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Abstract: 

The spread of smartphone devices, Internet of Things technologies and the 
popularity of web-services require real-time and always on applications. The aim of 
this thesis is to identify a suitable communication technology for server and 
smartphone communication which fulfills the main requirements for transferring real-
time data to the handheld devices. 

For the analysis I selected 3 popular communication technologies that can be used on 
mobile devices as well as from commonly used browsers. These are client polling, 
long polling and HTML5 WebSocket. For the assessment I developed an Android 
application that receives real-time sensor data from a WildFly application server 
using the aforementioned technologies. 

Industry specific requirements were selected in order to verify the usability of this 
communication forms. The first one covers the message size which is relevant because 
most smartphone users have limited data plan. The next part discusses reliability 
issues of the analyzed technologies covering WebSocket connection drop and proxy 
server caching. Latency tests are conducted as well and the final part discusses the 
security aspects and how the other requirements are affected when encrypted 
connections are used. 

The results show that WebSocket and long polling are relatively good ways to deliver 
real-time information to smartphone devices. However, the WebSocket connection 
can drop unexpectedly due to the lack of keep alive messages which are generally not 
sent on the network. Moreover, latency radically increases when secured WebSocket 
connection is used. 

Keywords: smartphone, server, real-time data, HTTP polling, long polling, 
WebSocket, message size, reliability, latency, performance, security 
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1. INTRODUCTION 

As a result of Internet of Things many devices share data with each other 

including our smartphones too. Homes are equipped with smart thermostats and 

automated lighting, vehicles can communicate with each other on the road or we 

even can receive notification to our mobile phones which road should we take to 

avoid traffic jams. There are many other fields which require devices or “things” 

to communicate with each other and with our smartphones. The fast spread of 

smartphones devices has changed the way we communicate and use the internet 

nowadays. The number of smartphone applications that require temporary as 

well as continuous network communication with a central server increased in the 

recent years [1]. 

However, selecting a suitable communication technology can be 

challenging based on the specific requirements of a field. The aim of this thesis is 

to identify a technology mainly for transferring real-time sensor data to 

smartphone devices with widely available technologies. In my Master’s Thesis I 

will analyze 3 different communication technologies for server and smartphone 

communication, namely client polling, long polling and HTML5 WebSocket 

protocol. I will focus on the message size, reliability of the technologies, latency, 

load test and security options. For the analysis I will use an Android application 

and a Java EE application server. Furthermore, I will use a service as an example 

– called CarCare – which gathers telemetric and sensor data from cars on-board 

computer using the OBD-II interface focusing on one possible use case of this 

service. 

In this first chapter I will identify the challenges with this communication 

patterns as well as explain the CarCare service that I will use as an example. The 

second chapter is a short explanation of the used technologies. The third chapter 

describes the application that I used for the assessments; this covers the Android 

application, an application server and a device simulator. The fourth chapter is 

the assessment of the 3 selected technologies based on 5 industry specific 
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requirements. In the final chapter I outline my findings about the technologies 

and explain possible future works. 

1.1. INTERNET OF THINGS 

“The Internet of Things (IoT) is a scenario in which objects, animals or 

people are provided with unique identifiers and the ability to automatically 

transfer data over a network without requiring human-to-human or human-to-

computer interaction. IoT has evolved from the convergence of wireless 

technologies, micro-electromechanical systems (MEMS) and the Internet. 

A thing, in the Internet of Things, can be a person with a heart monitor 

implant, a farm animal with a biochip transponder, an automobile that has built-

in sensors to alert the driver when tire pressure is low -- or any other natural or 

man-made object that can be assigned an IP address and provided with the 

ability to transfer data over a network. So far, the Internet of Things has been 

most closely associated with machine-to-machine (M2M) communication in 

manufacturing and power, oil and gas utilities. Products built with M2M 

communication capabilities are often referred to as being smart.” [2] 

It is expected that the number of network connections between devices 

will reach 50 billion by 2020. From this 50 billion connection 80% is predicted to 

be between things, not human-human or human-computer interactions. This 

great number of connection can produce huge amount of information which will 

generate new markets. IDC predicts that the market for big data will reach $16.1 

billion in 2014. 

Connected car is one of the top ten industries where Internet of Things 

evolves. A revenue forecast by Business Insider [3] claims that currently $25 

billion revenue generated from connected cars and expected to double in the next 

4 years. Internet will become common in cars, furthermore, the growth of 

smartphone apps that target cars and drivers will radically increase. As an 

example, Waze [4] – a social traffic application – reached 80 million registered 

users within 2.5 years. 
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The telecom and automotive industries are two huge markets that are 

approaching each other. Sync [5] – Ford’s in-car communication system – has 

been implemented in more than 4 million cars in the US market since it was 

launched and plans to target 13 million drivers in the near future. 

“Both the automotive and the telecom industries are at a historic 

crossroads,” says 54-year-old William Clay ‘Bill’ Ford Jr. “It also happens that 

helping define the future of mobility is a great personal passion of mine. One 

hundred years ago, the automobile redefined personal mobility. Today, portable 

communication devices are redefining personal mobility. And I believe that in the 

future, we will redefine personal mobility together.” [6] 

Connected car is an umbrella term with many ongoing researches. For 

example, Google is working on a self-driving car with significant results in the 

last years [7]. Apple CarPlay [8] is another big step towards connected vehicles 

which tries to join cars with the activities you do on your smartphone, such as 

navigation, phone calls, music and a lot more.  

1.2. CHALLENGES 

This relatively new field which is called Internet of Things generates great 

amount of data and communication between specific devices and servers. This 

data is typically processed locally or on the server side, however, the users 

generally want to access these gathered information, such as the temperature 

change in the apartment in relation with the outside temperature or the fuel 

consumption of the car on different routes. Due to the spread of smartphones and 

tablets we want to access these data on the go using any kind of handheld devices. 

Generally these devices have limited capabilities, for example most of the 

time we use smartphones with mobile internet connection having limited data 

plan or unreliable connection due to travelling in areas with partial network 

coverage. On the other hand we still want to access this information on other 

devices too, such as our notebook with a browser. Thus, the used communication 
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technology should not be specific to a device or a browser in order to reduce 

development costs and maintainability. 

Selecting a suitable technology which fulfills specific requirements can be 

challenging. Since I focus on communication for smartphone devices the size of 

the transferred messages are relevant due to the limited network plans as well as 

to improve network performance on the server side. Security is usually 

fundamental for network communications, thus an appropriate technology should 

support secured communication as well. There are scenarios which require reliable 

communications. Most of the times reliability is crucial between the devices and 

the central server for example a health monitoring or security system, however, 

reliable connection can be also necessary between the smartphone device and the 

server as well. Latency can be also important in real-time specific applications. 

In addition to these, minimizing server loading is also essential in case high 

number of user access the system simultaneously. 

According to these requirements I selected 3 technologies to analyze which 

can be suitable for transferring real-time data from server to smartphone devices, 

these communication technologies are client polling, long polling and WebSocket. 

In this thesis I try to analyze these technologies according to the aforementioned 

requirements. 

In this thesis I will try to answer for the following questions: 

 What is an optimal communication technology to transfer real-time data 

to smartphone devices? 

 Which communicating technology has the lowest network traffic? 

 Which is the most reliable technology for real-time data transfer for 

smartphone devices? 

 How security affects the analyzed technologies? 
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1.3. CARCARE SERVICE 

As an example I will use a service called CarCare to demonstrate and 

analyze the 3 communicating technology focusing on the above requirements. In 

this subchapter I describe the CarCare service. 

Cars have a lot of data that can be valuable for the drivers, other users or 

even the government can benefit from the available data. The number of products 

and services radically grows which exploit this data and it is expected to increase 

in the following years. 

CarCare project was started as an innovation idea at Ericsson Hungary 

and I would like to analyze different communication methods how can the server 

and smartphone communicate with each other in similar use cases. I am involved 

in the development since February 2014, mostly working on the server application 

and the data analytics software components. 

 
Figure 1 – Novatel OBD-II device 

The service uses telemetric and diagnostics information gathered from the 

car’s on-board computer. To access the data, a small device (Figure 1) needs to 

be connected to the OBD-II connection in the car [9]. This is a standardized 

interface that is available in every car that was produced after 2001 in the 

European Union [10]. The main usage of this port is to access to the status of the 

various vehicle sub-systems mainly for diagnostic reasons. The accessible 

information includes but not limited to speed of the car, rpm, fuel consumption, 

trouble codes, engine coolant temperature and emission of the vehicle. The 
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connected device may have some additional sensors to extend the range of 

collectible information; in our case it includes a GPS receiver, an accelerometer 

and a GSM module are also implemented into the equipment. 

 
Figure 2 – Basic communication flow of sensor data 

The device can be configured to continuously transfer specific data to the 

cloud, as well as notify the server based on some pre-defined rules. For example 

speed and GPS location information can be transferred continuously and the 

server can be informed in case the check engine alarm lights up (the yellow lamp 

on the dashboard indicating problems with the engine which needs to be 

investigated at a repair station). 

In order to use the data, the smartphone application needs to retrieve it 

from the cloud server and the smartphone should visualize it for the user. To 

deliver this real-time information to the user’s phone I can use different 

communication protocols. Currently, during the project we implemented long 

polling technology for this purpose; however, there are other existing technologies 

that can be suitable. For my master thesis I will analyze 3 different 

communication technologies, namely client-side polling, long polling and 

WebSocket, which is part of the HTML5 Connectivity area and defined in its 

specifications. 
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Many possible services can be implemented using this huge amount of 

available sensor and telemetric data; for example: 

 Driving feedback 

The driver receives suggestions based on the driving style in order 

to reduce fuel consumption and drive more eco-friendly. The service 

can recognize incorrect gear shifting, unnecessarily high RPM, 

intensive breaking as well as quick turning. 

 Remote monitoring of the vehicle 

The driver can see the car’s position on a map based on the 

provided GPS location information as well as record and replay 

travelled routes. 

 Car diagnostics 

Since the main purpose of this interface is to access diagnostic data 

related to the car, there are many data that can be helpful. The 

driver could be notified about trouble codes, engine oil level and 

any kind of information related to the car. 

 Fleet management 

This field can also benefit from this service, mostly because of the 

location coordinates, but the diagnostic features can be also 

important for companies operating big fleets. 

For my Master’s Thesis I focus on the communication between the 

smartphone devices and a central server. I analyze different communication 

protocols that can be suitable for different kinds of messages that need to be 

transferred between the clients and the cloud in order to provide good user 

experience. My Master’s Thesis does not focus on the communication process 

between the application server and OBD-II device located in the car. 
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2. TECHNOLOGIES 

In this chapter I would like to briefly introduce the different technologies 

that I analyzed to support data delivery between the server and smartphone 

devices. The 3 main technologies that I will introduce are client polling, long 

polling and WebSocket protocol. Furthermore, I will introduce other technologies 

that are required to support the aforementioned communication models. I will 

analyze message size, reliability, latency, server-side load testing and security of 

these 3 communication technologies in Chapter 5. 

Hyper Text Transfer Protocol (HTTP) is a protocol that was designed for 

request-response communication between the client and the server. I need HTTP 

for my thesis because the client polling and long polling technologies are purely 

based on the HTTP protocol, furthermore, the WebSocket protocol’s opening 

handshake also requires an initial HTTP request and response. The form of the 

communication is that the client – in my case the smartphone application – 

submits an HTTP request and the server responds with the requested resources. 

With HTTP/1.0 a new connection was established to fetch every resource, as an 

improvement, HTTP/1.1 introduced the reusable connection [11]. After the 

connection was established, the client is able to download multiple resources, 

such as HTML page, images, using the same connection [12]. 

2.1. AJAX 

Asynchronous JavaScript and XML (AJAX) is a set of technologies 

introduced by Jesse James Garrett. AJAX enables asynchronous, interactive web 

applications by providing more continuous communication with the server so that 

the client does not need to reload the entire page, only fetch specific resources 

that are required for a certain user action [13]. Due to the fact that I want to 

deliver real-time generated data to the smartphone, I need a continuous 

connection; therefore I need to use AJAX requests. 
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Asynchronous events mean that the action is performed in the background 

separately from the main execution process. These background events do not 

interrupt the flow of the web application. By this, AJAX provides the ability to 

the developers to deliver data between the browser and the server asynchronously 

in order to provide a more fluid user experience [14]. 

Most of the popular web services use AJAX to provide seamless interaction 

for the site’s visitors. One great example is Google Maps where the users can 

zoom and move around on the map and the newly visited areas are fetched from 

the server in the background using AJAX-based requests providing a seamless 

user experience. 

2.2. REST 

Representational State Transfer (REST) is a software architectural style 

for designing stateless network applications which usually runs over standardized 

HTTP protocol. REST is a lightweight alternative of Remote Procedure Calls 

(RPC) and Web Services such as Simple Object Access Protocol (SOAP) and 

Web Services Description Language (WSDL) standards. REST was originally 

introduced and defined in Roy Fielding doctoral dissertation in 2000 at UC Irvine 

[15]. 

Most of the modern web-services provide REST API for HTTP-based 

communication. Due to its popularity I used REST architecture for the server 

application. Another alternative would be to use SOAP technology for delivering 

sensor data to the smartphone application. However, researches claim that 

REST-based implementation is proved to be more efficient in network bandwidth 

and latency than SOAP-based services [16]. 
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The following are the key principles of the REST architecture: [17] 

 Resources are identified with a unique URI (Uniform Resource Identifier) 

For example www.mydomain.com/cars/23/ could identify a car with id 23 

and www.mydomain.com/cars could return a list of all cars. 

 Link resources together 

The different resources can link to each other; a car could have a link to 

the owner resource and a different one to the manufacturer’s website 

 Standardized operations 

CRUD [18] operations are supported for the resources: create, read, update 

and delete 

 Multiple data representation 

The representation of the resource can be transferred between the server 

and the client in multiple formats. For example the client could retrieve 

the car’s details in text format, XML, JSON or any other that both parties 

can understand. 

 Stateless communication 

REST is stateless, although the application can have a state. A server 

should not have to retain some sort of communication state for any of the 

clients it communicates with beyond a single request. 

Table 1 shows the connection between the standard HTTP methods and 

CRUD operations. The table also indicates which operations are safe and 

idempotent. Safe operation does not cause side effect, the client only retrieves 

data. In case the same operation can be executed multiple times and it results in 

the same state, then that operation is idempotent. Repeating different idempotent 

operations may result in different states. For example READ – DELETE – 

READ. 
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HTTP 
method CRUD  safe idempotent 

GET read yes yes 

POST create no no 

PUT update/create no yes 

DELETE delete no yes 

Table 1 – HTTP methods in a typical RESTful API 

The goal of the REST architecture is to provide a scalable system in order 

to support great number of components and simultaneous interactions with 

clients. REST also provides general interfaces, therefore, it supports 

interoperability. In addition to these, the architecture supports independent 

deployment of components as well as intermediary components to reduce latency, 

enforce security and encapsulate legacy systems. 

2.3. POLLING 

Client side polling – also known as HTTP polling or just Polling – is one 

of the easiest ways to deliver real-time information to clients. I chose this 

communication technology to analyze due to its simple implementation and 

popularity. It is based on HTTP request and response messages to deliver the 

latest information. HTTP polling is a periodic, synchronous call established by 

the client to retrieve newly available information. The requests are made regularly 

and the server responds immediately with the most recent information. 

Despite the fact that no new information is available, the server will send 

back a response with the most recent data or an empty content. Generally, real-

time information is not so predictable and a lot of unnecessary connections are 

established between the server and client. As a result, many connections are 

opened and closed unnecessarily in low-message-rate situations causing big HTTP 

overhead, moreover, decrease network throughput as well [19]. 
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Figure 3 – Client polling sequence diagram 

The polling interval should be configured based on the specific service’s 

need. The possible refresh time can be varied from a few seconds to couple of 

minutes. In case the client wants to receive all update then the refresh interval 

should be shorter than the most frequent messaging rate. For example, if sensor 

data can arrive to the server in every 10 seconds and the client wants to be 

informed from all of them, then the polling interval should be lower than 10 

seconds. Therefore, the client could retrieve all the information from the server-

side. Although, this still does not guarantee that the client will get all information 

in case of network errors, moreover, high latency can also cause information loss. 

2.4. COMET/LONG POLLING 

Comet is a more sophisticated web application model that allows web 

servers to send data to the clients. Comet includes different technologies that 

focus on client-server interaction using common techniques [20]. I selected long 

polling communication technology for the assessment, because it similar to the 

client polling, however it aims to improve network bandwidth and latency. 

Similar to the aforementioned HTTP polling, long polling connection is 

also based on HTTP requests and responses, however, the client initiated request 
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is asynchronous and kept open until the server is able to answer to the request. 

As soon as the server receives the information – for example new sensor data 

arrives to the server – it is forwarded to the client and the server closes the 

connection. Thereafter, client immediately opens a new connection to receive 

upcoming updates. If new data is not received until the timeout, the server will 

respond to the request with and empty response and close the open HTTP 

connection. This flow makes it possible to for the server constantly send new data 

to the client as soon as it becomes available [21]. The long polling technique is 

described on Figure 4. 

 
Figure 4 – Long polling sequence diagram 

The main benefit of long polling compared to HTTP polling can be found 

in those cases when the server does not have the required data for a long time. 

Because the server blocks the asynchronous HTTP request, the client has to 

initiate new connection less frequently which reduces network traffic and server 

load. 

The benefit of HTTP long polling mechanism is to allow the server to 

respond to a request only when a particular event or timeout has occurred. In 

order to minimize as much as possible both latency in server-client message 

delivery and the processing/network resources needed, the long polling request 
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timeout should be a high value. However, high timeout values can cause 

problems: the client might receive a 408 Request Timeout or 504 Gateway 

Timeout. A recommended timeout is 300 seconds or lower, but most network 

infrastructures include proxies and servers whose timeout is shorter which can 

interrupt the connection [22]. 

2.5. WebSocket 

For the third communication technology I selected WebSocket because it 

is a new technology that aims to provide a bi-directional communication channel 

with reduced message size, low latency. These characteristics show great potential 

for real-time applications. The WebSocket API is developed by the W3C (World 

Wide Web Consortium) and the WebSocket protocol by the IETF (Internet 

Engineering Task Force). The WebSocket API is now supported by modern 

browsers and includes methods and attributes needed to use a full duplex, 

bidirectional WebSocket connection. The API enables you to perform necessary 

actions like opening and closing the connection, sending and receiving messages 

[23]. 

The WebSocket protocol was designed to work together the existing web 

infrastructure. WebSocket is a full-duplex, bidirectional, single-socket connection. 

The WebSocket connection is initiated with a HTTP request from the client 

which contains a special Upgrade header. This indicates that the client wants to 

upgrade the HTTP connection to a different protocol, WebSocket. In case the 

server is able to communicate over WebSocket connection it sends back HTTP 

101 SWITCHING PROTOCOLS message, thereafter the connection is upgraded 

to WebSocket reusing the same connection [24] [25]. 
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Figure 5 – WebSocket sequence diagram 

The WebSocket API enables both parties to send and receive messages in 

a simple way using a full-duplex communication channel. An example 

communication flow with the opening handshake is visible on Figure 5. Using the 

API, we can send text-based and binary messages, in addition to this, WebSocket 

enables simple, secured communication using TLS protocol with the wss:// URI 

prefix. It is supported to use higher-level protocols which run over the standard 

WebSocket connections. During the opening handshake the required protocol has 

to be passed to the server in the Sec-WebSocket-Protocol. One standard sub-

protocol is called Extensible Messaging and Presence Protocol (XMPP) which is 

a message oriented, XML based protocol [26]. 

The main benefit of WebSocket is that it reduces latency because once the 

WebSocket connection is established, the server and client can send messages 

using the same connection without closing it. This single request greatly reduces 

latency over polling, which sends a request at intervals, regardless of whether 

messages are available. Because WebSocket was designed in a way to reduce 

bandwidth, the messages (frames) are represented on the network with binary 

syntax and minimal framing [23]. 
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3. DEVELOPED APPLICATIONS 

For demonstration and testing purpose of the thesis, I have developed 

different applications using the technologies I covered in the previous chapter. 

One of these is an application server that receives incoming simulated telemetric 

data and sends this information towards the clients using the previously 

mentioned HTTP polling, long-polling and WebSocket technologies. In addition, 

a native Android app and few other applications were developed for measurement 

purpose. 

3.1. APPLICATION SERVER 

For the thesis I used WildFly version 8.0.0 Final [27] application server, 

formerly known as JBoss Application Server. This is the latest version of Red 

Hat’s open source application server that supports Java Enterprise Edition 7 with 

Servlet 3.1 compatibility. This provides non-blocking I/O processing support for 

servlets, as well as HTTP protocol’s upgrade functionality. These newly 

introduced features in WildFly were required for the asynchronous HTTP 

requests used in long-polling interface and the HTTP protocol’s upgrade 

mechanism of WebSocket handshake. 

I generated a self-signed SSL certificate for the WildFly server to allow 

the clients and server to communicate over a secured connection. It was needed 

to analyze the secure communication protocols as well, especially to use 

WebSocket over SSL/TLS (wss://) secure protocol. More information about the 

self-signed certificate and security can be found in Chapter 0. 

3.1.1. Polling 

Due to the fact that the server cannot notify and send the data to the 

client as soon as it arrives, the data has to be stored on the server side. There 

are two main ways how this can be achieved. One of them is caching the incoming 
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data in memory and the other one is storing the data in database or file and 

retrieve it when the clients want to access it. For the implementation I selected 

the second option, because it provides a stateless service which is one of the main 

principles of REST APIs. The server stores the incoming sensor data using Java 

Persistence API and stores it in a H2 relational database system. 

@Path("clientpolling/{carid}")
public class ClientPollingEndpoint { 
 
    @Inject 
    SensorDataDao sensorDataDao; 
 
    @GET 
    @Produces({ MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML })
    @Path("/sensordata") 
    public SensorData getLatestSensorData(@PathParam("carid") final long

carId, @QueryParam("since") @DefaultValue("0") final long 
since) { 

        return sensorDataDao.findLatestByCarIdSince(carId, since); 
    } 
} 

 
Figure 6 – Polling interface 

When a client fetches telemetric data for the selected car, the server 

retrieves the newest one from the database and sends it back in JSON format. 

The client can provide an optional query parameter for the REST request. In 

case it is provided, the server only sends back the sensor data that is newer than 

the submitted timestamp. If no data meets the requirements the server sends 

back HTTP 204 NO CONTENT response which means that the request was 

processed successfully but no data is available on the server side to return. 

 
Figure 7 – HTTP polling REST interface 

The implementation of the REST interface to retrieve the most recent 

sensor data using client polling is visible in Figure 6. For this I used Jersey [28] 

JAX-RS which is an API for developing RESTful web services in Java. It uses 

simple annotations which make the code more readable and maintainable. The 

annotations that I used for the client polling are explained in Table 2. 

http://www.petersomogyi.com/rest/clientpolling/1/sensordata?since=1396464327
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Annotation Description 

@Path Specifies the relative path of a resource class or method 

@PathParam Binds a path segment to a variable 

@QueryParam Binds a query parameter to a variable 

@DefaultValue Specifies a default value to variable in case the key is not 

found 

@GET Specifies the request type of the resource 

@Produces Specifies the supported response media types 

Table 2 – Used JAX-RS annotations 

3.1.2. LONG POLLING 

The long polling implementation (Figure 8) differs greatly from the client 

polling. Although it uses the same annotation as the other polling interface, 

however, in this case the server has to block the requests and respond to those in 

case sensor data arrives for the selected car. 
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@Path("longpolling/{carid}")
public class LongPollingEndpoint { 
    private static final long TIMEOUT = 30000; 
    private static Map<Long, List<AsyncResponse>> waitingResponses = new 

ConcurrentHashMap<>(); 
 
    @GET 
    @Produces({ MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML }) 
    @Path("/sensordata") 
    public void sensorDataRequest(@Suspended final AsyncResponse response, 

@PathParam("carid") final long carId) { 
        response.setTimeout(TIMEOUT, TimeUnit.MILLISECONDS); 
        response.setTimeoutHandler(new LongPollingTimeoutHandler()); 
        storeResponse(carId, response); 
    } 
 
    public void sendSensorData(final SensorData data) { 
        final long carId = data.getCarId(); 
        final List<AsyncResponse> responses = 

waitingResponses.remove(carId); 
        if (responses == null) 
            return; 
 
        for (final AsyncResponse resp : responses) { 
            if (resp.isSuspended()) { 
                resp.resume(data); 
            } 
        } 
    } 
}   

Figure 8 – Long polling implementation 

I store the incoming requests in a map connected with the car they want 

to subscribe to. When a new sensor data arrives, another interface calls the 

sendSensorData method which collects all the suspended requests for this car and 

responds with the newly arrived sensor data. 

public class LongPollingTimeoutHandler implements TimeoutHandler { 
 
    @Override 
    public void handleTimeout(final AsyncResponse asyncResponse) { 
        final Response response = Response.noContent().build(); 
        asyncResponse.resume(response); 
    } 
} 

 
Figure 9 – LongPollingTimeoutHandler class 

The application sets the timeout of the incoming responses to 30 seconds 

and registers a LongPollingTimeoutHandler class which is a subclass of 

TimeoutHandler. My handler class overrides handleTimeout method which is 
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fired when the associated response reaches the timeout. This method is 

responsible for sending HTTP 204 NO CONTECT response to the client after 

the timeout. 

3.1.3. WEBSOCKET 

For the WebSocket endpoint I used the @ServerEndpoint annotation 

which specifies the URI of the interface. To store the active sessions I used a Map 

similarly to the long polling implementation. A great benefit of WebSocket that 

predefined annotations can be used to override specific methods. These are shown 

in Table 3. 

Annotation Description 

@OnOpen 
This method is called when a new client connects to the 

server. 

@OnClose 
When a connection closes this method is called. The 

close reason can be accessed from the method parameter.

@OnMessage 

It is used once a new message arrives to the server. 

Multiple methods can be annotated with this to handle 

text, binary, ping and pong messages differently. 

@OnError 

It is used to decorate a method which is called once 

Exception is being thrown by any method explained 

before. 

Table 3 – WebSocket annotations 

Figure 10 shows a part of the WebSocket endpoint implementation with 

the used annotations and method signatures [29]. When a new connection arrives 

to the server I add the session to the connections and remove it in the onClose 

method when the client disconnects. The textMessage and binaryMessage 
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methods are responsible to handle the incoming messages and the errors are 

processed in the onError method. [30] 

@ServerEndpoint("/websocket/{carid}/sensordata/")
public class WebSocketEndpoint { 
    private static Map<Long, List<Session>> connections = new 

ConcurrentHashMap<>(); 
 
    @OnOpen 
    public void onOpen(@PathParam("carid") final long carId, final 

Session session, final EndpointConfig endpointConfig) { 
        addConnection(carId, session); 
    } 
 
    @OnClose 
    public void onClose(@PathParam("carid") final long carId, final 

Session session, final CloseReason closeReason) { 
        removeConnection(carId, session); 
    } 
 
    @OnError 
    public void onError(@PathParam("carid") final long carId, final 

Session session, final Throwable thr) { 
        ... 
    } 
 
    @OnMessage 
    public void textMessage(@PathParam("carid") final long carId, final 

String message, final Session session) { 
        ... 
    } 
 
    @OnMessage 
    public void binaryMessage(@PathParam("carid") final long carId, final

byte[] b, final Session session) { 
        ... 
    } 
... 
}   

Figure 10 – WebSocket endpoint snippet 

3.1.4. DEPLOYMENT 

During the testing I have deployed the server-side application to a remote 

server in order to achieve more realistic results for the tests. I selected Amazon 

Elastic Compute Cloud (Amazon EC2) [31] service which provides high 

scalability and seamless integration with other Amazon cloud-based services. 

Many popular web-services, such as Netflix, AirBnb, Adobe and Lionsgate, use 
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Amazon’s cloud infrastructure due to its scalability, performance and good price 

structure. 

 “Amazon Elastic Compute Cloud (Amazon EC2) is a web service that 

provides resizable compute capacity in the cloud. It is designed to make web-

scale computing easier for developers. 

Amazon EC2’s simple web service interface allows you to obtain and 

configure capacity with minimal friction. It provides you with complete control 

of your computing resources and lets you run on Amazon’s proven computing 

environment. Amazon EC2 reduces the time required to obtain and boot new 

server instances to minutes, allowing you to quickly scale capacity, both up and 

down, as your computing requirements change. Amazon EC2 changes the 

economics of computing by allowing you to pay only for capacity that you 

actually use. Amazon EC2 provides developers the tools to build failure resilient 

applications and isolate themselves from common failure scenarios.” [31] 

I selected the micro instance with Ubuntu Server 14.04. The server 

application is running on WildFly 8.0.0.Final using Java Enterprise Edition 

version 7. Since it is a free instance the server has limited capabilities. The used 

system’s specifications during the tests can be found in Table 4: 

Component Specification 

Processor Intel® Xeon® CPU 
2.00 GHz 

Memory 0.613 GB 

Hard drive Amazon EBS storage 

Network speed ~ 100 Mbps 

Operating system Ubuntu 14.04 x86-64 

Table 4 – System specifications 
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3.2. ANDROID DEMO APPLICATION 

For demonstration purpose I developed a basic Android demo application 

where the user is able to receive simulated sensor and telemetric data from the 

application server. Figure 11 shows the screen where the user can select the car 

and desired communication technology from the list (WebSocket, Long polling 

and Client polling). After this the user is able to connect to the server, by default 

to the http://petersomogyi.com domain. 

 
Figure 11 – Android demo app start 

screen

 

Figure 12 – Android demo app map 
screen 

In case the application is connected to the server it receives the incoming 

data from the server using the desired communication method. As visible on 

Figure 12, a marker is displayed on the map with the car’s current position as 

well as some basic data from the car are shown. These are speed, RPM and engine 

coolant temperature. 
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3.2.1. CLIENT POLLING AND LONG POLLING 

For the polling I start a new background thread which executes a HTTP 

GET request and retrieves the last sensor data from the server in JSON format. 

After the application receives the response the data I store the timestamp in a 

variable and for the next request I pass this value in the query parameter to 

retrieve only the newer sensor and telemetric data from the server. Between 2 

requests I suspend the thread for 4 seconds.  

final Thread t = new Thread() {
 
    @Override 
    public void run() { 
        while (active) { 
            final String json = httpRequest(lastTimestamp); 
            lastTimestamp = getLastTimestamp(json); 
            applicationBusinessLogic.textMessage(json); 
 
            try { 
                sleep(UPDATE_INTERVAL); 
            } catch (final InterruptedException e) { 
                e.printStackTrace(); 
            } 
        } 
    } 

 
}; 

 
Figure 13 – Client polling thread implementation 

For the HTTP request I use the Apache DefaultHttpClient and set the 

User-agent and Accept headers. After successful execution I convert the received 

payload from input stream to JSON and send it back to the application which 

will display the data on the map. 
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private String httpRequest(final long lastTimestamp) {
    String json = null; 
    HttpClient httpClient = new DefaultHttpClient(); 
    httpclient.getParams().setParameter(CoreProtocolPNames.USER_AGENT, 

System.getProperty("http.agent")); 
    final HttpGet getRequest = new HttpGet(URL + lastTimestamp); 
    getRequest.addHeader("Accept", "application/json"); 
    HttpResponse response; 

 
    try { 
        response = httpClient.execute(getRequest); 
        if (response.getStatusLine().getStatusCode() == 200 && active) {
            final HttpEntity entity = response.getEntity(); 
            final InputStream instream = entity.getContent(); 
            json = convertToString(instream); 
        } 
    } catch (final IOException e) { 
        e.printStackTrace(); 
    } 

 
    return json; 
} 

 
Figure 14 – HTTP call for client polling 

The long polling implementation is identical with the client polling, for the 

smartphone client it makes no difference that server replies to the HTTP call 

later. The only difference is in the background thread that sends the requests. In 

the long polling case the application does not have to wait between 2 calls to 

reduce the idle time, because the data that arrives during this time cannot be 

retrieved by the client. 

3.2.2. WEBSOCKET 

In order to support WebSocket in a standard Android application I had 

to use a third party library. The one I selected is called Java WebSocket [32] 

which can be used to develop server and client applications, the library is written 

purely in Java using java.nio with MIT license. This same library can be used 

Java 1.5 applications as well as on Android devices with version 1.6 or higher. In 

a previous implementation I used Autobahn [33] to support the WebSocket 

protocol; however, it was not suitable for me due to its limitations. The current 

version does not implement the secure WebSocket protocol – although it is not 
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written in the documentation – so this was the main reason why I had to replace 

it with Java WebSocket library.  

Connecting to a WebSocket server is easy with the Java WebSocket 

library, only the URI of the server has to be passed to the constructor and the 

onMessage, onOpen, onClose and onError needs to be defined. These methods 

manage the incoming text messages as well as the events for opened and closed 

connection and error handling. The implementation can be seen in Figure 15. 

WebSocketClient webSocketConnection;
 
webSocketConnection = new WebSocketClient(serverUri) { 
 
    @Override 
    public void onOpen(final ServerHandshake handshake) { 
        applicationBusinessLogic.connected(); 
    } 
 
    @Override 
    public void onMessage(final String message) { 
        applicationBusinessLogic.textMessage(message); 
    } 
 
    @Override 
    public void onClose(final int code, final String reason, 

final boolean remote) { 
        applicationBusinessLogic.disconnected(code, reason); 
    } 
 
    @Override 
    public void onError(final Exception ex) { 
        ex.printStackTrace(); 
    } 
}; 
 
webSocketConnection.connect();

 
Figure 15 – Creating a WebSocket connection with Java WebSocket library 

In the reliability chapter I will discuss the reasons why I needed to 

implement a background thread in the Android application. Here I just want to 

explain how I did it using the library. Figure 16 shows the thread that is 

responsible for sending the ping messages. Inside the loop the application sends 

a frame on the open connection with the Opcode.PING content and sleeps the 

thread for a predefined time which is passed as the constructor’s parameter. I set 
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the heartbeat interval to 5 seconds because I found out this is appropriate for 

cellular as well as Wi-Fi networks. 

 

private class PingMessageHandler {
 
    private boolean active = false; 
    private final Thread pingThread; 
 
    public PingMessageHandler(final int interval) { 
        this.pingThread = new Thread(new Runnable() { 
 
            @Override 
            public void run() { 
                while (active) { 
                    final FramedataImpl1 frame =  

new FramedataImpl1(Opcode.PING); 
                    frame.setFin(true); 
                    webSocketConnection.getConnection() 

.sendFrame(frame); 
                    try { 
                        Thread.sleep(interval); 
                    } catch (final InterruptedException e) { 
                        e.printStackTrace(); 
                    } 
                } 
            } 
        }); 
    } 
}   

Figure 16 – WebSocket ping thread implementation 

3.3. DEVICE SIMULATOR 

For the tests I created a console Java application which simulates the 

incoming sensor data from the device. Since the aim of my thesis is to analyze 

the communication between the server and the smartphone I did not emulate the 

behavior and packet structure of the OBD-II device. 

time,lat,lon,elevation,accuracy,bearing,speed

2014‐03‐24T07:39:33Z,47.503816,19.064874,148.000000,55.000000,142.699997,13.000000 

2014‐03‐24T07:40:42Z,47.501163,19.067571,156.000000,46.000000,143.399994,11.500000   
Figure 17 – CSV file structure for the GPS coordinates 

The application reads the GPS coordinates from a csv file which has to be 

passed as an argument to the application and should have the same structure as 
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Figure 17 shows. The application generates sensor data using the latitude, 

longitude, speed values from the CSV file. After that it sends the data in JSON 

format to the application server using an HTTP POST request to the 

http://petersomogyi.com/rest/input URL. The GPS data file and the car ID 

needs to be passed as a program argument and a third optional parameter can 

be added to specify the interval between the 2 sensor data. 

java –jar devicesim.jar <gps‐file> <carId> [<interval>] 
 

Figure 18 – Start command for device simulator 
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4. ASSESSMENT 

In this chapter I will analyze the 3 communication technologies that I 

selected and introduced previously – namely polling, long polling and WebSocket. 

For the assessment I will examine the network bandwidth, reliability of the 

technologies, latency, server-side load test and the effect in case secure connection 

is used. For these assessments I used WireShark for analyzing network traffic, 

the Java EE application server, the Android application that I developed for 

demonstration purpose and the mentioned testing tools. 

4.1. MESSAGE SIZE 

The size of transferred network packages make an important part in 

selecting an optimal technology for sever and smartphone communication. On 

the client side it is mainly important factor if the communication is running over 

mobile internet connection due to the frequently used data plans. In case the used 

network is Wi-Fi, the message size traffic is not a significant criterion. 

On the other hand, smaller message size is relevant on the server side when 

it has to serve multiple clients simultaneously. For this reason, reducing network 

throughput by reducing the average size of the messages could be an important 

factor in selecting optimal communication protocol to increase the server’s 

performance. 

4.1.1. XML AND JSON 

The data that needs to be sent between the client and the server has to 

be serialized in order to send it over the network. There are two often used data 

serialization approaches in web applications, these are JavaScript Object 

Notation (JSON) and Extensive Markup Language (XML) [34]. In this part I 

briefly explain the 2 different representations and explain why I selected JSON 

format to serialize the data. 
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The Extensible Markup Language (XML) is a subset of the Standard 

Generalized Markup Language (SGML) and XML was designed due to the 

complexity of SGML [35]. It was designed for ease of implementation and for 

interoperability with both SGML and HTML. XML is used in many fields of 

computing due to its universal data representation format. It is widely used for 

remote procedure calls, describing web services using WSDL, configuration files, 

RSS and many other areas. The major design principles of XML include 

simplicity and human readability. The intent of an XML document is self-

descriptive and embedded in its structure.[36] The tags in an XML document are 

not predefined, but specific for the application that understands them. Figure 19 

shows a simple XML example. 

<?xml version="1.0" encoding="UTF‐8" standalone="yes"?> 

<sensordata> 

    <carId>1</carId> 

    <timestamp>1398112134064</timestamp> 

    <gpsLatitude>47.53398</gpsLatitude> 

    <gpsLongitude>19.079723</gpsLongitude> 

    <speed>1.25</speed> 

    <rpm>1250</rpm> 

    <coolantTemperature>101</coolantTemperature> 

</sensordata>   
Figure 19 – XML message example 

JSON (JavaScript Object Notation) is a lightweight text-based data-

interchange format which is easy for humans to read and write and for machines 

to parse and generate. It is based on a subset of the JavaScript Programming 

Language [37]. It is primarily used to transfer data between server and clients in 

a compact format. JSON is estimated to parse up to one hundred times faster 

than XML in modern browsers, but it lacks of input validation and extensibility 

[38]. Figure 20 shows the same object represented in JSON format. 
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{ 

  "carId":1, 

  "timestamp":1398112134064,

  "gpsLatitude":47.53398, 

  "gpsLongitude":19.079723, 

  "speed":1.25, 

  "rpm":1250, 

  "coolantTemperature":101 

}   
Figure 20 – JSON message example 

Comparing the size, XML documents are bigger. In the above 2 examples 

using the same object XML needs 281 characters, however, to represent the same 

object using JSON it only takes 134. Moreover, parsing JSON messages is 

generally faster [38]. For my thesis I selected to use JSON format due to its 

compact data representation and performance. 

4.1.2. POLLING 

For the AJAX-based polling implementation there are two HTTP 

messages transferred for each messages, a request initiated by the smartphone 

and a response message sent by the server. Figure 21 shows the HTTP request 

sent by the Android application to retrieve the latest sensor data from the server 

running on http://petersomogyi.com host. The request describes the used 

HTTP/1.1 method which is GET as well as the resource’s URL 

/rest/clientpolling/1/sensordata. The Accept header specifies that the client can 

receive messages in JSON format. The size of this request is 285 bytes including 

the framing of the sent request. Most of the presented headers are generated by 

the Apache’s DefaultHttpClient used in the Android implementation. It is possible 

to contain additional headers – like “Accept: application/json” – or override the 

default values too. 
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GET /rest/clientpolling/1/sensordata?since=1398112128995 
HTTP/1.1 

Accept: application/json 

Host: petersomogyi.com 

Connection: Keep‐Alive 

User‐Agent: Dalvik/1.6.0 (Linux; U; Android 4.4.2; Android 
SDK built for x86 Build/KK) 

 
Figure 21 – Client polling HTTP request example 

The server replies with HTTP 200 OK answer and sends the available 

sensor data in JSON format in the response’s payload. The size of the HTTP 

response including the TCP framing is 366 bytes. From this, the payload’s size 

is only 134 byte so it means that the HTTP and TCP framing is 232 bytes, which 

is 63% of the total traffic in this case. 

My previous implementation of the server used the standard Jackson 

JSON converter and it caused a different behavior. The response builder was not 

able to determine the JSON message’s size at the build time. Due to this the 

response was sent in 3 different TCP packets and assembled on the client side to 

one HTTP response. The size of the messages was 239, 192 and 61 bytes which 

is a total of 492 bytes. The reason why the server sends the response in multiple 

packages is due to the “Transfer-Encoding: chunked” header. It is commonly used 

in cases when the content’s length is unknown or the message’s size is large, 

although, in my case the payload was only 134 bytes long. I modified the server 

to construct the JSON object beforehand and with this modification the response 

builder was able to determine the size of the message payload and now it is able 

to send back the response message in only 1 TCP fragment. This configuration 

on the server side radically reduced the transferred message’s size, in this example 

to 75%. 
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Response: 

HTTP/1.1 200 OK 

Connection: keep‐alive 

X‐Powered‐By: Undertow 1 

Server: Wildfly 8 

Transfer‐Encoding: chunked 

Content‐Type: application/json 

Date: Tue, 21 Apr 2014 20:28:54 GMT 

Payload: 

{"carId":1,"timestamp":1398112134064,"gpsLatitude":47.53398, 

"gpsLongitude":19.079723,"speed":1.25,"rpm":1250, 

"coolantTemperature":101}  
Figure 22 – Client polling HTTP response example with payload 

One commonly used way in HTTP polling implementations is to send a 

timestamp parameter and the server sends back only newer data and does not 

send back the latest one all cases. This simple modification reduces the response 

size in the case of no data is available; thereby it does not use as much network 

resources. The size of the message is 206 bytes which is only 56% of the response 

shown in Figure 22, although, the client does not receive any meaningful 

information. The NO RESPONSE message is visible in Figure 23. 

HTTP/1.1 204 No Content

Connection: keep‐alive 

X‐Powered‐By: Undertow 1 

Server: Wildfly 8 

Content‐Length: 0 

Date: Tue, 20 May 2014 20:28:46 GMT 
 

Figure 23 – Client polling HTTP response with no content 

 
Figure 24 – Request and response messages captured by WireShark 
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4.1.3. LONG POLLING 

Similarly to HTTP polling, the long polling technology is also based on 

AJAX messages. The client initiates the connection with an HTTP request and 

the server replies with a response. The main difference is due to the asynchronous 

call used in long polling, so that the server only sends back the response in case 

new data arrives and until that the connection is blocked. 

As a result of this the size and content of the messages are the same, in 

my example only the requested URL is different 

(/rest/clientpolling/1/sensordata?since=1398112128995  and 

/rest/longpolling/1/sensordata). The size of the GET request in Figure 25 is only 

263 bytes. 

GET /rest/longpolling/1/sensordata HTTP/1.1

Accept: application/json 

Host: petersomogyi.com 

Connection: Keep‐Alive 

User‐Agent: Dalvik/1.6.0 (Linux; U; Android 4.4.2; 
Android SDK built for x86 Build/KK) 

 
Figure 25 – Long polling HTTP request example 

The main difference is in low message rate situations, because the server 

blocks the response and does not send back HTTP 204 NO CONTENT message 

immediately, only after the timeout expires. In the CarCare service's example 

that I used, the messages arrive to the client in every 5 second in case the car is 

moving; otherwise no sensor data is transmitted. Considering this message rate I 

configured the regular polling to initiate a new request in every 4 seconds, and 

the long polling timeout was set to 30 second. 
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Figure 26 – Client polling and long polling for 10 minutes with no sensor data 

Assuming that no sensor data arrive to the server for 10 minutes then the 

long polling implementation will send 20 different requests. However, this number 

is 150 in the client polling example due to the synchronous HTTP requests. The 

diagram in Figure 26 shows the total traffic using the 2 technologies for 10 

minutes with no sensor data. 

 Request Response 

Client polling 285B * 150 = 41.75KiB 206B * 150 = 30.18KiB 

Long polling 263B * 20 = 5.14KiB 206B * 20 = 4.02KiB 

Table 5 – Client polling a long polling size comparison 

4.1.4. WEBSOCKET 

WebSocket was designed in a way to minimalize message framing and 

create a bidirectional communication socket connection between the host and 

client. This communication is separated to three main parts, the opening 

handshake, messages and closing handshake. In the next subchapters I will 

analyze these focusing on the transferred packages. 
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WEBSOCKET OPENING HANDSHAKE 

In order to establish a WebSocket connection, the client has to send an 

HTTP request to the server which contains a special header, called Upgrade. This 

indicates that the client wants to upgrade the HTTP connection to WebSocket 

protocol. The message example in Figure 27 shows WebSocket handshake 

between the Android app and the application server running under 

petersomogyi.com domain. 

GET /websocket/1/sensordata HTTP/1.1

Host: petersomogyi.com:80 

Upgrade: WebSocket 

Connection: Upgrade 

Sec‐WebSocket‐Key: Zd+Y3WBHzV7u3WcoFJFnYg== 

Sec‐WebSocket‐Version: 13 
 

Figure 27 – HTTP request from the client 

HTTP/1.1 101 Switching Protocols

Connection: Upgrade 

X‐Powered‐By: Undertow 1 

Sec‐WebSocket‐Location: 
ws://petersomogyi.com:80/websocket/1/sensordata 

Server: Wildfly 8 

Upgrade: WebSocket 

Content‐Length: 0 

Sec‐WebSocket‐Accept: wDFeipVsF+GStDUG/QttRozS8PM= 

Date: Fri, 02 May 2014 09:42:42 GMT 
 

Figure 28 – HTTP response from the server 

The size of the client request in Figure 27 is 234 byte and the HTTP 

upgrade response’s (Figure 28) size is 357 byte. These messages between the client 

and server contain the required headers, although there are optional ones that 

are not present. Due to this, the size of the opening handshake can increase on 
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both sides, but since it has to be transmitted only once in each WebSocket session 

the size of these messages are not significant. 

 
Figure 29 – WebSocket opening handshake captured by WireShark 

Table 6 explains the WebSocket specific headers for the opening handshake 

[39]. 

Header Description 

Sec-WebSocket-Key 

required 

Sent from the client to the server in the opening 

handshake to prevent cross-protocol attacks. 

Sec-WebSocket-

Accept 

required 

Sent from the server to the client in the opening 

handshake, to confirm that the server understands 

the WebSocket protocol. The value is calculated 

from the Sec-WebSocket-Key value sent by the 

client. 

Sec-WebSocket-

Version 

required 

Sent from the client to the server in the opening 

handshake to indicate version compatibility. 

Sec-WebSocket-

Extensions 

optional 

Sent from the client to the server, and then from 

the server to the client. This header helps the 

client and server to agree on a set of protocol-level 

extensions to use for the duration of the 

connection. 
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Header Description 

Sec-WebSocket-

Protocol 

optional 

Sent from the client to the server, then from the 

server to negotiate the used protocol. This header 

advertises the protocols that a client-side 

application can use. The server uses the same 

header to select at most one of those protocols. 

Table 6 – WebSocket specific headers in the opening handshake 

After a successful upgrade procedure, the connection transforms to the 

data-framing format used for WebSocket messages. The handshake process fails 

if the server does not respond with the 101 response code, Upgrade header, and 

Sec-WebSocket-Accept header. The value of the Sec-WebSocket-Accept response 

header is calculated from the Sec-WebSocket-Key request header and that must 

match exactly what the client expects [23]. 

WEBSOCKET CLOSING HANDSHAKE 

The WebSocket connection can be closed from both sides. The party that 

initiates the action has to specify the purpose using a code and a reason message. 

Table 7 shows the standard RFC-6455 closing codes. It is possible to use other 

close codes as well, 3000-3999 has to be registered with Internet Assigned 

Numbers Authority and 4000-4999 can be used for application specific reasons 

[23]. 
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Code Description 

1000 Normal close 

1001 Going away 

1002 Protocol error 

1003 Unacceptable data type

1004 - 1006 Reserved, unused 

1007 Invalid data 

1008 Message violates policy

1009 Message too large 

1010 Extension required 

1011 Unexpected condition 

1015 TLS failure 

Table 7 – Defined WebSocket Close Codes 

The opcode of the closing message is 8; the closing code and reason are 

encoded in the message payload. The size of the closing message is 60 bytes but 

can be larger due to the reason message’s size in the payload. The other side has 

to send a closing message too and in case both parties received this message, the 

connection closes. Since the connection can close at any time due to any 

application or network problems, it might happen that there is no closing 

handshake at the end of the connection. The following screenshot shows the 

transferred TCP packets for the WebSocket closing handshake initiated by the 

client. 

 
Figure 30 – WebSocket closing handshake captured by WireShark 

MESSAGE FORMAT 

In case the connection is open, both the client and server are able to send 

messages to each other at any time in full-duplex mode. The messages are 

represented on the network with a binary syntax that marks the boundaries 
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between frames and includes type information. Frames can be combined to form 

messages. Typically there is one frame for each message, but a message can be 

composed of many frames. Figure 31 shows the structure of the WebSocket 

messages. 

fin 
&  

opcode 

mask 
& 

length 

extended 
length mask data 

1 byte 1 byte 0 / 2 / 8 bytes 4 bytes  

Figure 31 – WebSocket frame structure 

One of the main goals of WebSocket is the reduction of unnecessary 

network traffic. For this reason the frames contains limited information, such as 

the type of the message, length and masking. The first bit of a frame indicated 

that this is the final fragment in the message. 

The opcode in the first byte of the frame indicates the message type. The 

WebSocket protocol enables to send text-based messages in the payload using 

UTF-8 format which is indicated with opcode 0x01. It is also supported to 

transfer binary messages which have opcode 0x02. Other types of messages that 

use the same format are ping and pong messages, as well as the closing message. 

WebSocket encodes fragment length using variable number of bits to 

support small messages to use a compact encoding at the same time enable to 

transfer medium and big messages. In case the message’s size is under 126 byte, 

the length is sent in the second byte of the message. If the message size is bigger, 

then the length is encoded using 2 extra bytes in the extended length part of the 

message. For even larger messages, WebSocket supports to use 8 extra bytes to 

indicate the message size [39]. 

Masking has to be used for messages sent from client to server to hide 

their content. The aim of the masking is to prevent eavesdropping. The masking 

key has to be 4 bytes long and selected by the client for each message and has to 

be unpredictable. 
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1... .... = Fin: True
.000 .... = Reserved: 0x00 
.... 0001 = Opcode: Text (1) 
0... .... = Mask: False 
.111 1110 = Payload length: 126 Extended payload length (16 

bits) 
Extended payload length (16 bits): 134 
 
Payload: 

Text: {"carId":1,"timestamp":1398087275548,"gpsLatitude": 
45.505245,"gpsLongitude":0.063358,"speed":43.25, 
"rpm":2487,"coolantTemperature":78}   

Figure 32 – Example WebSocket message 

Figure 32 shows a text message sent from the server to the Android 

application captured by WireShark. The size of the JSON payload in the message 

is 134 bytes and all the data sent through the network interface is 192 bytes 

which means the extra WebSocket framing is 58 bytes.  

WEBSOCKET PING 

In order to have a reliable WebSocket communication I had to send ping 

messages from the clients to the server. More information about the need of ping 

messages is discussed in 4.2.1. The Ping and Pong messages are like regular 

WebSocket messages; only the opcode is different, 9 for the ping and 10 for the 

pong. Due to the similarity these messages can also contain payload but in my 

implementation I sent these messages without it to minimize the network traffic. 

The size of these messages are 60 bytes and during my experiments I found out 

that sending ping messages in every 5 minutes is sufficient. According to this the 

accumulated size of the ping and pong messages for one client in one day is 33.75 

KiB. 

24 ∗ 12	 ∗ 60 60 33.75	  

 
Figure 33 – WebSocket Ping and Pong messages 
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4.1.5. ESTIMATIONS 

Focusing on the CarCare service example, the estimated network traffic 

might be calculated based on the travelling time of a typical citizen. According 

to the NewGeography’s and FIA Foundation’s research, the average commute 

time per capita in the European Union’s metropolitan areas is 50 to 60 minutes 

per day depending on the size of the city [40] [41]. Considering that the OBD-II 

device is configured to transmit the sensor and telemetric data to the server in 

every 5 seconds when the engine is running, than the smartphone with an open 

connection would receive 600 – 700 relevant messages from the server per day. 

Based on the aforementioned message sizes of the 3 communication 

protocols and the configuration of the device I estimated the following network 

traffic for client polling, long polling and WebSocket for 24 hours. The estimations 

can be found in Appendix A 

 
Figure 34 – Traffic estimation for 24 hours timeframe 

According to these calculations the client polling implementation is not 

recommended at all due to the lot of unnecessary requests, the long polling and 

WebSocket communication forms are more efficient in network bandwidth. Even 

so there is almost 3 times more traffic generated for the long polling 
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implementation compared to WebSocket protocol for the aforementioned 

scenario. According to this, in case the network traffic is crucial, I recommend 

WebSocket communication based on this analyzed criterion, but in most cases 

this 300 KiB additional traffic does not make significant difference. 

4.2. RELIABILITY 

Reliability is one of the most significant factors in recent network oriented 

applications. It is important to send and receive the same data, namely it does 

not change during the transmission or recognize any network failures such as lost 

connection. Transmission Control Protocol (TCP) provides a reliable protocol 

with ordered data transfer, retransmission of lost packages and error-free data 

transfer. TCP is one of the core protocols which is on top of the Internet Protocol 

(IP) [42]. 

The 3 technologies I analyze use TCP protocol and because of this HTTP 

and WebSocket are generally considered as reliable technologies, due to the 

acknowledgement messages, retransmission, ordered delivery as well as the error 

detection and correction which are provided by the TCP protocol. 

4.2.1. WEBSOCKET CONNECTION DROP 

During the analysis I noticed that neither the library I use for the Android 

application does not send ping messages to the server and nor the server does not 

send the ping messages automatically. After further investigation I found out 

that the WebSocket standard specifies the ping and pong messages’ structure, 

however, it is not specified how regularly the client or the server should send this 

messages to the other party. Due to this, many of the WebSocket 

implementations, including the official WebSocket site’s echo test [43] does not 

send ping messages. 

Due to this deficiency I detected an important problem with WebSocket. 

After relatively long period without data transfer the connection is interrupted 
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between the server and the client. It happens because the network devices closed 

the idle TCP connection and after that it is not possible to send messages. To 

identify the critical period I conducted a test where the client opened a 

WebSocket connection and after that the server sent short messages with 

different interval. I preformed this test with different settings, using LTE 

connection, home Wi-Fi access as well as enterprise Wi-Fi using proxy server. I 

repeated the test 5-10 times using the aforementioned 3 network access and after 

these measurements I recognized the period until the connection is still alive 

highly depends on the used network access. 

Network type Amazon EC2 server 

LTE connection 8 – 15 minutes 

Home Wi-Fi 20 – 40 minutes 

Enterprise Wi-Fi 60 – 80 minutes 

Local network 3 hours+ 

Table 8 – WebSocket connection drop times 

Table 8 contains the results of this experiment. For these tests I used the 

Amazon EC2 server instance that I described in Chapter 3.1.4, but apart from 

that I made another experiment when the mobile device and server were in the 

same local network connected to the same router. This time the connection was 

alive even after 3 hours of inactivity, but this test cannot be considered as a real 

environment. Due to this I focused on the other 3 scenario and according to this 

suggested to use ping messages with 5 minutes intervals. 

Unfortunately, this is a crucial reliability issue, because this connection 

drop was not recognized by client and the server. Sending data during this period 

did not cause any network failures, however the messages were not available on 

the other side of the connection. This problem can be solved by sending ping and 

pong messages periodically. A background thread should be configured to send 

this messages, it can be implemented in the server or client side. I implemented 

it on the client side because in this way it does not require as much resources on 
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the server side and it can serve more clients simultaneously. When I configured 

the Android application to send these messages in every 5 minutes I haven’t 

experimented similar connection failures. Using higher interval length might 

cause problem based on my experiments, for example 10 minutes can cause 

problem with LTE connection using T-Mobile network in Budapest. 

Note: Using desktop Chrome browser and the same application server I 

noticed that the client sends TCP keep alive messages to the server and due to 

this the connection is not interrupted even after long idle time. These messages 

were sent in a regular interval, in every 45 seconds which is shown in the 

WireShark screenshot in Figure 35. It is important to stress that these TCP 

packages are not equivalent with the WebSocket ping and pong messages. Using 

other desktop or mobile browsers these keep-alive messages were not sent.  

 
Figure 35 – TCP keep-alive messages from Chrome browser 

4.2.2. NETWORK TYPE CHANGE 

With mobile devices it is common that the used network type changes 

from Wi-Fi to cellular network, especially if the user is on the way. Of course in 

this case the network connection breaks and the server is not able to deliver 

messages to the mobile device only if the application reconnects to the server. 

This reliability issue can cause outages mostly for the WebSocket protocol, but 

also long polling and client side polling affected by this. 

The network change can be easily detected by the handheld devices, but 

it requires special process using WebSocket protocol to initiate a new connection 

every time this scenario happens. With Android system the 

ConnectivityManager broadcasts the CONNECTIVITY_ACTION action whenever 

the connectivity details have changed. The developer can register a broadcast 
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receiver in the manifest to listen for these changes and resume (or suspend) the 

background updates accordingly [44]. 

Contrary, using long polling technology without any modification the 

application can receive data from the server even after the network connection 

changed. This is possible because the technology is based on multiple, 

independent connections and only 1 asynchronous call would be affected, the next 

request would automatically use the new network connection. Although, due to 

the connection change the client might not receive some data from the server 

that was sent during this time. Of course, using the same broadcast receiver that 

I mentioned previously it is possible to detect this outage and initiate a new 

request from the client immediately. 

The client polling solution is not affected as much as the previous ones 

thanks to the synchronous HTTP calls. The round trip time of the request and 

response messages was about 0.065 second using the Amazon cloud server located 

in Ireland and the Android device in Hungary with Wi-Fi connection. Considering 

the message frequency typically used for client polling purposes – in the CarCare 

case I set it to 5 seconds – the probability that the connection changes between 

cellular network and Wi-Fi access during a request-response message is low. 

Furthermore, the client can easily detect the problem due to a socket error or an 

unsuccessful HTTP response code. 

4.2.3. PROXY CACHING 

When I performed the tests using Ericsson’s network access I observed an 

interesting problem that affects the 2 polling technologies. That corporate 

network uses proxy servers to access the internet and this cached the previous 

response that was actually sent by the external server, therefore the smartphone 

application received outdated, incorrect data [45]. I noticed this scenario using 

the long polling implementation. After the device received the first response from 

the server and sent a new request then it immediately received the response 
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despite the fact that there were no message from the server, furthermore, the 

server does not even received the sent request. 

Cache‐Control: no‐cache, no‐store, must‐revalidate 

Pragma: no‐cache 

Expires: 0 
 

Figure 36 – HTTP headers to disable caching 

One fundamental solution is to set headers in the response message that 

instructs the client as well as the proxy server not to cache the response message. 

These headers are visible in Figure 36. In my case setting these headers was not 

sufficient. I was not able to identify what was the cause of this problem; I assume 

it is due to a configuration of the used proxy server. 

Another way disable caching is to provide an additional query parameter 

to the requested URL which contains a random number or text. In case the client 

provides this extra parameter the neither the proxy server not the client will 

cache the content because the URLs with different query parameters are 

considered as different resources [46]. The optimal range of the extra parameter 

depends on the size of the cache, a popular Hungarian news site – www.index.hu 

– previously used this technique for mobile devices and the query parameter was 

a random number between 1 and 1000. 

This reliability issue does not affect the WebSocket-based implementation, 

only the two HTTP based polling requests. 

4.3. LATENCY 

Latency in web performance means how much time it takes for the client 

to retrieve data. The latency highly depends on distance between the server and 

the client, the used network type and speed, the number of network components 

between them as well as the used implementation. There are specific scenarios 

when the latency should be as low as possible, for example stock trading and 

online multiplayer gaming require really low latency. For my case example, 
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latency is not that relevant requirement; nevertheless, I also analyze the 3 

communication protocols based on this criterion. 

For the test I calculated the average latency of the messages and also the 

standard deviation. Generally it is easier to predict the behavior of a technology 

which deviation is lower since bigger differences in the latency are less frequent. 

During the latency tests the approximate round trip time of ping messages 

between my computer and the Amazon cloud instance was 48 ms. 

1
, 	

1
 

Equation 1 – Calculating standard deviation 

4.3.1. POLLING 

Client polling is much different in terms of latency than the other 2 

communication protocols that I analyzed. We can consider the round trip time 

of the request and response message as the latency which should be relatively 

low. Based on my experiments, for 150 connections the average time to send a 

request and receive the response from the Amazon server took approximately 

66ms, only the first request took longer time which was 0.26 seconds. The change 

of the latency can be seen on Figure 37. The vertical axis shows the latency 

between 0.05 and 0.15 seconds, thus the first message’s deviation is not 

completely visible.  
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Figure 37 – Client polling request latency 

However, this does not guarantee that the smartphone application will 

receive the sensor data updates from server with this delay due to the client 

polling’s behavior. In the CarCare example I used 4 seconds for the polling 

interval and it means the new sensor data can arrive to the client even after 4 

seconds after it was generated, furthermore, the average latency is half of the 

interval, 2 seconds. In the best case scenario the client polling implementation is 

the round trip time latency. For this the new data has to arrive to the server at 

the same time as the request from the client. 

I run a different test where the Android client polled the server in every 4 

seconds and the sensors arrived to the server in 5 seconds interval. In this test I 

calculated the delay between the sent sensor data to the server and the time it 

arrived to the smartphone application. The result of this experiment can be found 

in Figure 38. As it shows the time for the data to arrive to the smartphone took 

quite long time, the average latency for the 286 data was 2.15 seconds which is 

basically half of the polling interval. It is important to note that the standard 

deviation is also high, 1.19 seconds. It is possible to reduce the latency by polling 

more often but of course it greatly increases network traffic. 
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Figure 38 – Client polling data latency 

4.3.2. LONG POLLING 

For the long polling test I cannot measure the time between the HTTP 

request and response on the client side due to the characteristics of the 

technology. To measure the latency I used the demo application on an Android 

simulator and WireShark to capture the network packages. I sent the sensor data 

to the Amazon server from the same machine using the server’s rest interface. 

This way I was able to determine the delay between the 2 different HTTP 

packets. Of course, this also includes the POST request’s latency. Due to this I 

used similar method to examine the latency for the WebSocket messages as well. 

For this test I sent 286 sensor data to the server while the application was 

connected to the server with long polling technology and the results were similar 

to what I measured in the client polling test. The first request took 0.48 seconds; 

2 times more than in the HTTP polling case. However, the average latency was 

68 ms, so basically there is no difference compared to the request-response latency 

in the client polling implementation. 
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Figure 39 – Long polling latency 

4.3.3. WEBSOCKET 

WebSocket’s latency is generally considered lower than the long polling 

implementations [47]; however, my experiments show similar latency for these 2 

technologies. I run the test the same way as in the long polling case using an 

Android simulator and I calculated the difference between the POST request that 

sent the sensor data to the server and the arrived WebSocket message. The first 

message’s latency was 0.58 seconds and the average delay was 70 ms during the 

experiments. 
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Figure 40 – WebSocket message latency 

Of course, this latency does not show purely the WebSocket messages 

latency, that’s why I made another experiment, in which I calculated the time 

difference between the WebSocket ping and pong messages. I run the application 

for 50 minutes and sent the ping messages from the client in every 5 seconds. In 

this case the latency between the Amazon server and smartphone application was 

only 50ms which is only 2 ms higher than the standard IMPC ping messages [48]. 

 
Figure 41 – WebSocket ping latency 
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In this case the first ping message’s latency was not higher like in the 

previous example, because this experiment did not include the REST calls which 

generated higher initial latency. 

4.3.4. OVERVIEW 

Because all the three technologies had a much higher initial latency I 

assume that it is connected with the first POST request and its network routing 

which I used for sending the JSON messages to the application server. According 

to this I calculated the average and standard deviation of the latency for the rest 

of the messages. These values are presented in Table 9. 

 Average Deviation 

Client polling request 

latency 

65 ms 5.1 ms 

Client polling data 

latency 

2,15 s 1,19 s 

Long polling 67 ms 4.1 ms 

WebSocket messages 68 ms 4.4 ms 

WebSocket ping 50 ms 3.7 ms 

Table 9 – Average and standard deviation of the latency 

4.4. LOAD TEST 

An efficient communication technology needs to serve multiple clients 

connections at the same time; furthermore it should behave in a predictable way 

while the server load increases. 
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 For this reason I planned to perform a load test on the server to see how 

these 3 technologies affect the performance in terms of CPU, memory and 

network load as well as how many simultaneous clients can the server handle. To 

do the tests I connected to the server with an Android device in order to measure 

the latency of the messages and recorded the server load. In order to connect 

multiple clients I made a simple program which was able to simulate multiple 

client connections from the same computer. During the test I continuously sent 

sensor data to the server in every 5 seconds. 

For the first time I gradually increased the number of connections. Until 

approximately 4000 connections I haven’t experienced increase in the latency of 

the messages (Figure 42) and also the server’s CPU load was between 10-20%. 

When the number of connections reached about 5000 simultaneous users the 

server crashed unexpectedly. When I checked the log files I noticed this was due 

to the system settings which limited the number of open files and IO connections. 

 
Figure 42 – WebSocket ping with increasing user number up to 5000 

After I modified the settings I haven’t experienced similar problem. I 

performed the same experiment; however I was not able to detect increase in the 

message latency with any of the 3 technologies when I connected to the server 
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Unfortunately, with my available devices I was not able to perform a 

valuable load test on the server. However, I believe that it would have been really 

interesting to see how the 3 different implementations react to high user number. 

A performance research [30] of WebSocket says the following. “Monitoring 

the server CPU utilization in real time reveals that it very rarely goes past 25% 

on a quad core system, effectively using one CPU core 100%. The sequential 

nature of message processing is a probable reason for this. The system can never 

be faster than the initial processing of the messages (which is sequential). The 

sending of the messages to the clients is not very CPU intensive. Only when a 

client is disconnected and the messages have to be merged in the outgoing client 

queue it will show in CPU utilization. This is why we can see a clear increase in 

CPU utilization when clients begin to disconnect in the final sequence of the 

tests.” 

A paper written by Engin Bozdag, Ali Mesbah and Arie van Deursen [49] 

claims that long polling and similar technologies brings some scalability issues, in 

their experiment the CPU usage was 7 times higher than in the client polling 

case around 350-500 simultaneous users. 

4.5. SECURITY 

Using web services has become an important part of our everyday life. 

Since the spread of smartphone and tablet devices many applications moved to 

provide web-based services instead of the traditional, offline applications. We use 

email, online banking, financial applications, social websites, voice-over IP (VoIP) 

and many other services on our mobile devices that require secured connections. 

Therefore, it is required form a competitive communication protocol to support 

secured connections. 

There are some security concerns about WebSocket. An article written by 

Jussi-Pekka Erkkilä [50] discusses possible security threats. For example the 

Origin Policy from HTTP is not used, instead a mechanism called verified-origin. 

The main problem could be arises from the lack of official standards. 
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4.5.1. TLS 

The Transport Layer Security (TLS) – previously Secured Socket Layer 

(SSL) is a cryptographic protocol which is designed to provide privacy and data 

integrity between two communicating applications typically over the internet 

using a combination of public-key and symmetric-key encryption. “One advantage 

of TLS is that it is application protocol independent. Higher-level protocols can 

layer on top of the TLS protocol transparently. The TLS standard, however, does 

not specify how protocols add security with TLS; the decisions on how to initiate 

TLS handshaking and how to interpret the authentication certificates exchanged 

are left to the judgment of the designers and implementers of protocols that run 

on top of TLS.” [51]  

SSL OR TLS HANDSHAKE 

In order to have secured communication using SSL or TLS, the client and 

server has to establish a handshake. The handshake allows the server to 

authenticate itself to the client by using public-key techniques, and then allows 

the client and the server to cooperate in the creation of symmetric keys used for 

rapid encryption, decryption, and tamper detection during the session that 

follows. Optionally, the handshake also allows the client to authenticate itself to 

the server [52]. 
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Figure 43 – SSL/TLS handshake workflow 

Source: 

http://pic.dhe.ibm.com/infocenter/wmqv7/v7r5/index.jsp?topic=%2Fcom.ibm.mq.sec.doc%2Fq

009930_.htm 

1. The SSL or TLS client sends a client hello message that lists cryptographic 

information such as the SSL or TLS version and, in the client's order of 

preference, the CipherSuites supported by the client. The message also 

contains a random byte string that is used in subsequent computations. The 

protocol allows for the client hello to include the data compression methods 

supported by the client. 

2. The SSL or TLS server responds with a server hello message that contains 

the CipherSuite chosen by the server from the list provided by the client, 

the session ID, and another random byte string. The server also sends its 

digital certificate. If the server requires a digital certificate for client 

authentication, the server sends a client certificate request that includes a 

list of the types of certificates supported and the Distinguished Names of 

acceptable Certification Authorities (CAs). 
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3. The SSL or TLS client verifies the server's digital certificate. For more 

information, see How SSL and TLS provide identification, authentication, 

confidentiality, and integrity. 

4. The SSL or TLS client sends the random byte string that enables both the 

client and the server to compute the secret key to be used for encrypting 

subsequent message data. The random byte string itself is encrypted with 

the server's public key. 

5. If the SSL or TLS server sent a client certificate request, the client sends a 

random byte string encrypted with the client's private key, together with 

the client's digital certificate, or a no digital certificate alert. This alert is 

only a warning, but with some implementations the handshake fails if client 

authentication is mandatory. 

6. The SSL or TLS server verifies the client's certificate. For more information, 

see How SSL and TLS provide identification, authentication, 

confidentiality, and integrity. 

7. The SSL or TLS client sends the server a finished message, which is 

encrypted with the secret key, indicating that the client part of the 

handshake is complete. 

8. The SSL or TLS server sends the client a finished message, which is 

encrypted with the secret key, indicating that the server part of the 

handshake is complete. 

9. For the duration of the SSL or TLS session, the server and client can now 

exchange messages that are symmetrically encrypted with the shared secret 

key. 

Source: IBM [53] 

 
Figure 44 – TLS handshake before the communication 

The 3 different communication types that I analyze use TLS protocol to 

encrypt the messages. The TLS handshake packages are the same for all the 3 

protocols which is visible in the following WireShark screenshot. The total size of 
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the handshake is 699 bytes, however, due to the secured connection the framing 

of the messages increase which I will analyze in later. 

4.5.2. GENERATING SELF-SIGNED CERTIFICATE 

The SSL or TLS Certificates are data files that digitally associate the 

cryptographic key to an organization’s details. When this certificate is installed 

on a web server, it enables the clients and the server to use HTTPS and other 

secured connection that is based on SSL or TLS security protocol. Typically, 

secured connections are used to secure credit card transactions, data transfer and 

logins, and more recently is becoming the norm when securing browsing of social 

media sites [54]. 

In order to install an SSL certificate for the WildFly web-server that I 

used during the testing, I generated a self-signed certificate using keytool software 

with the command in Figure 45: 

> keytool ‐genkey ‐alias wildfly ‐keyalg RSA
 

Figure 45 – Command to generate certificate 

After this I had to configure WildFly server to use the generated certificate 

which can be done in the used configuration file. For the standalone.xml file I 

added a new security-realm element which is displayed in Figure 46 [55]. 

<security‐realms> 
  ... 
  <security‐realm name="UndertowRealm"> 
    <server‐identities> 
      <ssl> 
        <keystore path="my.keystore" relative‐to="jboss.server.config.dir"

keystore‐password="my‐pass" /> 
      </ssl> 
    </server‐identities> 
  </security‐realm> 
</security‐realms>   

Figure 46 – Configuration for the generated certificate file for WildFly 
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Furthermore, I had to add an HTTPS listener under the undertow 

subsystem. After this, the web-server is able to serve HTTPS requests as well as 

to establish Secure WebSocket connections with the wss:// protocol. 

<subsystem xmlns="urn:jboss:domain:undertow:1.0"> 
  ... 
  <server name="default‐server"> 
    <http‐listener name="default" socket‐binding="http" /> 
    <https‐listener name="https" socket‐binding="https" 

security‐realm="UndertowRealm" /> 
    <host name="default‐host" alias="localhost"> 
      <location name="/" handler="welcome‐content" /> 
      <filter‐ref name="server‐header" /> 
      <filter‐ref name="x‐powered‐by‐header" /> 
    </host> 
  </server> 
  ... 
</subsystem> 

 
Figure 47 – Required HTTPS listener for WildFly configuration file 

This self-signed certificate is not equivalent with an official certificate. In 

order to obtain a valid SSL/TLS certificate, I would need to register it from a 

trusted authority, so I only used the self-signed version. Unfortunately, I was not 

able to do complete tests using the 3 selected technologies with TLS protocol due 

to the limitations of the self-signed certificate. 

Opening the website on the mobile device the visitor receives a notification 

that the server’s certificate is not trusted, which is visible on the screenshot in 

Figure 48. In case the user accepts the certificate he or she is able to use the 

secured connection, only the address bar will indicate the warning. Using the 

application I made for the testing I was not able to configure the device to use 

this secured connection from the native application with untrusted certificates. 

However, I was able to use the website from the Chrome browser and perform 

tests to analyze the HTTPS and Secure WebSocket connection. In order to do a 

trustworthy comparison, I used the same JSON objects in the messages. 
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Figure 48 – Android Chrome’s 

warning for untrusted certificate 

 
Figure 49 – Android Chrome’s 

certificate information 

4.5.3. MESSAGE SIZE 

Due to the encryption, the size of the messages increased regardless the 

used communication technology. As I explained in Chapter 4.1, the structure and 

size of the client polling and long polling messages are relatively the same. 

Without using any encryption, the request messages were 285 and 263 bytes sent 

from the Android application. When I used the same web-service with HTTPS 

over TLS protocol, the size of the requests were 587 bytes in the client polling 

and long polling case as well. At the same time, the server sent responses with 

the following JSON content were 411 bytes and HTTP 204 NO CONTENT 

responses were 203 bytes. Previously, these messages were 366 and 206 bytes 

which contained 134 byes of JSON data in the payload. It means to send the 

same messages over a secured connection the TLS protocol will add an extra 300 

bytes overhead just to the requests, however, the response only increased with 45 
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bytes; moreover the HTTP 204 NO CONTENT answer was even smaller using 

the TLS protocol. 

 
Figure 50 – Long polling TLS messages 

The WireShark capture on Figure 50 shows the transferred messages for 

long polling. The first and third lines are HTTP requests, the second is a reply 

from the server with the JSON payload and the final one is a response with no 

content which was sent after the 30 second timeout. 

{"carId":1,"timestamp":1398112134064,"gpsLatitude": 

47.53398,"gpsLongitude":19.079723,"speed":1.25, 

"rpm":1250,"coolantTemperature":101}  
Figure 51 – Used JSON payload 

Using WebSocket the size of the messages increased from 192 bytes to 235 

bytes which is only 22% increase. This is the lowest increase comparing these 3 

technologies; the increase caused by the secured connections can be found in 

Table 10. 

Technology Unsecure Secure Increase 

Client polling with 

JSON 

(request + response) 

651 B 998 B 53% 

Client polling without 

JSON 

(request + response) 

491 B 790 B 61% 
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Technology Unsecure Secure Increase 

Long polling with 

JSON 

(request + response) 

629 B 998 B 59% 

Long polling without 

JSON 

(request + response) 

469 B 790 B 68% 

WebSocket 192 B 235 B 22% 

Table 10 – Comparison of message size increase with security  

4.5.4. LATENCY 

Before I made tests for latency using secured connections I expected that 

the increase will be similar since all the technologies I analyze use TLS protocol. 

However, the increase for WebSocket was much higher compared to the long 

polling example. 

 
Figure 52 – Latency comparison of unsecured and secured connections 

0 s

0,05 s

0,1 s

0,15 s

0,2 s

0,25 s

0,3 s

0,35 s

0,4 s

La
te
n
cy

Time

Latency increase using security

WebSocket Long polling WebSocket secure Long polling secure



71 

As Figure 52 shows long polling with and without using security have the 

same latency as pure WebSocket connection. However, using Secure WebSocket 

connection radically increased it which was unexpected. The exact values can be 

found in Table 11. This radical increase was unexpected, and I assume it is arising 

from the used WebSocket library. 

Technology Average Standard deviation

Long polling 66 ms 4.1 ms 

Secured long polling 64 ms 4.3 ms 

WebSocket 68 ms 4.4 ms 

Secured WebSocket 320 ms 13.1 ms 

Table 11 – Latency comparison of unsecured and secured connections 

Note: The unsecured long polling request’s latency was 2 ms higher than 

the secured one which is unlikely. Since the 2 experiment was done on different 

days I assume it is due to the change in the network’s latency. 
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5. CONCLUSION 

This chapter will summarize my results of the client polling, long polling 

and WebSocket technologies. The main goal of this thesis was to analyze these 

three communication technologies focusing on smartphone and server 

communications with specific requirements. I will also discuss some possibilities 

for future work in this area. 

5.1. MY RESULTS 

My objective was to find the most suitable communication form to deliver 

real-time data from a server to smartphone devices. For this I selected 3 

communication technologies, namely client polling, long polling and HTML5 

WebSocket. I selected 5 specific requirements to compare these technologies. 

The first I examined was message size. Regarding this I compared JSON 

and XML representation of data and stated that JSON is much more efficient in 

terms of size and parsing speed [34]. Therefore I selected the JSON representation 

and worked with this during the assessments. As it was expected, the most 

efficient technology in terms of message size among this three is WebSocket, 

which is not surprising, because one of the main principles of the technology was 

to reduce message framing [39]. The HTTP based technologies require bigger 

message framing to deliver the same message. Although long polling technology 

aims to reduce the unnecessary request that client polling has, but my estimated 

network traffic for 24 hours with the used CarCare example was still 2.5 times 

bigger than in the WebSocket case. 

The second requirement I had was reliability. Generally all the 

technologies I analyzed can be considered reliable since all of them use TCP 

connection to transfer messages. Due to this the network problems are handled 

in the Transport Layer of the OSI model [56], such as retransmission in case of 

lost packets. Apart from this, I noticed reliability problems which concern all of 

these technologies; however, I was able to solve these problems. With long polling 
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and client polling I found that using proxy servers can cause caching problems. 

Generally, this can be easily solved with using specific headers in the HTTP 

messages; however, in my case it does not solve the problem possible due to the 

used proxy server’s configurations. A workaround I finally used was to pass a 

randomly generated query parameter which solved this problem. 

A reliability issue I found affects WebSocket. After long inactivity on the 

network neither the server nor the client was able to send messages to the other 

party and the lost connection was not recognized. This can be solved by sending 

ping messages. My experiment shows that sending ping in every 5 minutes solved 

this problem. However, it is still a major reliability issue, because some libraries, 

such as AutoBahn or JavaScript from browser, do not enable to send ping 

messages and in this case the connection can be lost. Since WebSocket API is 

still in a Candidate Recommendation stage the issue with lost connection could 

be fixed later on, but until now this problem can case big reliability issue. A 

paper called A Real-Time Group Communication Architecture Based on 

WebSocket [57] claims that WebSocket can be used for real-time communication, 

however, currently it is not fully supported and different browsers support 

different portions of the specification. 

Another requirement was low latency. As I discussed previously, client 

polling is significantly worse in delivering real-time data to the client compared 

to the other technologies due to its implementation. Of course it can be reduced 

by using more frequent polling interval; however it would radically increase the 

network traffic. As I reviewed related studies I found out that WebSocket’s 

latency is generally lower than long polling implementation, however, my 

experiments show that this 2 technology have similar latency and also the 

standard deviation was almost the same. [49] 

Load testing would have been a really important and interesting 

experiment, but unfortunately I was not able to perform this test due to 

limitations that I explained in Chapter 4.4. 
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Security is a major requirement for a competitive communication 

technology. Therefore, all the three analyzed technology supports secured 

connection over TLS protocol. The only required configuration was to install 

security certificate for the application server and changing to secured protocols 

in the URIs was the only modification needed for the clients. When I analyzed 

the secured connections I noticed that the client polling and long polling 

messages’ size increased by 60%, however, for the secured WebSocket connection 

this growth was only 20-30%. On the other hand, latency radically increased in 

the WebSocket case. As my experiments show, it increased from 70 ms to 300 ms 

while the long polling latency did not change using encrypted connection. This 

huge increase might be caused by the used library and not the Secured WebSocket 

connection’s characteristic. 

As it was expected both long polling and WebSocket technologies 

outperformed client polling in terms of message size and latency. The main benefit 

of WebSocket is the reduced message size and the bi-directional communication. 

However, currently WebSocket is not necessarily provides a reliable connection 

and the users have to face higher latency when encrypted connection is used. 

5.2. FUTURE WORKS 

While this thesis has covered the major requirements for an efficient 

communicating technology for real-time server and smartphone communication, 

many opportunities for extending the scope of this thesis remain. This part covers 

some of the possible directions for future works. 

5.2.1. PROOF THE RESULTS 

All of my experiments were conducted on the same server and Android 

library. Redoing the same tests on other platform might end up with different 

results or it can strengthen my findings. Since the aim of the thesis is to cover 

server and smartphone communication, the most common smartphone operating 

systems needs to be tested which are currently Android, iOS and Windows Phone 
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8. Furthermore, alternative servers should be tested, because latency and 

scalability can highly depends on the server-side implementation. 

5.2.2. SCALABILITY AND LOAD TEST 

As I discussed previously I was not able to accomplish the load testing of 

the server. Therefore, it is definitely an area where this research can go forward. 

My initial plan was to monitor the server’s CPU, memory and network load while 

the user number progressively increases. Another modification could be that the 

clients are not connected from multiple geographical locations to simulate a real 

production environment. 

Generally, a big system uses multiple servers which are located behind a 

load balancer for two main purposes. The first reason is to provide a secondary 

server which can take over the clients in case the primary server breaks down. 

The other purpose is to use multiple servers simultaneously. In this way the 

server load can be reduced by redirecting the incoming connections to different 

back ends. HTTP and HTTPS traffic are generally supported by load balancers, 

however, it might not be the case with WebSocket connection. 

5.2.3. OTHER TECHNOLOGIES 

This thesis focused on client polling, long polling and WebSocket 

technologies. Of course there are other possibilities that can be suitable for server 

and smartphone communication that I did not cover but could show interesting 

results. One of these is also an HTML5 technology, called Server-Sent Events [58] 

which is still in Candidate Recommendation state but shows great opportunities 

for HTML-based applications. Another possibility is to use simple socket 

connection; however it would require implementation of different interfaces for 

smartphone and web applications. Cloud messaging [59] [60] is another interesting 

field which is mainly used for delivering notifications to the mobile devices. A 

drawback of this technology is the underlying UDP protocol and due to this it is 

not guaranteed that the messages arrive to the clients. 
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5.2.4. OTHER MESSAGE TYPES 

The main concept of my thesis was about transferring real-time data from 

the server to the mobile devices. This is an interesting field due to the increasing 

popularity of device-to-device communication and Internet of Things. However, 

there is a need for different kinds of communications as well. 

The traditional request and response based messages are still needed and 

widely used communication pattern. It can be used to retrieve information that 

does not need to be sent continuously, for example to fuel level or static 

information about the car. Sending large data files can be considered as request-

response communication; however, other kind of communication technologies 

might be more efficient. Notification is another kind of message type which is 

basically a message that needs to be sent to the client based on an event or time. 

The trigger can be an accident when the device can notify the authorities or 

another notification could be sent in case the check engine lamp lights up. As 

these examples show there are many different communication types for which the 

analyzed three technologies can be also suitable but the requirements does not 

necessarily meets the ones I analyzed. 
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6. APPENDICES 

6.1.  APPENDIX A 

This appendix covers the message size estimations for 24 hours interval 

with 50-60 minutes travelling time. The messages are transferred in every 5 

minutes when the car is moving. Table 12 covers the client polling estimation, 

Table 13 has the results for long polling and Table 14 shows the message size 

calculations for WebSocket. 

Client polling One message 24 hours 

Request 263B 21 600 * 263B = 5547.65KiB 

Response with JSON 366B 700 * 366B = 250.19KiB 

Response with no 

content 
206B 20 900 * 206B = 4204.5KiB 

Table 12 – Client polling 24h estimation 

Long polling One message 24 hours 

Request 285B 746 * 285B = 207.62KiB 

Response with JSON 366B 700 * 366B = 250.19KiB 

Response with no 

content 
206B 46 * 206B = 9.25KiB 

Table 13 – Long polling 24h estimation 

WebSocket One message 24 hours 

Opening handshake 234B + 357B 591B 
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Closing handshake 62B + 60B + 62B 184B 

Messages 192B 700 * 192B = 131.25KiB 

Ping / Pong 60B + 60B 24 * 12 * 120B = 33,75KiB 

Sum 1.06KiB 165.75KiB 

Table 14 – WebSocket 24h estimation 
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