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Abstract

Environmental impacts of products can be reduced, for example, by reducing materials
or by selecting materials, whose production causes low environmental impacts. In this
thesis is studied, whether it is possible to reduce environmental impacts of a plastic
product by using recycled or bio-based plastics. In this case, the environmental impacts
refer to the greenhouse gas emissions and primary energy demand.

Essential recycling methods of plastics are presented. The definitions and
manufacturing of bio-based plastics are also discussed. Environmental impacts of
recycled and bio-based plastics are assessed with life cycle assessment (LCA) method.
In addition to the LCA, material tests are used to evaluate suitability of the plastics to be
used in base stations of mobile networks. Testing included 6 months outdoor exposure
in Finland, Greece and Kenya and also a long-term accelerated aging test at 85 °C and
85 % relative humidity. Testing samples were made with an actual production mould.
Studied materials were polycarbonate (PC), polycarbonate-polyethylene terephthalate
(PC/PET) blend, bio-based polyamide (PA) 410 and bio-based glass fibre reinforced
polytrimethylene terephthalate (PTT).

Results of LCA show that recycling of plastics reduces significantly environmental
impacts of material production. If the plastic cover of a base station contains 100 %
recycled PC, emissions and primary energy demand of plastics production are reduced
by 86 %. Substituting 30 % of virgin PC by recycled PC reduces the environmental
impacts of plastic production by 23 %. The effect of bio-based material content on the
environmental impacts is not as straightforward. Depending on the plastic grade, the
environmental impacts of the production of bio-based plastics are higher or lower than
those of virgin PC. Based on the material testing, the properties of recycled PC are
comparable to those of virgin PC. The bio-based plastics also performed well in the
testing, and based on these results they provide sufficient properties to the plastic cover.

Keywords Life Cycle Assessment; Recycling of plastics; Mechanical recycling; Bio-
based plastics; Carbon footprint
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Tiivistelmé

Tuotteiden ympdéristovaikutuksia voidaan pienentdd esimerkiksi vdhentdméalla
materiaalien maiardd tai valitsemalla materiaaleja, joiden valmistus tuottaa pienet
ympdristovaikutukset. Tdssd tyossd tutkitaan, voidaanko kierrdtysmuovien tai
biopohjaisten muovien kaytolld vdhentdd muovituotteen ymparistovaikutuksia.
Ympiristovaikutuksilla tarkoitetaan tdssd tapauksessa kasvihuonekaasupdistoja ja
priméérienergian kulutusta.

Tyossd esitetddn keskeisimmdt muovin kierrdtysmenetelmdt sekd selvitetddn, mité
muovien biopohjaisuus tarkoittaa ja miten biopohjaisia muoveja valmistetaan.
Kierrétettyjen ja biopohjaisten muovien valmistuksen ymparistovaikutuksia selvitetddan
standardisoidulla elinkaariarviointi-menetelmilld. Elinkaariarvioinnin lisdksi muovien
soveltuvuutta mobiiliverkkojen tukiasemien kuorimateriaaliksi arvioidaan testien avulla.
Testiohjelmaan kuuluu esimerkiksi 6 kk:n ulkoilmatestaus Suomessa, Kreikassa ja
Keniassa sekd pitkdkestoinen vanhennustesti 85 °C:n ldmpdtilassa ja 85 %
suhteellisessa kosteudessa. Testejd varten tutkituista muoveista ruiskupuristettiin
todellisen tukiaseman suojamuoveja. Tutkittavat muovit ovat polykarbonaatti (PC),
polykarbonaatti-polyeteeni tereftalaatti seos (PC/PET), biopohjainen polyamidi (PA)
410 ja biopohjainen, lasikuidulla lujitettu polytrimeteeni tereftalaatti (PTT).

Tyossd todettiin, ettdi muovien kierrdtys védhentdd selvédsti muovinvalmistuksen
kasvihuonekaasupidéstojd sekd energian kulutusta. Jos tukiaseman suojakuori tehddédn
kokonaan kierrdtetystd polykarbonaatista, muovin valmistuksen pééstdt ja energian
kulutus vdhenevit 86 %. Korvaamalla 30 % neitseellisestd materiaalista kierrétetylld,
muovin valmistuksen ympéristovaikutukset laskevat 23 %. Biopohjaisen materiaalin
vaikutus ympadristovaikutuksiin ei ollut yhtd suoraviivainen. Riippuen muovilaadusta
biopohjaisten = muovien  valmistus aiheuttaa  suuremmat tai = pienemmét
ympdristovaikutukset kuin neitseellinen polykarbonaatti. Tehtyjen testien perusteella
kierrdtetty PC on ominaisuuksiltaan ldhelld neitseellistd PC:td. Myos biopohjaiset
muovit suoriutuivat testeistd ilman suuria ongelmia ja tarjoavat suojakuorelle
vaadittavia ominaisuuksia.

Avainsanat Elinkaariarviointi; Muovien kierrdtys; Mekaaninen kierrétys; Biopohjainen
muovi; Hiilijalanjilki
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1 INTRODUCTION

Products are traditionally designed to minimize costs and delivery times and maximize
production volume. Awareness of environmental problems, such as global warming and
the depletion of fossil fuels, has increased among customers, stakeholders and
authorities, and therefore many companies aim to decrease environmental impacts of the
products. Environmental impacts include, for example, greenhouse gas (GHG)
emissions and eutrophication.

This study focuses on the environmental impacts and technical performance of the
plastics covers of base stations. Base stations are radio network devices, which provide
wireless connections for mobile devices like smartphones, tablets and computers. Base
stations are located in masts and buildings and they are used outdoors and indoors. An
example of a module base station with a plastic cover is shown in Figure 1.

The function of the plastic cover is to protect the base station from solar radiation, rain
and other weather conditions. The grill in the covers allows air to flow into the device to
cool it. The cover was selected for this study, since it represents a high production
volume plastic part with the typical requirements of an outdoor application. Materials of
base stations encounter both tropical and arctic conditions, because the same kind of
base stations are used globally.

Figure 1. Nokia Flexi Multiradio 10 Base Station mounted on wall. Base stations are

mainly produced from aluminium but they also contain plastics. (Nokia Networks
2014a)

Base stations are mainly produced from aluminium due to its availability, lightness,
corrosion resistance and thermal conductivity. The downside of aluminium are the
environmental impacts of the virgin aluminium production. Virgin aluminium is
extracted from bauxite ore, which is an energy intensive process (Polmear 2006). The

environmental impacts are reduced, if less aluminium is used, for example, due to
10



improved design. The environmental impacts of the product can also be lowered, if
lighter materials are used. In this case, some parts can be manufactured from plastics.
Plastics possess some advantages over metals, such as the possibility to manufacturing
complex shapes and control material properties with additives and fillers.

The environmental impacts of material production are also reduced, when recycled
materials are used. The production of recycled material causes generally fewer
environmental impacts than the production of virgin material (Ashby 2013). Aluminium
and other metals are easily reused many times. However, the end-of-life treatment of
plastics is not as evolved as that of metals, and plastics are mainly landfilled or
incinerated (PlasticsEurope 2013). Plastics are also recycled, but not in the same
quantity as metals. In addition to recycling, bio-based plastics may provide an option to
reduce the environmental impacts of plastics production. Bio-based plastics reduce the
need of petroleum-based raw materials. Recycled and bio-based plastics are already
used in consumer products. For example, beverage bottles from polyethylene
terephthalate (PET) are successfully recycled. Bio-based plastics are found in various
applications such as in drinking cups from polylactic acid (PLA) and automotive and
electrical applications from polyamide (PA) 11 (Arkema 2014). PLA is produced by
microbial fermentation from starch and PA 11 is made of undecenoic acid derived from
castor oil.

In this thesis, technical performance and environmental impacts of recycled
polycarbonate (PC), PC/PET blend and bio-based polytrimethylene terephthalate (PTT)
and PA 410 are studied. Environmental impacts of material production are compared
with the life cycle assessment method (LCA). LCA is a standardized tool which is used
to estimate the environmental impacts of the product through its life cycle. General
principles of the method are described in standards SFS-EN ISO 14040 (Environmental
management. Life cycle assessment. Principles and framework) and 14044
(Environmental management. Life cycle assessment. Requirements and guidelines.)
(2006). Selected environmental impact categories are primary energy demand and GHG
emissions. The comparison between recycled and bio-based plastics can be difficult,
since the materials have clearly different life cycles. Deciding the system boundaries for
the LCA is challenging since recycled and bio-based materials can be treated several
ways in the LCA (Lighart & Ansems 2012). Other studies also suggest that there may
not be a clear win or lose situation (Shen et al. 2010) (Shen et al. 2011) (Vercalsteren et
al. 2009).

Environmental attributes do not give information about the physical and mechanical
properties of the materials. Low emissions and energy usage of the material production
cannot be utilised, if the material is not suitable for the application. Therefore series of
tests are conducted to study how the materials perform in the product. Tests contain
weathering, aging and chemical resistance tests. Tests are based on international
standards and guidelines of plastic and electronic equipment testing. Studied materials
should perform in a similar manner as the PC, which is currently used in the products.
Improvements in the performance of the product are not within the scope of this study.

11



2 PLASTICS MATERIALS

Plastics are a group of materials which are produced from polymers and additives.
Plastics are formed with pressure and heat and they are produced into fibres, films,
bottles, containers and structural parts. Plastic materials can be moulded into very
complex shapes and plastics can have mechanical properties comparable to metals. In
addition, plastics are lightweight, which makes it possible to reduce the weight of
products. Plastics are dielectric, but their electrical and thermal conductivity can be
improved by fillers such as carbon, glass and metal fibres and particles (Brydson 1999).

Plastics play an important role in base stations even though metals are the main
materials. Plastics are used in connectors, wire insulations, printed wiring boards
(PWB), covers and solar shields (Strong 2006). Plastic materials in base stations are
mostly PC, polybutylene terephthalate (PBT) and PA. Thermoset epoxies are used in
PWBs. PC is used in structural parts such as covers, solar shields, LED pipes and fan
casings. PBT and PA are used in insulations since these materials have high dielectric
strength.

2.1 Thermoplastics and thermosets

Polymers are classified into thermoplastics and thermosets (Seppéld 2005).
Thermoplastics polymers such as PA and PC can be moulded several times. Polymer
chains in thermoplastics are connected with hydrogen bonds which allow material to
flow under stress at high temperatures. (Brazel & Rosen 2012) Thermoplastics are used
in packaging and structural parts such as beverage bottles and covers of electrical
devices.

Thermoset polymers can be moulded only once. When thermosets are heated for the
first time, curing reaction forms covalent bonds between polymer chains and causes a
cross-linked structure. More energy is needed to break covalent bonds than hydrogen
bonds. Covalent bonds do not allow polymer to flow at high temperatures. Therefore
thermosets degrade if they are reheated to the point where they could soften. Important
thermoset polymers are thermoset polyesters, epoxies and phenolic resins. (Brazel &
Rosen 2012)

Thermoplastics are also divided based on their mechanical and physical properties and
crystal structure (Seppdld 2005). Thermoplastics are commonly presented in triangles
like in Figure 2. Triangles also show the relative production volumes of the plastics.
Commodity polymers are produced in larger quantities than engineering polymers.
Engineering polymers are produced more than high performance polymers. The triangle
on the right illustrates how bio-based polymers are located in relation to petroleum-
based polymers. Most of the bio-based polymers in Figure 2 share the mechanical and
physical properties of their petroleum-based counterparts.

12
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Figure 2. Classification of petroleum-based and bio-based polymers based on their
crystal structure and properties. (Kabasci & Stevens 2013)

At the bottom are the most used commodity polymers such as polyvinylchloride (PVC),
polyethylene (PE), and polypropylene (PP). Engineering polymers such as PC and PET
are located in the middle and they provide better mechanical properties than commodity
polymers. Engineering polymers can be used in various applications such as in
transportation, machine parts and in covers of electrical devices. (Seppild 2005)

At the top are the high performance plastics which are used in very demanding
applications. High performance plastics are expensive and produced in small quantities,
but they provide unique thermal and mechanical properties. For example, glass filled
polyether ether ketone (PEEK) has a deflection temperature of over 300 °C, whereas the
deflection temperature of PC is 130 - 140 °C. (Brydson 1999)

Plastics can have a crystalline or amorphous structure and the degree of crystallinity can
be controlled during the manufacturing of plastics. Crystalline plastics, such as (PA),
(PE) and (PP) are harder and provide better mechanical properties and chemical
resistance than amorphous plastics. (Brazel & Rosen 2012) Amorphous plastics like PC
and polymethyl methacrylate (PMMA) are transparent, and they are used in windows,
transparent roofing and food containers (Brydson 1999).

2.2 Additives of plastics

The properties of plastics are controlled with additives and fillers. Plastics usually
contain one or several additives, which are used to improve mechanical properties,
enhance flame and weathering resistance or ease processing. Colouring additives and
dyes are added to produce coloured plastics and fillers are used to, for example, increase
molecular weight, or lower material costs. (Brazel & Rosen 2012) Additive content is
normally a few percent (Silvennoinen 2014).
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Plastics are reinforced, for example, with glass, carbon and aramid (Kevlar) fibres. Bio-
based fibres, such as flax, are also used (Kuciel 2012). The fibre content of
thermoplastics may be over 50 %. Reinforced plastics require also coupling agents
which improve the adhesion between fibres and plastics matrix. Common coupling
agents are silane and titanate. The reinforcing of plastics improves stiffness, strength
and mechanical performance at high temperatures. Reinforcing affects the processability
of plastics. Surface quality is reduced, but the dimensional stability is increased due to
reduced moulding shrinkage. (Brazel & Rosen 2012) Reinforced plastics may increase
tool wear and moulds may require more maintenance, if reinforced materials are
constantly processed. The overall difference to the moulding of non-reinforced
materials is difficult to estimate (Kdmérdinen 2014).

Flame resistance is achieved with flame retardants. Flame spreading is slowed down by
quenching flame propagation reactions, forming char or water, which inhibits burning
and absorbs energy. Examples of flame retardants are tetrabromobisphenol-A,
tetraphthalic andhydride, organic phosphates and hydrated alumina. Due to safety
concerns, halogenated and bromine flame retardants are restricted, for example, in
Nokia products (Nokia Networks 2014b).

Stabilizers, such as phenyl salicylate, 2-(2-hydroxyphenyl)-benzotriale, prevent
degradation of plastics by ultraviolet (UV) radiation or high temperatures. Stabilizers
prevent UV degradation by converting the electronic energy into heat (Brydson 1999).
Some additives, like carbon black, behave as stabilizer and pigment. Carbon black
absorbs UV radiation and prevents it from penetrating the surface of the material.
(Brazel & Rosen 2012)

2.3 Production of plastics

Plastics are manufactured from natural or synthesized polymers. Raw materials for
plastics are derived from fossil fuels or renewable resources such as starch, cellulose or
soy. In the beginning of the 20™ century, most plastics were made from renewable
resources. Currently widely used plastics such as PA, PE, PVC, and PMMA were
created in the 1920s and 1930s when crude oil became available in large quantities and
at a reasonable price. Bio-based plastics like polylactic acid (PLA) and polyhydoxy-
alkanoates (PHA) were created at the same time. However, large scale production of
bio-based plastics started decades later in the 1990s. (Kabasci & Stevens 2013)

Natural gas, coal and crude oil are used for the production of petroleum-based plastics.
Monomers such as propylene and ethylene are side products of oil refining. New
sources for petroleum-based plastics are also utilized. The increased extraction of shale
gas in the USA provides more raw materials for plastics production. Large scale shale
gas production also keeps the price of gas low, which increases the production of
petroleum-based polyolefins such as PE and PP (Sherman 2013).

Fossil fuels and derivatives from renewable resources need to be refined and processed
several times before the final polymerization step. These processes can contain
hazardous chemicals like phosgenes, chlorine and bis-phenol A (BPA). The extraction

14



and refining of oil requires a lot of energy. It is assumed that oil extraction and refining
requires 95 % of the energy needed to produce 1 kg of polymers (Maris et al. 2014).

Even though plastics are mainly made of petroleum-based raw materials, they can be
used to reduce the life cycle emissions of the products. Plastics can provide lightweight
solutions for transportation, which yields reductions in fuel consumption. Being
lightweight is beneficial for other products as well, as transporting them requires less
energy. However, plastics may not be the best materials for every application. The
whole life cycle of the product must be studied to understand whether metals, plastics or
ceramics provide the best alternative from an environmental and functional point of
View.
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3 LIFE CYCLE AND END-OF-LIFE

The life cycle of a product consists of the production of raw materials, the production of
components and parts, manufacturing of the end product and transportation, installation,
use and disposal. Life cycle of material is illustrated in Figure 3. The whole life cycle
should be considered already at the designing stage of the product. During designing
there are opportunities to effectively affect the environmental performance of the
product (Lanoé et al. 2013). Without fully understanding the life cycle, improvements in
one process can lead to worsening in the others.
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Figure 3. Life cycle of material from natural resources to disposal. (Ashby 2013)

Every process presented in Figure 3 requires energy, raw materials and produces
emissions. Some of the energy and materials can be recovered after the disposal of the
product. Possible disposal options for a product are landfill, combustion, recycling, re-
engineering and re-use (Ashby 2013). Another important method to avoid of creating
waste is to reduce material usage by improving design, for example. Worrel and Reuter
(2014) presented waste treatment methods in hierarchical order:

1. reduce and avoid waste
2. reuse the product

3. recycle

4. recover energy

5. landfill.
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Reducing and avoiding the waste is the preferred method, since energy is not required to
process the waste. Re-engineering and re-use is suitable for some applications. Some
products, like aircrafts, can be reused after replacing critical parts. Recycling means that
the material from the old product is used to produce new items. Recycling reduces the
use of virgin material. Recycling requires energy and produces emissions, but the
energy is generally smaller than the energy required to produce virgin material. (Ashby
2013)

Recycled or secondary material can be used to substitute primary material or it can be
used to produce different products. Term “down cycling” is also used, when recycled
material is used to produce lower grade products (Lighart & Ansems 2012). For
example, glass fibres from plastics are used for road construction.

Combustion for energy recovery is used to produce energy from old materials. All
materials cannot be combusted and they must be separated from the waste stream.
Landfill is the least favourable method, since none of the value of the product is
recovered. Plastic waste treatment in the European Union, Switzerland and Norway is
showed in Figure 4. In countries where landfilling is banned, most of the plastic waste is
combusted. In many countries, the majority of waste is still delivered into landfills.
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Figure 4. Plastic waste treatment in European Union, Switzerland and Norway. Energy
recovery is generally more common than recycling. In some countries, the majority of
waste is still delivered into landfills. (PlasticsEurope 2013)
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4 LIFE CYCLE ASSESSMENT METHOD

Life cycle Assessment (LCA) is a standardized method which is used to evaluate
environmental impacts during a product’s life cycle. First LCAs were conducted during
the late 1960’s and they were concentrated mainly on energy and raw material usage
(O’Neill 2003). Nowadays LCA contains also emission and impact analysis. In addition
to global warming potentials, acidification and other environmental factors, economic
and social impacts can be considered (Guinée et al. 2011). Currently, ISO standards
14040 and 14044 describe the general guidelines for LCA (SFS-EN ISO 14040, 14044
2006). These standards are not binding in anyway (Ashby 2013) and therefore
assessments can contain large variations due to assumptions and choices made by the
assessor.

Industry specific instructions for LCA are currently designed or have already been
published. For example, ETSI ES 203 199 V1.3.0 (2014) standard is specifically
designed for information and communication technology (ICT) devices and networks
and PAS 2050 (2011) is designed to assess life cycle greenhouse gases of goods and
services. LCA can be used to distinguish in which part of the product life cycle causes
greatest environmental impacts. LCA method is seen as one of the promising methods
to evaluate environmental impacts of the product (Urban & Bakshi 2009) (WRAP
2010).

The life cycle of a product is presented as a series of unit processes which all have a
specific function. Results of LCA are presented as potential effects. Results can only
estimate real impacts since regional differences have a significant effect on impacts
(Lighart & Ansems 2012). Different systems or products are usually compared in LCA,
because analysing only one option may not reveal whether the impacts are high or low
(Collado-Ruiz & Ostad-Ahmad-Ghorabi 2013). Comparing assessments made by
different assessors is not straightforward. Assumptions and estimations can be different
between studies, even though the same standards and guidelines have been followed
(Guldbrandsson & Bergmark 2012). Comparison becomes more feasible if studies from
the same practitioner are compared.

Standard LCA consists of 4 phases: goal and scope definition, inventory assessment,
impact assessment and interpretation. The flow chart of an LCA process is presented in
Figure 5. LCA is an iterative process, so all phases affect the other phases. For example,
the definition and interpretation steps may need to be modified after more information is
obtained.
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Figure 5. Framework of LCA according to ISO 14040 and 14044 standards. (SFS-EN
1SO 14040 2006)

The purpose of the study is determined in the goal and scope definition phase. This
phase also contains the selection of the system boundaries and functional unit. (SFS-EN
ISO 14044 2006) Input and output data for processes are normalized to functional unit
which is used to compare different systems. A functional unit can be a product or
service; for example 1 kg of produced raw material or 1 GB of transferred data.

The system boundary defines which processes are taken into account in the study. The
quality of the data determines whether processes must be added or removed from the
system. The system boundary can be modified and refined during the study. Regional
differences in data cause significant changes to results. Global average data may not
reflect the local process conditions well, and site specific data may not provide
comprehensive results of the environmental impacts. Significance of the assumptions is
evaluated with the sensitivity analysis. (SFS-EN ISO 14044 2006)

Inventory analysis contains a collection of inputs and outputs from unit processes. Data
is collected to Life Cycle Inventory (LCI). In a Life Cycle Impact Assessment (LCIA),
the inventory data is classified to the selected impact categories such as acidification or
climate change. LCIA also contains the calculation of category indicator results. For
example, the category indicator for climate change is kg of CO,-equivalents (kg CO¢q)
per functional unit. The category indicators are used to evaluate the effect of emissions
on category endpoint. (ISO 14044 2006) Category endpoint of climate change includes
malnutrition, decreasing bio diversity and flooding (European Commission 2010).
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LCA can be performed as a Cradle to Grave or Cradle to Gate assessment. A Cradle to
Grave assessment contains the life cycle phases from material extraction to final
disposal. A Cradle to Gate assessment contains life cycle steps before use phase. Cradle
to Gate assessments are also used to study only material production when it is not
known which product the material will be used in. Omitting the use phase is also viable
when comparing different materials if the use phase is similar for all options. Cradle to
Gate assessments can contain the end-of-life phase, if it is known how the material will
be treated after its useful life. Figure 6 illustrates different assessment types.
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|
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Figure 6. An example of LCA system boundaries. Cradle to Grave assessment considers
the whole life cycle. Cradle to Gate assessment considers the production of the product
or the study can be limited only to material production.

Even though LCA according to ISO standards is found to be a reliable tool, some flaws
and inaccuracies are reported and discussed. Some of the criticism is targeted at specific
cases, like LCAs in aluminium industry, or to the whole LCA procedure. For example,
the use of industry-wide data may not give a realistic picture for specific cases. All
manufacturing methods may not be included and the data can be old. In addition, the
use of functional unit may hinder perception of how environmental impacts are evolved
in reality. For example, environmental impacts of a product can be decreased according
to functional unit in LCA but the increase of the overall production increases combined
impacts. (Gang & Miiller 2012)

4.1 Impact categories

The environmental impact categories in this study are climate change and primary
energy demand of the raw material production. Several other impact categories exist
(Lighart & Ansems 2012). In the report from Waste & Resources Action Programme
(WRAP 2010) it was stated that studies should also consider other impact categories
than climate change and primary energy demand. Use of simple indicators may not give
information of toxic materials or materials depletion (van der Velden 2013). However,
climate change is a widely used and understood category. The selection of impact
categories is also affected by the purpose of the study. For example, customers may
require that a company must provide a carbon footprint calculation of the products.
Many stakeholders are also focused on climate change and size of carbon footprint
(Guldbrandsson & Bergmark 2012).

4.1.1 Primary energy demand
Primary energy demand contains energy derived from fossil fuels and non-fossil fuels.
Primary energy is the energy which is embodied in the natural resources such as coal,
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natural gas, bio-energy and uranium. Primary energy needs to be converted into usable
energy. (IPCC 2014) The primary energy demand for lighting is presented in Figure 7.
According to the illustration, 320 units of primary energy are required to produce 1 unit
of lighting energy.
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Figure 7. lllustration of primary energy demand for one unit of light energy. Primary
energy is derived from natural resources and transformed into useful energy. (IPCC
2007)

Some studies and reports concentrate only on non-renewable energy usage (NREU) or
fossil fuel depletion (Shen et al. 2011) (DuPont 2014a) (Vercalsteren et al. 2010)
(Papong et al. 2014). Comparisons of NREU of bio-based and petroleum-based
materials are used to illustrate that bio-based materials required less fossil fuels. Total
energy consumption of bio-based materials may be higher than that of petroleum-based
materials. This study compares partly bio-based materials with fully petroleum-based
materials. For viable comparison, energy derived from fossil fuels and non-fossil fuels
is considered.

4.1.2 Climate change
Climate change is related to GHG emissions, which increase atmospheric temperature.
Climate change also causes changes in ocean fluxes and sea level. More specific details

about climate change are found from in a report of Intergovernmental Panel on Climate
Change (IPCC) (2013).

Climate impacts of GHG emissions are evaluated with global warming potential
(GWP). GWPs are used, for example, in the Kyoto Protocol. The Kyoto Protocol is an
international agreement under United Nations aimed to set international binding
emissions reduction targets (United Nations 1998). GWP compares time-integrated
radiative forcing of GHG to radiative forcing of carbon dioxide (CO;). GWP is
calculated with the equation:

TH
Jo keHGYGHG (D)t

TH
Jo kco,yco,(D)dt

GWP = (1
where kgng and kco, are radiative forcing of GHG and CO», respectively and ygug and
ycoz are lifetimes of GHG and CO,, respectively. Life time y is expressed as a CO;

impulse response functions. (Guest et al. 2013) Each greenhouse gas has its own GWP.
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CO,, methane, ozone and nitrous oxide are important and commonly reported GHGs.
The major greenhouse gas in the atmosphere is water vapour. The quantity of water
vapour is controlled mostly by air temperature, and water vapour has a negligible effect
on climate change. (IPCC 2013)

GWP results for a product are presented as COj-equivalent (CO,.q) emissions for
different time horizons. The most used time horizon is 100 years which is expressed as
GWP 100. There is no scientific argument for favouring the 100 year time horizon
(IPCC 2013). Vogtlinder et al. (2014) suggested that it was a political decision to
balance the short-term effect of methane and the long-term effect of
chlorofluorocarbons (CFC). Because GHGs have different lifetimes in the atmosphere,
the choice of the time horizon has an effect on GWP. The use of a short time horizon 20
years, for example, increases the importance of short-lived GHGs like methane. A

longer time horizon increases the importance of long-lived GHGs such as CO,, CFCs
and N,O. (Brandao 2013)

Table 1 shows GWP for greenhouse gases that shall be reported in GHG inventories
according to Greenhouse Gas Protocol (2013). Values show what the effect of time
horizon is. Because methane is a short-lived GHG, its GWP is larger in a 20 year time
horizon than in a 100 year time horizon. CO, and nitrous oxide have a similar life time
and therefore their GWPs remain constant.

Table 1. GWPs of various greenhouse gases according to IPCC (2013). Values from
(IPCC 2007) are shown for comparison. Greenhouse Gas Protocol (2013) requires
these gases to be reported in GHG inventories.

GHG Chemical GWP20 GWP100 GWP 100
formula (2007)
Carbon dioxide CO, 1 1 1
Methane CH4 84 28 25
Nitrous dioxide N>O 264 265 298
Hydrochlorofluorocarbons
(HCFC), e.g. HCFC-22 CHCIF, 5280 1760 1810
Perfluorocarbons (PFC),
e.g. PFC-14 CF4 4480 6630 7390
Sulphur hexafluoride SF¢ 17 500 23 500 22 800
Nitrogen trifluoride NF; 12 800 16 100 17 200

GWP values for gases have changed over time. Better calculation methods provide
more realistic estimations for GWPs. Different values make the comparing of studies
difficult although GWP of most common GHGs are not changed significantly. IPCC
gives updated reports and GWPs every few years.
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4.2 Recycling in LCA

ISO 14040 and 14044 define two procedures to treat recycling in LCA. If no changes
occur in the inherent properties of recycled material and the recycled material is reused
for similar application, a closed-loop product system is applied. If recycled material is
used in other product systems or properties of the material are changed from virgin
material, an open-loop product system is preferred. (SFS-EN ISO 14044 2006)

An example of a closed-loop product system is the use of recycled plastic bottles to
manufacture new bottles. Using recycled plastic bottles to produce plastics covers is an
example of an open-loop product system. Lighart and Ansems (2012) define also a
model of semi-open loop recycling, in which the inherent properties of the material are
not changed, but the recycled material is used for another product. Defining the correct
material flows for LCA can be difficult if recycled material is derived from various
sources. In the closed-loop recycling, the choices are easy, but closed-loop recycling
rarely exists in reality. (Lighart & Ansems 2012)

Recycling has been studied in several LCAs. Reports from British Waste & Resources
Action Programme analysed in total over 80 LCAs which were focused on recycling
methods (WRAP 2010). The recycling of PET bottles was investigated by Shen et al.
(2011). They compared the environmental impacts of virgin PET bottles with PET
bottles made partly from recycled material.

Modelling the recycling of products that have a long useful lifetime is challenging,
because recycling and waste treatment methods have probably evolved significantly
after the LCA study (Sandin et al. 2014). That is especially the case in the construction
industry, but it can also concern base stations, which may have a lifetime of ten years.
The LCA can only indicate possible impacts caused in end-of-life phase due to
uncertainty of future technology (Guldbrandsson & Bergmark 2012).

One key issue regarding recycling studies is how to allocate inputs and outputs. It must
be considered, whether the environmental impacts are targeted at virgin or recycled
material. Allocation is also performed when recycled material is used for several
applications. For example, a recycled PET pellet can be used for fibre and bottle
production (Shen et al. 2011). The allocation of the impacts of recycled material is
discussed in several publications (Gang & Miiller 2012) (Lighart & Ansems 2012)
(Sandin et al. 2014). ISO 14044 standard prefers that no allocation is performed.
Processes should be divided into sub-processes or the system should be expanded. If
allocation is needed, it should be based on physical properties of material flows, for
example mass. Other properties, such as economic value can be used for allocation if
physical relationships cannot be used. (SFS-EN ISO 14044 2006) However, Ardente
and Cellura (2012) suggest that the allocation method should be selected on a case-by-
case basis. An assessment can combine several allocation approaches as in the study by
Shen et al. (2010).

Common allocation methods for the recycling point of view are described in the
following chapters. The system expansion is also presented, although it is not an
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allocation method as such. Allocation methods are roughly classified into two
approaches: cut-off approach and end-of-life recycling. Methods similar to the cut-off
approach assume that the impacts are clearly divided between different life cycles. The
principle of the division varies between methods. These methods include cut-off
approach, economic allocation and 50:50 method.

In methods similar to the end-of-life recycling, it is assumed that the virgin material is
substituted by recycled material derived from the studied product. In other words, the
recycled material in end-of-life recycling comes within the system boundary. In the cut-
off approach the recycled material is derived from outside the system boundary.
Methods, which are similar to the end-of-life recycling, are value-corrected substitution
and multiple recycling method.

4.2.1 Cut-off approach

Cut-off approach is the most common allocation method. The cut-off approach is also
known as recycled content allocation (Johnson et al. 2013) or input oriented allocation
(Lighart & Ansems 2012). The impacts directly caused by the product are considered in
the life cycle. The disposal and waste treatment are allocated to the first life of the
product and recycling processes and the use of recycled materials are considered in the
second life. Recycled material used for the product is assumed to replace virgin material
in the system (Lighart & Ansems 2012) (Sandin et al. 2014). The cut-off approach is
presented in Figure 8. Due to its simple approach, the cut-off approach is applied in the
LCA in this study.
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Figure 8. The principle of cut-off approach. Recycling of the product is not included in
the life cycle. (Lighart & Ansems 2012)

The advantages of the cut-off approach are its simplicity and the ease of understanding.
The method simplifies the LCA study in which recycled material is used, since it may
not be known how many times the specific batch of recycled material has been
reprocessed. The cut-off approach also promotes the use of recycled material because
the production of recycled materials causes generally lower environmental impacts than
the production of virgin materials.
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However, the cut-off approach does not support designing recyclable products, since the
recycling of the product does not reduce environmental impacts in the first life of the
material (Gediga 2014). Johnson et al. (2013) point out that the cut-off approach may
not effectively consider the situation in which more recycled material is used in the
manufacturing phase than is recovered in the end-of-life phase. This situation requires
the use of recycled material from outside the system boundary. (Johnson et al. 2013)
This can be relevant in the case of plastic parts, if recycled material is used in the
product and the material is incinerated after use. In this scenario, waste from different
plastic parts is needed to support the production of the studied part. According to the
cut-off approach, the impacts from the products, which are used as recycled materials,
are not considered. The cut-off approach may therefore favour the use of recycled
materials, which are derived from products with high environmental impacts.

4.2.2 Economic allocation

Economic allocation is used to combine economic systems and product systems.
Environmental impacts for multiple products are divided based on their economic
values. In the case of recycling, the impacts from the collection and dismantling
processes are divided between virgin and recycled materials. If used virgin material
yields 100 € and the processed scrap yields 150 € for the collection and dismantling, the
total yield is 250 €. By using economic allocation, 40 % or the environmental impacts
of the scrap processing is allocated to the virgin material and 60 % to the recycled
material. The example is illustrated in Figure 9.
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Figure 9. The principle of economic allocation in recycling. Environmental impacts
from the collection and dismantling processes are divided between first and second life

based on the economic values of virgin and recycled materials. (Lighart & Ansems
2012)

Economic allocation can be used when a process has multiple output products. A
problem with economic allocation is that the prices and price ratios of co-products differ
over time. Although, it is stated that allocation based on physical relationships may also
have fluctuations. Especially in the food industry, product flows can differ depending
on the year. (Ardente & Cellura 2012) Regulations and fees make the estimation of the
the prices difficult (Lighart & Ansems 2012).

4.2.3 50:50 method

The environmental impacts of primary material production and recycling processes are
divided between the first and second life in the 50:50 method (Johnson et al. 2013).
According to this method recycling is beneficial, if its environmental burdens are less

than those of the virgin material production and final waste treatment (Nicholson et al.
2009).
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4.2.4 End-of-life recycling
The end-of-life recycling method assumes that recycled material from the studied
product substitutes virgin material at the beginning of the life cycle. If the material is

reutilized by incineration with energy recovery, the produced heat substitutes the heat
from other fuels (Sandin et al. 2014).

End-of-life recycling is also known as the avoided burden approach (Gediga 2014) or
output oriented allocation (Lighart & Ansems 2012). It can be applied to closed loop or
semi-closed loop recycling. It is the opposite of cut-off approach, in which the first life
of the recycled material is not considered. The end-of-life recycling method is presented
in Figure 10. Emission factors are used in the end-of-life recycling method to consider
that emissions of the are released in the future. The use of emission factors to describe
future emissions adds uncertainty to the assessment. (Johnson et al. 2013)
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Figure 10. End-of-life recycling method. The recycling of used materials substitutes
primary material. (Lighart & Ansems 2012)

Johnson et al. (2013) observed in their study that the impacts were significantly higher
when the end-of-life recycling method was applied instead of cut-off approach. The
end-of-life approach may promote the use of virgin materials, if their recycling potential
is overestimated (Gediga 2014). However, end-of-life recycling supports designing
recyclable products, since a high recovery rate reduces the environmental impacts of the
product.

4.2.5 Value-corrected substitution

In value-corrected substitution it is assumed that the virgin and recycled materials have
different inherent properties. Changes of inherent properties are indicated with ratio in
prices between the virgin and recycled materials. As in the end-of-life recycling,
recycled material is used to substitute virgin material. For example, if 80 kg material is
recycled and the material has 90 % of the value of virgin material, 72 kg of virgin
material is substituted with recycled material. (Lighart & Ansems 2012)

Johnson et al. (2013) studied value corrected substitution method of aluminium
recycling, and stated that the method contains defects. In the case of aluminium, the
method cannot consider changes in the ratio of the prices of virgin and recycled
aluminium. Johnson et al. (2013) suggest that the method works if the price ratios of
specific material or alloy are stable. Price fluctuations of the materials can increase or
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decrease environmental burdens even though physical characteristics of the material or
system remain the same (Lighart & Ansems 2012).

4.2.6 Multiple recycling method

The International Iron and Steel Institute developed a multiple recycling method. The
method takes into consideration that the impacts of the virgin material affect the impacts
of the recycled material. As material is recycled repeatedly, environmental impacts are
reduced and eventually stabilized. An example of the multiple recycling approach is
seen in Figure 11. The method can be used for a material whose inherent properties are
not significantly changed in recycling. (Lighart & Ansems 2012)
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Figure 11. Multiple recycling method applied to PET bottle recycling. Non-renewable
energy usage (NREU) and global warming potential are stabilized after 3 recycling
trips. (Shen et al. 2011)

4.2.7 System expansion

In ISO 14044 standard, system expansion is preferred instead of allocation. The
boundaries of the system are expanded so that the system is considered to be closed.
Expanding the system too much increases the workload and increases uncertainty
(Lighart & Ansems 2012). New allocation issues may also arise, when new processes
are taken into account (Tsiropolous et al. 2013).

System expansion was used in the study of PET bottle recycling by Shen et al. ( 2011).
In that study, system boundaries were expanded to take the virgin material production
into account, which was needed to achieve the function unit. System expansion was
used in the study by Shen et al. (2010). Their study suggests that system expansion is
the most favourable allocation method for open-loop recycling systems.
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4.3 Bio-based materials in LCA

Bio-based materials contain biogenic carbon. The default assumption is to consider
biogenic carbon as an emission. For example, if 1 t carbon is extracted from biomass
resource poll, such as forest, 3.67 t CO;, is emitted to atmosphere in the year of
extraction (Guest et al. 2013). In other words, the extracted biogenic carbon is assumed
to be an emission regardless of the product lifetime. According to Vogtlédnder et al.
(2014), many LCA practitioners are decided not to consider biogenic CO;, emissions. It
is reasoned, that the CO, captured by biomass is eventually returned to atmosphere.
Therefore net change in CO, emissions does not occur.

In some cases biogenic carbon is assumed to be stored in a product for a period of time.
For example, the industry of bio-based products suggests that biogenic carbon storage
should be credited in carbon footprint calculations (Vogtlédnder et al. 2014). The stored
carbon is released back to the atmosphere during the life cycle of the product, for
example during incineration. Carbon neutrality is claimed, when the growth of biomass
for the application sequesters equal or more CO; than is released during the production,
use and disposal of the application (Brandao et al. 2013).

Different methods for treating biogenic carbon are presented in ISO/TS 14067, GHG
Protocol, PAS 2050 and Climate Declaration. All these methods are based on ISO
14040 and 14044 standards, but they include different requirements and guidelines.
(Garcia & Freire 2014) The technical specification ISO/TS 14067 defines how to
evaluate the carbon footprint of a product. In ISO/TS 14067 biogenic carbon storage is
not calculated in the carbon footprint, but it is reported separately (ISO/TS 14067 2013).
ISO/TS 14067 does not provide a method to calculate delayed emission from long lived
products such as wood furniture (Garcia & Freire 2014).

Biogenic carbon storage is included in carbon footprints according to GHG Protocol
and Publicly Available Specification (PAS 2050 2011). GHG Protocol is based on a
former PAS 2050 specification. Both methods contain similar guidelines, but PAS 2050
does not include biogenic carbon of food and feed in calculations due to their short life
cycle. Carbon emissions and removals from food and feed cancel each other out. (PAS
2050 2011) PAS 2050 recommends the use of sector specific rules for the calculation
(Garcia & Freire 2014). The approach of this study is based on GHG Protocol. GHG
Protocol is used in many studies, so comparing this and other studies is easier, although
not straightforward.

The Climate Declaration method is created by International Environmental Product
Declaration (EPD) Systems and concentrates only on GHG emissions. Current Climate
Declaration follows the same principles as PAS 2050:2011. For example, biogenic
emissions from food and feed are excluded. The older 2008 Climate Declaration did not
take biogenic carbon into account. (EPD 2014) (Garcia & Freire 2014)

Garcia and Freire (2014) made a comparison between CF calculation methods to point
out the differences, how biogenic carbon is considered. They assessed the CF of particle
board production according to the ISO/TS 14067, GHG Protocol, PAS 2050 and old
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Climate Declaration 2008. Cradle to Gate CF is shown in Figure 12. The results were
somewhat conflicting. The use of GHG Protocol and PAS 2050 results in a negative
carbon footprint. Carbon footprints, according to Climate Declaration and ISO/TS
14067, are positive. Clearly, the choice of assessment method affects the results greatly.
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Figure 12. Comparison of different methodologies to treat biogenic carbon in Cradle to
Gate type of LCA. GHG protocol and PAS 2050 methods result in negative carbon
footprints and ISO/TS 10467 and Climate Declaration result in positive carbon
footprints. Carbon storage is reported separately according to ISO/TS 14067. (Garcia
& Freire 2014)
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5 RECYCLING OF PLASTICS

It is estimated that the plastics industry has grown 8.7 % every year starting from 1950.
The annual production of plastics in 2012 was 288 million tonnes, of which 57 million
tonnes were produced in Europe. At the same time, more and more plastic waste is
produced and reutilization of the waste has become an important business. According to
PlasticsEurope, the association of European plastics manufacturers, 61.9 % of plastic
waste is either recycled or used for energy production in the European Union (EU),
Norway and Switzerland. The remaining 38.1 % is disposed of as landfill. 25.2 million
tonnes of plastics ended up in the waste stream in 2012, and 62.2 % of the waste is
derived from packaging. (PlasticsEurope 2013) It is estimated that 4 % of municipal
waste in Europe comes from electronic equipment (Georgiadis & Besiou 2010).
Electronic devices contain large amounts of plastic parts such as insulators and covers.

Currently, electronic waste is one of the fastest growing waste streams (Deeptimayee et
al. 2012).

Recycling of plastics has already been successfully applied to many commodity plastics
and plastics have been recycled since the 1970s. Materials like polyvinyl chloride
(PVC), PP and PET are widely recycled. Engineering thermoplastics are not recycled as
efficiently. However, methods for recycling common engineering plastics such as PC
and PA have been created decades ago. (Scheirs 1998) The problem with recycling
engineering plastics is the identification of different plastic grades which may contain
many additives or coatings (Arensman 2000).

Developments in recycling technology allow for more efficient recycling of materials
(Hopewell et al. 2009). Before 1991 and the development of the super clean recycling
technology, it was not possible to use recycled plastics in food applications due to
contamination. (Welle 2011) Recycled plastics are needed to mix with virgin materials
to meet the requirements for colouring and food safety (Shen et al. 2011). Novel
recycling methods make it possible to recycle plastics from various sources.

The large variation of plastics grades makes recycling demanding. Plastics may contain
different types of additives like pigments, flame retardants or UV-stabilizers. The
identification of plastics is difficult, if their properties are close to each other. Some
plastic products contain a recycling code, which makes the separation process easier.
Currently, the recycling codes from 1 to 6 are available for 6 types of polymers:

1. PET

2. high density PE (HDPE)
3. vinyl polymers

4. low density PE (LDPE)
5. PP

6. polystyrene (PS).
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All other plastics belong under code 7. (Brazel & Rosen 2012) However, some plastic
products contain an additional marking, which indicates the material type. An example
of a recycling code is shown in Figure 13.

Figure 13. Recycling mark in a plastics product. Number 07 indicates that the plastic
belongs to group ‘other’. Additional marking informs that the material is flame retarded
(FR) polycarbonate (PC).

Recycled materials are used in new plastic products, blended with other materials or
used as fibres in clothing. Plastic waste can also be incinerated to produce heat. The
processing properties of plastics can be changed due to recycling. For example,
molecular weight is typically reduced, which increases fluidity. (Strong 2006)

5.1 Advantages of plastics recycling

The recycling of plastics must provide advantages, and recycling just for its own sake is
not enough (Khare 1999). An obvious benefit is that the use of recycled plastics
decreases the need for crude oil. The production of recycled plastics can be more energy
efficient and cause fewer emissions than the production of virgin plastics. (Shen et al.
2010) Arena et al. (2003) concluded that the recycling of PET can reduce GHG
emissions almost by 90 %. PET recycling required 93 % less crude oil than the
production of virgin PET. The study by Morris (2005) suggests that the recycling of
plastics requires approximately 95 % less energy than the production of virgin plastics.
Energy efficiency depends on the plastics grade, condition and recycling method. Pure
plastic waste is easier to recycle than a contaminated mixture of different plastics.
Mechanical recycling is more efficient than chemical recycling or biodegradation.
(Hopewell et al. 2009)

A large amount of plastics waste is currently incinerated for energy production.
According to Hopewell et al. (2009), the recycling of plastics saves more energy than is
produced by incineration. A study by Hischier et al. (2005) concluded that recycling
causes fewer emissions than the incineration of waste electric and electronic devices.
The study by Morris (2005) compared the recycling of municipal waste with landfilling
and incineration. According to the LCA model, the recycling caused lower
environmental impacts than solid waste disposal or combustion, even if energy is
recovered from landfill gases and combustion. Environmental impacts were evaluated,
among other things, with energy usage, GHG emissions, eutrophication and
acidification. All indicators suggested that the environmental burden of recycling is
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lower than that of landfilling or incineration. The same study proposes that the
economic value for the pollution prevention caused by recycling outweighs the costs of
recycling.

Tuomisaari (2014) stated that recycling is also cost-effective, if the waste sorting and
logistics are well controlled. Sorting the waste at its place of origin eases further waste
processing. Transporting the plastic waste is economical, if the waste is compressed into
a small size. The price ratio between virgin and recycled material depends on the quality
of the recyclate. If recycled material is required to have exactly the same properties as
virgin material, the price of the recyclate is 70 - 80 % of the price of the virgin plastics.

5.2 Difficulties in plastics recycling

The collection and processing of plastic waste require several steps. The sorting of
waste requires also manual work. Sorting must be efficient, since even a small amount
of contaminant can ruin a large batch of recycled material. Especially PVC in a PET
waste stream is difficult to distinguish, since the densities of PVC and PET are close to
each other. (Scheirs 1998) The recycling of industrial waste is easier than the recycling
of plastic products, since the plastics grade of the end product can be difficult to
distinguish, especially if the material is marked with recycling code 7. Material grades
in the industrial waste are usually well known. Recyclate derived from moulding scrap
provides good quality material but improvements in the material efficiency of moulding
reduce the availability of recyclable material. (Buckel 2014) (Riidiger 2014)
(Silvennoinen 2014) Moulding scrap is therefore an unstable source of material. A high
recycled material content is difficult to achieve for high production volume products
made of moulding scrap.

Recycling affects the properties of plastics. Mechanical and weathering properties are
degraded if polymer chains are shortened significantly during recycling. Mixing of
virgin and recycled material has also been found to degrade material properties.
According to Rosato et al. (2000), a recycled material content of 25 - 30 % will result in
degraded physical properties. However, commercial PC grades exist which contain 30
% of recycled material and have properties comparable to 100 % virgin PC (Bayer
MaterialScience 2014).

The use of recycled material causes limitations to available colours. Most recycled
materials are black or dark grey (Scheirs 1998). Dark colours are easy to achieve if the
waste is derived from various products and the availability of specific plastics waste is
unknown. This may be the case with engineering plastics, which are used in relatively
small quantities with various colours and additives. To fulfil specific material
requirements, such as flame resistance, material properties must be monitored and
additives added, if necessary, during recycling. If flame retardant waste is available,
flame resistance is maintained after recycling. For example, Statler et al (2008)
observed that the flame resistance of PC can be retained after mechanical recycling.
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5.3 Recycling methods

Mechanical recycling is the most used recycling method, but other methods such as
chemical and thermochemical recycling (feedstock recycling) are also shortly described.
Recycling methods may require similar scrap collection and pre-treatment processes. A
summary of end-of-life options for plastics is shown in Figure 14. The figure shows at
which point of plastics production the recycled material is used.
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Figure 14. End-of-life treatment of plastics. (Perugini et al. 2005)

5.3.1 Mechanical recycling

In mechanical recycling, plastic products are shredded in pellets or flakes which are
remoulded. Waste plastics must be carefully sorted prior to processing, because
impurities in the waste can deteriorate material properties. (Tuomisaari 2014)
Mechanical recycling is most suitable for industrial waste, since it contains less
impurities and can be sorted more easily than consumer waste (Khare 1999).
Mechanical recycling has been found to cause fewer emissions and require less energy
than chemical recycling (Shen et al. 2010). The recycling process is performed with a
single machine, if the plastic waste is well sorted and does not require additional cutting
or shredding. Plastic parts smaller than 0.5 m x 0.5 m and lighter than 500 g are directly
fed into the recycling machine. A recycling system from Erema is shown in Figure 15.
Plastic waste is ground, melted, screened and granulated within one system. Dust and
other impurities are removed from the plastics after granulating. The size of the
granulate is approximately 4x4x5 mm. Recycled PP pellets are shown in Figure 16.
Purified granulates are packed in 1000 kg sacks like in Figure 17. (Tuomisaari 2014)
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Figure 15. Erema recycling system, which is used to grind, melt, screen and granulate
the plastics waste. The same system is used for various plastics. (Erema 2014)

Figure 16. Plastic waste is processed into small granulates with size of 4x4x5 mm.
Granulates in the photo are PP.

Figure 17. Plastic granulates are poured from the silo into sacks. One sack contains
1000 kg recycled plastics.

Shear forces and processing temperatures have an effect on the properties of recycled
material. High temperatures and shear forces during recycling may reduce impact
strength and viscosity. Ground waste should be fine-grained because it is easier to melt
than coarse resin. The quality of the recycled material is also affected by the recycling
machine. The ground plastics waste is melted and mixed in the extruder. The longer the
extruder, the lower shear forces are needed to melt the material. (Tuomisaari 2014) If
the recycling process is well controlled, the resulting material has properties comparable
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to virgin plastics (Mahanta et al. 2012). Some additives such as antioxidants are
degraded during recycling, but they can be added when the recycled material is
moulded. Antioxidants are important in multicomponent moulding. (Tuomisaari 2014)

5.3.2  Chemical recycling

In chemical recycling, the polymer is decomposed to its starting monomers. Chemical
recycling is performed by hydrolysis, glycolysis, hydroglycolysis, methanolysis or
aminolysis. Processing of plastics chemically may require the use of toxic chemicals
and the processing costs are much higher than those of mechanical recycling.
(Antonakou & Achilias 2013) The reaction products are liquids and gases which can be
toxic. Chemical recycling is effective for mixed plastics waste which is difficult to
separate for mechanical recycling. (Strong 2006)

5.3.3  Thermochemical recycling

Thermochemical or feedstock recycling decomposes plastics to a condensed mixture.
The process is carried out in high temperatures in the absence of air (pyrolysis), in the
presence of hydrogen (hydrocracking) or in a controlled amount of oxygen
(gasification) (Perugini et al. 2005). The mixture contains gaseous products like CO»,
CO and H; and liquid monomers. For example, thermochemical recycling of PC results
in the aforementioned gaseous products and monomers like bis-phenol A. (Antonakou
& Achilias 2013) Thermochemical recycling produces simpler chemical components
than chemical recycling.

5.3.4 Biodegradation

Biodegradable materials are degraded by composting or by sun light, for instance.
Biodegrading requires controlled conditions and does not easily occur in landfills.
(Strong 2006) A backyard compost heap may not be effective for biodegradation
therefore industrial scale composting facilities are required (Hottle et al. 2013).
Biodegradation products can also be harmful to the environment. (Strong 2006)

Biodegradable plastics are mostly used in packaging, since their life cycle is short, and
biodegradation helps to reduce the amount of waste ending up in the landfills.
Biodegradability occurs due to the breaking of polymer chains and it is independent of
the source of raw materials. For example, hydrolysis of the ester linkage causes
degrading of PLA (Brazel & Rosen 2012). Biodegradable plastics can contain raw
materials from biomass, but some fully petroleum-based plastics are also biodegradable,
such as polycaprolactane (PCL) and polybutylene adipate terephthalate (PBAT).
(Kabasci & Stevens 2013)

5.4 Recycling of polycarbonate waste

Recycled polycarbonate is made from a pre-consumer or post-consumer waste. The
term pre-consumer waste is used for recycled material, which is derived from industrial
scrap. Pre-consumer waste is also called post-industrial waste. Post-consumer PC waste
is derived from plastic products. (ISO 15270 2008) Recycled PC is used, for example,
in the covers of mobile phones (Tillman et al. 1994) (Nokia 2013).
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Post-consumer PC waste is collected from CDs and milk and water bottles and
automobiles (Scheirs 1998). PC parts are used in car lamps and body panels. The origin
of pre-consumer waste is runner scrap, defected parts and contaminated materials which
are produced by injection moulding. The term pre-consumer recycling does not cover
materials, which are reprocessed directly after moulding. The quality of this material
may not be as high as that of material reground by a recycling company. (Jarvinen
2008) The reciprocating screw in moulding machine is designed only to melt materials,
not mix them (Tuomisaari 2014). Badly mixed materials can result in surface defects
such as flow marks.

Mechanical, chemical and thermochemical recycling methods can be applied to PC.
Mechanical recycling is currently the most viable method. Other methods are not yet
widely used. A flow chart for mechanical recycling of PC is shown in Figure 18.
Similar processes are used for pre-consumer and post-consumer waste. Processes are
also applicable to PET waste. All processes do not require individual equipment. For
example, compaction, grinding, removal of foreign materials and granulating are
possible to perform in one machine.

The collection and separation steps are different for post-consumer and pre-consumer
waste. Pre-consumer waste comes from moulders and is relatively pure. Screens are
however used for purification (Tuomisaari 2014). The quality of post-consumer PC
waste can be lower than that of pre-consumer waste. PC water containers are used in
offices and public spaces where they are subjected to impurities, although the impurities
are mild compared to those of an outdoor environment. PC water containers are
collected by a water supplier, so the waste stream is controlled. This yields a higher
recovery rate of PC scrap than for example in the case of PET beverage bottles.
(Silvennoinen 2014) Contaminated PC bottles are separated by optical separation.
Optical separation is viable for transparent parts, but dark coloured products must be
separated with different techniques (Froelich et al. 2007).

Washing and
Plastic waste removal of foreign ———» Drying
materials
Collection Grinding Granulating

l ! l

Recycled plastic

Separation —> Compaction
pellet

Figure 18. Recycling of plastics contains many steps. Similar processes are used for
pre-consumer and post-consumer waste. Collection and separation of pre-consumer
waste is more straigthforward than that of post-consumer waste.
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Some PC grades can be recycled several times without reduction in physical properties.
Rosato et al. (2000) reported that the melt flow rate and impact resistance of natural
coloured high viscosity PC remained at the same level after three regrinding cycles.
However, the yellowing index was increased. Melt flow rate of the medium viscosity
flame retarded PC was increased after three regrinding cycles. Regrinding of high
viscosity PC has the highest probability for good material properties.

Pérez et al. (2010) studied how several reprocessing cycles affect the properties of PC.
Tensile properties of samples remained constant even after 5 - 7 recycling cycles. The
impact strength of the samples was already significantly reduced after 2 cycles.
Molecular weight was reduced after 2 - 3 reprocessing cycles caused by the scission of
polymer chains.

5.5 Recycling of polyethylene terephthalate waste

Most of the post-consumer PET waste comes from beverage bottles. In 2012, 60 million
PET bottles were recycled which accounts for 52 % of all post-consumer PET bottles in
Europe (Petcore Europe 2012). The recycling of PET is economically viable since the
price of recycled PET is estimated to be similar to that of virgin PET (Strong 2006)
(Welle 2011).

The recycling of PET beverage bottles is a well-known and successfully used process.
PET is recycled by many recycling methods from mechanical recycling to chemical
recycling. PET bottles, which are used in PC/rPET blend, are mechanically recycled.
The recycling of post-consumer waste requires many steps such as collection, handling,
sorting and cleaning before it can be reused in production. The steps are shown in
Figure 18.

The recycling of PET bottles is effective, but the use phase of the bottles is not as well
controlled as that of PC water containers. PET bottles are sometimes used to store
chemicals which affect material properties or leave residuals on the material, for
instance. (Silvennoinen 2014) To fulfil food safety and avoid discolouring virgin PET is
needed to blend with recycled PET. According to Shen et al. (2011) a PET bottle can
contain a maximum of 35 % recycled material.

Consumers play a large role in the collection of PET bottles. Post-consumer plastic
waste is collected from roadsides, drop-off programmes or commercial collection
systems. PET plastic waste is derived from beverage bottles and packages. Collection
requires transportation and manual work. (Franklin Associates 2011) The collected
waste is delivered into material recovery facilities where the material is sorted and
separated. Sorting is performed either manually or automatically based on colour
separation (Shen et al. 2010). Other possible separation methods include magnets, air
classifiers and sink float methods (Franklin Associates 2011) (Scheirs 1998).

PET waste is compacted into bales which are processed in reclaimer facilities. Bales are
broken and foreign material is removed from the PET waste. Normally the foreign
materials are aluminium and HDPE or PP from the bottle cap. The waste is washed, if
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necessary, before it is granulated into flakes. (Franklin Associates 2011) Solid-state
condensation is performed after granulating. Solid-state condensation increases the
molecular weight of the plastic by increasing the length of polymer chains without
melting the material. It is a common process in PET recycling. Solid state condensation
is not used for PC. (Silvennoinen 2014) (Riidiger 2014) (Buckel 2014).

Flakes are converted into pellets and chips. Pellets and chips are further extruded into
fibres or they are used for plastic products or blended with other plastics. Most of the
PET waste is processed into fibres. (Shen 2010) Flame retardants and other additives
are mixed with recycled material in compounding (Silvennoinen 2014). Compounding
is also used to produce plastics blends, such as PC/rPET.
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6 BIO-BASED PLASTICS

6.1 Definition of bio-based plastic

In this thesis, the term bio-based plastic is defined as a plastic containing carbon from
animals, plants or micro-organisms. Specific limit for the required bio-based carbon
content is not set. Other definitions for bio-based plastic also exist. Sometimes bio-
based plastics are just called bio-plastics. However, the prefix bio has other meanings
such as biodegrading or biocompatibility which make the understanding more difficult.
Biodegradable plastics degrade in anaerobic conditions and this phenomenon is used to
dispose plastic products. Biocompatible plastics are used in medical applications and
they are compatible with living organisms (Kabasci & Stevens 2013).

The Sustainable Biomaterials Collaborative (SBC 2014) defines a bio-based material as
a material in which the carbon comes from contemporary biological sources. SBC uses
term bio-plastic for plastics which contain 100 % of bio-based carbon. The ASTM
defines bio-based material as an organic material in which the carbon is derived from a
renewable resource via biological processes. The amount of bio-based carbon in the
material is estimated with ASTM D 6866 (2012) standard. The standard determines the
bio-based content by comparing the amount of carbon 14 in the unknown sample with
the reference sample. The European Committee for standardisation defines bio-based
plastics as plastics which are derived from a biomass. A biomass is a biodegradable
organic material originated from plants, animals or micro-organisms. (Kabasci &
Stevens 2013) The US Department of Agriculture (USDA 2014) defines bio-based
products as commercial or industrial products (other than food or feed) that are
composed in whole, or in significant part, of biological products, renewable agricultural
materials (including plant, animal, and marine materials), or forestry materials.

Bio-based plastics are not necessarily biodegradable, such as bio-based (PE).
Biodegradable plastics may not contain bio-based raw materials, but they are still called
bio-plastics. Biodegradability was discussed with other recycling methods in the
previous chapter. Figure 19 divides plastics based on the biodegradability and whether
the material is a fossil-based or bio-based.

39



Bioplastics

e.g. biobased PE,

PET, PA, PTT

Bioplastics

e.g. PLA, PHA,
PBS, Starch blends

Non

biodegradable 3 iodegradable

Conventional Bioplastics
plastics

e.g. PBAT, PCL
nearly all conven-
tional plastics
e.g. PE, PP, PET

Fossil-based

Figure 19. The classification of plastics based on the biodegradability and source of
raw materials. (European Bioplastics 2014a)

Bio-based plastics can also be defined as partly bio-based or bio-replacement plastics.
Partly bio-based materials contain both bio-based and petroleum-based carbon, whereas
fully bio-based plastics like PA 11, PLA or PHA contain only bio-based carbon. PA 410
and PTT studied in this thesis are partly bio-based plastics, since they contain
petroleum-based components. PTT is a bio-replacement plastic since its properties are
similar to the petroleum-based version (Kurian 2005). Currently, a fully petroleum-
based PA 410 is not in the production.

Some companies have their own definitions and terms for the bio-based or
biodegradable materials. For example, Nokia (2011) uses term eco-plastic which can
mean bio-based or recycled plastic. DuPont (2014b) uses term renewable sourced
material for a material which contains minimum of 20 wt-% renewable sourced
ingredients.

6.2 Advantages of bio-based plastics

The reasons to use bio-based plastics depend on the product. In packaging, the use of
bio-based and biodegradable plastics reduces waste that ends up in a landfill. In
packaging, the desired property is specifically the biodegradability. Bio-based plastics
are used also for marketing purposes. Bio-based raw materials can give an impression
of an environmental friendly product.

Bio-based plastics can reduce the carbon footprint of the product. The reductions in the
carbon footprint are not necessarily significant. For example, the study by Hottle et al.
(2013) show that carbon footprint of the bio-based PLA granulates and petroleum-based
PET granulates were at the same level. The study state that bio-based plastics do not
have clear advantage in any environmental indicator when compared with petroleum-

based plastics. Similar conclusion was drawn in the study by Vercalsteren et al. (2010).
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Replacing some of the petroleum-based material with bio-based monomers can reduce
GWP and energy usage. In study by Shen et al. (2011) the non-renewable energy usage
and GWP of partly bio-based PET were 21 and 25 % lower, respectively, than those of
petroleum-based PET. However, recycled petroleum-based PET had still lower energy
usage and GWP than bio-based PET. In that scenario, recycling and use of bio-based
raw materials were almost equally effective methods to reduce the environmental
impacts.

Bio-based plastics are also used to avoid the dependence on oil. Although, bio-based
raw materials do not contain oil, the production processes require oil for transportation,
for instance. The study by Franklin Associates (2007) show that the production of bio-
based PLA required less fossil fuels than production of PET, although the total
production energy (fossil fuels and non-fossil fuels) of PLA was higher than that of
PET.

6.3 Disadvantages and difficulties of bio-based plastics

Petroleum-based plastics replaced bio-based plastics in the 1940s due to low costs of
crude oil. Cost of crude oil derivatives has stayed relatively low, which has supported
the production and use of petroleum-based plastics. Recently, some of the bio-based
raw materials have become cheaper than crude oil. New processes, which allow
production of bio-based plastics with reasonable costs, increase the use bio-based
plastics. (Mittal 2012)

Prices for selected raw materials are shown in Figure 20. The figure shows that prices
for crude oil and bio-based materials fluctuate greatly. In 2012 the price of crude oil was
higher than that of bio-based raw materials, such as sugar, castor oil and sebacic acid.
Sebacic acid is refined from castor oil and used in bio-based plastics (Kabasci &
Stevens 2013). Price of the crude oil is dependant of the demand and supply.
International crises such as accidents, extreme weather conditions and wars also affect
prices. In 2014 supply of the oil was increased and the price lowered. The increased
production of polymer from shale gas in the USA is a factor that changes fossil fuel
markets. (Niskakangas 2014)
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Figure 20. Prices of crude oil and bio-based oil are not constant. Large variations in
prices are possible, but generally raw materials have become more expensive. (Kabasci
& Stevens 2013)

Raw materials for bio-based plastics compete with food chain and bio-fuels, although
the production volume and land usage are still very low. Global agricultural area is 5
billion hectares from which bio-based plastics required 400 000 hectares in 2012. That
corresponds less than 0.01 % of the total agricultural area. (European Bioplastics
2014b) The competition with food chain impairs the reputation of bio-based plastics
regardless of the actual land usage. The efficiency in the land usage is increased with
transgenic plants. Transgenic plants are, however, restricted by the law, for example in
Europe (Hausmann & Broer 2012).

According to Tabone et al. (2010) production of bio-based plastics increases some
environmental impacts. For example, the production of bio-based PLA and PHA
increases eutrophication, carcinogens formation and ozone depletion when compared to
PC or PP. However, GWP and fossil fuel depletion of the bio-based plastics were
significantly lower than those of PC. The production of bio-based plastics requires
fertilizers, pesticides and chemicals for fermentation and other processes which
increases the environmental impacts of the production. The environmental benefit of the
bio-based plastics is clearly dependable on the studied attribute. Comprehensive
evaluation of the environmental impacts of bio-based plastics should be evaluated with
various impact categories.

6.4 Bio-based plastics markets

Bio-based plastics do not hold large fraction from plastics markets. It was estimated that
only 1 % of all plastics in the market is bio-based (Babu et al. 2013). The fraction is
predicted to reach 3 % until 2020. The annual production capacity in 2020 is estimated
to be 11 - 12 million tonnes. In 2011 the production capacity was 3 - 4 million tonnes.
Bio-based plastics markets are growing mostly due to use of bio-based PET and PP.
(Carus et al. 2013)
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Limited availability and higher price delay the implementation of bio-based plastics.
Higher price in comparison to petroleum-based plastics does not necessary rule out the
use of bio-based plastics. In fact, in the study by Carus et al. (2014) it was observed that
customers and other market actors are willing to pay more for bio-based materials in
some applications. The use of bio-based materials increases the costs for 10-30 % in
most cases. In some special applications, such as wall plug made from bio-based PA,
additional costs can be even 300 %. In addition, the price of intermediate products was
increased more than the price of the end customer products. The willingness to pay
higher price depends much on the product. For example, environmentally friendly cars
should pay cost the same as “normal” cars (Khare 1999), but an environmentally
friendly toy or food packaging can cost 10 - 25 % more than conventional products
(Carus et al. 2014).

6.5 Raw materials of bio-based plastics

Bio-based plastics can be completely bio-based or a blend of petroleum-based and bio-
based polymers. Bio-based raw materials are derived from corn, sugar cane, castor oil
plant, soy or from cellulose. (Alvarez-Chavez et al. 2012) PTT and PA 410 which are
studied in this thesis, contain bio-based raw materials from corn starch and castor oil,
respectively.

Bio-based raw materials are classified as naturally occurring polymers and synthesised
polymers. Naturally occurring polymers such as starches, lignin, cellulose and rubber
are produced in plants. Elastin, fibrous proteins and collagen are examples of
synthesised polymers, which are derived from bacteria or algae. (Hausmann & Boer
2012) Agricultural materials cannot be used for materials without converting them into
polymers or other intermediate products. Crops are processed by fermentation, chemical
reaction or modification to produce suitable polymer chains for plastics. Chemical
modification is made by acetylation, succinylation, phosphorylation, limited hydrolysis
and specific bond hydrolysis. The purpose of chemical modification is to treat the
material with a specific chemical which causes desired reactions. Physical modification
requires heat and pressure to break chemical interactions. (Wool & Sun 2005) Even
though raw materials for the polymers and intermediate products do not possess toxic

substances, processes may require the use of hazardous chemicals. (Alvarez-Chavez et
al. 2012)

Bio-based feedstock for engineering plastics is mainly used to produce bio-based
versions of existing monomers. The bio-based monomers have similar properties as
their petroleum-based counterparts and are easily taken in production. Their waste
handling and recycling do not differ from those of the petroleum-based plastics. It was
expected by Babu et al. (2013) that in the future, bio-based plastics vary more from the
petroleum-based plastics.
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6.5.1 Corn starch

Corn is used as a resource for starch, because it contains more starch than other cereals,
and its separation from germ and pericarp is easy (Wool & Sun 2005). The USA is the
largest producers of corn. Corn is used for livestock feed, food and industrial
applications including ethanol. In the USA, 39.4 % of the corn in 2010 was used for
livestock feed and 34.9 % of the corn crop was converted to ethanol. 15.2 % of the corn

was exported and 10.5 % was used for food and other industrial applications. (Kabasci
& Stevens 2013)

Starch-based plastics are used in food containers, packaging and bone fillers in
orthopaedic implants (Babu et al. 2013). Starch is used as an intermediate for the
glucose production from which the glucose is processed into plastics. Starch extraction
is known as the wet milling, because it requires large amount of water. The wet milling
of the corn includes following steps: preparation, steeping, germ removing, grinding,
fibre and gluten removing and starch washing. Corn oil and protein is recovered from
the extraction process. (Wool & Sun 2005) The preparation includes cleaning the corn
kernels. The steeping is placed inside steeping tanks containing 0.1 - 0.2 % sulphuric
acid solution for 36 - 48 h. Water diffusion, lactic acid bacteria and yeast growth take
place during the steeping. The processing temperature is in the range of 36 - 51 °C
(Ramirez et al. 2008). Low temperatures prevent yeast growth and excess heat denatures
the protein. (Wool & Sun 2005) After the steeping, starch is separated from germs,
proteins and fibres. Corn kernels are mechanically opened and the separation is
performed in several hydrocyclones. The separation in hydrocyclones is based on
different densities of the materials. The germ separation is the first separation step
followed by fibre and gluten separation. Gluten is formed from protein matrix and
fibres. Impurities in the process such as sand are screened with filters. (Wool & Sun
2005) The resulting starch is used directly to produce plastics or it can be processed into
ethanol. Ethanol is used as fuel or processed into glucose and glycerol. The
fermentation of glucose and glycerol with a suitable organism results in 1,3-propanediol
(PDO), which is a raw material for PTT.

6.5.2 Castor bean

Castor bean plants grow wild in tropical Africa and Asia. Main producers are India,
China and Brazil. The castor oilseed production was 1 million tonnes in 2010. The
production of castor oil has doubled in 10 years. The total production volume in 2000
was 517 thousand tonnes. Castor oil can be processed into sebacic and undecenoic
acids, which can be further processed into plastics. The processing of castor beans into
these monomers is shown in Figure 21. The castor bean plant grows best at low
humidity, in clay soil and at temperatures between 20 and 26 °C. Castor seeds are not
suitable for human or animal food due to toxicity (Mittal 2012). Castor seeds contain
ricin, ricinine and allergens (Ogunniyi 2004). Because of the toxicity, castor plants are
not grown for ornamental, food or feed purposes. However, it was reported by Ogunniyi
(2004) that castor cake can be detoxified by caustic soda, ammonia, lime and heat.
Detoxified cake can be used as feed.
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The oil content in castor bean is high, typically 40 - 60 % (Kabasci & Stevens 2013).
Oil is extracted from beans by mechanical pressing and solution process. Heptane,
hexane and petroleum ethers are used for extraction. Castor oil does not contain toxic
components and it is used in many industrial applications such as in soaps, lubricants,
paints and motor oil. (Ogunniyi 2004) Castor oil is also used in medicinal products such
as laxatives and counter constipation (Mutlu & Meier 2010). Extracted oil is usually
refined to remove contaminants (Mutlu & Meier 2010) (Ogunniyi 2004). The chemical
composition of the oil is studied to remain constant regardless of the country of origin
(Muthu & Meier 2010).

Castor oil is solved to ricinoleic acid which is converted to sebacic acid by alkali fission
or to undecenoic acid by pyrolysis. The alkali fission is performed by treating the
ricinoleic acid at 180 - 270 °C with NaOH or KOH. The reaction products are sebacic
acid and 2-octanol. Sebacic acid can be used to produce polyamides such as PA 1010,
PA 610 and PA 410. The side product 2-octanol is combusted (Kabasci & Stevens
2013) or used as plasticizer in the form of dicapryl esters (Ogunniyj 2004).
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Figure 21. The production of sebacic acid from castor beans. (Kabasci & Stevens 2013)
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7 DEGRADATION OF PLASTICS

The plastics in base stations are subjected to demanding environments in their service
life. Same devices are installed outside or inside. Commonly same materials are used
for the indoor and outdoor products to simplify the purchases and production. The
plastics in this thesis are intended to be used in covers or structural parts of the base
stations. Common example product is a solar shield which is used to cover a base
station from the UV-radiation and excess heat. Therefore materials must sustain outside
temperatures from -35 - +55 °C. However, surface of solar shields can absorb infrared
heat and the surface temperature can exceed 55 °C.

Plastic parts are also exposed to thermal cycling during transportation. Since the base
stations contain metals and plastics, it is important that the different coefficients of
thermal expansion (CTE) do not cause fracture of the parts. In addition, the CTE
mismatch, creeping and relaxation of internal stresses cause loosening of the screws,
which may result in dropping of the parts, for instance.

The plastics are exposed to many chemicals during the production, installation, use and
maintenance. Common substances such as perfumes, water displacements and wasp
sprays are detrimental for plastic parts. An urban and industrial environment can contain
chemicals such as sulphuric acid. In outdoor environment, plastics are also subjected to
dust, fungi, moss and pests. In addition, humidity and water cause changes in materials.
Plastic parts are not allowed to fracture or dissolve during their use phase due to contact
with chemicals. Plastic covers are visible parts, so notable changes in the appearance are
not allowed.

The resistance of plastics to outdoor environments are discussed in the following
chapters. Degradation mechanisms of PC, PC/PET, PTT and PA in different conditions
are briefly introduced. Degradation mechanisms for virgin PC and PET are discussed,
because mechanical recycling of plastics does not alter chemical composition.
Degradation mechanisms of bio-based PTT and PA are comparable to petroleum-based
counterparts, since their polymer chains are similar. In addition to literature, the
suitability of the materials for outdoor use is evaluated by a series of material tests.

7.1 Degradation in water

Water causes chemical and physical reactions in plastics. Water is absorbed by the
plastic as free or bound water. (Harvey 2005) PET, PTT, PAs and PC are all affected by
water. In these plastics, the glass transition temperature (T) and molecular weight are
reduced, when the material absorbs water. (Brydson 1999) The reduction in the T,
weakens the mechanical performance of the material due to depolymerisation.

Polyesters (PC, PET and PTT) contain an ester group, which is susceptible to
hydrolysis. Hydrolysis of an ester link causes chain scission. (Brydson 1999) After all,
water absorption of polyesters is relatively low, only 0.2 - 0.4 %. The susceptibility of
PC to the water absorption is due to oxygen found in the carbonate group (CO3) in the
chemical structure of PC (Megat-Yusoff et al. 2013). Water causes the carbon linkage to
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split into alcohol and carbon dioxide. The degradation is accelerated due to residues of
acidic and basic catalysts. These catalysts are in the contact with polymers in
polymerization processes. (Harvey 2005a)

The degradation of PC by hydrolysis is most severe at high temperatures. Humid resin
causes visual defects to the moulded part. According to Rosato et al. (2000), hydrolysis
is recognized from the silver streaks on the surface of the part. Moisture content over
0.02 % results in waviness in the product and reduction of mould filling (Goodship
2004). The water absorption of PC at room temperature is low especially when
comparing to that of PAs. PAs absorb more water than other engineering
thermoplastics; some PA grades absorb moisture more than 10 %, for instance. Tensile
strength and modulus may be reduced by 20 % with water absorption. As with other
plastics, water absorption increases with temperature, therefore moisture is most
damaging during processing. (Strong 2006) Humid granules during the moulding cause
waviness in the PA products and a loss of mechanical properties (Goodship 2004). The
high water absorption rate reduces dielectric strength of the material which weakens
insulation. The water absorption rate depends on the PA grade. PAs with short polymer
chain (PA 6, PA 46 and PA 66) absorb more water than PAs with long polymer chain
(PA 11 or PA 12). (Jarvinen 2008)

7.2 Thermal stability

High temperatures degrade polymer chains and cause a loss of mechanical properties.
Plastics materials in base stations shall have operating temperature of 85 °C. This
requirement rules out some of the plastics, which are otherwise useful. For example, the
maximum operating temperature of ABS is 67 °C (Mills 2005). High operating
temperatures limit also the use of PET. PET has glass transition temperature around 80
°C, so there is a risk of failure, if a PET part is used near this temperature.

PC and PA 6.6 can tolerate higher temperatures than ABS and PET. According to Mills
(2005) the maximum operational temperature of PC and PA 66 in dry air are 96 °C and
120 °C, respectively. Deflection temperatures of PA 410 and glass filled PTT are 110
(DSM 2014) and 200 °C (DuPont 2014c), respectively. High deflection temperature
suggests that these materials are useful at 85 °C.

PC has high thermal stability because it has only two types of hydrogen: methyl and
aromatic. The thermal degradation of the PC occurs at temperatures above 300 °C,
which are possible during injection moulding (Montaudo et al. 2002). According the to
study by Jang and Wilkie (2004), the main degradation methods of PC are the chain
scission of isopropylidene linkages and the hydrolysis or alcoholysis of carbonate
linkages. At the beginning of the degradation, rearrangement of some carbonate linkage
occurs and CO, and H,O begin to evolve. Different degradation paths occur in the
material at the same time. Some chains degrade by hydrolysis and alcoholysis and some
by chain scission.
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Thermal stability of PAs is affected by the distance of the amine groups in the polymer
chain. The creep resistance and deflection temperature are increased, when the distance
between amine groups is decreased. High amine group concentration also improves the
chemical resistance and mechanical strength. (Brydson 1999) The amine group
concentration and thermal stability of PA 410 are lower than those of PA 46 and PA 6.
On the other hand, the water absorption of PA 410 is lower than that of PA 46 and PA
6. (DSM 2014) (Brydson 2011)

7.3 Outdoor degradation

UV radiation from the sun causes material changes in plastics in outdoor environment.
Chemical structures absorb radiant light energy, which degrades the chemical bonds
(Brydson 1999). Air can also contain impurities, which increase the degradation of
plastics (Strong 2006). Outdoor environment and solar radiation cause brittleness,
colour changes and formation of surface cracks (Fechine et al. 2002). UV radiation
heats different parts of the product differently and causes buckling and warpage. Heated
areas are in compression and shaded areas are in tension. Generally the studied
materials are stable to light and perform better in sunlight than commodity plastics like
PVC or PE. (Summer & Rabinovitch 1999)

Degradation mechanism of PC in outdoor weather has been studied in many studies.
Most of the studies are conducted by accelerated weathering tests. (Diepens et al. 2011)
Real behaviour of the material should be studied in real environment with real operating
time (Harvey 2005b). Testing of plastic covers can be arranged in real environments,
but the required exposure time for the parts of base stations is too long. The service life
of the plastic parts of base stations is expected to be 10 years. If outdoor resistance or
UV durability is tested in laboratory, the conditions should correspond to real operating
environment. For example, wavelength of the radiation of UV lamp should be in the
range of the solar radiation, 295 - 380 nm. Wavelengths shorter than 295 nm cause
degradation which does not occur in real environments. (Wypych 1999) In UV
radiation, PC is degraded by two methods: photo-Fries rearrangement and photo-
oxidation. The photo-Fries rearrangement occurs, when the wavelength of the light is
shorter than 300 nm and photo-oxidation occurs, when the wavelength is longer than
300 nm. The most dominant degradation method of PC in the solar radiation is the
photo-oxidation, even though small amount of photo-Fries reactions can occur. The
photo-oxidation is initiated by radicals. (Diepens & Gijsman 2007)

The UV degradation of PC results in yellowness on the surface and loss of impact
strength. An outdoor test of PC with and without UV stabilizers showed that without
UV stabilizers the impact strength of the PC is significantly reduced (Massey 2007). In
UV radiation, mechanical properties of recycled PC are degraded faster than those of
virgin PC. Pérez et al. (2010) found out that tensile strength of virgin PC only increased
from 61.7 MPa to 62.3 MPa after 600 h in an accelerated aging test. The 600 h
accelerated test corresponded to 22 years of outdoor use. If PC was reprocessed more
than once, the tensile strength of the material was degraded significantly after 8 years of
outdoor use. Tests were, however, conducted without UV stabilizers.
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As PC, PAs also suffer from outdoor degradation but their UV resistance can be
improved with carbon black. Carbon black prevents absorbance of the solar radiation
into the material (Brazel & Rosen 2012). Some embrittlement of unfilled PA is
observed after an outdoor exposure. In PAs, wavelengths over 340 nm cause
degradation by hydroperoxidation and wavelengths lower than 300 nm cause
degradation by photoscission. (Massey 2007)

PTT and PET are resistant to UV radiation, especially if they are stabilized with carbon
black. Without colouring additives PET and PTT suffer from yellowness in UV
radiation (Lauttia 2014) (Silvennoinen 2014). According to Kurian (2005) PTT resists
UV radiation better than other fibres such as PA 66 or PET. Even though the UV
resistance of PET is lower than that of PTT, mechanical properties of PET are
maintained in outdoor applications. For example, over 90 % of the tensile strength of a
PET sample was retained after 3 years of outdoor exposure (Massey 2007).

7.4 Degradation due to chemicals

Solvents and other chemicals cause degradation and dissolution of plastics. The
dissolved polymer chains can form new chains, which change appearance and
mechanical properties of plastics. (Brazel & Rosen 2012) Chemicals cause also
environmental stress cracking (ESC). ESC is a failure mechanism which occurs when a
product is subjected in stresses and strains in a specific fluid. Stresses and strains can be
derived from external loads or they are formed during moulding. The fluid may end up
on the surface of the product from aerosol sprays, paints, labels, adhesives and leaks
from other systems. It is estimated that 15 % of the failures of plastic parts is due to
ESC. The failures of motor cycle helmets made of PC are a familiar example of ESC.
Chemicals in adhesive labels and paints caused micro-cracking and degradation of PC
which weakened mechanical properties. ESC also degraded babies’ feeding bottles
made of PC. The bottles were cracked when they were exposed to insect spray. (Wright
1996)

Fluids affect plastics by two methods: by attacking chemically or absorbing into the
critical zones of the part. Chemically attacking fluids cause chain scission, chemical
modification and cross-linking by hydrolysis, oxidation or chlorination. Other chemicals
are absorbed into micro-yielded or stress-dilated zones and they cause weakening of
mechanical strength. (Wright 1996) Amorphous plastics like PC dissolve easier than
crystallized plastics such as PA, PET or PTT. Crystalline bonding forces improve
chemical resistance. Crystallized plastics are dissolved easier when temperature is
increased. (Brazel & Rosen 2012) Chemical resistance of the studied plastics is
evaluated with a chemical exposure. The hypothesis is, if PC can tolerate the contact
with the chemicals, PC/rPET blend, PTT and PA 410 can also tolerate the chemicals.
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8 SCOPE OF THE STUDY

8.1 Research problem

This study aims to answer, how large environmental impacts are related to recycled and
bio-based plastics. The environmental impacts are assessed with primary energy
demand and greenhouse gas emissions. The environmental attributes are compared with
those of virgin petroleum-based PC. Another subject is the technical performance of the
materials. Even though recycled and bio-based plastics should have similar chemical
structure as those of virgin petroleum-based plastics, differences during processing can
have an effect on the behaviour of materials.

8.2 Purpose of the study

The purpose of the study is to evaluate, whether the environmental impacts of the
product can be reduced by using recycled or bio-based plastics and whether the LCA
tool can make a difference between these materials. Different methods to treat recycling
and bio-based materials in LCA are studied to understand, what should be taken into
account when evaluating the environmental burden of these materials.

The results of LCA and material tests provide information for the designers about the
new materials. The selected material tests represent the basic requirements for plastic
materials in base stations. The studied materials are not planned to replace materials in
the current products, but the results can be utilized when designing future products,
which may have different requirements than current products. The purpose of the
material testing and analysing is not to evaluate the polymer structure or improve it.

Weathering resistance of plastics is evaluated with an accelerated aging test and outdoor
exposure. The accelerated aging test is performed at 85 °C and 85 % relative humidity.
At these conditions hydrolysis degrades materials much faster than at room temperature.
Exposure time is 2 000 h and it is assumed to be enough to reveal differences between
materials. In addition to humidity and heat, UV radiation is detrimental for most plastics
(Wypych 1999). Material is degraded by one these factors and by combination of them
(Massey 2007). Outdoor exposure provides information, how materials perform in the
environment which contains real life impurities, temperatures, heat and sun shine.

Testing is made up with water absorption, temperature cycling and chemical exposure.
Each of these tests is concentrated only to one material property. Water absorption is
property, which depends on polymer structure and the absorptivity is easily measured
by scale. Water absorption is not a critical parameter of the covers, but the testing is
used to study basic properties of plastics. Temperature cycling is used to evaluate, how
materials perform in the real applications during a constant change of temperature.
Temperature cycling can cause relaxation of the internal stresses. In the testing, plastic
covers are attached into aluminium casings. Aluminium and plastics have different
CTE, which causes externals stresses. Variable stress and dimensions may result in
loosening of the screws. In chemical exposure plastics are subjected to substances,
which are commonly used for lubricating, cleaning or solving. Plastics are also exposed
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on the insect spray, which is known to be detrimental for plastics (Wright 1996). Visual
changes, such as cracking or colour changes are studied in the chemical exposure.

The moulding of the plastics was not studied in details. Observations from the moulding
are, however, discussed, because the moulding properties of the materials affected the
performance of the materials in testing. Performance of the material in moulding was
used to evaluate whether the PC mould can be used for recycled PC or bio-based
plastics. A sample product provided possibility to see, how materials behave in complex
shaped mould. The information is useful when designing future products.

8.3  Outlines

This study only focuses on the material properties. The scope of the LCA is plastic resin
manufacturing prior injection moulding. The moulding and use of the cover is not
assumed to make large differences between the materials. Some materials are moulded
with lower temperature and pressure, but it is difficult to estimate whether it has
significant effect on total energy consumption or emissions of the moulding. The
production of additives of the plastics is not considered, because its impact is assumed
to be same for each polymer.

Material tests are performed according to international standards and material testing
guidelines. The test programme does not contain all the tests which are required for new
material approvals of base stations. Tests are used to highlight possible differences
between materials. Improvements in material properties are not in the scope of this
study. The performance of the materials is compared to that of the current production
material. The analysing of the results of the material tests is mainly limited to visual
inspection. The appearance of the cover plays an important role, because the cover is a
visible part. Some mechanical stresses are, however, applied into the cover during the
use, but the function of the cover is not to support other parts or transfer torque and
forces. Mechanical loads come mainly from winds, earthquakes, temperature cycling
and impacts during assembling, transporting and installing a base station. Suitability of
plastics to the outdoor use was evaluated with an outdoor exposure. The plastics were
coloured differently, which may affect the results. Outdoor exposures generally require
longer testing times than it was possible to include in this study. For this thesis, results
were reported after 6 months exposure, which may be short time to reveal major
differences. However, the testing is continued after 6 months.

Although new materials for base stations are studied, this study focuses on currently
commercially available materials and technologies. Material requirements of base
stations were considered already at the selection of materials and tests.
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9 STUDIED MATERIALS

This study contained PC, PC/PET blend, PTT + GF, PA 410. Their repeating units of
polymer chains are shown in Figure 22. Carbon, hydrogen, oxygen and nitrogen are
expressed as, C, H, O and N, respectively. The lines represent covalent bonds between
atoms and the hexagons with a circle inside represent benzene rings. The methylene
group is shown as CH, The figure shows, how the structures of PET and PTT are
clearly similar. The only difference between these materials is the number of methylene
groups: PET contains 2 and PTT 3 methylene groups. There is a clear difference
between PA 410 and the other materials. For example, the repeating units of PC, PTT
and PET contain at least one benzene ring and ester group (O=C-O). The polymer chain
of PAs also contains nitrogen.

1 L f |
_OQC@O_C_ CH, CH,CH, cH, N CI, CIL,
I TSR IANIN RN NN
CH. CH, CH, CH,CH, | CH; CH 1~|J
Q)

d)

Figure 22. Repeating units of a) PC, b) PA 410, c) PET and d) PTT.

9.1 Polycarbonate

Polycarbonate is an engineering thermoplastic. It is a polyester in which the acidic
component is carbonic acid. The impact and heat resistance and also the strength and
transparency make it a suitable material for many applications. PC is transparent due to
an amorphous structure: the degree of crystallinity is 10 - 40 % (Seppéld 2005). The
flame and UV resistance of PC is achieved with stabilizers. PC is also non-toxic and it
can be used with food containers. However, PC is banned in some products due to
possible residual bis-phenol A (Tolinski 2012). In many applications, PC is blended
with ABS, PET or PBT to improve processibility and some material properties or
reduce costs. For example, blending with PET improves chemical and moisture
resistance, but it may weaken UV durability. (Jdrvinen 2008)

Properties of PC depend on the viscosity. High viscosity PC is used in water or milk
bottles, since the material is suitable for blow moulding. The high viscosity PC is tough
enough to be formed into bottle. Low viscosity PC is used for CDs and DVDs. Low
viscosity PC is easier to process than the high viscosity PC, but the high viscosity PC is
tougher. PC in electrical devices has medium viscosity, which provides good moulding
and mechanical properties. The properties of medium viscosity PC are between high
and low viscosity PC. (Silvennoinen 2014)
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Improved mechanical properties can be achieved with glass and carbon fibre
reinforcing. Glass fibre (GF) reinforcing improves the flexural and fatigue strength and
dimensional stability. The coefficient of thermal expansion and moulding shrinkage are
decreased. Carbon fibre reinforcing improves impact strength, high temperature and
wear resistance. (Brydson 1999)

PC is produced from wvarious polyfunctional hydroxyl groups. Most of the
polycarbonates are produced from bis-phenol A (2,2-bis-(4-hydroxyphenyl) propane)
(BPA) and phosgene. The BPA is produced from phenol and acetone by condensation
under acidic conditions. The phosgene is produced from carbon monoxide and chlorine.
The processing of polymers by phosgenation process contains hazardous chemicals
such as phosgene and dichloromethane. The process also requires water more than 20
times of the weight of PC to be produced (PlasticsEurope 2011). The resulting plastic
has, however, good properties like high molecular weight and the processing equipment
is fairly simple. (Brydson 1999) The process flow chart of the PC production is showed
in Figure 23. PC is also produced by an ester exchange from diphenyl carbonate. The
ester exchange reaction requires high processing temperature and a vacuum system
which increase the processing costs. (Brydson 1999) PC is mainly produced from BPA
and the main producers are Bayer, Sabic, Mitsubishi Engineering - Plastics Corporation
(MEP) and Dow.

The production processes of PC are still under development. For example, Fukuoka et
al. (2010) introduced the Asahi Kasei production process which uses CO, and ethylene
oxide as starting materials instead of CO and phosgene. The reaction products of the
process are PC and ethylene glycol. The Asahi Kasei process does not require the use of
phosgene. It was studied that the Asahi Kasei process reduces CO; -emissions by 0.173
t per 1 t of PC resin. The reduction is approximately 4 % compared to the conventional
PC production (PlasticsEurope 2014). The Asahi Kasei process contains multiple
complex steps and it has the same difficulties as the production of PC from diphenyl
carbonate. The Asahi Kasei process is used in four commercial plants. (Fukuoka et al.
2010)
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Figure 23. The process flow chart for the PC production. (PlasticsEurope 2014)

9.2 Polycarbonate/polyethylene terephthalate

The properties of plastics can be improved by blending two or several polymers. The
chemical resistance of the PC is improved with PET. PET is a reaction product of
terephthalatic acid (TPA) and ethylene glycol. TPA is also used to produce other
polyesters such as PTT and PBT. (Kurian 2005) PET is a crystalline polymer and
crystalline polymers have generally better chemical resistance than amorphous
polymers. PC/PET blend also provides better fatigue and low temperature impact
resistance than PC (McKeen 2008). PET has good mechanical properties, but it cannot
be used in as high temperatures as PC. The glass transition temperature of the PET is
near 80 °C, which may be too low for base stations. PET is used in amorphous and
crystallized form. An amorphous PET is used in beverage bottles and crystallized PET
is used for electrical applications such as transformer bobbins. (Brydson 1999) The
crystallization rate of PET is slow which results in slower cycle time in injection
moulding in comparison to that of PBT or PTT. (Zhang 2004)
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In this study, the PET fraction for the PC/PET blend is derived from used beverage
bottles. The flow chart for the PC/rPET production is shown in Figure 24. A PC/PET
blend was studied by Fraisse et al. (2005). They observed that PC waste can be
successfully blended with PET waste. The material studied in this thesis contains virgin
PC. Possibility to use recycled PC with recycled PET can further improve
environmental impacts.
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Figure 24. The production of the PC/rPET blend from used PET beverage bottles and
virgin polycarbonate. (Shen et al. 2011) (Silvennoinen 2014)

9.3 Polytrimethylene terephthalate

Polytrimethylene terephthalate (PTT) or polypropylene terephthalate (PPT) is a
thermoplastic polyester which has similar structure as other common polyesters (PET
and PBT). Because of the similar structure, PTT has potential to be recycled in the PET
waste stream (Alvarez-Chavez et al. 2012).

Even though the polymer structure is similar, the repeating unit of PTT is shorter than
that of PET and the crystal is spring-like. PTT, like other polyesters, is a crystalline
plastic. The crystallization rate of PTT is faster than that of PET but slower than that of
PBT. PTT is more suitable for injection moulding than PET due to the shorter cycle
times (Zhang 2004). However, polymer processing requirements of PTT are more
demanding than those of PET (Kurian 2005).

The crystal structure of PTT provides good wear properties which approach to those of
PAs. Since PTT is polyester, its water absorption is significantly lower than that of PAs.
(Brydson 1999) Mechanical properties of the PTT can be improved with GF
reinforcing. For example, the deflection temperature with test pressure of 1.8 MPa for
unfilled PTT is only 59 °C (Brydson 1999) whereas deflection temperature of 15 %
glass filled PTT is 200 °C (DuPont 2014c).
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PTT is mostly used as fibres and it has only recently become material for structural
parts such as mobile phone housings and automotive parts. PTT was not studied widely
until an economically cost-effective synthesis process of 1,3-propanediol (PDO) was
developed in turn of the millennium (Zhang 2004). The PDO is a starting material for
PTT. In addition to PDO, TPA or dimethyl terephthalate is required for PTT. (Brydson
1999) In nature, PDO is produced by two-step fermentation from glucose. First, glucose
is converted into glycerol by yeast and from glycerol to PDO by bacteria. The
fermentation of PDO was discovered already at 1881, but the process did not receive
much attention (Biebl et al. 1999). At the beginning of 2000s, Tate & Lyle and DuPont
created a process that produces PDO from glucose by single step fermentation (Kurian
2005). A genetically modified strain of E. coli K12 is used in the fermentation (Urban &
Bakshi 2009) (Wilke & Vorlop 2008). Use of glucose as raw material reduced material
costs (Biebl et al. 1999) and made possible to produce partly bio-based PTT cost-
effectively (Harmsen et al. 2014).

DuPont uses corn for raw material of glucose (DuPont 2014d). The production volume
of the 1,3-propanediol was 125 kton/year in 2014 of which 90 kton is bio-based
(Harmsen et al. 2014). The properties of bio-based PTT are equal to those of petroleum-
based PTT. In addition, the bio-based PDO is studied to contain fewer impurities than
the petroleum-based PDO. (Kurian 2005) The process flow chart for glass fibre
reinforced bio-based PTT is shown in Figure 25. Data for the corn wet milling is
derived from (Wool & Sun 2005). Terephthalatic acid processes are according to
PlasticsEurope (2014). Details of the GF production are from (PriceWaterhouseCoopers
2012). The polymerization steps of PTT from TPA and corn starch are from (Brydson
1999) and (DuPont 2014d).
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9.4 Polyamide 410

PA 410 is a thermoplastic, which belongs to group of polyamides. PAs are colourless or
yellowish materials, which are generally called nylons. Nylon is a trademark of DuPont
(Brydson 1999). PAs are easily crystallized and they have high melting temperature.
They also maintain their ductility and strength even at high temperatures mainly due to
hydrogen bonds between polymer chains (Seppild 2005).

PAs are produced from one or two starting compounds. PAs, which are produced from
dicarboxylic acid and a compound which contains 2 amine groups, are named with two
numbers, PA 66 or PA 610. Sometimes numbers are separated with comma: PA 6,6, for

instance. PAs which are produced from one starting compound are named with one
number like PA 6 and PA 11.

PAs are mostly used as fibres for clothing. PAs are also used in electronics since
dielectric properties of PA are good at room temperatures and low frequencies. Due to
polar chemical structure dielectric properties at high frequencies are reduced. PAs are
used also in bearings due to their low coefficient of friction. PAs absorb moisture,
which deteriorates dielectric properties and reduces tensile strength and modulus.
(Brydson 1999) However, 1 - 2 % moisture content has a favourable effect on PAs,
since it increases ductility (Seppéld 2005). The moisture uptake of PA 410 is 2 - 3.5 %,
which is significantly lower than that of PA 66. PA 66 can absorb water over 10 %
(Brydson 1999). Lower moisture uptake is due to longer carbon chains of PA 410. Raw
materials for PA 410 are sebacic acid and 1,4-diaminobutane (DAB), whose carbon
atom content are 10 and 4, respectively.

Currently, the producer of PA 410 is a Dutch company DSM. PA 410 is ranked as high
performance plastics (see Figure 2) and it is currently used in applications which require
special mechanical properties or chemical and thermal resistance. PA 410 has generally
better chemical resistance than the PA 66. PA 410 crystallizes fast which provides short
cycle times in moulding. (Mittal 2012) (Kabasci & Stevens 2013)

PA 410 and other PAs are reinforced with glass and carbon fibre. GF reinforced grades
are used in applications with high operational temperatures. In addition to heat
resistance, reinforcing improves mechanical properties. Especially carbon fibre
reinforced grades have great stiffness. The study by Kuciel (2012) showed that
properties of PAs are possible to improve with bio-based flax fibre. Completely bio-
based composite is formed, if fully bio-based PA, for example PA 11, is reinforced with
flax fibre. However, the flax fibre reinforcing does not provide as good mechanical
properties as GF reinforcing.

The production flow chart of the PA 410 production is shown in Figure 26. PA 410 is
produced by a condensation of sebacic acid and the salt of DAB and. PA 410 contains
62 % bio-based carbon (DSM 2014). The bio-based content comes from sebacic acid,
which is normally produced from castor oil (Brydson 1999). The petroleum-based raw
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material is DAB, which is also known as putresciene. DAB is hydrogenated from
succinonitrile but it is possible to produce it from bio-based materials such as succinic
acid or sugars (Harmsen 2014) (Qian et al. 2009). Currently, industrial scale production
of succinonitrile is based on acrylonitrile and hydrogen cyanide. Succinonitrile is also
produced from bio-based materials such as glutamic acid and glutamine. However, bio-
based processes for DAB or succinonitrile are not yet ready for industrial scale
production (Lammens et al. 2011) (Qian et al. 2009).
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Figure 26. The production of PA 410 from partly bio-based raw materials. The
production chain of the bio-based feedstock is modelled according to (Kabasci &
Stevens 2013). The petroleum-based feedstock is modelled according to (Lammens et al.
2011) and (PlasticsEurope 2014).
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10 EXPERIMENTAL

Materials suitability for the use in a base station was evaluated with material tests and
LCA according to SFS-EN ISO 14040 and 14044 (2006) standards. The material tests
provided information about the properties of the material. For the testing, the materials
were injection moulded into existing front and rear cover moulds, and moulded covers
were used as test specimens. Essential requirements of a plastic cover of base stations
are shown in Figure 27.

Polluted air Contacts with oils  Flame Relative
UV radiation and greases resistance temperature
High and low \\ index =85 °C

relatively humidity

Temperatures from
-35 °Cto +35 °C

Thermal eycling

Nokia Networks
substance list

Impacts during
transporting and
installing

. Strong winds Berthquakes

Figure 27. Essential requirements and constrains for plastic materials of base stations.

Radios and other electric devices are also restricted with many standards and guidelines.
The materials in base stations must follow global material constraints such as Nokia
Networks Substance List (Nokia Networks 2014b). Material properties are tested
according to GR-487 CORE (2013), GR-63 CORE (2012) and many other standards.
All polymer materials must have at least V1 flame retardant grade and their relative
temperature index (RTI) must be higher than 85 °C. Every required material test was
not included in the test programme of the studied materials. The purpose of the material
test was to study, whether some of these materials were unusable in base station
products. The selected tests are shown in Table 2.

Table 2. A list of the conducted tests, testing standards and the purpose of each test.

Test Standard Tested property

85/85 accelerated aging - Aging at 85 °C and 85 % RH

Chemical exposure GR-487 CORE (2013) Resistance against various
chemicals

Change of temperature - The effect of CTE mismatch
between plastics and
aluminium.

Water absorption SFS-EN ISO 62 (2008) Mass and dimension changes
due to water absorption

Outdoor exposure Visual changes of plastics in

real operating environments.
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11 MATERIAL TESTING

11.1 Materials selection

Materials for the tests were provided by different suppliers. The reference material was
virgin PC that is currently used in the covers. Suppliers and materials are shown in
Table 3. Material properties are shown in Table 4.

Table 3. Materials and suppliers

Supplier Trade name Material grade  Material type

Bayer MaterialScience Makroblend  PC/PET blend Virgin PC + recycled
EC405 GR PET

Bayer MaterialScience Makrolon PC Virgin PC + recycled PC
6485 GR

DSM Engineering EcoPaXX PA 410 Partly bio-based PA 410

Plastics Q-07286

DuPont de Nemours Sorona PTT + GF Glass filled partly bio-

International 3015 G based PTT

L&T Muoviportti Oy - PC Recycled PC

Mitsubishi Engineering-  Xantar PC Virgin PC

Plastics Corporation FC22UR

Rondo Plast AB - PC Recycled PC

Table 4. Properties of selected materials. Properties of recycled PCs from L&T and
Rondo were not available. Data are derived from Campus (2014), Bayer
MaterialScience (2014), DuPont (2014d) and DSM (2014). Flame resistance is
according to UL 94 (1.5 mm specimen) and the deflection temperature according to 1SO
75 (test pressure 1.8 MPa).

Xantar Makrolon Makroblend Sorona EcoPaXX

Young’s modulus

(GPa) 2.3 2.4 2.8 6.5 3.5
Yield stress (MPa) 60 60 65 125 75
Yield strain (%) 6 6 4 3 5.5
Charpy impact

strength, 23 °C No break No break  No break 25 60
(kJ/m®)

Density (kg/m’) 1200 1200 1240 1400 1150
Flame resistance V-0 V-0 V-0 HB V-2
Deflection

temperature (°C) 130 124 78 200 110
Recycled material

content (%) 0 30 30 0 0
Bio-based material 0 0 0 31 70

content (%)
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Mechanically recycled granulates from Rondo and L&T are pre-consumer grade
materials. PC scrap from L&T is collected from Finland, but the origin of the material is
unknown. L&T and Rondo do not provide specific information about the materials’
properties. According to the L&T, only density, humidity and melt volume flow rate are
measured from the recycled PC (Tuomisaari 2014). The melt volume flow rate is 9
cm’/10 min which is approximately the same as those of a medium viscosity virgin PC
and rPC from Bayer MaterialScience. Recycled materials from L&T and Rondo are not
V-1 flame resistance graded. The recycled PC from L&T and Rondo was mixed with
Xantar virgin PC from Mitsubishi Engineering - Plastics Corporation (MEP).

Makrolon from Bayer MaterialScience is a blend of virgin and recycled PC. Recycled
material content is 30 %. The origin of the recycled material is post-consumer water
containers, which are familiar in many offices. Makrolon is produced in China
(Silvennoinen 2014). Makroblend supplied by Bayer MaterialScience is a blend of
virgin PC and post-consumer PET from beverage bottles. Makroblend contains 30 %
recycled material. The bio-based plastics are supplied by DuPont and DSM. Sorona
from DuPont is a thermoplastic composite, which contains 15 % GF. The matrix is PTT,
which contains bio-based PDO made from corn. Sorona is produced in the USA. FR
Sorona was not available for testing. EcoPaXX from DSM is PA 410, which contains
70 % bio-based material from castor oil. Castor oil is produced in India and PA 410 is
produced in Netherlands. DSM is currently the only producer for PA 410 (Kabasci &
Stevens 2013).

11.2 Moulding of the samples

The purpose of the moulding was to evaluate, if rPC can be used in current moulds
without changes. The bio-based plastics were moulded into same moulds. Their
mouldability cannot be compared to those of PC, since they are different kinds of
plastics and the mould was not designed for them.

Moulds of rear and front covers of Flexi Multiradio 10 Base Station were used for the
injection moulding trials. The rear covers were moulded with Kraus Maffei KM250
moulding machine and front covers were moulded with Engel 300 moulding machine.
12 - 25 covers from each material were moulded. Test specimens and colour per
material type are shown in Table 5. Plastic granulates were mostly coloured by the
producers. “Naturally coloured” indicates that additional pigments were not used so
these materials were bright. Black and green versions of PC/rPET were moulded. The
black PC/rfPET was coloured by Bayer. The green version was coloured during
moulding by adding 2 % of green pigment in naturally coloured PC/tPET resin.
Similarly, the red rPC100 was coloured during moulding by adding 2 % of red pigment
in grey PC resin.
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Table 5. The specimens and colours per material type.

Supplier Sample ID  Colour Count of front Count of
covers rear covers
DSM PA410 Natural 23 12
Bayer PC/rPET Black 25 14
Bayer PC/tPET Green 17 18
DuPont PTT Natural 23 12
MEP + L&T/Rondo rPC10 Grey 25 25
MEP + L&T/Rondo rPC30 Grey 25 25
Bayer rPC30B Black 25 14
MEP + L&T/Rondo rPC65 Dark grey 25 25
MEP + Rondo rPC100 Black 0 25
MEP + L&T rPC100 Red 14 25

Moulding parameters of front and rear covers are shown in Table 6 and Table 7,
respectively. Moulded front and rear covers are shown in Figure 28 and Figure 29. The
dwell time, heater and nozzle temperatures are expressed as ranges and the values were
measured from several locations. The material was injected into mould in 4 locations.
Mould temperature is an average of rear and front mould temperatures.

Table 6. Moulding parameters for injection moulding of front covers. The moulding
machine was Engel 300. The dwell time, heater and nozzle temperatures were measured
from several locations.

Sample Injection Injection Cooling Heater Nozzle Mould
pressure (bar) time (s) time (s) temp. (°C) temp. (°C) temp. (°C)
PA410 650 3.6 36 265 - 280 280 77.5
PC/PET 1180 3.0 40 265 - 280 280 - 290 67.5
PTT 1010 3.6 42 260 - 285 260 92.5
rPC10 1830 34 35 280 - 295 290 82.5
rPC30B 1830 3.6 32 280 - 300 295 - 305 82.5
rPC30 1800 34 35 280 - 295 290 82.5
rPC65 1750 34 35 280 - 295 290 82.5
rPC100 1600 3.4 35 280 - 295 290 82.5

Table 7. Moulding parameters for rear covers. The moulding machine was Kraus
Maffei KM250. The dwell time, heater and nozzle temperatures were measured from
several locations.

Sample Injection Injection Cooling Heater Nozzle Mould
pressure (bar) time (s) time (s) temp. (°C) temp. (°C) temp. (°C)
PC/PET 1280 2 42 250 - 315 290 69
rPC10 2150 3.1 32 280 - 315 310 89
rPC30B 2100 3 32 280 - 315 310 89
rPC30 2050 2.7 32 280 - 315 310 89
rPC65 1760 2.2 32 280 - 315 310 89
rPC100 1590 2.2 32 280 - 315 310 89
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Figure 28. Samples of front covers. Upper row from left to right: rPC 100, rPC 65, rPC

30, rPC 10 and vPC. Lower row from left to right: PC/rPET (green), PC/rPET (black),
PA 410, PTT GF and rPC 30B.

Figure 29. Samples of rear cover. Upper row from left to right: rPC 100 (red), rPC 100
(black), rPC 65, rPC 30, rPC 10 and vPC. Lower row from left to right: PC/rPET
(green), PC/rPET (black), PA 410, PTT GF and rPC 30B.
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11.3 85/85 accelerated aging

In 85/85 accelerated aging testing, materials are exposed to 85 °C and 85 % relative
humidity for 2 000 h. Test is originally designed for testing integrated circuits. Test can
also be used to study how materials behave at high temperatures and high relative
humidity (RH). It must be taken into account that covers or solar shields of the base
stations are rarely exposed to as extreme conditions.

Test was performed in the ARCTEST weather chamber. 2 rear covers of each material
were tested. The covers were hung on the copper wires. The test chamber and test
configuration are shown in Figure 30. The other cover was in the test chamber for 2 000
h. The other was removed and returned to the chamber for measurements every 500 h.

The samples were checked visually, weighed and dimensions were measured during and
after the test. The covers were weighed with Kern CX B scale. Dimensions were
measured with analogue slide gauge from 4 locations: length and width from the both
sides of the cover. Changes of the appearance, mass and dimensions of the samples are
compared to those of vPC.

Figure 30. Test chamber for 85/85 accelerated aging test. 2 rear covers of each
material were exposed to 85 °C and 85 % RH for 2 000 h.

11.4 Chemical exposure

Chemical exposure was conducted according to GR-487-CORE (2013) standard. In this
test, front covers were exposed to various chemicals. The standard requires that 10
different chemicals shall be used in the test. Due to the limited number of test
specimens all the chemicals were not tested. In addition, each cover was treated with
two chemicals. Because of the large size of the specimens, different chemicals were not
in direct contact with each other. Selected chemicals were:

e 3 vol-% sulphuric acid
e Raid insect spray
e CRC bike oil (water displacement lubricant)
e  WD40 water displacement lubricant
e (.2 N NaOH.
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Chemicals and their active substances are listed in Table 8. The expression 0.2 N is an
abbreviation for 0.2 Normality. 0.2 Normality NaOH solution contains 0.2 equivalent
gram weight NaOH in a litre of solution. 1 equivalent gram weight of NaOH is 40 g.
Raid, CRC bike oil and WD40 were sprayed on the surface of the covers. Sulphuric
acid and NaOH were rubbed on the surface with a cotton plug. The test configuration
and containers are shown in Figure 31 and Figure 32.

Table 8. Substances for chemical exposure.

Chemical Active substances

Insect spray (Raid House & Garden) Pyrethrin, piperonyl butoxide
Lubricant (WD 40 multiuse aerosol) Petroleum-based oil, aliphatic hydrocarbon, CO,

Lubricant (CRC bike oil) Petroleum-based oil, kerosene, CO,, sulfonic acid
3 % sulphuric acid Sulphuric acid
0.2 N NaOH solution Sodium hydroxide

Figure 31. Configuration of the chemical testing: exposure by spraying and rubbing
with cotton plug. Exposure times were 15 - 20 s.

Figure 32. Exposed front covers in plastic containers. The containers were sealed with
duct tape and the covers were kept in containers for 30 days.
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After the treatment, the specimens were placed in closed containers for 30 days at room
temperature, approximately 20 °C. GR-487-CORE (2013) standard does not specify the
test temperature. The containers were sealed with duct tape. After 30 days, the
specimens were rinsed with water and they were visually checked for defects such as
cracking, stripping or colour changes. Visual inspection was made with digital camera
and Leica WILD M420 microscope. The objective magnifications were 5.8 — 35x.
Locations of the photographed areas are shown in Figure 33. All covers were
photographed at least from two locations even if material changes were not observed.
These areas contain complex shapes, which may contain internal stresses. Internal
stresses and chemical can together cause cracking or other defects.

Figure 33. Locations which were photographed from all specimen.

In addition to visual inspection, specimens were inspected with Fourier transform infra-
red (FT IR) spectroscopy. IR spectra are used to distinguish different structures in the
plastics. Different organic groups are identified from the absorbance or transmittance
peaks. If chemical exposure has formed new compounds or degraded polymer chains,
changes can be seen in the IR spectrum. The samples were studied with Thermo
Scientific Nicolet iS10 FT IR spectrometer. The attenuated total reflection (ATR)
technique was used since it can reveal surface defects. Deeper surface defects must be
analyses with other methods. IR spectra were obtained from 16 consecutive scans with a
resolution of 4 cm™. The spectrum wave number range was 500 - 4000 cm™, which
corresponds to wavelengths of 2.5 - 20 um. The principle of FTIR spectroscopy is
shown in Figure 34. Small specimens were cut from the covers with side cutters for FT
IR spectrometer. The specimens were wiped with swipes containing methanol and
ethanol to remove the residual chemicals from the surface. A specimen and
spectrometer are shown in Figure 35.
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Figure 34. The principle of FTIR spectrometry. The ATR technique was used to analyse
the results of chemical testing. (Grellmann & Seidler 2007)

Figure 35. FT IR spectrometer and a white specimen cut from the cover.

11.5 Outdoor exposure

Front covers were used as specimens in outdoor exposure. The purpose of this test was
to evaluate how recycled and bio-based plastics tolerate real operating environments.
Testing was conducted in four locations: in Finland (Oulu and Espoo), in Greece
(Athens) and Kenya (Nairobi). These locations were selected, because their weather
conditions differ greatly. In Finland, samples were subjected to humid and relatively
mild climate. Maximum temperatures in Finland were approximately 30 °C. Conditions
in Greece were warmer and drier than those in Finland. (Reliable Prognosis 2014) UV
radiation in Greece is also higher (TEMIS 2014). Test site in Athens was located near
industrial area, so the air contains probably more impurities than that of Finland. The
conditions in Kenya were combination of Finland and Greece. Temperatures and
average humidity were similar than those in Finland. However, temperatures in Finland
decreased after the summer. UV radiation in Kenya was even higher than that in Greece
(WHO 2014), because Kenya is located in an equatorial region. Due to the location the
conditions in Kenya are similar throughout the year.
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2 covers of each material were tested in every location. Covers were placed on open
locations such as on rooftops, where they are exposed to sun, heat, rain and pollution.
Weather data for the tests was provided by Reliable Prognosis (2014) and Tropospheric
Emission Monitoring Internet Service (TEMIS 2014). The data is collected in Appendix
7. Maximum, minimum and average values of temperature, humidity and total UV-dose
are shown in Table 9. UV dose of Nairobi was not available. Based on UV indices, the
UV dose is significantly higher than that in Athens.

Table 9. Weather statistics from test sites. Complete data is shown in Appendix 7. Data
is provided by Reliable Prognosis (2014), TEMIS (2014) and WHO (2014). UV indices
and doses which represent Espoo and Oulu are measured in Jokioinen and Sodankyld,
respectively.

Athens Espoo Nairobi Oulu
Temperature (°C)
Max 40.0 30.8 30.0 31.1
Min 7.0 -4.5 9.0 -14.8
Average 21.9 12.2 19.7 9.7
Relative humidity (%)
Max 100.0 100.0 99 100.0
Min 10.0 31.0 20.0 26.0
Average 59.1 82.6 68.8 82.5
UV index
Max 11.2 5.4 12 4.7
Min 1.6 0.2 11 0.0
Average 6.4 2.9 11.7 2.1
UV dose (kJ/m2)
Total 570 259 - 224

The front covers were attached vertically on the test rack in Finland and Greece. In
Kenya, the covers were positioned horizontally to maximize the UV-dose. Test
configurations in Finland, Kenya and Greece are shown in Figure 36. The test racks
were constructed from wood and covers were attached on the racks with cable ties. In
many outdoor tests 45 °C tilting angle is used (Masters & Bond 1999), but in this case
the vertical position was selected. The covers are also vertically positioned in most
radio sites. A single cover from each location was sent for examinations after 6 months.
The other cover was left on the rack for further testing.
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Figure 36. Test racks in a) Athens, b) Espoo, c¢) Nairobi and d) Oulu.

11.6 Water absorption

Water absorption was performed by applying SFS-EN ISO 62 (Plastics. Determination
of water absorption) (2008) standard. Test specimens were rear covers and small plastic
plates cut from the covers. Testing was conducted by immersing the covers in deionized
water at room temperature (approximately 23 °C).

11.6.1 Mass change

Mass change of plastics was measured with small plastic plates. Covers were not used,
since the surface water is necessary to remove before weighing, but it is difficult for a
complex product such as plastic covers. Weighing of immersed covers can roughly
show how much water is absorbed. Inaccuracy in the measurement is significant
because the water absorption of the PC is low (Megat-Yusoff et al. 2013). Droplets on
the surface can significantly affect results. Therefore the exact mass change due to water
absorption was studied with small plastic samples cut from the covers. Weight, length
and thickness of samples were 70, 80 and 3 mm, respectively. The samples were dried
at 58 °C for 90 h in convection oven. The samples were weighed with Mettler Toledo
Delta Range scale before and during the drying. Accuracy of the scale was 0.1 mg.
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Figure 37. The weighing of a sample during the water absorption testing. The weighing
was performed before and after drying and during the test until equilibrium was
reached.

After drying samples were immersed in plastic containers containing deionized water.
Containers were placed in room temperature (23 °C). Samples were weighed first after
24 h and then after 5 days. Following measurements were performed at week’s interval
until equilibrium was reached. Surface water was removed with paper towel every time
before weighing. Weighing was performed within 1 min after the sample was removed
from the container.

11.6.2 Dimension changes

Dimension changes due to water absorption were studied with rear covers made of
virgin and recycled PC. The purpose was to study whether the dimensions of the cover
stay within tolerances, when the cover has absorbed water. Bio-based plastics were not
included in the measuring, because their dimensions differed significantly from those of
the PC covers.

The covers were dried at 39 °C for 4 h in Heraeus Votsch K884 climate chamber.
Covers were weighed with Mettler Toledo PB8001 scale before and during the drying
process in order to see when they were dried. Accuracy of the scale was 0.1 g. After
drying covers were immersed in separate plastic containers containing deionized water.
Each container contained approximately 10 1 water. Covers were weighed before the
test and every 24 h. The surface water was removed from the covers with paper towels
and compressed air. Weighing was performed within 5 min after removing the cover
from the container. After the saturation, dimensions of the rear covers were measured
with Mitutoyo EURO C-A9166 coordinate measuring machine. Dimensions of the
immersed covers were compared with dry covers. Dimensions were measured from 4
locations: hole distance and width at 3 locations (both ends and in the middle).
Measured dimensions are shown in Figure 40.
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Figure 38. Drying and weighing of rear covers for the water absorption test. The covers
were dried at 39 °C for 4 h. The covers were weighed before and after drying and every
24 h during the immersion.

Figure 39. Immersion of rear covers. Plastic containers were filled with deionized
water.

Figure 40. 3D measurement of rear covers. Measured dimensions were dl (hole
distance), d2 and d3 (width at the ends) and d4 (width at the middle).

11.7 Change of temperature

Base stations are subjected to temperature gradients which can cause deformation into
parts. Different coefficients of thermal expansion can result in fractures or loosening of
joints. If screws are loosened, there is a risk that parts fall from the poles or masts. That
cannot be allowed, since base stations are located in public areas.
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Rear covers were used to test how recycled and bio-based plastics can tolerate
temperature cycling. The covers were attached into AlCu frames with 2 Torx T25
stainless steel screws. The test configuration is shown in Figure 41. The frames and
screws are similar to those that are used in the real products. Screws were tightened with
2.5 Nm using torque screwdriver (torque range 0.5 - 5 Nm). Tightening torque was
selected according to the product assembly manual. All studied materials were tested
except PA 410. PA 410 rear covers were shrunk significantly in moulding so the covers
could not be attached into the aluminium frame.

Figure 41. The test configuration for change of temperature test in Vétsch VC® 7018
climate chamber.

-35 °C and 55 °C were selected for minimum and maximum temperatures, respectively.
Temperature change rate was 2 °C/min. Temperature was held for 1 h at minimum and
maximum. Test cycle was started and ended at 25 °C. Total duration of the test was 145
cycles (501.5 h). One temperature cycle is illustrated in Figure 42. Test was performed
in Vétsch VC? 7018 climate chamber. After the test, the screws were opened with
torque wrench and the opening torque was reported.
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Figure 42. A temperature cycle in the change of temperature test. Test consisted of 145
cycles. Temperature change rate was 2 °C/min and min and max temperatures were -35
°C and 55 °C, respectively. Temperatures were selected according to the product
requirements.
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12 LIFE CYCLE ASSESSMENT
12.1 Goal and scope definition

12.1.1 Goal

LCA tool is used to study environmental burden of recycled and bio-based plastics. It is
wanted to understand, how large environmental impacts are related to production and
processing of recycled and bio-based plastics. Suitability of LCA to compare those
materials is also evaluated.

12.1.2 Scope of the study

Functional unit is 1 kg of plastic granulate at the factory gate. This study contains
material production from raw materials to polymers and plastics. The production flame
retardants and other additives are not included. The compounding of the additives and
the plastic granulate is, however, included.

Impact categories in this study are climate change and primary energy demand. These
impact categories were selected because they are widely accepted and understood.
Primary energy demand contains energy derived from fossil fuel and non-fossil fuel
resources. Climate change estimated with global warming potentials (GWP 100)
according to IPCC 2013 and GHG Protocol. Results are presented as midpoint
indicators.

12.1.3 Types and sources of data

Primary data from material producers and secondary data from databases were used.
Ecoinvent 2.2 (2014) was used to model transports, electricity and heat production and
production of additional substances that are required for processes. Data for petroleum-
based polymers and plastics were derived from eco-profiles of PlasticsEurope (2014).
Data for recycling processes were estimated with literature and derived from material
suppliers and manufacturer of the recycling equipment. The exact data sources are listed
in Life Cycle Inventory analysis in Chapter 12.2. Life Cycle Inventory analysis and
impact calculations were conducted with GaBi 6 LCA software (PE International
2014a).

Geographical scope of the data depends on the material. Material options are shown in
Table 10. vPC, PC/rPET and PA 410 are produced in Europe. German electricity mix is
assumed for PET recycling process and compounding of PA 410. Italian electricity mix
is used for PC/rPET compounding. Electricity mixes for rPC models are Finland and
China. Pre-consumer recycled PC is processed in Finland and post-consumer PC in
China. USA specific electricity mix is used for the production of PTT GF. European
electricity mix is used to estimate the impacts of TPA and GF production. Energy
sources of electricity supply mixes of selected countries are shown in Appendix 2.
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Table 10. Studied materials and material blends. Geographical scope is used to select
specific electricity mixes.

Material Compound Geographical
scope
Virgin PC 100 % vPC Europe
i +
Pre-consumer rPC 10, 30, 65 and 100 % rPC + vPC Finland
Europe
Post-consumer rPC 30 % rPC + 70 % vPC China +
Europe
PC/PET 30 % rPET + 70 % vPC Italy + Europe
PA 410 70 % bio-based sebacic acid + 30 % DAB Europe
PTT GF 31 % bio-based PDO + 54 % TPA+ 15 % GF  USA + Europe

12.1.4 System boundaries

A Cradle to Gate approach is applied in the study. The processes which are directly
related to material production are included, such as collection, sorting, transporting,
granulating and compounding. Recovery and recycling of PET and PC scrap is included
in the production of partly recycled PC and PC/rPET blend. Cut-off approach was used
to model recycling, therefore the first life of the plastics waste is not considered. Raw
material and intermediate requirements of each scenario are collected in Table 11, Table
12, Table 13 and Table 14. The collection of PC waste is efficient, because pre-
consumer waste is sorted already at the place of origin. Post-consumer PC waste is
derived from office water bottles and sorting and collection of these is efficient. On the
other hand, PET bottle waste is assumed to contain other plastics in cap and labels, for
example. The raw material requirements of PA 410 and PTT GF are based on chemical
balance.

Table 11. Mass (kg) of raw materials and intermediates for vPC and rPC scenarios.

Raw material / intermediate vPC rPC 10 rPC30 rPC30B rPC65 rPC 100

Virgin PC 1.00 0.90 0.70 0.70 0.35 0.00
PC waste 0.00 0.10 0.30 0.30 0.65 1.00

Table 12. Mass (kg) of raw materials and intermediates for PC/rPET scenario. 0.41 kg
PET bottle waste is required for 0.30 kg PET granulates. The bottle waste contains also
PE and other plastic waste.

Raw material / intermediate PC/rPET

Virgin PC 0.70
Baled PET bottles waste 0.41
PET granulate 0.30
Other plastic waste 0.08
PE waste 0.03
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Table 13. Mass (kg) of raw materials and intermediates for 1 kg of PA 410 granulate.
The estimation is based on the chemical balance. Hydrogen cyanide and acrylonitrile
are intermediates of the 1,4-diaminobutane production.

Raw material / intermediate PA 410

Sebacic acid 795.09
1,4-diaminobutane 346.55
Hydrogen cyanide 106.25
Acrylonitrile 208.61

Table 14. Mass (kg) of raw materials and intermediates for 1 kg of PTT GF granulate.
The estimation is based on the chemical balance. Starch is an intermediate for the PDO
production and TPA and PDO are intermediates of PTT.

Raw material / intermediate PTT GF

Glass fibre 0.15
Polytrimethylene terephthalate 0.85
TPA 0.68
PDO 0.31
Starch 0.35

Electricity and heat consumption and transport distances for processes were collected or
estimated. Transport types and distances in kilometres are show in Table 15. Transport
of the materials was calculated in tonne kilometres (tkm), which is calculated by
multiplying the weight of the product (in tonnes) with the distance (in km). The fuel
production was also taken into account. Transportation from the plastics producer or
compounder to the moulding is not included.
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Table 15. Transportation scenarios. The impacts of transportation were not specified in
the dataset of vPC and PA 410, since the data was derived directly from PlasticsEurope
(2014) and PE International (2014b)

Material Distance (km) Transport type

Virgin PC Included in the dataset

300 (Waste collection)
800 (vPC from Germany to

Pre-consumer PC Finland) Lorry 16 - 32t (EURO 5)
200 (From reprocessing to
compounding)
1 000 (vPC from Germany to . )
Finland) Freight ship

Post-consumer PC 300 (Waste collection)
45 (Waste sorting prior recycling)
500 (rPC and vPC from
reprocessing to compounding

Lorry 16 - 32 t (EURO 5)

Post-consumer PET 177 (Waste collection and sorting
500 (vPC and rPET from

Germany to Italy for Lorry 16 - 32t (EURO 5)

compounding)

PA 410 Included in the dataset

PTT GF 300 (GF transporting) Lorry 16 - 32t (EURO 5)
425 (Starch transporting) Rail freight

Injection moulding and the use phase are neglected from calculations since it is assumed
that they are similar for each material. Materials are estimated to be equally durable so
that life time of the product is independent of the material. End-of-life calculations are
not included due to the cut-off approach. They shall be taken into account at the next
life of the material. Assumptions for the end-of-life are that vPC, rPCs, PC/rPET and
PA410 are recycled and used for similar application. Glass filled PTT is incinerated and
glass fibre is used as filling material for constructions (Lauttia 2014).

12.2 Life cycle inventory analysis

Data sources are listed in Table 16, Table 17 and Table 18. Detailed information for the
plastics processing modules are shown in Table 19. The dataset for PDO fermentation
was based on fermentation of ethanol from sugar cane. Sugar cane was changed to
maize starch and ethanol was changed to PDO. The ratio between starch and PDO was

calculated. Based on the chemical balance, 1.12 kg maize starch is required to produce 1
kg PDO and 0.314 kg PDO is required for 1 kg of 15 % GF reinforced PTT.
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Table 16. The database data used in life cycle primary energy demand and GWP
calculations. The module of PDO fermentation was based on the fermentation of
ethanol from sugar cane. Data sources are Ecoinvent 2.2 (2014), PlasticsEurope (2014)
and PE International (2014b)

Module name

Source

Name of the dataset

Electricity, Ecoinvent 2.2 CN: Electricity, low voltage, at grid [supply mix]
China

Electricity, Ecoinvent 2.2 FI: Electricity, low voltage, at grid [supply mix]
Finland

Electricity, Ecoinvent 2.2 DE: Electricity, low voltage, at grid [supply mix].
Germany

Electricity, Italy

Ecoinvent 2.2

IT: Electricity, low voltage, at grid [supply mix]

Glass fibre Ecoinvent 2.2 RER: Glass fibre, at plant

Heat from Ecoinvent 2.2 ~ CH: Heat, at cogen 200 kWe diesel SCR, allocation
diesel energy [cogeneration]

Heat from Ecoinvent 2.2 RER: Heat, natural gas, at boiler modulating <100

natural gas
Maize starch

Ecoinvent 2.2

kW [heating systems]
DE: maize starch, at plant

production

PA 410 PE International EU-27: Biopolyamide (PA) 4.10 granulate (castor
based) (sebacic acid average)

PDO Ecoinvent 2.2 BR: ethanol, 95 % in H,O, from sugar beets, at

fermentation fermentation plant (modified)

Polycarbonate  PlasticsEurope = RER: Polycarbonate

Sodium Ecoinvent 2.2~ RER: Sodium hydroxide, 50 % in H20, production

hydroxide mix

Sulphuric acid

Ecoinvent 2.2

RER: Sulphuric acid, liquid, at plant

Terephthalatic ~ PlasticsEurope  RER: Purified terephthalatic acid, at plant
acid
Transport by Ecoinvent 2.2~ RER: Transport, lorry 16 - 32t, EUROS [Street]
lorry
Transport by Ecoinvent 2.2 RER: transport, freight, rail [Railway]
rail
Transport by Ecoinvent 2.2 OCE: transport, transoceanic freight ship [Water]
ship
Table 17. Literature data used in life cycle primary energy demand and GWP
calculations.
Module name Source Name of the dataset
Kent (2008) & Shen

rPET pellet extrusion
Shredding of PET bottles

et al. (2011)
Shen et al. (2011)

DE: PET pellet production
DE: Plastics waste to PET flakes

Compaction and sorting
of plastics waste

DE: PET waste compaction and sorting

Perugini et al. (2005) CN: PC waste compaction and sorting
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Table 18. Data from material suppliers and recycling equipment manufacturers.

Module name Source Name of the dataset

Recycling of PC Tuomisaari (2014) FI: Reprocessing of PC waste
CN: Reprocessing of PC waste

Solid-state DE: Solid-state condensation of

condensation Albert (2014) PET

gf)rl%lcondensatlon of Albert (2014) US: Polycondensation of PTT

Table 19. Data for plastics processing modules. Data is derived and estimated from

literature or provided by manufacturers. Compounding and extrusion of plastics is
estimated according to Albert (2014) and Kent (2008).

Module Electricity Heat Transport Other
consumption consumption by lorry
(kWh/kg) (MJ/kg) (tkm)
Compounding of PC  0.389 0.252 0.200 -
in Finland/China
Compounding of 0.389 0.252 0.500 -
PC/PET in Italy
Recycling of PC 0.222 - 0.300 -
Solid-state 0.140 - - -
condensation of PET
Compaction and 0.105 0.150 0.045 -
sorting of plastics
waste
Shredding of PET 0.077 2.500 0.132 0.06 kg 50 % NaOH
bottles 0.06 kg H,SO,4
rPET pellet extrusion 0.389 0.252 - -
Polycondensation of 0.140 - - -
PTT
Compounding of 0.389 0.252 0.045
PTT and GF
Compounding of PA  0.389 0.252
410

Life cycle inventory tables are presented in Appendix 1. Inventory tables contain energy
resources and GHG emissions to air. Process flow charts made with GaBi 6 are shown
in Appendix 3.
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13 RESULTS AND ANALYSIS OF MATERIAL TESTING
13.1 Accelerated aging test

13.1.1 Visual changes

Significant colour changes were observed in PA 410 and PC/PET. PTT covers also
changed slightly colour. PA 410 and PTT did not contain colouring additives which
explains partly the colour changes. The colour change of PA 410 is related to the
moisture absorption. Polyamides are susceptible to absorb more water than PC, PET or
PTT, and colour change in PA 410 was largest. Visual changes in PA410 are showed in
Figure 43. The colour of the cover changed gradually from white to orange.

0

Figure 43. The colour change in PA410 in the accelerated aging testing. Photos were
taken with digital camera after 0 (on left), 500, 1 000, 1 500 and 2 000 h.

PC/rPET cover showed also significant visual changes, which were not limited to colour
changes. Green PC/tPET covers were fractured after 1500 h and the black versions also
shown significant deformation. The PC/tPET covers were clearly bent already after 190
h as showed in Figure 44. Bending of the covers already at the beginning of the test is
due to low deflection temperature of PC/rPET. At 85 °C, PC/tPET became soft and
relatively large weight of the cover was enough to cause deformation. T, of the PET is

also at the same temperature range. Mechanical properties are generally weak near T,
(Seppila 2005).

Some bubbles were also formed on the surface of the covers as shown in Figure 45.
Gases were trapped inside material during moulding. When temperature was increased,
gases were expanded which caused bubbling. Bubbles were formed in the middle of the
side of the cover. Middle part of the cover was also deformed most because cover was
supported only from the ends. After 190 h, black PC/rPET covers were moved from the
copper wires to flat surface. The black covers were flattened within 24 hours after the
move. The green PC/rPET covers were kept on the wires.
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The fractured covers are shown in Figure 46 and Figure 47. A black PC/rPET cover was
fractured because pieces of the green cover were dropped onto it. The second fractured
cover was dropped onto a red PC cover which was not damaged. Both green PC/rPET
covers were fractured almost at the same time. Fractures were observed after 1 500 and
1 530 h from the beginning of the test. Other PC/rPET covers were not fractured during
the test, because they were well supported. However, they were badly deformed.

Figure 44. The deformation in PC/rPET covers after 190 h in the accelerated aging
testing. The grey cover on the left is reference cover made from vPC.

Figure 45. Bubble formation in PC/rPET covers in the accelerated aging testing after
190 h. Gas was trapped inside the material during moulding. When temperature was
increased gases expanded which caused bubbling.

Figure 46. Fractured PC/rPET covers. The cover on the left fractured after 1500 h and
the cover on the right fractured after 1530 h.
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Figure 47. Fractured green and black PC/rPET covers. The green cover (on the left)
was dropped onto the black cover (on the right), which fractured due to the impact.

Some colour changes were observed in PC/rPET. A grey material layer was formed on
the PC/tPET covers. The dimensions and mass were also reduced. The reason for the
change is different than that for PA410. The colour change of PC/tPET is related to the
hydrolysis and degradation of the material, not only to the moisture absorption. The
colour change of the PC/rPET cover is shown in Figure 48. The shortening of the cover
is shown in Figure 49.

Figure 48. The colour change in a PC/rPET cover. Photos were taken with digital
camera after 0 (on left), 500, 1 000, 1 500 and 2 000 h. Grey material layer formed on
the surface after 1 500 h.

82



||IIIIIIlI|I1|| IHI“
I

Tl

IR

Tt

T
|

i
|

Figure 49. Deformation in the PC/rPET cover after 1500 h in accelerated aging testing.
The black PC/rPET cover above was deformed due to hydrolysis. Below is a green
PC/rPET cover which was not exposed to the test conditions.

Based on this test, mechanical properties of PC/rPET are not maintained at 85 °C and
85 % RH. Mechanical tests were not performed but the material was extremely brittle.
Samples from the PC/rfPET were also studied with FT IR spectrometer to analyse
whether material composition was changed. The IR spectra of fractured and untested
samples are shown in Figure 50. Most of the peaks in the IR spectra are at same places.
This indicates that same functional groups are detected in both materials. Absorbance
levels are different but the height of the peaks is affected by measuring conditions.
Clear differences are noticed at 3 300 cm™ and 1 600 cm™. The peak at 3 300 cm™ most
probably comes from an alcohol which is formed due to the hydrolysis. Hydrolysis at 85
°C causes degradation of PET into its starting materials. One of the starting materials
for PET is ethylene glycol. Figure 51 shows comparison of PC/rPET spectra and
ethylene glycol. The highest peak in the lowest spectrum is at the same area as the new
peak in PC/rfPET 1500 h spectrum. The hydrolysis caused polymer chain scission
which makes the material brittle. Hydrolysis affects also on the other sample materials,
but not at the same rate.
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Figure 50. FT IR spectra of PC/rPET samples in the accelerated aging testing. The
resolution was 4 cm™ and 16 scans were performed with ATR technique. Red line is
from an untested sample. Blue line is from fractured material.
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Figure 51. IR spectra of test samples and ethylene glycol. Ethylene glycol is a starting

material for PET. The peak at 3350 cm™ in PC/rPET after 1 500 h comes from ethylene
glycol which is formed due to hydrolysis.
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Colour changes in PTT covers were hard to distinguish. The covers in the aging test
became slightly brighter than untested specimen. The difference was possibly to see
when both samples were side by side like in Figure 52. Mechanical properties were not
degraded as much as those of PC/rPET. After the test, PTT cover felt slightly more
brittle than the untested cover. The cover was significantly more ductile than PC/rPET
cover after the test. An impact test should be applied to evaluate the brittleness of the
material.

—— i T —
. R —

Figure 52. A PTT sample after the accelerated aging testing. The material became
slightly brighter in the test. The cover above is tested in 85/85 conditions. The cover
below is an untested sample.

The covers made from PC did not suffer visual degradation. Both virgin and recycled
versions maintained their appearances. Dark colours of the covers made the analysing
difficult. Possible surface defects are not found as easily as from brighter covers. The
mechanical properties were not degraded as much as those of PTT or PC/PET.
Recycled material content did not affect the performance of the cover. Photos of rPC
samples are collected in Appendix 4.

13.1.2 Mass and dimension changes

Masses of the covers before, during and after the test are shown in Table 20. Covers
were weighed every 500 h during the test. Dimension changes in the test are shown in
Table 21 and Table 22. The greatest mass changes occurred in the PA 410 and PC/rPET
covers. Due to the hydrolysis, the mass of the PC/rPET cover was reduced 7.5 %. The
mass of PA 410 covers were increased 3.7 % due to the water absorption. The mass
increase of PA 410 covers did not cause notable dimension changes. The mass and
dimension changes of PC covers were so small that they could not be perceived with the
used measuring equipment.
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Table 20. Mass change of the covers in the accelerated aging testing. Scale: Kern CX B.
Complete data is shown in Appendix 4.

Mass (g)
Sample Oh 2000 h Change
PA410 245 254 3.7 %
PC/rPET 279 258 -7.5%
PTT 317 320 1.0 %
rPC10 277 278 <1%
rPC30B 269 270 <1%
rPC30 277 278 <1%
rPC65 273 274 <1%
rPC100 270 271 <1%
vPC 269 270 <1%

Table 21. Dimension changes in the length in the accelerated aging testing. Samples

were measured with a slide gauge. Results are averages from 2 samples.

Length (mm)
Sample Oh 2000 h  Change
PA410 443.5 444.1 0.1 %
PC/tPET 446.2 427.7 -4.1%
PTT 447.5 447.5 0.0 %
rPC10 445.3 445.3 0.0 %
rPC30B 445.2 445.0 0.0 %
rPC30 445.3 445.3 0.0 %
rPC65 445.4 445.2 0.0 %
rPC100 445.5 445.3 0.0 %
vPC 445.0 445.1 0.0 %

Table 22. Changes in the width in the accelerated aging testing. Measuring was
performed with a slide gauge. Results are averages from 2 samples.

Width (mm)
Sample Oh 2000 h  Change
PA410 124.8 125.1 0.3 %
PC/tPET 125.6 121.2 -4.8 %
PTT 125.8 125.7 0.0 %
rPC10 125.3 125.4 0.0 %
rPC30B 125.0 125.2 0.0 %
rPC30 125.3 125.3 0.0 %
rPC65 125.3 125.3 0.0 %
rPC100 125.3 125.4 0.0 %
vPC 125.3 125.3 0.0 %
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13.2 Water absorption

Dimension changes due to the water absorption were tested with rear covers. The mass
change was tested with specimens cut from the front covers. The cut specimens were
immersed for 2300 - 3500 h. The immersion time depended on how fast the equilibrium
was reached in the sample. The test was ended when the mass difference between two
consecutive measurements was less than 0.1 mg. Mass change as a function of time is
presented in Figure 53.

4.00%
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£ 3.00% — PC/PET
£2.50% // PTT
.§ 2.00% rPC10

5 1.50% / rPC100
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Figure 53. Mass change due to water absorption. 70 x 80 x 3 mm plaques were
immersed in deionised water until the equilibrium was reached. Test was ended before
PA 410 reached equilibrium.

Water absorption of PA 410 is considerably higher than that of other samples. More
time was also required for the equilibrium. Water absorption of rPCs, vPC, PC/rPET
and PTT is at the same level, 0.30 - 0.40 %. The water absorption rate of PCs was
relatively fast. Approximately 80 - 100 % of the weight gain was already reached after
72 h. The recycled material content did not cause significant difference on the water
absorption. The absorption rates of the PC/rPET and PTT were slower than those of
PCs, but the absorptions at the equilibrium were higher than those of PCs. Weighing
data is shown in Appendix 5.

Dimension changes of wet rPC and vPC rear covers were studied with a coordinate
measuring device. Rear covers were immersed in water for 72 h prior measuring the
dimensions. Measuring of the dimensions of PA 410, PTT GF and PC/rPET covers was
ruled out due to slow water absorption rate. The water absorption of these covers did
not reach equilibrium in sufficient time. Comparing the performance of PA 410, PTT
GF and PC/rPET with PC covers would have been difficult, since the dimension of
these covers differed significantly from those of PC covers already prior immersion.
The difference of the dimensions can be seen, for example, in Table 26.

The vPC and rPC rear covers were weighed before, during and after the immersion. The
mass change during the immersion is shown in Table 23. The mass change of the covers
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is greater than that of plaques due to droplets, which were trapped in the small corners
in the cover. The change of dimensions before and after the immersion is presented in
Table 24. Complete measuring data is collected in Appendix 5. Based on the measuring,
vPC cover maintained its dimensions best. There is not a clear effect of the recycled
material content on the dimension changes. For example, the cover containing 100 %
recycled material maintained its dimensions better than the cover containing 65 %
recycled material. In addition, the dimension changes of rPC 10 were similar to those of
rPC 65. After all, the dimension changes were small. The hole distance of all samples
changed less than 0.02 %. The dimensional stability of the screw hole distance is
beneficial for rear covers since it prevents the stresses derived from a screw joint when
attached to an aluminium frame. Width of the covers varied more and the change would
be large for a part which is used for bearing or joining parts. The largest difference
between dry and wet state was observed in the rPC 30. The width of the cover at the end
and middle changed -0.65 % and 0.49 %, respectively. The large change was not
consistent which indicates an error during measuring.

Table 23. Mass change of the rear covers in the water absorption test. Covers were
immersed in deionised water at 23 °C.

Mass (g)
Sample Oh 24 h 48 h 72 h Change
rPC10 277.4 278.1 278.3 278.6 0.43 %
rPC30B 269.8 270.5 270.6 270.8 0.37 %
rPC30 2717.3 278.1 278.3 278.4 0.40 %
rPC65 271.8 272.4 272.6 272.8 0.37 %
rPC100 269.8 270.6 270.7 271.0 0.44 %
vPC 271.8 272.3 272.5 272.7 0.33 %

Table 24. Dimension changes in the water absorption test. The specimens were
measured in dry and wet conditions with Mitutoyo coordinate measuring device.
Measuring data is presented in Appendix 5.

Sample Hole distance Width: end 1 Width: end 2 Width: middle
rPC10 0.01 % 0.34 % 0.06 % 0.35%
rPC30 B 0.01 % 0.14 % 0.12 % -0.05 %
rPC30 0.01 % 0.00 % -0.65 % 0.49 %
rPC65 0.02 % 0.03 % -0.25 % -0.32 %
rPC100 0.01 % -0.05 % 0.01 % -0.12 %
vPC 0.01 % -0.03 % -0.01 % 0.03 %

13.3 Change of temperature

The loosening torques of the screws are presented in Table 25. The torque was
measured with a torque wrench. Screws in PC/rPET cover were loosened significantly
more than screws in other covers. Some loosening also occurred in PTT cover. Virgin
PC cover maintained the tightening torque best. Differences in the dimensions and
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release of internal stresses can explain the loosening of screws. Table 26 shows the hole
distance and diameter of the samples. The PTT and PC/rPET covers are the longest. GF
reinforced PTT is stiffer than PC/rPET (Table 4) which may explain, why the screws of
the PC/rPET cover were loosened more than those of PTT cover.

Table 25. Loosening torques of the cover screws. One cover was attached into an
aluminium frame with two screws. The relative tightness indicates loosening torque in
comparison to tightening torque (2.5 Nm). Results are average values.

Sample  Loosening torque (Nm) Relative tightness

PC/rPET <0.2 <10 %
PTT 0.8 30 %
rPC10 1.3 50 %
rPC30B 1.3 50 %
rPC65 1.5 60 %
rPCI00 1.5 60 %
vPC 1.8 70 %

Table 26. The hole distance and diameter (mm) of the samples. Measuring was done
with Mitutoyo coordinate measuring device.

Material Hole distance Hole diameter

PC/rPET 410.304 5.49
PTT 411.473 5.54
rPC10 409.533 5.51
rPC30B  409.587 5.51
rPC30 409.539 5.50
rPC65 409.536 5.50
rPCI100  409.603 5.51
vPC 409.611 5.08

13.4 Chemical exposure

13.4.1 Visual observation of the chemical exposure

Visual observations are collected in Table 27. Generally, chemicals did not cause
notable damage into the materials. Some residual chemicals were found on the surface
of the covers, but degradation was not observer after cleaning the surfaces. Photos of all
exposed samples are collected in Appendix 6. All covers were photographed at least
from 2 locations even if material changes were not observed. Colour changes in the
photos are due to different exposure settings of the camera.
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Table 27. Visual observations of the covers after chemical exposure.

Sample Insect spray | CRC WD 40 Sril(ll)hunc NaOH
Spme Red spots at NaOH
dissolved the lower

PA 410 . - - traces on
material in part of the

X the surface
the container cover
NaOH
PC/PET | - - - - traces on
the surface
NaOH
PTT - - - - traces on
the surface
Spme Bubbles or NaOH
dissolved

rPC10 S - - droplets on | traces on

material in
X the surface the surface
the container
NaOH
rPC30B | - - - - traces on
the surface
Bubbles or NaOH
rPC30 - - - droplets on | traces on
the surface the surface
Bubbles or NaOH
rPC65 - - - droplets on | traces on
the surface the surface
Bubbles or NaOH
vPC - - - droplets on | traces on

the surface

the surface

- = no degradation or material changes

Macroscopic photos of the specimens did not show any cracking or delamination due to
ESC. Light red spots were formed on the surface of the PA 410. The area in which the
spots were formed contained also black spots from moulding. Black spots contain
impurities which can react with sulphuric acid and cause the red spots.

Red spots

e —————

Figure 54. Red spots were formed on the PA410 during sulphuric acid exposure.
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The covers exposed to lubricating oils did not suffer from visual changes. Insect spray
dissolved some material from the container or from lower parts of rPC 10 and PA 410
covers. Residual material was observed in the bottom of the container. The rPC 10 and
PA 410 covers which were exposed to insect spray did not show degradation from other
areas. Side surfaces of the rPC 10 and PA 410 covers are shown in Figure 55. Insect
spray flowed into the bottom of the container during the test. Therefore the lower parts
of the covers were under insect spray for longer times than upper part of the cover. That
may have caused the dissolving.

Figure 55. rPC 10 cover before (above) and after (below) insect spray and lubricating
oil exposure. Insect spray (RAID) was sprayed on the left end of the cover.

Figure 56. Surface of the PA 410 cover before (above) and after (below) insect spray
and lubricating oil exposure. The dark impurities on the right side of the cover are not
related to chemical exposure.

Residual NaOH was observed on the surface of all specimens after the test. NaOH layer
was larger in PC and PC/rPET covers than that in PA 410 or PTT covers. Visual
changes in the material under the NaOH were not observed. PC/tPET cover after NaOH
exposure is shown in Figure 57. Used NaOH solution was so mild, only 40 g/l, that it
did not cause visible degradation. Strong NaOH solutions can cause damage into plastic
parts.
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Figure 57. NaOH spots on the PC/rPET cover after the chemical test. Material under
the NaOH layer was intact.

13.4.2 IR spectra

IR spectra of the samples were analysed to see whether the material composition was
changed during the test. Each of the diagrams contains spectra from every chemical
exposure. If changes in polymer chains were occurred during the test, the difference is
easy to see. Spectra for the samples are shown in Figures 56 - 63.

The IR spectra of PA 410 in Figure 58 are similar. Peaks are not shifted significantly.
Absorbance levels are different but that is explained by measuring uncertainties. The
contact between sample and the probe may not be identical in every measurement.
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Figure 58. The IR spectra of PA 410 samples. The ATR technique was used with 16
consecutive scans. The resolution was 4 cm™.

Changes in PC/rPET cannot be seen in the IR spectra in Figure 59. The sample exposed
to insect spray shows some difference in around 1300 cm™. The peak is not as sharp as
those of the other samples.
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Figure 59. The IR spectra of PC/rPET samples. The ATR technique was used with 16
consecutive scans. The resolution was 4 cm™.

Any degradation of the polymer structure of PTT cannot be seen in the IR spectra in
Figure 60. Peaks are uniform with a slight variation in absorbance.
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Figure 60. The IR Spectra of PTT samples. The ATR technique was used with 16
consecutive scans. The resolution was 4 cm™.
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The IR spectra of PC are mostly similar. The samples exposed to sulphuric acid,
lubricating oils and NaOH have similar spectra as the reference samples. The IR spectra
of PCs exposed to insect spray show notable variation approximately in 1 040 and 1 800
cm’. Similar small peak or elevation is shown in all rPC and vPC samples. The spectra
of rPC 10, rPC 30, rPC 30B, rPC 65 and vPC are shown in Figure 61, Figure 62, Figure
63, Figure 64 and Figure 65, respectively. The variations in the spectra are shown better
in Figure 66. Material changes are not, however, as large as those of PC/rPET in
accelerated aging test (Figure 50).
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Figure 61. The IR spectra of rPC 10 samples. The ATR technique was used with 16
consecutive scans. The resolution was 4 cm™.
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Figure 62. The IR spectra of rPC 30 samples. The ATR technique was used with 16
consecutive scans. The resolution was 4 cm™.
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Figure 63. The IR spectra of rPC 30B samples. The ATR technique was used with 16
consecutive scans. The resolution was 4 cm™.
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Figure 64. The IR spectra of rPC 65 samples. The ATR technique was used with 16
consecutive scans. The resolution was 4 cm™.
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Figure 65. The IR spectra of vPC samples. The ATR technique was used with 16
consecutive scans. The resolution was 4 cm™.
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Figure 66. Cropped spectra of vrPC 10. The arrows point at the additional peaks that
are formed in the PC samples during insect spray exposure. Similar observations were
made in every PC sample.

The additional peaks may originate from piperonyl butoxide, which is a component of
the insect spray. A comparison between piperonyl butoxide, unexposed rPC 10 and rPC
10 exposed to insect spray is shown in Figure 67.
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Figure 67. Spectra of rPC 10 in comparison to that of piperonyl butoxide. The spectrum
of piperonyl butoxide shows clear peaks in 1 040 and 1 800 cm™.

The peaks from piperonyl butoxide not necessarily indicate material degradation. They
may be from traces of insect spray. Colour changes or surface defects were not found in
the visual inspection. However, insect spray affected strongest PCs, because similar
additional peaks cannot be seen in the spectra of PA 410, PC/rPET and PTT. The peaks
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cannot be explained by impurities, because similar changes were observed in each PC
grade.

13.5 Outdoor exposure

Plastics were tested in outdoor environment for 6 months in Finland, Greece and Kenya.
Material performance in the exposure is evaluated visually. Results are presented in the
figures below. Small differences are not easily distinguished in the pictures, but pictures
show, how the overall appearance of the covers was affected by the outdoor
environment. Generally, visual degradation was not observed during the exposure. For
example, significant colour changes or cracking of the surface did not occur. Some dirt
was observed in the tight corners and surface of the covers which is shown in Figure 68.
The surface of the samples under the dirt layer was intact. Similar dirt traces were
observed in every sample. However, the dirt was easier to distinguish from light
coloured PA 410 and PTT covers. The dirt layers on the samples were thin, so the
covers were not exposed to highly concentrated chemicals. Samples were located in
relatively open places so wind and rain have easily cleaned most of the dirt.

\

Figure 68. Dirt on the surface of PA 410 cover after 6 months outdoor exposure in
Espoo.

PA 410 samples after outdoor exposure are shown in Figure 69. Major visual changes
were not observed, not even in the samples, which were exposed to Greek and Kenyan
environments. Although the covers did not contain additional pigments, colour changes
did not occur. The susceptibility of PAs to absorb water was observed also after the
outdoor exposure. Masses of the PA 410 samples were increased approximately 2 %
due to water absorption. The water absorption did not affect the appearance or the
rigidity of the cover.
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Figure 69. PA 410 samples after 6 months outdoor exposure. Samples from left to right:
an unexposed sample and the samples tested in Athens, Oulu, Espoo and Nairobi.

PC/tPET covers maintained their appearance after 6 months exposure in all testing
locations. PC/rPET samples after exposures are shown Figure 70.

Figure 70. PC/rPET samples after 6 months outdoor exposure. Samples from left to
right: an unexposed sample and the samples tested in Athens, Oulu, Espoo and
Nairobi.

PTT samples are shown in Figure 71. Some visual changes were observed after the
testing. As expected, the colour of the PTT became yellowish during the test. Naturally
coloured polyesters generally change colour due to UV radiation. The covers tested in
Greece and Kenya became more yellowish than those tested in Finland. UV radiation in
Greece and Kenya is much stronger than that in Finland. According to Table 9, UV dose
during the test in Athens was over two times higher than that in Finland. Based on the
UV indices in Table 9, UV radiation in Kenya was even more severe than that in
Greece. Due to high UV-dose rPC 10, rPC 30 and rPC 65 became darker in Greece than
those in Oulu or Espoo. Dark coloured rPC 30B, PC/rPET and vPC covers did not
change colour notably. Photos of rPC 10, rPC 30, rPC 30B, rPC 65 and vPC are shown
in Figure 72, Figure 73, Figure 74, Figure 75 and Figure 76, respectively. Significant
visual changes were not observed with the exception of dirt in some corners. The colour
change of rPC 10, rPC 30 and rPC 65 is decreased, if darker pigment is used.
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Figure 71. PTT samples after 6 months outdoor exposure. Samples from left to right: an
unexposed sample and the samples tested in Athens, Oulu, Espoo and Nairobi.

Figure 72. ¥rPC 10 samples after 6 months outdoor exposure. Samples from left to right:
an unexposed sample and the samples tested in Athens, Oulu, Espoo and Nairobi.
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Figure 73. ¥rPC 30 samples after 6 months outdoor exposure. Samples from left to right:
an unexposed sample and the samples tested in Athens, Oulu, Espoo and Nairobi.
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Figure 74. rPC 30B samples after 6 months outdoor exposure. Samples from left to
right: an unexposed sample and the samples tested in Athens, Oulu, Espoo and Nairobi.

\

Figure 75. rPC 65 samples after 6 months outdoor exposure. Samples from left to right:
an unexposed sample and the samples tested in Athens, Oulu, Espoo and Nairobi.

Figure 76. vPC samples after 6 months outdoor exposure. Samples from left to right: an
unexposed sample and the samples tested in Oulu and Espoo.
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14 RESULTS AND ANALYSIS OF LIFE CYCLE ASSESSMENT

14.1 Life cycle impact assessment

The results are presented as midpoint indicators of the impacts categories without
normalization and weighting. The primary energy demand and GWP of the production
of 1 kg plastics are shown in Figure 77 and Figure 78. GWP with biogenic carbon is
considered. In Figure 77 the primary energy demand is divided in non-renewable and
renewable energy. In Table 28 the primary energy demand is divided in virgin and
recycled material production, glass fibre production and transporting.

[\
W
e}

[\

=]

(=]
]

—

N

(e}
|

—_—

S

(e}
|

9,1
[
|

]IIlln.t

PA 410 vPC rPC 10 rPC30B rPC 30 PCAPETPTT GF rPC 65 rPC 100

Primary energy demnand (MJ)
(e}

H Non-renewable H® Renewable

Figure 77. Cradle to Gate primary energy demand of the production of 1 kg plastics.

Table 28. Cradle to Gate primary energy demand of the plastics production. Impacts of
transporting of the intermediates of vPC and PA 410 are included in the impacts of
virgin material production.

PA 410 vPC rPC10 rPC30B rPC30 PC/rPET PTT rPC65 rPC100

Virgin material 220.59 108.49 92.92  72.27 72.27 7227 65.23 36.14 -

Recycling - - 6.11 9.30 8.48 8.25 - 10.68  13.59
Transport - - 2.81 1.69 2.50 1.56 024 195 1.40
Glass fibre - - - - - - 6.92 - -

Total 220.59 108.49 101.84 83.26 83.25 82.09 72.39 48.76 14.99
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Figure 78. Cradle to Gate GWPI100 of the production of 1 kg plastics. Biogenic carbon
storage is included. GWP100 is according to IPCC 2013 and GHG protocol.

14.2 Analysis of the results

14.2.1 Recycled plastics

The results show that recycling of PC has a considerable effect on the energy demand
and GHG emissions of the plastics production. The GWP and primary energy demand
of rPC 100 are only 14 % of those of vPC. The production of virgin PC causes the
greatest environmental burden in the rPC and PC/rPET scenarios. For example, the rPC
65 contains 65 % of recycled PC, but the recycling processes causes only 22 % of the
environmental impacts. The environmental impacts of rPET are similar as those of the
rPC, even though rPET requires a solid-state condensation process. If pre-consumer rPC
is used, the environmental impacts are linearly proportional to the recycled material
content.

In addition to the amount of recycled material, the used electricity mix, and hence the
processing location affects the results. rPC 30B, which is produced in China, requires
similar amount of energy as rPC 30, which is produced in Finland. The GWP of rPC
30B is, however, 15 % higher than that of rPC 30. Higher GWP of the rPC 30B
production is explained by the electricity mix of China. In China, approximately 76 %
of the electricity is produced with hard coal (Itten et al. 2014), which is significantly
higher compared to that of Europe. In Europe 25 % of electricity is produced with hard
coal. The combustion of hard coal causes high emissions.

14.2.2 Bio-based plastics

Bio-based materials do not necessarily have small environmental impacts. In fact, the
GHG emissions and energy demand of PA 410 were highest in this comparison. The
impacts of PTT GF were smaller than those of PA 410. High energy demand is
particularly due to renewable energy from sun which is required to grow the castor oil
plant. Corn field also requires energy from the sun, but the impact is much lower for
PTT than for PA 410. The bio-based material content of PTT was lower than that of PA
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410, which partly explains the difference in the primary energy demand. The non-
renewable energy demand of PA 410 was also high. For example, PA 410 production
requires 20 % more energy than vPC production. Another difference in the PA 410 and
PTT scenarios was the data source. The environmental impacts of the PA 410
production were directly obtained from the dataset of PE International (2014b), but the
model of PTT GF was compiled from various sources. The differences between the PTT
GF and PA 410 production could be explained better, if the model of the PA 410
production was self-constructed. However, the data of castor oil farming and processing
was not as easily available as the data of corn starch production. In addition, public
environmental information of the polymerization of PA 410 was not available. Public
data of the PA 410 production may be difficult to find, because PA 410 is a novel
material which only has a single producer.

The effect of GF content on the PTT GF is conflicting. The primary energy demand and
GWP of glass filled and unfilled PTT are shown in Table 29 and Table 30, respectively.
The primary energy demand of unfilled PTT is approximately 4.8 % higher than that of
PTT GF. The GWP of unfilled PTT is approximately 6 % lower than that of PTT GF.
The results are conflicting due to differences in GF and TPA production. GF production
causes relatively larger GHG emissions than TPA production. The ratio of GWP and
primary energy demand of GF and TPA production are 0.06 kg CO,/MJ and 0.04 kg
CO,/MJ, respectively.

Environmental impacts of PTT GF in this study are lower than those according to
DuPont (2014c). The GWP and non-renewable energy usage of unfilled PTT calculated
by DuPont are 3.38 kg CO,/kg and 83.8 MJ/kg, respectively. Environmental impacts of
unfilled PTT according to this study are approximately 15 - 20 % lower than those of
DuPont (2014c). The difference is typical for LCA studies. For example GWP and
fossil fuel consumption of unfilled PTT were approximately 2.68 kg CO,/kg and 56
MJ/kg, respectively, calculated with the data from (Urban & Bakshi 2009) and
PlasticsEurope (2014) Most of the uncertainty comes from the modelling of PDO
fermentation. Public data of the environmental impacts of PDO fermentation does not
exist (Urban & Bakshi 2009). Modelling the PDO fermentation by the fermentation of
ethanol may underestimate the impacts.
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Table 29. Primary energy demand of the glass filled and unfilled PTT production.
Electricity and heat from natural gas are related to polycondensation and compounding

processes. Primary energy demand of unfilled PTT is estimated by Urban and Bakshi
(2009).

Process PTT GF Unfilled PTT
PDO fermentation 0.16 0.18
Electricity (cogdensatlon 709 738
and compounding)

Maize starch 12.05 14.18
Glass fibre 6.92

Heat, natural gas

(condensation and 0.33 0.33
compounding)

TPA production 45.61 53.65
Transport 0.24 0.13
Total 72.39 75.86

Table 30. GWPs of the glass filled and unfilled PTT production. Electricity and heat
from natural gas are related to polycondensation and compounding processes. GWP of
unfilled PTT is estimated by Urban and Bakshi (2009).

Process PTT GF Unfilled PTT

PDO fermentation 0.01 0.01
Electricity (condensation

: 0.42 0.44
and compounding)
Maize starch production -0.18 -0.22
Glass fibre production 0.39 0.00
Heat, natural gas
(condensation and 0.02 0.02
compounding)
TPA production 1.62 1.91
Transport 0.01 0.01
Total 2.30 2.17

14.2.3 Transportation

Transportation causes relatively small impacts in all scenarios. Transportation has the
greatest effect on the impacts of rPC100. 13 % of the GWP and 9 % of the primary
energy demand of rPC 100 come from transporting. Transports do not hold large
fraction of the impacts of pre-consumer PCs, even though in these scenarios the virgin
PC is transported 1 000 km by ship. However, transporting of intermediates in vPC and
PA 410 scenarios is not specified, because PlasticsEurope (2014) and PE International
(2014b) provided only combined emission and primary energy demand data.
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15 DISCUSSION

Based on the previous chapters, a summary of the results is presented in Table 31. The
studied plastics are evaluated in three categories: processability, environmental impacts
and testing. The properties of the new materials are compared to those of vPC. Each of
the categories is explained in details in the forthcoming chapters. Table 31 shows the
complexity of materials selection. A single material option is not the optimal choice in
every category. Material with low environmental impacts, such as PC/rPET, may not
provide sufficient technical properties. Similarly, material moulded at low temperature
and pressure may decrease environmental impacts of moulding, but the material’s
production may cause large impacts during the polymerization. Materials cannot be
selected based on one category, but the overall performance counts.

Table 31. A summary of the results and analysis. The properties of the materials are
compared in three categories to those of vPC. Environmental impacts refer to the GWP
of materials’ production.

Material Processability Material testing Environmental impacts
vPC Reference Reference Reference
rPC Equal Comparable to vPC if a >25 % lower if more than
correct pigment is used. 30 % recycled material is
used
PC/rPET  Requires a Failure in the accelerated 20 % lower
different mould, aging, loosening of the
less moulding screws in the temperature
pressure cycling.
PTT GF  Requires a Changes in appearance 50 % lower
different mould, without pigments. Some
less moulding embrittlement in
pressure, accelerated aging.
asymmetric
shrinkage
PA 410 Requires a Changes in appearance 20 % higher

different mould,
less pressure and
temperature.

without pigments. Water
absorption causes notable
mass increase.

15.1 Processability of the plastics

Material testing did not bring out clear differences between recycled and virgin PC.
However, in moulding some differences were found. The viscosity of the pre-consumer
recycled PC was lower than that of virgin PC. It indicates that polymer chains of the PC
were degraded during recycling. Because the viscosity of the rPC was decreased, the
required injection pressure was lowered. The injection pressure of the rPC 100 front
cover was approximately 15 % lower than that of vPC. In rear cover moulding, injection
pressure was lowered 25 % for rPC 100. Moulding properties of the rPC 30B were
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similar as vPC, because rPC 30B contained recycled material from high viscosity PC.
The quality of the recycled material must therefore be known, before it is mixed with
vPC. To achieve suitable viscosity, high viscosity PC may be required to balance the
scission of the polymer chains and the reduction of viscosity. Reduction in viscosity
may indicate reduction in mechanical properties.

Moulding of bio-based PTT and PA 410 required less pressure and temperature than
moulding of PC. PA 410 required only 1/3 of the injection pressure of PC. PTT and
PC/tPET required approximately 2/3 of the injection pressure of the PC. However, the
mould designed for PC was not suitable for PA 410 and PTT covers. Dimensions of the
PA 410 and PTT covers differed significantly from the vPC covers. For example, the
hole distance of the PA 410 rear cover was 2.4 mm shorter than that of vPC. The hole
distance of PTT rear cover was 1 mm longer than that of vPC. Shrinkage of the PA 410
was higher than that of PC and shrinkage of the PTT was lower than that of PC.
Shrinkage of the PTT in parallel to the flow direction differs from the shrinkage in
normal to flow direction. The asymmetric shrinkage of PTT resulted in bending of the
COVers.

The amount of material in the sample moulding was relatively low for the moulding
machine. If more material were moulded, the dimensions and quality of the PA 410 and
PTT covers could have been improved. The moulding company did not have previous
experience of these materials, which made finding the right parameters more difficult. It
was observed that PA 410 and PTT required more careful control of the moulding
parameters than PC. Moulding properties of the PC/tPET blend were between those of
PC and PTT, which is explained by the similar polymer structure of PTT and PET.
Because PC/tPET contains 70 % PC, shrinkage is close to pure PC. Therefore the
dimensions of PC/rPET covers were close to those of PC covers. Nevertheless, PA 410,
PTT GF and PC/APET require different mould, if they are used in the high-volume
production.

15.2 Materials performance in testing

Material tests and used analysing methods showed that rPC performs similarly as virgin
PC. The performance of the rPC in accelerated aging, temperature cycling, water
absorption and chemical testing did not differ from that of the virgin PC. The recycled
material content as such did not affect the performance of the samples.

Bio-based PTT and PA 410 suffered from visual changes in accelerated aging testing.
PTT cover felt more brittle after the test, but the brittleness is not confirmed by
measurements. PTT changed its colour during the testing, but the change was minor.
PTT contained no colouring additives. Dark coloured PTT cover could survive the test
without major degradation, but that must be confirmed with additional tests. PA 410
cover changed its colour significantly from white to orange. The mass of PA 410 cover
increased 3 %, but length, width and thickness of the cover were maintained. Surface of
the material felt waxy, but degradation of mechanical properties was not observed. The
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PA 410 did not contain colouring additives, so colour change is not a major defect.
Material should be retested with colouring additives.

PC/tPET covers fractured during accelerated aging. Fractures occurred due to the 30 %
PET content. PET is not suitable to be used at 85 °C and 85 % RH for long times.
Hydrolysis of PET into alcohol was judged from the IR spectra in Figure 51. The
material also became extremely brittle in the test. Different colouring additives did not
affect the situation, since both black and green PC/rPET covers failed in the test.
PC/tPET covers should be retested at lower temperature, for example, at 65 °C. The
requirement to tolerate 85 °C at 85 % RH can be overestimated for a cover part.

Temperature cycling of the covers affected mostly the PC/rPET covers. Covers were
attached into aluminium frames with two screws. Tightness of the screws was reduced
from 2.5 Nm to below 0.2 Nm during the test. The dimensions of the PC/rPET cover
were close to those of PC covers, so the reason for the loosening of the screws is
explained by residual stresses from the moulding. PC and PET are different types of
polymers. PC is amorphous and PET is partly crystalline. The cover is challenging part
for crystalline materials because it contains straight and narrow shapes. Crystallisation
of the PET during moulding can induce stresses into cover. These stresses are released
and screws loosened during the temperature cycling. Similar releasing of stresses was
observed in PTT covers. Opening torque of the screws of PTT cover was only 30 % of
the tightening torque. The hole distance of the PTT covers was larger than that of vPC
covers, which increased stresses when the cover was attached to aluminium frame.
Warpage and bending in the PTT covers further increased stresses.

All materials performed well in the chemical testing. Visual changes were not observed.
NaOH traces were seen on the samples, but plastic under the NaOH layer was intact. IR
spectra showed some material changes in PC samples, which were exposed to insect
spray. Additional peaks may be derived from residual chemical on the material or from
new compound which is formed. Tested chemical solutions were mild, which explains
the good performance of the material. For example, PAs are susceptible to strong
sulphuric acid, but PA 410 did not degrade after 3 % sulphuric acid exposure. Similarly,
PTT should degrade in NaOH (DuPont 2014d), but material changes were not observed
in this test.

Outdoor exposure of the plastics showed how the plastics tolerate the real operating
environments. Material degradation did not occur in Finnish conditions. Relatively mild
average temperature and UV-radiation do not damage plastics after 6 months. Thin
layer of dirt was the only finding in the samples. Slight colour change occurred in light
coloured samples in Greek and Kenyan environments. UV radiation and temperature in
Kenya and Greece were higher than those in Finland. Especially high UV radiation
caused the colour changes. All the plastics maintained their rigidity and overall
performance after 6 months in all testing locations. Small colourings can be controlled
by darker pigment. 6 months is not long enough to validate the outdoor usability of the
plastic products, whose lifetime is approximately 10 years. Samples were left on the
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racks at every test site for additional evaluation. As with other tests, mechanical
properties of the samples, such as impact strength, should be studied.

15.3 Environmental impacts

According to the GWP and primary energy demand the use of recycled material reduces
environmental impacts significantly. Bio-based material can reduce environmental
impacts case-specifically. Bio-based material content as such does not guarantee low or
high environmental impacts. This study concentrated only in two impact categories and
all the impacts of bio-based plastics cannot be evaluated with these impact categories.
Differences between recycled and bio-based plastics were observed in the primary
energy demand. Bio-based plastics require relatively more renewable energy than
petroleum-based recycled plastics. The difference is clearest in the PA 410 scenario: 40
% of the primary energy is derived from sun. On the contrary, only 0.8 % energy
demand of the vPC production is derived from renewable sources.

The results of LCA are in line with other studies. Maris et al. (2014) stated that oil
extraction and refining requires 95 % of the energy of plastics production. Studies by
Arena et al. (2003) and Morris (2005) suggested also that energy usage of plastics
recycling is less than 10 % of that of virgin plastics production. The study by Shen et al.
(2010) concluded that mechanical recycling of 1 kg PET requires 13 MJ non-renewable
primary energy and produces 0.96 kg CO,. The calculations in this study estimated that
primary energy demand of PC production is reduced 86 %, when PC waste is used as
raw material instead of crude oil and natural gas. The clear reductions in the
environmental impacts are partly explained by the cut-off approach of the recycled
material. No impacts are given to the first life of the recycled material. The end-of-life
treatment of the studied part was also excluded. However, the cut-off approach points
clearly that the greatest impacts of plastics production are derived from extraction and
refining of petroleum-based raw materials.

The results of LCA of the bio-based plastics were divided: impacts of PTT were lower
than those of vPC, but the impacts of PA 410 were higher than those vPC. Bio-based
materials can have higher or lower environmental impacts than petroleum-based
materials. Similar observations were also made in other studies. For example,
Vercalsteren et al. (2009) found that environmental impacts of bio-based PLA drinking
cups are similar as those of cups made of petroleum-based plastics. However, in the
study by Shen et al. (2011) the use of partly bio-based PET reduced environmental
impacts compared to those of petroleum-based PET. The study by Weiss et al. (2012)
showed that bio-based materials cause less GHG emissions but more eutrophication and
ozone depletion than petroleum-based materials. The effect of bio-based material
content on the environmental impacts is not as straightforward as the effect of recycled
material content. The large difference in the results of the bio-based plastics in this
study is partly explained by the data sources. The environmental impacts of the PA 410
production were estimated with a complete dataset from PE International (2014b). The
PTT GF production was estimated with a data from various sources. The assumptions
made by PE International (2014b) may be different than those made in the PTT GF
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model. These assumptions include the methods how co-products are allocated. Some
prefer allocation based on physical or economic value and other prefer systems
expansion. The difference between the allocation methods may be larger in case of bio-
based materials comparing to those in recycling studies. For example, in the study by
Shen et al. (2010) the use of system expansion instead of cut-off approach resulted in 2
times larger energy consumption and 40 % larger GWP.

Recycling of PC and PET causes similar environmental impacts although material
properties are different. The differences were clearly shown in the accelerated aging test
where the PC/rPET fractured. At high temperatures and RH PET is not as durable
material for the cover as PC. According to the current material requirements, PC/rPET
cannot be used in the product. Even if the requirements were lightened and the materials
could be used without passing the 85/85 accelerated aging testing, the lifetime of
PC/rPET cover may be shorter than that of PC cover. The benefits of PET recycling are
wasted if more than one PC/rPET cover is needed during the life cycle of a base station.
However, LCA results suggest that mechanical recycling of different plastics grades
does not differ from environmental point of view. In this study, very similar recycling
stages were assumed for both PET and PC. The largest difference between PC and PET
recycling scenarios was the solid-state condensation, which was performed only to PET.
Eventually the solid-state condensation did not cause significant difference.

In addition, the environmental impacts of the recycling of pre-consumer waste were
similar as those of the recycling of post-consumer waste. The additional collection and
sorting stages of post-consumer waste do not notably increase GWP and primary energy
demand. These environmental impacts do not consider availability of the recycled
material, which differs between pre-consumer and post-consumer waste and between
PC and PET. Post-consumer waste is available in larger quantities than pre-consumer
waste but quality of pre-consumer waste is more probably better than that of post-
consumer waste. rPET is available in larger quantities than rPC, but the material
properties of rPET are lower than those of rPC.

15.4 Suggestions

After all, results of the material testing and LCA suggest that rPC is suitable material
for a plastic cover. Significant reductions of environmental impacts are obtained when
PC is recycled. Testing showed that the performance of rPC grades was comparable to
that of vPC. Slight colour changes in outdoor environment can be controlled with
pigments and flame resistance is obtained with additives. Moulding of rPC is also
possible with the same mould as moulding of vPC. If the availability of rPC is
sufficient, rPC can substitute vPC.

Bio-based materials in this study provide suitable material properties, but not as large
reduction in environmental impacts as recycling. If the recycled material content is over
65 %, environmental impacts are lower than those of bio-based PTT GF. PTT GF
contains also 15 % glass fibre, which will make recycling of the plastics cover more
difficult. PTT GF cover can be recycled via incineration, but the material cannot be
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recycled mechanically and remoulded into new products. PA 410 provides even better
material properties than PTT GF. In the accelerated aging test, PA 410 covers suffered
only from colour changes, but PTT GF also became slightly brittle. High water
absorption rate of PA 410 does not cause immediate degradation. Water absorption
reduces the stiffness of PA 410, but increases ductility. Bio-based plastics require still
more study before they can be applied into products. Properties of the studied bio-based
plastics differ clearly from those of PC. For example, behaviour of the PA 410 and PTT
GF during moulding is significantly different. However, it must be remembered that
bio-based plastics are not a homogeneous group of materials, but their properties
depend on the polymer structure just as the properties of petroleum-based plastics.
Therefore, bio-based plastics should be studied and classified similarly as petroleum-
based plastics. Bio-based plastics require, however, careful treatment in LCA, because
including or excluding the renewable energy sources and bio-based carbon in the
calculations affects greatly the results.
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16 SUGGESTIONS FOR FURTHER STUDY

Materials in this study were moulded into plastic covers which are used for weather
protection of base stations. The covers are not mechanically stressed part even though
wind and other weather conditions cause varying loads. Because mechanical strength
was not regarded as a critical property, material tests were mostly evaluated visually.
Same materials could also be used in applications which require sufficient tensile and
impact strength. Mechanical tests should be applied, if these materials are further
studied or planned to be used in different applications. Testing could include impact
testing of the samples exposed to UV radiation, chemicals and high temperatures.
Testing of mechanical properties requires usually several standardized test specimens
since variations of the yield or impact strength of samples are considerable. Plastic
parts, such as covers can be tested by vibration and drop tests, but they cannot be used
in traditional tensile or impact tests.

Visual evaluation of the results was challenging, because the sample covers were not
coloured as the production model. Colour of recycled PC depended on the recycled
material content. Samples became darker, when recycled material content was
increased. Bio-based plastics in this study were naturally coloured, so they did not
contain additional pigments. Colour of the material may have affected the performance
in testing. For example, a plastic with colouring additives did not change colours in
accelerated aging testing and outdoor exposure, but naturally coloured plastics did. If
further testing is performed, specific colour must be used.

In addition to visual inspection, chemical testing could include mechanical stress.
Mechanical stress combined with chemical exposure would tell more about the
susceptibility of plastics to ESC. Chemical testing could be performed with additional
substances. GR-487 (2013) lists additional chemicals, including kerosene, isopropyl
alcohol and ammonia, which were not used in this study. Therefore the chemical testing
is not complete according to the standard.

The LCA showed that recycling of PC reduces significantly GHG emissions and
primary energy demand. Recycled material content of PC must be at least 30 % so that
the environmental benefit would be considerable. The lack of well-organized and
reliable PC waste stream prevents the utilisation of recycled PC in large scale
production. There are, however, many applications which use PC and consumption of
PC is increased constantly (Fukuoka et al. 2010). It suggests that large amount of PC
waste is scattered in various waste streams. It should be studied is it possible to organize
a recycling programme, which provides enough recycled PC for high volume
production of plastic parts. In addition, the economic aspects should be considered. The
costs of recycled PC should not be higher than those of virgin PC.
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17 CONCLUSIONS

Environmental impacts of a product can be reduced, for example, by reducing materials
or selecting materials with low environmental impacts. It was studied in this thesis, if
the recycling of plastics and use of bio-based plastics reduce the environmental impacts.
Studied materials were virgin PC, pre-consumer recycled PC, post-consumer recycled
PC, blend of virgin PC and post-consumer recycled PET, bio-based PA 410 and bio-
based glass fibre reinforced PTT. The environmental impacts refer here to GHG

emissions and primary energy demand and they were assessed with LCA tool according
to SFS-EN ISO 14040 and 14044 (2006) standards.

The results of LCA show that the increase in the recycled material content decreases
environmental impacts. Clear reductions were obtained if at least 30 % recycled
material is used. Environmental impacts of rPC and rPET do not differ when LCA tool
is used. In this case, bio-based materials do not provide clear reductions in the
environmental impacts. PA 410 contains 70 % bio-based material, but the
environmental impacts were the highest in this comparison. The environmental impacts
of the bio-based PTT GF were between those of rPC 65 and rPC 30. The bio-based PTT
GF contained 31 % bio-based material. According to the LCA study, the greatest
environmental impacts are derived from processing of petroleum-based plastics. This
applies both to recycled and bio-based plastics. Some differences were shown between
recycled and bio-based plastics. Bio-based plastics require relatively larger amount of
renewable energy than recycled plastics. The study showed that the effect of bio-based
material content on the environmental impacts is not straightforward. However, bio-
based materials provide methods to utilize the versatile properties of plastics and reduce
the dependence on crude oil. All bio-based materials cannot be evaluated based on a
couple of example materials, because the properties of bio-based materials differ greatly
depending on the polymer structure.

Suitability of the plastics to be used in base station was evaluated with material tests.
According to these tests, performance of rPC is comparable to that of vPC. Long-term
outdoor durability is still to be evaluated, but the results of accelerated aging testing and
6 months outdoor exposure are promising. However, the failures of PC/rPET samples in
the accelerated aging test showed that PC cannot be substituted by PET without
reductions in material properties. Bio-based PA 410 and PTT GF are useful materials,
but they cannot be moulded into the PC moulds. As with recycled PC, the correct colour
and flame resistance can be achieved with additives. Bio-based plastics require more
studying, because new bio-based plastics with new properties are manufactured. All the
properties of the studied bio-based plastics could not be evaluated within one study.
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APPENDIX 1 - LIFE CYCLE INVENTORY TABLES
Table 32. Primary energy demand by energy sources. (PE International 2014a)

PA 410 PC/rPET PTT rPC 10 rPC30 rPC30B rPC65 rPC100 vPC

Non-renewable energy 128.96 81.09 64.44 97.62 80.20 81.34 41.39 11.72 107.53
Crude oil 30.12 31.87 21.83 38.78 31.81 30.91 15.82 1.36 42.55
Hard coal 21.73 6.19 8.00 737 6.41 12.14 3.54 2.74 8.03
Lignite 8.04 3.03 1.08 3.06 2.54 2.19 1.35 0.63 442
Natural gas 59.34 34.64 27.87 41.25 32.69 31.84 16.71 2.15 45.42
Peat 0.03 1.0E-03 6.0E-05 0.39 0.50 - 0.36 0.89 1.5E-03
Sulphur 1.2E-06 2.5E-09 0.02 0.00 7.5E-06 - 1.3E-09 - 1.1E-05
Uranium 9.70 5.36 5.65 6.78 6.25 4.26 3.61 3.95 7.11
Renewable energy 91.63 0.99 7.94 2.05 3.05 1.08 1.58 3.27 0.96
Biomass 0.07 0.06 7.31 1.09 1.41 0.09 1.02 2.50 0.07
Geothermal 0.03 2.0E-03 - 2.6E-03 2.0E-03 2.0E-03 1.0E-03 - 2.9E-03
Hydro power 1.68 0.63 0.48 0.65 0.69 0.75 0.44 0.76 0.44
Primary forest 0.03 9.2E-06 0.09 4.3E-06 0.71 4.7E-06 4.6E-06 6.8E-06 0.03
Renewable fuels - 8.3E-07 - 2.9E-08 8.3E-07 3.2E-08 4.2E-07 - 1.2E-06
Solar energy 88.12 0.05 1.0E-03  0.06 0.05 0.05 0.02 5.7E-05 0.07
Wave power 1.9E-12 7.6E-07 1.1E-04 9.8E-07 7.6E-07 7.6E-07 3.8E-07 - 0.00
Wind power 1.70 0.25 0.05 0.25 0.20 0.20 0.10 0.01 0.35
Total (MJ) 220.59 82.09 72.39 99.67 83.25 82.42 42.97 14.99 108.49

Table 33. GHG emissions reported according to GHG Protocol (2013). Biogenic
carbon content is also presented. GWPI100 is calculated multiplying the mass of the
GHG by the GWP defined by IPCC (2014).

PA 410 PC/rPET PTT rPC10 rPC30 rPC30B rPC 65 rPC100 vPC

Carbon dioxide 8.92 322 2.49 391 322 3.57 2.01 0.79 4.10
Methane 0.02 0.01 0.01 0.01 0.01 0.01 0.01 1.7E-03 0.01
HCFCs 7.0E-09 3.2E-08 3.0E-08 2.6E-08 2.3E-08 1.7E-08 1.8E-08 1.2E-08 2.8E-08
Nitrous dioxide 1.5E-03 8.0E-05 5.3E-04 9.5E-05 8.0E-05 7.5E-05 S5.4E-05 2.8E-05 9.7E-05
PFCs 1.0E-08 2.5E-08 1.0E-07 3.0E-08 3.0E-08 2.8E-08 2.9E-08 2.9E-08 6.9E-09
Sulphur hexafluoride 3.7E-08 6.3E-08 1.1E-07 2.7E-08 3.2E-08 1.7E-07 4.2E-08 5.1E-08 3.7E-08
Nitrogentriflouride 3.0E-11 - - - - - - - -

Total (kg) 8.94 3.23 2.50 3.92 3.23 3.58 2.01 0.80 4.11
Bio-carbon content (kg) 4.57 0.01 0.63 0.10 0.13 0.01 0.18 0.23 0.02

127



Table 34. All GHG emissions of the production of rPC 10, vPC 30, rPC 65, rPC 100
and vPC. (PE International 2014a)

rPC 10 rPC 30 rPC 65 rPC 100 vPC
Carbon dioxide 3.91 3.22 2.01 0.79 4.10
Methane 0.01 0.01 0.01 1.70E-03  0.01
Nitrous oxide 9.55E-05 8.04E-05 5.40E-05 2.76E-05 9.75E-05
Bromocarbons, Hydrobromocarbons and Halons
Halon (1211) 1.76E-09 2.10E-09 2.68E-09 3.26E-09 1.18E-09
Halon (1301) 2.19E-09 1.98E-09 1.62E-09 1.25E-09 1.18E-10
Methyl bromide 1.72E-18 1.66E-18 1.55E-18 1.44E-18 3.11E-19
Chlorocarbons and Hydrochlorocarbons
1,1,1-Trichloroethane 6.57E-13  8.15E-13 1.09E-12 1.37E-12 1.38E-12
Carbon tetrachloride 1.48E-10 1.54E-10 1.66E-10 1.77E-10 7.56E-11
Chloromethane 1.75E-11  2.17E-11 2.90E-11 3.64E-11 3.69E-11
Dichloromethane 4.94E-06 3.84E-06 1.92E-06 3.84E-11 5.49E-06
Trichloromethane 1.07E-10 1.19E-10 1.41E-10 1.63E-10 1.22E-10
Chlorofluorocarbons
Trichlorofluoromethane 8.16E-08 6.35E-08 3.17E-08 1.26E-14 9.07E-08
Trichlorotrifluoroethane 2.08E-12 1.87E-12 1.51E-12 1.15E-12 2.47E-14
Dichlorotetrafluoroethane 8.65E-08 6.86E-08 3.74E-08 6.13E-09 9.91E-08
Dichlorodifluoromethane 1.76E-08 1.37E-08 6.83E-09 5.72E-12 1.95E-08
Chlorotrifluoromethane 1.10E-08 8.57E-09 4.29E-09 - 1.22E-08
Hydrochlorofluorocarbons
Dichlorofluoromethane 1.38E-14 1.25E-14 1.01E-14 7.76E-15 8.37E-15
Chlorodifluoromethane 2.59E-08 2.29E-08 1.76E-08 1.24E-08 2.83E-08
Hydrofluorocarbons
Tetrafluoroethane 3.85E-07 3.46E-07 2.77E-07 2.07E-07 7.50E-10
Difluoroethane 1.85E-11 1.88E-11 1.94E-11 2.01E-11 6.00E-10
Trifluoromethane 4.40E-12 3.97E-12 3.22E-12 247E-12 2.66E-12
Fully Fluorinated Species
Hexafluoroethane 3.14E-09 3.10E-09 3.01E-09 2.92E-09 6.66E-10
Tetrafluoromethane 2.73E-08 2.69E-08 2.63E-08 2.56E-08 6.20E-09
Sulphur hexafluoride 2.66E-08 3.22E-08 4.18E-08 5.15E-08 4.04E-08
Total (kg) 3.92 3.23 2.01 0.80 4.11
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Table 35. All GHG emissions of the production of PA 410, PC/rPET, PTT GF and rPC
30B. (PE International 2014a)

PA 410 PC/rPET PTT rPC 30B
Carbon dioxide 8.92 3.22 2.49 3.57
Methane 0.02 0.01 0.01 0.01
Nitrous oxide 1.50E-03  7.97E-05 5.25E-04  7.46E-05
Bromocarbons, Hydrobromocarbons and Halons
Halon (1211) 1.18E-09  4.45E-09  7.95E-09  6.53E-10
Halon (1301) 1.18E-10 1.91E-09 1.98E-09 1.72E-09
Methyl bromide 7.15E-16 1.33E-18 1.53E-14 1.32E-18
Chlorocarbons and Hydrochlorocarbons
1,1,1-Trichloroethane 1.41E-12  9.49E-13 1.22E-09  5.99E-14
Carbon tetrachloride 7.56E-11 1.62E-10 9.05E-10  2.25E-10
Chloromethane 3.69E-11 2.55E-11 3.74E-08 1.71E-12
Dichloromethane 2.94E-11 3.84E-06 1.82E-08  3.84E-06
Trichloromethane 1.22E-10 1.21E-10 7.80E-09 3.40E-11
Chlorofluorocarbons
Trichlorofluoromethane 3.34E-14 6.35E-08 1.45E-13 6.35E-08
Trichlorotrifluoroethane 2.47E-14 1.35E-12 1.28E-11 1.33E-12
Dichlorotetrafluoroethane 6.72E-09 6.93E-08 1.14E-08 6.52E-08
Dichlorodifluoromethane 8.71E-12 1.37E-08 4.53E-10 1.37E-08
Chlorotrifluoromethane 2.68E-15 8.57E-09 - 8.57E-09
Hydrochlorofluorocarbons
Chlorotetrafluoroethane 1.04E-15 - - -
Dichlorofluoromethane 8.37E-15 1.40E-14 8.94E-14 8.88E-15
Chlorodifluoromethane 7.01E-09 3.24E-08 2.97E-08 1.72E-08
Hydrofluorocarbons
Pentafluoroethane 2.81E-10 - - -
Tetrafluoroethane 9.26E-10  2.27E-07 4.37E-08 2.45E-07
Trifluoroethane 2.51E-10 - - -
Difluoroethane 6.00E-10  3.76E-10  3.39E-10  9.56E-12
Trifluoromethane 1.93E-09  4.44E-12  2.84E-11 2.83E-12
R 245fa 4.99E-09 - - -
Difluoromethane 4.21E-11 - - -
Fully Fluorinated Species
Hexafluoroethane 9.70E-10  2.56E-09 1.08E-08 2.82E-09
Tetrafluoromethane 9.12E-09 2.24E-08 8.89E-08 2.48E-08
Sulphur hexafluoride 3.72E-08  6.26E-08 1.09E-07 1.67E-07
Nitrogentriflouride 3.00E-11 - - -
Total (kg) 8.65 3.23 2.50 3.58
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APPENDIX 2 - ELECTRICITY MIXES

Table 36. Energy sources of electricity in different countries as a fraction (%) of the
supply mix. (Itten et al. 2014)

Energy source China  Europe Finland Germany Italy USA
Hard coal 76.61 25.30 8.95 18.07 11.58 45.62
Lignite 0.00 0.00 0.00 22.31 0.00 1.95
Peat 0.00 0.20 5.47 0.00 0.00 0.00
Industrial gases 0.61 0.00 0.63 1.36 1.48 0.09
Petroleum products  0.66 2.50 0.45 1.33 8.46 1.30
Natural gas 0.88 22.90 11.83 12.59 46.42 20.35
Hydro power 18.57 15.30 18.82 4.24 13.84 6.77
Nuclear 2.06 25.30 23.98 22.18 0.00 19.10
Geothermal 0.00 0.30 0.00 0.00 1.57 0.40
Solar 0.00 0.50 0.00 0.66 0.05 0.06
Wind 0.42 3.90 0.29 6.45 1.44 1.35
Wood 0.07 0.00 10.57 1.29 0.74 0.93
Biogas 0.00 2.50 0.00 1.28 0.08 0.02
Energy from waste 0.00 1.00 0.58 1.63 1.24 0.67
Other 0.00 0.10 0.53 0.00 0.25 0.02
Imports 0.12 - 17.90 6.62 12.86 1.38
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APPENDIX 3 - SYSTEM BOUNDARIES OF LCA
Flow charts of LCA study. Charts are made with GaBi 6 software.
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Figure 79. System boundary of the PA 410 production.

RER: Polycarbonate ;f;? P.C-PET compounding X ;§§
PlasticsEurope Literature <u-so=

RER: kranspart, lorry ;§’

=32, EUROS RER.: sodium hydroxide, ;@
i RER: sulphuric acid, i§§ 50% in H2Q, production mix,
: liquid, at plant at plant

! !

-
" : " DE: Solid-skate &
DE: PET waste compaction and sorting &2 DE: Plastics Waste ko PET flakes é’ DE: PET Pellet production &?

condensation of PET

Perugini et al, 2005 <u-soz 4 o i
. Perugini et al, 2005 <u-s0= . shen et al. 2011 <u-s0 P
- - - -
CH: heat, at cogen &’ RER: heat, natural gas, ;f?

Z00kWe diesel SCR, at boiler modulating <100k
allocation energy :

DE: electricity, low @
voltage, at grid

IT: electricity, low ;f?
voltage, at grid
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Figure 83. System boundary of the pre-consumer PC production. Same system was used
for all pre-consumer PC scenarios.

RER.: Polvcarbonate ;f?
PlasticsEurope

CH: electricity, low ;ﬁ’

voltage, at grid

l

CZN: PiC waske compaction ;:?
and sorking <u-so

CN: Compounding of X ;ﬁi’

CN: Reprocessing of ey e srm o oo,
Polycarbonate waste

I RER: transport, laorry ;ﬁi’

16-32k, EUROS

CH: heat, at cogen P F‘\EF{:_heaI:J natur_al gas,
200k\We diesel SCR, at bailer modulating <100k

allocation energy

Figure 84. System boundary of the post-consumer PC production.
132



APPENDIX 4 - DATA OF ACCELERATED AGING TEST

Figure 85. Colour change in PA410 in accelerated aging test. Photos were taken with
digital camera after 0 (on left), 500, 1 000, 1 500 and 2 000 h.

||.|‘:
1
11

11N

Figure 86. Colour change in PC/rPET cover in accelerated aging testing. Photos were

taken with digital camera after 0 (on left), 500, 1 000, 1 500 and 2 000 h. Grey material
layer was formed on the surface after 1 500 h.

Figure 87. Visual inspection of PTT covers in accelerated aging testing after 0 (on the
left), 500, 1000 and 2000 h. Colour of the cover became slightly lighter during the test.
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Figure 88. vPC covers in accelerated aging test after 0 (on left), 1000 and 2000 h. The
appearance did not degrade during the test.

Figure 89. rPC 10 in accelerated aging testing after 0 (on left), 1000 and 2000 h.
Changes in the appearance were not observed.
V

A

Figure 90. ¥rPC 30 cover in accelerated aging testing after 0 (on left), 1000 and 2000 h.
Changes in the appearance was not observed.
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Figure 91. No visual changes were observed in rPC 30B cover after 0 (on left), 1000
and 2000 h in accelerated aging testing.

4

Figure 92. Visual inspection of rPC 65 covers after 0 (on left), 1000 and 2000 h in
accelerated aging testing. Material maintained its appearance.

Figure 93. Visual inspection of rPC 100 cover after accelerated aging testing. Pictures
are taken after 0 (on left), 1000 and 2000 h.
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Table 37. Weighing of the covers before, during and after accelerated aging testing. 2
covers were tested. Only samples #1 were weighed during the test. Scale: Kern CX B.

Mass (g)

Sample Oh 500 h 1000 h 1500 h 2000 h Change
PA410 #1 245 252 252 247 254 3.7%
PA410 #2 245 - - - 254 3.7%
PC/rPET #1 279 280 278 267 259 -1.2%
PC/rPET #2 279 - - - 257 -7.9 %
PTT #1 317 319 319 318 320 1%
PTT #2 317 - - - 320 1%
rPC10 #1 278 279 279 278 279 <1%
rPC10 #2 276 - - - 277 <1%
rPC30B #1 269 269 269 269 270 <1%
rPC30B #2 269 - - - 269 <1%
rPC30 #1 276 277 277 276 278 <1%
rPC30 #2 277 - - - 278 <1%
rPC65 #1 272 273 273 272 273 <1%
rPC65 #2 273 - - - 274 <1%
rPC100 #1 270 271 271 270 271 <1%
rPC100 #2 270 - - - 270 <1%
vPC #1 270 271 271 270 271 <1%
vPC #2 267 - - - 268 <1%

Table 38. Changes in length before, during and after accelerated aging testing. 2 covers

were tested. Measurements were performed with slide gauge.

Length (mm)

Sample Oh 500 h 1000 h 1500 h 2000 h Change
PA410 #1 443.5 443.7 443.7 443.6 444.2 0.2 %
PA410 #2 443.5 - - - 443.9 0.1 %
PC/rPET #1  446.2 439.4 439.6 435.2 429.2 -3.8%
PC/rPET #2  446.2 - - - 426.2 -4.5%
PTT #1 447.3 447.5 447.4 447.2 447.4 0.0 %
PTT #2 447.7 - - - 447.6 0.0 %
rPC10 #1 445.4 445.4 445.3 445.3 445.3 0.0 %
rPC10 #2 445.3 - - - 445.2 0.0 %
rPC30B #1 445.1 445.1 445.0 444.9 445.0 0.0 %
rPC30B #2 445.3 - - - 445.0 -0.1 %
rPC30 #1 445.2 445.3 445.4 445.0 445.2 0.0 %
rPC30 #2 445.4 - - - 445.4 0.0 %
rPC65 #1 445.3 445.3 445.3 445.1 445.2 0.0 %
rPC65 #2 445.4 - - - 445.3 0.0 %
rPC100 #1 445.5 445.4 445.2 445.1 445.3 0.0 %
rPC100 #2 445.5 - - - 445.3 0.0 %
vPC #1 445.2 445.2 445.2 445.0 445.3 0.0 %
vPC #2 444.9 - - - 444.9 0.0 %
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Table 39. Width of the covers after accelerated aging testing. 2 covers were tested.

Width (mm)
Sample Oh 500 h 1000 h 1500 h 2000 h Change
PA410 #1 124.80 124.94 124.85 124.26 125.10 0.2 %
PA410 #2 124.69 - - - 125.15 0.4 %
PC/tPET #1 125.59 124.33 123.44 121.38 119.51 -4.8 %
PC/PET #2  125.57 - - - 122.97 2.1 %
PTT #1 125.75 125.74 125.73 125.67 125.70 0.0 %
PTT #2 125.75 - - - 125.61 -0.1 %
rPC10 #1 125.33 125.33 125.35 125.33 125.38 0.0 %
rPC10 #2 125.30 - - - 125.35 0.0 %
rPC30B #1 125.35 125.32 125.30 125.25 125.31 0.0 %
rPC30B #2 125.30 - - - 125.28 -0.1 %
rPC30 #1 125.34 125.34 125.30 125.25 125.31 0.0 %
rPC30 #2 125.35 - - - 125.33 0.0 %
rPC65 #1 125.30 125.26 125.25 125.20 125.34 0.0 %
rPC65 #2 125.35 - - - 125.25 0.0 %
rPC100 #1 125.36 125.30 125.29 125.25 125.30 0.0 %
rPC100 #2 125.33 - - - 125.40 0.1 %
vPC #1 125.33 125.33 125.32 125.25 125.27 0.0 %
vPC #2 125.30 - - - 125.29 0.0 %
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APPENDIX 5 - MASS CHANGE IN WATER ABSORPTION

Table 40. Mass change of the PA 410, PC/rPET, PTT and rPC 30B plaques in water
absorption testing. Specimens were immersed in deionised water at 23 °C.

Mass (g)

Time (h) PA410 PC/rPET PTT rPC30 B
0 23.3825 25.2146 27.7572 22.6888
24 23.4800 25.2293 27.7745 22.7142
48 23.5144 25.2427 27.7828 22.7285
72 23.5410 25.2500 27.7904 22.7406
170 23.6124 25.2712 27.8080 22.7544
336 23.6924 25.2888 27.8135 22.7599
504 23.7681 25.2983 27.8264 22.7602
840 23.8852 25.3077 27.8478 22.7840
1008 23.9274 25.3106 27.8521 22.7606
1176 23.9561 25.3123 27.8551 22.8234
1344 23.9828 25.3134 27.8580 22.8118
1560 24.0162 25.3128 27.8613 22.7679
1704 24.0372 25.3187 27.8645 22.7515
1848 24.0594 25.3143 27.8676 22.7523
2016 24.0865 25.3153 27.8690 22.7577
2352 24.1283 25.3149 27.8727 22.7520
2568 24.1475 25.3149 27.8727 22.7520
2712 24.1672

2856 24.1847

3072 24.2056

3192 24.2185

3360 24.2333

3696 24.2647
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Table 41. Mass change of the rPC 10, rPC 30, rPC 65, rPC 100 and vPC plaques in
water absorption testing. Specimens were immersed in deionised water at 23 °C.

Mass (g)

Time (h) rPC 10 rPC 30 rPC 65 rPC 100 vPC

0 22.4424 22.5674 22.7570 21.8850 24.3812
24 22.4745 22.6115 22.7891 21.9213 24.4250
48 22.4908 22.6147 22.7994 21.9347 24.4386
72 22.5265 22.6259 22.8247 21.9435 24.4511
170 22.5066 22.6307 22.8203 21.9554 24.4597
336 22.5305 22.6373 22.8741 22.0069 24.4687
504 22.5190 22.6375 22.8332 21.9620 24.4734
840 22.5245 22.6390 22.8440 21.9695 24.4787
1008 22.5213 22.6535 22.8212 21.9632 24.4675
1176 22.5087 22.6441 22.8708 21.9632 24.4942
1344 22.5095 22.6321 22.8264 21.9617 24.4884
1560 22.5156 22.6314 22.8415 21.9628 24.4906
1704 22.5101 22.6308 22.8209 21.9616 24.4662
1848 22.5074 22.6320 22.8209 21.9618 24.4660
2016 22.5094 22.6320 22.8203 21.9613 24.4650
2352 22.5094 22.8199 21.9620 24.4650
2568 22.8199 21.9620

Table 42. Dimensions (mm) of PC rear covers before and after 72 h immersion in
deionized water. Covers were measured with Mitutoyo coordinate measuring device.

Sample Condition  Hole distance Width: end1 Width:end2  Width: middle
rPC10 Dry 409.533 127.157 127.162 127.653
rPC10 Wet 409.591 127.589 127.232 128.102
rPC30 B  Dry 409.587 127.021 127.153 127.839
rPC30 B Wet 409.643 127.204 127.309 127.780
rPC30 Dry 409.539 127.139 127.969 127.331
rPC30 Wet 409.590 127.145 127.139 127.951
rPC65 Dry 409.536 127.108 127.394 128.120
rPC65 Wet 409.598 127.146 127.078 127.714
rPC100  Dry 409.603 127.184 127.268 127.901
rPC100  Wet 409.650 127.116 127.282 127.751
vPC Dry 409.589 127.158 127.255 127.731
vPC Wet 409.611 127.126 127.248 127.763
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APPENDIX 6 - VISUAL EVALUATION OF CHEMICAL EXPOSURE

Reference 0.2 MaCH Lubricating oil (CRC)

Insect spray 3% Sulphuric acid Lubricating oil (WD)

Figure 94. PA 410 after chemical test. Photos were taken with macroscope. Objective
magnification was 5.8x. Surfaces of the covers were wiped with water to remove
residual chemicals.

I.nsec:t spray 3% Sulphuric acid Lubricating oil (WD40
Figure 95. PA 410 after chemical test. Photos were taken with macroscope. Objective

magnification was 5.8x. Surfaces of the covers were wiped with water to remove
residual chemicals.
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Reference . 0.2 NaCH

Insect spray 3% Sulphuric acid Lubricating oil (AD40)

Figure 96. PC/rPET after chemical test. Photos were taken with macroscope. Objective
magnification was 5.8x. Surfaces of the covers were wiped with water to remove
residual chemicals.

Insect spray 3% Sulphuric acid Lubricating o1l (WD40)

Figure 97. PC/rPET after chemical test. Photos were taken with macroscope. Objective
magnification was 5.8x. Surfaces of the covers were wiped with water to remove
residual chemicals.
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Reference 0.2 NMaOH Lubricating oil (CR.C)

Insect spray 3% Sulphurnic acid Lubrnicating o1l (WD 40}

Figure 98. PTIT after chemical test. Photos were taken with macroscope. Objective
magnification was 5.8x. Surfaces of the covers were wiped with water to remove
residual chemicals.

Beference 0.2M HMaCH Lubricating oil (CRC)

Insect spray 3% Sulphunc acid Lubricating oil (WD40)
Figure 99. PTT after chemical test. Photos were taken with macroscope. Objective

magnification was 5.8x. Surfaces of the covers were wiped with water to remove
residual chemicals.
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0.2N NaOH Lubricating off (CRC)

Insect spray 3 % Sulphuric acid Lubricating oil (WD40)

Figure 100. rPC 10 after chemical test. Photos were taken with macroscope. Objective
magnification was 5.8x. Surfaces of the covers were wiped with water to remove
residual chemicals.

Reference

Insect sprav 3 % Sulphuric acid Lubricating oil (WD40)

Figure 101. vPC 10 after chemical test. Photos were taken with macroscope. Objective

magnification was 5.8x. Surfaces of the covers were wiped with water to remove
residual chemicals.
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Reference

Lubricating oil {CRC)

Inzect spray 3% Sulphuric acid Lubricating cil (WD40)

Figure 102. rPC 30B after chemical test. Photos were taken with macroscope. Objective
magnification was 5.8x. Surfaces of the covers were wiped with water to remove
residual chemicals.

ol T r

- nsect-spy - - 3% Sulphunc acid ] Lbricating ail (WDU)
Figure 103. rPC 30B after chemical test. Photos were taken with macroscope. Objective

magnification was 5.8x. Surfaces of the covers were wiped with water to remove
residual chemicals.
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Reference 0.2 NaCH Lubricating o1l (CRC)

Inzect spray 3% Sulphuric acid Lubncating oil (WD40)

Figure 104. rPC 30 after chemical test. Photos were taken with macroscope. Objective
magnification was 5.8x. Surfaces of the covers were wiped with water to remove
residual chemicals.

Lubricating oil {CRC)

Insect spray 3% Sulphuric acid Lubricating oil (WD40)

Figure 105. rPC 30 after chemical test. Photos were taken with macroscope. Objective
magnification was 5.8x. Surfaces of the covers were wiped with water to remove
residual chemicals.
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Reference 0.2 MaOH Lubticating oil (CRC)

Inzect spray 3% Sulphuric acid Lubricating oil (WD40)

Figure 106. rPC65 after chemical test. Photos were taken with macroscope. Objective
magnification was 5.8x. Surfaces of the covers were wiped with water to remove
residual chemicals.

Eeference

Insect spray 3% Sulphunc acid Lubticating oil (WD40)

Figure 107. rPC 65 after chemical test. Photos were taken with macroscope. Objective
magnification was 5.8x. Surfaces of the covers were wiped with water to remove
residual chemicals.
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Insect spray 3% Sulphuric acid Lubricating oil (WD40)

Figure 108. vPC after chemical test. Photos were taken with macroscope. Objective
magnification was 5.8x. Surfaces of the covers were wiped with water to remove
residual chemicals.
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APPENDIX 7 - WEATHER DATA OF OUTDOOR EXPOSURE
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Figure 109. Temperatures at test sites during outdoor exposure. (Relative Prognosis
2014)
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Figure 110. Relative humidity at test sites during outdoor exposure. (Relative Prognosis
2014)
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Figure 111. UV-indices during the outdoor exposure. Data of Oulu and Espoo are
estimated with measurement data from Sodankyld and Jokioinen, respectively. Data of
Athens is measured from the Tatoi Airport. Data of Nairobi is estimated by WHO
(2014) . (TEMIS 2014)
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Figure 112. Daily UV-dose during the outdoor exposure. Data of Oulu and Espoo are
estimated with measurement data from Sodankyld and Jokioinen, respectively. Data of
Athens is measured from the Tatoi Airport. (TEMIS 2014)
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