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Symbols and abbreviations

Symbols

xi, ri coordinates
θ, α, β, γ angles of rotation
θ0, θ1, θ2, θ3 Euler parameters
γ1, γ2, γ3 Rodriguez parameters
m mass of a body, kg
F force, N
I mass moment of inertia, kgm2 or area moment of inertia, mm4

T torque, Nm
δW virtual work
ε strain
σ stress
k spring constant, N/mm
ζ damping ratio
c damping factor, Ns/m

ii unit vector
r 3 x 1 position vector
v = ṙ 3 x 1 linear velocity vector
a = v̇ 3 x 1 acceleration vector
qir 3 x 1 location vector of body i in 2D
q n x 1 vector of generalized coordinates
Q n x 1 vector of generalized forces
δri n x 1 virtual displacement vector
Si 3 x 1 rotation vector
ω 3 x 1 angular velocity vector
α 3 x 1 angular acceleration vector
ε 6 x 1 strain vector
σ 6 x 1 stress vector

ṽ 3 x 3 skew symmetric velocity matrix
I n x n identity matrix
A 3 x 3 transformation matrix
A4 4 x 4 transformation matrix
E, Ē 3 x 4 Euler parameter matrices
ω̃ 3 x 3 skew symmetric angular velocity matrix
εm 3 x 3 strain tensor
σm 3 x 3 stress tensor
J̄ 3 x 3 gradient of displacement vector
E 6 x 6 matrix of elastic constants
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Operators

d

dt
time derivative

∂

∂t
partial derivative

Abbreviations

ADAMS Automatic Dynamic Analysis of Mechanical Systems
CAD Computer Aided Design
CAE Computer Aided Engineering
FEA Finite Element Analysis
MBD Multibody Dynamics or Microbiology Division
MBS Multibody System
MSC MacNeal-Schwendler Corporation
NASTRAN NASA Structural Analysis
NVH Noise, Vibration and Harshness
TFS Thermo Fisher Scienti�c



1

1 Introduction

In product development there is always a need to get things done quickly and e�-
ciently to keep costs down and projects on time. Businesses are often looking for
tools to help to achieve these goals. Simulations are, for example, such accessories.
With simulations, real life phenomena, processes and systems can be replicated, �ne
tuned and predicted on computers.

One popular utilization of simulations is in the �eld of traditional Newtonian
physics. Multibody systems are system consisting of multiple parts and components
attached together with various kinds of joints. These systems have a certain dy-
namics and behaviour depending on the components and their geometry as well as
external forces and motions applied to them. The area researching multibody sys-
tems is called Multibody Dynamics. There are several simulation programs designed
to solve these MBD problems. The software chosen for this thesis is MSC Soft-
ware Corporation's ADAMS due to its familiarity and features. Additionally, MSC
ADAMS has not been used before at Thermo Fisher Scienti�c so it also represents
an interesting new possibility.

Thermo Fisher Scienti�c, whose logo is shown in Fig 1, is a manufacturer and
distributor of laboratory supplies and devices employing 50 thousands personnel
world wide. Their mission is described as [1]:

. . . to enable our customers to make the world healthier, cleaner and
safer. We help our customers accelerate life sciences research, solve
complex analytical challenges, improve patient diagnostics and increase
laboratory productivity.

In Finland, TFS has an o�ce in Vantaankoski, Vantaa and a factory in Joensuu.
The Vantaa site has multiple research and development teams designing and building
new products and researching new possibilities. As the instruments are becoming
increasingly advanced and the schedules increasingly tight, an interest towards sim-
ulation programs has risen. No programs of this type have been utilized before at
TFS Vantaa. One purpose of this thesis is to present the employees of TFS Vantaa
the basics of multibody dynamics, introduce the Virtual Design Process and show
two practical examples and how they can be solved with MBD software.

Figure 1: Thermo Fisher Scienti�c logo [1]

This thesis has two main intentions: �rst, the reader is acquainted with the fun-
damentals of multibody dynamics, simulations and methods along with the Virtual
Design Process. The aim is to familiarize the reader with the subject and to give an
idea of what multibody simulations are capable of. The second goal is to show the
reader how actual problems are solved and what bene�ts there are in using MBS
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software. This is done with two practical examples selected from everyday problems
faced at TFS Vantaa: designing a lifting aid for a main cover and investigating
vibrations of a dispensing needle.

The instruments always have di�erent hatches and covers that are opened by
the user. The covers come in all shapes and sizes but they all must be light to
operate. With large covers, there is often a need for a gas spring to lighten the load.
Accordingly, the purpose of the �rst problem is to position and choose a gas spring
for this function. The needle vibrations in the second problem has been a nuisance
for some time but the exact cause has remained a mystery. When the dispensing
robot moves in the instrument its needle vibrates correspondingly. The situation
is therefore simulated and analysed and attempted to resolve the root cause of the
vibrations.

In the �rst parts of this thesis background information is presented including a
brief history of multibody dynamics along with its typical usage and some appli-
cations. The Virtual Design Process is also described. In Section 3 Methods and
Tools are introduced. Some basic mathematics and equations behind the physics
and dynamics are listed. MSC ADAMS is also announced and the fundamentals
behind it, such as integrators, brie�y explained. In the Analysis Section the two
problems are described, analysed and solved with aforementioned tools. Finally,
Section 5 concludes the thesis.
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2 Background

Multibody system is a system where one or more bodies are connected to each other
with joints. The bodies may be rigid, �exible or plain links that connect two pieces
together. The joints' purpose is to limit the bodies' relative movement. There
are many di�erent kinds of joints for di�erent purposes, most common are perhaps
translational, rotational and spherical joints. There may also be springs, dampers
and external forces that apply to the system. For example, car suspension, door
lock and industrial robots are typical multibody systems as shown in Fig 2. [34]

Multibody system dynamics is a �eld of applied mechanics that studies these
systems. Often the objective is to determine how a mechanism behaves or moves
under the in�uence of external forces. For example, when you pull a door lever how
does the door act. This type of analysis is called forward dynamics. It can also
be analysed the reverse problem: what kind of forces must be applied to make the
mechanism move in a speci�c manner. This is called inverse dynamics. [23]

Multibody simulation is tool with which multibody systems can be simulated
using computational methods. Most often a computer is utilized. Simulating sys-
tems and mechanisms is important in modern engineering. It allows the designer
to observe how the mechanism functions without having to build an expensive real
world model and doing labour intensive measurements. For example, car industry
uses simulations software extensively during the development of new cars. Every
design feature is simulated to con�rm it performs as intended. Vehicle dynamics are
thoroughly analysed before building a prototype and testing it on a track. The focus
of using MBS during research and development is often to reduce costs, shorten the
product design cycle and optimize models. [5]

Figure 2: Examples of multibody systems: a car suspension [25], a robotic arm [33]
and a padlock

MBS is also closely related to control design and vibration theory [11]. Control
systems can be easily implemented in to the multibody model allowing designers
to test the functionality of a whole process or system. The control systems can be
further improved with MATLAB integration. [22]
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Vibrations are also naturally solved by MBS software since the equations for
vibrations can be acquired from d'Alembert's principle used for dynamic analysis of
multibody systems [11].

Furthermore, modern MBS softwares can also perform dynamic strength analy-
ses, contact and impact problems and interaction with �uids. Strength analysis is
often utilized for life-cycle predictions including fatigue and crack growth. FEA tools
are already available for even more accurate results and some are even integrated
into MBD software. Fluid interaction is another concurrent topic. Typical problems
are with satellites and tank vehicles. At the moment, all such models have strong
simpli�cations of the �uid motion but as computer calculating power increases the
models become more complex and accurate. [31]

2.1 Brief History

The history of multibody dynamics begin with Isaac Newton's Philosophiae Natu-
ralis Principia Mathematica published in 1687 [24]. In this book Newton introduces
the concept of a free particle. A particle is free when there are no external forces
a�ecting it. Almost a century later, in 1776, Euler de�ned the rigid body � the most
fundamental building block in multibody physics � in his article Nova methodus mo-
tum corporum rigidorum determinandi [12]. Combined with Newton's work, a new
set of equations were created: the Newton-Euler equations. These formulas describe
the movement of a free body whose constraints and joints are modelled as reaction
forces and external forces apply. Euler also made signi�cant progress in the �eld of
gyroscope kinematics and dynamics. A picture of a gyroscope can be seen in Fig 3.

Great advances were also made in 18th century France where d'Alembert pub-
lished his Traité de Dynamique in 1743 [10]. In his book d'Alembert examined
a system of constrained rigid bodies. A little later Lagrange further worked on
d'Alembert's idea and combined it with the principle of virtual work in hisMécanique
Analitique in 1788 [17]. This resulted in a set of ordinary di�erential equations with
which complex systems could be analysed faster. In the same publication Lagrange
also presented the Euler-Lagrange Di�erential equations. With these equations sys-
tems could be analysed utilizing kinetic and potential energies.

The most recent advance in the �eld was made by Kane and Levinson in their
book "Dynamics, Theory and Applications" (1985) [16]. In the book the generalized
velocities are identi�ed as partial velocities leading to a compact description of
multibody systems. In relation to this, a new Kane's method was introduced for
solving systems quickly and without the need of di�erentiating [28] [16].

After the invention of the computer the development of multibody dynamics has
been geared towards algorithms, software and numerical formalisms. These include
pre- and postprocessing, CAE coupling, animation and strength calculation. Lately,
symbolical formula manipulation with equations of motion has become available as
well. In the scienti�c �eld issues such as �exibility, friction, contact, impact and
control are being researched. [31]

The origins of MSC.ADAMS are in the mid-1960s when computers begun to
emerge. Programs were developed to calculate kinematic behaviour such as dis-
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placement, velocity and acceleration as well as reaction forces for a limited set of
linkages and simple suspension models. The �rst program to solve time histories
of dynamic systems was called DAMN (Dynamic Analysis of Mechanical Networks)
made at the University of Michigan in 1967. These programs were inherently 2D
only. The basis of MSC.ADAMS is regarded to be a program completed in 1973 and
published in a series of ASME papers. This was the �rst time 3D objects were made
possible. Over time a number of other softwares were implemented and bought into
ADAMS. The main emphasis has been vehicles and their dynamics lately. [5]

2.2 Usage and Applications

Earliest applications of multibody dynamics are found in biomechanics, namely, the
walking motion of humans. Biomechanics was also strongly supported by athletic
training and sports beginning from the 1950s. There have been several body motion
studies for humans as well as animals. Another early application were gyroscopes
and their dynamics, namely the �eld of gyrodynamics. In relation to gyroscopes,
there was a substantial emphasis in satellites and other spacecraft during the space
race from 1955 to 1972 which also accelerated the development of the whole �eld of
dynamics. [31]

Figure 3: A gyroscope

According to MSC Software, their software, ADAMS, can be used for many
di�erent types of analyses and problems and it has many features, such as [23] [22]:

• Rigid and �exible multibody systems

• Sensitivity analysis

• Vibration analysis

• Vehicle design & testing

• Coupled control/mechanical system analysis
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• Kinematics and kinetics

• Contact and friction

• Loads and displacement

• Durability and life-cycle analysis

• Fracture or fatigue calculations

• Kinetic, static, and dissipative energy distribution

• Vehicular cornering, steering, quasi-static, and straight-line analysis

• Control system analysis

Some industry uses include [23]:

• Aerospace & Defence: Aircraft engines, space vehicles, landing gears, heli-
copter fuselage, weapon systems, armaments, aircraft control mechanisms,
ejection seats, �ight simulators, battle�eld vehicles, mission-critical spacecraft
mechanisms

• Automotive: Suspension systems, Drivetrains, brake systems, steering sys-
tems, engines, control systems, transmissions, boot joints, bearings, clutches,
chassis structure

• Manufacturing: robotic manipulators, conveyor belts, pumps, machine tools,
packaging equipment, gears, stepper and server motors

• Heavy Equipment: excavators, agricultural equipment, hydraulic control sys-
tems, tracked vehicles, fork lifts, amusement park rides

• Medical: Orthopaedics, human locomotion, biodynamics, dynamometry, er-
gonomic analyses, robotic limbs

• Consumer Products: Sporting goods, bicycles, tools, printers

• Energy: Wind turbines, solar panels, o�shore structures, drilling rigs, central-
izer mechanisms

In modern engineering, one of the most dominant users of multibody simulations
is the automotive industry. Vehicle dynamics is a major application �eld with many
di�erent problems � many of which can be solved with MBS software.

In Thermo Fisher Scienti�c Oy Vantaa and more speci�cally Microbiology Divi-
sion, the employer and funder of this thesis, multibody simulations have not been
used in R&D before. However, there has been a rising interest because the de-
vices are becoming more and more complicated and the schedules increasingly tight.
There are also some vibration, �exibility and durability issues that are di�cult to
analyse using conventional methods.
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Figure 4: Features of MSC ADAMS/Machinery courtesy of MSC Software Corpo-
ration [22]

2.3 Virtual Design Process

Virtual design process is a method for virtually testing and validating a model or
a product before physically building a prototype. Virtual prototyping is becoming
increasingly popular in various industrial �elds. Bene�ts and goals include cutting
design time and costs, increasing quality and increasing e�ciency. Virtually testing
a product enables the designers to notice faults and weaknesses early and correct
them as soon as possible as well as estimating di�erent important factors to product
performance and customer acceptance. Common tools are e.g. Computer Aided
Design and Engineering (CAD and CAE) programs, multibody and multiphysics
simulators and Finite Element Methods (FEM). Also lifetime, fatigue and Noise,
Vibration and Harshness (NVH) may be determined virtually. [6] [32]

Figure 5: The product design process with virtual prototyping [6]

In Fig 5 is shown a typical product development process. The whole process
start with a market research which collects the needs and wishes of the user. Based
on this data, the product features and performance are de�ned in the next step.
This speci�cation and requirements guide designers towards the end product and
clearly state what is needed from the design. The designers can also interpret the
requirements and what can be done with current technologies. A concept design is
created as a result. [6]

From the concept design the engineers begin modelling the product. During the
conceptual design phase the main features and capabilities are decided and after-
wards it will be increasingly di�cult to alter these decision. Therefore it is vital
to validate the performance of the design with virtual tools such as multibody and
multiphysics simulators. Areas where simulations may be used include material se-
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lection, feasibility and what-if studies, preliminary dynamical properties and weight
estimation. This is where the virtual tools are extremely useful and most com-
monly utilized. For example, in aeronautical industries it is crucial to �rst build a
virtual model and simulate all possible conditions to ensure its performance meets
customer's expectations. [6]

The virtual prototyping process for MSC ADAMS is shown in Fig 6. First, a
simple model is constructed following "crawl, walk, run" method. In this method
the model is built one step at a time and the behaviour tested frequently. This is
essential since complete simulation models are prone to be quite complex and their
troubleshooting time consuming. It is therefore important to validate the model as
often as reasonably possible. In the �rst model all basic components are inserted:
bodies, forces, contacts, joints and motions. [23]

Figure 6: Virtual prototyping process [23]

Next, the model is tested thoroughly. Measures and plots are created and if
possible, compared to real world test data. Di�erent simulation scenarios are done
according to actual environments planned for the product. Animations and plots
help to visualize the results. If the model looks promising it is further developed.
Friction is added to crucial points, bodies made �exible to �nd out strains and po-
sition errors, control systems are created to resemble actual controls and important
variables parametrizes for easy changing and testing. The goal of all this is to enable
new features into the model and make the results correspond more closely to real
world measurements. [23]

The last step is to �nalize the model and improve its performance and other fac-
tors. This is done with optimization routines including design experiments, macros
and custom functions. Optimization is performed to make the product more e�ec-
tive, lighter and �ne-tune other properties (see Section 3.7.3). In design experiments,
several simulations are made with a single command altering the variables each time
and recording the results. With custom functions and macros the user can, for ex-
ample, create and emulate software of the actual product or create complex force
functions. [23]

As the process continues and the main features of the product become more ac-
curate, the amount of detailed design increases, see Fig 5. Simulations can be further
utilized in this phase when designing the individual parts and sub-assemblies. Often
these require special simulation models of their own if more accuracy is required or
the user wishes to conduct complex testing. [23]

In Design Evaluation phase the virtual model is evaluated against the customers'
needs with di�erent tools are utilized. Some requirements may be abstract properties
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such as appearance and usability but often there are also physical quantities. These
include rigidity, weight and dynamical performance among other things. Rigidity
can be determined with FEA tools, weight with CAD programs and dynamics with
multibody simulations. If the design evaluation is successful and all requirements
ful�lled, the design is approved for construction. Now a physical model is built and
the same properties measured and checked that they correspond to the virtual model.
The last steps of the product design process in Fig 5 often require multiple iterations
before the �nal product is complete and ready to be launched to customers.
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3 Methods and Tools

This section describes the methods used for solving multibody system problems.
It also introduces some the required equations to give the reader an idea of what
is needed mathematically. First, basic kinematics are reviewed with appropriate
equations. Next, dynamics and then �exible systems and bodies. So called scalar
variational principles, also known as energy-based methods, are also quickly re-
viewed as well as some vibration and damping issues. Finally, ADAMS is shortly
introduced along with its most signi�cant features. [26] [34] [4]

All equations introduced here are in Cartesian coordinates. While it would be
plausible to present them also in polar coordinates, it was considered to unnecessarily
complicate issues and make them harder for the reader to understand. Existing
approaches can be classi�ed into two sections:

1. Those based on vector variational principles (Newton-Euler)

2. Those based on scalar variational principles (Lagrange)

According to O. A. Bachau [4], multibody systems can be coarsely divided into three
categories:

1. Rigid,

2. Linearly elastic and

3. Nonlinearly elastic multibody systems

In this thesis only the �rst two are considered as the nonlinear materials are often
rubbers and soft plastics which do not appear in the course of the two analyses later
on.

Ahmed A. Shabana's [34] notation style is used throughout the text. Bold vari-
ables refer to vectors or matrices. Variables marked with tilde are skew symmetric
matrices (antisymmetric matrices) that satisfy the equation A = −AT . A bar refers
to local coordinate system. Variables without a bar are de�ned in the inertial coor-
dinate system. Plain variables are usually scalars. Description of variable types, for
example:

Variable Type
xi, θ, t Scalars

ri Vector or matrix, inertial coordinate system
ūi Vector or matrix, local coordinate system

Ȧ Vector or matrix, �rst time derivative, iner-
tial coordinate system

¨̄r Vector or matrix, second time derivative, lo-
cal coordinate system

ṽ Skew symmetric matrix, inertial coordinate
system

˜̄v Skew symmetric matrix, local coordinate sys-
tem
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3.1 Topologies

Multibody systems may be represented with simple graphs � topology diagrams �
which show the bodies and their joints without being too intricate on the details.
There are three elemental topologies: chain, tree and loop. These options are shown
in Fig 7. [11]

Figure 7: Three di�erent topologies of multibody systems: chain, tree and loop

The chain topology consists of bodies that are linked only to adjacent bodies via
a single link. In Fig 7 there are four bodies connected to each other with three links.
Additionally, the �rst body is linked to ground. The chain topology is the simplest
to calculate and analyse since each body is only connected to one or two others. [11]

The tree topology resembles the chain but with few additions. There are so
called branches of bodies that connect to the bodies in the chain. The result is that
some bodies have more than one other bodies connected to them. Fig 7 shows a
chain of four bodies with two branching bodies connected to the �rst and third body
with links. A tree complicates the analysing of the system somewhat but since the
branched bodies form a chain of their own, the calculating does not di�er greatly
from the chain topology. [11]

In the loop topology some of the bodies form a loop. Again, there is a chain
of four bodies but two extra bodies form a loop with the �rst and third body on
the chain. A loop hinders the calculations even quite considerably in some cases.
In a way, the loop creates a feedback mechanism in to the system and thus some
recursive formalism operations are not possible leading to time consuming matrix
inversions. [11]

3.2 Basic Kinematics

Kinematics is the study of motion regardless of forces and motions acting on the
system. That is, the kinematics of a system are de�ned by the system's geometrical
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aspects. Kinetics study the motion of the system including the forces. Dynamics is
kinematics and kinetics combined. [34]

3.2.1 Frame of Reference and Coordinates

A Cartesian coordinate system consists of an origo O and three orthogonal axes, tra-
ditionally labelled as X1, X2 and X3, or shortly X1X2X3. At least two coordinate
systems are often required. The �rst one, often called a global or interial frame of
reference, is �xed in space and time. The following coordinate systems are attached
to each part in the multibody system. These are referred as body references. The
body reference frame translates and rotates with the body and thus its position is
changed in relation to the inertial frame of reference with time. [34]

All the equations and theorems in this thesis are expressed in Cartesian coordi-
nates. However, generalized coordinates are more commonly used, for example as
in Section 3.3.2. Consider a body in 2D space. To fully position the body three
coordinates are required: two for translations along the global axis and one for
the orientation. This can be expressed as q = [x y α]. This position vector is
said to consist of three generalized coordinates, that is, the types of these coordi-
nates are ignored. The generalized coordinate representation of this vector would
be q = [q1 q2 q3]. [34]

The concept of generalized coordinates is especially useful in situations where
the position vector q is exceedingly large. This happens very easily as the number
of bodies in the system increase. Typically, the position of every body in the system
is stored in the generalized coordinate vector q. [34]

3.2.2 Positions and Translations

An arbitrary point or particle in space can be positioned with three coordinates, x1,
x2 and x3. The position vector of this particle is thereby

r = x1i1 + x2i2 + x3i3 (3.1)

where i1, i2 and i3 are unit vectors along the X1, X2 and X3 axes. The velocity
vector is the time derivative

v = ṙ =
d

dt
(r) = ẋ1i1 + ẋ2i2 + ẋ3i3 (3.2)

And acceleration

a = v̇ =
d

dt
(v) =

d2

dt2
(x) = ẍ1i1 + ẍ2i2 + ẍ3i3 (3.3)

These can be also represented in matrix form

r = [x1 x2 x3]
T (3.4)

v = [ẋ1 ẋ2 ẋ3]
T (3.5)
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a = [ẍ1 ẍ2 ẍ3]
T (3.6)

A vector u in space can be similarly formulated

u = u1i1 + u2i2 + u3i3 (3.7)

And in matrix form
u = [u1 u2 u3]

T (3.8)

When a body is present in the system, it is denoted as body i. The body coordi-
nate system is correspondingly Xi

1X
i
2X

i
3. This coordinate system's unit vectors are

indicated similarly as ii1, ii2 and ii3.
In 3D space six variables are needed to accurately specify the location and ori-

entation of a body, three for coordinates

ri = [ri1 ri2 ri3]
T (3.9)

and three for rotations
Si = [αi βi γi]T (3.10)

where the superscript indicates the index of the body in question, such as body
i. The location coordinates and rotation angles can be expressed in a single 6 × 1
position vector

qi = [ri1 ri2 ri3 αi βi γi]T (3.11)

All point, vector and body translation can be done utilizing simple Cartesian
vectors such as Eq 3.7. This position vector is commonly denoted as

Ri = [Ri
1 Ri

2 Ri
3] (3.12)

A position vector for an arbitrary point on a body can be expressed as

ri = Ri + ui0 (3.13)

where Ri is the coordinate vector from the global coordinate system zero to that of
the body and ui0 is the vector from the body zero to the point itself.

3.2.3 Rotations

Body rotations can be accurately determined by specifying the angle of rotation
θ and a unit vector along the axis of rotation v. The unit vector of rotation is
referenced to the inertial coordinate system

v = v1i1 + v2i2 + v3i3 (3.14)

3 × 3 rotation matrix presents one body rotation conveniently in a single matrix.
The rotation matrix is also know as the Rodriguez formula or tranformation matrix.
The equation is

A = [I + ṽ sin θ + 2(ṽ)2 sin2 θ

2
] (3.15)
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Where ṽ is a skew symmetric matrix of the unit vector of rotation. It is de�ned as

ṽ =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 (3.16)

Four Euler parameters are needed in order to write the rotation matrix completely.
The parameters can be acquired from the angle of rotation and the unit vector of
rotation (Eq 3.14)

θ0 = cos
θ

2
, θ1 = v1 sin

θ

2
, θ2 = v2 sin

θ

2
, θ3 = v3 sin

θ

2
(3.17)

The transformation matrix can now be expressed with the Euler parameters as

A =

1− 2(θ2)
2 − 2(θ3)

2 2(θ1θ2 − θ0θ3) 2(θ1θ3 + θ0θ2)
2(θ1θ2 + θ0θ3) 1− 2(θ1)

2 − 2(θ3)
2 2(θ2θ3 − θ0θ1)

2(θ1θ3 − θ0θ2) 2(θ2θ3 − θ0θ1) 1− 2(θ1)
2 − 2(θ2)

2

 (3.18)

The above matrix is used to convert the orientation of a vector within a free body
from local coordinates to inertial reference of frame.

The position of a vector ui can now be resolved when the matrix and the vector
ūi in local coordinates are known

ui = Aiūi (3.19)

Additionally, if the position vector Ri of the local coordinate system in relation to
global reference of frame is known, the position of a point at the end of vector ūi in
the local system can be calculated with

ri = Ri + Aiūi (3.20)

Successive in�nitesimal rotations can easily be determined with

A = eθṽ = exp(θṽ) (3.21)

Both rotation and translation can be expressed in one 4× 4 transformation matrix.
This is sometimes referred to as the homogeneous transform and it is of the form

Ai
4 =

[
Ai Ri

0i3 1

]
(3.22)

The equations above are built around the four Euler parameters of rotation. How-
ever, there are three degrees of freedom for rotations. An alternative representation
uses only three parameters, the Rodriguez parameters. Parameter γ is

γ = v tan
θ

2
(3.23)
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And its skew symmetric matrix

γ̃ =

 0 −γ3 γ2
γ3 0 −γ1
−γ2 γ1 0

 (3.24)

Transformation matrix can now be written as

A = I +
2

1 + γ2
(γ̃ + γ̃2) (3.25)

The relation to the four Euler parameters (θ0, θ1, θ2, θ3) is

γi =
θi
θ0
, i = 1, 2, 3 (3.26)

3.2.4 Velocities

The velocity of a point when the angular velocity is known is

ṙi = vi

= Ṙi + ωi × ui (3.27)

= Ṙi + Ai(ω̄i × ūi) (3.28)

= JT i(y, t)ẏ + v̄i(y, t) (3.29)

where ω is called the angular velocity vector and it is de�ned in the inertial coor-
dinate system. Ṙi is the velocity of the global origin. The superscript i once again
indicates the body index. Eq 3.29 is according to W. Schielen [31]. JT i is a 3 × n
Jacobian matrix of virtual translational displacement, n is the number of generalized
coordinates and y is a 1× n vector of these generalized coordinates.

The angular velocity vector itself in body frame of reference can be determined
with

ω̄ = 2v̇ × v sin2 θ

2
+ v̇ sin θ + vθ̇ (3.30)

Where v is the unit vector of rotation, size 3 × 1. The same velocity but with
reference to inertial frame of reference is

ω = 2v × v̄ sin2 θ

2
+ v̇ sin θ + vθ̇ (3.31)

= JT i(y, t)ẏ + ω̄i(y, t) (3.32)

where Eq 3.32 is again from W. Scheilen's article [31]. Now JT i refers to a 3 × n
Jacobian matrix of virtual rotational displacement.

The velocity of an arbitrary point can likewise be determined with the transfor-
mation matrix. Position vector from Eq 3.20 is

ri = Ri + Aiūi (3.33)

Time derivative of this equation is

ṙi = Ṙi + Ȧiūi (3.34)



16

3.2.5 Accelerations

The velocity of a point is

ai = ẍi

= R̈i + ω̇i × ui + ωi × u̇i (3.35)

= JT i(y, t)ÿ +
∂vi

∂yT
ẏ +

∂vi

∂t
(3.36)

The velocity with the transformation matrix is

ṙ = A ˙̄r + ω̃Ar̄ (3.37)

And it's �rst derivative accordingly

r̈ = Ȧ ˙̄r + A¨̄r + ˙̃ωAr̄ + ω̃Ȧr̄ + ω̃A ˙̄r (3.38)

Rearranging terms and substituting some of the terms yields

r̈ = A¨̄r + 2ω × vg +α× r + ω × (ω × r)

= al + ac + at + an (3.39)

where vg = A ˙̄r is the time derivative of the vector ṙ in inertial coordinate system.
Eq 3.39 consists of four di�erent variables: al, ac, at and an. Here, al represents
the acceleration projected to the point by the acceleration of the global coordinate
system. The other three acceleration components are: Coriolis ac , tangential at

and normal an. Furthermore, the angular acceleration vector

α = ω̇

= 2

θ̈3θ2 − θ̈2θ3 + θ̈1θ0 − θ̈0θ1
θ̈1θ3 − θ̈0θ2 − θ̈3θ1 + θ̈2θ0
θ̈2θ1 + θ̈3θ0 − θ̈0θ3 − θ̈1θ2

 (3.40)

= JRi(y, t)ÿ +
∂ωi

∂yT
ẏ +

∂ωi

∂t
(3.41)

3.3 Dynamics

Solving problems where there are forces present in moving mechanisms or systems is
called kinetics or dynamic force analysis. Robert L. Norton introduces the concepts
of two subclasses of dynamics problems [26]:

1. The forward dynamics problems, where the forces and masses are known and
velocities or accelerations must be solved.

2. The inverse dynamics deal with problems, where accelerations, velocities or
displacements are known and forces required to achieve these motions need to
be solved. This is sometimes called kinetostatics.
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Dynamics problems can be solved in three di�erent methods:

1. Classical Newtonian dynamics

2. Virtual work

3. Lagrangian dynamics

The classical Newtonian method � which is a so called Vector Variational Principle
� is by far the easiest to use when calculating simple problems by hand. The
concepts of virtual work and Lagrangian dynamics are more complex but much
more practical to work with when solving complicated systems. Simple problems
can nevertheless also be solved by hand with these two methods. Virtual work
and Lagrangian dynamics are so called Scalar Variational Principles, that is they
function by scalars such as work and energy as opposed to Newtonian method which
operates with vectors such as velocity and force. [3]

3.3.1 Newtonian Method

The Newton's three laws of motion are the basis of any dynamics system [24]:

1. When no external forces act on a body, it remains at rest or in motion at
constant velocity

2. The momentum of a body changes according to the magnitude of the applied
force and its direction

3. For every action force there is an equal and opposite reaction force

Newton-Euler equations are {
F = ma
T = Iα

(3.42)

where

• F is the force acting on the center of mass of the body, N

• m is the mass of the body, kg

• a is the acceleration of the center of mass of the body, m/s2

• T is the torque acting on the body, Nm

• I is the mass moment of inertia around the center of mass of the body, kgm2

• α is the angular acceleration of the body, rad/s2

The mass moment of inertia, I can be either a scalar or a matrix. As a 3× 3 matrix
it is known as inertia tensor

I =

IXX IXY IXZ
IY X IY Y IY Z
IZX IZY IZZ

 (3.43)

where the elements Iij are known as mass moments of inertia and the non-diagonal
elements products of inertia.
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3.3.2 Equations of Motion

The principle equation of motion is Eq 3.42

F = ma (3.44)

In literature this equation takes the form [31] [11]

M(y, t)ÿ + k(y, ẏ, t) = q(y, ẏ, t) (3.45)

where y is a 1 × n vector of generalized coordinates and n the number of these
coordinates. M is a n × n symmetric inertia matrix. The n × 1 vector k describes
the generalized Coriolis forces and the n× 1 vector q the generalized applied forces.

Eq 3.45 can further be linearized in case of small vibrations resulting in [11]

M(t)ÿ + P(t)ẏ + Q(t)y = h(t) (3.46)

this equation is appears very familiar. It is essentially the same as the equation for
a simple spring-damper system [30]

mẍ+ cẋ+ kx = 0 (3.47)

except the mass, damping coe�cient and spring sti�ness are replaced with corre-
sponding matrices M, P and Q. Additionally, Eq 3.46 is presented in generalized
coordinates.

Di�erential equations as above may � in simple cases � be solved symbolically.
Another way of solving them is by using integrators and raw computing power. See
Section 3.7 for more information about the solvers in MSC ADAMS.

3.3.3 Virtual Work

The concept of virtual work is constructed around the idea that: "if a system would
move an arbitrary virtual displacement of δri, δW amount of virtual work would be
done." Then, by setting the virtual displacement to zero, force equations are gained
and the state of the system successfully determined. [34]

For a particle or body in static equilibrium it holds that the resultant vector

Fi = 0 (3.48)

And thus for any virtual displacement∑
Fi · δri = δW = 0 (3.49)

Furthermore, if we split the resultant force and virtual work to two parts, one
marking the constraint forces and the other external forces we get

Fi = Fi
c + Fi

e (3.50)

δW = δWc + δWe = 0 (3.51)



19

If we assume the constraints do no work, i.e. they are workless constraints, the
virtual work is zero

δWc =
∑

Fi
c · δri = 0 (3.52)

For the external forces we get

δW = δWe =
∑

Fi
e · δri = 0 (3.53)

This is known as the principle of virtual work in static equilibrium. For dynamic
systems we must include the momentum's rate of change in the equations

Fi − Ṗi = 0 (3.54)

If the constraints are workless, the Eq 3.52 remains the same. For Eq 3.53 we now
obtain ∑

(Fi − Ṗi) · δri = 0 (3.55)

This equation is also known as D'Alembert's principle. [10]

3.3.4 Lagrangian and Hamiltonian Dynamics

The Lagrangian mechanics or dynamics is another way of solving the equations of
motion for di�erent kinds of systems. It is a principle of least action, that is, the
system moves where it requires or uses the least energy or work. The Lagrangian
method is widely used in di�erent areas of analyses in mechanical and structural
engineering. For example, static, dynamic and vibration problems are commonly
solved using the tools presented in this section.

The Lagrangian is
L = T − V (3.56)

where T is the kinetic energy and V the potential energy of the system. Once these
energies have been calculated and L determined, the equation of motion is

d

dt
(
∂L

∂q̇j
)− ∂L

∂qj
−Qj = 0 (3.57)

where qj is generalized coordinate and Qj corresponding generalized force. The most
common equations for kinetic and potential energies, for example, are 1/2mv2 and
mgh. [19]

From the above equations another technique of calculating dynamics can be
obtained, the Hamiltonian method. It is de�ned as

H = q̇ · p− L (3.58)

The equation above is the Legendre transform of the Lagrangian [19]. Noting that
p = ∂L

∂q̇j
we obtain

H =
∑ ∂L

∂q̇k
q̇k − L (3.59)
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3.4 Flexible Bodies

Sometimes it is useful to model bodies as �exible entities instead of rigid ones. Rigid
bodies, by de�nition, do not �ex or deform at all. That is, the distance between
two arbitrary points remains constant. Consequently, a force acting on a rigid body
creates a linear acceleration throughout the body with an angular acceleration about
its center of mass. [34]

Deformable bodies, on the other hand, are not rigid. They �ex and twist ac-
cording to the forces acting on them. This branch of mechanics is referred to as
Continuum mechanics. Continuum mechanics focuses on the motion of �exible bod-
ies. Introducing �exibility to dynamics causes new problems and possibilities. For
instance, applying a point force on a deformable body does not cause a linear accel-
eration throughout the body. Instead, the other points on the body are not set in
motion instantaneously but in relation to the rigidity of the body. [34]

3.4.1 Kinematics

The position of points can now be expressed with an additional vector uif which
indicates the vector from the original point on a body to the point after the body
has deformed. Consider Eq 3.13. It now becomes

ri = Ri + ui0 + uif (3.60)

Similarly the velocity, Eq 3.28

vi = Ṙi + ωi × (ui0 + uif ) + u̇if (3.61)

And acceleration, Eq 3.35

ai = R̈i + ωi × (ωi × ui) +αi × ui + 2ωi × (u̇if ) + üif (3.62)

3.4.2 Strain

Strain is the relative displacement of a point on a body from an undeformed state
to a deformed one [29]. Consider the distance between two points when the body is
rigid as δl0. On a deformed body this same distance is δl. The strain in this case is

ε =
δl

δl0
− 1 (3.63)

In 3D space there are nine di�erent strain components forming a 3 x 3 symmetric
matrix called the Lagrangian strain tensor

εm =
1

2
([J̄T + J̄] + J̄T J̄) =

1

2
(J̄T J̄− I)

=

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 (3.64)
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where J̄ is the gradient of the displacement vector u which itself is de�ned as

J̄ =

∂u1/∂x1 ∂u1/∂x2 ∂u1/∂x3
∂u2/∂x1 ∂u2/∂x2 ∂u2/∂x3
∂u3/∂x1 ∂u3/∂x2 ∂u3/∂x3

 (3.65)

As the Lagrangian strain tensor is a symmetric matrix, its contents can be su�ciently
determined with six components. These components form the strain vector

ε = [ε11 ε22 ε33 ε12 ε13 ε23]
T (3.66)

Alternatively, the strain components can be calculated with the equation

εij =
1

2

(
ui,j + uj,i +

∑
uk,iuk,j

)
, i, j = 1, 2, 3 (3.67)

When the strains and rotations are small, such as in engineering applications, the
product J̄T J̄ can neglected, that is, J̄T J̄ ≈ 0. Eq 3.64 now becomes

εm ≈
1

2
(J̄T + J̄) (3.68)

3.4.3 Stress

Stress is the pressure present within a deforming part. It depends on strain a�ecting
the part at the moment and material properties. [29]

Similarly to the strain tensor, a 3 x 3 matrix for the stress tensor can be de�ned
as

σm =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 (3.69)

where σij are the stress components. Correspondingly, a similar stress vector is

σ = [σ11 σ22 σ33 σ12 σ13 σ23]
T (3.70)

The Eqs 3.66 and 3.70 together are the constitutive equations and essentially de�ne
the behaviour of the material. Hooke's law determines the relation between strain
and stress. It is [29]

σ = E ε (3.71)

where E is a 6 x 6 matrix of elastic constants. Hooke's law is only valid for linearly
behaving materials, such as metals under the elastic limit. Plastic or viscoelastic
deformations are not covered by Eq. 3.71.

3.4.4 Discrete Flexible Link

One of the primary �exible elements is a beam, called a Discrete Flexible Link in
MSC ADAMS. A typical I-beam is shown in Fig 8. The properties of beam depend
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Figure 8: A bent I-beam

on three parameters: length, moment of inertia and elastic modulus. For example
the displacement at the end of a beam �xed on one end is [29]:

υ =
FL3

3EI
(3.72)

where F is the force at the end of the beam, L is the length of the beam, E is the
beam's material's elastic modulus and I is the moment of inertia.

A discrete �exible link is a beam divided in to a number of segments attached
together. The segments have a mass and geometry according to the original beam
but they are connected together with springs of the Eq 3.72. An eight segment beam
in ADAMS is shown in Fig 9. The beam is in yellow and the red shapes between the
segments are springs connecting the segments together. The characteristics of the

Figure 9: A discrete �exible link in ADAMS

beam, such as the geometry and material properties, are entered to the link tool.
ADAMS then calculates appropriate forces and masses for the beam automatically.
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The properties of the beam may be later modi�ed. The more the segments there
are in the discrete �exible link, the closer it behaves to an actual beam.

3.4.5 Area Moments of Inertia

Area moments of inertia are geometrical properties of beams used to calculate beam
displacements, for example. In Fig 10 is shown necessary needed dimensions to
determine area moments of inertia for rectangular and circular pro�les. [29]

Figure 10: Dimension for rectangular and circular cross sections

The general equations for calculating area moments of inertia are [29]

Ix =

∫ ∫
y2dA (3.73)

Iy =

∫ ∫
x2dA (3.74)

The equations for rectangulars whose centroid is at origin are

Ix =
b · h3

12
(3.75)

Iy =
b3 · h

12
(3.76)

And for hollow cylinders

Ix =
π

4
(R4

o −R4
i ) (3.77)

= Iy (3.78)

3.5 Degrees of Freedom and Joints

In 3D space an unconstrained body has six degrees of freedom: three for translations
along the three coordinate axes and three for rotations around the same axes. Con-
straints reduce the number of degrees of freedom by limiting the bodies' movement.
The equation for calculating the number is sometimes called the Kutzbach criterion
and it is [34]

m = 6 · nb − nc (3.79)
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Figure 11: Three di�erent joints: translational, revolute and cylindrical

where nb is the number of bodies in the system and nc the number of independent
constrain equations. Another � perhaps more commonly used � equation is the
Gruebler count [5]:

m = 6 · (nb − 1)− nc (3.80)

The di�erence between the Kutzbach criterion and Gruebler count is that the latter
considers the global ground as one body whereas Kutzbach does not. The end result
is the same regardless of which method is utilized. The number of free DOFs directly
relates to how the mechanism is able to manoeuvre. If the number of free degrees of
freedom is zero, the mechanism is locked and cannot move except in the case where
one of the constrains is a motion. If there are one or more free DOFs the mechanism
is able to move in one or more direction. Usually, the desired number of free DOFs is
zero or one. It is also possible for a system to have a negative number of freedoms, it
is then called overconstrained. Typically in this case, there are redundant constrains
in the system and the mechanism itself might still be able to move. For example,
if all four joints in Fig ?? are revolute type, the joints remove the same DOFs four
times. One of these freedoms are translation and rotation along axis perpendicular
to the viewer.

In Fig 11 there are shown three di�erent joints: translational, revolute and cylin-
drical. These are among the most common types of joints. In Table 1 are listed
all types of joints MSC ADAMS supports and how many numbers of freedom they
limit. For a translational joint, for example, the table shows that two translations
and all three rotations are limited leaving only one translational direction free. As
such, it constraints �ve DOFs. The revolute joint is similar to translational since it
also allows one degree of freedom. The cylindrical joint restricts in total four DOFs:
two translational and two rotational.

Joints that have a surface contact are called lower pairs. Higher pair joints have
a point or a line contact. For example, spherical constraint has a point contact and
thus is a higher pair joint. Revolute joint has a line contact since it rotates around
an axis. Planar joint is an example of a lower pair constraint.

Further classi�cation of constraints [34]:
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Table 1: Types of joints used MSC ADAMS and the number of freedoms they remove
[5]

Constrain Translational Rotational Coupled Total
element constraints constraints constraints constraints

Joints

Fixed 3 3 0 6
Translational 2 3 0 5
Revolute 3 2 0 5
Cylindrical 2 2 0 4
Universal 3 1 0 4
Planar 1 2 0 3
Spherical 3 0 0 3
Rack-and-pinion 0 0 1 1

Joint primitives

Atpoint 3 0 0 3
Orientation 0 3 0 3
Inline 2 0 0 2
Parallel 0 2 0 2
Inplane 1 0 0 1
Perpendicular 0 1 0 1

Motions

Translational 1 0 0 1
Rotational 0 1 0 1
Coupler 0 0 1 1

• Holonomic constraints restrict the position of a system. The constrain equa-
tion can be written as

C(q1, q2, . . . , qn, t) = C(q, t) = 0 (3.81)

• Rheonomic constraints depend on time, that is, time appears explicitly in the
above equation

• Scleronomic constraints do not depend on time

where C stands for constraint equation. A joint may be holonomic and rheonomic
or holonomic and scleronomic. If a constraint equation cannot be expressed in the
form of Eq 3.81 it is called a nonholonomic constraint. For example, if the constraint
equation involves a coe�cient matrix it cannot be integrated and expressed in the
form of Eq 3.81 and thus is nonholonomic. An example of such a constraint could
be a rubber shock absorber whose properties are strongly nonlinear and must be
given in a matrix.
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If a constraint contains an equality, C(q, q̇, t) = 0, it is called two-sided and
restrictive or limiting. In the event of inequality, C(q, q̇, t) ≥ 0, a constraint is
referred to as one-sided and nonrestrictive or nonlimiting. [34]

3.6 Vibrations and Damping

Vibration theory is closely related to dynamical analysis of multibody systems [11].
The same dynamic equations and matrices function in the background of both �elds.
As such, both areas of problems can just as easily be solved with multibody dynamics
software.

The equation of motion for a simple spring-damper system is [13]

Mẍ + Cẋ + Kx = f(t) (3.82)

here, the x is generalized coordinate, M is mass matrix, C is damping matrix, K is
spring constant matrix and f is external force. The equation is of di�erential type
and of second degree. Di�erential equations can be solved directly with integrators
or symbolically. Symbolic calculation is easy when the system is simple. Some
symbolic equations are presented next.

The characteristic equation for this kind of DE is

mλ2 + cλ+ k = 0 (3.83)

From this equation few additional parameters can be determined. Inspecting a
critically damped system in which response does not involve oscillation, the natural
frequency is de�ned as

ωn =

√
k

m
(3.84)

where k is the spring constant and m the mass. For systems with damping, the
damping ratio is

ζ =
c

2mωn
(3.85)

where c is the damping factor. Damping also a�ects to system's natural frequency.
The natural frequency of a damped system is

ωd = ωn
√

1− ζ2 (3.86)

3.6.1 Mass-spring Absorber

A simple vibration absorber is constructed of a mass and a spring by choosing their
values carefully. When properly adjusted, the absorber suppresses all vibration in
a system with a harmonic excitation. [30] Consider Fig 12. A harmonic excitation
of F (t) = F0sin(ωt) a�ects the mass m. The mass is on two springs each with a
sti�ness of k/2. The absorber consists of mass ma and spring ka. The amplitude of
the excitation X is [30]

X =
(ka −maω

2)F0

(k + ka −mω2)(ka −maω2)− k2a
(3.87)
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Figure 12: A mass-spring absorber suppresses harmonic excitation on a mass-spring
system

If the amplitude is set to zero the vibrations are completely damped. From above

X = (ka −maω
2)F0 = 0 (3.88)

⇒ ka −maω
2 = 0 (3.89)

⇒ ka
ma

= ω2 (3.90)

Now the amplitude of the absorber mass is

Xa = −F0

ka
(3.91)

We can see the force F0 is directly a�ecting only to the absorber, fully negating its
e�ect to the main mass m.

The Eq 3.90 can be easily converted from linear motion to rotation motion by
changing the masses to inertias and sti�nesses to rotational ones [30]

ka
ma

= ω2 (3.92)

⇒ k

J
= ω2 (3.93)

3.6.2 Modal Analysis

Modal analysis aims to determine and solve the vibrational modes and frequencies
of parts and structures. The vibrational modes are resonance points where the part
starts to vibrate with excessive oscillatory motion. These modes are mainly the
result of the inertial and elastic properties of the materials in the part or system.
Modal analysis is typically done for structures or parts to assess their dynamic
behaviour and resonance frequencies, see Fig 13. [14]

In analytical modal analysis, physical coordinates, x, are replaced by modal
coordinates, r. This is allowed by eigenvectors v. With physical coordinates the dif-
ferential equations describing the motion are coupled, that is, they must be solved
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Figure 13: Modal analysis of a car body [14]

together. This is potentially problematic and slows down the solving. When ex-
pressed with nodal coordinates these equations are uncoupled and they can be solved
independently. [30]

This change of variables is done by a matrix of mode shapes S [30]

r = S−1x (3.94)

where S = M−1/2Pr. For example a simple mass-spring system

M ẍ +Kx = 0 (3.95)

[
m1 0
0 m2

]{
ẍ1

ẍ2

}
+

[
k1 0
0 k2

]{
x1

x2

}
=

{
0
0

}
(3.96)

Becomes [30] {
r̈1
r̈2

}
+

[
ω2
1 0

0 ω2
2

]{
r1
r2

}
=

{
0
0

}
(3.97)

3.6.3 Modal Neutral Files

Modal Neutral Files (MNFs) are, in essence, modal descriptions of �exible bodies.
They are the primary method of handling �exible bodies in MSC ADAMS and they
are generated in �nite element analysis programs such as MSC NASTRAN. One
MNF �le contains the following information [9]:

• Geometry including node location and connectivity. The nodes are generated
from the mesh the FEA program creates when constructing the MNF �le.

• Nodal mass and inertia. Each node is assigned to a mass according to material
parameters. Accordingly, the inertia is also calculated.
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• Mode shapes. A �exible body has numerous modes of vibration, the so called
normal modes. The frequencies and shapes of these modes are included in the
MNF �le. The �exible body deformations are, basically, a linear combination
of these deformation shapes.

• Generalized mass and sti�ness for mode shapes. The sti�ness of the body is
essential when working with �exible bodies. When the sti�ness and external
forces are known, the strains can be calculated as well as stresses.

Generally, a MNF �le includes the data of the �rst ten normal modes as they are
often the most important. The �rst normal mode has the lowest frequency and
the following modes have increasingly higher. The higher the excitation frequency
equals to lower vibration amplitudes, rendering them improbable to have a signi�-
cant impact. Therefore, usually only the �rst ten or so modes are included in the
MNF �le.

3.6.4 Natural Frequencies of Beams

The natural frequency of a beam can be calculated with equation [27]

ωn = A

√
EI

µL4
(3.98)

where A is the area of the beam's cross section, E is elastic modulus, I is area
moment of inertia, µ is the mass per unit length of beam and L the length of the
beam.

3.7 MSC ADAMS

MSC ADAMS (Automatic Dynamic Analysis of Mechanical Systems) is a widely
used multibody dynamics simulation software produced by MSC Software Corpora-
tion. According to MSC [21]:

Adams lets you build and test virtual prototypes, realistically simulat-
ing on your computer, both visually and mathematically, the full motion
behaviour of your complex mechanical system designs.

Adams o�ers multiple types of simulations and many tools to help build models as
accurately as possible. In this section Adams is introduced and some important
features and functionalities presented.

3.7.1 Simulation Types

In MSC ADAMS, there are three di�erent simulation types from which the user can
choose the most appropriate one. These are: kinematic, static and dynamic. [9]

The kinematic mode is applicable when there are zero degrees of freedom. Any
movement in the system is done by forced motions at joints and there are no freely
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moving parts. In this mode, ADAMS uncouples the motion and force equations and
�rst solves positions, then velocities, accelerations and forces algebraically. [5] [9]

In static or quasi-static mode reaction forces are determined so that they bal-
ance out the external forces and loads and the whole system is in equilibrium in-
dependently at each time step. From equilibrium it follows that all velocities and
accelerations are zero and that there is no movement in the system. This mode is
useful if inertial e�ects need not be taken to account. Static equilibrium can also be
determined before starting a dynamic simulation. For example, in vehicle simula-
tion it is important to place the vehicle on the ground before attempting a dynamic
simulation. [5]

When the system has at least one degree of freedom, a dynamic analysis is
required. In dynamic simulation, the di�erential equations are automatically for-
mulated and numerically solved to determine the system's components' positions,
velocities, accelerations and forces. [5]

The simulations are all done at predetermined time steps, known as integration
time steps. The step size is free for user to select though the program may compute
additional time points between the steps. The user also sets a simulation stop time,
that is, the time limit how long the simulation is run. [5]

3.7.2 Solvers

There are three types of equations ADAMS must solve depending on the model and
simulation type: linear equations, non-linear equations and integration. [5]

Linear equations are equation sets that may be expressed as

A x = b (3.99)

where A is square matrix of constants, x a vector of unknowns and b a vector of
constants. Typically, matrix A is very sparse, meaning there is a great number of
zeros compared to non-zero values [5]. Eqs such as 3.99 can be solved using LU
Decomposition where the matrix A is decomposed or factorized into the product of
two new matrices: lower triangular L and upper triangular U

A = L U (3.100)

First is solved equation L = y b for y by forward substitution. Then, U = x y for
x by back substitution. [2]

Non-linear equations are more di�cult to solve and require a numerical approach.
A set of non-linear equations are of the form

G x = 0 (3.101)

where G is a set of implicit equations depending on x. ADAMS utilizes a method
called Newton-Raphson iteration [9]. This technique is based on the hypothesis that
as the non-linear equation approaches zero, G = 0, the curve can be approximated
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to a straight line. The derivative of this curve at nth iteration at point (xn, Gn) is
(∂G/∂x). If the presumed value of G at point G = 0 is (x0, G0), it follows that

∂G

∂x
=
G0 −Gn

x0 − xn
=

∆G

∆x
(3.102)

and rearranging

∆G =
∂G

∂x
∆x (3.103)

Now ∆G is a vector of current error of each equation. The solution has been reached
when this error approaches zero. A commonly used convergence criteria is −10−4 ≤
∆G ≤ 104. [5] [9]

Integration methods are required for dynamic analyses as they cannot be de-
termined algebraically alone. These simulations include a number of both di�eren-
tial and algebraic equations (DAEs). ADAMS has two main types of integrators:
sti� and non-sti�. Sti�-solvers utilize an implicit, backward di�erence formulations
(BDFs) to solve DAEs whereas Non-sti� ones use explicit formulations ordinary
di�erential equations determined from the BDFs. [9]

There are four sti� integrators in ADAMS. These are: GSTIFF, WSTIFF, Con-
stant BDF and RKF45. There is also one non-sti� integrator, Adams-Bashforth-
Adams-Moulton (ABAM). Additionally, there are two newer integrators which are
neither sti� or non-sti�. They are: Hilber-Hughes-Taylor (HHT) and Newmark. In
Fig 14 the di�erent integrators are listed as well as their characteristics. [9]

Another substantial in�uence regarding the solving of DAEs and ODEs is the
formulation. This formulates the equations from the model and chooses which vari-
ables to solve �rst. In ADAMS there are three formulations: I3, SI2, SI1. These
are listed in Fig 15. [9]

3.7.3 Optimization

Optimization is a sophisticated tool used to improve the design or model and to
shorten the design cycle. Usually, designs have certain goals or design objectives
which indicate how well the model performs in its task. Such a goal might be
to minimize forces a�ecting to a part during a prede�ned movement or action.
The design process involves choosing the model parameters correctly so that the
design ful�lls all goals and satis�es possible restrictions. Optimization is meant to
analytically reach the theoretically best solution. [9]

The model parameters are expressed as Design Variables. These are simple nu-
merical or boolean variables which are used to de�ne the model and its geometry.
Design variables may be used to de�ne part's length or velocity, for example. De-
sign goals are called Design Objectives. The objective is a user de�ned numerically
calculated value what the user wishes the outcome of the simulation to be, such as
forces a�ecting a part or its weight cannot be above a certain point or the part's
�nal position after a simulation must be a certain value. Restrictions are referred to
as Design constraints. These constraints are user de�ned to limit the model in some
way, for example, due to manufacturing restraints or maximum dimensions. [9]
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Figure 14: Comparison of Integrators. Courtesy of MSC Corporation [9]

In Fig 16 a simple optimization process is shown. First, it is often a good idea
approach to de�ne the design variables and build the model based on them. Then,
after the model is ready, possible design constraints are speci�ed. This step is
optional. Finally, design objectives must be chosen. Now an optimization can be
run.

The optimization starts running a single simulation. Based on the simulation
and its outcome the design objective is calculated. If the objective is reached the
optimization is complete. If not, the design variables are adjusted based on the
selected algorithm. After adjusting the simulation is ran again and results checked.
This loop continues as long as the user has speci�ed in the optimizer settings.
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Figure 15: Equation formulation comparison. Courtesy of MSC Corporation [9]

Some commonly used settings for optimization are presented in Table 2. There
are two di�erent optimization algorithms supplied with ADAMS and they are: [9]
[20]

• OPTDES-GRG (Generalized Reduced Gradient)

• OPTDES-SQP (Sequential Quadratic Programming)

In addition to these algorithms, more can be purchased from 3rd parties. It is
also possible to create your own algorithms.

MSC ADAMS also o�ers design evaluation tools similar to the optimization
tool. A Design Study helps to investigate the in�uence of a single particular design
variable to the performance of the whole model. During a design study ADAMS
varies the value of this variable according to a prede�ned range and simulates &
records the results. [9]

A Design Experiment is similar to a design study but it analyses the e�ect
multiple variables at once. It is a useful tool to understand how di�erent variables
interact and how it a�ects the model. [9]
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Figure 16: A simple representation of an optimization process

Table 2: A list of measures in the model [9]

Setting Description
Algorithm Speci�es the mathematical algorithm used to

perform the optimization
Convergence Tolerance The limit below which subsequent di�erences

of the objective must fall before an optimiza-
tion is considered successful

Maximum Iterations How many iterations the algorithm should
take before it admits failure

Rescale Iterations The number of iterations after which the de-
sign variable values are rescaled

Di�erencing Technique Controls how the optimizer computes gradi-
ents for the design functions

Di�erencing Increment Speci�es the size of increment to use when
performing �nite di�erencing to compute
gradients
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4 Analysis

Two analyses are done in this thesis: the �rst is designing and dimensioning a lifting
aid for a hinged main cover with a gas spring. The second one is a vibrational
analysis of a dispensing robot unit and its needle. These two problems were chosen
to demonstrate the abilities of MSC ADAMS from general designing aid point of
view to a frequency and amplitude analysis. The problems were selected with TFS's
R & D personnel to re�ect real life situations.

4.1 Problem 1: Lifting aid for main cover

The �rst problem is a classical mechanism analysis including dimensioning and
choosing a suitable spring to lighten the load to open a main cover of a labora-
tory instrument.

4.1.1 Background

In Thermo Fisher Scienti�c Oy a subdivision called Analyzers & Automation design
and manufacture modular automatic laboratory sample transfer and handling sys-
tems. These systems are comprised of multiple di�erent modules each performing a
speci�c task. Together they make up a fully automatic conveyor belt style sample
handling assemblies. For one such module, a new main cover has been designed but
it is too heavy to lift and thus a lifting aid must be added the design. This is the
focus of this section.

In Fig 17 the module is shown simpli�ed with the main cover visible in blue
colour. The outer dimensions of the module are approximately 1400 x 800 x 1400
mm (W x D x H). The main cover is transparent allowing the user to see inside.
The cover is opened during maintenance and in error situations where good reach
inside the module is important. The design requirements for the main cover are:

1. The gas spring must be able to be installed fully extended

2. The cover must be able to be lifted with a force of few dozen newtons

3. The cover should stay open by itself

The �rst item in the list above is related to the assembly of the module. It is required
that the gas spring can be installed fully extended as it is exceedingly impractical
to compress the spring inside the instrument.

The cover also has to be easy to lift with a force of only few dozen newtons
equalling few kilograms. The module is used by di�erent laboratory personnel with
various lifting capabilities and therefore the mechanism must be light. Additionally,
the cover should stay open by itself in the upright position to ensure safe operation
inside the module for the user. In the case this cannot be achieved with the gas
spring, it can also be accomplished with an additional mechanism incorporated into
the design of the hinges.
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Figure 17: The module with its main cover closed and open

4.1.2 Model

An exploded assembly picture of the main cover is shown in Fig 18. Part names
are accordingly listed in Table 4. All other parts are aluminium except the window
which is polycarbonate.

The cover mechanism can be simpli�ed to a four bar linkage as shown in Fig 19.
The dimensions of the linkage are given in the Table 3. In the open position, the
lower link a rotates 160 degrees clockwise while the upper link c approximately 74
degrees.

Table 3: Dimensions of the four bar linkage according to Fig 19
Constant Name Length

a Link lower 299.1 mm
b Main cover 346.4 mm
c Link upper 475.2 mm
d Ground 360.6 mm

The main cover, b in Fig 19, consists of �ve parts: left and right frame, lower
and upper rail and the window itself. These parts are �xed together to simplify the
calculations. The masses of the parts in the model are listed in table

A typical gas spring consists of �ve components: a piston rod, guide, seal, piston
and tube. In Fig 20 a gas spring is shown. The tube is �lled with an inert gas at
high pressure, typically nitrogen. This pressure is equal in both sides of the tube.
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Figure 18: The main cover model assembly exploded

Table 4: Weights of the components in the mechanism according to 3D models.
Numbering in relation to Fig 18.

Number Name Weight
1 Link lower left 0.22 kg
2 Link lower right 0.22 kg
3 Link upper left 0.41 kg
4 Link upper right 0.41 kg
5 Frame left 0.57 kg
6 Frame right 0.57 kg
7 Rail lower 3.23 kg
8 Rail upper 3.23 kg
9 Window 6.86 kg

Combined 15.72 kg

The pressure exerts a force on the piston that is greater in the right side in Fig 20.
This produces a pushing force at the end of the piston rod. A guide is installed at
the end of the tube to keep the rod moving linearly. A seal keeps the pressurized
gas inside the tube. Mounting points are provided at each end of the gas spring.
[18]
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Figure 19: The cover mechanism closed and open as a simpli�ed four bar linkage.

Typical applications of gas springs include lifting and unloading heavy objects,
such as window frames, robot actuators and doors. They have dampening charac-
teristics which is useful to control the movement. [18]

Figure 20: Gas spring, courtesy of Lesjofors AB [18]

Unlike traditional coil springs, gas springs produce force throughout the stroke.
Typically, the manufacturer gives gas spring's force when the spring is completely
extended. As the spring is compressed, the force increases due to progression and
the gas inside the spring compressing. In Fig 21 is shown a typical stroke-force-
graph. When stroke is at 100 %, i.e. the spring fully extended, the force is equally
at 100 %. As the spring is compressed and the stroke decreases, the force increases.
At stroke 0 % the force is 120 % indicating a twenty percent increase. The spring is
thus said to have a progression of 20 %.

The model used in ADAMS is shown in Fig 22. The spring is constructed of
two parts to aid visualize its movement, a cylinder and a shaft. Additionally in the
�gure is shown three construction points, PNT_1, PNT_2 and PNT_3, as well
as two design variables, DV_spring_length and DV_spring_stroke. The points are
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Figure 21: Gas spring force with progression

utilized to measure spring length and stroke. The variables were created to enable
easy changing of the values during testing.

Figure 22: Gas spring model in ADAMS

Besides to the two variables above, two more were needed: DV_spring_preload
and DV_spring_progession. The preload variable determines the force the spring
exerts at fully extended state. The progression variable declares the amount of force
increase as the spring compresses according to Fig 21.

The equation to calculate the force of the spring is:

Fs = Preload (1 +
Progression

100
· −DM(PNT1, PNT3) + Stroke+ Length

Stroke
) (4.1)

where DM is ADAMS function to calculate the distance of two points. First, the
negative distance of the end points of Fig 22 is determined. Then, the stroke and
length are added and the sum divided with the stroke of the spring. As a result, a
number from 0 to 1 is obtained. This is multiplied with the amount of progression
and summed with the preload.

The model was built according to the "Crawl, walk, run" philosophy introduced
in Section 2.3. Topology is shown in Fig 23 with appropriate measures. A full list
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of measures is shown in Table 5. The topology is a closed loop type described in
Section 3.1. Only the left side links and hinges were modelled since the other side's
links would have overde�ned the system.

Figure 23: Model topology

The lower link in Figs 18 and 23 is actuating the mechanism during the simula-
tions. There is a motion in the revolution joint between the link and ground. There
was another revolution joint connecting the lower link to the left frame. The upper
link was connected with a cylindrical joint to ground and with a spherical joint to
the left frame instead of revolute joints to avoid redundant constraints. The other
parts of the assembly were �xed to the left frame.

The Gruebler count including the motion is

m = 6 · (nb − 1)− nc
= 6 · (8− 1)− (4 · 6 + 2 · 5 + 4 + 3 + 1)

= 6 · 7− (24 + 10 + 4 + 3 + 1)

= 42− 42

= 0

which means there are no degrees of freedom and the movement of the mechanism
is completely determined. This is as intended and is required to perform a static
simulation.
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Table 5: A list of measures in the model

Type Name Description
Torque Motion_open_torque The torque in Motion_open needed to open

and close the main cover around the joint
between Link_lower and GND, see Fig 23

Force Motion_open_force The force needed to open and close the main
cover at the end of Link_lower, calculated
from Motion_open_torque

Angle Link_upper_angle The angle of the cylindrical joint between
Link_upper and GND

Angle Link_lower_angle The angle of the revolution joint between
Link_lower and GND

Length Spring_length The length of the gas spring, see Fig 22
Length Spring_stroke The stroke of the gas spring, see Fig 22
Force Spring_force The force of the gas spring

4.1.3 Analysis

The analysis was begun by determining the motion to open and close the main cover.
The cover is closed when the lower link is horizontal and open when it has rotated
160 degrees. The motion to rotate the link was determined with STEP functions
as

Displacement = STEP (time, 0, 0, 10, 160d)− STEP (time, 10, 0, 20, 160d) (4.2)

The cover now opens and closes 160 degrees in 10 seconds. The whole movement
takes 20 seconds which was also the simulation time used. Since no inertial loads had
to be considered, the simulations were ran as static. The duration of the movement
does not a�ect the results since a static simulation was run and it does not take
in to account the inertial properties of the components. The resulting angles are
shown in Fig 24. Contrary to the �gure, the links rotate to the same direction. The
lower link rotates from zero to 160 deg to zero as intended. The lower link rotates
from zero to approximately 74 degrees, then back to 65 degrees at top dead center.

The force required to open and close the main cover is shown in Fig 25. Note that
the x-axis is in lower link angle. The maximum force required is about 125 newtons.
This is the value the gas spring aims to diminish. At the end of the movement the
mechanism locks in to place as indicated in the graph when the line approaches and
reaches zero and then changes sign.

Now, when the movement of the upper link has been calculated, the spring can
be preliminary placed for testing purposes. In Fig 26 a sketch is shown to indicate
the placement of the spring. In the �gure there is the end of upper link that connects
to the ground via a cylindrical joint. The link has a 'J' shaped end to accommodate
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Figure 24: The angles of lower and upper links during opening and closing motion

Figure 25: The required force to open cover as a function of lower link angle

the module's roof when fully opened. The spring can be mounted on to a circle with
diameter of 140 mm shown as dotted line. At a distance of 285 mm from the link's
joint there is a beam in the frame of the instrument to which the spring may be
securely attached. A vertical line is drawn to resemble this beam. The other end of
the spring should therefore lie on this line.

Next, a simple test was conducted to get a rough view of what could be the opti-
mal point to attach the spring to the upper link. The end of the spring that connects
to the module frame � ground in ADAMS � was positioned to the aforementioned
line and horizontally to the link's joint. Then, the spring's other end was attached
to the circle with the diameter of 140 mm. The �gure shows the two positions,
compressed and extended, of the gas spring. The line indicating the compressed
spring's length starts from this circle at a 48 degree angle from horizontal line. Ac-
cordingly, the extended spring starts from a 74 degree angle from the compressed
spring's starting point as determined from Fig 24.

For the test the 48 degree angle � later referred to as beta or β, was altered, i.e.
the angle of the attaching point of the spring in its compressed state. The tested
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Figure 26: The sketch of the placement of the spring on the upper link

angles were: 0, 26, 52, 78 and 104. Corresponding angles of the spring in its extended
state were: 74, 100, 126, 154 and 180. At the minimum angle of 0/74 degrees the
spring is horizontal at the beginning of the movement and at the maximum angle
of 104/180 the spring is again horizontal but at the end of the movement.

Figure 27: Results of altering the spring attaching point on upper link

The results are shown in Fig 27. Only half of the full movement of the cover was
measured, that is, the cover is only opened but not closed. The force on vertical
axis is the force required to open the cover according to Table 5. The gas spring
was set as constant at 1000 N which proved to be a good guess.

From the �gure we can see that with a small β the opening movement requires
a great force at beginning but lightens when approaching approx 120 degree angle.
Likewise with a large β the cover is �rst light to open but becomes heavier as the
angle increases. The best results are obtained with β = 52 deg when the force is
most constant throughout the movement.

Next, a more intricate analysis of the angle β was performed. A new set of results
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is shown in Fig 28. The best compromise is once again achieved with β = 52 deg.
Instead, an angle of β = 48 deg was chosen to accommodate the spring progression
later.

Figure 28: Another set of results of the spring attaching point

A sketch of spring placement with angle β = 48 deg is shown in Fig 29. The
length of the spring extended is 327.52 mm which is the ideal length. Additionally,
the angle between the compressed spring line and the line de�ning the angle β is
shown; it is 119.68 degrees. This angle � de�ned as α � must kept constant so that
the results obtained earlier remain valid.

Figure 29: The sketch of the placement of the spring with β = 48 deg

Now, a suitable gas spring can be found. The ideal length from Fig 29 is 327.52
mm and the force the spring produces must be around 1000 newtons. If two gas
springs are installed on both sides of the main cover, half of 1000 N is su�cient.
According to Fig 24, the stroke of the gas spring must be at least [36]

S = 2 · 140 mm

2
· sin(

74

2 · 360
) ≈ 84.3 mm (4.3)
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An applicable spring was found from HAHN Gasfedern. The model is G 10-28
indicating a piston rod diameter of 10 mm and cylinder diameter 28 mm. The
speci�cation sheet can be found in Appendix 1. Extension force is rated from 100 to
1200 newtons with a progression of 20 %. Choosing a stroke of 120 mm, the overall
length of the spring extended is 310 mm without �ttings. With �ttings AU 19 the
overall length increases by 38 mm to 348 mm. The geometry with this length is
shown in Fig 30. In the �gure can be seen that the angle of 119.68 degrees is kept
constant but there is no reference to β.

Figure 30: The sketch of the placement of the spring with length 348 mm

Next, di�erent spring forces were tested. The results can be seen in Fig 31. From
the graph can be seen that the best solution is somewhere between 750 N and 800
N. A further analysis was performed of this range and the results can be seen in Fig
32. From this graph, the force 780 N seems most suitable and was therefore chosen.

The ADAMS model with the cover closed and open is shown in Fig 33. The
gas spring can be seen in the lower left corner of the assembly. Measures for the
�nal con�guration are shown in Fig 35. In the 'Force of gas spring' graph there is a
new component labelled 'Spring force e�'. This is the e�ective force the gas spring
generates where the angle of the spring relative to the joint is taken into account.
The function measure is

Spring_force_eff = SIN(INCANG(PNT1, PNT3, JOINT )) · Spring_force
(4.4)

The force graph from the �gure is shown again in Fig 34 as a function of lower
link angle. From this graph it can be seen, that the cover open easily to about 120
degrees. After this point, the opening motion starts to compress the spring as seen
previously in Fig 24.

Comparing to the requirement list in Section 4.1.1, following observations can
be made:
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Figure 31: The force needed to open the main cover as a function of di�erent spring
forces between 700 N and 1000 N

Figure 32: The force needed to open the main cover as a function of di�erent spring
forces between 700 N and 800 N

1. The gas spring design length according to manufacturer is 348 mm. From
Fig 35 it can be seen that this dimension is reached when the spring is fully
extended

2. The force required to open the cover is less than 20 newtons from 0 to 130
degrees in lower link angles

3. An adjustable friction element is required for the cover to stay open by itself

All the requirements are met and the design should function as intended. The gas
springs were successfully ordered and received from the manufacturer. According
to the simulations the force required to open the cover is under 20 newtons which
equals to two kilograms ful�lling the requirement 2.



47

Figure 33: The ADAMS model with the gas spring, closed and open con�gurations

Figure 34: Graph of the force needed to open the cover as a function of lower link
angles
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Figure 35: Measures from the �nal con�guration
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4.1.4 Results Veri�cation

A real life prototype of the main cover was constructed to check the functionality
of the design and whether the design goals listed in Section 4.1.1 were reached.
The prototype was built according to description in Section 4.1.2 and the �nal
design obtained from results in Section 4.1.3. A photograph of the gas spring in
the prototype is shown in Fig 36. All the parts were attached to one another with
screws with built in plain bearing surfaces. The bearing itself was installed between
the screw and the part it was being attached to. This eliminates the need for any
additional joints such as hinges etc. In the Figure, the screws can be seen in black
and the bearing as white beneath them.

Functionality of the main cover was evaluated by hand as it was the most straight-
forward method and de�nes the user experience in the end. As intended, the cover
proved very light to open and the force required stayed quite constant throughout
the manoeuvre. The cover was somewhat more easier to open than close, this may
be because of the additional frictions in the joints and screws. It may be necessary
to select springs with a slightly lower force for the end product.

A positive surprise was the fact that the gas spring itself has enough internal
damping so no external friction element was needed for the cover to e�ortlessly stay
open by itself at any angle. The prototype had perhaps a bit too much damping
and it may be worth to try out springs with a bit lower damping. The manufacturer
of the gas spring can build the spring with di�erent damping coe�cients if there is
need to �ne tune it.

The installation of the spring was very straightforward. The spring could be
quickly put in and without any complicated tools since the attaching points of
the gas spring were chosen so that it could be installed fully extended. The end
connectors of the spring were also ideal for this purpose and their holes for screws
very conveniently sized.

Overall the designer of the cover and mechanism was very satis�ed with the
result. The prototype was not very sturdy but otherwise it functioned superbly and
demonstrated well the idea of virtual prototyping. There were already some minor
improvement plans requiring further simulations, such as trying to re-enable the lost
locking function as shown earlier in Fig 19.

4.1.5 Conclusions

In this problem, a lifting aid for an instrument's main cover was dimensioned and
suitable gas spring chosen. The mechanism and design of the main cover was already
given but the attaching points of the gas springs and the springs themselves were
determined with a multibody simulation in MSC ADAMS.

The main cover consists of nine parts but the simulation model was reduced to
six components by taking into account duplicated parts on the other side of the
cover. In the model, the gas spring was modelled as a custom force function repre-
senting the actual behaviour of a gas spring such as progression during extending
and compressing. Revolution, cylindrical, spherical and �xed joints were used to
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Figure 36: Photograph of the prototype and one of its gas springs

construct the model. There were no �exible parts. The system had zero degrees of
freedom and thus the simulations were ran as static to ignore the parts' inertias.

In the analysis, �rst the geometry and the attaching points of the gas spring were
chosen. Typically, few simulations were ran at a time varying certain parameters
and the best result was chosen to the next step. With this semi-empirical method a
suitable geometry was found ful�lling the requirements. After this, the desired stroke
and force of the gas spring were known and an appropriate gas spring was searched.
HAHN Gasfedern model G 10-28 was selected. Final simulations were successfully
ran to con�rm the selection and the ful�lment of the original requirements.

A fully functioning prototype was built for result veri�cation purposes. The
prototype proved to perform very well and just as intended. The cover was light to
open and stayed open at all opening angles. Additionally, the gas spring was easy
to install to the mechanism. The designer of the cover and mechanism was very
satis�ed with the results.

The dimensioning and choosing the gas spring for the cover mechanism was
considered a success. The overall time used to solve this problem with multibody
simulations was about one week. This is relatively small time and price to pay
compared to performing the same iteration with actual prototypes. With prototypes,
the problem would most probably not be solved with the �rst creation but would
have to be re�ned in the next ones each spanning few months apart. As the problem
was successful solved with a one week simulation, considerable time and e�ort was
saved. The same model and observations may be very easily transferred and taken
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into account in di�erent types and shapes of covers requiring even less time than
the one week this problem took.
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4.2 Problem 2: Vibration analysis of a needle

The second problem involves analysing de�ections of a polar coordinate robot and
its needle utilizing �exible parts and ADAMS' inbuilt functions.

4.2.1 Background

In some of Thermo Fisher's laboratory analyzers, polar coordinate robots are utilized
for liquid handling among other things. A picture of one such robot can be seen
in Fig 37. The unit's main parts are: frame, phi and y motors, bearing assembly,
arm, needle holder and needle. The two polar coordinates are y for up/down motion
and φ for rotations about the y axis, each has its own stepper motor. The motors
actuate a spline shaft via belts, the shaft being attached to the frame with the
bearing assembly. The shaft is connected to the arm at the other end. The needle
holder holds the needle in place, as the name suggests. Through the needle the unit
dispenses liquids with the actual syringe located elsewhere in the analyzer. The

Figure 37: Polar coordinate dispensing robot with main components

shaft in the unit is a hollow spline type, shown in Fig 38. The ball spline functions
as a translational joint that is �xed to the unit frame with the bearing assembly
allowing rotations about the y axis. Since the tip of the needle hangs freely in the air,
vibrations occur during the movement of the unit. This is particularly a problem in
the φ direction when the movement stops suddenly. The purpose of this analysis is
to construct a model resembling the actual unit and measuring how large vibrations
occur at the tip of the needle.
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Figure 38: THK LT 16 Hollow ball spline shaft and bearing

4.2.2 Stepper Motor Flexibility

The stepper motor �exibility plays a signi�cant part in the vibrations of the dispens-
ing unit. Although the motor aims to keep as still as possible when movement has
stopped, the so called Holding torque, it nevertheless has certain spring-like charac-
teristics in it. That is, the motor is prone to oscillate for a short while after any
movement has stopped. This is a problem particularly when stopping from high
speeds. [15]

This behaviour can be modelled with an additional torsion spring. To do this,
�rst a sti�ness has to be determined for the motor. This is done by analysing the
oscillation frequency with a high speed camera and tracking software. Software
called Tracker was chosen since it is open source and academically developed [8].
The high speed camera used shoots 400 frames per second.

In the test the stepper motor was equipped with a heavy disc whose inertial
properties are known. The motor was then made stationary with holding current
enabled and the disc was lightly rotated from the equilibrium. After the rotation
the disc was allowed to freely move, resulting in a oscillating motion. The outcome
can be seen in Fig 39.

Figure 39: Measured stepper motor vibrations with di�erent holding current settings

In the �gure, three graphs are shown. Each graph represents a di�erent holding
current setting. The holding current is an electrical current �owing through the
stepper when it is stationary, holding it in place and resisting any movement. The
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currents are rated from 0 to 3, with 0 = no holding at all, 1 = 25 % current, 2 = 50
% current and 3 = 100 % current from rated maximum for the motor.

To determine the sti�ness of the motor at these di�erent settings, the natural
frequencies must be known. A FFT transformation was done for all three. The
results are in Fig 40.

Figure 40: Measured stepper motor vibrations with di�erent holding current settings
and FFT graphs

From the �gure it can be seen, that with holding current 1 the high frequency
peak is 10.9 Hz, with holding current 2 it is 12.5 Hz and with holding current 3 17.2
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Hz. From Section 3.6 we have learned that

ωn =

√
k

J
(4.5)

⇒ k = J · ω2
n (4.6)

Where ωn is the frequencies above, k is the wanted sti�ness and J is the moment of
inertia of the disc, which is J = 1103.0 kgmm2 = 1.103 · 10−3kgm2, calculated with
SolidWorks. We get

k1 = J · ω2
n (4.7)

= 1.10 · 10−3 kgm2 · (10.9 Hz)2 (4.8)

= 0.131 Nm/1 · π

180 deg
(4.9)

= 2.286 Nmm/deg (4.10)

The results are listed in Table 6.

Table 6: List of stepper motor vibration results

Holding current ωn kn
1 10.9 Hz 2.3 Nmm/deg
2 12.5 Hz 3.0 Nmm/deg
3 17.2 Hz 5.7 Nmm/deg

The holding current setting 3 was used when testing the unit in real life. Hence,
the value k = 5.7 Nmm/deg was set for the torsion spring in the model. Damping
was initially set to c = 1.0 · 10−5.

Driving ramps

The motor is accelerated to the desired velocity with an acceleration ramp. The
acceleration is almost always smoothed and rarely linear. A smooth S-shaped ramp
resembling a Step-function in ADAMS is used to drive the dispensing unit in real
life. It is known as an S-ramp. A comparison of these three ramps is shown in Fig
41. It is noticeable that the S-ramp has gentler acceleration at the beginning of
the motion and at the end. In the middle the S-ramp has higher acceleration for
a longer duration than the Step-function. The motivation for this is to have lower
acceleration to lower the vibrations when the movement stops.

4.2.3 Constructing the Model

The topology of a full dispensing unit is shown in Fig 42. First, the frame is
connected to the analyzer base plate by four M4 bolts. Then, y motor, φ motor and
bearing assembly are connected to the frame by four M3 bolts each. The motors
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Figure 41: Di�erent motor acceleration ramps: Step-function, S-ramp and linear

are further connected by toothed belts to the spline shaft. The φ motor limits the
shaft's degrees of freedom by one, rotation around y axis. The y motor limits the
movement along the y axis. The bearing unit limits the rest, that is, displacements
along and rotation around the x and z axes. Next, the arm is �xed to the shaft with
three M3 bolts, and the needle holder to the arm with one M4 bolt. The needle
itself is mounted to the holder by a conical contact which a spring holds in place.
The point of interest is at the tip of the needle.

Figure 42: Topology of a dispensing robot
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To simplify the multibody model, some elements were left out. For example,
the bolts were assumed to be rigid enough to be modelled as �xed joints. The
maximum torque the stepper produce is about 0.34 Nm, that is, there may not be
torques above this limit in the unit. Therefore the bolts' deformations at 0.34 Nm
were deemed to be insigni�cant and were replaced by �xed joints.

Additionally, a special arm was constructed to replace the complicated arm,
needle holder and the conical spring loaded contact to needle itself. In the new arm,
the needle attached to it directly with screws. The arm was modelled as a �exible
beam consisting of 8 sections using ADAMS' beam tool. Likewise, the needle was
also modelled as a �exible beam comprising of six segments. More of this later on.

The �nal ADAMS model topology can be seen in Fig 43. Overall, there are four
�exible parts as described in Table 7. The frame is �xed to the ground. The two
motors' pulleys and the upper motor's shaft are attached to the frame via revolution
joints. The upper motor's shaft's and the lower motor's joints also have motions
in them to move the unit in φ and y directions, respectively. The torsion spring
between the upper motor and the upper pulley takes into account the �exibility of
the stepper motor as described in Section 4.2.2. The lower motor is kept still during
the analysis so it is not necessary to model it �exibility.

Table 7: Flexible parts in the model
No Part Type
1 Stepper Torsion spring
2 Upper belt Torsion spring
3 Arm Discrete beam
4 Needle Discrete beam

The lower motor is coupled to the spline shaft transforming the motor's rotation
to the shaft's translative movemen via a coupler. The upper motor is connected
to the bearing assembly also with a coupler to model the two pulleys gear ratio
of z = 24/60 = 0.4. The bearing assembly attaches to the spline shaft with a
translational joint. Finally, the 8 segment arm beam is �xed to the shaft as well as
the 6 segment needle is �xed to the arm.

Belts

The belt �exibility will be taken into account by regarding it as a torsion spring
attached in series to the spring modelling the stepper's �exibility. In real life the
belt would be positioned between the upper pulley and bearing assembly but the
coupler used in ADAMS does not allow this. Hence, the belt must be combined
with the only torsion spring in the system. By combining these two spring some
accuracy is lost, especially due to the belt not being in the correct position to take
into account the upper pulley and its inertia. These small modelling inaccuracies
were assumed to be negligible, though.

The belt is type T2.5 steel reinforced toothed timing belt. The manufacturer of
the belt lists it to have a speci�c spring rate of cspec = 2.45 N/10mm · 104. Note
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Figure 43: ADAMS topology of the dispensing robot

that this value is given at a belt width of 10 mm [35]. The spring rate of the whole
belt can be calculated with the following formula [7]

cmin =
4 · cspec

l
(4.11)

where l is the length of the belt. In this particular case the belt is 210 mm long and
6 mm wide, we get

cmin =
6 mm

10 mm
· 4 · 2.45 N · 104

210 mm
= 280

N

mm
(4.12)

Linear sti�ness can be converted to torsional with equations

F = kx (4.13)

x = θR (4.14)

M = FR = kθR2 (4.15)

= θc (4.16)

⇒ c =
kθR2

θ
= kθR2 (4.17)

And taking in to account the radius of the pulley and converting the sti�ness to
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degrees

c = 280
N

mm
· (23.5 mm)2· (4.18)

= 154630
Nmm

rad
· π

180 deg
(4.19)

= 2697.434
Nmm

deg
(4.20)

≈ 2697
Nmm

deg
(4.21)

Damping ratio was set to 1.0·10−5. There are limitations to this belt model, how-
ever. It does not take in to account the sti�ness of individual teeth and, therefore,
it probably characterizes the belt sti�er than it actually is.

Combining the motor �exibility with belt sti�ness yields

1

k
=

1

k1
+

1

k2
(4.22)

=
1

5.7 Nmm/deg
+

1

2697 Nmm/deg
(4.23)

⇒ k = 5.688 Nmm/deg (4.24)

It would appear the e�ect of the belt is negligible compared to the stepper's
sti�ness.

Excluding the arm and the needle the Gruebler count is

m = 6 · (nb − 1)− nc (4.25)

= 6 · (5− 1)− 6− 5− 5− 1− 1− 4− 1 (4.26)

= 1 (4.27)

That is, there is only one DOF free and that is the belt connecting the upper motor
and bearing assembly together.

Arm beam

The arm and the needle were constructed using ADAMS' discrete �exible link
tool. The arm has eight segments and the needle six. Dimensions of the arm are
shown in Fig 44. It is essentially a beam with a rectangular cross section. For the
sake of simplicity, �xing features such as bolt holes were left out from this picture.
Material is Polyoxymethylene (POM) with elastic modulus of E = 2600 MPa,
Poisson's ratio µ = 0.3859 and density of ρ = 1390 kg/m3. The arm is 200 mm long
resulting in 8 segments of 25 mm each. The segments are listed in Table 8. The
area moment of inertia is calculated as described in Section 3.4.5:

Ix =
h3b

12
=

(13mm)3 · 28mm

12
= 5126.333 mm4 (4.28)

Iy =
hb3

12
=

13mm · (28mm)3

12
= 23781.333 mm4 (4.29)
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One section of the arm weights

m = 25 mm · 28 mm · 13 mm · 1390
kg

m3
(4.30)

= 12.649 g (4.31)

Figure 44: Drawing of the arm

Table 8: Properties of the arm according to Fig 44.
Segment Length Width Height Weight Ix Iy

1 25 mm 28 mm 13 mm 12.65 g 5126 mm4 23781 mm4

2 25 mm 28 mm 13 mm 12.65 g 5126 mm4 23781 mm4

3 25 mm 28 mm 13 mm 12.65 g 5126 mm4 23781 mm4

4 25 mm 28 mm 13 mm 12.65 g 5126 mm4 23781 mm4

5 25 mm 28 mm 13 mm 12.65 g 5126 mm4 23781 mm4

6 25 mm 28 mm 13 mm 12.65 g 5126 mm4 23781 mm4

7 25 mm 28 mm 13 mm 12.65 g 5126 mm4 23781 mm4

8 25 mm 28 mm 13 mm 12.65 g 5126 mm4 23781 mm4

Needle beam

A corresponding drawing of the needle is shown in Fig 45. In the �gure is a
simpli�ed cross section of the needle. The dimensions are given as Do/Di, that is,
outer diameter and then inner diameter. The needle is 138 mm long and consists of
six 23 mm segments. Material is stainless steel AISI316 with the following properties:
elastic modulus E = 190 GPa, Poisson's ratio µ = 0.28 and density ρ = 7800 kg/m3

Due to the changing dimensions, the properties of the segments are listed in Table
9. The area moments of inertia were calculated as above with the arm:

Ix =
π

4
(R4

o −R4
i ) =

π

4
((

2 mm

2
)4 − (

1.5 mm

2
)4) = 0.537 mm4 (4.32)

= Iy (4.33)
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Figure 45: Drawing of the needle

Table 9: Properties of the needle according to Fig 45
Segment Length Weight Outer D Inner D A Ix = Iy

1 23 mm 0.245 g 2 mm 1.5 mm 1.374 mm2 0.537 mm4

2 23 mm 0.245 g 2 mm 1.5 mm 1.374 mm2 0.537 mm4

3 23 mm 0.245 g 2 mm 1.5 mm 1.374 mm2 0.537 mm4

4 23 mm 0.245 g 2 mm 1.5 mm 1.374 mm2 0.537 mm4

5 23 mm 0.215 g 1.4 mm 0.7 mm 1.154 mm2 0.177 mm4

6 23 mm 0.073 g 0.8 mm 0.4 mm 0.377 mm2 0.019 mm4

The damping ratios of the �exible components were left to default 1.0 · 10−5.

Beam natural frequencies

The natural frequency of a beam can be calculated with equation from Section
3.4.4 [27]

ωn = A

√
EI

µL4
(4.34)

where µ is the mass per unit length of beam. For the arm beam we get

ωn,x = 13 mm · 28 mm

√
2600 MPa · 5126 mm4

12.65 g/25 mm · (200 mm)4
(4.35)

= 46.70 Hz (4.36)

ωn,y = 13 mm · 28 mm

√
2600 MPa · 23781 mm4

12.65 g/25 mm · (200 mm)4
(4.37)

= 100.60 Hz (4.38)

These values seem reasonable. The frequency in the x-direction is lower since the
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moment of inertia is lower compared to y-direction. For the needle

ωn,x = 1.374 mm2

√
190000 MPa · 0.537 mm4

0.245 g/23 mm · (138 mm)4
(4.39)

= 0.22 Hz (4.40)

= ωn,y (4.41)

The needle frequency is simpli�ed as if the whole needle has same geometry.
Therefore, the value above is not exact. Additionally, the frequency of 0.22 Hz is
not entirely convincing. From empirical tests it is known that the needle vibrates
more than hundred times per second, that is, at a frequency higher than 100 Hz. It
might be necessary to re�ne the needle beam model if more tests and analyses are
conducted including it.

Degrees of freedom

The arm introduces eight new bodies to the system and the needle six. Each of
these bodies have six degrees of freedom. The two �xed joints reduce six DOFs each
bringing the Gruebler count of the model to

m = 6 · (nb − 1)− nc (4.42)

= 6 · (5 + 8 + 6− 1)− 6− 5− 5− 1− 1− 4− 1− 6− 6 (4.43)

= 6 · 18− 35 (4.44)

= 73 (4.45)

The transformation from the full model to the simulation model is shown in Fig
46. The 3D parts were imported to ADAMS as parasolids.

Measures

Eight measures were needed and they are described in Table 10. The needle's
tip's de�ection is calculated utilizing the rotational angle of the tip as it rotates
around the shaft, this is done in measure Meas_Ndl_angle. The angle measure
consists of three points/markers: the �rst one is at the tip of the needle, the second
one at the rotational axis of the shaft and the third one �xed to ground between
the two previous points. As a result, the angle is zero at rest and increases as the
unit starts to rotate. Additionally, the rotational angle of the upper motor/pulley
is used. It works as a reference as to where the tip of the needle should be located.
Finally, the unit's arm is 200 mm long.

The function to calculate the de�ection at the tip of the needle is thus (angles
are in radians)

Func_Ndl_defl = (Meas_Ndl_angle−Meas_MotorUp_angle) · 200 (4.46)

The function Func_Ndl_dist is de�ned as

Func_Ndl_dist = Meas_Ndl_angle · 200 (4.47)
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Figure 46: Evolution of the model. Left: full model, middle: simpli�ed model, right:
ADAMS model

Table 10: A list of measures in the model

Type Name Description
Angle Meas_MotorUp_angle Rotational angle of the upper Motor shaft
Torque Meas_Belt_torque Torque of the torsional spring-damper,

equals to torque generated by the upper Mo-
tor/Pulley

Angle Meas_Ndl_angle Rotational angle of the tip of the needle
Angle Meas_PullBr_angle Rotational angle of the bearing assembly

Distance Func_Ndl_de� De�ection of the tip of the needle, see sepa-
rate description

Distance Func_Ndl_dist Distance the tip of the needle has travelled
Distance Func_PullBr_dist Imaginary distance of bearing assembly

moved scaled to match the tip of the needle
Distance Func_MotorUp_dist Imaginary distance of motor driven scaled to

match the tip of the needle

The function Func_PullBr_dist is de�ned as

Func_PullBr_dist = Meas_PullBr_angle · 200 (4.48)

The function Func_MotorUp_dist is de�ned as

Func_MotorUp_dist = Meas_MotorUp_angle · 200 · 24

60
(4.49)
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4.2.4 Analysis

Two di�erent scenarios were analysed based on real life situations:

1. Controlled stop from high speed

2. Sudden stop from low speed

The �rst item above is relevant in normal operation. The unit is moved as quickly
as possible to obtain high productivity. Empirical studies have shown the needle
to tend to vibrate somewhat even though the movement is relatively smooth. In
the analysis the unit is rotated for two seconds at maximum speed of 0.4 rev/s =
144 deg/s and then stopped in 130 milliseconds. The two second rotation is required
for vibrations induced during the acceleration to vanish and thus not interfere the
actual measurements during deceleration. In two seconds time the unit rotates
approximately one full rotation.

In the second scenario the unit is rotated at a low speed of 0.05 rev/s = 18 deg/s
and then suddenly stopped in 5 milliseconds. This imitates the procedure to �nd
the unit's home position which is done with optical sensors. A value of 5 ms was
chosen since it is short enough to seem like a sudden stop but long enough for
ADAMS' integrator not get confused. A truly instant velocity change with an IF
condition could not be used because the integrator demands few calculation points
in the deceleration phase. When the unit is rotating and the optical sensor changes
its state, the motor controller stop the unit instantaneously. The unit is rotated for
2 seconds before the stop, this equals to approx 45 degrees.

Simulation time was set to 5 seconds with a 0.001 second step size. The 5
seconds include one second of acceleration, two seconds of rotation and two seconds
of measuring time after the movement has stopped. Simulation type is dynamic due
to multiple degrees of freedom. All simulations were started at equilibrium.

Input motion to the system is the upper motor/pulley which handles the rota-
tional movement of the unit. The lower motor/pulley, that is, the y direction, is
kept at zero. The upper motor/pulley angle, velocity and acceleration graphs are
shown in Figs 47 and 48 for controlled stop and sudden stop tests, respectively.
Since Step-functions were used in ADAMS, the movements are smooth as can be
seen in the acceleration graph of Fig 47.

The simulated de�ections and vibrations at the tip of the needle are displayed
in Figs 49 and 50. Included is a FFT transformation of the graph. The FFT
transformation was done with Hamming type window and 4096 points.

During controlled stop the needle has �rst a high peak with a maximum de�ection
of 7.4 mm. After this the vibrations start to dampen. From the FFT transformation
it can be seen that the primary vibration happens at a frequency of approximately
5.9 Hz.

In the sudden stop a much lower amplitude is observed. Immediately after
the stop amplitude is almost 0.9 mm. Like in the controlled stop, the amplitude
decreases as time progresses. In the FFT graph a strong peak can be seen at the
same frequency of 5.9 Hz as in controlled stop.
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Figure 47: Upper motor/pulley movement in controlled stop test

Figure 48: Upper motor/pulley movement in sudden stop test

In Fig 51 stepper motor torque magnitudes for φ direction can be seen. During
the controlled stop maximum torque is approximately 30 Nmm and in sudden stop
3.7 Nmm. The rated holding torque for this motor model is 34 Nmm according to
manufacturer.

The controlled stop torque is very close to this value but the sudden stop torque
is quite signi�cantly lower. In must remembered though, that in the model the
sudden stop is �xed to 5 ms while in reality the phenomenon is immediate. Perhaps
with even quicker sudden stop the motor holding torque would be higher.

4.2.5 Results Veri�cation

The results were checked with a real system. The unit described in Fig 37 was
mounted on a test platform, shown in Fig 52. The platform is manufactured of 3
mm aluminum and its dimensions are approximately 430 x 430 x 530 mm (W x D
x H). The platform is used to test the robot in various situations and tasks.

The real world test was executed with the same parameters as the simulations.
A high speed video camera was used to capture the stops at 400 fps. The video was
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Figure 49: Needle tip de�ection and FFT during controlled stop

Figure 50: Needle tip de�ection and FFT during sudden stop

then analysed with tracking software. In Fig 53 is a scene from the video showing
the needle and a ruler.

The test data from Tracker was then exported to a table, �ne-tuned with a
spread sheet program and �nally imported as a measurement to ADAMS. The data
could then be used in ADAMS as any other measurement. The test data was then
presented in the same graph as the simulated data. Controlled stop results can be
seen in Fig 54 and sudden stop in Fig 55.

The results of simulated vs. measured needle de�ection as seen in Figs 54 and 55.
In the controlled stop, measured amplitude is 4.9 mm and simulated 7.4 mm. The
same can be seen in sudden stop test where measured is 1.1 mm and simulated 0.9
mm. The frequencies are more corresponding: in controlled stop measured 6.3 Hz
and simulated 5.9 Hz, in sudden stop measured 7.0 Hz and simulated 5.9 Hz. Notable
from the FFT graphs is, that there is a second resonance at approximately 40 Hz
in both Figs 54 and 55. This secondary peak is completely absent in the simulated
results but is close to the natural frequency of the arm, 46.7 Hz, as calculated in
Section 4.2.3.

In Fig 56 there are graphs of needle velocity in both stopping scenarios. Also in
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Figure 51: Stepper motor torques

Figure 52: Dispensing robot mounted on a test platform

the �gure graphs of needle and motor distance are seen but they are only for the
purpose of calculating their derivatives to determine their speeds. From the graph
it can be observed that after the motor has begun decelerating the needle maintains
a velocity for a short time. Then the needle's speed decreases dramatically to the
point where the motor has stopped but the needle has too much kinetic energy to
also stop. Only after some time after the motor stop the needle's amplitude reaches
its maximum and needle's velocity changes direction. The needle then begins to
oscillate for some time.
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Figure 53: A scene from a high speed video showing the needle and a ruler

Figure 54: Measured and simulated needle de�ection in controlled stop

Additionally, the impact of the di�erent �exible components in Table 7 were
analysed. First, the whole system as a reference, then, the system without the
�exibility of arm and needle, and thirdly, with the �exibility of the belt, arm and
needle. An analysis with just the arm and needle could not be ran successfully as
ADAMS encountered problems with the integrator and aborted the simulation.

The results are described in Fig 57 and Table 11. The amplitude of the vibrations
at the end of the needle was the result. From the Table it can be observed that the

Figure 55: Measured and simulated needle de�ection in sudden stop
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Figure 56: Needle velocity compared to motor velocity in controlled and sudden
stops

stepper motor accounts over 99 % of the amplitude. The belt, arm and needle
account for few percents at most. The sum of percentages does not add up to 100
% due to separate analyses.

Figure 57: Needle velocity compared to motor velocity in controlled and sudden
stops

Table 11: A list of analyses with di�erent �exible components

Flex parts A, ctrl %, ctrl A, sudden %, sudden
Motor, belt, arm, needle 7.357 mm 100 % 0.919 mm 100 %

Motor, belt 7.331 mm 99.65 % 0.916 mm 99.67 %
Belt, arm, needle 0.003 mm 0.04 % 0.023 mm 2.50 %
Arm, needle n/a n/a n/a n/a
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4.2.6 Conclusions

In this Section, a vibrational problem was introduced involving a polar coordinate
robot and a needle. The problem were vibrations induced in the unit when rotating
and then stopping. These vibrations are occasionally somewhat a problem in real
life, especially when doing precise movement with tight tolerances. A MBS model
of the unit was constructed in ADAMS to examine the problem.

The original model of the robot unit consists of 28 components most of which are
bolts. The simulation model was constructed of 6 imported parts and from eight
and six segment discrete beams. The two beams were ADAMS' discrete �exible
links. Each segment had six DOFs bring the system's free degrees to 73. Thus, the
simulation were ran as dynamic. The beams' properties were replicated according to
real world parts. There were also two input motions to the system but one of these
was not utilized in simulations. Excluding the beams the system had one degree of
freedom.

The stepper motor presents an additional �exible component to the system.
This �exibility was modelled as a torsional spring combined with the sti�ness of
the toothed timing belt being driven by the motor. The rotational sti�ness of the
motor was determined with a frequency analysis done with a known inertia on the
motor's axis and a high speed camera. The belt's sti�ness was obtained from the
manufacturer. Both these sti�nesses were combined and reduced to a single torsion
spring located on the motor's axis.

Two di�erent scenarios were analysed with the simulation model: one with a con-
trolled stop and another with a sudden stop. Both of these scenarios were replicated
based on real world observations and driving parameters. In the controlled stop the
unit is accelerated to rated rotational speed and then with a smooth deceleration
brought to stop within 130 milliseconds. The sudden stop, on the other hand, has
a more aggressive stop of just 5 milliseconds representing a very abrupt stopping
of the unit. The controlled stop occurs often in real normal operation whereas the
sudden stop less frequently but still perhaps once a day.

The construction of the model was straight forward and �rst results were quickly
obtained. Comparing the sudden stop results to actual measurements the was clearly
coherence. The amplitude and frequency of the vibrations were quite close in both
scenarios. From this we can deduce that the model was successfully built with
sensible parameters.

In the controlled stop though, the simulation model turned out to be too sti�
compared to real life measurements. Possible explanations for this behaviour were
the stepper motor or the needle beam. The stepper motor's sti�ness might not be
linear as presumed but varies depending on the position of the axis and angle from
the stopped or equilibrium position. Another explanation is the needle which was
modelled as a beam. As described in Section 4.2.3, the calculated natural frequency
of the needle is far from empirical measurements. This might result as incorrect
de�ections for the needle.

The root cause for the vibrations turned out to be stepper motor, being respon-
sible of a very signi�cant percentage of over 95 % of maximum amplitude in both
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scenarios. The result of the analysis is that if the vibrations are to be reduced,
something must be done to the stepper motor. One solution might be a mass-spring
damper mounted on the stepper motor's axis and especially designed to match its
natural frequency, as described in Section 3.6.1. This kind of damper could be easily
implemented for a variety of di�erent steppers and applications.

In terms of generally aiding research and development, the root cause of the
vibrations is a signi�cant piece of information. Additionally, the e�ects of other
components can be ruled out. With a fully functioning simulation model di�erent
usage scenarios could easily be analysed and the vibrations estimated. This helps
in determining suitable driving sequences and parameters while minimizing possible
vibrations. This saves a considerable amount of empirical testing time and result
analysing as the simulation model's driving sequence can be modi�ed in seconds.
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5 Conclusions

As described in Section 3, multibody systems are systems comprised of multiple
parts and components attached together with joints. Often there are motions or
external forces applied to the parts' changing their dynamics and behaviour. Multi-
body system dynamics is a �eld of applied mechanics that studies these systems.
Commonly, the aim for using MBD tools is to determine the behaviour or movement
of parts in a multibody system under the in�uence of forces and motions. Due to
heavy mathematics involved, a computer is generally utilized. Multibody simula-
tion programs are computer applications that are designed to solve and illustrate
multibody system problems.

Multibody simulation is a growing trend in product development. While some
large corporations have been using MBD simulation software for many years, smaller
businesses are often wondering about the bene�ts, savings and potential they could
produce. There are numerous applications of MBD software to di�erent types of
problems. For instance, dynamical, vibrational and �exibility questions can be
solved. One such program is MSC Software's ADAMS which is widely used in
various industries and o�ers many features.

The purpose of this thesis is to present companies and businesses a showcase
of MBD's capabilities and bene�ts. The work was written in collaboration with
Thermo Fisher Scienti�c Oy located in Vantaankoski, Vantaa, the corporation's
headquarters in Finland. At TFS Finland a MBD software has not been utilized
in product development before. In this work, a quick introduction to multibody
simulations and dynamics is done followed by methods used to analyse these systems.
Finally, two problems are solved with MSC ADAMS. These problems were picked
from the product development of clinical analyzers. This thesis aims to help visualize
the capabilities of the software to the designers in product development with familiar
problems to them.

In the �rst problem a lifting aid for a main cover is dimensioned and chosen.
The aid is a gas spring chosen from the catalogues of various manufacturers. The
position and force of the spring were determined with MSC ADAMS. The positioning
included resolving the attaching points of the gas spring and the spring's dimensions.
The required force generated by the spring was also obtained. There were multiple
design goals for the lifting aid which all were met. For example, only a small force
was to be required to be able to open the main cover. A prototype was constructed
to verify the results and it proved to function very well and as intended. The cover
was easy to open and stayed open at any angle. Additionally, the gas spring could
be e�ortlessly installed. The problem was considered to be successfully solved and
the designer of the main cover was pleased with the results.

The second problem was a vibrational one. In product development it has been
observed that the needle of a dispensing robot vibrates after the robot's movement
stops. This has somewhat been an issue and its root cause has been unresolved. A
simulation model was built with a purpose to �nd out the principle behind of these
vibrations and to test how accurately the phenomenon can be simulated. A model
was built with ADAMS and 3D parts imported. In the model, four parts which were
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suspected to be the origin of the vibrations were made �exible. Flexible modelling
elements used were discrete beams and torsion springs. For comparison purposes,
real life measurements were recorded with a high speed camera and processed with
an image tracking software. The simulation model turned out to be reasonably
close to real situation. More importantly, the main cause behind the vibrations was
found: the stepper motor accounted for more than 95 % of the vibration amplitude.

The bene�ts of multibody simulations is shown clearly with these two problems.
In the �rst one where a lifting aid is devised, the e�ort of designing a well performing
system is drastically reduced. Usually the design takes few prototypes spanning
multiple weeks or even months to mature to an acceptable level, costing valuable
time and money. With a MBD software, the task takes only a few days and without
the need for an actual prototype. In the second problem where needle vibrations were
investigated, the added value comes from knowing the real cause of the phenomenon.
Once it is found out the issue can be negated by designing and adding a vibrational
damper to the system. By eliminating the vibrations altogether the dispensing
robots' as well as the whole instrument's performance can be increased possibly
leading to growth reliability and in sales.
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A First appendix: HAHN G 10-28

Hahn G 10-28 brochure
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www.hahn-gasfedern.de   08/2009 
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WG 18

t=10

t=6

t=5

16

t=10

SW13

8.1

Ø
1

4

19

8.1

Ø
1

4

24

30

Ø
1

8

8.1

Ø8

8

16

32

8.1

1
5

27

Ø8

1
2

36

M8

1
3

1
6

30

8.1

Ø
2
0

16

t=10

M
1
0

Ø
2
8

M8

128

16

M
8

10 H 10

L±2L1 L2

M
8

*

Ø
1

0

Ø
2

8

SW13

16

32

8

Ø8

6-kt 13

M8

1
1

1
2

18

Gas spring G 10-28

Extension force F1	 100 - 1200 Newton

Progression	 20 %

Piston rod	 Ø 10 mm, stainless steel

Cylinder	 Ø 28 mm, stainless steel, black spray coated

Threads 	 Steel zinc plated

Details

Standard strokes H (mm)
40, 50, 60, 80, 85, 100, 120, 140, 150,  

160, 180, 200, 220, 250, 270, 300, 325,  

350, 400, 450, 500, 600, 700
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Standard length GL
L = 2 x H + 70

GL = L + L1 + L2 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extras
1 - Wiper ring

2 - Radial valve

4 - Grease chamber

5 - Valve

6 - Protection tube

7 - Floating piston

8 - Locking device

B3 - Sealing system

NT - Low-temperature design

HT - High-temperature design

RK - Friction element
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

*�Threaded end optional M8 or M10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

More threads can be found here   

Matching brackets can be found here   
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

only possible on cylinder end

until max. 800 N


	Abstract
	Abstract 
	Preface
	Contents
	Symbols and abbreviations
	Introduction
	Background
	Brief History
	Usage and Applications
	Virtual Design Process

	Methods and Tools
	Topologies
	Basic Kinematics
	Frame of Reference and Coordinates
	Positions and Translations
	Rotations
	Velocities
	Accelerations

	Dynamics
	Newtonian Method
	Equations of Motion
	Virtual Work
	Lagrangian and Hamiltonian Dynamics

	Flexible Bodies
	Kinematics
	Strain
	Stress
	Discrete Flexible Link
	Area Moments of Inertia

	Degrees of Freedom and Joints
	Vibrations and Damping
	Mass-spring Absorber
	Modal Analysis
	Modal Neutral Files
	Natural Frequencies of Beams

	MSC ADAMS
	Simulation Types
	Solvers
	Optimization


	Analysis
	Problem 1: Lifting aid for main cover
	Background
	Model
	Analysis
	Results Verification
	Conclusions

	Problem 2: Vibration analysis of a needle
	Background
	Stepper Motor Flexibility
	Constructing the Model
	Analysis
	Results Verification
	Conclusions


	Conclusions
	References
	First appendix: HAHN G 10-28

