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ABSTRACT 
This doctoral thesis deals with the phenomenon-based modeling of pulp bleaching. Previous 

bleaching models typically utilize one or two empirical correlations to predict the kinetics in kappa 

number development. Empirical correlations are simple to develop, but their parameters are often 

tied to the validation system. A major benefit of physico-chemical phenomenon models is that they 

are valid regardless of the reaction environment. Furthermore, modeling the bleaching processes at 

molecular level provides a new way to examine the relative importance of various phenomena, the 

validity of theories and the bottlenecks of bleaching applications. 

 

The first part of the thesis introduces a model for the pulp suspension environment and describes 

the physico-chemical models in use (reaction kinetics, mass transfer, thermodynamics). The second 

part deals with inorganic oxychlorine reactions related to chlorine dioxide bleaching. The reaction 

kinetics and mechanism are documented for iron- mediated chlorite decomposition, chlorous acid 

self-decomposition, and for the reaction between hypochlorous acid and chlorous acid. The rate 

coefficient temperature dependency is reported for the two latter reactions. The reaction kinetic 

models were utilized in assessing the potential chlorate formation routes encountered in pulp 

bleaching. It was concluded that chlorous acid self-decomposition is unlikely to contribute to 

chlorate formation in bleaching applications. The iron-mediated chlorite decomposition and the 

reaction between hypochlorous acid and chlorous acid are expected to produce chlorate. 

 

The last part introduces a model for chlorine dioxide delignification. Here the pulp suspension 

model was combined with a broad set of chemical reactions describing the ClO2 bleaching 

chemistry. The incorporated reactions cover lignin oxidation, lignin chlorination, hexenuronic acid 

degradation, lignin dissolution, oxidation of extractives and the essential inorganic oxychlorine 

reactions. The model predictions were compared against experimental delignification results in 

order to validate the model and obtain the previously unknown reaction rate parameters. The 

predictions were generally in good agreement with experimental results. Deviations related 

primarily to hypochlorous acid driven processes: organochlorine formation, hexenuronic acid 

degrading reactions, chlorite depletion or chlorate formation. The simulation results suggest that 

organochlorine formation is restricted by the amount of chlorination-susceptible substrates in pulp 

rather than the availability of chlorine. It was also concluded that, in addition to the fully inorganic 

reactions, chlorite is also likely to be consumed in reactions with pulp-related compounds, for 

instance with aldehydes. 

 

 



   

TIIVISTELMÄ 
Väitöskirjassa tutkittiin sellun klooridioksidivalkaisun ilmiöpohjaista mallittamista. Olemassa 

olevat valkaisuprosessien mallit perustuvat empiirisiin korrelaatioihin, jotka ovat puhtaasti 

matemaattisia ja joiden käyttömahdollisuudet ovat usein rajallisia. Tässä työssä valkaisun 

kuvaamiseen käytettiin fysikaalis-kemiallisia ilmiömalleja (reaktiokinetiikka, aineensiirto, 

termodynamiikka), joilla on periaatteessa rajoittamattomat soveltuvuusalueet. Prosessien 

tutkiminen molekyylitasolla tarjoaa uudenlaiset edellytykset arvioida ilmiöiden keskinäisiä 

vaikutuksia, valkaisukemiaan liittyviä teorioiden paikkansapitävyyttä sekä käytännön sovellusten 

rajoittavia tekijöitä. 

 

Työn ensimmäisessä osassa luotiin malli sellususpensioympäristölle sekä määritettiin 

mallitusperiaatteet valkaisuprosessien tärkeimmille fysikaalis-kemiallisille ilmiöille. Toisessa 

osassa tutkittiin klooridioksidivalkaisussa esiintyvien epäorgaanisten klooriyhdisteiden tärkeimpien 

reaktioiden mekanismeja ja kinetiikkaa vesiliuoksessa. Kloriitin rautakatalysoidulle hajoamiselle, 

kloorihapokkeen spontaanille hajoamiselle sekä alikloorihapokkeen ja kloorihapokkeen väliselle 

reaktiolle määritettiin reaktionopeusvakiot. Kahdelle viimeiselle reaktiolle määritettiin myös 

reaktionopeusvakioiden lämpötilariippuvuus (aktivoitumisenergia). Reaktiokineettisten mallien 

avulla arvioitiin valkaisun aikana syntyvän kloraatin muodostumisreittejä. Simulaatiotulosten 

perusteella todettiin, että kloorihapokkeen spontaani hajoamisreaktio on valkaisuolosuhteissa niin 

hidas, ettei sen osallistuminen kloraatin muodostukseen ole todennäköistä. Sen sijaan kloriitin 

rautakatalysoitu hajoaminen sekä alikloorihapokkeen ja kloorihapokkeen välinen reaktio ovat 

potentiaalisia kloraatinmuodostumisreittejä. 

 

Työn viimeisessä osassa luotiin kokonaismalli ligniiniä poistavalle klooridioksidivalkaisulle. 

Mallikokonaisuudessa yhdistettiin sellususpensiomalli sekä joukko kemiallisia reaktioita, joilla 

kuvattiin kloorikomponenttien reaktiot jäännösligniinin, heksenuronihapon ja uuteaineiden kanssa 

sekä epäorgaanisten klooriyhdisteiden keskinäiset reaktiot. Mallin ennusteita verrattiin 

valkaisukokeissa saatuihin tuloksiin. Vastaavuuden todettiin olevan pääsääntöisesti hyvä. 

Heikkoudet liittyivät ensisijaisesti alikloorihapokkeen ja kloorin reaktioihin: orgaanisten 

klooriyhdisteiden muodostumiseen, heksenuronihappojen reaktioihin sekä kloriitin kulutukseen tai 

kloraatin muodostumiseen. Tulosten perusteella pääteltiin, että orgaanisten klooriyhdisteiden 

muodostumista rajoittava tekijä liittyy todennäköisemmin kuiduissa olevien substraattien määrään 

kuin välituotteena syntyvän kloorin määrään. Simulointitulokset viittasivat myös siihen, että 

valkaisun aikana tapahtuva kloriitin hajoaminen on ainakin osittain seurausta reaktioista ligniini- tai 

hiilihydraattiperäisten komponenttien, mahdollisesti aldehydien, kanssa.  
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1 BACKGROUND 

Kraft pulping disintegrates wood fibers by removing and modifying lignin, the polymeric substance 

keeping the fibers attached. The majority of the lignin is removed during pulping, but a small, highly 

colored residue (typically 1.5-6% of o.d. pulp) is left in the brownstock pulp (Sixta et al. 2006). There 

are also other colored impurities as well as foreign matter that contribute to the observed color, but 

residual lignin is the major source of color. Chemical pulp bleaching aims at removing the residual 

lignin (delignifying bleaching) or destroying the colored structures in lignin and in other pulp 

components (Sixta et al. 2006; Fogelholm 2000).  

 

Chlorine dioxide (ClO2) is the primary bleaching agent applied in modern chemical pulp bleaching 

processes. Elemental Chlorine-Free (ECF) pulp, produced using chlorine dioxide as the primary 

bleaching agent, had a nearly 85% world market share in 2005 (Anon. 2006). This number is likely to 

have increased during the past five years. The popularity of chlorine dioxide is explained by its high 

selectivity and low environmental impact (Sixta et al. 2006). Moreover, ECF bleaching is 

acknowledged as a core component of Best Available Technology (Anon. 2006). Chlorine dioxide has 

therefore high importance in practical pulp bleaching both today and in the near future. Despite its 

wide use and the large amount of related research, many aspects regarding chlorine dioxide bleaching 

chemistry are poorly understood. A significant part of ClO2 ends up as inactive chlorate (ClO3
-), 

especially in the final bleaching stages (Marpillero 1958; Fredricks et al. 1971; Rapson and Anderson 

1977; Kolar et al. 1983; Medina et al. 2008). Also, the ClO2 quantities consumed in chlorine dioxide 

delignification are much higher than what is theoretically needed to solubilize lignin (Lachenal and 

Chirat 2000). Overcoming the practical problems encountered in using chlorine dioxide as pulp 

bleaching agent requires profound understanding of the chemistry and of the physico-chemical 

processes that define the bleaching outcome. One way to obtain such knowledge is to use modeling 

and simulation tools. The presently available chlorine dioxide bleaching models typically employ one 

or two empirical correlations to predict the kinetics in kappa number development (Germgård 1982; 

Barroca et al. 2001; Chandranupap and Nguyen 2000; Savoie and Tessier 1997; Tessier and Savoie 

1997; Mortha et al. 2001). The correlations are fast and easy to use, and they are beneficial in forming 

a gross linkage between the key process variables and the bleaching result. As a downside, the 

correlation parameters rarely have physical meaning and hence the parameter values are often tied to 

the experimental setup (pulp type, conditions, apparatus, etc). Another limitation of the kappa 

correlations is that the maximum delignification result (highest attainable kappa number drop) is 

required as an input parameter. In many cases the research objective would be to find ways to exceed 

the apparent maximum performance. 
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Chemical reaction systems may be modeled at various scales of physico-chemical precision. At one 

end lie empirical correlations, which exploit a purely mathematical approach. Atomic level models 

that consider chemical reactions through orbital theories may be thought to lie at the opposite end. 

Both approaches, as well as anything in between, serve their purposes. The task at hand defines the 

suitable level of precision. Although the research related to pulp bleaching has mainly employed the 

correlation approach (kappa number models), chemical and petrochemical industries often make use 

of phenomenon-based models that rely on thermodynamics, chemical reactions, mass transfer, fluid 

dynamics, etc. The benefit of phenomenon-based modeling is that the models and parameters are 

considered independent of size or shape of experimental equipment, or of any other external 

constraints. Thus, extrapolation in composition, scale, geometry, or in process conditions is fairly 

reliable. Freedom of system composition is a particularly beneficial property. In pulp bleaching 

applications this means that the model parameters are independent of the pulp type (wood species), 

the pulping process, or the filtrates in use – so long as the pulps and filtrates are characterized to a 

sufficient extent. Phenomenon-based modeling also facilitates straightforward investigation of 

reaction mechanisms as chemical reactions are modeled on molecular scale. The essential 

requirements for using a phenomenon-based modeling approach is that appropriate models are 

available, suitable parameters are available or they can be determined, and the physical environment 

in which the phenomenon models operate is defined. The purpose of this work has been to provide 

new research tools by developing a phenomenon-based modeling environment for chemical pulp 

bleaching processes and to implement a reaction library sufficient for modeling chlorine dioxide 

bleaching.  
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2 PULP SUSPENSION MODEL  

The principles and concepts related to modeling the pulp suspension environment and the physico-

chemical phenomena of pulp bleaching are introduced in paper [I]. The main constituents in pulp 

suspensions are wood fibers, water, and chemicals dissolved in water. The fibers are modeled as 

hollow cylinders. When suspended into an aqueous medium, the fiber wall will absorb liquid. The 

stagnant liquid inside the fiber wall is considered separate from the bulk liquid and is referred to as 

the fiber-bound liquid. The bulk liquid, both outside the cylindrical fibers and inside the fiber lumen, 

is referred to as the external liquid. The lumen liquid is assumed to be in open contact with the liquid 

outside the fibers through pits in the fiber wall. The volume of the fiber-bound liquid is defined via 

the fiber saturation point (FSP). The solid fiber wall components are modeled as an insoluble phase 

where the fiber polymers and other components are uniformly distributed. The fiber-bound liquid is 

believed to occupy the micronic network of pores in the cell wall, providing an unrestricted 

interaction with the fiber wall components. Therefore, the solid fiber wall and the fiber-bound liquid 

have an interface, as do the two liquid phases, but there is no direct contact between the external 

liquid and the solid fiber wall. A schematic depiction of the suspension environment is given in Figure 

1.  

 

Lignin is modeled with monomeric pseudo-compounds. This simplification enables efficient 

incorporation of the chemical characteristics and reactions of various lignin structures, although 

ensuing compromises in the modeling the macromolecular features of the lignin. Syringyl and 

guaiacyl lignin units are distinguished with regard to molar weight; their reaction paths and kinetics 

are assumed to be equal. Chlorine dioxide is known to be a very selective lignin oxidant, reacting 

much faster with lignin than with pulp carbohydrates (Alén 2000). Consequently, cellulose and 

hemicelluloses are assumed to be mainly inert. Uronic acids, attached to xylan, make an exception. 

Methylglucuronic acid and hexenuronic acid contribute to the acid-base properties of pulp and the 

participation of hexenuronic acid in chemical consumption (Vuorinen et al. 1997) is included.  

 

The acidic groups in wood fibers contribute to the electrostatic equilibrium in the fiber-bound liquid 

and cause an uneven distribution of mobile ions between the two liquid phases. The Donnan theory is 

used to define the uneven distribution (Helfferich 1962; Towers and Scallan 1996; Bygrave and 

Englezos 2000; Lindgren et al. 2001; Räsänen et al. 2001). The following categories of fiber acids are 

incorporated into the model: uronic acids in hemicelluloses (pKa = 3.1) (Laine et al. 1994), residual 

lignin- and extractive-derived carboxylic acids (pKa1 = 4-6, pKa2 = 2-3) (Laine et al. 1994; Räsänen 

2003), and lignin-derived phenols (pKa = 9-11) (Ragnar et al. 2000; Norgren and Lindström 2000a). 
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The protolysis reactions are assumed to reach an instantaneous equilibrium, i.e. their kinetic nature is 

disregarded.  

 

Reaction kinetics is used to model the progress of pulp bleaching at molecular level. The reactions 

cover lignin oxidation, lignin dissolution, hexenuronic acid oxidation, oxidation of unsaturated 

extractives, and inorganic oxychlorine reactions. The complete set of reactions used to model chlorine 

dioxide delignification is introduced later. The temperature dependency of the reaction rate 

coefficients is modeled with the Arrhenius equation. 

 

 
Figure 1. A schematic picture of the phenomenon-based delignification model principles. 

 

The film theory is used to describe the mass transfer between the fiber-bound liquid and the external 

liquid. Mass transfer resistance is assumed to lie in a stagnant fluid film between the phases. The bulk 

liquids far from the phase boundary are assumed to be ideally mixed. The majority of the aqueous 

phase in pulp suspensions is composed of water (molar fraction of water is typically > 0.99). Thus, 

convective effects other than those related to fiber swelling are assumed to have a negligible 

contribution to the liquid-liquid mass transfer. Due to the dilute system, the component interactions of 

diffusing neutral components are also neglected. The electrostatic interactions of diffusing ions 
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cannot be omitted even in a dilute system. A simplified representation of the Nernst-Planck equation 

is used to describe the mass transfer of ionic species (e1) (Ala-Kaila 1998).  
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The effective diffusion coefficient values (Deff) used for pore diffusion are obtained from pure liquid 

phase diffusion coefficients (D) by multiplying by fiber porosity (ε) and dividing by pore tortuosity 

(τ) (e2) (Froment and Bischoff 1990). Fiber porosity (ε) is estimated with equation (e3). The fiber 

pore tortuosity is assumed to have a value τ = 7.0 according to Zhang et al. (1998). 
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Reported diffusion coefficients are used for all compounds (molecules and ions), when available. 

These are found in several textbooks (Perry and Green 1997; Newman 1991; Cussler 1984). The 

Wilke-Chang correlation is used to estimate the diffusion coefficients when no reported value is 

available (Reid et al. 1987). The literature and phenomena related to lignin diffusion coefficients is 

discussed in paper [I]. D = 10-10 m2/s is used for the dissolved lignin diffusion coefficient (Norgren 

and Lindström 2000b). The effect of temperature on the diffusion coefficients is estimated with 

equation (e4) (Reid et al. 1987). Pure water viscosity is used as solvent viscosity (µ and µref) in (e4). 

The viscosity values are computed from the correlation of Laliberte (2007a; 2007b). 
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3  INORGANIC OXYCHLORINE REACTIONS IN 
CHLORINE DIOXIDE BLEACHING  

When chlorine dioxide is used in pulp bleaching, the majority is reduced to chloride (Cl-). During the 

course of this reaction, the chlorine atoms are reduced from +4 valence to –1. The reduction occurs in 

a stepwise manner and involves several inorganic oxychlorine species. The chlorite ion (ClO2
-) and 

hypochlorous acid (HOCl) are the primary reduction products of chlorine dioxide in ClO2 (Lindgren 

1971; Dence and Reeve 1996; Ni et al. 1994; Kolar et al. 1983; Brage et al. 1991a). Both compounds 

react further through several competing reactions, which may be fully inorganic or involve pulp 

components. The complex reaction network produces reactive intermediates, such as chlorine and 

chlorine dioxide, as well as more stable forms of chlorine, like chlorate (ClO3
-) and organically-bound 

chlorine (Kolar et al. 1983). While chlorine dioxide regeneration is highly desirable, the formation of 

chlorate and organochlorine compounds is unwelcome. The importance of understanding the reaction 

mechanisms and factors influencing the final product distribution is self-evident. 

 

2 HClO2  HOCl + ClO3
- + H+       (1) 

HClO2 + Cl- + H+   2 HOCl       (2) 

ClO2
- + Fe2+/3+   various products       (3) 

HClO2 + HOCl   Cl2O2 + H2O  various products    (4)  

 

The main inorganic reactions believed to consume the chlorite and hypochlorous acid are (1) chlorous 

acid (HClO2) self-decomposition, (2) the reaction between chlorous acid and chloride ion in an acidic 

medium, (3) iron-mediated chlorite decomposition, and (4) the reaction between chlorous acid and 

hypochlorous acid. A vast amount of literature deals with the kinetics and stoichiometry of these 

reactions, yet the reported results and conclusions are quite diverse. This topic is discussed in detail in 

papers [II-IV]. Due to the incoherence in the available literature, new experiments were carried out. 

Without purposeful control, reactions paths (1-4) operate simultaneously resulting in a complex 

network of reactions with several parallel and successive steps. The previous studies have typically 

examined the full reaction system, making the mechanistic and kinetic analysis difficult. In our 

experiments, the reaction entity was divided into smaller parts in order to simplify the analysis. 

Chlorous acid self-decomposition was studied in the absence of transition metals (restricting path 3) 

and in the presence of a hypochlorous acid trapper (restricting path 4) [II]. The reaction between 

chlorous acid and hypochlorous acid (4) was studied under conditions where the rates of reactions (1-

3) were insignificant [IV]. The rate parameters for iron-mediated chlorite decomposition (3) were 

determined against the experimental results of Fabian and Gordon (1992). The optimization of kinetic 
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parameters was carried out in each case with KinFit software (Jakobsson and Aittamaa 2005), 

applying a nonlinear curve fitting. The rate coefficient temperature dependencies were modeled with 

the Arrhenius equation. The progress of the reactions was computed by numerically integrating the 

initial value problem presented by the reaction rate equations and the initial solution composition. The 

experimentally monitored component concentrations were then compared to model predictions. The 

relative difference between the experimental and predicted values was squared, the squares were 

summed, and the summed value was used as the object function in optimization. 

 

3.1 Chlorous acid self-decomposition 

Chlorous acid self-decomposition (1) is one of the reaction paths assumed to consume chlorite during 

ClO2 bleaching.  The stoichiometry and kinetics of this reaction were studied in paper [II]. Chlorite 

and chlorous acid form an acid-base pair in aqueous solutions. Together they are referred to as 

chlorine (III), according to their oxidation state (Gordon et al. 1972). It was discovered that the 

reactive Cl(III) species is chlorous acid, while chlorite is stable. Reaction (2) speeds up Cl(III) decay 

in systems with notable acidity and chloride ion concentration. It was also found that even trace 

amounts of transition metals can speed up Cl(III) decay and alter the apparent stoichiometry. The 

effect of transition metals was highest around pH 2. EDTA was used to bind transition metals from 

the experiments that were used in parameter fitting procedures. The produced hypochlorous acid was 

prevented from reacting with Cl(III) by the introduction of dimethylsulphoxide (DMSO). 

 

 
Figure 2. The decomposition of Cl(III) as a function of time at pH 2 at 40°C ( ), 50°C (o), 60°C (∆) and 70°C 

(◊). ([Cl(III)]0 = 0.6 mM, [DMSO]0 = 12 mM {hypochlorous acid trapping agent}, [NaCl]0 = 5.16 mM and 

[EDTA]0 = 10 mM). Bullets = experimental; lines = model prediction.  
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The self-decomposition reaction was found to follow second order kinetics with regards to HClO2. 

The kinetics of reaction (2) was first order with respect to each reacting species. The reaction rate 

parameters for reactions (1) and (2) were fitted against the Cl(III) concentration data recorded in 

twelve experiments, in which the temperature (40, 50, 60, or 70°C), pH (1.0 or 2.0), and sodium 

chloride ion concentration (0, 5, 50, or 100 mM) were varied. The model system (reactions 1 and 2) 

corresponded well with the experimental results. An example comparison is shown in Figure 2. The 

rate parameters obtained and the comparison with previously reported rate coefficients are given in 

Table 1. The temperature dependency of the rate coefficients is reported for the first time in paper [II]. 

 
Table 1. The obtained rate parameters for reactions 1 and 2 and a comparison against literature values. 

Reaction ak (25°C)this work k (25°C)literature Ea/kJ/mol ref 

1 0.0021 M-1s-1 

0.0055 M-1s-1 

0.0020 M-1s-1 (pH 1) 

0.0018 M-1s-1 (pH 2) 

0.0060 M-1s-1 

84   

(Hong and Rapson 1968) 

(Horvath et al. 2003) 

(Horvath et al. 2003) 

(Kieffer and Gordon 1968a) 

2 0.0027 M-2s-1 

0.0018 M-2s-1 

0.0034 M-2s-1 

0.0048 M-2s-1 

70  

(Schmitz and Rooze 1981) 

(Horvath et al. 2003) 

(Hong and Rapson 1968) 

a computed from the reaction rate coefficients (T = 55°C) and Ea-values obtained 
from regression 
 

3.2 Fe-mediated chlorite decomposition  

The Cl(III) self-decomposition experiments described in paper [II] revealed that in the absence of 

chelating  agents, iron speeds up the Cl(III) decay rate and alters the product stoichiometry. The rate 

increase observed was substantial at around pH 2, but negligible at pH 1 or pH 3. Although the effect 

of iron was clearly seen, our experimental results were insufficient to make a thorough mechanistic 

analysis. There are, however, two reports that provide suitable experimental data as well as the 

mechanistic proposals for the iron-mediated Cl(III) reaction path (Fabian and Gordon 1992; Schmitz 

and Rooze 1985). In both cases, the in situ produced hypochlorous acid and its reactions with Cl(III) 

are involved in the mechanism. Any conclusions regarding the effect of iron are, hence, strongly 

influenced by the assumptions made with regards to hypochlorous acid. The assumptions made by 

Fabian and Gordon (1992) are anomalous and render the mechanistic proposition suspect [III]. 

Likewise, Schmitz and Rooze (1985) verified their model only qualitatively and left several rate 

parameters unspecified. The experimental results of Fabian and Gordon (1992) were used as 

regression data to determine the previously unknown rate parameters in the Schmitz and Rooze 

model.  
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The first step in the mechanism is an equilibrium reaction between the ferric ion (Fe3+) and chlorite to 

generate chlorine dioxide and ferrous ion (Fe2+) (5) (Fabian and Gordon 1992; Schmitz and Rooze 

1984). The ferrous ion produces a chlorine monoxide radical (ClO) either with chlorous acid (6) or 

chlorite (7) (Schmitz and Rooze 1985; Ondrus and Gordon 1972; Fabian and Gordon 1991). 

Reactions (8-11) constitute a sequence of reactions where two radical species (Cl or ClO) either keep 

up the cycle by reacting with chlorous acid (8 and 9) or terminate the cycle by reacting with iron (10 

and 11). Hypochlorous acid was assumed to react according to the scheme and parameters reported by 

Horvath et al. (2003) and Aieta & Roberts (1986b). The protolysis of Cl(III) and the hydroxylation 

equilibria of ferric ion (18-20) were also incorporated into the regression model. 

 

ClO2
- + Fe3+  ClO2 + Fe2+       (5) 

HClO2 + Fe2+  ClO⋅ + Fe(OH)2+      (6) 

ClO2
- + Fe2+ + H2O  ClO⋅ + Fe(OH)2

+      (7) 

HClO2 + ClO⋅  H+  + ClO3
- + Cl⋅      (8) 

HClO2 + Cl⋅  HOCl  + ClO⋅       (9) 

Cl⋅ + Fe2+  Cl- + Fe3+        (10) 

ClO⋅ + Fe2+  ClO- + Fe3+       (11) 

 

HClO2 + HOCl   Cl2O2 + H2O       (12) 

ClO2
- + Cl2

   Cl2O2 + Cl-       (13) 

 

Cl2O2 + H2O   ClO3
- + Cl- + 2 H+      (14) 

Cl2O2 + ClO2
-   2 ClO2⋅ + Cl-       (15) 

Cl2O2 + ClO2
- + H2O   2 HOCl  + ClO3

-     (16) 

 

Supporting equilibrium reactions 

HClO2  ClO2
- + H+        (17) 

Fe3+ + H2O  Fe(OH)2+ + H+       (18) 

Fe3+ + 2 H2O  Fe(OH)2
+ + 2 H+      (19) 

Fe3+ + 3 H2O  Fe(OH)3 (s) + 3 H+      (20) 

 

The prediction of the present model is compared to the model of Fabian and Gordon and experimental 

results in Figures 3 and 4. Our model yields a very similar prediction to that of Fabian and Gordon. 

The curves from the two models coincide in Figure 3. The present model gives a better prediction for 

chlorine dioxide formation at a high Cl(III) concentration (Figure 4). The major benefit of our model 

is in the use of the widely-supported reaction scheme for hypochlorous acid.  
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The determined reaction coefficient values are shown in Table 2. The Cl and ClO radicals are very 

reactive and only the ratio of the parallel reaction rates (9/10) and (8/11) could be determined. The 

very small ratio k9/k10 implies that the reaction rate (9) is insignificant and Cl radicals react almost 

exclusively with Fe2+.  

 

The reaction rate exhibits a significant fade-out after a rapid initial phase (Figure 3). This fade-out is 

not related to reactant extinction, since a significant Cl(III) residue remains in each experiment. 

Instead, the reaction slows down because of ClO2 accumulation. The system is initially free of 

chlorine dioxide and the equilibrium in reaction (5) is far to the right-hand side. This provides the Fe2+ 

to initiate the chlorine radical reaction cycle. The accumulation of chlorine dioxide shifts the 

equilibrium gradually toward the left-hand side. This restricts the availability of Fe2+ and causes the 

rate to decrease. In bleaching applications, the chlorine dioxide would most probably be consumed in 

reactions with pulp constituents, allowing the Cl(III) depleting reaction to progress at a substantial 

rate. 

 

 
Figure 3. Fe-mediated Cl(III) decomposition: bullets – experimental, solid line – the model of this paper, dashed 

line - the model of Fabian and Gordon. Experimental data is provided by Fabian and Gordon (Fabian and 

Gordon 1992). (□) - [Cl(III)]0= 7.50⋅10-2 M, [Fe3+]=1.39 ⋅10-3 M, pH=1.75; (■) - [Cl(III)]0=4.99⋅10-2 M, 

[Fe3+]=1.39 ⋅10-3 M, pH=1.25; (▲) - [Cl(III)]0=5.00⋅10-2 M, [Fe3+]=4.20 ⋅10-3 M, pH = 1.75; (∆) -[Cl(III)]0= 2.5⋅10-

2 M, [Fe3+]=1.39 ⋅10-3 M, pH = 1.75   
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Figure 4. ClO2 formation from Fe mediated Cl(III) decomposition: bullets – experimental, solid line – the model 

of this paper, dashed line - the model of Fabian and Gordon. Experimental data is provided by Fabian and 

Gordon (1992). (□) - [Cl(III)]0= 7.50⋅10-2 M, [Fe3+]=1.39 ⋅10-3 M, pH=1.75; (■) - [Cl(III)]0=4.99⋅10-2 M, 

[Fe3+]=1.39 ⋅10-3 M, pH=1.25; (▲) - [Cl(III)]0=5.00⋅10-2 M, [Fe3+]=4.20 ⋅10-3 M, pH = 1.75; (∆) -[Cl(III)]0= 2.5⋅10-

2 M, [Fe3+]=1.39 ⋅10-3 M, pH = 1.75   

 

 
Table 2. Rate parameters for the Fe-mediated Cl(III) decomposition reactions. 

Reaction rate coefficient, k, at 25°C 
5 k5 = 269 M-1s-1 (Schmitz and Rooze 1985) 

k5, rev = 4.7⋅105 M-1s-1 
14 k6 = 930 M-1s-1 (Schmitz and Rooze 1985) 
15 k7 = 530 M-1s-1 
8/11 k8 / k11 = 2.2⋅10-4 
9/10 k9 / k10 = very small 
Reaction equilibrium constant, K, at 25°C 
17 K17 = 6.5⋅10-3 M1 (Dean 1999) 
18 K18 = 4.9⋅10-7 M1 
19 K19 = 1.6⋅10-39 M4 
rev = reverse (rate coefficient for the reverse reaction) 
 

3.3 Chlorate formation during chlorine dioxide delignification 

The chlorate ion is one of the stable oxychlorine species formed during chlorine dioxide bleaching. It 

has been suggested that it is formed primarily through reactions involving chlorite and hypochlorous 

acid, but also directly from chlorine dioxide (Kolar et al. 1983; Fredricks et al. 1971). Chlorate 

formation is considered wasteful, as it is unable to facilitate the delignification reactions regardless of 

its high apparent oxidation power (valence +V) (Marpillero 1958; Rapson and Anderson 1977). It is 

also toxic to certain macro-brown algal species (Bergnor et al. 1987; van Wijk and Hutchinson 1995). 

Several reports deal with chlorate formation in delignification and bleaching (Rapson and Anderson 
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1977; Bergnor et al. 1987; Lindgren and Nilsson 1975; Nilsson and Sjostrom 1974; Rapson and 

Anderson 1978; Soila et al. 1962; Germgård et al. 1981; Ni et al. 1993; Yoon et al. 2004; Svenson et 

al. 2002; Svenson et al. 2006). A traditional way to study the chlorate formation mechanism is to 

conduct bleaching experiments under various conditions, record the chlorate yield, and use the 

observed dependencies to analyze and exclude the alternative reaction paths. The difficulty in this 

method is that the bleaching system constitutes an immense number of parallel and consecutively 

reactions, which are all more or less connected. Extracting the cause and effect relations in such 

systems is difficult. In paper [III] the topic was approached from another angle: the reaction rates and 

stoichiometries of potential chlorate-forming reactions were investigated through reaction kinetic 

modeling. A simplified depiction of the reaction system studied is shown in Figure 5. The potential of 

the individual paths was studied first. Then the reactions were combined and allowed to compete with 

each other. At this point, the model was augmented with reactions mimicking the bleaching 

environment. The model for chlorous acid self-decomposition was taken from paper [II] and that of 

iron-mediated chlorite decomposition was resolved in paper [III]. The HOCl-HClO2 reaction scheme 

(12-16) in this study was adopted from the literature (Horvath et al. 2003; Aieta and Roberts 1986a). 

Our own experiments and mechanistic analyses regarding the HOCl-HClO2 reactions were only 

conducted later.  

 

HOCl

ClO2
-

HClO2 +

+ Cl2

12

17 Cl2O2

13

14, 16 ClO3- 

+ HClO2

1

ClO3- 

ClO3- 

+ Fe3+/2+

5-11

Fe mediated
chlorate formation

Chlorous acid
self-decomposition

The HOCl - HClO2
system

 
 
Figure 5. A simplified description of the chlorate-forming reaction paths (only the main reaction routes are 
shown). 
 

3.3.1 Chlorous acid self-decomposition 

The rate of chlorous acid self-decomposition (1) and the resulting chlorate formation were studied at 

50°C, at a pH of 1.5-4 for a 60-min. reaction time. The reaction rate was found to be insignificant at 

pH 3.0 or above. Cl(III) conversion was observable at pH 2.5 and increased steadily as the pH was 

lowered further. Regardless of the accelerating effect of acidity, only about 70% of the Cl(III) reacted 

in one hour at pH 1.5. Experimental studies have shown Cl(III) consumption to be much faster in 
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delignification (Svenson et al. 2006). Hence, significant chlorate production via chlorous acid self-

decomposition was considered unlikely at any pH. 

 

3.3.2 The reaction between chlorous acid/chlorite and hypochlorous acid/chlorine 

The reactions in this system (right-hand side in Figure 5) were completed in less than ten seconds 

irrespective of the reaction conditions. The stoichiometric examinations were hence made from the 

final composition of the reaction solution. The reaction stoichiometry was found to depend on several 

factors: chloride ion concentration, Cl(III) concentration, and pH. Chlorate formation was substantial 

in any case, suggesting that this reaction path is a potential contributor to chlorate production in pulp 

delignification. Chlorate production was reduced both by increasing the chloride ion concentration 

and pH. The effect of pH was, however, quite small between pH 2.5 and 4. The effect of chloride ions 

was remarkable: raising the chloride ion concentration from 1 to 5 mM led to a reduction in chlorate 

formation of roughly 30%.  

 

3.3.3 Chlorate formation through radical chemistry 

The rate of Fe-mediated Cl(III) decomposition and the related chlorate formation are shown in Figure 

6. The effect of pH is dramatic: the rate is insignificant at pH levels of 3.5 and 4.0 and still very slow 

at pH 3.0, but even at pH 2.5 more than 95% of the initial Cl(III) reacts within 60 minutes. The rate 

exhibits a maximum between pH 1.5-2.0. In the heavily acidic region (pH < 1.5), the rate declines 

again. Chlorate production is negligible above pH 3, but at pH 2.5 or below the yield is around 25-

35% of the available Cl(III). The other stable chlorine-containing products, hypochlorous acid and 

chloride ion, were produced in a ratio of approximately 1:1 irrespective of the pH.  

 
Figure 6. The effect of pH on Fe-mediated Cl(III) decomposition and the related chlorate formation. Curves 
starting from 0% represent chlorate concentrations and those starting from 100% represent Cl(III) 
concentrations. T = 50°C, [Cl(III)]initial = 8 mM, [Fe]tot = 20 µM. 
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3.3.4 Total chlorate production in delignification  

The total chlorate formation was predicted in simulations where the reactions were allowed to 

compete with each other, as well as with the reactions assumed to contribute to Cl(III) consumption or 

affect the chlorate-forming reactions in real delignification systems. The predicted chlorate formation 

is shown in Figure 7. The individual reaction route simulations suggested that the rate of chlorous acid 

self-decomposition was too slow to compete against the other routes at any investigated pH. This was 

confirmed in the overall system simulations.  

 

The results suggest that at pH below 3 chlorate formation results from both Fe-mediated Cl(III) 

decomposition and through the HOCl-HClO2 system. At pH above 3, only the latter route has the 

kinetic prerequisites to produce chlorate. The total production simulations showed an increasing 

chlorite residue at pH 3 and above. This indicates that an increasing pH decelerates the rate-

determining step in the HOCl-HClO2 system and allows the hypochlorous acid to be consumed to an 

increasing extent in organic reactions. This finding is in accordance with experimental observations 

(Kolar et al. 1983; Rapson and Anderson 1978; Yoon et al. 2004; Svenson et al. 2006).  

 

 
Figure 7. Total chlorate production as a function of pH. The diagonal bars indicate the range of experimental 
observations (Kolar et al. 1983; Ni et al. 1993; Svenson et al. 2006; Medina et al. 2008). Simulation conditions: 
reaction time = 45 min, T = 50°C, [Cl(III)]initial = 8 mM, [Cl-]initial = 1 mM. 
 

It was also observed that reaction (2) had no practical importance regarding the simulation result at 

any tested pH (1.5-4.0). Excluding reaction (2) from the simulations changed the final composition by 

less than 0.1%. The effect was insignificant, even when the chloride ion concentration was increased 

to 10 mM. Clearly, reaction (2) would have required a much higher acidity, temperature, and/or a 

higher chloride ion concentration to have an impact.  
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3.4 Reaction between hypochlorous acid and chlorous acid 

The HOCl-HClO2 reaction mechanism was first considered by Taube and Dodgen (Taube and 

Dodgen 1949) and it has been examined further in numerous subsequent reports (Fabian and Gordon 

1992; Hong and Rapson 1968; Horvath et al. 2003; Kieffer and Gordon 1968a; Schmitz and Rooze 

1981; Schmitz and Rooze 1985; Kieffer 1967; Kieffer and Gordon 1968b; Peintler et al. 1990; 

Emmenegger and Gordon 1967; Jia et al. 2000; Gordon and Tachiyashiki 1991). A dichlorine dioxide 

anhydride (Cl2O2) is formed in the first step (12).  It is consumed in two or more reactions yielding 

chlorine dioxide, chloride, and chlorate as the stable final products (14-16, 21). Reaction (12) is 

considerably slower than the subsequent Cl2O2-consuming reactions. Hence, in the overall reaction, 

step (12) is rate-limiting and the relative rates of the Cl2O2-consuming paths dictate the observed 

stoichiometry. The reported mechanistic alternatives and rate coefficients are gathered in Table 3.  

 
Table 3. The reaction steps and rate coefficients (25°C) reported for the HOCl-HClO2 overall reaction. 

Reaction                                    reference → TD  HR  P GT  FG  J  H  

 a Reaction rate coefficient 

12 HClO2 + HOCl   Cl2O2 + H2O inc b30 c2⋅104 1⋅105 inc 1.6 inc 

14 Cl2O2 + H2O  2 H+ + Cl- + ClO3
- inc inc d9.3⋅103 - 1⋅107  - (1⋅103 + 

2.85⋅105 [Cl-]) 

14’ Cl2O2 + OH-  H+ + Cl- + ClO3
- - - - - - 1.3⋅1012 - 

15 Cl2O2 + ClO2
-   2 ClO2 + Cl-  - inc 5⋅108 - 5⋅108 1⋅107 (2.01⋅107 + 

8.4⋅109 [Cl-]) 

16 Cl2O2 + ClO2
- + H2O  2 HOCl  + ClO3

- - - - - - 1⋅1011 [H+] 1.11⋅107 

21 2 Cl2O2  2 ClO2 + Cl2  inc - - - - - - 

TD = Taube and Dodgen 1949, HR = Hong and Rapson 1968, P = Peintler et al. 1990, GT = Gordon and Tachiyashiki 1991, FG = Fabian 
and Gordon 1992, J = Jia et al. 2000, H = Horvath et al. 2003 
a the dimensions of first, second, and third order rate coefficients are s-1, M-1s-1, and M-2s-1, respectively 
b the rate coefficient is computed from reported experimental results using k23 = 1.8⋅104 M-2s-1 (Wang and Margerum 1994). 
c the rate coefficient is computed from reported experimental results using Ka,17 = 1.1⋅10-2 M (Fabian 2001). 
d k14/k15 is given in the original report, k15 = 5⋅108 is assumed here 
inc = the reaction is included in the mechanism; rate coefficients are not reported 
- = the reaction is not included in the mechanism 
 

The presently available kinetic data has been obtained either under highly acidic (Fabian and Gordon 

1992; Hong and Rapson 1968; Horvath et al. 2003; Schmitz and Rooze 1981; Taube and Dodgen 

1949), close to neutral (Jia et al. 2000), or mildly alkaline conditions (Gordon and Tachiyashiki 1991). 

The industrial chlorine dioxide bleaching processes are conducted in a mildly acidic environment (pH 

2-5). Thus, none of the existing models can be directly applied to simulate the reactions in the 

bleaching environment. Extrapolation is also ambiguous, for the reported rate coefficients vary within 

5 orders of magnitude (Table 3), the rate expression may involve chlorous acid or chlorite ion (Jia et 

al. 2000), and the proposed Cl2O2 reaction schemes are diverse. Consequently, experiments were 



 22 

conducted under mildly acidic conditions and the results were used in analyzing the reaction kinetics 

and mechanism. 

3.4.1 Experimental setup and modeling principles 

The reaction kinetics and stoichiometry were studied at pH = 2.5 – 4.7 with a temperature of either 5, 

15, or 25°C. External buffer compounds were not used, as they are reported to interfere with the 

reactions (Jia et al. 2000), and the applied parameter regression method did not require a constant pH. 

The pH range applied ensured that the reaction rates of iron-mediated chlorite decomposition (5-11) 

and chlorous acid self-decomposition (1) were insignificant [III]. Samples were taken at regular 

intervals and treated with DMSO to terminate the reaction (immediate consumption of residual 

HOCl). Chlorine dioxide, chlorite, and chlorate were determined from the samples using iodometric 

titration (Wartiovaara 1982).  

 
Table 4.  Experimental reaction conditions and initial solution compositions used in the HClO2-HOCl 
experiments.  
Exp. 

Series 

[Cl(III)]0 

/mM 

[HOCl]0 

/mM 

[ClO3
-]0 

/mM 

[Cl-]0 

/mM 

T / 

°C 

Initial pH a  End pH 

1 0.60 0.17 0.04 0.16 25 3.0 3.2 

2 0.61 0.20 0.04 0.16 16 3.0 3.3 

3 0.62 0.16 0.05 0.16 5.5 3.0 3.3 

4 0.60 0.16 0.05 0.16 5.6 2.5 2.7 

5 0.60 0.16 0.05 0.16 7.0 3.5 4.7 

6 0.62 0.16 0.05 1.16 5.4 3.0 3.3 

7 0.61 0.15 0.05 3.16 5.8 3.0 3.2 

8 1.19 0.18 0.07 0.32 5.0 3.0 3.2 

9 0.59 0.17 0.05 0.16 25 3.5 4.7 

10 0.52 0.16 0.05 1.16 6.7 3.5 4.4 

11 0.59 0.17 0.04 3.16 6.9 3.5 4.4 
a The initial pH was computed from solution composition. 
 

Reactions (13, 17, 22 and 23) were incorporated into the model to obtain a comprehensive description 

for the whole reaction system. Reaction (13) provides an alternative route for Cl2O2 formation (Aieta 

and Roberts 1986b; Taube and Dodgen 1949; Peintler et al. 1990; Emmenegger and Gordon 1967; 

Nicoson and Margerum 2002) and reactions (22) and (23) represent the reversible hydrolysis of 

chlorine. The rate parameters of Aieta and Roberts (1986b), k13 = 1.6⋅104 M-1s-1 at 25°C and Ea,13 = 

39.9 kJ/mol, were adopted for reaction (13). The full reaction system is depicted in Figure 8. 

 

Cl2 + H2O  HOCl + H+ + Cl-       (22) 

HOCl + H+ + Cl-  Cl2 + H2O       (23) 
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Figure 8. A schematic representation of the reaction steps involved in the HOCl – HClO2 system. 

 

3.4.2 Effect of temperature, pH, and solution composition on reaction rate and 
stoichiometry 

The temperature increased the reaction rate and promoted chlorate formation over chlorine dioxide. 

The reaction rate increased also with acidity, but pH had no effect on the overall stoichiometry. The 

chloride ion concentration was found to have a dramatic influence both on reaction rate and 

stoichiometry. The chloride ion concentration was varied by introducing either 1.0 or 3.0 mM of 

sodium chloride into the reaction solution. Increases in chloride ion concentration resulted in a higher 

reaction rate and lower chlorate production. A higher initial Cl(III) concentration sped up the reaction, 

but had no apparent effect on the reaction stoichiometry. In conclusion: the rate-determining step was 

affected by temperature, pH, chloride, and initial Cl(III) concentration, whereas the overall 

stoichiometry was changed only by temperature and the chloride ion concentration.  

 

3.4.3 Kinetic and mechanistic analysis 

First, the possible applicability of the earlier models in reproducing the experimental findings was 

tested. The experimental Cl(III) decomposition rate at pH 3 and T = 5.5°C is compared to predictions 

produced using the earlier models in Figure 9. The predicted rates are either substantially too slow or 

too fast. Figure 9 also shows a prediction where the rate of reaction (12) is set to zero and where the 

Cl(III) depletion thus results only from the reaction between the chlorine and chlorite (13). The 

predicted depletion rate is substantially too slow, indicating that reaction (12) is important in the 

present system. 
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Figure 9. The predicted Cl(III) depletion using previously reported kinetic models. A case where r12 is 
completely omitted is also shown. Prediction (dotted line), experiment series 3 (bullets), T = 5.5°C, initial pH 
≈ 3.0.  
 

The predictions using our model are fully presented and compared to the experimental results in paper 

[IV]. Overall, the model produced good predictions. An example comparison is given in Figure 10. 

The reactions and rate parameters in use are given in Table 5. The rate coefficient and the activation 

energy obtained for reaction (12) are k12 = 406 M-1s-1 and Ea,12 = 54 kJ/mol. The rate coefficient value 

is more than one order of magnitude smaller than has been reported for the parallel reaction between 

chlorine and chlorite (13) (Table 5). This is in accordance with observations that Cl(III) reacts faster 

with elemental chlorine than with hypochlorous acid (Emmenegger and Gordon 1967). This is also in 

agreement with our own finding that NaCl additions accelerate the observed Cl(III) decay: a higher 

chloride ion concentration shifts the equilibrium between the chlorine and hypochlorous acid toward 

the former, and thereby promotes the faster route (13) that involves chlorine (Figure 8).  

 

In the stoichiometry-determining step, rate parameters were identified only for reactions (15) and (16) 

(Table 5). The Cl2O2-consuming reactions are extremely fast (Horvath et al. 2003; Peintler et al. 

1990), and consequently only the ratio of reaction rates r15 and r16 could be determined. Reaction (15) 

is strongly catalyzed by chloride ions and the apparent rate coefficient, k15, involves chloride ion 

concentration. The inhibiting effect of the chloride ions observed on chlorate formation was very 

strong: even a millimolar level chloride ion concentration is enough to prevent chlorate production 

almost completely (Figure 10). This suggests that in pulp bleaching applications, chlorate production 

through this path could be suppressed through control of the chloride ion concentration in the 

suspension. 

 

Successful reproduction of the experimental results required inclusion of reaction (23) in the 

regression, the formation of elemental chlorine from hypochlorous acid and chloride. The literature 

value for k23 resulted in a poor prediction of reaction rate changes related to chloride ion 

concentration. The k23 value obtained is somewhat higher, but of the same order of magnitude as the 
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values determined in earlier studies (Aieta and Roberts 1986a; Wang and Margerum 1994; Connick 

and Chia 1959; Eigen and Kustin 1962). In principle, the poor prediction of rate changes related to 

chloride ion concentration could also have resulted from too low a rate of reaction (13). However, 

including reaction (13) in the regression did not result in better predictions. If reaction rate r13 was 

manually elevated (hypothetical sensitivity analysis), the overall Cl(III) conversion rate did not 

increase, but only the maximum concentration of elemental chlorine was reduced. This indicates that 

between the consecutive reaction steps (23) and (13), the first was rate-limiting. 

 

 

 

 
Figure 10. The effect of sodium chloride concentration on (A) Cl(III) depletion, (B) chlorine dioxide formation, 
and (C) chlorate formation. Experiment series 3, 6, and 7, T ≈ 5°C, initial pH0 ≈ 3.0, bullets = experimental, 
line = model prediction. 
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Table 5. The reactions and rate parameters for the HOCl-HClO2 system. Normal letters are used for 
parameters obtained from regression and italics for literature parameters. Parameter intervals represent 95% 
confidence limits using student T distribution.  
Reaction k (at 12°C) Ea / (kJ/mol) 

12 HOCl + HClO2  Cl2O2 + H2O 406 ± 93  M-1s-1   54 ± 13  

13 Cl2 + ClO2
-  Cl2O2 + Cl- 1.0⋅104 M-1s-1 (Aieta and Roberts 1986b) 39.9 

15 Cl2O2 + ClO2
-   2 ClO2 + Cl-  a1⋅1011⋅[Cl-] M-2s-1 a50 

16 Cl2O2 + ClO2
- + H2O  2 HOCl  + ClO3

- 6.25 ± 0.75 ⋅106  M-1s-1  78 ± 6  

17 HClO2  ClO2
- + H+ aKa,17 =1.4⋅10-2M-1  (Dean 1999) 

22 Cl2 + H2O  HOCl + H+ + Cl- 6.7 s-1 (Wang and Margerum 1994) 63 

23 HOCl + H+ + Cl-  Cl2 + H2O 5.0 ± 2.0 ⋅10 4 M-2s-1  ni 
ni = the value was too small to be identified 
a a fixed parameter, value taken from (Horvath et al. 2003). 
b from thermodynamic constants (temperature dependency included) 



 27 

4 CHLORINE DIOXIDE DELIGNIFICATION MODEL 

The results from our oxychlorine reaction studies in an aqueous solution were combined with 

literature knowledge regarding the essential organic reaction paths to obtain a chemistry model of 

chlorine dioxide delignification. The chemistry model was further combined with the phenomenon-

based pulp suspension model (chapter 2, paper II) to obtain a ClO2 delignification model [V]. 

Documented thermochemical and reaction rate parameters were exploited as much as possible. The 

unknown rate parameters were obtained by comparing the predictions with experimental laboratory-

scale results (O-delignified birch pulp) reported by Lehtimaa et al (2010a, 2010b). The model 

predictions were used to analyze the suitability of individual theories and the hypothesis, as well as 

evaluating how well the present model is able to reproduce the experimental results.  

 

4.1 Chemistry models 

A full list of all the incorporated chemical reactions and rate parameters is given in the Appendix of 

paper [V]. The list is not assumed to contain all conceivable reactions that may take place during 

delignification, but is offered as a simplified model for the essential reaction paths.  

4.1.1 Lignin reactions 

The unreacted residual lignin, either phenolic or non-phenolic, is modeled with phenyl propane units. 

The reaction between chlorine dioxide and unreacted (primary) lignin is assumed to proceed via three 

parallel paths (Figure 11). The reaction produces a quinone (Lindgren 1971; Ni et al. 1994; Brage et 

al. 1991a; Dence et al. 1962; Wajon et al. 1982; Gunnarsson and Ljunggren 1996), a muconic acid 

ester/the corresponding lactone (Lindgren 1971; Ni et al. 1994; Brage et al. 1991a; Dence et al. 1962; 

Gunnarsson and Ljunggren 1996; Brage et al. 1991b; McKague et al. 1994; McKague et al. 1995), 

and a reactive intermediate (path C). The first two compounds have been identified as direct oxidation 

products of lignin model compounds. Path (C) accounts for the experimental findings that a 

significant part of lignin is degraded beyond the level of quinones and muconic acids (Ni et al. 1994; 

Brage et al. 1991a; McKague et al. 1994). The structure of the reactive intermediate is unknown and it 

is depicted here as a non-esterified muconic acid merely to indicate the level of oxidation. The relative 

importance of reaction paths A-C depends on the detailed structure of the lignin substrate (Ni et al. 

1994; McKague et al. 1994; McKague et al. 1995). In the model, the reaction paths are assumed to 

proceed in a 1:1:2 ratio (A:B:C), resembling the proportions reported for vanillyl alcohol (Ni et al. 

1994). 
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Figure 11. The oxidation of unreacted lignin by chlorine dioxide. (R2 = H for guaiacyl lignin, R2 = OMe for 

syringyl lignin; R = H for phenolic lignin, R = Lignin for non-phenolic lignin) 

 

The reactions depicted in Figure 11 concern both phenolic and non-phenolic lignin. The reaction 

kinetics for phenolic lignin is defined according to the oxidation rate of 2-methoxyphenol (kdissociated = 

1⋅109 M-1s-1, kundissociated = 1⋅103 M-1s-1) (Hoigne and Bader 1994). The rate parameters reported for 

other phenols are of a similar magnitude (Wajon et al. 1982; Hoigne and Bader 1994). The rate of 

non-phenolic lignin oxidation is adopted from Brage et al. (Brage et al. 1991a). Chlorine substituents 

are believed to cause steric hindrance and retard the oxidative cleavage of ether bonds (Dence and 

Reeve 1996). The reactive intermediate structure produced from primary lignin (Figure 11) is 

assumed to yield maleic acid (McKague et al. 1994; McKague et al. 1995), which reacts further to 

give a highly fractionated, fully-saturated lignin derivative. All lignin reactions are assumed to 

proceed similarly in the fiber wall and in the liquor, i.e. the same reaction routes and kinetics apply for 

the lignin pseudo-components in liquor (dissolved) or in the fiber wall (insoluble). Syringyl and 

guaiacyl lignin units are distinguished with regard to molar weight; their reaction paths and kinetics 

are assumed to be equal. 

 

Hypochlorous acid is assumed to chlorinate phenols (Wajon et al. 1982; Soper and Smith 1926; 

Rebenne et al. 1996; Deborde and von Gunten 2008) and to generate new phenolic groups. The 

chlorination of non-phenolic lignin by hypochlorous acid is assumed to be insignificant, because 
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aromatic compounds without specific substituents are known to react slowly with HOCl (Voudrias 

and Reinhard 1988). The generation of phenolic groups is incorporated based on implications from 

experimental work (Ni et al. 1995; Joncourt et al. 2000).  

 

Chlorine is known to both chlorinate and oxidize lignin (Dence and Reeve 1996). Chlorination 

experiments have indicated that the C9-lignin units become monochlorinated almost instantaneously 

(Ni et al. 1990). Thus, chlorination is assumed to occur one order of magnitude faster than oxidation. 

The absolute values of the reaction rate parameters were obtained from regression. The chlorination 

reactions are assumed to yield only monochlorinated compounds (Dahlman et al. 1994).  
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Figure 12. An example of a lignin dissolution reaction. 

 

Lignin dissolution is modeled as a transfer process of compounds from the insoluble fiber wall into 

the fiber-bound liquid. The macromolecular nature of the lignin is taken into account in the 

dissolution reactions of lignin. The following principles were used in the lignin dissolution scheme: (i) 

the dissolution is directly proportional to the concentration of fragmented and hydrophilic (carboxylic 

acids) lignin structures, and (ii) the dissolving entity (“lignin fragment”) is a sum of monomeric units, 

which dissolve at equal rates. An example of a lignin-dissolving reaction and the dissolution rate 

equation is given in Figure 12. The oxidative reactions of ClO2 and other oxychlorine species increase 

fragmentation and hydrophilicity of residual lignin and force some of the lignin to dissolve. The 

assumption is that the hydrophilic lignin derivatives are attached to the other lignin units and hence 
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they also force some unreacted lignin to dissolve. The rate of each dissolution reaction is proportional 

both to the concentration of the fragmented/hydrophilic lignin derivative and the unreacted lignin unit. 

The more extensively degraded lignin derivatives dissolve a larger fraction of unreacted structures, 

and vice versa. Guidelines for choosing the dissolution stoichiometry (the ratio of 

fragmented/hydrophilic lignin derivatives to the primary lignin units) were adopted from studies 

dealing with dissolved D0-stage lignin (Dahlman et al. 1995; Vilen et al. 2000; Österberg and 

Lindström 1985). 

 

4.1.2 Reactions regarding other pulp and liquor components  

Hypochlorous acid and chlorine react with hexenuronic acid (Costa and Colodette 2007; Juutilainen et 

al. 1999), producing various chlorinated and unchlorinated degradation products. The reaction scheme 

was formulated so that a lower pH increases the proportion of chlorinated degradation products, and 

vice versa. The correlation between pH and the fraction of chlorinated HexA products has been 

observed in experimental work (Vuorinen et al. 1997). 

 

Chlorine dioxide reacts with unsaturated sterols and fatty acids (Freire et al. 2003). Both reactions 

yield unchlorinated products. Reports state that both sitosterol and unsaturated fatty acids are removed 

to a very high extent during ClO2 delignification (Jansson et al. 1995). Hence, the rate coefficients 

were set to a value (k = 10 M-1s-1), ensuring rapid depletion. The chlorination of extractives was 

omitted, since it has been reported that extractive components make only a minor contribution to both 

OX and AOX during the chlorine dioxide delignification of birch kraft pulp (Björklund et al. 2004).  

 

The inorganic oxychlorine reaction scheme covers the essential reaction paths depleting Cl(III) and 

producing chlorate, i.e. chlorous acid self-decomposition [II], iron-mediated chlorite depletion [III], 

the interaction between chlorous acid and hypochlorous acid [IV], and the reversible hydrolysis of 

chlorine (Wang and Margerum 1994).  

 

4.1.3 Protolysis reactions and other equilibrium reactions 

The protolysis coefficients of chlorous acid and hypochlorous acid were computed from 

thermochemical constants [I]. The equilibrium coefficients for iron(III) hydroxylation were computed 

in a similar manner. This procedure takes into account the temperature dependency of the dissociation 

coefficients. Lignin-related phenols generally dissociate at around pH 9-11 (Ragnar et al. 2000; 

Norgren and Lindström 2000a). The pKa value reported for kraft lignin phenols (0.1 M NaCl), 

including the temperature dependency of the dissociation coefficient, is assigned for phenolic lignin  

(Norgren and Lindström 2000a). The value at 50°C is pKa,phenolic-lignin = 10.1. Chlorine substituents are 
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said to decrease the pKa value of phenols by approximately one unit (Hoigne and Bader 1994). Thus, 

chlorinated phenolic lignin is defined to have a pKa value of one unit smaller than its unchlorinated 

equivalent. The value at 50°C is pKa,phenolic-lignin-Cl = 9.1. The protolysis coefficients for maleic acid 

(Dean 1999), oxalic acid (Dean 1999), hexenuronic acid (Teleman et al. 1995), and methyl-glucuronic 

acid (Teleman et al. 1995) are defined according to the corresponding real compound values at 25°C. 

The temperature dependency of hexenuronic and methyl-glucuronic acid dissociation coefficients is 

estimated using the enthalpy of dissociation (-3 kJ/mol) reported for uronic acids in kraft pulp fibers 

(Lindgren et al. 2001).  

 

4.2 Model validation 

The model predictions were compared to kappa number, hexenuronic acid, inorganic oxychlorine 

compound, and organochlorine (AOX, OX) measurements at several time points during five 

delignification experiments. Laboratory-scale delignifications were done with Finnish oxygen-

delignified birch kraft pulp. A complete description of the experimental procedures and results is 

given by Lehtimaa et al (2010a, 2010b). 

 

4.2.1 Kappa number model 

The comparisons with the experimental results regarding lignin structures and organochlorine 

formation could not be done on molecular scale, as reliable analytical methods for detailed 

characterization of the residual and dissolved lignin were not available. Instead, the simulation results 

were converted into standardized bulk variables - kappa number, AOX, OX, and COD – in order to 

make the evaluation. Equation (e5) was used to give the connection between the kappa number, 

residual lignin content (w-%), and hexenuronic acid content (Li and Gellerstedt 1997). Equation (e5) 

was solved for κ to compute the kappa number from the molecular scale composition (e6). All the 

unsaturated lignin pseudo-compounds were assumed to make specific contributions to the kappa 

number. Thus, the lignin content, L, in (e6) was handled as a proportioned summation term given in 

(e7). Reported permanganate consumptions of lignin-model compounds (Li and Gellerstedt 1998; 

Brogdon 2001; Li et al. 2002; Hamzeh et al. 2005) were used to define the ‘oxidation equivalent’ 

(OxEq) values for each unsaturated lignin pseudo-compound (Table 6). The kappa contribution of the 

extractive components was incorporated through the summation term as well. The sterol and fatty acid 

pseudo-compounds were assigned the oxidation equivalent reported for an unconjugated double bond 

(Li and Gellerstedt 1998). The proportionality factor (OxEqi/ OxEqarom) in (e7) is unity for the 

unreacted lignin (full aromatic ring) and less than unity for the oxidized lignin pseudo-compounds and 

extractives. Compounds in the solid fiber wall and in the fiber-bound liquid contribute to the 

computational kappa number. Compounds in the external liquid are omitted. 
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where  L  = lignin content (weight %) 

  κ  = kappa number 

  H  = hexenuronic acid content (mmol/kg) 

Mw,i  = molar weight of component i (g/mol) 

ci   =  component concentration (mol/kg fiber)  

OxEqi  = oxidation equivalent value of component i 

OxEqarom = oxidation equivalent value of full aromatic ring 

 
Table 6. The oxidation equivalent values assigned for the lignin and 
extractive pseudo-compounds. 

Pseudo-compound Reported KMnO4 oxidation 

equivalents a  

Assigned oxidation 

equivalent value 

Full aromatic ring  

(phenolic and non-phenolic lignin) 

12-19.6 16 

Quinone 6.8-12.5 10 

Muconic acid 10.8-14.3 12 

Maleic acid 10-11.7 11 

Sterols - 5.7 

Unsaturated fatty acids - 5.7 
a (Li and Gellerstedt 1998; Brogdon 2001; Li et al. 2002; Hamzeh et al. 2005) 

 

4.3 Organochlorine content and chemical oxygen demand models 

The AOX and OX values were computed by summing up the concentrations of all the chlorine-

containing compounds in the external liquid (AOX) or in the solid fiber wall (OX), and proportioning 

the values to the unit mass of dry fibers. Monochlorinated compounds were assumed to contribute 

with a factor of 1 and dichlorinated products with a factor of 2. The chemical oxygen demand (COD) 

was computed by determining the amount of oxygen required to oxidize the organic carbon and 

hydrogen in the external liquid phase compounds into water and carbon dioxide, respectively.  
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4.4 Comparison between model predictions and experimental 

results 

The kappa number predictions correlated rather well with the experimental results (Figure 13). A 

systematic shortcoming appeared in predicting the very rapid initial kappa drop (during the first 

minute): the predicted kappa number at t = 1 min was consistently one unit higher than the 

experimental value. The extremely rapid initial HexA removal was well reproduced (Figure 14). The 

total magnitude of HexA removal was, however, underestimated. The HexA removal predictions fell 

short by 3-8 mmol/kg (Table 7, Figure 14). The predicted effect of the chemical dose on HexA 

removal was consistent with the experiments. 

 

 
Figure 13. The predicted and experimental kappa number decrease at T = 
45°C, 55°C and 65°C.  

 
Table 7. Comparison of experimental and predicted pulp/liquor properties at 
a time of 30 min. Experimental results are taken from Lehtimaa et al 
(2010a, 2010b).  

Pulp Kappa HexA 

(mmol/kg) 

end pH AOX  

(kg/ADt) 

OX 

(kg/ADt) 

 Exp Pred Exp Pred Exp Pred Exp Pred Exp Pred 

O-delign pulp 12.5  45        

30 kg, 45°C 6.7 7.7 22 29 3.1 3.1 0.53 0.27 0.29 0.24 

20 kg, 45°C 8.0 8.2 24 32 3.3 3.2 0.51 0.22 0.27 0.20 

15 kg, 45°C 8.8 8.6 29 33 3.7 3.3 0.45 0.17 0.24 0.07 

20 kg, 55°C 7.9 7.7 23 31 3.1 3.1 0.43 0.24 0.25 0.19 

20 kg, 65°C 7.2 7.4 24 30 3.2 3.1 0.46 0.25 0.26 0.14 
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Table 8. Comparison of experimental and predicted oxychlorine 
concentrations at a time of 30 min. Experimental results are taken from 
Lehtimaa et al (2010a, 2010b). 

Pulp Chlorine dioxide 

(mmol/l) 

Chlorite 

(mmol/l) 

Chlorate 

(mmol/l) 

Chloride 

(mmol/l) 

 Exp Pred Exp Pred Exp Pred Exp Pred 

30 kg, 45°C 2.4 4.5 0.3 1.9 2.2 0.5 8.0 8.7 

20 kg, 45°C 0.5 1.5 0.3 1.9 1.7 0.4 7.2 7.7 

15 kg, 45°C 0.2 0 1.2 3.6 0.9 0.2 4.5 5.6 

20 kg, 55°C 0 1.0 0.2 1.3 1.6 0.6 6.5 8.5 

20 kg, 65°C 0 0.5 0 1.4 1.4 0.7 7.5 8.9 

 

The rapid initial phase of AOX generation was well predicted (Figure 15). However, the magnitude of 

the subsequent, relatively steady AOX generation (1-30 min) was severely underestimated. The trend 

(intensive initial phase) of OX formation was rather well estimated. The predicted effect of the 

chemical dose on organochlorine formation (OX and AOX) was much more dramatic than observed 

in the experiments. Splitting the chemical dose (30 kg → 15 kg) resulted in a 15% reduction in the 

final amount of AOX (t = 30 min) in the experiments. The predicted reduction was nearly 40% (Table 

7). The effect on OX was overestimated as well (Figure 15). The temperature had a very small (AOX) 

or insignificant (OX) effect on experimental organochlorine formation. The predictions showed only a 

small temperature dependence on both AOX (directly proportional) and OX (inversely proportional) 

formation.  
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Figure 14. The predicted (line) and experimental (bullets) HexA content 
using with a dose of 30, 20, or 15 kg act. Cl/ADt chlorine dioxide. 
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Figure 15. The predicted (line) and experimental (bullets) organochlorine 
formation with a dose of 30, 20, or 15 kg act. Cl/ADt chlorine dioxide. 

 

The chlorine dioxide consumption predictions were coherent with the experimental results (Figure 

16A). The amount of chlorite generated within the first minute was only slightly overestimated. The 

predicted chlorite depletion was slower than monitored in the experiments, especially for the low 

chemical dose (15 kg/ADt) experiment (Figure 16B). The trend in chlorate generation is correct, but 

the quantities fall severely short (Figure 16C). The simulated chloride ion concentration curves also 

have the right shape, but the total quantity is somewhat overestimated (Figure 16D). 

 

 
Figure 16. The predicted (line) and experimental (bullets) oxychlorine 
concentrations with a dose of 30, 20, or 15 kg act. Cl/ADt chlorine 
dioxide. 
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4.5 Discussion 

4.5.1 Lignin reactions 

The predictions offer several interesting topics of discussion regarding the applied theories and 

principles. The very rapid initial kappa drop could not be properly reproduced with the present 

models. This feature is likely to relate to lignin oxidation or dissolution, since the initial HexA 

removal was well predicted. One possibility is that the lignin reactions take place more extensively 

right on the surface of the fibers, so that dissolution into the external liquid is an immediate 

consequence of (fiber wall) lignin oxidation. Presently, the model operates so that the dissolving 

lignin fragments are first required to detach from the solid matrix and they then need to diffuse out of 

the fiber wall. The dissolved lignin compounds contribute to the kappa number during this process, as 

they remain inside the fiber wall liquid. 

 

The ratio in which quinones, muconic acid esters, and the reactive intermediates are formed from the 

primary lignin offers another point of speculation. The first two structures are stable toward further 

oxidation and they consume a considerable amount of permanganate in the kappa number test (Table 

6). Hence, if the fraction quinones and muconic acid esters being produced was overestimated, the 

initial kappa drop would be too small. Yet another explanation could arise from the division of lignin 

between phenolic (extremely reactive) and non-phenolic (very slow reaction) moieties. Although 

commonly used, the division may be too rough, and in reality some of the structures lumped into the 

non-phenolic category could be consumed at a substantial rate.  

 

4.5.2 Chlorate formation 

Chlorate formation was consistently underpredicted. Chlorous acid self-decomposition and iron- 

mediated chlorite depletion, both resulting in chlorate formation, have been found to have 

insignificant reaction rates above pH 3 [II, III]. The end pH was above 3 in each experiment and thus 

the only mechanism expected to produce chlorate would be the reaction between hypochlorous acid 

and chlorous acid. It appears that this route alone cannot account for the chlorate formation observed. 

This incoherence is unexpected, as the HOCl-HClO2 reaction scheme and rate parameters were 

obtained under a very similar pH range and oxychlorine species composition as encountered in 

experiments [IV]. The presence of pulp, of course, makes a notable difference. Pulp suspensions 

present a heterogeneous environment, where the highly unstable Cl2O2 species may come across 

diffusional restrictions. If, for instance, the chloride ion content inside the fiber-bound liquid is not 

uniform, the local reaction paths of Cl2O2 could vary. The pulp-related compounds and structures 

might also participate in the Cl2O2 reactions, thereby affecting the reaction stoichiometry. The 
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extensive involvement of radical chemistry, initiated by sources other than ferric/ferrous ions, might 

also alter the predicted outcome (Lindgren and Nilsson 1975; Kolar and Lindgren 1982).  

 

4.5.3 Hypochlorous acid driven processes 

The predictions regarding HexA removal, chlorite depletion/chlorate formation, and organochlorine 

formation were not in complete agreement with the experimental results. The extent of each process 

was underestimated, especially at reaction times of 5-30 min. The common feature for these processes 

is that they all involve and compete for the intermediately formed hypochlorous acid. Figure 17 gives 

a principle presentation of the reaction scheme around hypochlorous acid. The underestimated 

reaction paths are bolded in gray. As the magnitude of all the aforementioned processes was 

underestimated, one obvious way to try to improve the model performance was to allocate a higher 

rate for one or all of these reactions. However, this was unsuccessful. Firstly, the present AOX 

formation, chlorite depletion, and HexA removal predictions fitted rather well during the first minutes 

of the reaction (0-5 min) and the deviations occurred only later. If any of the reaction paths was given 

a higher reaction rate, coherence in the later part improved, but at the expense of inferior correlation 

in the early part. In addition, as the reaction paths all compete for hypochlorous acid, assigning a 

higher rate for one reaction path suppresses the others and leads to a poorer general correlation in 

them. The reaction between chlorite/chlorous acid and lignin/carbohydrate aldehydes - an additional 

source for HOCl - was introduced in an attempt to improve the predictions. The reaction was defined 

to consume chlorite/chlorous acid and to produce hypochlorous acid, while converting the aldehydes 

into carboxylic acids (Jiang et al. 2007; Lehtimaa et al. 2007). An excess of aldehydes was assumed to 

be available. Introducing the aldehyde reaction resulted in much-improved Cl(III) concentration 

predictions, although improvements in HexA removal, AOX formation, and chlorate formation were 

rather insignificant.  

 

The relative importance of the hypochlorous acid driven processes appeared to be temperature- 

independent. The experimental results showed that changes in temperature (45-65°C) had no effect on 

the rate or extent of HexA removal, OX formation, or chlorate formation. AOX formation was very 

slightly affected. Hence, temperature changes had no effect on the ratio in which the HOCl was 

consumed between the competing reaction paths. One explanation for this observation is that the 

initial reaction steps of each process have equal activation energies. A more likely possibility is that 

the hypochlorous acid, when formed, reacts so rapidly that it is instantly consumed by the nearest 

substrate, i.e. the hypochlorous acid consumption is diffusion-restricted. In this case the relative 

importance of the HOCl-consuming processes would not be determined by reaction kinetics, but by 

the internal structure and distribution of the substrates in the fiber wall. The simulations do not 

provide direct evidence to confirm this hypothesis, but the fact that the hypochlorous acid 
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concentration in the fiber-bound liquid was consistently almost an order of magnitude higher than in 

the external liquid (diffusional restrictions between the liquid phases) gives the hypothesis additional 

support. 
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Figure 17. A simplified presentation of the oxychlorine reaction scheme operating in the model. Chlorous acid 
self-decomposition and iron-mediated chlorite decomposition are omitted, as their reaction rates are 
insignificant at pH above 3. Chlorination of phenols by HOCl is also omitted, since the reaction was found to 
be too slow to have an effect. The reaction paths whose importance was underestimated are bolded in gray. 
 

It was surprising how little the experimental organochlorine formation was affected by the chemical 

dose (Table 7). The predicted dependence was much stronger. The model assumes chlorination by 

elemental chlorine to be unspecific with regard to lignin, i.e. all unoxidized lignin pseudo-compounds 

are chlorinated at equal rates. Thus, in the simulations, a higher chemical dose yields a higher amount 

of chlorine, which leads to more extensive chlorination. The fact that this scheme fails to predict the 

experimental outcome suggests that the chlorination process is not limited by the amount of chlorine, 

but by some other factor. One possibility is that chlorination is not unspecific, but occurs only via 

specific, chlorination-susceptible lignin structures and that the limiting factor is the abundance of 

these structures. 

4.5.4 Chloride formation 

The overestimation of chloride production is readily explained by the fact that too little chlorine ends 

up as chlorate and in organochlorine compounds. The chlorine balance must close, and the residual 

chlorine ends up as chloride and partly as chlorite. 
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5 SYNTHESIS OF THE PUBLICATIONS 

This doctoral thesis consists of five papers. The overall objective was to first construct a 

phenomenon-based modeling environment for chemical pulp bleaching processes in general and then 

to focus in more detail on modeling chlorine dioxide bleaching. In the first part the main efforts were 

put in defining the required physico-chemical models, in defining how the pulp suspension 

environment should be modeled and how the massive amount of different fiber wall components and 

reactions would be implemented without making the model too complicated. The result is introduced 

in paper [I]. The examples given demonstrate that both electrolytes and neutral components may 

exhibit different concentrations inside the fiber wall and in the external liquid. Thus, it is essential to 

distinguish the two liquid phases and to acknowledge mass transfer restrictions between them. The 

existence of concentration gradient is not that common for neutral species, but evermore important as 

in these cases the effect is typically affiliated with highly reactive species. The practical significance 

of this topic lies in the fact that in experimental systems all samples and measurements are taken from 

the liquid external to fibers. Differences between the measured concentrations and those at the actual 

reactive sites inside the fibers may easily lead to false conclusions. 

 

The second interest was in gathering a kinetic library for the reactions taking place during chlorine 

dioxide bleaching. In the bleaching process chlorine dioxide oxidizes various organic substrates, 

meanwhile going through a stepwise reduction to chloride. The reactions of the intermediate chlorine 

species are of utmost importance with respect to the overall red-ox efficiency of the bleaching 

process. The existing literature regarding the chemistry of these oxychlorine species was found 

inconsistent and new experiments were needed. Papers [II] and [IV] deal with the self-decomposition 

of chlorous acid and the reaction between the hypochlorous acid and chlorous acid, respectively. In 

both cases the reaction’s temperature dependency was provided for the first time. Furthermore, this 

was the first time that chlorous acid self-decomposition results were reported at elevated temperatures 

and the reaction between hypochlorous acid and chlorous acid was studied at mildly acidic pH. Paper 

[III] reports a computational study of chlorate formation during chlorine dioxide delignification. 

Conclusions as to the conditions suppressing chlorate formation, i.e. to improving the red-ox 

efficiency of the bleaching process, were provided.  

 

As a final part, paper [V] presents a phenomenon-based model for chlorine dioxide delignification. 

The results of the first two parts were exploited here. Descriptions as to how the reactions of residual 

lignin and other fiber wall components are modeled, how lignin dissolution is incorporated, and how 

the molecular scale composition in the fiber wall and in the liquor are converted into various 

measurable bulk variables (kappa number, COD, AOX, etc.) were provided. The model was validated 
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against experimental delignification results reported in detail by Lehtimaa et al (2010a, 2010b). The 

model combines a number of individual theories in predicting the outcome of the delignification 

process. The model is the first of its kind to be reported in pulp bleaching research. Its application 

opportunities in examining the cross-effects of individual theories and in identifying shortcomings in 

them were demonstrated. Several key variables including kappa number, chemical consumption, and 

pH were well predicted, yet discrepancies were encountered as well. 

 

The pulp suspension model was also exploited in assessing the feasibility of [AlMn(H2O)W11O39]  

catalyzed oxygen (O2) delignification (Ruuttunen et al. 2006). The central idea in this bleaching 

concept was to use [AlMn(H2O)W11O39] anion in mediating oxidizing power from molecular oxygen 

to lignin. The bleaching system was examined computationally after determining a number of 

unknown reaction kinetic parameters in the system. In the light of the simulation results, it was 

concluded that the suitability of the [AlMn(H2O)W11O39] anion as catalyst is questionable. 
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6 CONCLUSIONS AND SUGGESTIONS FOR FUTURE 
WORK 

The results from the aqueous oxychlorine species studies were promising. The benefits of dividing 

complex reaction systems into smaller parts were clear. It was possible to reduce the amount of 

uncertainties and identify the rate parameters with improved confidence. Although the oxychlorine 

models performed well in fully aqueous systems, predictions regarding chlorite depletion and chlorate 

formation during pulp bleaching were deficient. It is difficult to judge whether the deviations resulted 

from omitting some pulp-related reactions, or from applying too many simplifications in modeling the 

fiber wall or pulp suspension structure. The challenge of simplifications was encountered also in the 

study dealing with of chlorate formation during chlorine dioxide delignification [III]. In lack of 

explicit information, several reaction kinetic or stoichiometric parameters had to be estimated, thus 

affecting adversely on the confidence of the predictions.  

  

The phenomenon-based model presented for chlorine dioxide delignification is the first of its kind to 

be reported in the field of pulp bleaching research. The model combines several individual 

phenomenon models with a broad reaction kinetic library. This approach offers an exceptional 

opportunity to examine the validity of various theories or hypotheses and provide deeper knowledge 

regarding the bleaching process. In this work, for instance, the fact that both chlorate and 

organochlorine formation were underestimated suggests that our present conceptions regarding the 

reactions of intermediately formed hypochlorous acid are not insufficient. Also, the theory of 

unspecific chlorination by elemental chlorine was shown to be too simple to explain the 

experimentally observed chemical dose dependency in organochlorine formation. Despite these 

discrepancies, the the model gave good predictions for several key variables. Overall, the model was 

considered to meet the key expectations imposed.  

 

The chlorine dioxide reaction library constructed in this work was used to model the delignification 

process, but it could as well be applied to simulate the brightening ClO2 processes (D1 and D2 

stages). The delignification and brightening processes involve the same phenomena and any condition 

related changes in the importance of the various reactions are incorporated implicitly. The model 

should, however, be extended to cover prediction of pulp brightness, as the overall objective of pulp 

bleaching is in color removal. In practice, adding this feature would require identification of the 

essential colored structures (chromophores) in pulp, creating reaction schemes for these structures, 

and linking the fiber wall chromophore content with pulp brightness. This task was left for future 

work. 



 42 

 

The greatest challenges in constructing the model were encountered in validating the changes in fiber 

and liquor composition. The predominant ways to monitor changes in lignin composition/content and 

chlorinated organic compounds are structure unspecific (kappa number, COD, AOX, OX). Converting 

the molecular scale composition into these bulk variables brings an additional factor of complexity 

and uncertainty. The balance between model complexity and availability of proper validation data 

must be borne in mind when considering the future development of the model. The presently used set 

of unoxidized lignin pseudo-compounds is quite narrow (phenolic and non-phenolic moieties) and it 

would be interesting to introduce lignin categories such as β−Ο−4-, biphenyl-, and β-5-structures to 

improve the model credibility. These structures could be assigned specific reactivities and reaction 

paths. It would also be desirable to eliminate the rough assumption of uniform distribution and 

equal/full accessibility of lignin in the fiber wall. Several cell wall layers could be introduced and 

lignin could be assigned a heterogeneous distribution amongst them. Implementing such 

modifications, however, would require that suitable experimental results be available to define the cell 

wall layers and lignin categories, as well as tracking changes within them. Development of detailed, 

structure-specific analytical methods for characterizing the fiber wall and liquor would take the value 

of the model onto a whole new level. 

 

While the in-depth development of chemistry and fiber wall models may be uncertain, there are 

several directions where the development prospects are bright. The present modeling concepts could 

be extended to cover other bleaching chemicals and unit operations. The chlorine dioxide reaction 

library may be replaced with reactions related to oxygen, hydrogen peroxide, ozone, or any other 

chemical to simulate other bleaching stages. The catalytic polyoxometalate bleaching study 

demonstrated that the modeling framework can be used also to examine ideas of new bleaching 

concepts, and that incorporating gaseous species (oxygen) or highly-charged anion clusters in the 

model does not cause problems. The phenomenon-based modeling concepts may also be extended to 

predict changes in fiber wall and liquor composition in pulp washing. The structure and characteristics 

of pulp as well as the essential phenomena remain the same; additional work would be required to 

model the filtrate flow arrangements.  

 

 



   

NOTATION 
a  activity of a component  

ci   component concentration (mol/kg fiber) 

D  diffusion coefficient (m2/s) 

Ea  activation energy (kJ⋅mol-1) 

H  hexenuronic acid content (mmol/kg) 

K  equilibrium constant (reaction dependent) 

k  rate constant (reaction dependent) 

L  lignin content (weight %) 

Mw  molar weight (g/mol) 

N  mass transfer flux (mol /(m2⋅s)) 

R  gas constant (8.3144 J⋅K-1⋅mol-1) 

T  temperature (K) 

t  time (min) 

V  volume (m3) 

x  diffusion length (m); 

z  ionic charge (-) 

 

Greek symbols 

ε  void fraction (-) 

∆  difference operator 

κ  kappa number (-) 

µ  viscosity (-) 

τ  tortuosity coefficient (-) 

 

Subscripts 

eff  effective 

i  component i 

 

Abbreviations 

act. Cl  active chlorine 

AOX  adsorbable organic halogens 

Cl(III)  sum of chlorite and chlorous acid 

COD  chemical oxygen demand 

DMSO  dimethylsulphoxide 

EDTA  ethylenediamine-N,N,N',N'-tetraacetic acid 



   

FSP  fiber saturation point 

HexA  hexenuronic Acid 

HMW  high molecular weight 

MA  maleic acid 

NPL  non-phenolic lignin 

OA  oxalic acid 

o.d.  oven dry 

OX  organically-bound chlorine in fibers 

OxEq  oxidation equivalent 

pKa  10-base logarithm of dissociation coefficient Ka 

POM  polyoxometalate 
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