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Preface

Why would anyone feel urged to write another book on the Analytic Hierarchy Process
(AHP), given those already written? I felt urged because the existing books on the
AHP are conservative, too anchored to the original framework, and do not cover recent
results, whereas lots of questions have been addressed in the last years. Apparently, the
interest in the AHP has not faded in the last years, and we shall see that this view is
also supported by other studies, as well as by the years of publication of many of the
references used in this booklet.
Now, the next question one should ask himself when writing a tutorial should regard

to whom the tutorial is for. With the premise that a decision scientist might find
these pages too simplistic, in my intentions, the readership should include the following
categories.

• Practitioners and consultants willing to apply, and software developers willing to
implement, the AHP. Some collateral issues, for instance the incompleteness of
judgments, are usually neglected in didactic expositions, but remain fundamental
in practical implementations. On the software development side, at present, there
is still not a modern and free software which covers all the aspects of the AHP
presented in this booklet

• Recent advances in the theory have been disseminated in different journals and,
as research requires, are narrow, technical, and often use heterogeneous notation
and jargon. Therefore, I also hope that students who have been introduced to the
AHP and want to have an updated exposition on, and references to, the state of
the art can find these pages useful

• Even the applied mathematicians might find it interesting. The mathematics be-
hind the method is simple, but some of its extensions have been a fertile ground
for the application of non-trivial concepts stemming from abstract algebra and
functional analysis, just to mention two areas of interest.

The following pages assume neither previous knowledge of the AHP, nor higher math-
ematical preparation than some working knowledge of calculus and linear algebra with
eigenvector theory. A brief tutorial on eigenvalues and eigenvectors is provided in the
appendix. Moreover, some sections are marked with the symbol ⋆ to indicate that they
contain further discussions and references to research literature. The reader interested
in the fundamentals might want to skip them.
Ideally, this booklet is also articulated to suit different levels of readership. I believe
that the following three can serve as approximate guidelines:
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• A basic exposition is given in Chapter 1 with the exclusion of the section marked
with ⋆. The reader can then proceed examining Section 2.1 until the end of §2.1.1,
Section 2.2 until the end of §2.2.1, and Section 3.2 with the exclusion of the sub-
section marked with ⋆. A basic understanding allows the reader to use the AHP
only at a superficial level.

• A complete exposition of the AHP can be gained by reading this booklet in its en-
tirety, with the exclusion of the sections marked with ⋆. A complete understanding
allows the reader to choose between different tools to perform different tasks.

• An advanced understanding of the method is like the complete, but with the ad-
dition of the sections marked with ⋆. Compared to the complete understanding,
in the advanced, the reader will familiarize with the most recent results and the
ongoing discussions, and will be able to orient through the literature.

I shall also spell out that I will not refrain from giving a personal perspectives on some
problems connected with the AHP, as the method has been a matter of heated debate
since its inception.
I hereby wish to thank those who helped me. Among them, I am particularly gratetul

to Michele Fedrizzi, who also taught me much of the material contained in this booklet.
I am also grateful to Springer, especially in the person of Matthew Amboy. Furthermore,
this project has been financed by the Academy of Finland.
It goes without saying that I assume the paternity of all imprecisions and mistakes

and that the reader is welcome to contact me.

Espoo, Finland, November 2014 Matteo Brunelli
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1. Introduction and fundamentals

Beauty started when people began to
choose.

Roberto Benigni

In a world whose complexity is rapidly growing, making the best decisions becomes
an increasingly demanding task for managers of companies, governmental agencies and
many other decision and policy makers. In recent years, this has gone arm-in-arm with
the growth of what are now known as decision analytics methodologies. Namely, decision
makers are more reluctant to make gut decisions based of feelings and hunches, and
instead prefer to use analytic and quantitative tools, and base and analyze their decisions
on a solid ground. Many methods stemming from applied mathematics and operations
research have proved useful to help decision makers making informed decisions, and
among these methods there are also those requiring, as inputs, subjective judgments
from a decision maker or an expert. It is in this context that the Analytic Hierarchy
Process (AHP) becomes a useful tool for analyzing decisions.
What is the AHP? Broadly speaking, the AHP is a theory and methodology for relative

measurement. In relative measurement we are not interested in the exact measurement
of some quantities, but rather on the proportions between them. Consider a pair of
stones. In classical measurement we might be interested in knowing their exact weights
and the pair of measurements (2, 1) is not correct unless the weight of the first stone
is 2kgs and the weight of the second is 1kg. Conversely, in relative measurement we
confine our interest to the knowledge of how much heavier each object is compared to
another. Hence, the pair of measurements (2, 1) is correct as long as the weight of the
first stone is double the weight of the second. It follows that, in this example, if we
use relative measurement theory the pairs of measurements (2/3, 1/3) (4, 2), (8, 4) are
also correct for the two stones. Relative measurement theory suits particularly well
problems where the best alternative has to be chosen. In fact, in many cases we are not
really interested in the precise scores of the alternatives but it is sufficient to know their
relative measurements to know which alternative is the best. Moreover, when attributes
of alternatives are intangible, it is difficult to devise a measurement scale and using
relative measurements simplifies the analysis. The ultimate scope of the AHP is that
of using pairwise comparisons between alternatives as inputs, to produce a rating of
alternatives, compatibly with the theory of relative measurement.
In what field of study do we stand when we talk of the AHP? It is the author’s

opinion that the AHP should be placed in the intersection between decision analysis
and operations research. Keeney and Raiffa [76] gave the following definition of decision
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analysis :

The theory of decision analysis is designed to help the individual make a
choice among a set of prespecified alternatives.

Hence, as long as the AHP is used as a technology for aiding decisions, it seems that its
study belongs to decision analysis.
On the other hand, to justify its connection with operations research, without going too
far, we can refer to some definitions reported by Saaty, the main developer of the AHP,
in one of the first graduate textbooks in operations research [100]. In his book, curious
and thought-provoking definitions can be found: operations research was defined as
“quantitative common sense” and, perhaps in the intent of underlining its limitations,
as “the art of giving bad answers to problems to which otherwise worse answers are
given”. Such definitions are surely thought-provoking but they capture the essence of
quantitative methods, which is that of helping make better decisions. Consulting the
Merriam-Webster dictionary one can find the following definition of operations research:

The application of scientific and especially mathematical methods to the
study and analysis of problems involving complex systems.

Hence, it is straightforward to conclude that the study of the AHP belongs to operations
research too. Within operations research, two different types of studies appeared. The
classical operations research, more mathematically oriented, which studies the modeling
and solution of structured problems can be called ‘hard’ operations research. Conversely,
especially recently, the effort of applying the reasoning of operations research to problems
which, by nature, are unstructured, has gone under the name of ‘soft’ operations research.
Perhaps the fact that the AHP mostly deals with subjective judgments and intangible
attributes gave the false idea that it did not belong to the tools or ‘hard’ operations
research, but rather to its ‘soft’ side. However, in recent discussions [90] the role of the
AHP has been revisited and now it seems clearer that it has been a matter of study for
‘hard’ operations research. The positioning of the AHP is depicted in Figure 1.1.

Hard

operations

research

AHP

Decision

analysis

Hard

operations

research

Soft

operations

research

Figure 1.1.: The position of the AHP in the scientific debate.
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Although the utility of the AHP is not limited to the following, it is safe to say that it
has been especially advocated to be used with intangible criteria and alternatives, and
thus used to solve multi-criteria decision making (MCDM) problems, which are choice
problems where alternatives are evaluated with respect to multiple criteria. Tangible
properties of alternatives, for example the weight of different stones or the salary of
different employees, can be measured without ambiguity and subjectivity. Hence, the
machinery of the AHP becomes unnecessary. Conversely, when the magnitude of some
properties of alternatives, such as the dexterity of a sportsman or the aesthetic appeal of
a bridge, cannot be easily grasped and measured we are in the domain of the intangibles,
which is where the AHP gives its best.
The organization of this booklet is quite unorthodox and differs from the approach

used in other expositions [19, 20, 74, 102, 103, 106]. Here, at the very beginning, the
AHP is presented through a normative lens with lots of assumptions. That is, the AHP is
introduced as a method which works in a rational world with full information. However,
since this is clearly not the world we are living in, successively, by pointing out the limits
of this normative approach, binding assumptions are relaxed and the AHP more fully
explained. In this sense the reader should not be deceived: the exposition of the AHP
contained in this first chapter is by no means complete, and it is even narrower than
the one given originally by Saaty. But, as said, this little trick shall hopefully help to
expose the AHP in a more natural and painless way.
In the following we shall use a standard notation where vectors are noted in boldface,

e.g. w = (w1, . . . , wn)
T and matrices (all square) in capital boldface, e.g. A = (aij)n×n.

The set of real numbers is R and the set of positive real numbers is R>. We shall use
open square brackets to indicate open intervals, e.g. ]0, 1[.

1.1. Fundamentals

As already mentioned, in our framework, the AHP can be applied to a multitude of
decision making problems involving a finite number of alternatives. Formally, in this
setting, in a decision process there is one goal and a finite set of alternatives, X =
{x1, . . . , xn}, from which the decision maker, is usually asked to select the best one.
Explaining the AHP is like teaching a child how to tie the shoestrings: easier to show
with an example than to explain with words. Hence, it is time to present a prototypical
example which will accompany us for the rest of this section: a family has to decide
which European city to visit during their holidays. Reasonably, the goal of the family is
the highest satisfaction with their destination. Alternatives may be some cities, in our
simple example

X = {Rome︸ ︷︷ ︸
x1

,Barcelona︸ ︷︷ ︸
x2

,Reykjavik︸ ︷︷ ︸
x3

}, (1.1)

and the structure of the problem represented in Figure 1.2.
Often, in decision processes, the decision maker is asked to assign a score to each al-
ternative and then to choose the one with the maximum value. That is, given a set of
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Overall Satisfaction

Barcelona Reykjavik Rome

Figure 1.2.: Evaluating alternatives with respect to an overall goal.

alternatives, X = {x1, . . . , xn}, the decision maker should provide a weight vector

w = (w1, . . . , wn)
T , (1.2)

where wi is a value which coherently estimates the score of alternative xi. That is,
the greater wi, the better the ith alternative. Similarly to what happens for value
theory [55], the rule is that alternative xi is preferred to alternative xj if and only if
wi > wj. Weight vectors are nothing else but ratings, and their components wi are
called priorities, or weights, of the alternatives xi. For example, w = (0.4, 0.2, 0.3, 0.1)T

implies x1 ≻ x3 ≻ x2 ≻ x4 where xi ≻ xj means that alternative xi is preferred to xj.
Possible ties are expressed as xi ∼ xj .

Example 1. Consider the example of the choice of the best site for holidays. If the
vector w = (0.3, 0.5, 0.2)T was associated with the set of alternatives

X = {Rome,Barcelona,Reykjavik}

then we would have that

Barcelona ≻ Rome ≻ Reykjavik

because w2 > w1 > w3.

Making decisions in this way seems easy, but it becomes a hard task when complexity
increases. As we will see, complexity augments arm-in-arm with the number of alterna-
tives and criteria.

From the priority vector to the pairwise comparison matrix

It is clear that a decision maker could run into troubles when asked to submit a rating
in the form of a numerical vector for a large number of alternatives. Does not it often
happen that we cannot decide among several alternatives? Even worse, do not we decide
and eventually realize that it was not the best decision? This is a matter of fact and
originates from our cognitive limits and the impossibility of effectively comparing several
alternatives at the same time.
An effective way to overcome this problem is to use pairwise comparisons. The reason
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for doing so, is that this allows the decision maker to consider two alternatives at a
time. Thus, the strategy is that of decomposing the original problem into many smaller
subproblems and deal with these latter ones. Formally, the pairwise comparisons are
collected into a pairwise comparison matrix, A = (aij)n×n, structured as follows

A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


 (1.3)

with aij > 0 expressing the degree of preference of xi to xj. More precisely, according
to Saaty’s theory, each entry is supposed to approximate the ratio between two weights

aij ≈
wi

wj

∀i, j. (1.4)

This means that, if the entries exactly represent ratios between weights, then the matrix
A can be expressed in the following form,

A = (wi/wj)n×n =




w1/w1 w1/w2 . . . w1/wn

w2/w1 w2/w2 . . . w2/wn
...

...
. . .

...
wn/w1 wn/w2 . . . wn/wn


 . (1.5)

Note that, as soon as we account for (1.4) and consider (1.5), a condition of multiplicative
reciprocity aij = 1/aji ∀i, j holds, and A can be simplified and rewritten,

A =




1 a12 · · · a1n
1

a12
1 · · · a2n

...
...

. . .
...

1
a1n

1
a2n

· · · 1


 . (1.6)

In words, the simplified structure of pairwise comparison matrices in this form follows
from the assumption that if, for example, x1 is 2 times better than x2, then we can
deduce that x2 is 1/2 as good as x1.
Let us now proceed with the example and imagine a pairwise comparison matrix for
the set of cities X as defined previously, in §1.1. In this case, and only in this case, to
facilitate the understanding, the labels x1, x2, x3 are attached to the rows and columns
of the matrix.

A =




x1 x2 x3

x1 1 3 6
x2 1/3 1 2
x3 1/6 1/2 1


 (1.7)

From this matrix, in particular from entry a12, one can figure out that x1 (Rome) is
considered three times better than x2 (Barcelona). That is, a12 = 3 suggests us that
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w1 = 3w2. Once a pairwise comparison matrix is completed, there are many methods
to derive the priority vector w. In the example it can be checked that the condition
aij = wi/wj ∀i, j is satisfied by, for instance, the following vector with its components
summing up to one,

w =



6/9
2/9
1/9


 ,

and thus Rome (x1) is ranked the best. To summarize, whenever the number of alter-
natives is too large, pairwise comparing them is an effective way for obtaining a rating.
Perhaps we have spent a bit more of our time but the rating of alternatives contained in
w is now more robust than it would have been if it had been estimated directly, without
using A. We shall here ask the reader for a leap of faith and leave the issue of the weight
determination open and discuss it later.

From the pairwise comparison matrix to the hierarchy

At this point, it is time to wonder why the pairwise comparison matrix A was filled
in that particular way and what factors influenced the decision maker’s judgments.
Needless to say, such decision factors are few if the expert is choosing the type of bread to
buy (mainly price and quality) whereas they are several when a member of a parliament
has to vote a proposition (sake of the electors, own reputation, likelihood of reelection,
and surely many others). First, we should start using the word criterion instead of
factor and reckon that, if we can make decisions and account for multiple, and possibly
conflicting criteria, we are in the realm of Multi Criteria Decision Making (MCDM)
methods.
Formally, in the decision making process, the expert has to consider a set of criteria
C = {c1, . . . , cm}, which are characteristics making one alternative preferable to another
with respect to a given goal. In the example, which regards the location for holidays,
the set of criteria could be

C = {climate︸ ︷︷ ︸
c1

, sightseeing︸ ︷︷ ︸
c2

, environment︸ ︷︷ ︸
c3

}, (1.8)

At this point we need at least a graphical formalism to combine alternatives, criteria
and goals and represent the structure of the problem in an intuitive way. In the AHP,
a hierarchy serves this purpose and is compounded by:

• the goal

• the set of alternatives

• the set of criteria

• a relation on the goal, the criteria and the alternatives.
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Overall Satisfaction

Climate Environment Cost

Barcelona Reykjavik Rome

Figure 1.3.: Hierarchy for the European city selection problem. At the top level there
is the goal, at the bottom there are the alternatives, and criteria are in
intermediate levels. A line connecting two elements marks the existence of
a relation of hierarchical dependence between them.

A graphical example of hierarchy for the decision on the European city is depicted in
Figure 1.3. Note that in this booklet we shall not dwell on the hierarchy in more formal
terms since it would be beyond its scope.
The main drawback of the pairwise comparison matrix A in (1.7) is that it compared

alternatives without considering criteria. Simply, when filling it, the decision maker
was only thinking about the overall satisfaction with the alternatives and did not make
any separate reasoning about the criteria—cost, sightseeing and environment in the
example—contributing to the global satisfaction.
Once again, complexity can be a problem and the solution is to decompose it. This is

why, at this point, Saaty [101] suggested to build a different matrix for each criterion.
Hence, in the following, a matrix A(k) is the matrix of pairwise comparisons between
alternatives according to criterion k. For example, using the convention c = climate,
s = sightseeing, e = environment, entry a13 of matrix A(c) below entails that the
decision maker prefers Rome to Reykjavik if he compares these two cities exclusively
under the climatic point of view. The following three matrices can be taken as examples
of preferences expressed by a decision maker on the three cities according to the three
different criteria.

A(c) =




1 1 4
1 1 4
1/4 1/4 1


 A(s) =




1 2 6
1/2 1 3
1/6 1/3 1


 A(e) =



1 1/2 1/8
2 1 1/4
8 4 1


 .

Then, we estimate (no worries for the moment about the method) their priority vectors

w(c) =



4/9
4/9
1/9


 w(s) =



6/10
3/10
1/10


 w(e) =



1/11
2/11
8/11


 .
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Now we have three vectors instead of one! Their interpretation is at least twofold: (i) as
they are 3 vectors of dimension 3, one can imagine them as 3 points in the 3-dimensional
Euclidean space; (ii) vectors are ratings and they can be contradictory: climate-wise
Barcelona is preferred to Reykjavik, but, on the other hand, the opposite is true if the
criterion is the environment.
It is reasonable to assume that the solution should be a compromise between vectors

w(c),w(s),w(e). However, the simple arithmetic mean is not the best way to aggregate the
vectors because, most likely, criteria have different degrees of importance. For instance,
an old and rich man may not care much about the cost and just demand a quiet and
peaceful place for his holidays—in this hypothetical case the criterion ‘environment’
would be judged more important than ‘cost’. Hence, we need another type of averaging
function and the compromise that we are looking for is the weighted arithmetic mean,
in this case a convex (linear) combination of vectors. Now, the question is how to
find the weights to associate to different vectors. The only thing we know is that the
weight associated to a vector should be proportional to the importance of the criterion
associated with it. The proposed solution is to use the same technique used so far. First,
we build a pairwise comparison matrix Â = (âij)n×n which compares the importance of
criteria with respect to the achievement of the goal. In the example, the matrix could
be

Â =



1 1/2 1/4
2 1 1/2
4 2 1


 .

Then, we derive a vector ŵ = (ŵ1, ŵ2, ŵ3)
T (again, no worries on how it is derived)

ŵ =



1/7
2/7
4/7




whose components are the weights of criteria. According to this vector the decision
maker—in our case the family—is mainly interested in the third criterion, i.e. the
environment. We proceed with the linear combination of w(c), w(s) and w(e).

w = ŵ1w
(c) + ŵ2w

(s) + ŵ3w
(e)

=
1

7



4/9
4/9
1/9


+

2

7



6/10
3/10
1/10


+

4

7



1/11
2/11
8/11




≈



0.287
0.253
0.460


 .

We have a final ranking and we can choose the best alternative, which is the one rated
the highest, then x3 which, in our example, is Reykjavik. Formally, the best alternative
is any element of the set {xi|wi ≥ wj, ∀i, j}.
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The role of the criteria weights can be stressed by a numerical example. Consider the
priority vector for criteria (1/7, 4/7, 2/7)T instead of (1/7, 2/7, 4/7)T . Then, the final
priorities become (0.43, 0.29, 0.28)T and the best alternative is now x1 (Rome).
Note that hierarchies can contain more levels of criteria. For example, for the selec-

tion of the best city for holidays, the criterion ‘climate’ could have been refined into
subcriteria such as ‘chance of rain’, ‘temperature’, ‘length of the daylight’, each of which
contributes to the concept of climate. For reasons of space we cannot provide a numeri-
cal example of a hierarchy with more criteria levels, but we invite the reader to consider
the following exercise.

Problem 1. Convince yourself that the AHP can work out the hierarchy in Figure 1.4.
Note the complication that ‘wheels’ is a subcriterion of both ‘mechanics’ and ‘aesthetics’.

Overall satisfaction

Mechanics Aesthetic Comfort

Brakes Quality of 
 the shift Horse power Wheels ShapeColor Air 

 conditioning Seats Other 
 optionals

Car 1 Car 2 Car 3

Figure 1.4.: Selection of an automobile.

Certainly, this is an ad hoc toy-example, but the reader might be interested to know that
the AHP has actually been proposed for automobile selection [32].

Let us conclude this section by remarking that, by using näıve examples we have
already seen the three basic steps of the AHP:

1. Problem structuring and definition of the hierarchy

2. Elicitation of pairwise comparisons

3. Derivation of priority vectors and their linear combinations.

Nevertheless, so far, we have considered an idyllic situation which used various assump-
tions and only in the next chapters we shall see how the AHP can be used as a more
flexible model. Even so, what we know is already sufficient to understand the next
section on some applications.
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1.2. Applications

Our previous example was simple and aimed at understanding the principles behind the
AHP and, needless to say, real-world applications have presented a much higher level
of complexity. In this section we shall skim through some applications to show their
vast range and hopefully whet the readers’ appetite for the AHP, whose full potential
has not been revealed yet. Nowadays, applications are so many that no survey can be
comprehensive enough. However, albeit not recent, the surveys by Golden et al. [64],
Zahedi [140], and Vargas [130] remain the best reference points.

City evaluation and planning

Saaty [104] proposed to use the AHP to rank a set of cities from the most to the least
livable. In his study, he considered a set of cities in the United States. Indeed, the
satisfaction of the final goal ‘livability’ can be decomposed into the satisfaction of some
criteria, such as ‘environment’, ‘services’, ‘security’, and each of these criteria can itself
be decomposed into subcriteria. For instance, the ‘services’ criterion might depend on
subcriteria such as ‘transportation facilities’, ‘health care’, and so forth. Some cities
are undoubtedly more livable than others1. Interestingly, in this application, the AHP
questionnaire was given to six decision makers representing different demographic groups
and light was shed on differences of preferences between them. The research concluded
presenting some conjectures on the reasons behind these discrepancies.
Another innovative application was proposed by Saaty and Sagir [113]. By looking at

metropolitan areas, the authors were able to classify most of the world cities into one
category, out of seven, each representing an alternative model of developing a city. Some
alternatives were: compact, 3-dimensional (New York City), flat (Riyadh). The AHP
was used to systematically take into account good and bad points of each type of city
by means of an AHP-based cost-benefit analysis.

Country ranking

Until the late Eighties, ranking of countries was based on their gross domestic product
per capita, or at least that was the most significant measure. More recently, starting
in the early Nineties, a more inclusive and composite measure accounting for multiple
criteria called Human Development Index has been popularized by economists such as
the Nobel laureate Amartya Sen [4]. Few know that, in 1987, the AHP was already
proposed to rank countries taking into account multiple criteria [97]. Clearly, in this
study, the alternatives were the countries themselves, and the criteria simply all those
characteristics which could make one country better than another. Indeed, with a suit-
able choice of criteria, this use of the AHP can be seen as a primer in the multivariate
ranking of countries.

1It is the author’s of this booklet half joke to say that the choice of San Francisco as the most livable
served as a sure validation of the AHP.
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Mobile value services

With the widespread use of (smart) mobile devices, mobile services and applications
are becoming more and more successful and part of end-users’ everyday life, but why
are some devices and services successful while others are not? It is indeed of great
importance to identify and understand critical success factors driving the acceptance
and adoption of mobile devices and different mobile services. Traditional models mainly
consider a limited set of adoption factors, focusing on the perceived values of mobile
services (usefulness, ease of use, cost). Nikou and Mezei [92] proposed to use the AHP
to determine the most important decision criteria driving the customers’ adoption of
mobile devices and mobile services. The main attributes considered include payment
mode, functionality, added value, perceived quality, cost, and performance. The results
of this type of studies can be essential for various service providers (operators, mobile
handset manufacturers) to design profitable applications that generate value for the
end-users.

Organ transplant

It is a fact that there are more people needing human organ transplants than available
organs, and that different allocations of organs can make the difference between death
and life. Some combinatorial optimization problems have been proposed to match donors
with organs in the best possible way, and to be fair, such algorithms account for the fact
that some patients require an organ in a shorter time than others. In a study, Lin and
Harris [84] proposed to use the AHP to decompose the four criteria ‘urgency’, ‘efficiency’,
‘benefit’, and ‘equity’ into subcriteria and eventually estimate their importance in the
donors-organs matching process. Patients were treated as alternatives, but it is clear
that their huge amount would have made the use of subjective judgments impossible.
Fortunately, in this case, the pairwise comparison matrices at the alternative level were
filled automatically since different criteria were quite easily quantifiable. For instance,
if the life expectancies of two patients are 1 and 2 years, it can be automatically derived
that under that criterion, the first patient is two times more ‘urgent’ than the second.

Chess prediction

The AHP has been used for forecasting too. In sports, athletes can be seen as alternatives
and their characteristics as criteria, and the player rated the highest shall be regarded
as the most likely to win. Here we refer to an application of the AHP for the prediction
of winners in chess matches—The AHP was used to evaluate the outcome of the Chess
World Championships [118] as well as of the matches between Fischer and Spassky in
1972 and Karpov and Korchnoi in 1978 [116]. A possible hierarchy for this problem is
represented in Figure 1.5. It is interesting to see that the values of the weights w1, . . . , wn

in this sort of problems about forecasting can be interpreted as subjective probabilities
[136]. For example, in this case, w1 and w2 could be interpreted as the subjective
probabilities of the victories of the two chess players.
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Figure 1.5.: A hierarchy for the chess competition problem. Abbreviations are as follows:
Gamesmanship (G), Good Nerves and Will to Win (GN), Personality (P),
Stamina (ST), Ego (E), Calculation (Q), Experience (EX), Good Health
(GH), Imagination (IM), Intuition (IN), Game Aggressiveness (GA), Long
Range Planning (LRP), Memory (M), Preparation (PR), Quickness (Q),
Relative Youth (RY), Seconds (S), Technique (M). For a fuller description
see the original paper [118].

Facility location

In Turku, a city in the South-West of Finland, the AHP has been used to find the best
location the new ice hockey stadium (now called Turku Arena). Several criteria were
used to evaluate different locations. Among the criteria one can find the accessibility of
the arena, the possibility of having car parking, the quality of the soil on which the arena
shall be built, and so forth. Carlsson and Walden [33] gave a frank political account
of the decision process, which involved the local administration, and whose selected
alternative was the third best ranked, and not the best.

1.3. Criticisms and open debates ⋆

Accounts of successful applications and empirical studies [71], have brought evidence on
the AHP as an appealing method for decision making. Notwithstanding, as Shakespeare
put it “All that glitters is not gold”.
Thus, since any fair exposition must take into account its drawbacks and open issues,
we should spell it out: the AHP is not a flawless method. Like the driver of a race car
knows the limits of the machine, users of the AHP too shall be aware of its limitations
and possible misuses. In this section we shall dwell on three of them. Further matters
and open debates will be recalled later when they are related to specific topics of interest
of some sections of this booklet. Even so, let us now focus on the three of them which
can be already understood at this stage of the exposition.

Rank reversal

The most spirited criticisms against the AHP have been based on the rank reversal
phenomenon. Since the treatise of Von Neumann and Morgenstern [91] some axioms
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have been required to hold for decision analysis methodologies. One of these axioms
requires that, if a new alternative is added to the original set of alternatives, then the
order relation ≻ on the old set of alternatives should not change. Transposing this
concept to our daily lives, if one has to select one meal and he prefers pasta to soup,
when they offer him fish, this should not change his original preference of pasta to soup.
Belton and Gear [14] proposed the following example to show that the AHP can suffer
of rank reversal. Consider the matrices

A(a) =



1 1/9 1
9 1 9
1 1/9 1


 A(b) =




1 9 9
1/9 1 1
1/9 1 1


 A(c) =




1 8/9 8
9/8 1 9
1/8 1/9 1




which compare three alternatives with respect to three criteria, respectively—remember
that a similar situation was proposed in the example of Figure 1.3. Assuming that
the three criteria have equal weight, i.e. 1/3, it follows that the final priority vector is
(0.45, 0.47, 0.08)T , and thus the alternatives are ranked x2 ≻ x1 ≻ x3. So far so good,
but suppose now that a new alternative, x4, is added to the initial set, and the new
judgments are

A(a) =




1 1/9 1 1/9
9 1 9 1
1 1/9 1 1/9
9 1 9 1


 A(b) =




1 9 9 9
1/9 1 1 1
1/9 1 1 1
1/9 1 1 1


 A(c) =




1 8/9 8 8/9
9/8 1 9 1
1/8 1/9 1 1/9
9/8 1 9 1


 .

Note that the preferences on the original three alternatives have been unchanged. How-
ever, still considering the criteria to be equally important, the new priority vector be-
comes (0.37, 0.29, 0.06, 0.29)T and thus the new ranking is x1 ≻ x2 ∼ x4 ≻ x3. Now x1 is
ranked the best! The gravity of this drawback is made evident if we consider the initial
example of the European city, where considering one more city, say Stockholm, might
have changed the original ranking of the other three, let alone more important real-world
problems. In a scientific context, and especially in decision analysis where everything
should be justifiable, the rank reversal has been pivotal in the debate on the theoretical
soundness of the AHP. On the other hand, many scholars ignore that the rank reversal is
avoided if priority vectors are aggregated taking their component-wise geometric mean,
instead of a convex linear combination. Although opposed by some [131], the use of this
technique to avoid the rank reversal has been proven mathematically [11]. For a review
of the rank reversal the interested reader can see the original discussion [14, 15, 118], a
survey [89], and an account of the AHP versus Multi Attribute Utility Theory debate
[61].

The nature of the AHP

The discovery of the rank reversal has been the spark for further discussions. One of
the most important relates with the nature of the AHP. In other words, on what funda-
mental theory is the AHP based on? As whispered before, the AHP has something in
common with value theory. In both these theories, there is a set of alternatives which
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are eventually matched with real numbers such that wi ≥ wj ⇔ xi � xj. Ultimately, in
value theory, there is a function v : X → R, where v(xi) = wi. It follows that, however
complicated the function v is, rank reversal cannot happen, since alternatives are eval-
uated independently one from another and hence adding real or fictitious alternatives
does not change the order of the existing ones. As seen before, this invariance is required
by one axiom of value theory, which is violated by the AHP, because of the rank reversal.
Thus, the existence of the rank reversal excludes that the AHP belongs to value theory.
After Saaty’s [105] attempt to axiomatize it and a debate initiated by Dyer [49], nowa-
days the AHP is considered to be grounded on relative measurement theory which can
be seen as a theory where what matters are only the ratios between measurements of
whatever entities under consideration. Hence, from a very high perspective, the AHP
can be seen an a mathematical tool for relative measurement. The interested reader can
refer to Saaty [104, 108] for an exposition of the AHP under this point of view and con-
sider that, very recently, Bernasconi et al. [16] reinterpreted the AHP using the theory
of psychological measurement.

Different scales

It does not take much to see that, in spite of the elegance of the relative measurement
theory, a decision maker could have troubles to state that, under the climatic point of
view, Barcelona is 4 times better than Reykjavik. In everyday life, people are more
inclined to use linguistic expressions like “I slightly prefer pasta with salmon to pasta
with cheese” or “I strongly prefer one banana to one apple”. To help the decision
maker, some linguistic expressions have been proposed and then linked to different values
assignable to the entries aij. Hence, the decision maker can express opinions on pairs
using linguistic terms, which are then associated to real numbers. In his original paper
on the AHP, Saaty proposed an association between verbal judgments and values for
pairwise comparisons. Other scales have been proposed and studied, among others, by
Ji and Jiang [75] to which the reader can refer for a short overview. One of the foremost
is the balanced scale proposed by Pöhjönen et al. [98]. The balanced scale, Saaty’s scale,
and their matching with verbal judgments are reported in Table 1.1.

Verbal description Saaty’s scale Balanced scale

Indifference 1 1

— 2 1.22

Moderate preference 3 1.5

— 4 1.86

Strong preference 5 2.33

— 6 3

Very strong or demonstrated preference 7 4

— 8 5.67

Extreme preference 9 9

Table 1.1.: Two scales and their association with verbal judgments.
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Which scale is better is still an open debate, but it is safe to say that, most likely,
Saaty’s scale is not optimal. It is a fact that it was introduced as a rule of thumbs,
whereas other scales seem to have more supporting evidence. For instance, the balanced
scale has been proposed on the basis of empirical experiments with people. Reasonably,
this topic will require more research from the behavioral point of view than from the
mathematical one.
One last remark is that, in spite of the open debate on the association between linguis-

tic labels and numerical values, there is a meeting of minds on using bounded numerical
scales, of which the most famous is the set of all integers up to 9 and their reciprocals,

{
1

9
,
1

8
, . . . ,

1

2
, 1, 2, . . . , 8, 9

}
.

The main reason for this choice is our limited ability of processing information, also
corroborated by psychological studies according to which our capacity of reckoning al-
ternatives is limited to 7 ± 2 of them [112]. Nevertheless, although in practice this
discrete scale is employed, in the following, unless otherwise specified, we shall not re-
strict the discussion and adopt the more general R>. In support of this approach comes
also the fact that, mathematically speaking, the algebra of the AHP, and more generally
of relative measurement theory, builds on positive real numbers.
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2. Priority vector and consistency

The average man’s judgment is so
poor, he runs a risk every time he
uses it.

Ed Howe

It is important to reflect on the fact that in the previous chapter, almost unconsciously,
a number of very restrictive assumptions were imposed. Let us summarize them within
one sentence, where the assumptions are highlighted in italic.

A single decision maker is perfectly rational and can pre-
cisely express his preferences on all pairs of independent
alternatives and criteria using positive real numbers.

Some of these assumptions had already been relaxed in Saaty’s original works, and some
others were relaxed later. In this and in the next chapter we shall present the ways in
which these assumptions have been relaxed in the literature to provide the users of the
AHP with a more flexible method. Everytime one assumption is relaxed, the previous
box will be presented again and the assumption at stake emphasized in boldface. We
are now ready to depart from a normative view on the AHP (how decisions should be
made in a perfect world) to adopt a more descriptive view (how decisions are actually
made).

2.1. Priority vector

We have seen that one pivotal step in the AHP is the derivation of a priority vector for
each pairwise comparison matrix. Note that if each entry aij of the matrix is exactly
the ratio between two weights wi and wj, then all the columns of A are proportional
one another and consequently the weight vector is equal to any normalized column of A
(see the matrices in Chapter 1). In this case the information contained in the matrix A

can be perfectly synthesized in w and there is no loss of information.
However, we do not even bother dwelling on this case and technique to derive the
weights, since it is hardly ever the case that a decision maker is so accurate and rational
to give exactly the entries as ratios between weights. In this, and in the next section
on consistency, we shall investigate how the AHP can cope with irrational pairwise
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comparisons. Let us then represent again the box with the relaxed assumption now in
boldface.

A single decision maker is perfectly rational and can
precisely express his preferences on all pairs of indepen-
dent alternatives and criteria using positive real numbers.

When the entries of the matrix A are not obtained exactly as ratios between weights,
there does not exist a weight vector which perfectly synthesize the information in A.
Nonetheless, since the AHP cannot make it without the weight vectors, it is necessary
to devise some smart ways of estimating a ‘good’ priority vector.
Several methods for eliciting the priority vector w = (w1, . . . , wn)

T have been proposed
in the literature. Each method is just a rule for synthesizing pairwise comparisons
into a rating, and mathematically is a function τ : R

n×n
> → R

n
>. Clearly, different

methods might lead to different priority vectors, except when the entries of the matrix
are representable as ratios between weights, in which case all methods shall lead to the
same vector w. Needless to say, in the case of perfect rationality, the same vector w

obtained with any method must be such that (wi/wj)n×n = A.

2.1.1. Eigenvector method

The most popular method to estimate a priority vector is that proposed by Saaty himself,
according to which the priority vector should be the principal eigenvector of A. In linear
algebra it is often called the Perron-Frobenius eigenvector, from the homonymic theorem
[70]. The method stems from the following observation. Taking a matrixA whose entries
are exactly obtained as ratios between weights and multiplying it by w one obtains

Aw =




w1/w1 w1/w2 . . . w1/wn

w2/w1 w2/w2 . . . w2/wn
...

...
. . .

...
wn/w1 wn/w2 . . . wn/wn






w1
...
wn


 =



nw1
...

nwn


 = nw.

From linear algebra, we know that a formulation of the kind Aw = nw implies that n
and w are an eigenvalue and an eigenvector of A, respectively 1. Moreover, by knowing
that the other eigenvalue of A is 0, and has multiplicity (n − 1), then we know that n
is the largest eigenvalue of A. Hence, if the entries of A are ratios between weights,
then the weight vector is the eigenvector of A associated with the eigenvalue n. Saaty
proposed to extend this result to all pairwise comparison matrices by replacing n with
the more generic maximum eigenvalue of A. That is, vector w can be obtained from
any pairwise comparison matrix A as the solution of the following equation system,

{
Aw = λmaxw

wT1 = 1

1A short overview of eigenvector theory in the AHP can be found in the Appendix.
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where λmax is the maximum eigenvalue ofA, and 1 = (1, . . . , 1)T . Although this problem
can easily be solved by mathematical software and also spreadsheets, its interpretation
remains cumbersome for practitioners.

2.1.2. Geometric mean method

Another widely used method to estimate the priority vector is the geometric mean
method, proposed by Crawford and Williams [43]. According to this method each com-
ponent of w is obtained as the geometric mean of the elements on the respective row
divided by a normalization term so that the components of w eventually add up to 1,

wi =

(
n∏

j=1

aij

) 1

n / n∑

i=1

(
n∏

j=1

aij

) 1

n

︸ ︷︷ ︸
normalization term

. (2.1)

Example 2. Let us take into account the following matrix

A =




1 1/2 1/4 3
2 1 1/2 2
4 2 1 2
1/3 1/2 1/2 1


 (2.2)

for which, by using (2.1), one obtains

w ≈ (0.119, 0.208, 0.454, 0.219)T

Problem 2. Prove that, if aij = wi/wj ∀i, j, then the geometric mean method (2.1)
returns the vector w whose ratios between components are the elements of A.

By looking at (2.1) it is apparent that the geometric mean method is very appealing
for practical applications since, in contrast to the eigenvector method, the weights can be
expressed as analytic functions of the entries of the matrix. Furthermore, even the final
weights of the whole hierarchy can be expressed as analytic expressions of the entries of
all the matrices in the hierarchy. This is particularly important since it opens avenues to
perform efficiently some sensitivity analysis. Moreover, on a more mathematical note,
it is interesting to note that the vector w obtained with this method, can equivalently
be obtained as the argument minimizing the following optimization problem

minimize
(w1,...,wn)

n∑

i=1

n∑

j=1

(ln aij + lnwj − lnwi)
2

subject to
n∑

i=1

wi = 1, wi > 0 ∀i
(2.3)

Problem 3. Prove that the argument optimizing (2.3) is the same vector (up to multi-
plication by a suitable scalar) which could be obtained with the geometric mean method.
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This optimization problem has some interpretations, the following being quite straight-
forward. We know that, in the case of perfect rationality, aij = wi/wj ∀i, j. Indeed, it
is fair to consider

∑n
i=1

∑n
j=1 (aij − wi/wj)

2 as a distance between A and the matrix
(wi/wj)n×n associated with the weight vector w. Another metric can be found by us-
ing the natural logarithm ln, which is a monotone increasing function, thus obtaining∑n

i=1

∑n
j=1 (ln aij − ln (wi/wj))

2. The rest is done by observing that the logarithm of
a quotient is the difference of the logarithms. Then the minimization problem (2.3) is
introduced to find a suitable priority vector associated to a ‘close’ consistent approxi-
mation (wi/wj)n×n of the matrix A.

2.1.3. Other methods and discussion ⋆

A large number of alternative methods to compute the priority vector have been proposed
in the literature. Choo and Wedley [39] listed 18 different methods and proposed a
numerical and comparative study. Lin [83] reconsidered and simplified their framework.
Another comparative study was offered by Ishizaka and Lusti [73]. Instead, Cook and
Kress [40] presented a more axiomatic analysis where some desirable properties were
stated. From all these studies it appears that, besides the eigenvector and the geometric
mean method, other two methods have gained some popularity.

• The so-called least squares method where the priority vector is the argument solving
the following optimization problem

minimize
(w1,...,wn)

n∑

i=1

n∑

j=1

(
aij −

wi

wj

)2

subject to
n∑

i=1

wi = 1, wi > 0 ∀i .
(2.4)

In spite of its elegance, this optimization problem can have local minimizers where
the optimization algorithms get trapped. For a discussion on this method and its
solutions the reader can refer to Bozóki [22].

• The other one is the normalized columns method which requires the normalization
of all the columns of A so that the elements add up to 1 before the arithmetic
means of the rows are taken and normalized to add up to 1 to yield the weights
w1, . . . , wn. This is the simplest method but lacks solid theoretical foundation.

Example 3. Consider the pairwise comparison matrix (2.2) already used to illus-
trate the geometric mean method. Then, the matrix with normalized columns and
the priority vector are the following, respectively,




3/22 1/8 1/9 3/8
6/22 2/8 2/9 2/8
12/22 4/8 4/9 2/8
1/22 1/8 2/9 1/8


 , w =




21/163
42/163
84/163
16/163


 .
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Nevertheless, in spite of the great variety of methods, it is safe to say that the eigenvector
and the geometric mean method have been the most used and therefore it is convenient to
confine further discussions to these two. Saaty and Vargas [117] claimed the superiority
of the eigenvector method and concluded that:

In fact it is the only method that should be used when the data are not
entirely consistent in order to make the best choice of alternative.

Saaty and Hu [111] proposed a theorem claiming the necessity of the eigenvector method,
and Saaty [107] also proposed ten reasons for not using other methods. Fichtner [53]
proposed some axioms and showed that the eigenvector method is the only one satisfying
them. Curiously, supporters of the geometric mean method have used similar arguments.
For instance, Barzilai at al. [10] proposed another axiomatic framework and proved that
the geometric mean method is the only one which satisfies his axioms. Seemingly, the
existence of two axiomatic frameworks leading to different conclusions suggest that the
choice of the method depends on what set of properties we want the method to satisfy.
Supporters of the geometric mean method also gave precise statements on the use of
this method and, to summarize one of his papers, Barzilai [8] wrote:

We establish that the geometric mean is the only method for deriving weights
from multiplicative pairwise comparisons which satisfies fundamental consis-
tency requirements.

Bana e Costa and Vansnick [41] also moved a criticism against the eigenvector method
based on what they called the condition of order preservation (COP). The COP states
that, if xi more strongly dominates xj than xk does with xl, it means that aij > akl,
and then it is natural to expect that the priority vector be such that wi/wj > wk/wl.
Formally,

aij > akl ⇒
wi

wj

>
wk

wl

∀i, j, k, l.

Bana e Costa and Vansnick showed some examples of cases where, given a pairwise
comparison matrixA, the eigenvector method does not return a priority vector satisfying
the COP, although there exists a set of other vectors satisfying it.
On a similar note, a recent discovery related to what economists call Pareto efficiency.

The reasonable idea behind this is suggested also by (2.3) and (2.4) and is that, having
estimated the priority vector w, the matrix (wi/wj)n×n should be as near as possible to
the original preferences in A. Blanquero et al. [18] showed that, if w is estimated by
the eigenvector method, in some cases there exists a vector v = (v1, . . . , vn)

T 6= w such
that ∣∣∣∣

vi
vj

− aij

∣∣∣∣ ≤
∣∣∣∣
wi

wj

− aij

∣∣∣∣ ∀i, j.

The fact that w 6= v implies that the inequality is strict for some i, j. To summarize, this
means that there can be vectors which are closer than the eigenvector to the preferences
expressed in A. At the time of writing this manuscript, it seems that in some cases the
differences between v and w can be relevant [23].
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2.2. Consistency

A perfectly rational decision maker should be able to state his pairwise preferences
exactly, i.e. aij = wi/wj ∀i, j. So, let us consider the ramifications of this condition
on the entries of the pairwise comparison matrix A. If we write aijajk and apply the
condition aij = wi/wj ∀i, j, then we can derive the following

aijajk =
wi

wj

wj

wk

=
wi

wk

= aik.

Hence, we discovered that, if all the entries of the pairwise comparison matrix A satisfy
the condition aij = wi/wj ∀i, j, then the following condition holds 2,

aik = aijajk ∀i, j, k , (2.5)

which means that each direct comparison aik is exactly confirmed by all indirect com-
parisons aijajk ∀j. Formally, a decision maker able to give perfectly consistent pairwise
comparisons does not contradict himself. A matrix for which this transitivity condition
holds is called consistent.

Example 4. Consider the characteristic ‘weight’ of three stones x1, x2, x3. If the decision
maker says that x1 is three times heavier than x3 (a13 = 3), and then also says that x1 is
two times heavier than x2 (a12 = 2), and x2 is also two times heavier than x3 (a23 = 2),
then he contradicts himself, because he directly states that a13 = 3, but indirectly states
that the value of a13 should be a12a23 = 2 · 2 = 4 and not 3.

Evidently the whole reasoning can be translated into the language of pairwise com-
parison matrices.

Example 5. Consider this other example with the two pairwise comparison matrices




1 2 4
1/2 1 2
1/4 1/2 1







1 2 1/2
1/2 1 2
2 1/2 1




for which we have the two diagrams in Figure 2.1 respectively.

x1 x2 x3
2 2

4

(a) The matrix is consis-
tent

x1 x2 x3
2 2

1/2

(b) The matrix is incon-
sistent

Figure 2.1.: Examples of consistent and inconsistent transitivities.

2As we will see, the ‘if’ condition is in fact an ‘if and only if’.
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I(A)

I(B)

I(C)

Figure 2.2.: An inconsistency index can be seen as a ‘thermometer’, which takes pairwise
comparison matrices as inputs and evaluates how inconsistent the judgments
are.

Being consistent is seldom possible because many factors can determine the emergency
of inconsistencies. For instance, the decision maker might be asked to use integer num-
bers and their reciprocals; in this case if aij = 3 and ajk = 1/2 it is impossible to find a
consistent value for aik. Moreover, the number of independent transitivities (i, j, k) in a
matrix of order n is equal to

(
n
3

)
, thus evidencing the difficulty of being fully consistent.

Example 6. In a matrix of order 6, there are
(
6
3

)
= 20 independent transitivities; that

is the number of possible assignments of values to i, j, k such that 1 ≤ i < j < k ≤ 6. In
a matrix of order 4, there are

(
4
3

)
= 4 transitivities. They are (1, 2, 3), (1, 2, 4), (1, 3, 4)

and (2, 3, 4).

In spite of the difficulty in being fully transitive, it is undeniable that consistency
is a desirable property. In fact, an inconsistent matrix could be a symptom of the
decision maker’s incapacity or inexperience in the field. Additionally, it is possible to
envision that violations of the condition of consistency (2.5) can be of different extent
and gravity and imagine inconsistency as a gradual notion. Hence, on the ground that
a matrix should deviate as less as possible from the condition of transitivity, a number
of inconsistency indices have been proposed in the literature to quantify this deviation.
Formally, an inconsistency index is a function mapping pairwise comparison matrices
into the real line (see Figure 2.2 for an oversimplification).
There exist various inconsistency indices in the literature and this variety is in part

justified by the fact that the condition of consistency can be formulated in many equiv-
alent ways. Among them, it is the case to reckon the following four:

i) aik = aijajk ∀i, j, k,

ii) There exists a vector (w1, . . . , wn)
T such that aij = wi/wj ∀i, j,

iii) The columns of A are proportional, i.e. A has rank one,

iv) The pairwise comparison matrix A has its maximum eigenvalue, λmax, equal to n.

In this section we explore some inconsistency indices, each inspired by one of these
equivalent consistency conditions.
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2.2.1. Consistency index and consistency ratio

According to the result that given a pairwise comparison matrix A, its maximum eigen-
value, λmax, is equal to n if and only if the matrix is consistent (and greater than n
otherwise), Saaty [101] proposed the Consistency Index

CI(A) =
λmax − n

n− 1
. (2.6)

However, numerical studies showed that the expected value of CI of a random matrix
of size n + 1 is, on average, greater than the expected value of CI of a random matrix
of order n. Consequently, CI is not fair in comparing matrices of different orders and
needs to be rescaled.
The Consistency Ratio, CR, is the rescaled version of CI. Given a matrix of order n,
CR can be obtained dividing CI by a real number RIn (Random Index ) which is nothing
else but an estimation of the average CI obtained from a large enough set of randomly
generated matrices of size n. Hence,

CR(A) =
CI(A)

RIn
(2.7)

Estimated values for RIn are reported in Table 2.1. Note that the generation of random
matrices requires the definition of a bounded scale where the entries take values, for
instance the interval [1/9, 9]. According to Saaty [102], in practice one should accept
matrices with values CR ≤ 0.1 and reject values greater than 0.1. A value of CR = 0.1
means that the judgments are 10% as inconsistent as if they had been given randomly.

n 3 4 5 6 7 8 9 10
RIn 0.5247 0.8816 1.1086 1.2479 1.3417 1.4057 1.4499 1.4854

Table 2.1.: Values of RIn [3].

Example 7. Consider the pairwise comparison matrix

A =




1 2 9 1
1/2 1 1/3 1/6
1/9 3 1 2
1 6 1/2 1


 . (2.8)

It can be calculated that its maximum eigenvalue is λmax = 5.28. Using the formula for
CI, we obtain CI(A) = 0.42667. Dividing it by RI4 one obtains CR(A) ≈ 0.48 which is
significantly greater than the threshold 0.1. In a decision problem it is common practice
to ask the decision maker to revise his judgments until a value of CR smaller than 0.1
is reached.
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2.2.2. Index of determinants

The index of determinants was proposed by Peláez and Lamata [95] and comes from the
following property of a matrix of order three. Expanding the determinant of a 3× 3 real
matrix one obtains

det(A) =
a13

a12a23
+

a12a23
a13

− 2.

If A is not consistent, then a13 6= a12a23 and det(A) > 0, because, in general, a
b
+ b

a
−2 >

0 ∀ a 6= b, a, b > 0.
It is possible to generalize this result to matrices of order greater than three and define
this inconsistency index as the average of the determinants of all the possible submatrices
Tijk of a given pairwise comparison matrix, constructed as follow,

Tijk =




1 aij aik
aji 1 ajk
aki akj 1


 , ∀i < j < k.

The number of so constructed submatrices is
(
n
3

)
= n!

3!(n−3)!
. The result is an index whose

value is the average inconsistency computed for all the submatrices Tijk (i < j < k)

CI∗(A) =
n−2∑

i=1

n−1∑

j=i+1

n∑

k=j+1

(
aik

aijajk
+

aijajk
aik

− 2

)

︸ ︷︷ ︸
det(Tijk)

/(
n

3

)
. (2.9)

Example 8. Consider the matrix A in (2.8). It is then possible to calculate the average
of the determinants of all the submatrices Ti j k with i < j < k.

CI∗(A) =

det

T1 2 3︷ ︸︸ ︷


1 2 9
1/2 1 1/3
1/9 3 1


+ · · ·+ det

T2 3 4︷ ︸︸ ︷

1 1/3 1/6
3 1 2
6 1/2 1




4
=(11.5741 + 1.3333 + 16.0556 + 34.0278)/4 = 15.7477.

Interestingly, CI∗ is proportional to another inconsistency index called c3 [27]. The
coefficient c3 of the characteristic polynomial of a pairwise comparison matrix was pro-
posed to act as an inconsistency index by Shiraishi and Obata [124] and Shiraishi et al.
[125, 126]. By definition, the characteristic polynomial3 of a matrix A has the following
form

PA(λ) = λn + c1λ
n−1 + · · ·+ cn−1λ+ cn,

with c1, . . . , cn that are real numbers and λ the unknown. Shiraishi et al. [125] proved
that, if c3 < 0, then the matrix cannot be fully consistent. In fact, this is evident if one

3See appendix on eigenvalues and eigenvectors
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reckons that—in light of the Perron-Frobenius theorem—the only possible formulation
of the characteristic polynomial which yields λmax = n, is

PA(λ) = λn−1(λ− n). (2.10)

Thus, the presence of c3 < 0 contradicts this last formulation and is certainly a symptom
of inconsistency. Moreover, Shiraishi et al. [125] also proved that c3 has the following
analytic expression

c3 =
n−2∑

i=1

n−1∑

j=i+1

n∑

k=j+1

(
2− aik

aijajk
− aijajk

aik

)
(2.11)

which highlights its proportionality with CI∗.

2.2.3. Geometric consistency index

This index was introduced by Crawford [42] and reexamined by Aguarón and Moreno-
Jiménez [2]. It considers the priority vector to be estimated by the geometric mean
method (2.1). With the so estimated weights it is possible to build a local quantification
of inconsistency eij for each entry aij such that

eij = aij
wj

wi

, i, j = 1, . . . , n. (2.12)

Obviously, for consistent matrices the value of eij is equal to 1 because it becomes the
multiplication of an entry times its reciprocal. Note that,

aij =
wi

wj

⇒ ln eij = 0.

It is now possible to define an index of global inconsistency as the normalized sum of
the local contributions to the inconsistency of A. This index of global inconsistency, the
Geometric Consistency Index (GCI), is the following:

GCI(A) =
2

(n− 1)(n− 2)

n−1∑

i=1

n∑

j=i+1

(ln eij)
2 . (2.13)

Example 9. We refer to the matrix A presented in (2.8). By using the geometric
mean method, the priority vector is w ≈ (2.06, 0.408, 0.904, 1.316)T . Next, it could be
convenient to collect values eij obtained with (2.12) into the following auxiliary matrix

E = (eij)n×n =

(
aij

wj

wi

)

n×n

=




1 0.3964 3.9482 0.6389
2.5227 1 0.7379 1.8612
0.2538 1.3554 1 2.9129
1.5651 1.8612 0.3432 1


 .

Finally, the last computation is achieved applying formula (2.13), which yields GCI(A) ≈
1.52.
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2.2.4. Harmonic consistency index

If and only if A is a consistent pairwise comparison matrix, then its columns are pro-
portional and rank(A) = 1. Therefore, it is fair to suppose that the less proportional
are the columns, the less consistent is the matrix. An index of inconsistency loosely
based on proportionality between columns was then proposed by Stein and Mizzi [127].
Given a matrix A, they proposed to construct an auxiliary vector s = (s1, . . . , sn)

T with
sj =

∑n
i=1 aij ∀j. It was proven that

∑n
j=1 s

−1
j = 1 if and only if A is consistent, and

smaller than 1 otherwise. The harmonic mean of the components of vector s is then the
result of the following

HM(s) =
n∑n
j=1

1
sj

. (2.14)

The function HM itself could be an index of inconsistency, but the authors, according
to computational experiments, proposed a normalization in order to align its behavior
with that of CI. The Harmonic Consistency Index is then

HCI(A) =
(HM(s)− n)(n+ 1)

n(n− 1)
. (2.15)

Example 10. Considering the matrix A in (2.8), then the vector s is

s =

(
47

18
, 12,

65

6
,
25

6

)T

whose harmonic mean is

HM(s) =
4

1
47

18

+ 1
12

+ 1
65

6

+ 1
25

6

=
733200

146387
= 5.00864

Now it is possible to derive the value of the harmonic consistency index by plugging the
value HM(s) into (2.15) and obtain HCI(A) ≈ 0.42.

2.2.5. Ambiguity index

Salo and Hämäläinen [121, 122] proposed an ambiguity index which can be used as
an inconsistency index too. It requires the construction of an auxiliary interval-valued
matrix

Ā = (āij)n×n =



[aL11, a

R
11] . . . [aL1n, a

R
1n]

...
. . .

...
[aLn1, a

R
n1] . . . [aLnn, a

R
nn]




where aLij = min{aikakj|k = 1, . . . , n} and aRij = max{aikakj|k = 1, . . . , n}. Namely,
each interval’s lower (upper) bound aLij (aRij) is the smallest (greatest) possible value
assignable to the entry if it was estimated indirectly using a transitivity of the pairwise
comparison matrix. Surely, if A is consistent, then all the intervals collapse into real
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numbers. From this insight, Salo and Hämäläinen deduced that the wider the intervals,
the more inconsistent A should be. Hence, they presented their consistency measure,

CM(A) =
2

n(n− 1)

n−1∑

i=1

n∑

j=i+1

aRij − aLij(
1 + aRij

) (
1 + aLij

) ,

Example 11. Salo and Hämäläinen proposed the following simple example [122]. Con-
sider

A =




1 7 4
1/7 1 1/5
1/4 5 1




from which one can derive

Ā =




1 [7, 20] [7/5, 4]
[1/20, 1/7] 1 [1/5, 4/7]
[1/4, 5/7] [7/4, 5] 1


 . (2.16)

It follows that

CM(A) =
2

3 · 2

(
20− 7

(20 + 1) · (7 + 1)
+

4− 7
5

(4 + 1) · (7 + 1)
+

4
5
− 1

5

(4
7
+ 1) · (1

5
+ 1)

)
= 0.16 .

2.2.6. Other indices and discussion ⋆

Many other inconsistency indices have been proposed. For instance, Koczkodaj [80]
proposed an inconsistency index for matrices of order three which was later extended to
matrices of greater order [48]. Golden and Wang formulated an index which considers a
metric between the normalized columns of the matrix and the priority vector obtained
either with the eigenvector or the geometric mean method [63]. Cavallo and D’Apuzzo
proposed an interpretation of pairwise comparison matrices using group theory and
introduced their own index [35, 36]. Barzilai, first transformed the entries of the matrix
by means of a logarithmic function and then proposed another index [9]. Gass and
Rapcsák [62] defined an index based on the singular value decomposition of matrices.
Furthermore, consider that even the objective functions of the optimization problems of
the logarithmic least squares (2.3) and the least squares (2.4) used in §2.1 to derive the
priority vector can be considered inconsistency index. The interested reader can refer
to a survey paper with numerical tests on various indices [26].
More broadly, and to include the most updated results, it is the case to remark that

recently some questions have been answered.

• Some questions were open on the behavioral side of consistency. For instance, does
the order in which the comparisons are asked affect the final inconsistency? Does
inconsistency increase with the order of the matrix? These, and other questions,
have been answered by means of empirical experiments with real decision makers
[24].
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• It used to be unclear whether different inconsistency indices were similar or choos-
ing one or another really made a difference. Namely, the formulations of the indices
are often so dissimilar that we cannot understand if they tend to give similar re-
sults. By means of numerical simulations it was discovered that some indices are
very similar whereas some others can give very different results [26]. Curiously,
some indices have even been proved to be proportional, and thus equivalent, in
estimating inconsistency [27].

• Inconsistency indices have been introduced empirically and an inquisitive reader
might not take their validity for granted. Clearly, functions like the product of all
the entries of a matrix, Π(A), or the trace of a matrix tr(A) cannot capture the
inconsistency of a matrix. Five axioms were proposed and considered necessary to
characterize inconsistency indices and it was proved that, in fact, some inconsis-
tency indices fail to satisfy some of them and can be suspected of ill-behavior in
some situations [28]. Figure 2.3 is a snapshot of the axiomatic system and its role.

CI

CI∗

GCI

det

tr

Σ

Π

|| · ||

Axiomatic

system

Figure 2.3.: The axiomatic system [28] defines a set of functions suitable to estimate
inconsistency

In the literature it is often assumed that one inconsistency index together with a
threshold value should be used to test whether the inconsistency of a matrix is tolerable
or not. At least three points can be raised in connection with this standard procedure.
Firstly, unlike for the Consistency Index, thresholds have been rarely presented for in-
consistency indices. That is, indices were introduced tout court, without discussions on
acceptance rules for sufficiently consistency matrices. Hence, presently, without thresh-
olds the use of many indices is limited to stating if a matrix is more (or less) inconsistent
that another.
Secondly, a wise proposal would be that of using two indices, perhaps quite dissimilar,
to test if a matrix is not too inconsistent. New acceptance rules might be devised too;
considering two indices, one could for instance accept matrices respecting the threshold
value for both the first and the second inconsistency index.
Thirdly, it is simple to envision that a decision maker can hardly ever be completely
consistent, and therefore, instead of requiring him to achieve a sufficiently low value for
an inconsistency index, one might want to lower the bar and introduce less demanding
conditions which can realistically be fully satisfied. This kind of reasoning has pushed
some authors to research on weaker conditions of consistency. One natural way to force
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transitivity, but in a weaker sense, would be that of doing without the degrees of pref-
erence and simply require that if a decision maker prefers xi to xj and xj to xk, then it
should also prefer xi to xk. This condition, which is nothing else but a restatement of
ordinal transitivity for binary relations, can be formalized as follows:

aij > 1 and ajk > 1 ⇒ aik > 1 ∀i, j, k.

This condition can be strengthened into the more restrictive weak consistency condition:

aij > 1 and ajk > 1 ⇒ aik > max{aij, ajk} ∀i, j, k.

A deeper analysis of weaker consistency conditions, and their implications on the stability
of the ranking of alternatives, can be found in [12, 13].
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3. Missing comparisons and group

decisions

3.1. Missing comparisons

Having, and manipulating, a complete and consistent pairwise comparison matrix means
dealing with rich and reliable information and therefore it represents the most desirable
situation in a decision making problem with the AHP. However, sometimes, it is not
possible for the decision maker to express all the pairwise comparisons and therefore,
it is nowadays common practice to accept that some entries of a pairwise comparison
matrix be missing. Let us now reprise the famous box and highlight the assumption
that we are going to relax

A single decision maker is perfectly rational and can pre-
cisely express his preferences on all pairs of independent
alternatives and criteria using positive real numbers.

In complex problems like those considered in §1.2, it may happen that the decision maker
cannot complete a preference relation due to lack of time, the typology of problem, his
incapacity in comparing two alternatives of different nature, and so forth [29]. Besides,
sometimes, even if it was possible to obtain all the pairwise comparisons, doing so could
be discouraged, since, due to information overload, the last ones could be given with less
attention and care [34]. Certainly, it might be better to have few pairwise comparisons
carefully given, than many, but given with scarce attention.
Hereafter, we shall call incomplete pairwise comparison matrix any pairwise comparison
matrix with some missing entries. Considering all the diagonal elements of the matrix
as given and the fact that, thanks to reciprocity, we only need to know aij to derive
its reciprocal aji, then a pairwise comparison matrix of order n requires n(n − 1)/2
independent comparisons.

Example 12. Consider a decision problem with 6 alternatives evaluated with respect to
5 criteria. Then, the number of independent comparisons is

5
6(6− 1)

2
+

5(5− 1)

2
= 75 + 10 = 85.

Problem 4. How many independent comparisons are required by the hierarchy in Figure
1.4 used in Problem 1?
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All in all, the range of reasons for leaving a matrix incomplete is wide and the real
problem is how to derive a priority vector when there is not full information about the
preferences on alternatives. In fact, we have seen that the eigenvector method and the
geometric mean method were defined only for complete matrices. Several methods have
been implemented to face this problem and, despite their diversities, considering A and
Ȧ to be a complete and an incomplete pairwise comparison matrix, respectively, the
decision maker can proceed in one of the two following alternative ways:

• Complete the matrix by means of the information provided by the existing com-
parisons, ➀. This operation is usually carried out following some principles of
consistency, in the sense that the missing comparisons should be as coherent as
possible with the existing ones. Having done this, it is possible to estimate the
priority vector by means of one of the methods discussed earlier in §2.1 ➁

• Estimate directly the priority vector by means of some modified algorithms which
work even when some comparisons are missing, ➂.

These two ways of proceeding are illustrated in the diagram below.

Ȧ
➀

//

➂   ❆
❆

❆

❆

❆

❆

❆

❆

A

➁
��
w

(3.1)

The following two subsections describe an algorithm of the first kind as well as one of
the second kind.

3.1.1. Optimization of the coefficient c3

The name c3 refers to the coefficient of λn−3 in the characteristic polynomial of the
matrix A. Shiraishi et al. [126] observed that c3 can be considered an inconsistency
index for a pairwise comparison matrix. This was already discussed in §2.2.2 and the
analytic formula of c3 was given in (2.11). Then, in order to complete Ȧ following a
principle of consistency, the authors considered the m missing comparisons as variables
α1, . . . , αm and proposed to maximize c3 (reckon that the greater c3 the smaller the
inconsistency) as a function of these variables, thus obtaining the values of the missing
comparisons by solving

maximize
(α1,...,αm)

c3

subject to α1, . . . , αm > 0 .
(3.2)

Note that there always exists an optimum for (3.2), but when there are too many missing
comparisons uniqueness is not guaranteed [124].
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Example 13. First, we present an incomplete pairwise comparison matrix Ȧ

Ȧ =




1 2 4 ȧ14
1/2 1 1/3 1
1/4 3 1 2
1/ȧ14 1 1/2 1


 . (3.3)

Its missing comparison can be estimated by solving (3.2) with α1 = ȧ14. The plot of c3
as a function of ȧ14 is depicted in Figure 3.1a. The optimal solution is ȧ14 = 4. If we
further assume that also ȧ13 is missing, then the new incomplete pairwise comparison
matrix becomes

Ȧ =




1 2 ȧ13 ȧ14
1/2 1 1/3 1
1/ȧ13 3 1 2
1/ȧ14 1 1/2 1


 . (3.4)

and the plot of c3 as a function of both ȧ13 and ȧ14 is in Figure 3.1b. In this case, the
optimal solution is ȧ13 ≈ 0.763143 and ȧ14 ≈ 1.74716.

(a) Plot of c3 as a function of ȧ14 (b) Plot of c3 as a function of ȧ14 and ȧ13

Figure 3.1.: Plots of c3

Problem 5. Consider the matrix Ȧ in (3.3). Find a way to recover ȧ14 = 4 as the
analytic solution of the nonlinear optimization problem (3.2).

The optimization of the coefficient c3 provides values for the missing entries, and,
upon completion of the matrix, it becomes straightforward to derive a priority vector.

3.1.2. Revised geometric mean method

This method, proposed by Harker [68], is not explicitly based on the optimization of
an objective function, but refers to the eigenvector approach by Saaty. Practically, it
extends Saaty’s approach to non-negative quasi-reciprocal matrices, in order to apply it
to the case of incomplete preferences. Unlike the optimization of c3 proposed in (3.2),
this method does not reconstruct the matrix but instead finds a priority vector using
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less information. The algorithm requires to construct an auxiliary matrix C = (cij)n×n

as follows

cij =





1 +mi, ∀i = j
ȧij, ∀i 6= j and ȧij not missing
0, ȧij is missing

where mi is the number of missing comparisons on the ith row. Having done this, the
priority vector can be estimated by means of the eigenvector method. The following
case, proposed by Harker [68], provides a numerical toy example and more insight on
the method.

Example 14. Consider the following pairwise comparison matrix,

A =




1 2 ȧ13
1/2 1 2
ȧ31 1/2 1


 ,

and replace the missing comparison and its reciprocal entry with their theoretical values
wi/wj so that the new matrix B is

B =




1 2 w1

w3

1/2 1 2
w3

w1

1/2 1


 .

It is possible to observe what is obtainable through the operation Bw

Bw =




1 2 w1

w3

1/2 1 2
w3

w1

1/2 1






w1

w2

w3


 =




2w1 + 2w2

w1/2 + w2 + 2w3

w2/2 + 2w3


 .

We can reach the same result considering Cw with

C =




2 2 0
1/2 1 2
0 1/2 2


 .

Finally, we can certainly state that

Bw = Cw. (3.5)

We can proceed with the elicitation of weights, extending what was stated above. There-
fore,

Bw = Cw = λmaxw. (3.6)

Since B has some non-numerical entries, we can solve the eigenvector problem for C.
Needless to say, the result is w = (4, 2, 1)T .

Problem 6. Formulate the auxiliary matrix C associated with A in (3.4).
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3.1.3. Other methods and discussion ⋆

There are other methods, of both types. For instance, Harker proposed the application
of the concept of connecting path. A connecting path of length r between i and j is
a product ai i1ai1i2 · · · air−2ir−1

air−1j, where the special case with r = 2 collapses to the
consistency condition aik = aijajk. Harker proposed to compute the missing entries
taking the geometric mean of all their connecting paths. Although sound, this proposal
suffers of computational complexity when the size of the matrix is large enough, and is
difficult to implement when several comparisons are missing.
It seems that one natural way to estimate missing comparisons is that of using some

principles of consistency. For example, an inconsistency index can be optimized and the
missing comparisons be used as variables. True, the foremost inconsistency index has
been the CI which, fixed a value of n, is a positive affine transformation of the maximum
eigenvalue λmax, which in turn is a root of a polynomial of degree n, hence impossible
to be expressed analytically, except in few cases. In spite of this problem, using some
convexity properties, Bozóki et al. [25] were able to formulate an optimization problem
and a special algorithm to minimize λmax keeping the missing comparisons as variables.
It is indeed a very valuable proposal, but remains too cumbersome to be explained in
this booklet.
On a more general level, a deeper discussion on missing comparisons goes back to the

philosophy of the AHP and question how many comparisons the decision maker should
provide. Is it carved in stone that the matrix has to be complete? Can, instead, some
comparisons be missing? How many? This question has at least two possible answers,
one algorithmic and one connected with common sense.

• From the algorithmic point of view, different methods for dealing with incomplete
pairwise comparisons give different answers. Considering the revised geometric
mean method presented in §3.1.2 one can observe that, in fact, this method works
even when all the nondiagonal entries of Ȧ are missing, in which case it returns
a priority vector where all the weights are equal. More generally, it was also
shown that one needs only (n − 1) independent comparisons to complete a ma-
trix and make it consistent in a univocal way [69]. In fact, the knowledge of a
set of comparisons, as for instance the set of entries right above the main diago-
nal, {a12, a23, . . . , an−1n}, or the set of non-diagonal entries on, say, the first row,
{a12, a13, . . . , a1n} suffices to reconstruct the missing entries using the condition
aik = aijajk ∀i, j, k.

Problem 7. Consider the following matrix Ȧ and reconstruct its missing entries
using the consistency condition aik = aijajk ∀i, j, k.

Ȧ =




1 2 4 3
1/2 1 ȧ23 ȧ24
1/4 1/ȧ23 1 ȧ34
1/3 1/ȧ24 1/ȧ34 1



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• On the common sense side of the subject matter, one would surely refrain from
estimating the priority vector from a totally incomplete matrix, and probably even
question the convenience of reconstructing a (consistent) matrix from (n−1) com-
parisons, since at that point the original (n − 1) comparisons would have been
sufficient to estimate the priority vector directly. Moreover, by giving up a large
number of comparisons one also gives up the possibility to estimate the incon-
sistency of preferences and thus to detect potential flaws in the decision maker’s
judgments. One last reason for not leaving too many comparisons missing is that
evaluation errors can better compensate, and tend to cancel each other, when there
are many comparisons then when there are few.

Another open question regards what comparisons should be elicited and what can
be left missing. For example, knowing that the decision maker is willing to express
his opinions on a subset of pairwise comparisons, but not all, then which ones should
he express, and in what order? The quest for optimal completion rules and optimal
completion paths has inspired some papers, as for instance those by Harker [67] and
Fedrizzi and Giove [52].
There are various research papers on methods for dealing with incomplete preferences

but very few investigated the relation between the number of missing comparisons and
the stability of the obtained priority vector. One of these rare studies was by Carmone
et al. [34] and it is safe to say that there is need and space for further investigation.

3.2. Group decisions

A further assumption was made regarding the number of decision makers: so far opinions
have been given by a single decision maker. Even in the introductory exposition of the
AHP given in Chapter 1, in the example of the European city, the family was considered
as an unique entity and we did not account for possibly different opinions of family
members. However, in many real-world contexts, decisions are made by groups of people,
committees, boards, teams of experts, and so forth. Whenever there is a multitude of
experts bringing diverse evidence on a problem, it is good practice to account for them.

A single decision maker is perfectly rational and can pre-
cisely express his preferences on all pairs of independent
alternatives and criteria using positive real numbers.

In his popular book The Wisdom of the Crowd, Surowiecki [128] argued that collective
intelligence often outperforms individual one. An anecdote, originally by Galton [60], is
reported in the introductory part of the book: at a county fair, individuals were asked
to estimate the exact weight of an ox. Remarkably, by averaging the responses of the
crowd members, they could obtain an estimate of the weight of the ox which was closer
to the true weight then any of the individual judgments which were instead given by a
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number of cattle experts. In other words, the collective wisdom of the crowd was more
accurate than the estimates of true experts in the field. The problem of the ox was a
problem of measurement, and we should not forget that the AHP is a theory of relative
measurement.
The AHP for group decisions has been acclaimed by some researchers, for instance Dyer
and Forman [50]. Peniwati [96] proposed some desirable properties, e.g. ‘Scientific and
mathematical generality’, ‘psychophysical applicability’, and ‘applicability to conflict
resolution’, for group decisions with MCDM methods, and according to her qualitative
analysis, the AHP is a valuable decision methodology for group decisions.
The AHP can be used in many different ways as a group decision making method
and it can be implemented in the so-called Delphi method [85]. In a nutshell, the
Delphi method prescribes a number of meetings led by a moderator, where, after each
meeting, the decision makers can revise their opinions. The role of the moderator is to
make the opinions of different decision makers converge towards a consensual solution.
Nonetheless, in spite of its seeming triviality, any short description of the Delphi method
would be an oversimplification, and any lengthy one would go beyond the scope of this
exposition. We shall therefore use some mathematical notation and focus on another
way to make sense of the AHP in group decisions.
Suppose that m (m ≥ 2) decision makers are involved in a decision and we want to

take into account and synthesize their opinions, i.e. we want to aggregate them. This
suggests that we ought to average different opinions. More specifically, starting from
their pairwise comparison matrices

(
a
(1)
ij

)
n×n︸ ︷︷ ︸

A1

, . . . ,
(
a
(m)
ij

)
n×n︸ ︷︷ ︸

Am

we eventually want to obtain one representative group priority vectorwG = (wG
1 , . . . , w

G
n )

T .
According to Forman and Peniwati [57] there are two methods to derive a vector wG

from a set of pairwise comparison matrices A1, . . . ,Am and they differ in where the
aggregation takes place.

• Aggregation of individual judgments (AIJ): MatricesA1, . . . ,Am can be aggregated
into a single pairwise comparison matrix, AG = (aGij), and then the priority vector
be calculated from AG with any of the methods described in §2.1. In this case the
aggregation happens before the elicitation of the priorities

• Aggregation of individual priorities (AIP): Priority vectors w1, . . . ,wm can be de-
rived from the original set of matrices. These vectors are then aggregated into wG.
In this case, the aggregation happens after the derivation of the priority vectors.

The following scheme shall clarify the difference between AIJ and AIP. Also, it should
be evident that, either way, going from a set of pairwise comparison matrices to a single
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priority vector entails a double process of aggregation.

A1, . . . ,Am
§2.1

//

AIJ
��

w1, . . . ,wm
AIP

// wG

AG

§2.1
��

wG

(3.7)

Obviously, the crucial point is that of finding a suitable aggregation function. For the
aggregation of individual judgments (AIJ), the reader can check that a basic function
like the arithmetic mean fails since the resulting matrix AG would not be reciprocal.
Aczel and Saaty [1] and Saaty and Alsina [110] proposed a set of reasonable properties
for the aggregation of preferences and, by using functional analysis, proved that in
this context the only meaningful and non-trivial aggregation method is the weighted
geometric mean. Namely, entries of the group matrix AG = (aGij)n×n are obtained using
the following parametric formula,

aGij =
m∏

h=1

a
(h)
ij

λh

with λh > 0 ∀h and λ1 + · · · + λm = 1. The most common interpretation of a given λh

is that it should be proportional to the importance of the hth decision maker. When
λh = 1/m ∀h then all the decision makers have the same importance. Conversely, if
λh > λk, then the relative importance of the hth decision maker is greater than that of
the kth.

Example 15. Consider the very simple case of two decision makers with preferences
expressed as

A1 =




1 2 1/2
1/2 1 3
2 1/3 1


 A2 =




1 7 2
1/7 1 1/4
1/2 4 1


 (3.8)

and suppose that the first decision maker should be twice as influential as the second.
This suggests the use of λ1 = 2/3 and λ2 = 1/3. Hence, the group matrix computed with
AIJ is

AG =




1 2
2

37
1

3 (1/2)
2

32
1

3

(1/2)
2

31/7
1

3 1 3
2

3 (1/4)
1

3

2
2

3 (1/2)
1

3 (1/3)
2

34
1

3 1


 ≈




1 3.04 0.79
0.22 1 1.31
1.26 0.76 1


 ,

from which a group priority vector be easily derived.

If we turn our attention to the aggregation of priorities (AIP), two formulas are
accepted, the weighted geometric mean and the weighted arithmetic mean,

wG
i =

(
m∏

h=1

w
(h)
i

λi

)
, wG

i =

(
m∑

h=1

λiw
(h)
i

)
.
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These two formulas clearly lead to different priority vectors, but they are both accepted
in the literature, perhaps with a slight preference for the geometric mean [17].

Example 16. Consider the two matrices in (3.8) and their priority vectors

w1 ≈ (0.331313, 0.379259, 0.289428)T

w2 ≈ (0.602629, 0.082342, 0.315029)T

obtained with the eigenvector method (but we could have used any other method). At
this point the geometric mean aggregation can be applied component-wise to w1 and w2

to estimate the group priority vector

wG =



0.331313

2

30.602629
1

3

0.379259
2

30.082342
1

3

0.289428
2

30.315029
1

3


 ≈



0.404429
0.227945
0.297722


 .

It is noteworthy that, when the geometric mean method is used to derive the priorities
and the geometric mean is used to aggregate judgments, the diagram (3.7) becomes
commutative, as depicted in (3.9), and thus using AIP or AIJ makes no difference.

A1, . . . ,Am
§2.1

//

AIJ
��

w1, . . . ,wm

AIP
��

AG §2.1
// wG

(3.9)

An interesting question could then refer to how much difference there is between weight
vectors wG when the geometric mean method is not used, and perhaps the eigenvector
method is employed. According to a recent study [17], in these cases, the differences
between vectors are often negligible.

Compatibility index

Very often, it is desirable that a sufficient level of consensus is reached, before opinions of
different experts are aggregated. Namely, in many procedures different decision makers
are encouraged to discuss, clarify issues and make their opinions converge towards a
consensual solution. Therefore, it is important to define an index of similarity between
opinions of decision makers. One of these indices was defined by Saaty [109] and goes
under the name of compatibility index. Recall that, given two matrices of the same order
A = (aij)n×n and B = (bij)n×n, their Hadamard product A ◦B is defined as the entry-
wise multiplication, i.e. A ◦B = (aij · bij)n×n. At this point the compatibility index of
two pairwise comparison matrices of order n was defined in a matrix form as

comp(A,B) =
1

n2
1T
(
A ◦BT

)
1,

where 1 = (1, . . . , 1)T . Note that it can be rewritten as

comp(A,B) =
1

n2

n∑

i=1

n∑

j=1

(aij · bji).
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Example 17. For illustrative simplicity, let us consider two matrices differing only for
one entry and its reciprocal,

A =




1 2 3
1/2 1 5
1/3 1/5 1


 B =




1 2 3
1/2 1 2
1/3 1/2 1


 .

By using the definition of compatibility index we obtain

comp(A,B) =
1

n2
(1, 1, 1)




1 2 3
1/2 1 5
1/3 1/5 1


 ◦



1 1/2 1/3
2 1 1/2
3 2 1





1
1
1


 .

Proceeding by solving the Hadamard product,

comp(A,B) =
1

n2
(1, 1, 1)



1 1 1
1 1 5/2
1 2/5 1




︸ ︷︷ ︸
A◦BT



1
1
1


 .

At this point the remaining simplifies to taking the arithmetic mean of all the entries of
A ◦BT , which returns comp(A,B) = 99/90 = 1.1.

The example shows that the minimum value attained by the compatibility index
is 1 and it represents perfect consensus. Additionally, it was proven by Saaty (see
Theorem 1 in [109]) that there is a connection between this metric and the method of
the eigenvector. Considering W the matrix constructed by using the priority vector of A
obtained by using the eigenvector method, then comp(A,W) = λmax/n. In this sense,
this quantification of consensus results appealing to those who prefer the eigenvector
method. It goes without saying that many other metrics, e.g. matrix norms of (A−B),
can be used to estimate the distances between preferences of experts.

3.2.1. Integrated methods ⋆

More models have been built to deal with many relaxations at once. These mathematical
models can be called integrated, in the sense that they incorporate different purposes
in the same model. Many times, integrated models can be formulated in very simple
forms1 and here we can even make up one of them for the purpose of the exposition.
In this case we are interested to derive the priority vector from a set of incomplete
pairwise comparison matrices Ȧ1, . . . , Ȧm. Hence, two problems, the incompleteness of
preferences and the multiplicity of decision makers, can be accommodated in one single

1However, it is the opinion of the author of this manuscript that recently, in several papers, an apparent
effort has been made to complicate things which could have been left simple.
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optimization problem as, for example, the following

minimize
(wG

1
,...,wG

n )

n∑

i=1

n∑

j=1

m∑

h=1

δ
(h)
ij

(
log ȧ

(h)
ij + logwG

j − logwG
i

)2

subject to
n∑

i=1

wG
i = 1,

(3.10)

with

δ
(h)
ij =

{
1, if ȧ

(h)
ij is given

0, if ȧ
(h)
ij is missing

Note that the constrained optimization problem (3.10) aims at finding the closest (using
a logarithmic metric) possible matrix (wG

i /w
G
j )n×n to the preferences expressed by the

decision makers and the variables δ
(h)
ij ∈ {0, 1} make all the terms containing a missing

comparison vanish.

Example 18. Suppose that three decision makers, which could be the three members of
the family of the initial example, express their preferences on three alternatives in the
form of the following incomplete pairwise comparison matrices,

Ȧ1 =




1 2 ȧ
(1)
13

1/2 1 3

ȧ
(1)
31 1/3 1


 Ȧ2 =




1 ȧ
(2)
12 1/2

ȧ
(2)
21 1 3
2 1/3 1


 Ȧ3 =




1 ȧ
(3)
12 ȧ

(3)
13

ȧ
(3)
21 1 5

ȧ
(3)
31 1/5 1


 .

Then, solving the optimization problem (3.10), one obtains

wG = (0.312391, 0487379, 0.20023)T .

Surely the reader can imagine more integrated models and the next section, on exten-
sions of the AHP, will hopefully provide more food for thought also under this lens.

45



4. Extensions

In this chapter we shall proceed and analyze further extensions for pairwise comparison
matrices. The common denominator of the following extensions is that they all involve
the domain of representation of the pairwise comparisons aij, that is the set of possible
values attained by aij.

4.1. Equivalent representations

So far we have expressed pairwise comparisons using the so-called multiplicative scale,
i.e. the judgments have been expressed by means of positive real numbers, aij > 0 ∀i, j.
The multiplicative scale is often taken from granted, but here we shall keep our minds
open and observe that this should not be the case. Let us follow the tradition and
highlight the assumption which will be relaxed in this section.

A single decision maker is perfectly rational and can pre-
cisely express his preferences on all pairs of independent
alternatives and criteria using positive real numbers .

Alternative numerical representations have been proposed to model pairwise compar-
isons. The most popular and studied are the additive representation and the one based
on reciprocal relations. In this section we shall discuss these two, see that concepts as
reciprocity and consistency can be similarly replicated in these other two frameworks,
and finally suggest that there is a deeper connection among these representations which
can be formalized by using abstract algebra.

4.1.1. Additive pairwise comparison matrices

The so-called additive representation of preferences by means of additive pairwise com-
parison matrices was well-presented by Barzilai [9] and has been used in methods alterna-
tive, yet very similar, to the AHP such as the Simple Multi-Attribute Rating Technique
(SMART) [86] and the Ratio Estimations in Magnitudes or deci-Bells to Rate Alter-
natives which are Non-Dominated Technique (REMBRANDT) [7, 93]. The domain of
representation of preferences is the real line, indifference is represented by 0 and, if we
call P = (pij)n×n the additive pairwise comparison matrix containing the preferences in
this form, then the condition of reciprocity becomes pij + pji = 0 ∀i, j, whence the name
‘additive’. The condition of consistency becomes

pik = pij + pjk ∀i, j, k. (4.1)
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If and only if a matrix is consistent, then there exists a priority vector u = (u1, . . . , un)
T

such that pij = ui − uj ∀i, j. One natural question regards the relation between pair-
wise comparison matrices and their additive representations. Namely, is there a way
to associate a pairwise comparison matrix to its additive version and vice versa? A
minimum requirement is that this transformation could map consistent pairwise com-
parison matrices into their consistent counterparts. The answer is positive and any
logarithmic function would make it. For instance, using the natural logarithm, given a
pairwise comparison matrix A, we can obtain its additive representation P = (pij)n×n

with pij = ln aij. Conversely, to go back to the multiplicative representation one can use
its inverse, the exponential transformation aij = epij .

Example 19. Consider the consistent pairwise comparison matrix

A =




1 2 8
1/2 1 4
1/8 1/4 1


 . (4.2)

Using the logarithm in base 2 one obtains the following skew-symmetric matrix

P =




log2 1 log2 2 log2 8
log2 1/2 log2 1 log2 4
log2 1/8 log2 1/4 log2 1


 ≈




0 1 3
−1 0 2
−3 −2 0


 ,

for which the additive consistency condition (4.1) holds, e.g. 1 + 2 = 3. Moreover, one
can check that the priority vector associated with P is

u = (2, 1,−1)T .

Problem 8. Can you find a way to derive the vector u from a consistent additive
pairwise comparison matrix P?

One convenient fact about this representation is that, fixed a value for n, the set of all
additive pairwise comparison matricesP of order n is a subspace of the linear space Rn×n.
Note that also the set of consistent additive pairwise comparison matrices is a subspace
of Rn×n [81]. Thus, the possible loss of results that we get from giving up working with
positive matrices is here compensated by the gain of the suite of tools from linear algebra.
To explain it with an example, remember that the inconsistency index CI for pairwise
comparison matrices was based on some results on positive square matrices (the fact
that λmax of A is always a real number) and therefore they are not directly replicable for
additive pairwise comparison matrices. On the other hand, additive pairwise comparison
matrices P form linear spaces, which allows us to draw from linear algebra to obtain
original results. The interested reader might want to see, for instance, the inconsistency
index defined by Barzilai [9] as it relies on considerations stemming from linear algebra.
The priority vector u has a different interpretation than w. In u the information is
captured by the differences (ui − uj) between priorities and not their ratios. Unlike for
the components of w, the ratio between ui and uj has no meaning. Consider that some
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components ui can be negative too.
One last remark regards the apparent similarity of this approach to the one with pairwise
comparison matrices. In a consistent pairwise comparison matrix each column is equal
to any other column multiplied times a suitable scalar. In the additive approach each
column is equal to any other plus a suitable scalar. The same reasoning affects also
the priority vectors. Priority vectors w of consistent pairwise comparison matrices are
unique up to multiplication, whereas vectors u are unique, but up to addition.

4.1.2. Reciprocal relations

Another prominent representation of preferences is based on reciprocal relations [44],
often called fuzzy preference relations [69] in the fuzzy sets literature. The notion of
reciprocal relation became popular in the framework of fuzzy sets, but it can be ver-
ified that its inception dates back, at least, to the study by Luce and Suppes [88] on
probabilistic preference relations.
A reciprocal relation can be represented by a matrix R = (rij)n×n with rij ∈]0, 1[

satisfying the reciprocity condition rij + rji = 1 and with the indifference represented by
the value 0.5. The consistency condition for reciprocal relations is

rik
rki

=
rij
rji

rjk
rkj

∀i, j, k. (4.3)

Most of the references to this condition refer to Tanino [129] but the very same condition
was already used by Luce and Suppes [88] and Shimura [123]. Furthermore, to make it
more homogeneous with respect to the conditions of consistency for pairwise comparison
matrices and additive pairwise comparison matrices, Chiclana et al. [38] showed that
(4.3) can be equivalently written as

rik =
rijrjk

rijrjk + (1− rij)(1− rjk)
∀i, j, k. (4.4)

If and only if this consistency condition is satisfied, then there exists a weight vector w
such that rij = wi/(wi + wj). The problem of finding the weight vector arises also for
reciprocal relations and even in this environment many methods have been proposed.
Among them, the most straightforward is probably the following,

wi =

(
n∏

j=1

rij
1− rij

) 1

n

,

which was proven [51] to be the counterpart of the geometric mean method for pairwise
comparison matrices. Similarly to what was established for additive pairwise comparison
matrices, pairwise comparison matrices can be transformed into reciprocal relations by
means of the following function

rij =
aij

1 + aij
, (4.5)

and its inverse aij = rij/rji can be used to transform reciprocal relations to pairwise
comparison matrices.
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Example 20. Consider the consistent pairwise comparison matrix A in (4.2). Using
the transformation (4.5) one obtains

R ≈



1/2 2/3 8/9
1/3 1/2 4/5
1/9 1/5 1/2


 ,

for which the consistency condition (4.4) holds (check!). Moreover, one can check that
the priority vector associated with R is w = (8/13, 4/13, 1/13)T and corresponds to the
vector that would have been obtained from A.

The reader should be aware that another type of consistency condition, called additive
consistency [129], for reciprocal relations was proposed and later developed, but we
shall not dwell on it in this booklet. The reader can refer to [51] for an overview of
transformations between pairwise comparison matrices and reciprocal relations and a
method to derive the priority vector from these latter, and to Xu [135] for a survey
which elaborates on different representations of pairwise preferences. Table 4.1 draws
a parallel and summarizes the different representations of preferences and their main
characteristics.

Multiplicative Additive Reciprocal

Domain of represen-
tation

R> R ]0, 1[

Reciprocity condi-
tion

aij = 1/aji pij = −pji rij = 1− rji

Value for indifference
between alternatives

1 0 0.5

Consistency condi-
tion

aik = aijajk pik = pij + pjk rik =
rijrjk

rijrjk+(1−rij)(1−rjk)

Weight vector char-
acterization

aij =
wi

wj
pij = ui − uj rij =

wi

wi+wj

Table 4.1.: Representations of pairwise preferences and their properties.

The transformations between different representations are instead depicted in Figure
4.1.
These three representations of preferences have different origins, but, if we look back-

wards, their similarities were already visible years ago. Consider, for example, that the
problem of inconsistency and intransitivity, which can occur in all three representations,
was in fact considered (and treated similarly) in each of them. As Gass [61] noted,
Fishburn [56], whose skew symmetric representation of preferences is the progenitor of
additive pairwise comparison matrices, wrote:

Transitivity is obviously a great practical convenience and a nice thing to
have for mathematical purposes, but long ago this author ceased to under-
stand why it should be a cornerstone of normative decision theory.

49



r
ij =

a
ij

1
+
a
ij

a
ij =

r
ij

1
−

r
ij

P

p i
j
=
lo
g b
a i
j

a i
j
=
b
p i

j

A

R

Figure 4.1.: Transformations between different representations of valued preferences.

Even Luce and Raiffa [87] whose work can be seen as an inception of reciprocal relations,
wrote:

No matter how intransitivities arise, we must recognize that they exist, and
we can take a little comfort in the thought that they are an anathema to
most of what constitutes theory in the behavioral sciences today.

The same view was also shared by Saaty who, already in his seminal paper on the AHP
[101], wrote:

As a realistic representation of the situation in preference comparisons, we
wish to account for inconsistency in judgments because, despite their best
efforts, people’s feelings and preferences remain inconsistent and intransitive.

4.1.3. Group isomorphisms between equivalent representations ⋆

It is apparent that these three representations of preferences are very similar and we can
shift from one approach to another, but to what extent are they interchangeable? The
non-trivial, yet elegant answer, is to the extent to which the domains of representations of
preferences, together with their conditions of consistency are isomorphic groups. Recall
that, in group theory, a group is a set S equipped with a binary operator ∗ : S×S → S
such that

• the set S is closed under the operator ∗, i.e. a ∗ b ∈ S ∀a, b ∈ S

• the operator ∗ is associative, i.e. a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀a, b, c ∈ S

• there exists an identity element e such that s ∗ e = s ∀s ∈ S

• for each s ∈ S there exists an inverse element s−1 ∈ S such that s ∗ s−1 = e.
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A group is represented by a pair (S, ∗) where the first component is the set and the
second is the operator. Two groups (S, ∗) and (Q,⊙) are group isomorphic if and only
if there exists a bijection (group isomorphism) f : S → Q such that, for all x, y ∈ S, it
is

f(x) ∗ f(y) = f(x⊙ y) .

Now, if we look at Table 4.1 we shall check that each domain of representation together
with its consistency operation is a group where the identity element e is the value ex-
pressing indifference between alternatives and where the inverse element is determined
by means of the reciprocity condition. Moreover, it can be checked that they are iso-
morphic groups, the isomorphisms being the functions in Figure 4.1.

Example 21. The logarithm relates (R>, ·) with (R,+) and is perhaps the most famous
group isomorphism. In fact, from basics of calculus we know the rule

log(x) + log(y) = log(x · y) ∀x, y > 0 ,

which exposes the relation between pairwise comparison matrices and additive pairwise
comparison matrices.

The reader familiar with group theory must have understood the strength and the
implication of group isomorphism which, in words, was described by Fraleigh in his
textbook [58] as “the concept of two systems being structurally identical, that is, one
being just like the other except for names”. The existence of group isomorphisms be-
tween different representations of preference is not a mere theoretical exercise but a
precious result as it helps to naturally extend concepts from one representation to an-
other one. For a deep and theoretical analysis of the group isomorphisms between these
representations of preferences the reader might find the papers by Cavallo and D’Apuzzo
[35, 36] enlightening.

4.2. Interval AHP

In §2.2.5 the reader was already presented with a pairwise comparison matrix whose
entries were intervals instead of real numbers. In that case the interval-valued matrix
was functional in the definition of an inconsistency index, but it is natural to imagine
that a decision maker could express his judgments by means of intervals. This is natural
to cope with uncertainty and imprecision. In this and in the next section we shall dwell
on representations of preferences when the decision maker cannot state them precisely
and with absolute certainty and see what the literature has to offer.

A single decision maker is perfectly rational and can pre-

cisely express his preferences on all pairs of independent
alternatives and criteria using positive real numbers.

51



This section shall introduce the principles behind what probably is the most widely
known extension of the AHP with intervals. Salo and Hämäläinen considered interval
judgments āij = [aLij , a

R
ij] as bounds for the values of the ‘true’ weights, i.e. the interval-

valued comparison āij = [aLij, a
R
ij ], entails that aLij ≤ wi/wj ≤ aRij. At this point, it

is important to know what values different weights can attain, given the constraints
imposed by the interval pairwise comparisons. What is, for instance, the maximum
possible value of wi given an interval-valued matrix Ā? To solve this problem, we first
need to define the set of all normalized priority vectors with n components as

Wn =

{
(w1, . . . , wn)

T

∣∣∣∣
n∑

i=1

wi = 1, wi > 0 ∀i
}
,

Such a set is depicted in Figure 4.2 for the case with n = 3. Furthermore, the set of

w1

w2

w3

W3

Figure 4.2.: Graphical representation of W3

feasible weight vectors according to the interval-valued pairwise comparison matrix Ā is

SĀ =

{
(w1, . . . , wn)

T

∣∣∣∣a
L
ij ≤

wi

wj

≤ aRij ∀i < j

}

As showed in Figure 4.3, adding the constraints characterizing SĀ toW obviously reduces
the set of feasible solutions. It follows that the ‘true’ normalized weight vector must be
an element of the set Wn∩SĀ, as pictured in Figure 4.4. Then it is possible to construct
an interval-valued vector w̄ = (w̄1, . . . , w̄n)

T with w̄i = [wL
i , w

R
i ] where wL

i and wR
i are

the smallest and the greatest possible values for wi respectively. Hence, they can be
computed as follows,

wL
i = minimize

w∈Wn∩SĀ

wi i = 1, . . . , n, (4.6)

wR
i = maximize

w∈Wn∩SĀ

wi i = 1, . . . , n. (4.7)
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w1

w2
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w1

w2
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R
ij

(a) Application of the constraint w1/w2 ≤ aRij

w1

w2

w3

w1

w2

= a
R
ij

w1

w2

= a
L
ij

(b) Adding the constraint w1/w2 ≥ aLij

Figure 4.3.: The sequential application of the constraints reduces the region of feasible
solutions

Example 22. Considering the matrix

Ā =




1 [7, 20] [7/5, 4]
[1/20, 1/7] 1 [1/5, 4/7]
[1/4, 5/7] [7/4, 5] 1


 (4.8)

already used in (2.16). Then the weight wR
1 is the optimal value of the following opti-

mization problem.

maximize
(w1,w2,w3)

w1

subject to 7 ≤ w1/w2 ≤ 20,

7/5 ≤ w1/w3 ≤ 4,

1/5 ≤ w2/w3 ≤ 4/7,





⇒ (w1, w2, w3)
T ∈ SĀ

w1 + w2 + w3 = 1,

w1, w2, w3 > 0

}
⇒ (w1, w2, w3)

T ∈ W3

(4.9)

By proceeding in this way, we ask what the greatest possible value achievable by w1 is,
when (w1, w2, w3) ∈ Wn ∩ SĀ. The interval-valued priority vector derivable from Ā in
(2.16) is

w̄ =



[0.54, 0.77]
[0.04, 0.10]
[0.18, 0.38]


 (4.10)

In the example, the vector (4.10) provided enough information and we knew that
the best alternative was x1 since its weight cannot be smaller than the weights of the

53



w1

w2

w3

W3 ∩ SĀ

Figure 4.4.: The set W3 ∩ SĀ.

other alternatives. However, in other cases, when intervals overlap, selection of the best
alternative is non-trivial. To solve this problem one can use different strategies. Firstly,
the decision maker can be asked to refine his judgments until the best alternative is
clearly identified. Secondly, when this is not a viable solution, some methods for ranking
intervals can be employed. Among such methods, there are the pairwise dominance [121]
and the methods for ranking fuzzy quantities [133].
In this section we described a method for deriving weights which can be used on a
single interval-valued pairwise comparison matrix and not on a whole hierarchy. The
extension to the whole hierarchy is methodologically straightforward but quite lengthy
to be explained, and therefore the reader can refer to the original contribution [121].

Euclidean center of Wn ∩ SĀ

The problem of ranking interval weights and their hierarchical composition can be solved
by means of a shortcut, which is used to derive real valued weights from interval valued
comparison matrices. The following is due to Arbel and Vargas [6]. Their solution is
based on the fact that the set of constraints characterizing Wn ∩SĀ can be equivalently
stated as a set of linear constraints since those containing ratios can be splitted into two
linear constraints. Considering for instance the first constraint in (4.9), one can see that

7 ≤ w1/w2 ≤ 20 ⇔ 7w2 ≤ w1 and w2 ≤ 20w1

⇔ 7w2 − w1 ≤ 0 and w2 − 20w1 ≤ 0.

Hence, since Wn ∩ SĀ is a bounded set defined by linear constraints it is a polytope.
Arbel and Vargas proposed to take the real valued weights w1, . . . , wn as the coordinates
of the Euclidean center of the polyhedron Wn ∩ SĀ. In words, the Euclidean center
of a polytope is the center of the maximum radius ball which can be inscribed in the
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polytope and it can be found by solving a linear optimization problem 1. Figure 4.5
reports a graphical example of the Euclidean center of a 2-dimensional polytope, i.e. a
polygon.

Polyhedron

Euclidean center

Ball

Figure 4.5.: Graphical example of the Euclidean center of a polygon.

Let us see how to write down a linear optimization problem to find the ball with the
largest radius r in Wn ∩ SĀ. Since Wn ∩ SĀ is a polytope, it can be defined by a set
of inequalities aT

i w ≤ bi. The problem is how to model the constraints with respect to
the center of the ball. Consider a single constraint. A ball of radius r pointed in w,
B(r,w), satisfies the ith inequality, if aT

i y ≤ bi ∀y ∈ B(r,w). The trick is to write the
inequality in such a way that we consider a point y∗ which is the point in B(r,w) with
the greatest value when multiplied by aT

i , i.e. a
T
i y

∗ ≥ aT
i y ∀y ∈ B(r,w). This point is

the point y∗ = w + r ai

‖ai‖
(convince yourself graphically in 2-dimensions) and therefore

the inequality can be written as

aT
i

(
w + r

ai

‖ai‖

)

︸ ︷︷ ︸
y∗

≤ bi .

Hence, the optimization problem becomes

maximize
r,w

r

subject to aT
i

(
w + r

ai

‖ai‖

)
≤ bi i = 1 . . . , N

(4.11)

where N is the number of inequalities used to define P . The optimization problem
(4.11) can be seen as max-min optimization problem too. In fact, the variable r, which
is maximized, eventually is the distance between the center of the ball w and the closest
(least distant) face of the polyhedron W ∩ SĀ.

1Note that in some other sources it is referred to as the Chebychev center. See, for instance, the book
by Boyd and Vandenberghe [21].
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Example 23. For sake of homogeneity we still consider the matrix Ā from (2.16). Then
we have

maximize
r,w

r

subject to (−1, 7, 0)

(
w + r

(−1, 7, 0)T

5
√
2

)
≤ 0,

(1, 20, 0)

(
w + r

(1, 20, 0)T√
401

)
≤ 0,

(−1, 0, 7/5)

(
w + r

(−1, 0, 7/5)T√
74/5

)
≤ 0,

(1, 0,−4)

(
w + r

(1, 0,−4)T√
17

)
≤ 0,

(0,−1, 1/5)

(
w + r

(0,−1, 1/5)T√
26/5

)
≤ 0,

(0, 1,−4/7)

(
w + r

(0, 1,−4/7)T√
65/7

)
≤ 0,





⇒ (w1, w2, w3)
T ∈ SĀ

w1 + w2 + w3 = 1,

w1, w2, w3 > 0

}
⇒ (w1, w2, w3)

T ∈ W3

(4.12)

Note that the constraints defining W3 are left unchanged: the constraint w1 + w2 +
w3 = 1 is an equality and therefore it must hold exactly, and the positivity constraints
w1, w2, w3 > 0 could even be deleted since they are made redundant by those defining SĀ.
The vector maximizing r in the optimization problem is w ≈ (0.72, 0.07, 0.21)T .

This approach to interval judgments, which considers intervals as implicitly defining
bounds for weights, was initially proposed by Arbel [5]. Conversely, for a probabilistic
approach to interval pairwise comparisons the reader can refer to Saaty and Vargas
[119].

4.3. Fuzzy AHP

The fuzzy AHP is an even more popular methodology to account for uncertainty. In
the fuzzy AHP entries of the pairwise comparison matrices are expressed in the form of
fuzzy numbers. A function µ : R → [0, 1] is a fuzzy number if and only if there exists
an x0 such that µ(x0) = 1 and all the upper level sets of µ are convex, i.e. the set
{x ∈ R|µ(x) ≥ α} is convex for all 0 < α ≤ 1. Figure 4.6 reports some instances of
fuzzy numbers. Also a real interval can be treated as a fuzzy number; considering the
interval [a, b] ⊂ R, then the value of its membership function is 1 for all x ∈ [a, b] and
0 otherwise. The fuzzy AHP draws from the theory of fuzzy sets initiated by Zadeh
[137] and described, for instance, in the excellent monographs by Klir and Yuan [79]
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(a) Cuspidal fuzzy number (b) Bell shaped fuzzy number

(c) Piecewise linear fuzzy number (d) Trapezoidal fuzzy number

Figure 4.6.: Four examples of fuzzy numbers.

and Dubois and Prade [47]. Even so, to keep the description short and self-contained
we shall here skip all the unnecessary details on fuzzy sets theory and go straight to the
point.

4.3.1. Fuzzy AHP with triangular fuzzy numbers

One of the most used shapes of fuzzy numbers for modeling preferences, and more
generally to represent uncertain quantities, is triangular. A triangular fuzzy number is
defined by the following function

µ(x) =





0, x ≤ aL

(x− a)/(b− a), aL ≤ x ≤ aC

(c− x)/(c− b), aC ≤ x ≤ aR

0, x ≥ aR

with aL ≤ aC ≤ aR. Observe that there exists a one-to-one correspondence between
triangular fuzzy numbers and triples ã = (aL, aC , aR) with aL ≤ aC ≤ aR. An example
of triangular fuzzy number is reported in Figure 4.7. To many, the shape of a triangu-
lar fuzzy number might resemble a probability distribution, just with the normalization
such that the area subtended by the curve is equal to one replaced by the condition
supx∈R µ(x) = 1. True, a fuzzy number can be seen as a distribution indicating the
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Figure 4.7.: Triangular fuzzy number ã = (2, 4, 8)

likelihood of events, but within the framework of possibility theory [139], and not prob-
ability. According to Klir [77] the value 1 − µ(x) can be interpreted as the degree of
surprise to discover that x is the ‘true’ value of the variable under observation. Leav-
ing aside the technicalities of this theory, for which the reader can be referred to the
monograph by Klir [78], for practical purposes it is common to interpret the three values
aL, aC , aR characterizing a triangular fuzzy number as the smallest possible, the most
likely, and the greatest possible values for the uncertain quantity under study. The use of
triangular shapes for fuzzy numbers has been advocated by many, for instance Pedrycz
[94], and a whole arithmetic has been developed to perform operations on fuzzy sets and
fuzzy numbers in particular. In one of the first papers on fuzzy AHP, van Laarhoven
and Pedrycz [82] defined the operations of addition (⊕), multiplication (⊗), logarithm

(l̃n), inversion, and power as follows, respectively:

ã⊕ b̃ =(aL + bL, aC + bC , aR + bR)

ã⊗ b̃ ≈(aL · bL, aC · bC , aR · aR)
l̃n(aL, aC , aR) ≈(lnaL, lnaC , lnaR)

ã−1 ≈
(

1

aR
,
1

aC
,
1

aL

)

e(a
L,aC ,aR) =(ea

L

, ea
C

, ea
R

)

(4.13)

The primal issue with a fuzzy pairwise comparison matrix is that of deriving the
priority vector, and one straightforward approach could be that of using these operations
on matrices with triangular fuzzy entries, i.e. Ã = (ãij)n×n = (aLij, a

C
ij , a

R
ij), in the

same way their corresponding operations were used with pairwise comparison matrices.
Hereafter, we shall focus on the problem of finding a suitable priority vector for a fuzzy
pairwise comparison matrix. To this scope, we should distinguish a priori between two
types of methods:

• Methods to derive a vector of fuzzy weights.

• Methods to derive a vector of weights expressed as real numbers.
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We shall here dwell a bit more on these two methodologies by explaining how they have
been treated in the literature.

Obtaining fuzzy weights

One straightforward solution to this problem was recently suggested by Ramı́k and
Korviny [99]. According to this method, the components of the priority vector are
fuzzy numbers and can be estimated by an extension of the geometric mean method.
Namely, the priority vector appears as w̃ = (w̃1, . . . , w̃n)

T , where the components
w̃i = (wL

i , w
C
i , w

R
i ) themselves are triangular fuzzy numbers. Following this method,

the priority vector with triangular fuzzy components is estimated as the minimizer of
the following constrained optimization problem.

minimize
(w̃1,...,w̃n)

n∑

i=1

n∑

j=1

((
ln aLij − lnwL

i + lnwL
j

)2
+
(
ln aCij − lnwC

i + lnwC
j

)2
+

(
ln aRij − lnwR

i + lnwR
j

)2)

subject to
n∑

i=1

wC
i = 1,

wU
i ≥ wC

i ≥ wL
i > 0 ∀i.

(4.14)

Ramı́k and Korviny proved (see Theorem 1 in their paper [99]) that the analytic solution
of this optimization problem is

wL
k = cmin ·

(∏n
j=1 a

L
ij

) 1

n

∑n
i=1

(∏n
j=1 a

C
ij

) 1

n

∀k, (4.15)

wC
k =

(∏n
j=1 a

C
ij

) 1

n

∑n
i=1

(∏n
j=1 a

C
ij

) 1

n

∀k, (4.16)

wR
k = cmax ·

(∏n
j=1 a

R
ij

) 1

n

∑n
i=1

(∏n
j=1 a

C
ij

) 1

n

∀k, (4.17)

where

cmin = min
i=1,...,n





(∏n
j=1 a

C
ij

) 1

n

(∏n
j=1 a

L
ij

) 1

n





cmax = max
i=1,...,n





(∏n
j=1 a

C
ij

) 1

n

(∏n
j=1 a

U
ij

) 1

n




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Example 24. Consider the following matrix

Ã = (ãij)3×3 =




(1, 1, 1) (1/2, 2, 3) (1, 1, 2)
(1/3, 1/2, 2) (1, 1, 1) (1/3, 2, 4)
(1/2, 1, 1) (1/4, 2, 3) (1, 1, 1)


 (4.18)

Then, the weight vector obtained by using (4.15)–(4.17) is

w̃ = (w̃1, w̃2, w̃3)
T =



(0.412599, 0.412599, 0.412599)
(0.249914, 0.32748, 0.454124)
(0.259921, 0.259921, 0.32748)


 (4.19)

For a critical analysis of this method and a broader overview on the use of fuzzy sets
in decision making, the interested reader can refer to the recent paper by Dubois [45].
One method was proposed by van Laarhoven and Pedrycz [82] themselves, but a lot

has happened since then and their proposal has been refined a number of times. Here we
should present one of the most recent refinement, which can be seen as a fuzzy extension
of the geometric mean method in the optimization form that we encountered in (2.3)
and seemingly resembles the optimization problem (4.14). Note that, again, the solution
is itself a priority vector whose components are triangular fuzzy numbers and is here
denoted as w̃ = (w̃1, . . . , w̃n)

T with w̃i = (wL
i , w

C
i , w

R
i ).

minimize
(w̃1,...,w̃n)

n∑

i=1

n∑

j=1,j 6=i

((
ln aLij − lnwL

i + lnwL
j

)2
+
(
ln aCij − lnwC

i + lnwC
j

)2
+

(
ln aRij − lnwR

i + lnwR
j

)2)

subject to wL
i +

n∑

j=1,j 6=i

wU
j ≥ 1, ∀i

wU
i +

n∑

j=1,j 6=i

wL
j ≤ 1, ∀i

n∑

i=1

wC
i = 1,

n∑

i=1

(
wL

i + wR
i

)
= 2,

wU
i ≥ wC

i ≥ wL
i > 0 ∀i.

(4.20)

Since all these methods return a vector w̃ whose components are fuzzy numbers, the
question on how to select the best alternative remains. In fact, if there exists a universally
accepted order on the set R—that is, given two different real numbers we can always say
which one is the greatest—the situation is more ambiguous in the case of fuzzy numbers.
Consider, for instance, the weights in (4.19). If it is intuitive to say that w̃1 is greater
than w̃3, then the situation between w̃1 and w̃2 is much more ambiguous. Which one
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should be considered greater, and which one be the best between x1 and x2? Although
much research has been done on the topic, there is still not a meeting of minds on how
to order fuzzy numbers. The interested reader can refer to Wang and Kerre [133] and
Brunelli and Mezei [30] for an axiomatic and a numerical study of methods for ranking
fuzzy numbers, respectively.

Obtaining a real-valued priority vector

From the literature, it seems that the problem of ranking fuzzy numbers and its ambigu-
ity can be bypassed by using methods which recover real valued priority vectors. There
are few doubts that the most popular method for deriving a real valued priority vector
w for a pairwise comparison matrix with fuzzy entries Ã is the so called extent analysis ,
proposed by Chang [37]. The extent analysis can be described in five algorithmic steps.

1. For each row, calculate its sum s̃i = ãi1 ⊕ · · · ⊕ ãin.

2. Normalize all the s̃i’s in the following way: r̃i = s̃i ⊗ (s̃1 ⊕ · · · ⊕ s̃n)
−1.

3. Calculate the degree of possibility that r̃i be greater than r̃j as follows

Pos
(
r̃i ≥̃ r̃j

)
=





1, if rCi ≥ rCj
rRi −rLj

(rRi −rCi )+(rCj −rLj )
, if rCi < rCj and rLj ≤ rUi

0, otherwise

The second case looks cumbersome but has a simple geometric interpretation: it
is the value of the membership function for which the ‘right leg’ of r̃i and the ‘left
leg’ of r̃j intersect. The concepts is illustrated in Figure 4.8.

Pos
(
r̃i ≥̃ r̃j

)

µ(x)
r̃i r̃j

r
L
i r

C
i r

R
i r

C
jr

L
j r

R
j

x

Figure 4.8.: Assessing the degree of possibility that the fuzzy number r̃i be greater than
r̃j.

4. Generalize the previous step by considering that

Pos
(
r̃i ≥̃ r̃j|j = 1, . . . , n , j 6= i

)
= min

j∈{1,...,n},j 6=i
Pos

(
r̃i ≥̃ r̃j

)
.
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5. The real valued priority vector w is obtained by normalizing the values obtained
in the previous steps:

wi =
Pos

(
r̃i ≥̃ r̃j|j = 1, . . . , n , j 6= i

)

∑n
k=1 Pos

(
r̃i ≥̃ r̃j|j = 1, . . . , n , j 6= k

) .

Let us check the extent analysis method with a numerical example.

Example 25. Consider the matrix Ã in (4.18) as the starting point. Then, the sums
of the fuzzy numbers on the rows are calculated by means of the operation at step 1 and
can be collected in the following vector,



s̃1
s̃2
s̃3


 =




(2.5, 4, 6)
(5/3, 3.5, 7)
(7/4, 4, 5)


 .

To normalize the components of this vector, one calculates (s̃1 ⊕ · · · ⊕ s̃n) =
(
71
12
, 10, 18

)

where 71/12 = 2.5 + 5/3 + 7/4 and uses it to obtain, as described in the step 2,



r̃1
r̃2
r̃3


 =




(0.138889, 0.4, 1.01408)
(0.0925926, 0.35, 1.1831)
(0.0972222, 0.25, 0.84507)




Then we can construct the matrix of possibilities according to step 3

V =




− 1 1
0.954305 − 1
0.824804 0.882695 −


 (4.21)

where each nondiagonal entry is a value Pos
(
r̃i ≥̃ r̃j

)
. Now, considering the algorithmic

steps 4 and 5 together we can obtain the following priority vector,

w =




1
1+0.954305+0.824804

0.954305
1+0.954305+0.824804

0.824804
1+0.954305+0.824804


 =



0.359828
0.343385
0.296787


 .

More on the extent analysis will follow in the next section. For the moment it is
sufficient to observe that, although an algorithm for ranking fuzzy numbers has not
been explicitly mentioned, it has nevertheless been implicitly used. The matrix V in
(4.21) is, de facto, a representation of a fuzzy ordering relation [138] which does induce a
ranking on the fuzzy numbers r̃1, r̃2, r̃3. Hence, we can conclude that, even by using the
extent analysis, the ambiguity inherent to the ranking of fuzzy numbers is not avoided,
but rather swept under the carpet.
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4.3.2. Is the fuzzy AHP valid? ⋆

The question posed in the title of this subsection is as provocative as still standing, and
it has definitely been answered in a negative sense by many. Since the seminal papers by
van Laarhoven and Pedrycz [82] and Buckley [31], the fuzzy AHP has attracted most of
the criticisms directed to the AHP plus a good deal of original others due to the (mis)use
of fuzzy sets.
The first criticism is that the operations for triangular fuzzy numbers commonly used

in the fuzzy AHP, and here reported in (4.13), are only approximations of the correct
operations. The correct operations are defined by means of the extension principle and,
according to these latter, for instance, the product of two triangular fuzzy numbers is not
a triangular fuzzy number, but something nonlinear. Part of the scientific community
accepts the approximations (4.13) as a necessary compromise to mitigate computational
complexity while the other part does not. The reader can refer to Dubois and Prade
[46] and Klir and Yuan [79] for a correct definition of arithmetic operations with fuzzy
sets and fuzzy numbers.
Saaty and Tran [115] criticized the fuzzy AHP by saying that the traditional and real

valued AHP suffices to account for all the imprecision in human judgments. Ramı́k and
Korviny [99] rebutted that the traditional AHP can be seen as a special case of the
fuzzy AHP—and not as a different method—and therefore it is difficult to see how the
fuzzy AHP, which is more general, could perform worse than the AHP, which is the less
general of the two.
A delicate point in the fuzzy AHP is that of ranking the components of the priority

vector, when these are fuzzy numbers. Although it is not a real drawback, the fact that
different ranking methods for fuzzy numbers could give very different results [30] can
be perceived as a lack or robustness of the method, especially because there is not a
prime ranking method. On the other hand, also methods which derive a real valued
priority vector such as the extent analysis are not immune to criticisms. For instance,
the extent analysis was criticized by Wang et al. [134] as, among many criticisms, they
pointed out that the final weights are surely useful to rank alternatives but they cannot
be interpreted as weights in a multiplicative sense. It is sufficient to see that in the
extent analysis some weights can be equal to zero. However, in the case of null weights
this does not mean that one alternative is infinitely better than another.
Recently, Zhü [141] moved some criticisms to the AHP, but it seems that many of

them are pretentious and unsupported and others stem from a very narrow view of the
method, which differs in large part from the more open minded view offered in this
booklet. For instance, one of the criticisms moved by Zhü is that there is not an unique
inconsistency index for fuzzy pairwise comparison matrices. This, clearly, stems from a
vision of the AHP (very much à la Saaty) where, as Zhü [141] admitted, the Consistency
Index CI is considered as the only reasonable consistency index and all others considered
inferior.
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5. Conclusions

As reported by Saaty and Sodenkamp [114], in 2008 Saaty was awarded by the INFORMS
for the inception and development of the AHP. Part of the motivation for the award was
the following:

The AHP has revolutionized how we resolve complex decision problems... the
AHP has been applied worldwide to help decision makers in every conceivable
decision context across both the public and private sectors, with literally
thousands of reported applications.

Moreover, from a survey by Wallenius et al. [132] it seems that the AHP has been
by far the most studied and applied MCDM method, at least judging by the number of
publications. The reader should have noticed that only basic mathematical and technical
knowledge is required to use the AHP. For instance, if we consider that the priority vector
can be derived using the method of the normalized columns, mentioned in §2.1.3, and
consistency can be estimated by using the harmonic consistency index, in §2.2.4, then
one can use the AHP at a basic level by using only elementary operations! Nevertheless,
in spite of this possible simplicity, it is difficult to find an aspect of the AHP, or of
pairwise comparison matrices, which has not been object of heated debates. Many of
these debates are still open and probably will be so for much longer. However, even if
inconclusive, it would be a mistake to regard them as pointless, since they contributed
to create awareness around the AHP. Still, for the same sake of awareness, in this last
part we shall overview some aspects of the AHP which have not been considered in the
exposition.

Analytic Network Process

The observant reader might have also noticed that one of the assumptions has not been
relaxed yet. Let us do it now.

A single decision maker is perfectly rational and can pre-
cisely express his preferences on all pairs of independent
alternatives and criteria using positive real numbers.

It is possible that, in some decisions, two criteria might affect each other. For instance,
considering the selection of a resort for holidays, one can envision that the two criteria
‘cost’ and ‘environment’ are not independent since, probably, ceteris paribus, the resort
in the best environment will also be more expensive. The best-known methodology for
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dealing with interdependencies between parts of the hierarchy is the Analytic Network
Process (ANP), which can be seen as a generalization of the AHP. That is, the AHP
is a special case of the ANP without dependencies. Although more general than the
AHP, the ANP still lacks a fundamental discussion and an axiomatization. Also, a self
contained exposition of the ANP would require the introduction of new concepts, some
of which of difficult digestion for those who are not in the field. For these reason, and
the fear of making a sloppy job and possibly not do justice to the method, we shall here
not dwell on the ANP. The interested reader can refer to a dedicated book by Saaty and
Vargas [120] or, for an easier and more superficial treatment, to the book by Ishizaka
and Nemery [74]. Let us incidentally note that the term Analytic Network Process was
not coined by Saaty but, instead, by Hämäläinen and Seppäläinen [66].

Alternative methods

The AHP is a decision analysis methodology, but it is not the only one. Although
nowadays geographical distinctions are arguably meaningless, for historical reasons, in
decision analysis there has been two schools, the American and the French [54]. Here
we shall touch upon one method of each type.

• Multi-Attribute Value Theory (MAVT) belongs to the so-called American school
of decision analysis [76] and assumes that alternatives are fully described by their
attributes. Then, each attribute state is mapped into a real number, and finally
the numerical expressions of the different attributes are aggregated into a unique
representative value. We shall now change notation and consider x the alternative
and xi as the state of the ith attribute in the alternative x. Consider a car,
represented by the following list of characteristics:

x = (x1, x2, x3) = (blue, 180, 3)

where the attributes are ‘color’, ‘max speed in km/h’ and ‘safety level’, respectively.
Consider Xi as the set of possible states of the ith attribute. Then, according to
value theory, for each attribute, there is a function ui : Xi → [0, 1]. The greater
the value, the greater the satisfaction of the attribute. Given the existence of
these functions, we can suppose that the car represented by x be mapped into the
following vector,

x = (u1(blue), u2(180), u3(3)) = (0.5, 0.7, 0.6) ∈ [0, 1]3.

At this point, the values attained for the attributes, in this case three, are aggre-
gated into a single value by means of a function v : [0, 1]3 → [0, 1] and a single real
number is used to synthesize the value of an alternative. This process is repre-
sented in Figure 5.1. Functions u1, . . . , un, v are defined once for all, and therefore
their application is automatic when new alternatives are considered. The selec-
tion rule is simple: the greater the value, the better the alternative, i.e. with
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v : [0, 1]3 → [0, 1]
v(x)x = (blue, 180, 3)

Figure 5.1.: A list of attribute states x is mapped into an x ∈ [0, 1]3, which, in turn, is
synthesized into v(x).

x = (x1, . . . , xm) and y = (y1, . . . , ym), which are two alternatives described by m
attributes,

x � y ⇔ v(u1(x1), . . . , um(xm)︸ ︷︷ ︸
x

) ≥ v(u1(y1), . . . , um(ym)︸ ︷︷ ︸
y

)

A strength of value theory is its elegance and explanatory power on how decisions
are made. Conversely, practical uses of this theory are limited by the difficulties
in the estimation of the functions u1, . . . , un, v.

• The acronym ELECTRE stands for ELimination Et Choix Traduisant la REalité,
and it is used to denote a family of methods from the French school. Nowa-
days many variants of the original ELECTRE methods exist and are applied to
problems of ranking and also sorting. These methods are based on pairwise com-
parisons between alternatives, and to each comparison degrees of concordance and
discordance are attached. A number of parameters and a non-trivial algorithm are
necessary for the implementation of these methods, whose interpretation, possibly
due to the aforementioned reasons, is not as straightforward as the one of the AHP.

Software

It is difficult to say whether much software appeared thanks to the popularity of the AHP
or the popularity of the AHP is due to the wealth of software. Perhaps both propositions
are to some extent true and the popularity of the method and of its software have gone
arm-in-arm and boosted each other.
The foremost software is called Expert Choice and was first developed by Saaty and

Forman in 1983. Expert Choice adopts Saaty’s approach, according to which the pri-
ority vector is calculated with the eigenvector method and CI is used to estimate the
inconsistency of preferences. Expert Choice was described and discussed by Ishizaka
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and Labib [72]. Expert Choice’s natural evolution and generalization to the ANP is
called SuperDecisions. The name of the software comes from the ‘supermatrix’, which
is a special matrix used in the ANP.
A direct and recent competitor of Expert Choice is MakeItRational, which was described
by Ishizaka and Nemery [74]. One of the characteristics of MakeItRational is its ease of
use, together with a captivating interface.
The software listed so far is not free and the user has to pay for its use. Among the free
available software there is HIerarchical PREference analysis on the World Wide Web
(Web-HIPRE) software which is part of Decisionarium [65], an online platform offering
software for decision-making. Web-HIPRE allows the use of both the original scale of
Saaty and the balanced scale (see §1.3). Two inconsistency indices can be used in Web-
HIPRE: Saaty’s CI and the index CM by Salo and Hämäläinen [122]. Web-HIPRE
was the first online platform for decision making with the AHP and has a module which
supports group decision making.
A comparative study between three software for the AHP was proposed by French and
Xu [59]. Although other software exist, at present there is not an updated and free soft-
ware for the AHP. An auspicable characteristic of such a free software is that it include
different inconsistency indices, prioritization method, and methods to deal with with
incomplete pairwise comparison matrices.

Sensitivity analysis

A module which is included in most AHP software allows for sensitivity analysis. In
mathematical modeling, sensitivity analysis studies how the output of a mathematical
model reacts to variations in the inputs. In the introductory chapter we encountered
a numerical case where three weight vectors rating alternatives with respect to three
criteria were aggregated using the weighs of criteria as factors in a linear combination.

w =



w1

w2

w3


 = ŵ1w

(c) + ŵ2w
(s) + ŵ3w

(e)

=
1

7



4/9
4/9
1/9


+

2

7



6/10
3/10
1/10


+

4

7



1/11
2/11
8/11


 ≈



0.287
0.253
0.460


 .

Now, we can assume that we want to see what happens to the final ranking of alternatives
if we allow the weight of the third criterion to take values in [0, 1] and rescale the weights
of the other two criteria accordingly. In this case, the final rating can be expressed as
follows and it becomes a function of ŵ3,

w =



w1

w2

w3


 =

1

3
(1− ŵ3)



4/9
4/9
1/9


+

2

3
(1− ŵ3)



6/10
3/10
1/10


+ ŵ3



1/11
2/11
8/11


 .

67



For example the weight of the first alternative is

w1 =
74(1− ŵ3)

135
+

ŵ3

11
=

74

135
− 679

1485
ŵ3,

that is, an affine function of the weight of the third criterion ŵ3. The same property
of affinity holds also for w2 and w3 and, when the dimension of the problem allows
it, sensitivity analysis lends itself nicely to graphical interpretations. In this case the
graphical interpretation of w1, w2 and w3 as functions of ŵ3 is in Figure 5.2, which we
should briefly comment.
The original weight assigned to ŵ3 was 4/7 ≈ 0.51. From the picture we can see that, if

Figure 5.2.: Sensitivity analysis.

ŵ3 ≥ 4/7, then the solution is stable and alternative x3 is always the best. Conversely,
if the weight ŵ3 is decreased, then, at some point, alternative x1 will prevail. Sensitivity
analysis is a precious tool for testing the robustness of solutions and their stability with
respect to the inputs, in this case subjective judgments of experts. Moreover, here
we have only presented the most popular way of performing sensitivity analysis, but
it is easy to figure out that, by using the geometric mean method as the prioritization
method, we can make the final ranking depend directly on entries of pairwise comparison
matrices.

Future studies

The AHP is a fundamentally simple method which, in its simplest implementations,
consists of three steps:

1. Problem structuring and definition of the hierarchy

2. Elicitation of pairwise comparisons

3. Derivation of priority vectors and their linear combinations.
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In spite of its ease of interpretation, research has been going on for the last forty and
more years and although many issues are still open, and perhaps are bound to be open for
very long, nowadays it is safe to say that this technology has reached the maturity. We
have seen in this booklet that a wide range of methods have been proposed to perform
tasks within the AHP. Consider, for example, the wide range of methods for estimating
the priority vector or the wealth of the inconsistency indices.
Unlike for some other areas of applied mathematics and mathematical modeling, in the

case of the AHP, more often than not, new methods, indices, and extensions have been
introduced heuristically and without results showing their originality and superiority.
This practice generated an overabundance of material. In the future, it is auspicable
that new numerical and axiomatic studies clarify and polish the state of the art, and
when new methods are introduced, clear evidence on their originality and feasibility be
provided.
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A. Eigenvalues and eigenvectors

The AHP is an important field of application of linear algebra, and especially of its theory
regarding positive matrices. This appendix contains an introduction to eigenvalues and
eigenvectors focused on their relevance for the AHP. At present, there are many ways
to work out the AHP without getting dirty with eigenvalues and eigenvectors. Thus,
in a certain sense knowing about them is superfluous. However, by knowing them the
reader will figure out the connection between AHP and linear algebra and hopefully see
the AHP from a higher observation point.

Definition 1 (Eigenvalues and eigenvectors). Consider an n× n square matrix A and
an n-dimensional vector w. Then, w and λ are an eigenvector and an eigenvalue of A,
respectively, if and only if

Aw = λw. (A.1)

Example 26. Consider the matrix and the vector as follows

A =

(
1 2
1/2 1

)
w =

(
2
1

)
.

Then, one reckons that w is an eigenvector of A for λ = 2. In fact
(

1 2
1/2 1

)(
2
1

)
= 2

(
2
1

)

.

Note that, if w is an eigenvector of A, then all vectors αw for α ∈ R are also
eigenvectors of A, we call this set of vectors the eigenspace of A associated to that
eigenvector (or its respective eigenvalue). Now one natural question arises; how to find
the eigenvalues and the eigenvectors of a given matrix. By considering the identity
matrix I and the null vector 0 = (0, . . . , 0)T , we can rewrite (A.1),

Aw = λw

Aw − λw = 0

Aw − λIw = 0

(A− λI)w = 0 (A.2)

Now, from the basics of linear algebra we know that, if det (A− λI) 6= 0, then there is
only one solution to (A.2), which is the trivial solution w = (0, . . . , 0)T . We are instead
interested in the case where other solutions exists, then to the case det (A− λI) = 0.
Hence, by changing notation ρA(λ) := det (A− λI), we need to find the roots of ρA(λ).
Such a polynomial is called the characteristic polynomial of A.
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Example 27. Reprising the matrix of the previous example

ρA(λ) = det

(
1− λ 2
1/2 1− λ

)

= (1− λ)(1− λ)− 1

2
2

= λ(λ− 2)

and by imposing λ(λ − 2) = 0 it follows that ρA(λ) = 0 for λ = 0, 2. Now, considering
for example the eigenvalue λ = 2 the associated eigenvector can be found by solving

(
1 2
1/2 1

)(
w1

w2

)
= 2

(
w1

w2

)

from which we derive that w1 = 2w2 and that w = (2, 1)T is the eigenvector associated to
λ = 2. Clearly, also all the eigenvectors of the eigenspace spanned by w are eigenvectors
of λ = 2, e.g. (1, 0.5)T .

Note that the eigenvalues can be ordered from the greatest to the smallest according
to their absolute value. We call maximum eigenvalue the one with the greatest absolute
value and we denote it as λmax. In Example 27, we have λmax = 2. Going back to the
computational part, with the increasing size of a matrix, things get more complicated,
especially when it comes to find the roots of the characteristic polynomial. However,
the idea remains the same.

Example 28. Consider the following matrix

A =




1 2 8
1/2 1 4
1/8 1/4 1


 .

Then, by putting its characteristic polynomial equal to 0, and by skipping the elementary
steps, one recovers

ρA(λ) = λ2(3− λ) = 0 (A.3)

The eigenvalues are then λ = 0, 3. In this case we say that the algebraic multiplicity of
λ = 0 is equal to 2. Roughly speaking, with algebraic multiplicity we indicate the number
of times that a solution appears in the equation. In this case the multiplicity 2 of λ = 0
is obvious if we rewrite (A.3) as follows,

ρA(λ) = λλ(3− λ) = 0 (A.4)

Note that in the previous example one eigenvalue was equal to n, and the other, with
multiplicity (n− 1) was equal to 0. This is not a case, but a more general result.

Proposition 1. Given a pairwise comparison matrix A, if and only if A is consistent,
then one eigenvalue, λmax is equal to n and the other is equal to 0, with multiplicity
(n− 1).
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Proceeding further, another question arises and regards the behavior of λmax when A

is not consistent. As λmax cannot be equal to n, then what else can it be? Eigenvalues are
roots of polynomials and it is natural to suspect that λmax could be a complex number.
Fortunately, this cannot happen for pairwise comparison matrices and we can restrict
the search to real numbers. This is formalized in the following theorem.

Theorem 1 (Perron-Frobenius). Given a square matrix A, if A is positive, i.e. aij >
0 ∀i, j, then its maximum eigenvalue is real, λmax ∈ R.

Example 29. Consider the following matrix

A =




1 2 8
1/2 1 1/4
1/8 4 1




Using the rule of Sarrus we compute

ρA(λ) = (1− λ)3 +

(
2 · 1

4
· 1
8

)
+

(
8 · 1

2
· 4
)
− (1− λ)− (1− λ)− (1− λ)

= (1− λ)3 +
2

32
+

32

2
− 3(1− λ)

=
225

16
+ 3λ2 − λ3.

By solving 225
16

+ 3λ2 − λ3 = 0 we find that λmax ≈ 3.9167. The other two roots are
conjugate complex and we are not interested in them. Such solution can be easily found
by any mathematical software. Now, with this solution, we need to solve the equation
system 


1 2 8
1/2 1 1/4
1/8 4 1





w1

w2

w3


 = 3.9167



w1

w2

w3


 .

To aid the process and avoid the problem of infinitely many solutions we add the condition
w1 + w2 + w3 = 1 and solve





w1 + 2w2 + 8w3 = 3.9167w1

1
2
w1 + w2 +

1
4
w3 = 3.9167w2

1
8
w1 + 4w2 + w3 = 3.9167w3

w1 + w2 + w3 = 1

from which we obtain

w ≈ (0.660761, 0.131112, 0.208127)T .

Note that in the this last example A was inconsistent and λmax > n. The following
proposition clarifies the range of possible values attained by λmax.
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Proposition 2 (Saaty [101]). Let A be a pairwise comparison matrix. Then λmax = n
if and only if A is consistent and strictly greater than n otherwise.

Nowadays, all textbooks on linear algebra cover the theory of eigenvalues and eigen-
vectors. For a less didactic and more involving exposition of eigenvalues and eigenvectors
with an eye on positive matrices the reader can refer to the book by Horn and Johnson
[70].
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B. Solutions

Solution to Problem 2: Consider that we assumed aij = wi/wj ∀i, j. Then we write wi

and wj as the respective geometric means and see what happens if we account for the
assumption.

aij =
(
∏n

k=1 aik)
1/n

(
∏n

k=1 ajk)
1/n

=

(
ai1ai2 · · · ain
aj1aj2 · · · ajn

) 1

n

.

Since we assumed that aij = wi/wj we can substitute these in the equation and rewrite
it as

aij =

(
wi

w1

wi

w2

· · · wi

wn

wj

w1

wj

w2

· · · wj

wn

) 1

n

=

(
wn

i

w1w2···wn

wn
j

w1w2···wn

) 1

n

=
wi

wj

.

The original assumption is correctly recovered and therefore, when aij = wi/wj ∀i, j,
the geometric mean method returns the correct vector.
Solution to Problem 3: The proof was provided by the Crawford and Williams [43]. See
Theorem 3 in their paper.
Solution to Problem 4: Underbraced are the numbers of independent comparisons for
each level of the hierarchy, starting from the top.

3(3− 1)

2︸ ︷︷ ︸
3

+
4(4− 1)

2
+

3(3− 1)

2
+

3(3− 1)

2︸ ︷︷ ︸
12

+9
3(3− 1)

2︸ ︷︷ ︸
27

= 42

Solution to Problem 5: Consider the analytic formula of c3, that is,

c3 =
n−2∑

i=1

n−1∑

j=i+1

n∑

k=j+1

(
2− aik

aijajk
− aijajk

aik

)
.

At this point, consider the matrix Ȧ with the entry ȧij missing. The sum contains four
transitivities and we can expand it

c3 = 6

(
8− ȧ13

ȧ12ȧ23
− ȧ12ȧ23

ȧ13︸ ︷︷ ︸
− 37

6

− ȧ14
ȧ12ȧ24

− ȧ12ȧ24
ȧ14︸ ︷︷ ︸

−
ȧ14
2

− 2

ȧ14

− ȧ14
ȧ13ȧ34

− ȧ13ȧ34
ȧ14︸ ︷︷ ︸

−
ȧ14
8

− 8

ȧ14

− ȧ24
ȧ23ȧ34

− ȧ23ȧ34
ȧ24︸ ︷︷ ︸

− 13

6

)

= 6

(
− 5x

8
− 10

x
− 1

3

)
= −15ȧ14

4
− 60

ȧ14
− 2.
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Let us inspect the first and second derivatives of c3 in ȧ14:

∂c3
∂ȧ14

=
60

(ȧ14)
2 − 15

4
,

∂2c3
∂ȧ214

= − 120

(ȧ14)
3 .

The second derivative is strictly negative for positive values of ȧ14, which means that
the function is strictly concave for ȧ14 > 0 and that, if there is a maximum, then it is
unique. By equating the first derivative to zero, we recover that (ȧ14)

2 = 16. Of the two
solutions we take the positive one, which is ȧ14 = 4.
Solution to Problem 6:

C =




3 2 0 0
1/2 1 1/3 1
0 3 2 2
0 1 1/2 2




Solution to Problem 7:

A =




1 2 4 3
1/2 1 2 3/2
1/4 1/2 1 3/4
1/3 2/3 4/3 1




Solution to Problem 8: If the matrix is consistent, then any column can act as the
priority vector. An alternative method, which is also used to derive the vector from
inconsistent matrices, is the arithmetic mean of the rows,

ui =
1

n

n∑

j=1

pij.

In the case of consistent matrices, this method returns exactly the correct vector. The
proof is similar to the one used to solve Problem 2.
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