However, studying the phenomena related to dissolution processes and the 

interaction of cellulose with other biomolecules cannot be done with high molecular 

weight samples. In addition, a higher DP will mean a longer chain length of the 

cellulose and consequently increase different accessibility of hydroxyl groups for 

reagents. Thus, to study the cellulose behavior in different systems, low molecular 

weight (lmw) mimics with low DP is highly required.  These lmw celluloses should 

be well suitable for the analytical characterization of IONCELL-P process. 

2.4  IONIC LIQUIDS (ILs) 

Recently, finding new alternatives to solvents with serious environmental problems 

has attracted much research interest. Solvents are usually used in large amounts and 

most of them are volatile liquids. In contrast, ionic liquids are room temperature salt 

fluids containing only ions; IL usually consists of large organic cations and small 

inorganic anions. Since the vapor pressure of ILs is very low and they are non-

volatile, using ILs in high-vacuum systems can help to avoid containment problems 

in the systems [19]. Due to these specifications, ILs are suitable candidates to replace 

current solvents used in several novel applications and pushes these processes 

towards clean technologies. Target applications for ILs include catalytic synthesis 

[20]; separation [21]; cellulose treatment, polymerization [22] and nanotechnology 

[23].  

Since ILs has been used in several different processes, various articles have been 

published which are focused on synthesis of ILs for specific use such as cellulose 

fractionation. ILs have many desirable properties as a cellulose solvent which is very 

attractive from an industrial point of view. Some of the desirable properties of ILs 

include different alternatives for anion and cation combinations, low hydrophobicity 

and viscosity, enhanced electrochemical and thermal stability [24]. 

The chemical and physical properties of ILs such as viscosity or melting points are 

strongly dependent on their type of cations and anions specs, for instance, some ILs 

are in liquid phase at room temperature. 1-alkyl-3-methylimidazolium cations, 
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abbreviated [Cnmim+] where n is the number of carbon atoms in a linear alkyl chain, 

is the most commonly cation used to produce room temperature IL for different 

cellulose applications. Anions are preferably halide (chloride, bromide), perchlorate, 

thiocyanate and cyanate or C1-C6 carboxylate. For example, using carboxyl acid and 

phosphate anions would cause low melting points, low viscosity and high hydrogen 

bonding acceptor abilities for the IL [19,25]. The chosen IL for this study was 1-

ethyl-3-methylimidazolium acetate ([C2mim]OAc or [emim] OAc), and its structure 

is shown in Figure 6 [26]. 

 

Figure 6. Structure of 1-ethyl-3-methylimidazolium acetate or ([C2mim] OAc). 

The most important characteristics of the 1-ethyl-3-methylimidazolium acetate are 

listed in Table 2. 

Table 2. Characteristics of 1-ethyl-3-methylimidazolium acetate [27] 
Molar mass  170.22 

Melting point (◦C) <-20 

Viscosity at RT (mPas) 93 

Viscosity at 80 ◦C (mPas) 10 

Density at 80 ◦C (g/cm
3
) 1.07 

Electrochemical window (Volt) -2.3/+0.9 

Electric Conductivity (µS/cm) 2500 (25◦C) 

Flash-point ◦C 164 

Solubility in water ∞ 

2.4.1 Wood dissolution in ILs  

Separation of the major component of biomass by direct dissolution of 

lignocellulosic biomass leads to direct integral usage of feedstock including the 

direct use of the resulting wood components in their polymeric form. Direct 

dissolution of  lignocellulosic biomass and separation of its major components opens 

a door to an integral usage of feedstock, including the direct use of the resulting 
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wood components in their polymeric form. Homogenous dispersion and amorphous 

forms of the biopolymers allow more ready chemical derivatization or 

depolymerization into other chemicals. Thus, finding a clean and easily technology 

for biopolymers separation from any lignocellulosic source and utilize these 

biopolymers as a feedstock are now in high interest of the industry not only for base 

chemicals and fuels but also in polymeric forms.  

Firmly cross-linked network of lgnin and carbohydrate, also called as lignin 

carbohydrate complex (LCC), is caused by covalent bondes between these two 

component. Due to this sepecification, fractionation of biomass is not easy task. LCC 

precluding undegraded carbohydratesrecovery from direct dissolution or 

fractionation of wood in conventional solvents. 

In general, ILs can dissolve the wood components; For instant, in 2006, Patrick and 

Moyana et.al published that the IL [C4mim]Cl could dissolve cellulose and lignin 

from different sources of wood with both softwood and hardwood; treatment 

performed for 5% wood mixing with [C4mim]Cl/DMSO (86:16 wt.%) [28].   

Dissolved cellulosic materials could be recovered with addition of precipitating 

solvents such as acetone/water, dichloromethane, or acetonitrile. The extracted 

celluloses showed physical properties, TGA and IR analysis, including processing 

characteristics and thin film preparation comparable to that of pure cellulose samples 

subjected to the same treatment conditions. 

Moreover, recent study has shown that under the same operation conditions [emim] 

OAc is an even more desirable solvent for wood dissolution than [C4mim]Cl [29]. 

Both softwood (southern yellow pine) and hardwood (red oak) could be completely 

dissolved in [C2mim] OAc after mild grinding and  partial separation is achieved by 

regeneration in the selected solvent-acetone/water. 

The dissolution process in which the hemicellulose and the cellulose are selectively 

separated by using IL-water mixture is known as IONCELL-P process (Figure 7). 

During the IONCELL-P process, a pulp sample is mixed with IL-water solution at 

optimum temperature and pressure for specific time. The process is followed by 

separating the undissolved cellulose and dissolved hemicellulose in a filtration unit 

where the residual filter cake contains mostly cellulose. The hemicellulose in IL-
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water solution can be recover by adding more water to the filtrate phase; By 

recovering the hemicellulose and separating the excess water from IL the whole 

process cycle is completed.[30]  

The process scheme of the IONCELL-P on birch pulp can be found as Figure 7: 

 

Figure 7.The process scheme of the IONCELL-P [30] 

2.4.2  Dissolution of cellulose in ionic liquids 

In IONCELL-P process, cellulose is dissolved in IL and mechanism of this 

dissolution is discussed here. Cellulose consists of polydisperse linear glucose 

polymer chains which form hydrogen-bonded supramolecular structures and 

hydrophobic interactions which render cellulose insoluble in water and most 

common organic liquids. Dissolution of cellulose in IL results to a homogeneous 

mixture which the different advance material can be generated by utilizing simple 

separation methods and strategies.  However, prior to dissolution, process can get 

advantages of various pretreatment methods that would increase the access of 

enzymes or chemicals to react with cellulose. The direct dissolution and ready 

separation of the wood biopolymers will help to decrease the variations between 

biomass sources and could provide polymeric feedstocks for further processing and 

products. Various methods for conversion of cellulose biomass into sugar have been 

developed for IL solution which would provide suitable condition to produce more 

valuable products 
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To date the viscose and NMMO (N-methylmorpholine N-oxide) processes are the 

two common industrial processes used to manufacture regenerated cellulose fibers 

from dissolved cellulose. In both processes, disadvantages have been pointed out; the 

polluting carbon disulfide (CS2) that is used in the viscose process and high demand 

of energy beside the runaway reactions in the presence of certain transition metal in 

NMMO process are the major disadvantages of both methods [31]. 

These unfavorable conditions have induced further research in order to develop a 

new ecofriendly regeneration processes. 

Cellulose is difficult to dissolve in conventional solvents but due to the unique 

properties of IL‟s, they are considered as a potential substitute to the current 

cellulose solvents in use. 

2.4.3  Dissolution mechanism of cellulose 

In general, five different modes of dissolution can describe cellulose behavior in 

different solvents: [32] 

Mode 1: Fast dissolution by disintegration into rod-like fragments. 

Mode 2: Large swelling by ballooning, and then dissolution of the whole fiber. 

Mode 3: Large swelling by ballooning, and partial dissolution of the fiber, still 

keeping its fiber shape. 

Mode 4: Homogeneous swelling, and no dissolution of any part of the fiber. 

Mode 5: No swelling and no dissolution (case of a non-solvent) 

Compared to the other kind of solvents, ILs are considered as direct solvents for 

cellulose fractionation. The dissolution of cellulose in ionic liquids involves the 

cleavage of the extensive hydrogen bonding network. The oxygen and hydrogen 

atoms of cellulose hydroxyl groups form electron donor and electron acceptor (EDA) 

complexes which interact with the ionic liquid. Oxygen atoms behave as an electron 

pair donor and hydrogen atoms act as an electron acceptor. In ionic liquid, the 

cations act as the electron acceptor centre and the anions as electron donor centre. 

The interaction can only occur if the two centres are close enough in space leading to 
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the formation of the complexes. The oxygen and hydrogen atoms from the hydroxyl 

groups of cellulose are separated permitting the opening of the crystalline structure 

and consequently the dissolution of cellulose. 

The cellulose characteristic and the IL type, play important roles in the efficiency of 

the process. It has also been shown that an increase in anions basicity makes the 

disruption of the inter- and intra-molecular hydrogen bonding more efficiently. 

Choosing IL with shorter carbon chain results in lower viscosity and melting point 

that facilitate the better dissolution of cellulose and handling of the solution. 

Different studies show that the degree of polymerization of cellulose has an impact 

on the dissolution rate and efficiency besides the effect of other variable parameters 

for the dissolution process like temperature, stirring or pre-treatment. At room 

temperature, cellulose just swells in ionic liquids known also as ballooning effect and 

only a minor fraction of the cellulose might be dissolved [32]. The dissolution of 

cellulose in ILs within a reasonable time requires a sufficient energy input in terms 

of heat. Therefore the sample is typically heated to a temperature of 60-80 °C for 

total dissolution [33].  

Residual water in ILs decreases the efficiency of cellulose dissolution; water may 

form competitive hydrogen bonds to the macromolecular chains of cellulose. The 

removal of the residual water is thus necessary before dissolving cellulose [34]. 

2.4.4  Regeneration of cellulose from ILs 

Structure, morphology and properties of regenerated cellulose are strongly 

influenced by the precipitation process and how the cellulose-IL solution and the 

regenerating solvent are contacted. The degree of crystallinity can be for example 

controlled by the regeneration techniques. Cellulose can be regenerated in a large 

variety of structural forms like: powder, fibers, tubes and films. Thin fibers and rods 

can be prepared by extrusion of the cellulose-IL solution into water whereas a rapid 

mixing of the solution with an aqueous stream leads to powdery flocs of cellulose. In 

both cases the regenerated cellulose is type II [25,33]. 
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In the IONCELL-P process the regenerated cellulose can be separated from dissolved 

cellulose in IL by filtration. Washing the filtrated by using hot water can help to 

remove the remaining IL in the regenerated cellulose.  

A large part of the water can be released from the ionic liquid by e.g. partial phase 

separation using K3PO4 to bind water before the enriched ionic liquid phase can be 

collected and further purified by the energy consuming evaporation of the water, 

ionic exchange or reverse osmosis are some of the other purification techniques that 

can be used [35]. Therefore, finding an efficient recycling process is a key factor to 

eliminate the environmental and consumption problems of IL based processes. 

However, due to the hygroscopic nature of the ionic liquids and the relatively high 

boiling point of water, the recycle step will require high energy costs especially in 

industrial scale applications. Thus, studying the effect of the water content in ionic 

liquid aided fractionation is a major factor in scaling up these processes. 

2.5  CELLULOSE DEGRADATION 

Several different methods are available for cellulose degradation and the most widely 

use methods are introduced below: 

2.5.1 Acid hydrolysis 

Under the acid hydrolysis condition cellulose would degraded either heterogeneously 

or homogeneously. 

Homogeneity condition may results to degradation of the entire structure. For 

homogenous degradation high acid concentration is required that would disrupt and 

degrade the crystalline part of the cellulose.  Heterogeneous acid hydrolysis required 

low concentration of acids and the residue is not susceptible for degradation. Two 

kinetically different phases were suggested for the heterogenous degradation reaction 

of cellulose. The easily accessible region of cellulose would be degraded at the first 

phase. The reaction rate declines during the second stage of the reaction, until the 

degree of polymerization (DP) of the cellulosic residue approaches the leveling-off-
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degree of polymerization (LODP). The LODP is defined as the DP at which no 

further acid hydrolysis takes place, and is around of 100-300 units [36]. 

2.5.2 Alkaline degradation 

Degradation of the cellulose under alkaline condition starts from the reducing end 

group of the cellulose at moderate temperature (80-100 
◦
C). This first phase of 

degradation is known as first peeling reaction. In first peeling reaction a β-alkoxy 

elimination takes place and provides a soluble “monosaccharide unit” and a 

shortened polysaccharide chain with a new reducing end group.  

By increasing the temperature to around 140 
◦
C, an alkaline hydrolysis cleaving 

randomly the glycosidic linkages of the cellulose chains results in new reducing end 

groups which is followed with secondary peeling. Treatment at this temperature will 

result in significant change in DP and yield losses. 

2.5.3  Ozonation 

Ozone is a pale blue gas, slightly soluble in water and much more soluble in inert 

non-polar solvents. The human immune system can detect about 0.01 ppm of ozone 

in air as it has a very specific sharp odor. Physical properties of the Ozone can be 

found in table 3. 

Table 3 Ozone physical properties 
Molecular formula O3 

Molar mass 47.998 g·mol−1 

Density 2.144 g/L (0 °C), gas 

Melting point 80.7 K, −192.5 °C 

Boiling point 161.3 K,−111.9 °C 

Solubility in water 0.105 g/100mL (0 °C) 

 

 Ozone is a bent molecule, similar as the water molecule. The oxygen bond‟s 

distance and angle are shown in Figure 8. The bonding can be expressed as a 

resonance hybrid with a single bond on one side and double bond on the other 

producing an overall bond order of 1.5 for each side. 
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Figure 8. Ozone molecular Structure 

2.5.3.1 Ozone reaction with Carbohydrates 

In many saturated compounds carbon-hydrogen bonds are susceptible to cleavage by 

ozone, including the activated anomeric carbon-hydrogen bonds in carbohydrates.  

Degradation of the cellulose by ozone resembles the degradation of cellulose by 

other oxidizing agents in acidic medium condition. Due to the polymeric character of 

cellulose and by knowing that one anhydroglucose unit contains three hydroxyl 

groups that are available for oxidation; various structural changes are possible during 

the ozonation.  

The two important oxidized functions in cellulose are carbonyl and carboxyl group. 

The only naturally occurring carbonyl function is the reducing end group in cellulose 

(figure 9). By further oxidation, the reducing end groups would convert to the 

corresponding aldonic acids. The reducing ends are very likely to be present as 

hemiacetals in pyranose units, but only to a small extent as aldehydes and aldehyde 

hydrates [37]. 

 

Figure 9. Cellulose’s structure showing non-reducing and reducing ends. 

Ozonation of cellulose, in general, like some hydrolysis, is a heterogeneous reaction. 

Attack occurs more rapidly in the amorphous region of cellulose; followed by slower 

attack on the more ordered region. 

During the ozonation of cellulose two primary reactions take place: [38] 
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 The cleavage of the glycosidic linkage which is occurred base on insertion 

mechanism and results to formation of corresponding lactone as it is shown in 

figure 10. 

 

Figure 10. Cleavage of the glycosidic linkage [10] 

 And the oxidation of the primary and secondary hydroxyl group to carbonyl 

groups and further to carboxyl groups as it is depicted in figure 11. 

 

Figure 11. Oxidation of the primary and secondary hydroxyl groups [39] 

The carbonyl groups are highly alkali sensitive, which results to bond cleavage due 

to a series of keto-enol tatumers and β elimination. 

In some publications it is reported that a substantial amount of carbon dioxide (CO2) 

was detected during the ozonation and the amount of produced CO2 has a liner 

relation to ozone charged flow rate [39]. Comparing the carboxyl group content 

before and after the ozonation showed a lack of change. So regarding to the CO2 

generation during the treatment indicates that the ozonotion mechanism likely 

occurred in the following three stages: 

 The formation of carbonyl group 

 Oxidation of carbonyl group to carboxyl group 

 Decarboxylation; this mostly happens to the C-6 position with concurrent β 

elimination (Figure 12, bottom pathway). 



19 
 

 

Figure 12. Ozonation mechanism 

The sample treated with ozone will be highly sensitive to alkali conditions. This is a 

problem for the viscosity measurement using cupriethylenediamine (CED) solution, 

which would result to lower measured viscosity value than the sample‟s true 

viscosity. To eliminate further degradation after ozonation under alkaline condition, 

a reducing stage known as „‟R‟‟ stage and post treatment stage known as „‟P‟‟ stage 

should be applied to the treated samples.  

During the R stage the carbonyl groups which are produced at the reducing end 

group of cellulose, are reduced to hydroxyls/alcohols [28]. A typical compound for 

selectively reducing carbonyl groups to alcohols is sodium borohydride (BH). The 

BH treatment has been used commonly in pulp bleaching to reduce the carbonyl 

groups which affect the pulp yellowing [40]. The R stage is then followed by the P 

stage with hydrogen peroxide as a reducing agent. 

In contrast to dioxygen, which contains a double bond between the O atoms, 

hydrogen peroxide has only one bond, which can be easily broken. During the P 

stage the hydrogen peroxide attacks electron-poor structures (e.g., carbonyl structure) 

with conjugated double bond and will reduce the activity of the sample. Using high 

temperature and high charge of hydrogen peroxide will improve the efficiency of the 

stabilization treatment [3]. 

2.5.4  Kinetics of cellulose degradation 

The kinetics of ozonation reaction is a first order reaction and small changes in pH 

will not affect the rate constant [41]. When analyzing the kinetics of the cellulose 
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degradation, the first step is to define the degradation variable, because the 

degradation cannot be quantified directly. After defining the degradation variables, 

the effect of the degradation variables should be defined. In the final stage the 

established variables are used to predict the degree of degradation of cellulose at the 

given conditions [42]. 

According to the definitions that are presented in previous sections, the degradation 

of the cellulose is essentially due to the scission of cellulose polymer chain. The 

Chain Scission number (CSN) or the Scission Fraction of cellulose unit (SFCU) are 

used in different literature for characterizing cellulose degradation. CSN is defined as 

the average number of chain scission per cellulose chain unit and (SFCU) 

corresponds to the ratio of broken glucose units to the total glucose units of a 

cellulose chain [43,44]. 

 CSN = 
𝐷𝑃0

𝐷𝑃
− 1                                                                                           (1) 

 SFCU = 
𝐶𝑆𝑁

𝐷𝑃0
=

1

𝐷𝑃
−

1

𝐷𝑃0
                                                     (2) 

Where: 

DP0    is the degree of polymerization before degradation 

DP     is the degree of polymerization after degradation. 

The degree of polymerization can be obtained from the intrinsic viscosity [η] of the 

non-degraded and degraded pulp assuming a relatively constant polydispersity index 

(PDI) throughout the chain scission. 

 DP = ( 
[ŋ]

2.28
)

(1/0.76)
        if [ŋ]> 410 ml/g                                      (3) 

 DP = ( 
[ŋ]

0,42
)                      For smaller [ŋ]                                                     (4) 

Where: 

[ŋ] Is the intrinsic viscosity (mL/g) according to the standard method SCAN-CM 

15:99. 

The kinetic of cellulose degradation is commonly described by the Ekenstam‟s 

equations by assuming the SFCU as a function of reaction time (t). To derive the 

equation, first the chain degradation can be followed through a random zero-order 

chain scission reaction. 
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 
𝑑𝑛

𝑑𝑡
 = -k                                                                                                          (5) 

Where: 

k   is the rate constant of the degradation (s
-1

) 

n   is the number of glucosidic bonds 

The integration of equation 5 gives: 

 n – n0 = -kt                                                                                                    (6)      

The number of bond can also be expressed by: 

 n = A.(1 − 
1

𝐷𝑃𝑛
)                                                                                        (7)      

Where: 

A is the number of sugar units 

DPn is the number average degree of polymerization 

DPn can be approximated by DPv, viscosity average degree of polymerization, 

assuming there is no significant change in polydispersity. 

By assuming A is constant, equation 7 can be replaced by 

 n = (1 − 
1

𝐷𝑃𝑣
)                                                                                              (8)                                                                                  

Equation 8 can then be inserted in the integrated rate equation 9: 

 
1

𝐷𝑃
−

1

𝐷𝑃0
 = kt                Ekenstam’s equation                            (9)                                

The first-order equation of the chain scission process would be 

 ln(1−
1

DP 0
) - ln(1−

1

DP
) = kt                                                                           (10)   

k, presenting the reaction rate constant, can be expressed by an Arrhenius-type of 

equation: 

 k = A.exp(
−𝐸𝑎

𝑅𝑇
)                                                                                              (11)   

where: 

Ea   is the activation energy of the degradation of cellulose (kJ/mol) 

R    is the universal gas constant (kJ/K.mol) 

T     is the degradation temperature (K) 

The activation energy of cellulose degradation can be determined from the equations 

9 and 11. 
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After the determination of k at different temperatures (equation 9), Ea can be 

calculated from the slope of the plot ln(k) against 1/T. 

ln(k) = ln(A) - 
𝐸𝑎

𝑅𝑇
                                                                                                    (12)  

2.6  MOLAR MASS DISTRIBUTION (MMD) 

The intrinsic viscosity measurement is a fast and convenient method to estimate the 

average DP of cellulose. 

Polymers are in general characterized by the average molecular weight determined 

from the elution of the different molecular mass constitutes. 

In linear polymers the individual polymer chains have usually different degree of 

polymerization and molar mass. Therefore, the characterization of a polymeric 

sample is better defined by Molar Mass Distribution (MMD) than by single values. 

The MMD describes the relationship between the number of moles of every polymer 

constituents and the molar mass of those constituents [45]. 

Size-exclusion chromatography (SEC) is an analytical method widely used to 

provide the molar mass distribution of a polymer. Number average (Mn), weight 

average (Mw) and centrifuge average (Mz) molecular weight are the most common 

values of molecular mass used to describe a polymeric sample‟s molecular size 

distribution [4]. 

The number average molecular weight Mn is defined as the ratio of the total weight 

of polymer and the number of polymer molecules. Mn deals with the number of the 

molecules without using the mass of the molecules with a molar mass Mi [4]. 

 Mn = 
 𝑛𝑖𝑀𝑖𝑖

𝑛𝑖
                                                                                               (13)   

Where: 

i      is a subscript representing the different molecular mass in a chain 

ni    is the number of polymer of molecular mass Mi 

 

The weight average molecular weight Mw, considers not only the number of polymer 

molecules but also the size or weight of each polymer molecule. In this case, the 
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number ni of polymer of molar mass Mi is replaced by the weight niMi of polymer of 

molar mass Mi [4]. 

 Mw = 
 𝑛𝑖𝑀𝑖

2
𝑖

 𝑛𝑖𝑀𝑖𝑖
                                                                                            (14)   

The centrifuge average molecular weight Mz used in ultracentrifugation experiment 

corresponds to M
2
. 

 

In case of monodisperse samples, all the above presented factors will be equal. 

However, for other range of polymers the order is as shown below: 

 Mn ≤ Mw ≤ Mz ≤ Mz+1                                                                            (15)                    

The ratio of the weight average molecular weight to the number average molecular 

weight describes the polydispersity index (PDI). It gives an indication on the 

distribution profile. 

 PDI = Mw/Mn                                                                                                    (16) 

The PDI can change differently during degradation processes according to the types 

of degradation mechanisms occurring (random or systematic). In the case of a 

random degradation, the ratio does not change and the molar mass distribution keeps 

the same profile. The ratio decreases if scissions near the center are favored and 

increases if scission is formed near the ends [46]. In the following section, the most 

common method for MMD analysis is described. 

2.6.1 Gel Permeation Chromatography (GPC) 

Size-exclusion chromatography (SEC) is an analytical method which separates 

macromolecules according to their size. This separation technique is named gel 

permeation chromatography (GPC) when applied to polymers. 

The principle of the GPC is based on the permeation of molecules into the standard 

gel with pores of a certain size that is placed in chromatography columns. The small 

molecules permeate through the gel and interact with the inner surface of the gel 

while larger ones go through the column without any retention [45]. 

The cellulose should be dissolved as a monodisperse solution, which is a solvation of 

each individual cellulose molecule to achieve a reliable separation of cellulose 

molecules according to their molecular weights. Solvent systems like cadoxen or 
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DMAc/LiCl can be used for this purpose. In some methods for preparing samples, 

some pretreatment and activation like using water, acetone and DMAc, prior to 

dissolution is recommended.  

In order to detect different molar mass and plot the molar mass distribution (MMD), 

several detectors with different sensitivity are used. The refractive index detector 

(RI) and the multiangle laser light scattering detector (MALLS) are two kind of 

detecting instrument usually used for GPC analysis. RI is one of the least sensitive 

liquid chromatography detectors. MALLS detectors show a higher sensitivity than RI 

detectors. From MALLS detection, low molar masses as well as very high molecular 

masses can be detected [45]. 

For indirect detection (RI) the column has to be calibrated. The first stage is to select 

the calibrating substances similar to the studied substances. In the second stage, the 

elution volume (or retention time) of those substances are correlated with their 

corresponding molecular weights. MALLS can detect the molar mass directly and 

does not require calibration with standard substances. The intensity of the signal is 

directly proportional to the concentration of the respective polymer in the eluent 

fraction. The relative amount of each polymer can then be plotted against its 

molecular mass Mi whereby the total sum of all fractions (area under the curve) is 

normalized to one. 

2.7 AIM OF THE STUDY 

During the recent years by introducing the room temperature ILs, the idea of using 

this green solvent in cellulose treatment and selective separation of the cellulose and 

hemicellulose has been suggested in different publications [30,33]. A recent 

publication by Carmen Froschauer et al. presented a new methodology for the 

quantitative separation of bleached paper-grade pulps into cellulose and 

hemicellulose fractions, both of high purity without significant yield losses [30]. By 

testing the effect of different cosolvents with [emim] OAc, water turned out to be an 

ideal cosolvent for the fractionation, since the cellulose solubility was hindered, 

while the hemicelluloses were still soluble in the mixture. The dissolution of the 

polysaccharides can be controled by changing the water content [47]. The scheme of 

the IONCELL-P process can be found as figure 13. 
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Figure 13. The Ion-Cell dissolution process using [emim] OAc [30] 

The molar mass distribution of the filtrated cellulose and the precipitated 

hemicellulose fractions from their experiment is presented in Figure 14. 

 

Figure 14. Molar mass distribution of the initial birch Kraft pulp, the separated 

cellulose fraction, the precipitated hemicellulose fraction, and the calculated sum of 

the fractions (treatment, 15 wt % water, 60 °C, 3 h; consistency, 10.5 wt %). [30] 

This figure depicts that during the extraction using [emim] OAc no degradation is 

observed for cellulose and hemicellulose fractions which result to recovery of the 

polymers after fractionation without yield losses or degradation. 

The effect of the chemical and physical properties of the cellulose components in IL-

water solution is still unknown. The aim of this study is to research the effect of the 

Mw on the IONCELL-P process in respect to various water contents in this IL 

system. The results of this study aim to help the understanding of the cellulose 

dissolution in ILs in general and will help to improve the IL fractionation process. 

The details of the experiments, results and discussion are presented in the following 

chapters of this study.  
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3. MATERIALS AND METHODS 

In this chapter, specification of the used material and equipment are discussed in the 

section 3.1. Method of degradation of cellulose by using Ozone as degradation agent 

and the stabilization stae are explained in the section 3.2 and 3.3. The degraded 

cotton linter is then fractionated with [emim]OAc and water. The final part of this 

chapter ,section 3.5 and 3.6, describes the method for GPC analysis and viscosity 

measurement that are used in this study. 

3.1  MATERIALS 

The used cotton linter in this study was purchased from Solvay Rhodia with cellulose 

purity higher than 99.5%. The used [emim] OAc was purchased from IoLiTec and 

synthesized by Helsinki University. Ozone is produced by a Wedeco GSO30 device 

using oxygen (Figure 15). The KI, Na2S2O3 and CED Solutions were prepared by the 

laboratory staff in Aalto university- Department of Forest Product Technology. The 

MMD of the samples were measured by UltiMate 3000 device with analytical 

column 4 X PL gel 20µm mixed using RI detector by and used 9 g/L LiCl/DMAc as 

eluent at 25 
◦
C. Two different kinds of filters, polyethylene and metal mesh filters 

with the porosity size of 20µm and cutoff size of 5-6 µm respectively, were used in 

this study. 

3.2   METHODS 

3.2.1  Degradation of the CL by ozone 

The cotton linter pulp was degraded by ozone to decrease the intrinsic viscosity from 

the initial value of 580 mL/g to lower than 200 mL/g. The detailed specification of 

the untreated cotton linter can be found in Table 4.  

Table 4. Specification of the used untreated CL 
Molecular weight Viscosity 

Mn Mw DP PDI  

kg/mol kg/mol   mL/g 

92887.9 253773.49 1429.5  2.2 579.2 

   Ozonation of the untreated cotton linter was done in the ozonator. Due to the lack 

of information on the ozone treatment of cotton linter, the required amount of ozone 
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to degrade the sample to the desire DP levels was unknown. Therefore, the optimal 

ozonation conditions had to be determined. 

The ozone treatment was performed at ambient temperature and high cellulose 

consistency of 55-60 wt% and the initial pH level was adjusted to 5±0.5, to prevent 

the formation of undesired byproducts and reduce the yield losses. 

The treatment started with the pH adjustment. The cotton linter‟s pH was adjusted by 

sulfuric acid to the range of 4.5 - 5 at 3 wt% consistency. After the pH adjustment the 

excess water was removed from the sample by centrifugation to reach the 

consistency close to 55-60 wt%. For the ozonation trials aiming to determine the 

optimal condition to reach the required DPV, 5 gr of dried sample was used for each 

treatment. Once optimal conditions were established, 50 grs of dried sample was 

treated and was used as a reference sample for all of the fractionation experiments, 

except for those experiments in which non-treated cotton linter directly fractionated..    

3.2.2 Ozone generator 

Ozone is produced by a Wedeco GSO30 device using oxygen (figure 15). 

Theoretical Ozone production capacity is 100 g/h and theoretical ozone 

concentration is about 7 wt%. Ozone is generated in high voltage which is produced 

by electrodes that are cooled in a water flow. The minimum oxygen flow is 100 L/h 

on this device.  

 
Figure 15 Wedeco GSO30 ozonator 
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The ozone production rate is measured always before starting the treatment and at the 

end of the treatment. Ozone production rate may change during the trial, so an 

average value of 3-4 measurements is used in the calculations; changes in pressure, 

flow rates and reaction temperature are parameters effecting the ozone production.      

The rate of generated ozone should be calculated before starting the treatment. For 

calculating the rate of produced ozone, ozone was collected in the sample unit bottle 

that consist of a bottle containing 150 ml of 2-10 wt% KI solution, for a controlled 

time period. The recommended time for this step is two minutes. Reaction of ozone 

with KI solution is as below: 

O3 + 2I
-
 + H2O             I2 + O2 + 2 OH

-  
                                                                 (17) 

 Then, the solution is emptied into a 300 mL Erlenmeyer and the solution is acidified 

by adding 10 mL of 2M HCl. The released iodine is titrated with 0.1-0.2 N of 

Na2S2O3 solution until the solution changes to bright yellow. After adding a few 

drops of starch to the solution, the titration is continued until the solution became 

colorless. 

3.2.3  Ozone Calculation 

Ozone amount 

The amount of ozone generated by the device can be calculated by eq.18 : 

 m = n*a*E                                                                                                    (18) 

Where 

m   ozone amount (mg) 

n    thiosulphate normality 

a    thiosulphate consumption (ml) 

E    Equivalent weight of ozone (48/2=24) 

Ozone production 

The rate of ozone production is calculated by eq.19  

 M = m/t                                                                                                         (19) 

Where 

M    Ozone production rate (mg/h) 

t      time(h) 
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Ozone concentration 

 c = M/Q                                                                                                        (20) 

Where 

c    ozone concentration (mg/l) 

Q   Gas flow in ozone generator (l/h)                   

Ozone concentration in oxygen gas (cw/w)  

 cw/w = [c/(Do2 + 0.33 c)]*100%                                                                    (21) 

Where 

Do2 = density of oxygen gas (in 20◦C about 1310 mg/l) 

After repeating the ozone flowrate measurement 3-4 times and defining the average 

of generated ozone rate, the pH adjusted cotton linter is placed in the round bottom 

flask and the ozone is injected to the sample through a tube while the bottle is rotated 

(Figure 16).  

 

Figure 16 feed container 

3.2.4 Ozone treatment 

The Wedeco GSO30 ozonator has a high production capacity. With the flow rate of 

0.25 m
3
/h (4.17 l/min) and 50% efficiency (power), ozonator generates about 667 

mg/min of ozone. The amount of ozone consumed by the sample is calculated as a 
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difference of the inlet and outlet rate of the ozone to the sample container (rotary 

bottle). The inlet is the measured ozone rate generated and the outlet is determined 

by the same titrating procedure for the ozone that comes out of the feed container and 

dissolves in the KI solution in the ozone collector bottles.  

However, due to the minor unexpected leakage and the restricting safety instruction, 

the flowrate and the efficiency (power) of the ozonator was set at a low value, the 

power was set to 33 W and the power consumption set to 1% for all of the 

experiments. By fixing the produced ozone rate, the only variable factor in the 

treatment is the time of the treatment. To reduce the calculation error when long time 

treatment is required, it is recommended to divide the treatment into different shorter 

time stages and the consumed ozone should be measured in between.  Thus, with 

these ozonator settings the 50 g batch was ozonated for at least 70 minutes in 12 

stages.    

3.3  STABILIZATION 

As explained in chapter 5, for the viscosity measurement and the IONCELL-P 

fractionation the treated cotton linter needs to be stabilized by applying two more 

stages which were introduced as R and P stages.  

3.3.1 R Stage 

Sodium borohydride (BH) is a typical compound for selectivity reducing carbonyl 

groups to alcohols. Intermediate treatment with BH was carried out at 70
◦
C with 

fixed BH concentrations, a liquid-to-solid ratio of 15 ml/g and isothermal treatment 

duration is set to 60 minutes. The stabilization agent can cause yield loss of the 

sample. The relation of the BH concentration and the cellulose yield can be found as 

Figure 17 [47]. According to these data, sever yield loss of cellulose is only expected 

at concentration below 0.75 g/L; Therefore, 0.75 g/L was the used BH concentration 

in this study.  
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Figure 17 relation of the BH concentration and the cellulose yield [48] 

Equation 22, shows the relation of the BH half-life with pH and temperature in 

aqeous condition. 

log t1/2 = pH − (0.034T − 1.92)                                                                                 (22) 

The pH in the BH treatment was adjusted to 13 with NaOH, where the BH half-life 

of 30.3 h at 70 ◦C was acceptable for the selected treatment time. 

3.3.2 P Stage 

The P stage was carried out using hydrogen peroxide and sodium hydroxide with the 

ratio of 8 kg/t and 10 kg/t of cellulose, respectively. The temperature was set at 75 ◦C 

and the initial pH was set to 5 for the P stage stabilization. After applying the 

stabilization to the treated cotton linter, the samples were dried at room temperature 

overnight for further processing with IL. 

3.4  FRACTIONATION OF THE TREATED COTTON LINTER 

IN [emim] OAc-WATER SYSTEM 

1-Ethyl-3-methylimidazolium acetate [emim] OAc is one of the most researched 

solvent for polysaccharides.  

For this study, different [emim] OAc –water wt% solutions were prepared with water 

molar fractions of 0.595, 0.605, 0.625, 0.659 and 0.689 (equivalent to 13.5, 14, 15,17 

and 19 wt% respectively) in [emim] OAc for performing IONCELL-P on ozone 

treated and untreated CL samples. In each experiment, one gram of the oven dried 

ozone treated cotton linter was mixed with 20g of prepared IL solution (resulting in 5 

wt % cellulose consistency) in a 50 ml Falcon tube which was being heated in a 
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water bath at 60 ◦C for 3 hours. These conditions are the optimum condition for 

hemicellulose removal from Birch pulp presented in the previously discussed study 

by C. Froschauer [30]. 

After 3 hours, the IONCELL extraction process is followed by filtering the 

Cellulose/IL-water mixture. For the samples that are treated with the IL solution 

containing water above 15 wt% a syringe filter of 20 µm porosity is used, and for the 

samples fractionated with lower water content mixtures which would need more 

applied back pressure for filtration, another filtration unit was used. The filter unit 

used high pressure nitrogen gas and contains a metal mesh filter with a cutoff size of 

5-6 µm that was supported with a strong metal mesh.(Figure 18) 

  

Figure 18 the filter unit 

The cellulose residue was then washed with 20 g of the [emim] OAc-water mixture 

as used in the extraction step in order to remove residual dissolved cellulose from the 

fibers without inducing cellulose precipitation.  

Subsequently, the extracted pulp was washed three times with hot water to remove 

all traces of ionic liquid. All filtrates were then combined to induce their 

precipitation by excess water. 

The precipitated cellulose was collected via centrifugation and the pellets washed 

three times with hot water. The gravimetrical yield and MMD of both retentate and 

filtrate fractions were analyzed. 

In addition, two more fractionations using untreated cotton linter with water molar 

fraction of 0.574 and 0.585 in IL solution was done. These mole fractions correspond 
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to 12.5 and 13 wt%. Thus, the total range of investigated water content was 12.5-19 

wt% in the IL-water mixtures. 

The residual cellulose and the precipitated cellulose were dried at room temperature 

overnight for further GPC analysis. 

3.5  GPC ANALYSIS OF FRACTIONS  

The molecular weight characterization was performed by gel permeation 

chromatography. 

As it is described in section 2.6, cellulose samples should be dissolved in 

LiCl/DMAc solution to inject in the GPC column. Prior to this stage the samples 

were prepared according to a standard operating procedure explains here: 

The first stage of the preparation process is activation in water. For this purpose 6 ml 

polypropylene tube that is connected to a vacuum manifold with a 20 µm PE-frit as 

filter at the bottom open end was used. A 50±5 mg of each sample was weighted into 

these tubes accurately. 4 ml of milliQ-water was added to the sample and the tube 

was covered with plastic stopper and kept for more than 6 hours at ambient 

temperature. Then, water was released by using vacuum manifold and 2 ml of 

acetone was added to the sample and removed by vacuum instantly. Thereafter, 4 ml 

of acetone was added to the sample and the sample was kept in acetone at ambient 

temperature for more than 2 hours until the acetone absorb the residual water 

remaining in the samples. After the dewatering stage, 4 ml of pure DMAc was added 

to the sample and the mixture was kept overnight. Activation in DMAc was followed 

by the dissolution step where the sample was transfer to glass bottles and 5 ml of 

90g/l LiCl/DMAc was added to sample and dissolved at room temperature under a 

constant low magnetic stirring. Depending on the sample, the complete dissolution 

could take up to several hours. Then, 0.5 ml of dissolved sample was diluted with 4.5 

ml of pure DMAc and was filtered into vials using 0.2 µm syringe filter. The samples 

were then injected into an analytical column 4 X PL gel 20µm with the flow rate of 

0.75 ml/min and injection volume of 100 µm. 
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3.6  VISCOSITY MEASUREMENT 

The intrinsic viscosities (mL/g) were measured according to the standard method 

SCAN-CM 15:99 using CED solution as a solvent and capillary tube for viscosity 

measurement. 
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4. RESULTS AND DISCUSSION 

The first three section of this chapter presents the basic measurement  data of the 

ozone flow rate, ozonation results of different samples and stabilization stage 

respectively. Results of the MMD for treated CLand the IONCELL-P treatment can 

be found in section 4.4 and 4.5. In the final section (4.7) , collected data in this study 

is compared to the birch pulp fractionation described in literature. 

4.1   OZONE FLOWRATE DETERMINATION 

The produced ozone flowrate before and after the ozonation was measured and the 

results are presented in Table 5: 

Table 5. Ozone flowrate trials 

Note    t: period of the measurement, a: Na2S2O3 consumption (ml), n: Na2S2O3 normality, m: 

produced ozone,   M: rate of the produced ozone, Q: Gas flow rate c: ozone concentration, cw/w: 

Ozone concentration in oxygen gas,  

No Trials     t       a      n   m   M Q10%  c  c w/w  Power  SET  

    (s) (ml) (Na2S2O3) (mg)  (g/min) (L/h) (mg/L) (%) (W) (%) 

1 

1 120 35.75 0.203 174.17 0.086 150 34.74 2.62 33 1 

2 120 31.25 0.203 152.25 0.076 150 30.45 2.30 33 1 

3 120 30.51 0.203 148.64 0.073 150 29.58 2.24 33 1 

4 120 31.44 0.203 153.17 0.076 150 30.48 2.30 33 1 

Mean         151.35 0.075   30.17 2.28     

2 

1 120 29.69 0.203 144.57 0.072 150 28.81 2.18 33 1 

2 120 28.57 0.203 139.12 0.069 150 27.73 2.10 33 1 

3 120 28.36 0.203 138.10 0.068 150 27.48 2.08 33 1 

Mean         138.61 0.069   27.60 2.09     

3 

1 121 30.44 0.203 148.23 0.073 150 29.28 2.21 33 1 

2 120 29.25 0.203 142.43 0.071 150 28.43 2.15 33 1 

3 120 28.68 0.203 139.66 0.069 150 27.88 2.11 33 1 

4 120 27.37 0.203 133.28 0.066 150 26.52 2.01 33 1 

Mean         138.45 0.069   27.61 2.09     

4 

1 300 59.62 0.206 294.76 0.058 150 23.55 1.78 140 1 

2 300 73.81 0.206 364.91 0.072 150 29.17 2.21 33 1 

3 300 72.67 0.206 359.28 0.071 150 28.68 2.17 33 1 

4 300 72.75 0.206 359.67 0.071 150 28.70 2.17 64 1 

Mean         361.29 0.072   28.85 2.18     

5 

1 300 76.03 0.206 375.89 0.075 150 30.07 2.27 33 1 

2 300 75.54 0.206 373.46 0.074 150 29.84 2.26 33 1 

3 300 71.9 0.206 355.47 0.071 150 28.43 2.15 33 1 

Mean         368.27 0.073   29.45 2.23     
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As it can be seen from Table5, the ozone flow rates fluctuate between the 0.069 – 

0.075 mg/min, so for each ozone treatment this predetermination of ozone flow 

should be repeated to minimize the error in calculations. 

 Calculation example for No.5-trial 1: 

m = n*a*E = 0.206*76.03*(48/2) = 375.892 mg 

M = m*(1/t)*60*(1/1000) = 375.892*(1/300)*(1/1000) = 0.0751 g/m 

c = m*(1/t)*3600*(1/Q) = 375.892*(1/300)*3600*(1/150) = 30.071 

cw/w = [c/(Do2 + 0.33 c)]*100 = [30.071/(1310+0.33*30.071)]*100 = 2.278 

4.2 OZONATION  

The above mentioned calculations were used to calculate the amount of ozone charge 

based on the reaction time of the treatments. The detailed data regarding the ozone 

treatment before the R and P stage are presented in Table 6. 

 Table 6. Cotton linter ozonation before applying P and R treatment 

Sample C t W  m a R TOC Y DP ŋ 

 
Wt% min gr gr/min ml (%) mg % 

 
mL/g 

CL-1 32.7 10 3 0.0754 143 1.935 N/A N/A 987 430 

CL-2 27.49 10 5 0.069 130.7 0.693 N/A N/A 1023 442 

CL-3 52.48 5 5 0.069 62.9 0.378 4.927 0.222 1125 475 

CL-4 55.49 70 10 0.072 933.2 4.392 44.7 1.0062 405 170 

CL-5 59.31 89 50 0.073 1321.8 3.893 270 1.2162 435.7 183 

Note   C: Consistency t: period of the measurement, W: Oven Dried Weight m: produced ozone a: 

Na2S2O3 consumption (ml) R: The ratio of consumed ozone to sample TOC: Total Organic Carbon 

Y: yield losses ŋ: intrinsic viscosity  

To reach the desired DP for the degraded cotton linter , time of the treatment was set 

to more than 70 minutes. Treating the CL for 70 minutes all at once might cause 

major error in the consumed ozone calculations and so it is recommended to divide 

the treatment into different stages in a row. Since the CL-1 to CL-3 haven't reached 

the required viscosities, CL-4 and CL-5 were performed with 7-8 times longer 

treatment times. These samples had promising premeasured intrinsic viscosity. Thus 

only these two samples were stabilized for the further IONCELL-P experiments. The 

consumed ozone per gram of sample is also very informative in the sense that we see 
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the first three samples did not consume much ozone so we expect less degradation as 

well. 

4.3 STABILIZATION 

As it is discussed earlier, the target of the ozonation was to degrade the cotton linter 

sample to have a viscosity lower than 200 ml/g, equivalent to DPV of 470 or lower. 

To save time during the experiments, the intermediate stage „‟R‟‟ and post treatment 

stage „‟P‟‟ were not applied to those samples which have not satisfied the required 

viscosity level. According to preliminary viscosity measurements the two last 

samples, CL-4 and CL-5 were the best candidate since they degraded to the 

molecular weight to the range that we wanted to study. 

According to section 2.5, to eliminate further degradation after ozonation, two 

stabilization stages (R and P) were applied to the treated samples marked as CL-4 

and CL-5 in Table 6. In some publications the sequence of the treatment is R-P but in 

this study the reverse order P-R also gave acceptable results. Detailed data regarding 

the conditions of the R and P treatment can be found in Table 7. 

Table 7. P and R stage’s detailed data 

Sample C pH pH T t W RH2O2 RNaOH MNaBH4 DPv ŋ 

  Wt%   in filtrate ◦c h gr (kg/t) (kg/t) (gr)   mL/g 

P stage 

CL-4 3 4.4 3.8 95 3 5 8 10 N/A N/A N/A 

CL-5 10 5 3.6 75 3 16 8 10 N/A N/A N/A 

R stage 

CL-4 6.6 13 12 70 1 5 N/A N/A 0.0562 350 147 

CL-5 6.6 13 12 70 1 16 N/A N/A 0.18 364.3 153 

Note    C: Consistency t: period of the measurement, W: Oven Dried Weight R H2O2: The ratio of 

consumed H2O2 to sample RNaOH: The ratio of consumed NaOH to sample MNaBH4: weight of sodium 

borohydride ŋ: intrinsic viscosity  

Viscosity measurement after the borohydride stabilization shows an average 15% 

decrease (see last two rows of Table 6 and Table 7). This can be explained by the 

fact that the alkali sensitivity introduced by ozone on cellulose during the ozonation 

is manifested in DP loss during the R stage that takes place at alkaline condition 

(pH=13). The post treated samples will have a lower viscosity which can be 
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determined more accurately with the intrinsic viscosity measurements and is close to 

the true value calculated by physical measurement. 

4.4  MOLAR MASS DISTRIBUTION OF TREATED CL 

The molecular weight characterization was performed by gel permeation 

chromatography. Table 8 summarizes the number, weight and centrifuge average 

molecular weight, the polydispersity and the different molecular weight fractions of 

the ozone treated cotton linters. 

Table 8. Molecular characterization of the original and degraded pulps 

Sample ŋ DP Mn Mw Mz PDI W(DP<50) W(DP<100) 

 

ml/g 

 

(kg/mol) (kg/mol) (kg/mol) (Mw/Mn) (%) (%) 

CL 570 1429.5 92.88 253.77 497.19 2.732 0.00743 0.01828 

CL-3 475 1125 79.54 197.88 376.95 2.5 0.00840 0.02351 

CL-4 153 364.28 32.50 75.72 123.93 2.329 0.04153 0.10395 

CL-5 147 350 31.41 78.96 131.89 2.513 0.04504 0.10726 

Note    ŋ: intrinsic viscosity Number average (Mn), weight average (Mw) and centrifuge average 

(Mz) molecular weight PDI: polydispersity index W(DP<50):Ratio of polymers with DP<50 W(DP<100) : 

Ratio of polymers with DP<100  

By ozonation of the CLs, the amount of high molecular weight fraction of cellulose 

is reduced and the low molecular fraction of cellulose is slightly increased. The 

polydispersity index depicts the quality of the degradation. No changes in index 

value means that random degradation of polysaccharides chains can be consider as a 

dominant degradation mechanism. Decrease in the index value means that polymer 

scissions mostly occurring near the center of the chains is the dominant degradation 

mechanism. However, in all of the degraded cotton linter in Table 8, a decrease in 

polydispersity index is observed, thus the second degradation mechanism is libely.   

The profiles of the MMD of the original and degraded cotton linters are plotted in 

Figure 19. By degrading the cotton linter, the MMD shifted towards lower molecular 

weight. Moreover, according to the polydispersity index and Figure 19, the MMD 

profiles for CL-4 and CL-5 get narrower and at the same time the peak increased to a 

higher value, possibly due to the cleavage of the higher molecular weight polymers.  
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Figure 19. Molar mass distribution of the original and degraded cotton linters. 

The CL-4 was selected as a reference material for further processing by ionic liquid. 

4.5  IONCELL-P TREATMENT OF THE OZONE TREATED CL 

The IONCELL-P process was explained in detailed in the first part of this study. The 

yield and MMD‟s data of the residual (undissolved) and the precipitated (dissolved) 

fractions from IL-Water solution for different water content - 13.5-19 wt % - are 

collected in Table 9. The MMD of each fraction is plotted separately in Figures 20-

24. The sum curves in these graphs were calculated based on the gravimetrical yield 

of the undissolved and dissolved cellulose fractions by equation 26. 

 

SUM = (undissolved cellulose‟s MMD) * (Solid residue yield) +                        (26)                        

(dissolved cellulose‟s MMD) * (precipitated cellulose yield) 

 

Overlapping these sum curves with the treated CL‟s MMD curve before the 

fractionation, confirmed that no degradation happened during the IONCELL-P 

process. 
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Table 9. IONCELL fractionation data 

      Residual precipitated 

EDUCT water C W T t Y Mn Mw Y Mn Mw 

  wt% wt% Odg °C h wt% kg/mol kg/mol wt% kg/mol kg/mol 

CL-4 13.5 5 1 60 3h 60.6 61.3 98.3 37.81 17.5 37.4 

CL-4 14 5 1 60 3h 72.7 59.4 93.8 26.60 15.1 30.8 

CL-4 15 5 1 60 3h 78.8 53.8 86.8 22.32 12.4 24.5 

CL-4 17 5 1 60 3h 87.3 47.8 82.5 12.35 10.2 18.2 

CL-4 19 5 1 60 3h 91.1 41.7 79.5 4.21 9.1 16.3 

Note    C: Consistency W: Oven Dried Weight t: period of the treatment Y: Yield Number average 

(Mn) and weight average (Mw)) molecular weight 

 

Figure 20. IONCELL fractionation using [emim] OAc with 13.5 wt% of water 

 

Figure 21. IONCELL fractionation using [emim] OAc with 14 wt% of water 
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Figure 22. IONCELL fractionation using [emim] OAc with 15 wt% of water 

 

Figure 23. IONCELL fractionation using [emim] OAc with 17 wt% of water 

 

Figure 24. IONCELL fractionation using [emim] OAc with 19 wt% of water 
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Increasing the water content in the IL results in decreased dissolution capacity of the 

IL because created hydrogen bonds between the water and IL moleculs would caused 

competitive environment for cellulose to dissolve; So, by increasing the water 

content we expected that the fraction of dissolved cellulose in the IL would be 

decreased, since only even lower Mw range of cellulose is possible to dissolve in 

such high water content mixtures, and this range of molecular size is a smaller 

fraction of the total sample. The results of the experimental data supports this 

hypothesis, Figure 25 depict this trend.  

 

Figure 25. IONCELL fractionation using [emim] OAc with 13.5-19 wt% of water 

The target of this study is to investigate the effect of the molecular weight on the 

fractionation of different polysaccharides with IL-Water mixture. By using the 

treated CL which is pure cellulose with a single chemical structure for the IL 

fractionation the effect of the chemical structure is eliminated. 

From figure 25 we can clearly see the trend of the different Mw ranges being 

dissolved to a different extent in [emim] OAc-water mixtures with different water 

content. By studying this pattern we can conclude that in the absence of the different 

chemical structures (like hemicellulose, lignin and etc) the IL dissolved the cellulose 

polymer based on the molecular size of the polymer. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 3 4 5 6 7

D
if

fe
re

n
ti

al
 W

ei
gh

t 
Fr

ac
ti

o
n

Log (Molar Mass)

CL-4

Undisolved cellulose-13.5 wt% 
water
Dissolved cellulose-13.5 wt% 
water
Undissolved cellulose-14 wt% 
water
dissolved cellulose-14 wt% 
water
Undissolved cellulose-15 wt% 
water
Dissolved cellulose-15 wt% 
water
Undissolved cellulose-17 wt% 
water
Dissolved cellulose-17 
wt%water
Undissolved cellulose-19 wt% 
water
Dissolved cellulose-19 wt% 
water
SUM



43 
 

4.6  IONCELL-P TREATMENT OF NON-TREATED CL 

To support the previous study lower water content of the mixture was tested for 

fractionation as well. Decreasing the water content in IL solution will result to 

enhance the cellulose solubility in IL and consequently more cellulose with higher 

molecular weight will be dissolved in IL and this phenomenon will cause some 

difficulties in filtration. In addition to the presented results for IONCELL-P process 

using degraded CL, two more fractionation with the 12.5 and 13 wt% of water were 

done using untreated cotton linter.  The fractionation data and MMD results are 

presented in Table 10; MMD of both fractions and the sum curves are potted in 

Figure 26 and 27. 

Table-10 IONCELL fractionation data 

      Residual precipitated 

EDUCT Co-Solv C W T t Y Mn Mw Y Mn Mw 

  wt% wt% Odg °C h wt% kg/mol kg/mol wt% kg/mol kg/mol 

CL 12.5 5 1 60 3h 84.9 156.4 277.3 16.62 37.1 79.3 

CL 13 5 1 60 3h 87.8 139.6 267.2 7.79 32.9 70.9 

Note    C: Consistency W: Oven Dried Weight t: period of the treatment Y: Yield Number average 

(Mn) and weight average (Mw)) molecular weight 

 

 

Figure 26. IONCELL fractionation using [emim] OAc with 12.5 wt% of water 
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Figure 27. IONCELL fractionation using [emim] OAc with 13 wt% of water 

These two samples showed similar trend to the samples summarized on figure 25. By 

decreasing the water content in ILs, cellulose polymers with higher molar mass are 

also dissolved in the IL-water mixture and the range of the dissolved cellulose will 

increase until the point that this range overlapping with the used sample‟s MMD; 

According to these data we can conclude that there is not an accurate limit for water 

wt% in IL that cellulose can be dissolved completely. This limit may vary according 

to the range of the molecular weight that is available in the sample. For example, the 

treated CL in this study may be dissolved completely in IL-water mixture with higher 

water fraction compare to the untreated CL which may require lower water fraction 

in IL to dissolve completely. 

Considering the results, figure 29 depict schematically how the IONCELL-P process 

worked in this study for fractionating of pure cellulose.  

 

Figure 28 – IONCELL-P process by using pure cellulose  
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4.7  COMPARING THE IONCELL-P TREATMENTS OF CL TO THE 

BIRCH PULP FRACTIONATION DESCRIBED IN LITERATURE 

By comparing the results of this study with the available result of the Birch pulp 

fractionation in [emim] OAc with 15 wt% water at the same conditions that is 

presented in the Carmen et al publication [30] Figure 29, we can predict that in the 

presence of different chemical structure like the hemicellulose structure that is 

available in Birch pulp, the IL-water mixture acts the same way and dissolves the 

same molecular size of the hemicellulose of pure low molecular weight cellulose. 

Based on this comparison ILs dissolves cellulose and most likely other 

polysaccharides based on the molecular size and the chemical structure of the 

molecules has no major effect on the dissolution efficiency, but the same sets of 

experiment are needed to be done with hemicelluloses to prove this hypothesis.  

 

Figure 29 Comparision of achived data of this study with data presented by Carmen 

et al [30] 
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5. CONCLUSION 

The influence of the molecular weight of cellulose on the solubility in ionic liquid-

water mixtures has been investigated during this Diploma‟s thesis. The study consists 

of two parts; Ozone treatment was selected as a degradation method for cotton linters 

in first part and IONCELL-P treatment was applied to the treated samples in the 

second part. In the first part the viscosity of the untreated cotton linter was decreased 

from 580 mL/g to less than 200 mL/g. During the second part the treated and 

untreated cotton linter samples were treated with [emim] OAc-water solutions with 

different water contents varied between 12.5 and 19 wt% at fixed temperature (60◦C) 

and time (3h). 

The molar mass distribution of the filtrated and the precipitated cellulose were 

determined. According to the presented MMD‟s results it can be concluded that the 

used IL [emim] OAc, dissolved cellulose based on the molecular size of the cellulose 

polymers. However, due to the single chemical structure of the cotton linter which is 

practically pure cellulose, from this data we cannot judge the chemical effect of 

polysaccharides in IL-water mixtures. 

Carmen et al [30] has published the results for selective separation of the 

hemicellulose and cellulose in Birch Kraft pulp using [emim]OAc at the optimum 

fractionation conditions (60◦c ,15 wt% of water in [emim]OAc for 3hrs reaction 

time). The results of separation of low and high molecular weight of cellulose using 

[emim] OAc is presented in this study by applying the same fractionation conditions. 

From the present study it can be concluded that the used IL-water systems dissolved 

cellulose based on the molecular size since the fractionated molecules had the same 

chemical structure, all of them being pure cellulose. In both the present study and in 

the work of  Carmen et al., the dissolved fractions had comparable MMD, which 

supports the hypothesis of polysaccharide fractionation in IL-water systems being 

molecular weight driven and less influenced by the chemical structure of the 

polysaccharides.  However more experiments are needed to clarify the effect of 

chemical structures on the fractionation process. 
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FUTURE WORK 

Due to the lack of information on this specific topic, the experiments were done for 

cotton linter at first. But, to get a better vision and study the chemical effect of 

different cellulose structures in more detailed, it is recommended to repeat the same 

experiments by using xylans and galactoglucomannans as raw materials. 
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