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Preface 
In the spring of 1999 I started as a research assistant in the Control Engineering 
Laboratory, now called the Control Engineering Research Group. The first project I 
got to choose to be assigned to was the EU funded ChaCo-project that had started 
few years earlier and was dealing with utilization of machine vision in the context 
of mineral flotation. This seemed like an interesting research topic – and when 
Jean-Peter Ylén (who was interviewing me) mentioned that "furthermore, you get 
to travel a lot" – I was sold. Had I chosen another topic, this thesis would not have 
been made, not in this form at least. 

The research was carried out under supervision of Professor Heikki Koivo, to 
whom I am grateful for so many things. I guess that the most important one is his 
"way of doing business", meaning that the atmosphere is always relaxed and 
inspiring, and that he is always on a good mood (which catches to others also). 
Professor Heikki Hyötyniemi contributed also greatly to this thesis, especially in 
the early phases of the work. Other important contributors from the lab (past and 
present) are: Dr. Jari Hätönen, Dr. Vesa Hasu, Mr. Martti Larinkari, Mr. Olli Ojala, 
Mr. Olli Haavisto, Mr. Timo Roine and Mr. Janne Pietilä. Another important group 
of people that should not go unnoticed are the members of the three shovelling 
teams that helped me with the "data mining" in Pyhäsalmi. They are: Martti L., 
Olli O., Mikael M., Antti H., Kalle K., Olli H., Timo R., Janne P. and Antti T. 
Thanks a lot guys! 

Furthermore, I would like to thank Prof. Pentti Lautala from Tampere University of 
Technology and Prof. Sirish Shah from the University of Alberta for a thorough 
pre-examination that resulted in many improvements at the final stage. Similar 
thanks apply also to Prof. Koivo, Prof. Hyötyniemi, Dr. Jean-Peter Ylén, Dr. Kai 
Zenger and to Mr. Olli Haavisto for pre-pre-examination, to Mr. Pauli Sipari for 
the help with the practical issues and to Mr. William Martin for proofreading the 
thesis. 
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Nomenclature 
In general, scalars are presented in non-bolded (typically lowercase) symbols. All 
vectors are column vectors unless otherwise stated and are presented in bolded 
lowercase symbols. All matrices are in bolded uppercase symbols. 

Operators 
TX  Transpose of X  

x   Euclidean norm of  x
+X   Pseudoinverse of  X

f g∗  Convolution of f and g  

Δ  The Laplace operator 

( )n

n

f
x

∂ ⋅
∂

 nth order partial derivative of f with respect to x  

( )G ⋅  Gaussian filter 

Symbols 
/s aγ  Solid-air surface energy [J/m2] 

/s wγ  Solid-water surface energy [J/m2] 

/w aγ  Water-air surface energy [J/m2] 

θ  Contact angle 

/s aW  Work of adhesion [J/m2] 

I  Two dimensional greyscale image 

binaryI  Two dimensional binary image 

K  Thresholding value 

RN  Number of rows in a two dimensional image 

CN  Number of columns in a two dimensional image 
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CI  Threshold calibration image 

Sv  Shadow length histogram 

Rx  Horizontal place of a rock in an image [pixels] 

l  Shadow length [pixels] 

Cl  Compensated shadow length [pixels] 

1L  Lamp distance from the edge of imaging area [m] 

2L  Length of imaging area [m] 

x  A data vector of predictor variables 
X  A data matrix of predictor variables 
y  Predicted variable 

y   A data vector of predicted variables 

ŷ  Estimate of y  

Y   A data matrix of predicted variables 

Ŷ  Estimate of Y  
1Z  Subspace orientation 

k  Subspace dimension 
t  X-block score vector 
T  X-block score matrix 
p  X-block loading vector 

P  X-block loading matrix 
u  Y-block score vector 
U  Y-block score matrix 
q  Y-block loading vector 

Q  Y-block loading matrix 
E  X-block residual matrix 
F   Y-block residual matrix 
λ  Eigenvalue or wavelength 
w  Weight vector 
W  Weight matrix 
b  Regression coefficient for inner relation 
g  Two dimensional image presenting 3D data 

f  Gradient image 

h  Directional kernel 
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e  Euler’s number 
σ  Standard deviation 

Rb  Regression vector 

RB  Regression matrix 

R  Correlation coefficient 
2R  Coefficient of determination 

, , ,i j m n  Indices 

 ix



 
 
 
 

x 



Abbreviations 
AC Alternating Current 
AG Autogenous Grinding 
A/D Analog/Digital 
CAD Computer-Aided Design 
CCD Charge-Coupled Device 
CCIR Comité Consultatif International des Radiocommunications 

(commonly used name for a grayscale image standard) 
COM Component Object Model 
CPU Central Processing Unit 
CUMPRESS CUMulative Predictive Residual Error Sum of Squares 
DC Direct Current 
DFT Discrete Fourier Transform 
DLL Dynamic Link Library 
DTR Data Terminal Ready (signal in serial port communications) 
ESPRIT European Strategic Programme on Research in Information 

Technology 
EU European Union 
EXE Executable File 
HD Horizontal Drive 
HSV Hue Saturation Value (one type of colour image presentation) 
IP Internet Protocol 
LHD Load Haul Dump (machine type used in mining operations) 
LoG Laplacian of Gaussian 
LTR Long Term Research 
LV Latent Variable 
MB Mega Bytes (10242 bytes) 
MLR Multiple Linear Regression  
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MMMI Mining, Mineral and Metal Industry 
NaIBX Sodium Isobutyl Xanthate 
NIC Network Interface Card 
NIPALS Algorithm for calculating PLS 
OLE Object Linking and Embedding 
OPC OLE for Process Control 
PAL Phase Alternate Line (colour image standard) 
PC Principal Component or Personal Computer 
PCA Principal Component Analysis 
PCR Principal Component Regression 
PGP Prism-Grating-Prism 
PLS Partial Least Squares or Projection to Latent Structures 
RAM Random Access Memory (volatile memory with direct access) 
RGB Red Green Blue (image) 
RMS Root Mean Square 
ROI Region Of Interest 
rPLS recursive Partial Least Squares 
SAG Semi Autogenous Grinding 
SC Solids Content 
SIMPLS Algorithm for calculating PLS 
SSH Secure Shell 
TCP Transmission Control Protocol 
TEKES Finnish Funding Agency for Technology and Innovation 
UI User Interface 
UPS Uninterruptible Power Supply 
USB Universal Serial Bus 
VD Vertical Drive 
WLAN Wireless Local Area Network 
VNIR Visible and Near InfraRed 
XML eXtensible Markup Language 
XRF X-Ray Fluorescence 
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Cu Copper 
Fe Iron 
Pb Lead 
S Sulphur 
Zn Zinc 
 
BaSO4 Barite mineral 
CaOH Calcium Hydroxide 
CuFeS2 Chalcopyrite mineral 
CuSO4 Copper sulphate 
Fe(0.8-1)S Pyrrhotite mineral 
FeS2 Pyrite mineral 
Fe2O3 Hematite mineral 
Fe3O4 Magnetite mineral 
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1. 
Introduction 

1.1. Background and Motivation 
Since the beginning of civilization people have used metals and other minerals 
from the earth’s crust to make life easier by the use of manufactured tools, for 
example. The oldest known mine, called “Lion Cave” in Swaziland, was used 
about 43 000 years ago by paleolithic humans to extract the hematite mineral 
(Fe2O3) for red ochre pigment production [109]. In the world today, the mining, 
mineral and metal industry (MMMI) is an important part of the global industry 
sector. Even though people may not have to encounter the MMMI in their daily 
lives, they certainly enjoy the results of it all the time. For example, mined metals 
are present everywhere; in the ribbed bars that are used to strengthen the concrete 
structures of our houses, in our cars, silverware, computers, TVs, cell phones, etc. 
The list is endless, and this list was only concerning metals. 

The drawback of the MMMI is that it often exploits exhaustible sources and the 
production phase may leave a big ecological footprint. Thus, many of the world’s 
nations have regulations for mining operations [109]. However, as the technology 
evolves, it enables more efficient operation of the MMMI. Although the drivers for 
this are often economical, the improved efficiency usually means reduced negative 
impacts on the natural environment. A good example is the flotation technique 
which is an essential part of this thesis; over the years the technology has evolved 
so much that currently there are flotation plants running economically viable 
operations by treating the waste that was produced with the older technology [110]. 
In other words, the recovery (see Subsection 3.3.2 for a detailed description) was 
so low that significant amounts of valuable minerals were lost because the 
technology used was not able to separate the valuables from the invaluable gangue. 

This thesis aims to add to this evolution of the technology, and it is the author’s 
firm opinion that it has done so by utilizing the evolvement of another field, 
namely computer and vision technology. The thesis shows an application oriented 
approach for utilization of machine vision technologies in the context of the 
MMMI. Naturally, an application environment is needed for this type of approach, 
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and in the case of this thesis it has been a zinc, copper and sulphur mine located in 
Pyhäsalmi (Finland), owned by the Canadian Inmet Mining Corporation. 

Machine vision technologies covered in this thesis are: 

• Imaging done on the visible wavelength range (λ=380-760nm) with 
traditional greyscale and colour cameras. 

• Spectral measurements on the visible and near-infrared (VNIR) range 
(λ=400-1000nm) [9]. 

• 3D imaging.  

These technologies are applied to contact-free particle size analysis of material that 
is moving on a conveyor belt and to machine vision based measurement and 
control of flotation. 

The work presented in this thesis proves that machine vision techniques are a 
valuable asset in the measurement and control of a mineral enrichment process; the 
presented results show improved performance in terms of control and economics. 
Furthermore, a new technique is presented for improving the measurement 
capabilities of current X-Ray fluorescence (XRF) analyzers that often are the 
backbone in the control of a modern flotation process. The work carried out in this 
thesis has enabled new ways of combining traditional XRF measurements with 
optical spectroscopy methods, as presented in Chapter 6. 

1.2. Objectives 
The main objective of the study is to examine the usefulness of machine vision 
techniques in the context of the mining, mineral and metal industry (MMMI). This 
can be divided into following sub-objectives: 

• To evaluate the possible application domains for machine vision within the 
MMMI, and their importance. 

• To study machine vision in the context of the mineral enrichment process 
by using Pyhäsalmi mine as a case example. And specifically; to gain 
information on the potential of machine vision in the control of the 
flotation process. 

• To evaluate the dependencies between froth characteristics and process 
variables. 

• To obtain information about the dependencies between froth or slurry 
colour characteristics and mineral grades. 

• To utilize the above mentioned information in order to gain increased 
control performance. 
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1.3. Summary of Publications 
This thesis covers over ten years of machine vision related research which was 
initiated in 1997 by a collaborative venture between the Helsinki University of 
Technology and the University of Oulu in Finland, the University of Rome “La 
Sapienza” in Italy, the Royal Institute of Technology in Sweden and two mining 
companies; Outokumpu Mining Oy – Pyhäsalmi Mine in Finland (currently owned 
by the Inmet Mining Corporation, as mentioned before) and Boliden Minerals AB 
in Sweden. The project was called ”Characterisation of Flotation Froth Structure 
and Colour by Machine Vision (ChaCo)”. It was funded by the European Union 
and ended in 2000. The author joined this project in the spring of 1999 and started 
working with the on-line analyzer that was built for the zinc rouger circuit of 
Pyhäsalmi mine. The objectives of the project and some of the results, especially 
the ones conserning the Pyhäsalmi case, are reported in [P1]. 

After the ChaCo project, the research continued with three consecutive national 
projects, that were supported by the Finnish Funding Agency for Technology and 
Innovation (TEKES). These were: ”Intelligent, Machine Vision Based Control for 
a Flotation Process (VÄSY)” in 2001-2004, ”Intelligent Methods in Mining 
Environment (ÄKSY)” in 2005-2006 and ”Performance Improvement for 
Concentration Process (RIKE)” in 2007-2008. During these projects, the single 
cell analyzer was extended to multi-camera version and the new image variables 
were utilized in the zinc circuit, as reported in [P3] and [P5]. Later, the copper 
circuit was included in the analysis and the image variables obtained from the 
flotation cell producing the final copper product were utilized in closed loop 
control [P4]. 

Research done with traditional RGB cameras suggested that the colour of the froth 
gives a good indication of grade changes in a flotation cell. This phenomenon was 
further studied with a more accurate instrument to obtain spectral measurements of 
the froth. The measurements were recorded simultaneusly with an RGB camera 
and a spectrophotometer, the results showing that both devices were able to predict 
grade based on colour information, although the spectral measurements were more 
accurate [P6].  

This research was continued with laboratory analysis of spectral measurements that 
were made from slurries. As this pilot analysis showed good results, a prototype 
capable of continous on-line analysis was constructed and installed to measure the 
concentrate grades of the final zinc product in Pyhäsalmi, and again excellent 
prediction results were obtained, as reported in [P8]. 

In addition, another field of research presented in this thesis is the particle size 
distribution analysis of crushed ore, which was started based on the initiative of 
Pyhäsalmi Mine Oy, since there was a real need for information about the particle 
size distribution formed at the primary crusher in the mine. This information can be 
used in the flotation plant to achieve better grinding results. Thus, a new type of 
measurement was realized with a shadow based image analysis method that was 
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used to calculate the particle size distribution in a contact-free manner from a 
moving conveyor belt [P2], and was later replaced with a more sophisticated 
measurement technique based on 3D measurements of the moving ore bed [P7]. 

1.4. Contributions of the Author – Thesis 
The contributions of the author presented in this thesis can be summarized as 
follows: 

• A novel multi-camera image analysis platform was developed and the new 
image based variables obtained with it were studied and used in closed 
loop control. 

• New results regarding the measurement capabilities of image variables in a 
multi-camera setting were obtained. 

• A new type of froth level measurement that can be used to accurately 
measure the location of the froth layer and thus to gain an accurate froth 
thickness measurement was developed. 

• A tool for flotation plant operators, which can be used to check the current 
and previous appearance of different flotation cells, was developed. This 
information, together with conventional process measurements, helps to 
get a more detailed picture of the state of the process and can be used both 
in process control and for educational purposes (i.e., for learning from the 
history information). 

• Results regarding the usefulness of froth colour in predicting grades were 
obtained and a comparison between a traditional RGB colour camera and a 
more accurate spectrophotometer was carried out. 

• A new type of on-line measurement technique used to supplement existing 
X-Ray fluorescence (XRF) analyzers for reducing their typical sampling 
interval of 10-20 minutes to a virtually continuous measurement was 
created. The author was responsible for the initial laboratory tests, where 
the usefulness of the new technique was verified. Also, he implemented the 
on-line prototype that was used in the first practical tests. 

• Two new measurement techniques for realizing contact-free particle size 
distribution analysis were developed. These are applicable to analysis of a 
material that is moving on a conveyor belt. 
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1.5. Structure and Organisation of the Thesis 
This thesis is organized as follows. Chapter 2 discusses the current status of the 
image analysis work related to the mining, mineral and metal industry (MMMI), 
and to work carried out in this thesis. Then, in order to give the reader a better 
understanding of the application environment, the mineral enrichment process of 
the Pyhäsalmi mine is described in Chapter 3. 

The work related to the publications of this thesis is presented in Chapters 4-6. 
Chapter 4 discusses the particle size distribution analysis that was developed to 
provide information on the size distribution generated by the primary crusher in the 
mine. Chapter 5 introduces a machine vision based analysis platform for flotation 
froths, its evolution to a multi-camera analyzer, and the obtained results in terms of 
new scientific information and practical applications, such as closed loop control. 
The results presented in Chapter 5 led to a thorough analysis of the dependency 
between colour and grade. This work eventually resulted in a new measurement 
technique for improved grade analysis, which is discussed in Chapter 6. 

Finally, the conclusions are presented in Chapter 7. 
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2. 
State of the Art in 

Machine Vision 
within MMMI 

The mining, mineral and metal industry (MMMI) has been making use of advances 
in camera and information technology, which have resulted in better cameras and 
computers. An overview of some common systems related to the scope of this 
thesis is presented in the following. 

In recent years, the development in camera and information technology has 
produced better cameras and better computers with significantly increased 
capabilities in storage and computational power (i.e. CPU power). These advances 
have led to the integration of machine vision based applications into many 
branches of industry, such as the MMMI. The MMMI often sets quite strict 
requirements on new technology; including, for example, harsh environmental 
conditions, dust that can be electrically conductive, moisture and direct water 
contact, vibrations, shocks in air-pressure (due to blasting), power outages, etc. 
Because of these challenges there has been extensive research on the subject. 
A few commercial products available on the market will be presented in this 
chapter. 

The following subsections outline some of the aforementioned developments in 
two parts: Particle Size Measurement Systems and Flotation Analysis Systems. The 
first part presents particle size analyzers and related research. The common feature 
in the research and devices considered in this part is that they possess non-contact 
measuring capabilities and can therefore be used in a similar setting as the analyzer 
to be described in Chapter 4. The second part refers to the research to improve 
flotation performance using image analysis techniques. 

2.1. Particle Size Measurement Systems 
There are several commercial imaging systems that are able to measure particle 
size distribution from a moving conveyor belt. These include: the Split Imaging 
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System (see [20] and [21]), WipFrag Imaging System (see [68]), FragScan Imaging 
System (see [94] and [95]), VisioRock Imaging System (see [25]), PowerSieve 
Imaging System (see [62]) and PlantVision Imaging System (see [54]). A screen 
capture from the Split-Online® imaging system is shown as an example in Fig. 2.1 
below. Common to all of these systems is that they are based on photographic 
images taken of the target. This image is then processed and typically converted 
into binary image, from which the particle segments are extracted and size 
distribution calculated. There are also scientific studies around the subject, where a 
greyscale image has been used as a starting point for particle size analysis (see e.g. 
[10], [12], [93], [105] and [106]). Some approaches make also volume estimations 
based on greyscale images (see e.g. [67] and [91]). These types of systems have 
been shown to work fairly well when the lighting conditions are good. Conversely, 
they are sensitive to changes in lighting conditions and especially to disturbing 
shadows [105]. Furthermore, the slow drift in intensity (due to dusting, for 
example) can cause problems in the long run, when considering on-line 
applications. The shadow based analysis technique presented in Section 4.2 was 
designed to overcome these issues. 

 
Fig. 2.1 An example of the image based segmentation system;  

Split-Online® by Split Engineering. (www.spliteng.com) 

Another possibility is to use a 3D image as the starting point for the segmentation 
analysis. Lee et al. [63], [64] show a laser triangulation method and discuss the 
advantages of the 3D approach. Kim et al. [52] demonstrate an aggregate testing 
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system built around a laser profiler mounted on a horizontal gantry system. Thurley 
demonstrates 3D imaging in his thesis [105] by using so called “Monash Shape 
Measurement System” which is applicable to laboratory tests only. More recently, 
Thurley and Andersson [106] have presented an on-line implementation for iron 
ore green pellets based on structured light and camera triangulation. These 
approaches are very close to the method described in Section 4.3 and reported for 
the first time in [51]. The main difference is that the method presented in this thesis 
is based on a direct 3D measurement and a belt weigher is located on the same 
cross directional axis as the laser scanner. This enables the use of the weight 
information, not only in scaling back the calculated proportions to real life mass 
flow values, but also in the calibration model. 

2.2. Flotation Analysis Systems 
Woodburn et al. [117] introduced machine vision aided flotation control to the 
MMMI in late 1980s [103]. Since that time, several studies have proven the fact 
that the visual appearance of flotation froth can be used as an indicator of 
metallurgical performance (see e.g. [1], [8], [11], [75], [76], [77], [80] and [81] in 
addition to the publications presented in this thesis). One important contribution to 
the research in this area was the EU funded ChaCo project, mentioned in 
Section 1.3. It was an international ESPRIT LTR (Long Term Research) project, 
which was active from 1997 to 2000. A considerable number of scientific results 
were published based on the work carried out during this project (see e.g. [4], [5], 
[32], [38], [39], [41], [42], [57] , [58] and [107]). As mentioned, the author had the 
privilege to contribute to that research and most of the ground work regarding 
Chapter 5 was completed at that time. 

Since then, several machine vision applications regarding mineral flotation have 
been reported (see e.g. [2], [8], [35], [48], [65] and [79]). However, only a few 
systems are commercially available: 

• FrothMaster™ by Outotec Minerals Oy (Fig. 2.2) 

The FrothMaster is based on image analysis of colour images obtained 
with an RGB PAL camera. An optional protective hood is available for 
protection against ambient lighting and other environmental factors. 
Calculations are semi-distributed; every group of four cameras processes 
their own images. The calculated variables are: froth speed and direction, 
bubble size distribution, froth stability and colour histogram. In addition, 
statistical information is calculated for these variables (when applicable). 
Each group includes a video server that is able to send a video feed to a 
web browser through a TCP/IP network. [83] 

FrothMaster installations can be found in several plants. This includes also 
Pyhäsalmi since the prototype version of the FrothMaster 2™ was 
originally tested there. Also, some of the calculated variables were 
compared against the image analyzer presented later in this thesis. The 
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most famous case example of the performance improvements obtained 
with the aid of FrothMaster is the Cadia Hills Gold Mine in New South 
Wales (Australia), reported by van Olst et al. [108] and by 
Brown et al. [7]. 

 
Fig. 2.2 FrothMaster™ 2 flotation froth analyzer. [83] 

 

• VisioFroth™ by Metso Minerals Oy (Fig. 2.3) 

 
Fig. 2.3 VisioFroth™ analyzer. (www.metsominerals.com) 

10 



The VisioFroth imaging system is typically based on multiple USB 
cameras and centralized computing. At the website of the Metso Minerals 
corporation (www.metsominerals.com) it is stated that: “VisioFroth 
measures real time froth velocity, bubble size distribution, color and other 
froth properties”. In addition, at least froth stability is measured [90]. The 
VisioFroth system has been installed at various locations around the world. 
The largest installation (at least known to the author) is at PT Freeport 
Indonesia, where 172 froth cameras are used [103]. 

 

• PlantVision™ by KnowledgeScape Inc. (Fig. 2.4) 

To the author’s best knowledge, there is no published literature available 
where the details or usage of PlantVision for flotation has been reported. 
According to KnowledgeScape’s own brochure [55], PlantVision supports 
multiple camera types (analog, IP, Firewire and USB) and centralized 
computing. The calculated variables are: bubble size, colour components 
(R, G, B and gray), froth velocity, froth texture and froth stability. 
Software cycles through cameras, processes the video streams and makes 
the data available via OPC (OLE for Process Control). 

 
Fig. 2.4 KnowledgeScape PlantVision 2005. [55] 
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• METCAM FC by SGS Minerals Services Inc. (Fig. 2.5) 

The flotation camera technology of the SGS Group was obtained through a 
corporate acquisition of MinnovEx Technologies Inc. in 2005. According 
to the SGS website (www.met.sgs.com), the camera is able to measure 
directional froth velocity, froth stability, bubble size distribution and 
6 image colour variables. It also includes a wireless network option for 
data transfer. As with PlantVision, the author found no references 
describing applications and possible results obtained with this system. 

 
Fig. 2.5 METCAM FC. (www.met.sgs.com) 

 

• In addition to the ones mentioned above: 

o WipWare Inc. is bringing a new product to the market called 
WipFroth™ [112]. The company is best known for their work on 
optical granulometry of fragmented material and especially from 
their WipFrag product [68] which is related to particle size 
measurements considered in Section 2.1. 

o The IMSOC Froth Image Analyzer (FIA) software, used also in 
Pyhäsalmi during this research, is described in Subsection 5.3.1 

 

When considering the optical spectrum based methods that are used for grade 
prediction, that is to say systems similar to the one described in Chapter 6 of this 
thesis, only three publications (see [16], [17] and [88]) appear, and they are all 
based on a technology developed by a South African company called Blue Cube 
Systems (Pty) Ltd. Their product is called the Instant Mineral Quantifier (IMQ) 
and it is based on spectral measurements in the visible and near-infrared (VNIR) 
range (λ=400-1000 nm). The IMQ has been reported to work relatively accurately 
with dry mineral samples by Reyneke et al. [88] and the system can be used also 
for slurry measurements, as reported by de Waal [17]. However, similar validation 
reports as presented for dry samples are not available to assess performance in the 
case of slurries. Furthermore, the IMQ requires calibration samples that are used 

12 



for informing the system about the mineralogical properties of the material being 
analyzed. Based on these samples, a fixed model will be implemented and used for 
prediction. As new samples arrive, they can be used to re-calibrate the model. 

The technique presented in Chapter 6 is also operating on the VNIR range but 
differs from the IMQ, because it is a supplement to existing X-Ray fluorescence 
(XRF) analyzers and thus the modelling can be (and is) automated by utilizing the 
XRF results. What is more important, the model is continuously updated in order to 
compensate for the changes in ore properties. 

Finally, in the middle of 2007, ABB introduced a spectrum based bulk material 
analyzer called the SpectraFlow CM 100, which is based on technique called the 
Safe On-Line Bulk Analysis System (SOLBAS™) [70]. The system is operating on 
a wavelength range of 350-2500 nm and can predict elemental components of bulk 
material running on conveyor belts. According to ABB, the device can also be used 
for flotation froth analysis (when imaged from above). The measurement is carried 
out by combining spectra from different wavelength ranges (measured with 
separate devices) and mapping spectral data into elemental compositions with a 
multi-variable linear regression model, which is calibrated with 20 to 70 known 
samples, depending on the complexity of the application.  

The author found no published literature describing the SOLBAS™ technology or 
its usage. According to the ABB website (www.abb.com), the technology is 
utilized in cement manufacturing and has also been adopted for sinter composition 
analysis in a steel factory in Bremen, Germany. To the author’s best knowledge, 
the SOLBAS™ technology is not available for slurry analysis in a similar setting to 
that described in Chapter 6. 
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3. 
The Test Bench – 

Pyhäsalmi Mine 
The on-site development for this thesis was carried out in the Pyhäsalmi mine, 
located in the town of Pyhäjärvi in central Finland. The main products, copper 
(Cu), zinc (Zn) and sulphur (S), are extracted from 1050-1421 meters below 
ground level. In the early phases of this study, the mine was still owned by the 
Finnish Outokumpu Corporation, but it was sold in 2002 to the Canadian based 
Inmet Mining Corporation. The Pyhäsalmi mine is well suited to the type of 
research carried out in this thesis, because it is a modern and well instrumented 
plant, and is claimed to be one of the best performing mines worldwide [46]. Also, 
the flotation circuit is used as a text book example for flotation of copper-zinc and 
copper-lead-zinc ores [110]. Consequently, at least for the most part, the results 
presented in this thesis can be generalized to other plants and processes of similar 
characteristics. This chapter describes the history and production of the mine, 
giving a description of the process and indication of the places where the research 
was carried out. A significant part of this chapter, especially in the first two 
sections, is adopted from [46]. 

3.1. History & Geology 
The massive zinc-copper-pyrite (sulphur is mainly contained in the pyrite mineral, 
FeS2) deposit in Pyhäsalmi contained originally 54 million tonnes of ore. The main 
ore body is located underground and reaches the surface via a narrow vertical 
extension, as shown in Fig. 3.1 and Fig. 3.2. The ore is massive and coarse grained, 
which helps in the grinding phase of the process (grinding is covered in 
Subsection 3.3.2). Also, the contact between the ore and waste rock is sharp, which 
reduces the amount of gangue (i.e. invaluable rock) that needs to be processed. The 
ore contains 75% sulphides, which consist of; chalcopyrite – CuFeS2 (3%), 
sphalerite – (Zn, Fe)S (4%), pyrrhotite – Fe(0.8-1)S (2%), pyrite – FeS2 (66%) and a 
small amount of galena – PbS and sulphosalts. The main gangue minerals are 
barite – BaSO4 and carbonates.  
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The main 
ore body, 

see Fig. 3.2 

Fig. 3.1 Pyhäsalmi ore deposit and tunnel network. (courtesy of Pyhäsalmi Mine Oy) 
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Fig. 3.2 The main ore body. (courtesy of Pyhäsalmi Mine Oy) 
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The ore deposit was found by accident in 1958, when a local farmer was digging a 
well for fresh water. Outokumpu Oy conducted thorough geological surveys and 
decided to open a mine in Pyhäsalmi, which eventually was started on March 1, 
1962 as an open pit operation. Five years later, in 1967, underground operations 
were started and operated jointly with open pit mining until the open pit was 
completely exhausted in 1975.  

To ensure efficient underground operations, a blind shaft called the “Olli shaft”, 
extending to a depth of 730 meters, was opened in 1985. The mine was gradually 
deepened as it was noticed that the ore body extends as a narrow band. A depth of 
one kilometre was reached in the spring of 1996. 

For a while it looked as if the mine would be completely exhausted by the year 
2000, but fortunately a new large lens shaped deep ore body was found in 
1996 [45]. In order to utilise this finding a new 1440 meter deep shaft was 
constructed and named as the “Timo shaft” after the chief geologist Timo Mäki. At 
the same time the mine was thoroughly modernised and, after three years of 
construction, a completely new mine was opened in 2001. As an anecdote, it could 
be mentioned that the world’s deepest sauna1 is located in the new mine at 1410 
meters below the ground level. 

3.2. Production 
The mine’s production between 1962 and 2007 is shown in Fig. 3.3. As it can be 
seen the production rate has steadily increased to roughly 1.4 million tons per year. 
The amount of final products achieved on a yearly basis is shown in Table 3.1.  

 
Fig. 3.3 Ore production 1962-2007. (courtesy of Pyhäsalmi Mine Oy) 

                                                      
1 The author is still waiting an invitation to go and test it. 
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All concentrates are transported via railroad at an approximate rate of 2500 tons 
per day. Copper and zinc are sold to domestic smelters. Pyrite concentrate is sold 
partly to Finnish refiners and partly abroad. 

Table 3.1 Annual amounts of different final products. 

Product Annual amount Grade 

Copper concentrate 50 000 t 29.0% Cu 

Zinc concentrate 70 000 t 54.0% Zn 

Pyrite concentrate 600 000 t 51.0% S 

Gold 260 kg  

Silver 12 000 kg  

3.3. Process Description 
This section gives a general process description, in which the process stages where 
measurements and control actions related to this work are described in detail. 
Measurement points are indicated for later reference in the text. 

As stated earlier, in its current state Pyhäsalmi mine is getting its ore from 
1050-1421 meters below ground level. This means that the ore must be pre-treated 
for transportation already in the mine and there must be an effective ore 
transportation chain from the mine to the surface. The main parts of the 
transportation chain can be seen in Fig. 3.4; first, the ore is transported with load-
haul-dump (LHD) machines (see Fig. 3.5) to ore passes or tipped directly to the 
jaw crusher for pre-treatment. Jaw crusher ensures that the largest particles are 
small enough – typically less than 50 cm in diameter – to flow smoothly along the 
rest of the ore transportation chain. 
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Fig. 3.4 Overall description of the mining process. Measurement points for the particle size 

measurements are indicated with arrows. (courtesy of Pyhäsalmi Mine Oy) 

After the crusher, there is a magnetic separator that removes almost all metallic 
objects that could cause problems for transportation and should not be mixed with 
the ore in the first place. An example of such objects is the metal rods that are used 
when reinforcing the tunnel walls and ceilings. However, this separation is not 
perfect as discussed later in Chapter 4. After separation, there is a long conveyor 
belt leading to the underground crushed ore bin which has a capacity of 2000 tons. 
From this silo the ore is hoisted to an 8000 ton ore bin that is located just below 
ground level and transported to the mill’s screening station (and to further 
processing, described later in this section). 

The measurement points for the particle size distribution analysis (see Chapter 4) 
are indicated with arrows in Fig. 3.4. As it can be seen, the first analysis point is 
located almost right after the crushing and the second just before the mill’s 
mechanical screening station. Typical time delay between these points is 1-3 days. 
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Fig. 3.5 A LHD loader with 21t capacity. (courtesy of Pyhäsalmi Mine Oy) 

3.3.1. Underground Operations 
The mining methods used in Pyhäsalmi are sublevel stoping and benching. A 
general illustration of the stoping method is displayed in Fig. 3.6. It is a mining 
method in which the ore is blasted from different levels of elevation but removed 
from one level at the bottom of the mine. In Pyhäsalmi, the stopes are 15-25 meters 
wide, 25-50 meters high and 30-40 in length. This leads to an ore capacity of 
50 000-150 000 tonnes per stope.  A typical fan distance for the blasting is 3-4 
meters. [46] 

During (and partly due) to the particle size distribution research (see Chapter 4) a 
larger fan distance was successfully tested and taken into use in Pyhäsalmi [60]. 
This gives not only cost savings in drilling and explosives, but also a way to 
control the larger end of the particle size distribution coming from the jaw crusher. 
Therefore, the results of the particle size distribution analysis can also be used in 
mining. 
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Fig. 3.6 Sublevel stoping method. (courtesy of Atlas Copco) 

3.3.2. Concentration Plant 
The basic objective of mineral processing is always the same; to separate the 
minerals into at least two products so that the valuable mineral(s) are present in the 
concentrate(s) and the invaluable particles (i.e. gangue) in the tailing(s). 
Obviously, this type of process is never perfect; for example, the locked particles 
where the valuable mineral is attached to or is inside of an invaluable particle 
should not go to either class. If these types of particles are taken into the 
concentrate, they will decrease the concentrate grade because of the invaluable 
particles that will be introduced to the concentrate flow. On the other hand, 
valuable minerals will be lost if these particles are taken into the tailings and thus 
the recovery of the valuable minerals from the ore to the concentrate will suffer. 
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This leads to grade-recovery dependency, which is an elementary concept in 
mineral processing and illustrated in Fig. 3.7 below. 

  
Fig. 3.7 An example of a typical grade-recovery curve shape.  

An improved curve is illustrated with dotted line. 

Generally, the concentration plant moves along the non-linear grade-recovery 
curve and it is the operators’ duty to run the plant as near as possible to the optimal 
point in the curve. The selection of this point is dependent on many things such as 
the quality of the fed ore, quality of the process equipment, desired production rate 
and so on. Economics have also their own effect; the market prices for specific 
minerals, shipping costs, desired grade, penalties for lower grades, etc. influence on 
whether to emphasise grade over recovery or vice versa. 

However, if the process can be improved, for example, with a more intelligent 
copper sulphate (CuSO4) controller (as will be seen later in this thesis) then the 
grade-recovery curve can be shifted to a higher level so that both measures will 
improve. This is illustrated in Fig. 3.7 with a dotted line. 

In Pyhäsalmi, the grade-recovery curve is realised with three stage grinding circuit, 
followed by three cascaded flotation circuits (Copper, Zinc and Pyrite) each 
consisting of several interconnected flotation stages (see Fig. 3.8). After flotation, 
the final product is dried and transferred by train for further processing. The main 
process stages are described in the following. 
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Fig. 3.8 Schematic diagram of the grinding and flotation process. (courtesy of Pyhäsalmi Mine Oy) 

Screening 
When the raw ore arrives at the mill it is fed to a mechanical screening station (see 
Fig. 3.9) which separates the ore into five fractions called fines, pebbles, middle 
fraction, lumps and oversized. These names will be used later in this thesis to 
describe the fraction sizes shown in Table 3.2. 

Table 3.2 Screened size fractions and their names. 

Size Class Fraction Name 

0 – 30 mm Fines 

30 – 80 mm Pebbles 

80 – 100 mm Middle fraction 

100 – 200 mm Lumps 

>200 mm Oversized (re-crushed and fed to 
fines) 

 

The separation must be done for an efficient operation of the grinding circuit. The 
screened ore is then stored in three ore bins, namely the fine ore bin, the pebble ore 
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bin and the lump ore bin. The oversized fraction is re-crushed to fines and the 
middle fraction can be stored either as lumps or pebbles. A typical operation mode 
is illustrated in Fig. 3.9, where the middle fraction is combined with the lumps. 

 
Fig. 3.9 Screening station and ore bins. (courtesy of Pyhäsalmi Mine Oy) 

During normal operation the amount of oversized particles is very small, less than 
1 ton/h, whereas the feed rate for the flotation plant is typically 160-170 tons/h. 

Grinding 
Grinding is carried out in rotating mills (see Fig. 3.10), where the ore is mixed with 
water. In the first of the three phases, the lumps and fine ore are mixed together 
(LM2 in Fig. 3.11). The larger particles receive more kinetic energy and act as 
grinding media while grinding the ore. This is called autogenous grinding (AG).  
However, for the impacts to be efficient there must be different particles sizes 
colliding with each other in correct proportions. This is why iron balls are added to 
the first stage, leading to semi autogenous grinding (SAG). 
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Fig. 3.10 Grinding mills used in Pyhäsalmi. (courtesy of Pyhäsalmi Mine Oy) 

The second grinding stage consists of three mills (PM1, PM2 and PM3 in  
Fig. 3.11). This stage is fed with the output of the first phase and additional pebble 
ore is used as grinding media. Iron balls are typically used also in this stage but, if 
the ore coming from the mine is favourable in terms of particle size distribution 
and mineralogy, the second stage can be driven in completely autogenous mode. 
This is one of the motivations for the development of the particle size distribution 
analysis system, described in Chapter 4. 

 
Fig. 3.11 Grinding circuit. (courtesy of Pyhäsalmi Mine Oy) 
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The coarsest particles are separated with hydro-cyclones and returned back to the 
second stage. Fines continue to the third stage (KM2 in Fig. 3.11, which is an 
overflow ball mill). The purpose of the last stage is to ensure that 65% of the 
ground ore is less than 74 μm in size [60]. This will ensure good product quality 

quent copper circuit in the flotation stage. 

, 
then one is dealing with direct flotation. The opposite where invaluable material is 
floated, like ink in waste paper recycling, for example, is called reverse flotation. 

for the subse

Flotation 
The grinding stage is followed by a three phase flotation circuit, where copper, zinc 
and sulphur are floated respectively. Flotation is a complex physico-chemical 
process where surface properties of the floated minerals are modified in a way that 
they will become hydrophobic and attach to the surfaces of rising air bubbles. This 
takes place in a flotation cell (see Fig. 3.12), where the minerals are mixed with 
water as well as other chemicals and air is dispersed through a rotating axle in 
order to form an evenly rising bubble flux. When the valuable mineral is floated 
and the invaluable gangue is left in the tailings, which is the more common case

 
Fig. 3.12 Main parts of a flotation cell (left) and a CAD image of a modern  

flotation cell (right). (CAD image courtesy of Outotec Minerals Oy) 

Flotation as a minerals processing method was originally patented in 1906 and the 
subject has been studied intensively ever since (see e.g. [13], [22], [47], [53], [87], 
[104]). This is mainly because flotation takes place in three phases (solids, water, 
and air) and is so complex in nature that all interactions and phenomena related to 
it are not fully understood. The following discussion gives a brief introduction to 
the very basics at the particle level. 

To get an individual mineral particle to the concentrate stream, that particular 
particle must attach itself on the surface of a rising air bubble, as mentioned earlier. 
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In order to do that the forces acting on the bubble in the pulp must be in favour of 
the attachment. The tensile forces acting between an air bubble and a particle in an 
aqueous medium, shown in Fig. 3.13, are dependent on solid-air (s/a), water-air 
(w/a) and solid-water (s/w) surface energies. 

 
Fig. 3.13 Tensile forces and contact angle between bubble and particle. (reproduced from [110]) 

t equilibrium, the following equation holds A

 ( )/ / / coss a s w w aγ γ γ θ= +  (1) 

where /s aγ , /s wγ and /w aγ  are the above mentioned surface energies and θ  is the 
contact angle between the mineral particle and the air bubble. In order to remove 
the particle from the surfac f the air be o ubble, the solid-air interface st be 

new water-air and solid-water interfaces must be formed. This is 
efine rk of adhesion

 mu
broken and 

d by wo  /s aW  [110] as 

/

d

 / /s a w aW γ /s w s aγ γ= + −  (2) 

nd when combined with (1) yields a

 ( )( )/ / 1 coss a w aW γ θ= −  (3) 

From this it can be seen that as the contact angle increases also the force that is 
required to break the bond is increased. Consequently, the contact angle can be 
used as a measure of hydrophobicity. The term aerophilic is also often used in this 
context, meaning that hydrophobic (or aerophilic) particles favour air over water, 
which in turn leads to a stronger bond and to a higher contact angle. [110] 

The hydrophobicity of the floated particles is controlled by flotation reagents. 
Frothers are used to produce stable froth. Pine oil is used in Pyhäsalmi as a frother. 
Collectors are used to selectively render the desired particles hydrophobic and thus 
cause them to attach to the rising bubbles. This is achieved by adsorbing to the 
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surface of the particle and causing hydrophobicity. In Pyhäsalmi, Sodium Isobutyl 
Xanthate (NaIBX) is used as a collector. However, Xanthate molecules do not 
naturally attach themselves to the surface of the zinc mineral particles. This is why 
the zinc particles are first treated with copper sulphate (CuSO4), which is used as 
an activator. The purpose is to get the particles coated with copper ions, which can 
be collected with Xanthate. The final group of flotation reagents are regulators 
which are used to control the flotation process. They can be used, for example, to 
depress unwanted particles from attaching to the surfaces of the air bubbles. In 
Pyhäsalmi, Calcium hydroxide (CaOH) is used in this ma  the pH of 

ould note that a common notation 

 in this thesis. The tailings are collected into one flow and 
together they form a feed flow for the following zinc circuit (ZnV near the right 
edge of the image). 

nner to control
the pulp. [40], [110] 

Copper, Zinc and Pyrite Circuits 
Snapshots from the mine’s automation system presenting the copper, zinc and 
pyrite flotation circuits are shown in Fig. 3.14, Fig. 3.15 and Fig. 3.16, 
respectively. Copper and pyrite circuits are briefly introduced and a more thorough 
description of the zinc circuit is given because most of the work related to flotation 
was carried out in the zinc circuit. The reader sh
in the images is that concentrates are leaving downwards (often from a tip of a 
triangular shape) and tailings to the left or right. 

The copper circuit (Fig. 3.14) consists of conventional rougher (CuEV) and 
scavenger (CuRV) banks that are followed by several cleaning stages, resulting in 
a final copper product extracted from final cleaner cell (VK39, indicated with an 
arrow). The VK39 is equipped with a camera that is used for closed loop control as 
will be shown later

 
Fig. 3.14 Copper flotation circuit. Camera location for the final copper  

product is marked with an arrow. (courtesy of Pyhäsalmi Mine Oy) 
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The zinc circuit consists of the following stages: roughing, scavenging, mid- 
roughing, mid-scavenging, re-grinding and cleaning, as indicated in Fig. 3.15. The 
purpose of the rougher bank (four cells) is to recover as much zinc as possible, 
meaning that recovery is preferred over grade. The concentrate from the first two 
cells is fed directly to the cleaning stage (i.e. from A to C) and the remaining two 
cells are used for scavenging, where the recovery of the whole circuit is 
maximized. 

 
Fig. 3.15 Zinc flotation circuit. Camera location of the single cell analysis  

point is marked with an arrow. (courtesy of Pyhäsalmi Mine Oy) 

The mid-roughing and mid-scavenging circuits are a part of a re-grinding loop 
where the material flow is classified into coarse and fine fractions with 
hydrocyclones and the resulting coarse fraction is re-ground to a smaller particle 
size. Feed flow for the cleaning leaves from the first two cells of the mid-roughing 
circuit (i.e. from B to C).  

In the cleaning stage the grade is emphasized over recovery. As shown in Fig. 3.15, 
there are two cells producing the final product (ZnR). The tailings of those cells are 
circulated back to the previous cells and the tailings of the remaining cells are 
returned to the classification stage. 

The tailings of the zinc circuit (D) are routed to the following pyrite circuit 
(Fig. 3.16), which is included here only to have a complete picture of the flotation 
process. The work presented in this thesis does not include research on the pyrite 
circuit. 
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Fig. 3.16 Pyrite flotation circuit. (courtesy of Pyhäsalmi Mine Oy) 

Dewatering 
After flotation, all concentrates are dried to a 5-7% moisture content. For all 
concentrates the dewatering procedure starts by thickening, where the solid 
material settles to bottom (see Fig. 3.8). Most of the water is removed in this phase. 
After this, separate methods are used for the three concentrates. Copper concentrate 
is dried by using ceramic filters (see Fig. 3.17), which are based on under 
pressurized micro porous ceramic discs and capillary action. The discs are slowly 
rotated in the concentrate slurry, leaving a relatively dry concentrate on the surface 
of the disks from where it is finally scraped off as a copper concentrate. 

 
Fig. 3.17 Ceramic filters. (courtesy of Pyhäsalmi Mine Oy) 
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In addition to ceramic filters, a press filter is used to remove water from the pyrite 
concentrate. The press filter removes water by applying a large compressing force 
and a compressed air flow to a 10 ton concentrate batch at a time. The total 
capacity of the filter is 50 tons/h. 

The zinc concentrate is dried by using a similar press filter. 

Tailings Disposal 
Since the litospherical forces acting on the earth’s crust in Pyhäsalmi are roughly 
twice as high as the pressure caused by 1400 meters of rock from above, all 
openings in the mine must be quickly supported or backfilled. Therefore, the 
coarser fraction of the flotation tailings (see Fig. 3.8) is transported back to the 
mine and used for filling. The finer part is pumped in sequence into three settling 
ponds with a total area of 110 hectares, where the solids are settled into the bottom 
and the remaining clarified and the neutralized effluent can be released into Lake 
Pyhäjärvi [46]. 
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4. 
Particle Size 

Distribution Analysis 
This chapter describes the shadow based particle size analysis system and the 
evolution to its current state, where the measurement is based on commercial 3D 
laser scanner and a belt weigher. The size range considered in this thesis covers 
particle sizes that are typically present on moving conveyor belts in the mining, 
mineral and metal industry (MMMI), say 1 mm to 500 mm in diameter. Thus, the 
title must not be confused with the particle size analysis and analyzers covering 
flotation streams (like the Outotec PSI 500™ analyzer [56], for example). The text 
is based on publications [P2] and [P7]. The additional neural network validation 
reported in Section 4.2.5 was carried out by M. Larinkari. 

4.1. Motivation & Initial Considerations 
Particle size distribution is important information in the MMMI. However, it is 
especially important in the context of autogenous- or semi autogenous grinding 
processes, because the crushed ore itself is used as a grinding media (see e.g. [30] 
and [71]). Different size classes must be available and must be fed to grinding mills 
in correct proportions in order to maintain effective autogenous grinding 
performance. If this is not the case, additional grinding media must be added or 
decreased performance will lead to substantial economical losses. In Pyhäsalmi, 
differently sized iron balls are used as additional grinding media. 

As explained in Subsection 3.3.2, the secondary grinding circuit in Pyhäsalmi can 
be run in completely autogenous fashion, provided that the particle size distribution 
coming from the mine is favourable. This would lead to savings in iron ball 
consumption. In fact, the grinding experts in Pyhäsalmi have estimated that some 
20% savings could be achieved from the 1 000 000 Euros per annum used for iron 
balls if there would be correct size classes in the silos at all times. 

In order to be able to know, and possibly influence, the size distribution that will be 
accumulated into the fine ore, pebble ore and lump ore silos after the screening 
station, one would need an indication of the size distribution that is coming from 
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the mine. Since the ore transportation chain from the mine to the surface contains 
intermediate silos with a total capacity of around 10 000 tons, and since the 
average feed rate to the concentrator plant is close to 160 ton/h, the delay caused by 
the ore transportation system varies in the range of 1-3 days, depending on the silo 
levels and the utilization rate of the hoist. Thus, the best possible place to make 
size distribution measurements would be right after the first crushing stage that is 
located in the mine, since it is the place where the size distribution is formed. If this 
distribution would be known, it would give an indication of the future changes in 
the size distribution at the grinding station some 1-3 days in advance. With this 
information the silo levels could be predicted and, if needed, possible corrective 
actions made in advance. The corrective actions were initially supposed to be made 
by controlling the jaw distance of the crusher, but during the research it was noted 
that the fan distance used in blasting had a significant effect on the size 
distribution, as reported by Larinkari [60]. Therefore, the control should be based 
on a combination of the fan distance and the jaw setting, meaning that the new 
information could be utilized also in mine planning. 

For these reasons Pyhäsalmi Mine Oy made an initiative for the development of a 
new instrument that would be capable of measuring the size distribution of ore 
coming from the primary crusher. 

4.1.1. Considered approaches 
Based on the initial studies regarding the crusher and the mine in general, it was 
clear that the new measurement system would have to endure harsh conditions 
including dust, moisture, vibrations, and shocks caused by blasting. This, combined 
with the importance of imaging in machine vision applications, made it clear that 
the system would have to be especially robust against external variations. 

At first, a segmentation based method was considered either from an image taken 
of the conveyor belt (location shown in Fig. 3.4) or of the falling ore at the end of 
the belt (see right part of Fig. 4.1). Segmentation is a method which divides an 
image into several regions of interest based on the problem at hand. In this case 
relevant regions would be individual rock particles. However, as Gonzalez and 
Woods [23] state: “Segmentation of nontrivial images is one of the most difficult 
tasks in image processing. Segmentation accuracy determines the eventual success 
or failure of computerized analysis procedures. For this reason, considerable care 
should be taken to improve the probability of rugged segmentation. In some 
situations, such as industrial inspection applications, at least some measure of 
control over the environment is possible at all times”. This implies that 
segmentation in itself is an excellent method to accomplish certain image analysis 
tasks, but it is vulnerable to undesired variation in the source data. In practice, this 
means that the imaging conditions must be kept constant, which in this case would 
be difficult because of dusting and lamp aging, for example. 
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Fig. 4.1 The two approaches considered; shadow lengths (left)  

and segmentation from falling ore (right). 

When considering these issues, another novel idea was proposed by 
Hyötyniemi [36]. It was based on a simple idea that, if illuminated with a single 
light source at a relatively shallow angle, the larger particles will throw longer 
shadows than the smaller particles, as illustrated in the left part of the Fig. 4.1. And 
since there would be large amounts of image data available, a calibration model 
could be taught to grasp the particle size information from this statistical data. The 
best thing in this approach was robustness to external conditions. This was because 
the only thing needed was information from each location (i.e. pixel) of the image 
stating whether that location had shadow in it or something else. This information 
could be obtained by a simple thresholding operation as shown below. 
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where I is a two dimensional greyscale image and K is the thresholding value. 
RN  and CN  are number rows and columns in the image, respectively. Since there 

are clear intensity changes between dark shadows and other illuminated areas, as 
can be seen in the left part of the Fig. 4.1, it is easy to find a fixed value for K so 
that it will be valid in all operating conditions. 

4.2. Shadow Based Analysis 
Since the shadow based approach seemed so well suited and promising for the 
problem at hand, it was decided that such a system would be constructed and tested 
in Pyhäsalmi mine. Installation was decided to reside on top of the HKU2 conveyor 
belt located just after the primary crusher, as indicated in Fig. 3.4. However, the 
shadow based approach was first tested with a portable halogen lamp and a digital 
camera. The digital images were analyzed by thresholding them into binary images 
and by calculating their shadow length histograms (in a similar manner as to be 
explained later in Subsection 4.2.3). The histograms were then analyzed against the 
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captured images to gain a subjective impression of whether or not the approach 
would be feasible. 

4.2.1. Selected System Setup 
Once the feasibility study confirmed that there exists a strong enough correlation 
between the shadow lengths and the particle size distribution, a fixed system setup 
was designed and implemented in the mine. The system consists of a monochrome 
camera installed on top of a conveyor belt and a light source illuminating the ore 
bed at a shallow angle from the side, as shown in Fig. 4.2. A halogen lamp 
(1000W) was selected as a light source, and imaging was carried out with a 
Sony XC-55 monochrome CCD camera that supports progressive scanning.  

 
Fig. 4.2 Original system setup for the shadow based analysis. 

Progressive scanning is an imaging method, where the CCD cell of the camera is 
read in one sequence as opposed to conventional interlaced scanning where odd 
lines and then even lines of each frame are read consecutively. Progressive 
scanning ensures sharp images when imaging moving objects, as in this case. Even 
though the speed of the belt is only 1 m/s, it can still introduce an error of 
2-3 pixels with interlaced cameras. The shutter time of 1/2000 seconds was used, 
which means that the belt moved 0.5 mm while integrating an image to the CCD 
cell. The intensity fluctuations of the 50 Hz alternating current driving the halogen 
lamp caused intensity variations in the captured images depending on the phase of 
the sine wave, in which the imaging happened to take place. This could have been 
compensated for by synchronizing image capture with the phase changes of the 
alternating current or by calculating an individual thresholding value for every 
captured image. However, synchronization was thought to be too complex 
(although it eventually had to be done, as shown later) and individual thresholding 
was also a feature that was not desired. Therefore, stable illumination was realized 
with an adjustable direct current converter. 
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4.2.2. Image Analysis 
The images were captured in a CCIR-format, which is a greyscale image standard 
similar to the PAL standard that is commonly used for colour images. The image 
grabbing was carried out with a Matrox Meteor II Multichannel™ grabber card that 
was attached to a standard desktop PC running Windows NT 4.0™ operating 
system. This resulted in 640x480 sized images with a colour depth of 8 bits (i.e. 
256 different greyscale values for each pixel). An example of such an image is 
shown in Fig. 4.3 below. 

As can be seen, the image is fairly sharp and there is a good contrast between the 
shadows and other elements in the image. Furthermore, because of the stabilized 
illumination there were no fluctuations in intensity between consecutive images. 
This was a good starting point for further image analysis. 

 
Fig. 4.3 Grabbed shadow image. 

The next step was to emphasize the shadows, which was carried out by 
thresholding the image (see left part of Fig. 4.4). Although the intensity variations 
were dealt with, there were still the effects of dusting and lamp aging to be taken 
into consideration in order to achieve reliable long term operation. These two 
contribute to a slow drift in image intensity and, if a fixed thresholding value 
would have been used, also to diminished robustness. To compensate for this, a 
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threshold adaptation method was devised. Adaptation is based on the fact that, due 
to the cross sectional shape of the conveyor belt (see e.g. Fig. 4.18), the upper and 
lower parts of the image are always free of ore particles and can be used as a 
reference area for illumination intensity. Thus, small bands (see Fig. 4.4) were 
selected as a calibration area  and the thresholding value  was selected so that 
it fulfilled the equation 
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where RN  and CN  are number of rows and columns, respectively, and the function 

bf  is defined as in (4). Since the illumination in the images is coming from the 
right, this leads to black pixels emerging from the left, as can be seen in the upper 
left part in Fig. 4.4. 

 
Fig. 4.4 Thresholded (left) and median filtered (right) images. Threshold adaptation  

areas (light grey) are shown in the left image, where the emerging black pixels are circled. 

In order to get rid of noise in the image, median filtering was applied three times in 
a row with a mask size of 3x3. Median filtering for a binary image can be done by 
running the centre point of the mask over every pixel in the image and calculating 
the sum of pixels under the mask. If the sum is greater than 4, the centre pixel in 
the filtered image will have a value of 1, otherwise it will have the value 0 [23]. A 
nice feature of the median filtering algorithm is that it converges to a final image. 
In this case, it was simply a question of selecting the number of rounds needed for 
satisfactory results (here, three was found sufficient). A bigger mask would “clean 
out” larger areas, but again, a mask of size 3x3 was found to be best for this 
application. 

A final step, before calculation of the shadow histogram, was to detect the edges of 
the ore bed. This was carried out by a heuristic algorithm that is illustrated in 
Fig. 4.5. 
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Fig. 4.5 Ore detection areas (light grey). Detected ore borders are indicated with the blue lines. 

Consider the detection of the upper boundary (the lower is similar). The algorithm 
starts to slide a horizontal line (blue) from the top dividing the image into two 
parts. The upper part is further divided by a vertical line (dashed green) in order to 
get rid of the previously mentioned emerging black areas caused by the threshold 
adaptation algorithm. Now, the emphasized (light grey) area is what is left and this 
area grows as the blue line moves down. The area of shadows (i.e. black pixels) is 
calculated in a similar fashion as in (5) and once it reaches 4%, the edge of the ore 
bed is found. 

4.2.3. Shadow Histogram Calculations 
The shadow lengths of the resulting manipulated image are calculated and stored to 
a vector  of length 0S =v CN  by traversing each horizontal line and searching for 
continuous black pixels. Once a shadow of length  is found, its length is 
compensated for by 
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where  is the distance between the lamp and the upper edge of the 
imaging area, 

1 122 cmL =

2L 110 cm=  is the length of the imaging area and Rx  is the place of 
the rock in the image, as illustrated in Fig. 4.6 below.  

 
Fig. 4.6 An illustration of the shadow length distortion effect. 

The compensated length  is then rounded to the nearest integer and stored to the 
shadow length distribution by 

Cl

 ( ) ( ), 1S new C S Cl l=v v +  (7) 

4.2.4. Data Collection & Modelling 
In order to get a mapping between the shadow distribution and real life particle size 
proportions, a calibration model was needed. And before such a model could be 
estimated, a data set describing these dependencies would have to be available. 
There was no easy way to get this type of data since – at least in Pyhäsalmi – it is 
quite difficult to get a side stream of the material flow for analysis. And 
furthermore, even if such an ore stream would be available, the volume and 
tonnage would quickly become very large, and there would have to be 
synchronized image data describing its appearance on the conveyor belt. This is 
why the calibration data had to be collected manually. 

A separate stand was built next to the conveyor belt and data points were collected 
by stopping the conveyor belt, storing a shadow image, shovelling the ore under 
the imaged area into buckets, weighing the sample and screening it to acquire size 
class proportions (Fig. 4.7). 
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Two different data sets were collected in this manner. The first data set consisted of 
100 samples that were obtained by running the crusher jaws in five different 
settings and collecting 20 samples with each setting. The average sample size was 
150 kg, resulting in 15 tons of processed ore. The second data set, obtained at a 
later stage and used for neural network modelling, contained another 150 samples. 

 
Fig. 4.7 A “data mining” campaign in the spring of 2004. 

After the data was acquired, two different modelling approaches were tested, 
namely Partial Least Squares (PLS) and a neural network. The first intuition was 
that PLS would be appropriate modelling technique for this application, but in 
order to test this hypothesis, a neural network model was obtained and the results 
were compared to those obtained by the PLS method. In the following sections, 
these two approaches are discussed. 

Partial Least Squares Model 
Partial Least Squares (PLS) regression was first introduced by the Swedish 
statistician Herman Wold. It is a linear method that attempts to find factors that 
capture variance in the predictor variables  and at the same time achieve 
correlation with the predicted variables  Typically, the PLS model projects the 

 data into lower dimensional 

X
.Y

X 1Z  oriented subspace in a similar manner as in 
Principal Component Analysis (PCA) method, that will be used later in this thesis. 
However, instead of maximizing the variance with respect to the predictor 
variables , the internal structure of the Y  block is also searched for X [37].  

The PCA and PLS analysis in this thesis was carried out by using the MATLAB™ 
software and an additional PLS toolbox provided by Eigenvector Research Inc. For 
the PLS part, a commonly used SIMPLS algorithm, developed by Sijmen de Jong 
[15] was used. However, even though the algorithm is superior in performance, it is 
highly non-intuitive. Thus, the introduction to the PLS method is given through a 
description of the NIPALS (Non-Iterative Partial Least Squares) algorithm that 
gives exactly the same results in the case of a univariate  block (i.e. y-side is a 
column vector y ) and slightly different results for the general multivariate case. 
The introduction is adopted from 

Y

[113]. For a more thorough review of the subject, 
the reader is referred to [19], [43], [66], [69], [114], [115] and [116]. 
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Since both PCA and PLS are used in this thesis, the introduction is started with 
PCA and then extended to cover PLS. 

In the PCA method, the data matrix  (with m rows and n columns, containing the 
measurements and the variables, respectively) is decomposed into sum of the outer 
product of vectors (row vector of m elements) and (row vector of n elements), 
plus a residual matrix E  as follows 

X

it ip

 1 1 2 2 3 3
T T T T

k k= + + + + +X t p t p t p t p E…  (8) 

where k corresponds to the dimension of the reduced subspace, or the number of 
latent variables and { }min ,k m≤ n . The  vectors contain information on how the 
samples relate to each other and are known as scores. The  vectors, on the other 
hand, contain information on how the variables relate to each other and they are 
called loadings. Loadings are eigenvectors of the covariance matrix of , i.e. for 
each  
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where iλ  is the eigenvalue of ( )cov X  associated with the eigenvector . Note 
that  is assumed to be adjusted to zero mean and to unit variance, i.e. the mean 
value of each column is subtracted and the variance set to one by dividing each 
column by its standard deviation. 
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The  vectors form an orthogonal set, meaning that it
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Furthermore, for any ,  pair it ip

 ii =Xp t  (12) 

saying that the score vector  is a linear combination of the original  data 
defined by the loadings vector . This means that the score vectors are a 
projection of  into a lower dimensional 

it X

ip
X 1Z  oriented subspace spanned by the 

loading vector . ip

The  pairs are arranged in descending order of 1 1,t p iλ , meaning that the first pair 
captures the greatest amount of variation present in the data, the second pair 
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captures the second largest amount of variation in an orthogonal direction with 
respect to  and so on. Since variance in the data can be considered as 
information, this method effectively captures the most relevant information present 
in the data while reducing its dimension. 

1 1,t p

In the PLS case, similar scores [ ]1 2, , , k=T t t t"  and loadings [ ]1 2, , , k=P p p p"
k

 
are calculated, as well as an additional set of weights (W n×  matrix) that are 
required to maintain orthogonal scores. However, the T  and  do not have 
exactly the same meaning as in the PCA case. Instead, they can be thought of as 
PCA scores and loadings that have been rotated to be more relevant for predicting 

 (i.e. for obtaining the estimate ). 

P

Y Ŷ

The NIPALS algorithm works also for multivariate  and, therefore, the scores  
and the loadings  are also calculated for the  block. In addition, a vector of 
inner relationship coefficients is calculated. This relates the  and  scores. 

Y U
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b T U

The algorithm is started by selecting one column of , usually the one with the 
highest variance, as the starting estimate . Then for the  side, the weight  
and score  are updated: 
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Similarly for the side: Y
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These values are updated in sequence by using  from 1u (16) in the next round of 
(13). Once  in 1t (14) converges to a constant value (within a rounding error), 
the loadings are calculated and the scores and weights are rescaled: X

 1
1

1 1

T

T
=

X tp
t t

 (17) 

 1
1,

1
new =

pp
p

 (18) 

 1, 1 1new =t t p  (19) 

 1, 1 1new =w w p  (20) 

 43 



Then the regression coefficient for the inner relation is calculated as 

 1 1
1

1 1

T

Tb =
u t
t t

 (21) 

Now, the scores and loadings are calculated for the first factor, commonly called a 
latent variable (LV). The residuals for  and  blocks are calculated as X Y

  (22) 1 1
T= −E X t p1

1  (23) 1 1 1
Tb= −F Y t q

For the following latent variables, the  and  are used in place of  and Y , 
respectively, the subscripts are incremented by one and the entire procedure is 
restarted from 

1E 1F X

(13). 

The final goal is to find a regression matrix RB containing the weights used for the 
linear combination of  in order to produce an estimate of : X Y

 ˆ
R=Y XB  (24) 

It can be shown [113] that, based on the calculations above, RB can be calculated 
as 

 ( ) ( )1 1T T
R

− −
=B W P W T T T YT  (25) 

For the practical implementation, the number of latent variables has to be fixed 
before the final model is obtained. Therefore, the selection was carried out with the 
leave-one-out cross validation method. This means that a separate PLS model is 
constructed for every single data point so that the data point in question is not 
included in the model, being left for prediction error calculations. If the prediction 
errors are then summed for each output channel the cumulative predictive residual 
error sum of squares (CUMPRESS) can be obtained.  

To implement the particle size estimation, the shadow length distribution  was 
used as X  and the hand-screened samples as  The CUMPRESS values were 
calculated for the first three latent variables and the results are shown in 

Sv
.Y

Fig. 4.8. 
Based on this, the number of latent variables was fixed to two, as it produced the 
smallest error. 

Once the number of LVs was fixed, the  side of the analysis was optimized by 
testing several parameters of the image analysis part. At the same time, the 
dimension of  was reduced by grouping shadow lengths into classes. The 
number of these classes and their border values were obtained by manually 
selecting a different number of classes and a starting point for the borders, and then 
iterating around those points in order to get the best fit. The error on the  side 
was weighted by 

X

X

Y
[ ]3,1,1,2y =w  where the importance between the classes (from 
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the smallest to the largest, smallest is on the left) is expressed. This information 
was obtained from the mine personnel. 

 
Fig. 4.8 Cumulative predictive residual error sum of squares. 

The fitting resulted in the following four shadow length classes: 0-17, 18-31, 32-56 
and 57+ pixels. The results for the finest (and most important) class are shown in 
Fig. 4.9, where it can be seen that a relatively good correlation exists; the 
correlation coefficient R  for the fitting being 0.89 (equivalent R 2 value is 0.79, 
where R 2 is the coefficient of determination). The other classes could not be 
estimated so accurately with the selected method; the correlation for pebbles, 
middle fraction and lumps were 0.54, 0.53 and 0.61, respectively [60]. Therefore, it 
was clear that the results achieved for the fine ore were acceptable, but further 
improvements were needed for the estimation of the other fractions. 
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Fig. 4.9 Validation of fines. 

4.2.5. Improvements & Neural Network Validation 
Even if the shadow based analysis had worked perfectly, it would only have 
predicted the relative proportions of different size classes present on a conveyor 
belt. However, as the total mass flow varies, it would not be possible to turn this 
information into absolute values (e.g. into tons/h) without the total mass flow 
information. This was part of the motivation for purchase of a belt weigher for the 
HKU2 belt.  

Another issue was that the mass flow information could be incorporated into the 
calibration model, and thus the results could be expected to be more accurate. 
Consequently, a belt weigher was purchased by Pyhäsalmi Mine Oy and installed 
near (11 m before) the analysis point of the previous system. This made it possible 
to make new models; the only cost, besides the cost of the belt weigher, was that 
another 150 samples had to be shovelled in order to get the mass data included in 
the samples. Also, since the previous analysis had shown that the middle fraction 
caused trouble for the analysis due to its small size range (and since it was 
combined with pebbles in any case), it was decided that the middle fraction should 
be combined with pebbles also in the analysis. 

A new PLS model was made with 100 data points as the training data, while the 
remaining 50 points were saved for validation. The results obtained with the 
improved version are shown in Fig. 4.10; the correlation coefficients are shown in 
graph titles. As can be observed, the model is much more accurate, especially with 
fine ore and lumps. 
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Fig. 4.10 Improved PLS model results. 

Finally, a back-propagation neural network [33] was tested in order to see whether 
or not the modelling method had a significant effect on the results. As shown in 
Fig. 4.11, the neural network approach gave slightly better but similar results.  

Since the non-linear neural network approach did not give significantly better 
results, it was a natural choice to go with the simpler and robust linear PLS version, 
especially when the number of data points reserved for training was relatively low. 

Further details of the improved PLS model and the neural network validation are 
given in [61]. 
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Fig. 4.11 Comparison with a neural network. 

4.2.6. Software Components 
As mentioned earlier, the algorithms were realized with MATLAB™ and there was 
a need for dedicated software that would tie the image grabbing, belt weigher 
communication, analysis and distribution of results together. 

At first, there was a separate MATLAB™ installation communicating with another 
program via an ActiveX® connection mechanism. At a later stage, the architecture 
shown in Fig. 4.12 was adopted from the results obtained while developing the new 
FrothEye-software for flotation analysis (see Subsection 5.3.2). The idea behind 
this architecture is to design the software components to be as modular as possible 
in order to isolate the development of the algorithms. This makes it possible to 
code the supporting parts of the software separately (hopefully only once) and the 
iterative work of algorithm development can be isolated into a calculation kernel. 
Furthermore, the kernel is implemented as a COM (Component Object Model) 
object [6] that can be generated automatically with the tools of the MATLAB™ 
environment. This enables rapid prototyping, i.e., extremely flexible and powerful 
development of the analysis routines, since all new ideas can be coded and tested 
with MATLAB™. After testing, the final version can easily be converted into a 
COM object and uploaded to the analysing computer. 
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Fig. 4.12 An overview of the software architecture. 

The individual components are introduced in the following. 

• User Interface (UI): Provides run time access to the analysis. Enables the 
user to modify the laser scanner and belt weigher settings and provides 
feedback from the analysis kernel. Provides a connection to an external 
database. 

• Reader: Provides data for analysis. Returns collected data to the data 
buffer of the user interface component. 

• Wrapper / Kernel: All the calculation routines are implemented in the 
Kernel component, which is automatically generated from MATLAB™ 
code. Since the MATLAB™ compiler only generates in-process 
components (i.e. DLL-files) the Kernel is encapsulated into another COM-
EXE component (Wrapper) which provides the necessary interface for the 
UI component. 

• TCP-Server: Keeps a local database containing the numerical results as 
well as images. The server is designed to be connected with TCP-Client(s) 
(see Fig. 4.13). The client(s) can connect through a local area network 
(personnel working at the plant) or via Internet (remote monitoring). 

A dedicated protocol was developed by the author to serve the communication 
between the TCP-Server component and the TCP-Client program(s). The protocol 
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enables a reliable transfer of compressed image and control data through a single 
TCP/IP socket (socket is an end-point in the IP networking protocol). The client 
software shown in Fig. 4.13 was designed to be the main tool in utilizing the results 
of the particle size analysis on site and remotely by the researchers. It displays the 
calculation results for the particle size analysis, as well as silo levels after the 
screening station. The user can view history trends of desired length and see visual 
appearance of the conveyor belt. The database contains one minute data for the last 
30 days. There is also a password protected mechanism for the power users to set 
the target levels for different particle size classes. 

 
Fig. 4.13 TCP-Client Software. The pie-charts display different particle size proportions  

for fines (red), pebbles (blue), middle fraction (violet) and lumps (green). 

4.2.7. Reasons for the Shift to 3D Analysis 
Although the improved PLS model gave satisfactory results, there were problems 
with the life span of the halogen lamps used in the analysis. Different lamp types 
were tested, but they lasted typically only 4-5 weeks of continuous operation. Since 
the analysis point was 1410 meters below ground level in a relatively isolated 
place, this was not acceptable. 

After searching for a durable high power halogen lamp without success, a decision 
was made to switch to long lasting metal halide lamps, which last over a year of 
continuous operation. The drawback was that the metal halide lamps cannot be run 
with DC (Direct Current) and an electronic circuit capable of detecting the phase of 
the AC (Alternating Current) sine wave had to be designed to compensate for that. 
Furthermore, for external triggering to work with the selected camera, an external 
trigger signal with a desired shutter time, as well as horizontal (HD) and vertical 
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(VD) drive signals needed to be generated for the camera (see Fig. 4.14). All this 
was accomplished with a phase detection circuitry that was combined with a 
programmable microcontroller, achieving stable image intensity despite the AC 
based illumination. 

 
Fig. 4.14 External triggering. [101] 

However, even if this problem was solved, the intensity pattern of the new metal 
halide lamp was not very even. This caused thresholding problems that needed to 
be solved with a local thresholding approach introduced by Larinkari [60]. 
Furthermore, since the shadow based approach required illumination from a 
shallow angle, it meant that the illuminating lamp had to be quite near the belt. 

Although there is a magnetic separator preceding the analysis point, which is 
supposed to remove any unwanted metallic objects such as wire cable stubs that are 
used in rock bolting, it was often the case that such cables hit the lamp window and 
tilted the illuminating lamp. Again, this probably could have been solved, but once 
it was noticed that the German manufacturing company Sick AG was bringing a 
reasonably priced 3D imaging scanner to the market, and since they offered to test 
their upcoming product in advance, a decision was made to investigate this 
possibility. 

The scanner approach seemed to have many benefits; the 3D scanner would 
measure real life physical dimensions directly and, more importantly, it would 
provide accurate information on the height of the ore bed that is very difficult to 
estimate from a traditional greyscale image, although there are few examples in the 
literature where it has been done (see e.g. [59] and [78]). Furthermore, the scanner 
is housed in a protective chamber and can operate for long periods of time without 
maintenance. 

This was known in advance since the mine used another (similar type, same brand) 
scanner to measure the approaching edge of the ore bed on a weighing belt feeder 
that is used to measure 21 ton batches of ore for the hoist. Thus, it seemed that the 
3D scanner technology would provide better data with the same, or even better, 
level of robustness when compared to the shadow based technique. 
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4.3. 3D Height Measurement Based Analysis 
The improved particle size distribution analysis is currently carried out with an 
imaging laser scanner (Sick LMS-400, see [96]) that is located on the same cross-
directional axis as the belt weigher (Milltronics Accumass BW100, see [97]), as 
indicated in Fig. 4.15. The belt weigher comes with a speed sensor so that the 
device is able to calculate (and output) the mass flow information in tons per hour. 
An additional speed sensor was also installed to obtain speed information for the 
segmentation analysis. This was needed to get the dimensional information in the 
direction of the belt; the other two directions were covered by the scanner. These 
two are routed as standard 4-20 mA signals to an external A/D-board of the 
analysing computer. The laser scanner is connected with a single cross-cable to an 
additional network interface card (NIC) of the computer, which in turn is 
connected to the mill’s network. Reliable operation is further ensured with an 
uninterruptible power supply (UPS) and external watch-dog circuitry monitoring 
the system. Monitoring is carried out via the serial port of the analysing computer; 
if the data terminal ready (DTR) signal is not updated (with a dedicated piece of 
software) for a pre-determined period of time, the circuitry will force a boot-up 
procedure for the computer. 

 
Fig. 4.15 Laser scanner based measurement setup. 

4.3.1. The New Data 
The LMS-400 is based on a single laser point (wavelength 650 nmλ = ) with an 
output power of 7.5 mW. The laser point is diverted by a rotating polygon-shaped 
mirror to cover a maximum angle of 70°. The distance measurement can be done in 
the range of 70 cm – 3 m, and is based on measurement of the phase shift caused 
by the propagation time differences of the laser light [96]. The standard deviation 
of the distance measurement depends on the physical distance and on the measured 
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material. For this application, the standard deviation of the distance measurement 
was approximately 6 mm, which was acceptable, although slightly better results 
could be expected with a more accurate instrument. Such equipment does exist, but 
comes at a considerably higher price. 

The scanning rate is set to 360 Hz, meaning that the device produces 360 cross-
sectional lines  per second, each line consisting of 240 points. Since the belt 
speed is 1 m/s, this means that successive cross-sections are 3 mm apart. However, 
the  vectors are measured by linearly increasing the measurement angle, which 
leads to non-uniform spacing between the samples. This distortion is rectified by a 
simple geometry correction combined with the nearest neighbour interpolation, 
yielding to a uniformly distributed grid with 3x3 mm spacing. 

cv

cv

The moving ore bed is imaged in 3 m batches and topographic images are produced 
for the segmentation stage. 

4.3.2. Segmentation 
The segmentation method is based on the well-known watershed segmentation 
routine (see e.g. [111]). It starts from local minima in a 3D landscape and “fills up” 
the areas, commonly called catching basins, until common borders are reached. It 
is typically used for greyscale images and has been applied also for rock 
segmentation, as shown by Farfán et al. [18], but it can just as well be used for a 
true 3D landscape, as is the case here. A common modification of the algorithm is 
called the marker controlled watershed algorithm, where the starting points can be 
freely defined.  

The segmentation routine in this application uses both of these versions for 
differently pre-processed data and then combines the results. The idea is to have 
the first routine separate the particle clusters from the background and the other to 
separate the individual particles. By dividing these two tasks into separate threads, 
the need for compromises in algorithm design is avoided. The overall segmentation 
process is outlined in Fig. 4.16, and explained in the following. 

In order to reduce measurement noise, the segmentation process is started with an 
analogous median filtering procedure as explained in Subsection 4.2.2. The 
missing measurements are replaced with the mean of the neighbouring 
measurements. 
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Fig. 4.16 The segmentation algorithm. 

The left branch in Fig. 4.16 shows the segmentation routine that separates the 
particle clusters from the background. It is based on a marker controlled watershed 
algorithm that uses a gradient image f  calculated from the 3D profile by using a 
standard 3x3 Prewitt operator [100], where the gradient images xf  are estimated 
by convolving eight different directional kernels { }1 2 8, , ,h h h…  with the original 
image g: 
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where RN  and CN  are the number of rows and columns in the image, respectively, 
and by selecting the convolution result of the greatest magnitude as the direction of 
the gradient. The first three directional kernels are given as an example: 

  (27) 1 2 3

1 1 1 0 1 1 1 0 1
0 0 0 1 0 1 1 0 1
1 1 1 1 1 0 1 0 1

h h h
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The rest can be obtained by simple rotation. 

The markers for the particles are calculated by similarly convolving a Gaussian 
filter ( ),G i j , given by 

 ( )
2 2

22,
i j

G i j e σ
+

−
=  (28) 

where  and  are the image co-ordinates of the kernel and i j σ  is the standard 
deviation. This leads to a smoothed image from which the second derivative is 
calculated with the Laplace operator , defined by Δ

 ( ) ( ) ( )2 2

2

, ,
, 2

f i j f i j
f i j

i j
∂ ∂

Δ = +
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 (29) 

And finally, the Laplacian of Gaussian (LoG) is calculated as follows 

 ( ) ( )LoG , , ,G i j g i jσ= Δ ⎡ ∗ ⎤⎣ ⎦  (30) 

From this, large continuous areas with negative values are searched. These 
correspond to convex shapes in the rock mass. 

The markers for the background are set to mark the flat areas in the 3D profile. 
These are extracted by top hat transformation, which is a simple tool for extracting 
objects from an uneven or slowly changing background [100].  

The right branch in Fig. 4.16 shows the segmentation routine for individual particle 
segmentation, where the 3D profile g and the gradient image f  are scaled to the 
interval [0,1] and summed together. The resulting image is then low pass filtered 
with a 12x12 mean filter (by using a similar procedure as with the median filter, 
only now the mean value is calculated) and finally, the areas corresponding to 
shallow minima in the image are removed by using H-minima transformation, 
described in [99]. 

The final segmentation result is obtained by combining the resulting images from 
the two branches. This is done by simply discarding the erroneous particle borders 
that are formed in the particle detection phase and located outside the cluster 
borders defined by the clustering branch. 
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An example of the segmentation results is shown in Fig. 4.17, where four different 
images are shown; the original median filtered image g, the resulting image of the 
left branch, the resulting image of the right branch and the final segmentation result 
(from the left, respectively). 

 
Fig. 4.17 Segmentation results, images from the left: original median filtered 3D profile, 

segmentation into particle clusters, segmentation of individual particles and final segmentation  
result. The emphasized rectangular area is shown at the bottom to provide more detailed view. 

The detailed view in Fig. 4.17 shows an example of the advantage of having these 
two branches; the clustering part recognizes the large areas and the particle part 
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separates individual rocks inside those areas. Furthermore, the idea behind the 
segmentation is to recognize only the large particles, since the volume of the fines 
can be estimated by subtracting the volume of the recognized particles from the 
total volume of the ore. This justifies the use of the LMS-400 scanner, even if its 
measurement accuracy is not the best possible. 

4.3.3. Virtual Sieving and Volume Estimation 
The large particles recognized in the segmentation process go through a virtual 
sieving procedure, i.e. their size classes are determined by the shortest edge of their 
bounding box. This simulates the process of real life sieving. The height 
information is not used in this process; the largest particles are assumed to have 
fallen in a way that the height would be smaller than the other two dimensions, 
which is a fair assumption when considering the rocks on a conveyor belt. The 
height is not included because it is difficult to measure it for an individual particle 
when only the surface can be seen. The particles are most often sunken to the bed 
of fine ore, as illustrated in Fig. 4.18, and the shape of the sunken part is unknown.  

This is why, at each point, the height of a given particle is calculated by subtracting 
the height of the estimated ore bed from the total height. This approach will 
disregard the sunken part and will introduce a small error to the volume estimation. 
On the other hand, the imprecise estimation of the unknown part would do so in 
any case. This error is, however, taken into account by introducing non-linearity to 
the calibration model, as described in the following section. 

 
Fig. 4.18 Illustration of the areas not visible to the scanner. 
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4.3.4. Calibration Models 
There are also other sources of error and non-linearities in measuring the particle 
size distribution from the surface of the ore bed. Firstly, it is possible that 
segregation has happened due to vibration and multiple conveyors, which often are 
at a 90° angle. Secondly, the larger particles have a higher probability of being 
visible on the surface, as can easily be seen when examining the illustrated 
particles in Fig. 4.18. This phenomenon is studied in detail and a model for the 
stack structure is given by Thurley in [105]. Thirdly, the measurement technique 
used prevents the scanner eye from seeing all the parts of the otherwise visible 
area, which is also illustrated in Fig. 4.18.  

A neural network model would be a good choice for this type of modelling 
problem, since it is naturally capable of dealing with non-linearities. However, 
neural networks typically need quite a lot of training data, and since additional 
shovelling was required – again, this was not an option. Instead, these non-
linearities were compensated for by generating additional non-linear input 
variables to the  data of a linear PLS model (see Subsection X

X
4.2.4). This leads to 

the following data block: 
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From this, the particle sizes are estimated with three different models. The amount 
of fines is estimated by doing a standard least squares fit for . The amount of 
pebbles is estimated from 

1x

{ }6 9−x  with one PLS model and the amount of lumps 

from  with another PLS model. {2 5,7 9− −x }

4.3.5. Results & Considerations 
The three models mentioned above were obtained by manually collecting 32 data 
samples, each 1.5 m long. These were weighed and screened into the same particle 
size classes as before and the middle fraction was combined with pebbles. Along 
with these samples, the scanner data, speed sensor data and mass flow data were 
recorded. The average sample size was 143 kg. 
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The modelling results can be seen in Fig. 4.19 and they indicate that the selected 
method outperforms the previous shadow based analysis method. A similar leave-
one-out cross-validation method was used as in Subsection 4.2.4.  

The current versions of the models do not take the mass flow information as their 
input; the final size class flows are calculated after class estimation. If this 
information would be included already in the training phase, even better results 
could be obtained. 

Another revelation was encountered when trying to take advantage of the particle 
size distribution measurement; as mentioned earlier, the final goal was to be able to 
predict the future situation in the silos of the flotation plant. However, it was noted 
that the particle size distribution changes (more than expected) on the way up, due 
to abrasion in the ore transportation chain [61]. Therefore, in order to be able to 
predict the silo level at the surface, a model describing the ore transportation chain 
would be needed. 

 
Fig. 4.19 Analysis results of 32 hand screened samples. 

To get this model, the analysis station was duplicated and installed on a conveyor 
belt just before the mechanical screening station on the surface. The installation 
points of both analysis stations are indicated in Fig. 3.4. The required 
transportation chain model is fairly simple and it was thought to be obtained quite 
easily but, as it turned out, there are no reliable instruments that are capable of 
measuring the necessary silo levels and material flow rates accurately – not within 
a feasible price range at least. The uncertainties in these measurements have caused 
problems for modelling, but work is still being done to address this issue. 
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5. 
Flotation Froth 

Analysis 
This chapter describes the research related to flotation froth analysis in Pyhäsalmi 
and is based on the publications [P1], [P3], [P4] and [P5]. First, the original single 
cell analyzer that was built for the zinc rougher circuit is introduced. Then, its 
extension to a multi-camera analysis system, covering several flotation cells, is 
discussed and finally the results achieved are presented. 

The work carried out in image analysis of the flotation froths, especially the 
dependency found between the colour and the grade, motivated the continuation of 
the research with another approach, based on spectral measurements and described 
in Chapter 6. 

5.1. Motivation 
It is a well known fact that the visual appearance of the flotation froth is a good 
indicator of the state of the process. This information has been utilized in the past 
decades by the process operators simply by walking periodically down to the 
flotation cells and making conclusions based on the froth appearance. Naturally, 
these conclusions are subjective and depend on several things, such as the 
operator’s experience and motivational level, as well as colour temperature and 
intensity changes of the illumination. Nevertheless, an experienced operator is able 
to determine many things based on bubble size, colour, speed and other froth 
characteristics. Two images taken from the zinc rougher circuit at different times, 
illustrating the noticeable differences that occur during normal operation of the 
plant, are shown as an example in Fig. 5.1. 
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Fig. 5.1 An example showing two images of zinc froth with different image characteristics. 

As the rapid development in camera and computer technology has allowed 
machine vision techniques to cover an increasing range of applications, the 
possibility to use image analysis in the control of mineral flotation created a lot of 
interest in the mineral engineering community in the 90’s (e.g. [8], [24] and [74]). 
While most such developments took place in the laboratory, some instrument 
systems were tested on line in flotation plants (e.g. [24], [73]) and were reported to 
be applicable to the classification of froths or to the extraction of physical features, 
such as average bubble size, size distribution and shape parameters of the bubbles, 
speed of the froth as well as colour parameters. 

Motivated by these findings, a European Union funded research project called 
“Characterization of Flotation Froth Structure and Colour by Machine Vision 
(ChaCo)” was launched in 1997, which initiated the development of a flotation 
froth analyzer for the Pyhäsalmi mine. The development of the image analysis 
system, its expansion into multi-camera system and the achieved results are 
described below. 

5.2. Single Cell Analysis 
In the following, a brief introduction to the original image analysis station that was 
built for the concentrator plant of Pyhäsalmi Mine Oy is given and the calculated 
image variables are introduced. A thorough and detailed description can be found 
in [40] and [48]. 

5.2.1. Froth Analyser 
It was decided to install the image analysis station on top of the first rougher cell in 
the zinc circuit (see Fig. 3.15 and Fig. 5.2), because the rougher bank was known to 
have the greatest effect on the overall performance of the zinc circuit.  
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Fig. 5.2 Froth analyzer installed on the rougher bank of the zinc circuit. 

The installation point had to be near the edge of the cell in order to have a constant 
flow under the imaging area. The architecture of the developed analysis station is 
shown in Fig. 5.3, in which the camera is located inside a protective hood and 
illumination is carried out with an adjustable halogen lamp. The analysis station 
included also a spectrophotometer that was used to investigate the colour 
properties of the froth with a more accurate instrument than a regular RGB colour 
camera, which was used for the image analysis part. Unfortunately, the physical 
arrangement for the spectral measurements was not suitable for continuous 
operation and these measurements were eventually dropped from the next version 
of the analysis station. However, the initial spectral analysis done at the time (see 
[48] and [98]) partly motivated the re-introduction of spectral measurements as a 
descriptor of grade, which will be discussed in Chapter 6. 

The purpose of the protective hood was to act as a supporting structure, as well as a 
protective element against ambient light coming from the flotation hall. Great care 
was taken to remove any disturbing light and for ensuring stable illumination from 
the lamp. This was especially important when analysing image variables 
simultaneously from several cameras (this topic is covered later in this thesis), 
because it was noticed – after a relatively intensive investigation – that the voltage 
changes in the electrical network of the mill caused simultaneous fluctuations to 
the image variables, ruining the correlation analysis. Consequently, a powerful 
uninterruptible power supply (UPS) was installed to provide regulated power for 
the analysis equipment. This solved the problem and the cross-correlation analysis 
started to give meaningful delay estimates. 
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Fig. 5.3 System architecture for the single cell analysis. 

In the analyzer, the imaging geometry is arranged so that a single bright spot, 
called the total reflectance point, is formed on top of each bubble. This is an 
important property since many of the image analysis algorithms utilize 
segmentation results, which are obtained with a similar watershed algorithm as 
described in Subsection 4.3.2. The algorithm uses these bright spots as starting 
points for bubble border detection (since they correspond to local minima in 
inverted image). An example of the segmentation results obtained this way is 
illustrated in Fig. 5.4. Further details of the algorithm are given in [5]. 

 
Fig. 5.4 An example of the segmentation results. 
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5.2.2. Calculated Variables 
The philosophy with the original image analyzer was: “Calculate everything that 
can be calculated and then pick the most interesting variables for analysis”. 
Consequently, it was possible to get approximately 60-70 different variables from a 
single cell. However, there was redundancy in these measurements. A good 
example is the different colour plane representations of the image; the grabbed 
image was presented both in RGB (red, green, blue) and HSV (hue, saturation, 
value) colour planes, and for all these six variables, the first four moments of their 
distribution were calculated separately. Thus, there was a need to pick out only the 
most important variables for further analysis. This was done by step change tests, 
by correlating the image variables against other process variables and by 
conducting an operator inquiry (see [31] and [40] for details). The purpose of the 
inquiry was to leverage the process knowledge of the operators in finding the froth 
characteristics that reflect the flotation performance. The following five variables 
were selected as the most important image variables: 

1. Froth colour: During the operator inquiry, the operators pointed out that 
the colour of the froth correlates with the mineral concentration of the 
froth. Therefore, the mean and standard deviation for the R, G, and B 
values are calculated over the image plane. In order to avoid the effect of 
total reflectance points and shadows, both extremely dark and bright 
intensity values are excluded from the calculation. 

2. Bubble size distribution: In the operator inquiry, the operators pointed out 
that bubble size can be used to find the optimal amount of frothing reagent. 
In some cases the bubble size is also correlated with the mineral load of 
the froth. The bubble size is calculated by using the watershed 
segmentation algorithm mentioned earlier. 

3. Froth Speed: The froth speed reflects the production rate and therefore is 
an important variable. The speed is calculated from an image pair, where 
the sampling interval between the two images is 20 milliseconds. The 
algorithm calculates the 2D correlation matrix of the image pair, and the 
highest peak of the correlation matrix determines the amount of pixels the 
froth has moved during the sampling time (see Fig. 5.5). The actual 
implementation of the algorithm is done in the Discrete Fourier Transform 
(DFT) domain in order to minimise computational burden. For a more 
detailed description, see [40]. 
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Fig. 5.5 Froth speed calculation. 

4. Bubble Collapse Rate: According to the operators, bubble collapse rate 
behaves in a similar manner as the bubble size.  The bubble collapse rate is 
calculated as follows: by using the speed information, the latter image in 
the image pair is translated back to the same position as the first one. After 
that, the difference image between the first image and the translated image 
is calculated. Now, the number of pixels above a given threshold gives an 
estimate of the bubble collapse rate. 

5. Bubble Load: A visual inspection of the froth images has revealed that 
bubbles with high mineral load do not have a total reflectance point. 
Consequently, this algorithm calculates the combined area of bubbles that 
do not have total reflectance points, i.e. saturated pixel values (under 
proper lighting conditions), in percentages of the whole image area as: 

1) Go through each pixel of the froth image. If the value of the pixel 
is equal to (255,255,255) then mark this pixel as a wet pixel. 

2) By using the labelled image from the segmentation algorithm, 
check which bubbles have pixels marked as wet pixels in the 
previous step. Mark these bubbles as wet bubbles. 

3) Calculate the total number of pixels that are classified as belonging 
to wet bubbles. Divide this number with the total number of pixels 
in the image and multiply it by 100%. This number (which takes 
values between 0% and 100%) is the outcome of the algorithm, 
which is called the load variable. 
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5.3. Extension to Multi-Camera-Analysis 
The original single cell analysis system was built to provide a proof of concept, and 
after very encouraging results (as will be reported in Section 5.4), a natural step 
was to extend the system to cover several flotation cells. Five additional cameras 
were installed in the roughing-, scavenging-, mid-roughing-, mid-scavenging- and 
to cleaning-sections of the zinc circuit [49]. The camera locations as well as 
analysis points for the X-Ray Fluorescence (XRF) analyzer are indicated in Fig. 
5.6. The XRF method is commonly used in industrial flotation plants for elemental 
analysis of flotation slurries. The analyzer used in Pyhäsalmi is Outotec Courier® 6 
SL [82] (more detailed description of the analyzer is given in Chapter 6) and it was 
used in the image analysis research mainly for providing grade measurements for 
validation purposes. 

 
Fig. 5.6 Camera locations and analysis points in the zinc circuit. 

Shortly after the installation of these five cameras, a sixth camera was installed to 
measure the final copper product in the copper circuit. The installation point is 
indicated in Fig. 3.14. 

5.3.1. Froth Image Analyser-software 
After the decision for the extension to cover multiple cameras was made, it was 
clear that the analysis software for the initial prototype would have to be either re-
coded or replaced altogether. The original software was a combination of 
LabVIEW™, MATLAB™ and other calculation routines such as DLL files coded 
in FORTRAN or in C/C++ programming languages [48].  
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Since one of the people closely related to the ChaCo project founded a company 
called IMSOC and implemented the algorithms for a commercial multi-camera 
capable package, a decision was made to use this software package as a basis for 
further research. The software was called Froth Image Analyser (FIA) and it 
contained essentially the same functionality as the original analysis system did, 
with the exception that the FIA software was capable of analysing images from up 
to 12 cameras sequentially. The FIA software was implemented with LabVIEW™ 
and compiled into a self executable component that could be installed on a stand-
alone computer. An example of the user interface of the FIA software is shown in 
Fig. 5.7 below. 

 
Fig. 5.7 User interface of the FIA software. [44] 

However, some obstacles were encountered with this type of approach. While the 
FIA software in itself was working almost perfectly, the problem was with the 
original assumption that the ground work laid in the earlier phases of the research 
would be mature enough to be used as a fixed basis for higher level analysis. This 
assumption was motivated by a rather idealistic view, claiming that the image 
analysis part was ready, and the new research should concentrate on utilizing the 
image variables at a higher level. Unfortunately, this was not the case and, in 
retrospect, it is only natural that in this type of research new ideas emerge and often 
the algorithms need adjusting or even completely new algorithms need to be 
introduced. Since the FIA software was now a commercial and rather closed 
product (although the research team had a good understanding of the inner 
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workings of it), it meant that the changes and modifications had to be requested 
from Sweden and the time schedule for the implementation was now dependent 
also on IMSOC. 

The hardest part was the introduction of the new laser based froth height 
measurement (introduced later in Subsection 5.3.3), which required several 
iteration rounds and still the results were not satisfactory. Therefore, this part of the 
analysis was tested separately with an off-line implementation, based on 
MATLAB™ and its Image Analysis Toolbox. The implementation was then 
compared against the FIA software and it showed much better results. During this 
process, an idea for a new versatile image analysis system for multi-camera 
analysis was conceived, which resulted in a new image analysis platform called 
FrothEye that is presented in the next subsection. 

5.3.2. FrothEye-software 
FrothEye was developed mainly by the author to serve as a powerful image 
analysis tool for doing on-line analysis of flotation froths. However, the software 
architecture is general enough for its use to be expanded into other image 
processing tasks also. In fact, the architecture of the system is one of the key points 
that make it versatile and extremely powerful for the type of research that was 
carried out in this thesis. An example showing the FrothEye software running in 
Pyhäsalmi is shown in Fig. 5.8. 

 
Fig. 5.8 An example of the FrothEye user interface during normal operation. 
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The basic philosophy in FrothEye’s design has been the ease of use and especially 
the ease of development/debugging. Thus, it is not an overstatement to say that 
new algorithms and ideas can be tested in a matter of hours. This would not be 
possible if the program was coded by using traditional methods. The flexibility of 
the programming environment is achieved by using modular design and code 
generation. The core of the program where all the calculations are performed (a.k.a. 
kernel) is created from MATLAB™ code (i.e. from M-files generated with 
MATLAB’s scripting language) with a single push of a button. Once the kernel is 
created, it can be moved to the plant and run without any modifications to the pre-
compiled FrothEye-software. This helps tremendously in the development work 
since only the kernel code needs to be modified and re-compiled. Furthermore, 
debugging can be done in the MATLAB™ environment by using a custom made 
debugger that simulates normal operation and runs the un-compiled kernel code in 
exactly the same way as the user interface in the plant will. In this way errors can 
be isolated and removed already in the design phase and the debugger will indicate 
the exact position (as well as values for local variables) where the error occurred.  

The general layout of the software architecture is shown in Fig. 5.9. There are three 
main components that are started when the application is run. These are: User 
Interface (UI), Grabber component and Wrapper component. All these components 
are coded with Microsoft Visual Basic® and they are ActiveX®-components, i.e. 
they comply with the component object model (COM), see [6] for details on COM.  

 
Fig. 5.9 Software architecture of the FrothEye platform. 

The idea behind this type of arrangement is modularity as well as improved 
performance. Modularity is achieved by dividing different tasks into separate 
components that can be maintained independently. Improved performance is 
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achieved by compiling each component as a COM-EXE, meaning that each will 
have its own thread of execution. The user interface loads and unloads all the 
components automatically during start-up / shutdown and is the only visible part of 
the software (if the Excel output is not enabled). Another important point is that all 
components, except for the kernel, are designed to be coded once – and only once. 
This applies even if new algorithms are added or inputs and/or outputs of existing 
algorithms are modified. The only component that needs to be recompiled is the 
kernel (i.e. a single DLL file). And since the kernel component is maintained and 
developed completely with MATLAB™, this means that algorithm development of 
the FrothEye software is made extremely easy and powerful. On the MATLAB™ 
side, the kernel code is made in such a way that the compiled component can tell 
the user interface about itself: it can tell (via an XML-communication scheme) 
what algorithms it can calculate, what are the inputs and outputs of those 
algorithms and what are their default values. With this information, the UI 
component accommodates itself automatically to the new kernel version during 
start-up. As mentioned, this architecture was utilized also in the design of the 
software for particle size analysis (see Subsection 4.2.6). 

All image algorithms (except for the laser detection algorithm, see 
Subsection 5.3.3) introduced in this thesis, and a few experimental ones, were re-
designed and re-coded. For example, four new ways of calculating bubble collapse 
rate were tested and all of them are currently implemented in the FrothEye kernel. 

Further details of the platform will be given in an upcoming publication [50]. 

5.3.3. Froth Height Measurement 
A typical case with instrumentation in flotation circuitry is that the pulp level can 
be measured accurately but the thickness of the froth layer on top of the pulp is 
more difficult to assess. For example, Pyhäsalmi Mine Oy has used instruments 
based on capacitance measurements, which are relatively inaccurate as they can 
provide only a few discrete height readings. According to the plant personnel, they 
are having reliability problems with them. 

An additional result of the research was a new way of measuring the froth height 
and froth thickness. The measurement is based on evaluating the distance between 
the camera and the froth surface. From this measurement, when combined with the 
pulp level measurement, the froth thickness can be calculated. The need for this 
type of measurement came when the intensity variations caused by the changing 
distance between the camera and the froth were investigated. 

The measurement is based on a laser triangulation method, meaning (in this case) 
that a laser line is projected to the froth surface at a 45° angle. Thus, the height 
fluctuations will cause the line to change its position in the image. Since the 
imaging area is near the edge of the flotation cell, the angular changes of the 
projected line tell about the changes of the froth slope near the edge. 
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To obtain the position of the projected line, a laser detection algorithm was 
developed and added to the kernel of the FrothEye software. As can be seen in Fig. 
5.10, the laser line is missing from the middle part of the image, as it is shaded out 
so that the red laser line in the image would not interfere with other image 
processing algorithms. Other algorithms have configurable region of interest (ROI) 
areas that can be selected to be in the middle part of the image. 

The development of the measurement, as well as research on the intensity 
variations, is ongoing and will be reported in [89]. 

 
Fig. 5.10 Froth height calculated with the laser detection algorithm incorporated into FrothEye. 
The LaserCut-image shows the region of interest (ROI), Threshold-image shows the recognized 

laserpoints and Laser-image shows the final result. 

5.4. Results 
This section introduces the results obtained by using the described image analysis 
approach. First, the observed dependencies between the image characteristics and 
the process variables are discussed both for the single- and multi-camera settings. 
Then, closed loop control for the zinc rougher and for the copper cleaner banks is 
discussed. Finally, additional ways to support the operators in their daily work are 
introduced. 
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5.4.1. Dependencies 
As explained earlier, as much information as possible was extracted from the 
images obtained with the image analyzer. Thus, the dependencies between the new 
image variables and traditional process variables had to be studied, and eventually 
five image variables were selected as the most important ones. During this 
selection process, many different comparison tasks were carried out and new 
dependencies were found. The most important findings are presented in the 
following. 

Single Camera Analysis 
The analysis for the single camera part was done for data collected from the 
rougher bank of the zinc circuit. It would have been interesting to compare the 
image variables against the XRF results from the same bank, but unfortunately 
there was no sampling point for the rougher concentrate (see Fig. 5.6). 
Consequently, comparison was made against the XRF analysis of the final 
concentrate, which is known to depend mainly on the zinc grade of the rougher 
concentrate. The following analysis was originally reported in [72].  

The graphs in the following sections are based on 35 days of data, collected at one 
minute intervals during February and March 2001. The data collection resulted in a 
relatively large amount of data with a short sampling interval with respect to the 
time constants of the process. Thus, for noise and dimension reduction purposes, 
the data was first classified and the graph points present the mean values of those 
classes. 

The bubble load variable has proven to be the best indicator of the flotation 
performance and, based on recent discussions with the operators of Pyhäsalmi 
Mine Oy, it has become an important asset in the daily operation of the flotation 
plant. Fig. 5.11 shows zinc recovery, zinc feed grade and froth speed as a function 
of froth transparency, which is the opposite of load. 

 
Fig. 5.11 Zn recovery (L), Zn grade of feed (R) and froth speed (R) vs. froth load. 
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It can be seen that zinc recovery reaches an “optimum” value when the 
transparency is around 10. In this range the feed grade, which is known to have a 
significant effect on the image variables, is almost constant and therefore is not 
causing this phenomenon. Another finding is that this “optimal” froth type is 
associated with low froth speed values, small bubbles (Fig. 5.12) and low bubble 
collapse rate readings (Fig. 5.13). This conjecture is supported by subjective 
observations made in Pyhäsalmi mine, and by expert knowledge on the subject. 

 
Fig. 5.12 Zn recovery (L) and bubble size (R) vs. bubble load. 

 
Fig. 5.13 Zn recovery (L) and bubble collapse rate (R) vs. bubble load. 

The following three figures illustrate the dependencies between the image variables 
of the rougher bank and the final zinc concentrate grade. Fig. 5.14 shows a strong 
correlation between the red colour component and the zinc concentrate grade. 
Furthermore, it can be seen that the froth speed has negative correlation with 
grades, which implies that froth rich in zinc moves slower than a low grade froth. 
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Fig. 5.14 Zn concentrate grade (L), Zn feed grade (R) and froth speed (R) vs. red colour. 

And finally, rich froth is associated with small bubbles and low bubble collapse 
rate, as indicated in Fig. 5.15 and in Fig. 5.16, respectively. Again, this result is 
supported by observations. 

 
Fig. 5.15 Zn concentrate grade (L) and bubble size (R) vs. red colour. 
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Fig. 5.16 Zn concentrate grade (L) and bubble collapse rate (R) vs. red colour. 

Multi-Camera Analysis 
The purpose of the multi-camera analysis was to determine whether the image 
variables obtained from different cells would behave in a consistent manner, and to 
see how well the zinc content of the final zinc product could be predicted by using 
these variables only. 

The analysis was performed with two independent data sets from Aug. 26, 2004 –
 Sep. 1, 2004 (data1) and Sep. 6, 2004 – Sep. 10, 2004 (data2). The data was 
collected in one minute intervals and averaged into six minute data sets. Three cells 
were included in this study: roughing, mid-roughing and cleaning (see 
Fig. 5.6). The high grade cell was intended to be part of this study, but 
unfortunately the camera location in the cell was such that there was no continuous 
flow under the imaging area. Therefore, the calculated image variables had to be 
discarded. From each of these three cells, six image variables were selected and 
they are presented in Table 5.1 below. 

Table 5.1 Image variables. 

Variable Description 

Correlation Peak value of cross correlation matrix of an image 
pair, see Fig. 5.5 

Redness Mean-value of Red-component of an RGB-image 

Load Load-variable that estimates the mineral content in 
the surface of the bubble, see Subsection 5.2.2 

Speed Speed of the froth, see Subsection 5.2.2 

Bubble Size (BS) Mean bubble size, see Subsection 5.2.2 

Intensity Mean intensity of the image 
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The analysis was carried out with linear multivariate methods. Therefore, the time 
delays between different cells were estimated and removed. It should be noted that, 
due to the nature of the flotation process, the delays are time-varying and assuming 
them fixed does introduce some errors in the results. The delays were estimated 
mainly based on cross correlation analysis and partly by process knowledge of the 
plant personnel. The delays were (in 6 minute time steps): from rouging to mid-
roughing, 4, from roughing to cleaning, 4, and from roughing to measured zinc 
content of the final product, 6 time steps. 

The consistency among different cells was analysed with Principal Component 
Analysis (PCA, see Chapter 4). By using the image variables described above, the 
first and second principal components (PCs) were calculated separately for each 
cell. The idea was to compare the different cells and to see if they would behave in 
a systematic fashion. The analysis showed that, mathematically speaking, the three 
cells work similarly. This is illustrated in Fig. 5.17, where the loadings of the first 
two principal components are shown. 

 
Fig. 5.17 Loadings of the first PC (left) and second PC (right) for data1. 

The first PCs show consistent results in all three cells, where the loads of each 
image variable (between different cells) are roughly the same. The second PCs 
show consistent correlation directions, but not as identical loadings as in the first 
PCs.  

The second data set (data2) shows similar results (see Fig. 5.18), with the 
exception of image correlation of the cleaner cell in the first PC and the bubble size 
of the mid-roughing cell in the second PC. However, both results clearly show 
consistent behaviour in the image data taken from different cells. 
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Fig. 5.18 Loadings of the first (left) and second (right) PC for data2. 

The next step was to predict the zinc grade of the cleaner cell (ZnR Zn%) by using 
only the image variables as predictors. 

Three recursive prediction methods were used. PCA was used as an unsupervised 
method and Principal Component Regression (PCR) and Partial Least Squares 
(PLS) as supervised methods. In the unsupervised methods, only the X  data block 
is used in training and the Y  data is reserved for validation. The supervised 
methods take advantage of both X  and  data in the teaching phase. The PCA 
and PLS are already covered in Subsection 

Y
4.2.4. Thus, a short introduction to 

PCR, based on [113], is given in the following. 

Let a single image data point be denoted by a row vector  and the predicted 
concentrate grade value with a scalar y . Then one would like to obtain a 
regression vector 

x

Rb  containing the weights used for the linear combination of the 
image variables in order to produce : y

 R y=xb  (32) 

However, for a meaningful fitting, several measurements  and the corresponding 
grade vector are needed. In theory, Multiple Linear Regression (MLR) would 
suffice and 

X
y

Rb  could be solved by calculating the pseudoinverse of , denoted by 
 as 

X
+X

 ( ) 1T −+ =X X X XT  (33) 

and then Rb  would be obtained by 

  (34) R
+=b X y

In practice however, there (almost) always exists collinearity in the  data, i.e. 
some columns are linear combinations of other columns, which is not tolerated by 
this approach since then 

X

( ) 1T −
X X would not exist. Thus, the data is said to be ill-

conditioned. 
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PCR is a way to deal with ill-conditioned matrices. The idea is simply to use 
principal component scores of the measured variables as predictors. Since the score 
values are orthogonal by definition, they are always well conditioned and  can 
be calculated as 

+X

 ( ) 1T −+ =X P T T TT  (35) 

where  is the loadings matrix and  the score matrix of the PCA model, as 
described in Subsection 

P T
4.2.4. 

The PCA estimate values (i.e. score vectors) were obtained by sliding a 48 hour 
history window, for which the PCA model was updated at each step. After the 
model was calculated, the last values of the score vectors of both principal 
components were stored and the analysis was advanced by one step. 

The analysis cycle is presented below: 

1. Take the last 480 points of history data. 

2. Calculate the first two principal components for that data. 

3. Calculate the score vectors of those principal components. 

4. Store the final values of the score vectors. 

5. Wait for the next data point, slide the history window and go to 1. 

 

The score values obtained in this way followed the cleaner grade with a very good 
accuracy, as shown in the left part of Fig. 5.19, where 2R  is the coefficient of 
determination. This was a good proof of the power of image analysis in the context 
of mineral flotation since only the image variables were used to obtain this result. 
Also, since the time delay between the image variables of the cleaning cell and the 
XRF analysis of the final concentrate is on average 12 minutes, this means that the 
PCA approach is able to predict the zinc content in advance. 

For the PCR case; data1 was used for training and data2 for validation. Since the 
PCR approach utilizes the y-data, one would expect far better correlation, 
especially with the training data that is shown on the right part of Fig. 5.19. 
However, there was only minor improvement with the training data and, for the 
validation data the PCR gave worse results than PCA. This means that it is 
essentially the first principal component alone that correlates with the output 
concentration. The results for data2 are shown in Fig. 5.20. 
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Fig. 5.19 Data1: Score values of the first PC in PCA approach (left) and  

fit for PCR teaching data (right). 

 
Fig. 5.20 Data2: Score values of the first PC in PCA approach (left) and  

fit for PCR validation data (right). 

Finally, a PLS model was tested in a similar fashion as the PCA and PCR models 
(same 48 hour sliding history window was used) and the results are shown in Fig. 
5.21. One interesting finding is the degradation in the correlation with the first data 
set since one would assume improvement, at least when compared to PCA 
approach, because of the additional y-side information. This is due to the changes 
in the time delay between the image variables and the XRF analysis of the final 
product.  

Also, for the second data set the results are improved only slightly. However, even 
if the improvement is clear in terms of 2R , it is still only a minor improvement 
when compared to the PCA approach, which accomplished more or less the same 
thing completely without the aid of the y-side data. 
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Fig. 5.21 PLS fit for data1 (left) and data2 (right). 

5.4.2. Closed Loop Control 
As stated earlier in this thesis, there is solid evidence that the calculated image 
variables are able to reflect the state of the flotation process. Thus, a natural step 
was to take advantage of this with automatic control. Several tests were carried out 
during the research. The most successful ones will be presented in detail in the 
following sections. 

Copper Sulphate Controller of the Zinc Rougher Bank 
Dedicated expert controllers have been used in Pyhäsalmi for a long period of time 
and the controller implementation had to be done in that domain. The controllers 
are based on prioritized if-then rules that are executed periodically from top down. 
Once a matching rule is found, the control action associated with that rule is 
executed and the rest of the rules are discarded. This type of rule based approach 
tries to mimic the logical thinking of an experienced operator in a given situation. 

Such a controller had been used for controlling the copper sulphate (CuSO4) feed 
rate for the zinc rougher circuit. Copper sulphate is used to activate the sphalerite 
mineral ((Zn,Fe)S) and is the main control variable in the zinc circuit of Pyhäsalmi 
mine (see e.g. [31] and [57]). The fundamental idea of the controller is to keep the 
operating point in a feasible area by utilizing standard process measurements, as 
well as XRF analysis results. The main features of the controller are: 

• If two rules are activated simultaneously, the control action for the rule 
with a higher priority is executed. 

• The controller has two possible control actions: either to increase or to 
decrease CuSO4 by a fixed step. 

• The controller is executed every 60th second. This delay allows process 
transients, caused by the corrective step-changes, to die away before any 
new corrective actions are made. Consequently, the controller is only 
compensating for steady-state disturbances of the process. 
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• Set points, low alarms and high alarms can be changed by the operators. 
This allows them to re-tune the controller if there are considerable changes 
in the ore quality. 

Since the new image variables were available, they were introduced to the control 
logic as shown in Fig. 5.22. The controller rules and limit values are largely based 
on the knowledge of the process experts at the flotation plant. 

 
Fig. 5.22 The user interface of the copper sulphate controller. 

The introduced image variables were (the names used in the controller’s user 
interface are shown in parenthesis): bubble collapse rate (B.C.Rate), bubble 
transparency (B.Transp.) i.e. the load variable, bubble size (B.Size) and mean of the 
red component of the image (red colour).  

The controller performance evaluation is a difficult task since so many variables 
influence the achieved flotation performance. However, based on long term data 
collection campaign (2000-2004) and on comparison of the flotation results during 
the years 1995-2004, the mill management has estimated that the controller 
accounts roughly for an improvement of 1.3 percentage units in zinc recovery. This 
in turn yields 200 000-300 000 € annual increase in profit [P5]. 
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Cyanide Controller of the Copper Cleaner Bank 
A similar controller modification to the cyanide2 set-point in the cleaner bank of 
the copper circuit is reported in [P4]. It was motivated by a PLS analysis that was 
done on: froth speed, bubble collapse rate, bubble size distribution, froth load and 
the red colour component of the froth. The initial idea was to use the PLS 
technique for predicting the zinc grade in the final copper product, since the plant 
had experienced problems in minimizing its value and since it was found out that 
the image variables reacted to process disturbances roughly 30-40 minutes earlier 
that the XRF analysis did. Note that after copper flotation the next phase is zinc 
flotation (see Subsection 3.3.2), and therefore zinc should be depressed in the 
copper flotation stage. 

Unfortunately, relatively poor results were obtained with the PLS approach. 
However, when studying the loadings of the PLS model, they indicated that the 
load variable and bubble collapse rate had the highest values. When investigating 
these two variables in detail, it was found that they were able to indicate undesired 
operating points of the process. This conclusion was made based on cluster 
analysis, where the first step was to divide zinc concentrate readings into three 
classes, namely to good, neutral and bad (see Table 5.2). The class borders for 
these classes were defined by the plant engineers. 

Table 5.2 Classes for zinc concentration in the final copper product. 

Class Range [Zn% in copper product] 

Good < 1.75 

Neutral 1.75 - 2.5 

Bad > 2.5 

 

The next step was to plot the classified image data on froth load – bubble collapse 
rate plane, as shown in Fig. 5.23. As seen, the good and bad classes are separated 
reasonably well. This property was then utilized in the control logic for the cyanide 
set-point, by introducing the following rule: 

IF load > 62 AND bubble collapse rate < 4.5 THEN 

  Increase cyanide set‐point to reduce Zn%. 

END IF 

The purpose of the rule is to prevent the process from entering the undesired 
operating area that is illustrated by the square in the lower-right corner of Fig. 5.23. 

                                                      
2 Cyanide is used as a depressant. Its purpose is to prevent the activation of the sphalerite 
mineral, because it is flotated in the following zinc circuit. 
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Fig. 5.23 Cluster analysis of the image data. 

The controller performance was evaluated with four data sets where in two of them 
the new controller was used, whereas the old controller was used in the other two. 
The results showed a decreased mean value and standard deviation for the zinc 
percentage in the final copper product when the new controller was utilized, as 
illustrated in Fig. 5.24. The comparison was done to gain a first indication whether 
or not the new rule was working and the results obtained can only be considered 
preliminary. Similar long term evaluation as in the previous case should have been 
carried out to get a clearer picture of the effects of this new rule. Unfortunately, 
this was never done due to the limited resources of the research group. 

 
Fig. 5.24 Controller performance comparison. The histograms show the Zn% in the final copper 

concentrate (x-axes). New controller (right) shows decreased mean and standard deviation. 

5.4.3. Support for the Operators 
One important aspect of the research was to help operators in their daily work and 
in decision making. Consequently, the most important image variables are utilized 
in control, and the operators can fine-tune the set-points and alarms, as described 
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earlier. Another valuable task is to include the most important variables in the 
namespace of the automation system, which in turn makes it possible to display 
them on the screens in a similar manner as any other process variable. This means 
that history trends are automatically calculated for these variables and are available 
for the operators. 

To further leverage the usage of image information, an image history database was 
implemented by the author so that the operators (both experienced and newer 
recruits) can not only see the current state of the process, but can also go back in 
history (see Fig. 5.25). This is especially useful if there is something out of the 
ordinary in the history trend curves – say a peak in XRF measurement(s). In the 
case of such a problem, the operator can use the visual changes in the froth 
appearance together with the numerical values of other process data to get a clearer 
picture of the situation. 

 
Fig. 5.25 Image history for operators. 

The image history is collected from each camera at a one minute interval for the 
first 30 minutes, at a two minute interval for the second 30 minutes and so on. In 
this way, more frequent information is available from the recent history but, if 
needed, froth images are available also for older events. Furthermore, in the current 
setting, the camera signals are routed to a video multiplexer located in the control 
room and one of the monitors is reserved for live video feed coming from the 
cameras. 
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6. 
Grade Estimation 

with Colour and 
Spectral Analysis 

This chapter describes the research regarding spectral measurements and their 
utilization, and it is based on the publications [P5] and [P6]. It is a natural 
continuation of the work described in Chapter 5. 

The research done with the image analysis of flotation froths provided strong 
evidence on the importance of the froth colour as an indicator of grade. This 
motivated the continuation along this path and the next step was to study whether 
or not a traditional RGB camera – designed to operate on the same wavelength 
range as the human eye (λ=380-760 nm) – actually would be an instrument 
accurate enough for colour measurements. This question had been asked before and 
was studied with spectral measurements as stated earlier in Subsection 5.2.1, but at 
that time sufficient long-time data collection was not possible and only preliminary 
results were therefore obtained (see [48] and [98]). The main reason for this was 
that the total reflection points caused problems, and the modifications to the 
physical setup required to compensate for these resulted in new problems with 
respect to reliable on-line operation [48]. 

Once reasonably priced imaging spectrographs became available, the research on 
spectral analysis was continued with such a device, operating in the visible and 
near-infrared (VNIR) range (λ=400-1000 nm). The VNIR range was selected 
because previous laboratory experiments indicated that there, in fact, was 
correlation between the grade and the spectrum beyond the wavelength range of the 
human eye. This was reported by Sirén in [98], where two wavelength areas were 
identified around 500 nm and 820 nm.  

The spectrograph (Specim Imspector V10, λ=400-1000 nm, 5 nm spectral 
resolution, see [102] for further details) is mounted to a monochrome CCD-camera 
(see [3] for details), and the spectral images are formed by passing light from 
imaging optics to the spectrograph through an entrance slit. The obtained line 
(light) is transformed into a 2D-image (spectrum) by passing the light through a 
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prism-grating-prism (PGP) component. The line spectra obtained in this way 
makes it possible to cancel out the undesired total reflectance points simply by 
discarding the saturated values, as will be shown in the following. 

6.1. Froth Analysis 
This section describes the method that was used for comparison between an RGB 
camera and a spectrophotometer. The results obtained from this analysis gave 
motivation for further studies that are explained later, starting in Section 6.2. 

6.1.1. Prototype for On-Line Measurements 
In order to be able to compare the measurement capabilities of an RGB Camera 
and a spectrophotometer, an enclosure was designed, which made it possible to 
obtain both image- and spectral data simultaneously from the same location. 
Fig. 6.1 shows the enclosure where the RGB camera and the spectrophotometer are 
mounted side by side. On the right there is an illustration of the line that is “seen” 
by the spectrophotometer. 

 
Fig. 6.1 RGB- and spectral data was obtained from same location simultaneously.  

The imaged line position is illustrated on the right (not in scale). 

When considering the image, it is easy to see that in different positions of the line 
there will be total reflection points (high intensity values) as well as bubble borders 
(low intensity values). An example of such spectra along the line is shown in 
Fig. 6.2, where the peak values correspond to total reflection points, which can be 
removed by a simple pre-processing algorithm.  
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Fig. 6.2 An example of the line spectrum. 

 

The RGB camera and spectrophotometer were installed on the last cell of the zinc 
cleaner circuit (see Fig. 5.6), which produces the final concentrate. Data was 
collected from both devices and XRF results for the cleaner bank were recorded. 
The recorded variables were the mean values of R, G, B components, the mean 
intensity of the RGB image, line spectra and the zinc, copper and iron contents of 
the concentrate flow. 

After this, the collected data was synchronized in time and modelled. A standard 
Multi Linear Regression (MLR, see Subsection 5.4.1) model was used for the well 
conditioned RGB data. The spectral data, however, is highly collinear and, 
therefore, the MLR approach would not suffice [37]. Thus, a PLS (see 
Subsection 4.2.4) model was used, since it is known to cope well with collinearity 
and is a commonly used method when analysing spectral data [113]. 

6.1.2. Results 
The prediction results for the two models are shown in Fig. 6.3. They were 
obtained by using independent validation data and, as can be seen, both models 
give satisfactory results. However, based on the images, it seems that the PLS 
model gives slightly better results. 
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Fig. 6.3 Prediction results for RGB- and spectral-data. Sampling interval is one minute. 

This was confirmed by correlation analysis, which indicated that the PLS model 
can outperform the MLR model in the prediction of all three grades. The 
correlation coefficients are shown in Table 6.1. 

Table 6.1 Correlation coefficients of the predicted and measured metal contents. 

Model/Metal Fe Cu Zn 

PLS (Spectrophotometer) 0.78 0.92 0.80 

MLR (RGB Camera) 0.71 0.87 0.75 

6.2. Slurry Analysis 
After it was shown that spectral analysis is a powerful technique in grade 
prediction, a novel idea for its utilization in the mineral processing industry was 
conceived by Saloheimo [92]. The innovation was to make the spectral analysis 
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from slurries instead of the froth and to combine the information with the XRF 
analysis in order to obtain almost continuous estimates of the grades. 

There was a real need for this type of fast measurement since the XRF analyzers 
typically provide accurate but relatively sparse measurements. This is due to the 
fact that these analyzers are bulky and expensive and are thus used to process 
several different flows sequentially. The sample time obviously depends on the 
number of lines to be analyzed. If a more frequent analysis is required for a given 
flow line, the sampling frequency is typically (almost) doubled by duplicating the 
flow in the multiplexed sample ring. However, this approach works only if there 
are a small number of such lines. There are also approaches for improved accuracy, 
for example, by means of data reconciliation (see [28]). A typical sampling interval 
in Pyhäsalmi is about 18 minutes for a line and even though the process is 
relatively slow, there are still situations where a more rapid analysis would be 
desirable. A sudden process disturbance is an example of such a situation. 
Furthermore, it was thought that the prediction accuracy of the XRF analyzer could 
be improved with this technique. 

Since Outotec Minerals Oy (formerly Outokumpu Technology Minerals Oy) had a 
long experience regarding the XRF analysis, they offered a jet flow cell similar to 
the one that is used in the Courier® XRF analyzers (see [82]) to be used in this 
study. The cell is designed to give a representative sample of the material flow and 
seemed to be well suited for the spectral analysis. 

6.2.1. Initial Laboratory Tests 
In order to get assurance on whether or not the slurry analysis approach would 
work, it was thought that a small scale laboratory experiment should be conducted. 
This was carried out by collecting samples from the natural overflow of the 
rougher, scavenger and cleaner banks of the zinc circuit (see Fig. 5.6). In addition 
to this, other samples were also collected from the copper circuit, and the very first 
laboratory tests were carried out with different mixtures of Magnetite (Fe3O4) and 
Hematite (Fe2O3) minerals, but the results of these experiments are omitted here, 
because they would bring no additional value to the following discussion. 

The samples were divided into two containers; one for spectral analysis and one for 
laboratory analysis. The results of the laboratory analysis for the three samples are 
shown in Table 6.2 below. As seen, there are large variations especially in zinc and 
iron contents, which were expected to be seen in the spectra. 

Table 6.2 Laboratory analysis for zinc circuit samples. 

Bank Zn% Cu% S% Fe% Pb% 

Rougher 45.39 0.29 31.3 12.0 0.20 

Scavenger 12.43 0.71 29.7 26.0 0.22 

Cleaner 56.44 0.32 32.5 8.5 0.22 
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The samples reserved for spectral analysis were approximately 5 litres in volume 
and they were circulated continuously in a pilot test system consisting of a small 
tank, adjustable pump and a jet flow cell (Fig. 6.4). Different setups with respect to 
illumination, imaging conditions and different jet flow cell window materials were 
tested and the analysis showed that once the basics are in order, the results are 
consistent. In other words, the spectrum of the illuminating lamp must be wide 
enough and the illumination geometry must be selected in a way that the total 
reflection from the window is minimized. Consequently, the analysis was carried 
out with a single halogen lamp (12V, 50W, 4700K) as a light source, and a clear 
50 μm mylar film was used as a jet flow cell window. 

The samples were analyzed by preparing a batch for circulation and measuring the 
spectra while diluting the sample with water. This made it possible to obtain 
different solids content (SC) values. Once the sample was processed, the system 
was washed thoroughly with water and the same sequence was repeated for the 
next sample. 

 
Fig. 6.4 Pilot test equipment for slurry X-Ray Fluorescence analysis. 
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The results of the analysis are shown in Fig. 6.5, where there are 11 spectra drawn 
with different line types depending on the origin of the sample. The SC values for 
each sample are shown in the legend texts. When comparing the spectral responses 
to the laboratory analysis results, it can be seen that the mineral content dominates 
the shape of the spectrum and changes in SC cause only minor variation. This is 
emphasized in the small sub-figure. 
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Fig. 6.5 Spectral responses for different flotation cells and solids contents (SC).  

The peak area is emphasized at the top right hand corner. 

6.2.2. Prototype for On-Line Measurements 
Since the pilot test suggested that the varying mineral content of the slurry causes 
changes to the spectra, a prototype capable of performing continuous on-line 
measurements was built. The prototype realized the same measurement setup that 
was used in the pilot test, except for the thin film-window which must be used in 
XRF analyzers to pass X-ray radiation through. Since the film is thin, it is easy to 
imagine that it does not last very long in the “liquid sandblasting” that it is 
subjected to. Fortunately, in the case of spectral measurements done in the VNIR 
range, there are no such restrictions and, consequently, the thin film could be 
replaced with a durable sapphire window, rendering the system practically 
maintenance free. 

The prototype is illustrated in Fig. 6.6. It included a desktop PC for data acquisition 
and analysis purposes. The PC was connected to the plant’s automation system via 
a wireless local area network (WLAN) connection. All analysis equipment was 
placed in a slightly pressurized protective housing in order to keep the instruments 
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clean. To prevent condensation, an additional dried instrument air flow was 
directed to the jet flow cell window. 

 
Fig. 6.6 Prototype of the analyzer measuring the concentrate flow of the zinc cleaner circuit.  

The sample is taken from the primary sampling line of the XRF analyzer. 

The prototype was equipped with remote operating capabilities, which made it 
possible to do research work remotely at the university. There was also a web-
camera monitoring the cell window. 

A continuous sample flow was needed for the analysis, which was conveniently 
obtained from the primary sampling line of the XRF analyzer, as indicated in  
Fig. 6.6 above. The plant personnel selected the concentrate flow of the zinc 
cleaner circuit as the most interesting place to start this type of study. 

6.2.3. Modelling & Results 
As explained earlier, a Partial Least Squares (PLS) model was a natural choice for 
modelling this type of spectral data. However, as expected, a standard PLS model 
would not suffice because of the changes in the operating point of the process 
(these are mainly due to variation in the properties of the incoming ore). Indeed, 
the tests showed that a static PLS model calculated from a fixed data set remained 
valid for about an hour [P8]. 

Fortunately, in this setting the purpose was to be able to predict the grades while 
waiting for a fresh XRF sample. Therefore, all the previous XRF samples could be 
used to improve this estimate. A modelling method called recursive Partial Least 
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Squares (rPLS, see [14], [34], [85] and [86] for details) is a modification of the 
standard PLS algorithm. In rPLS the model is updated recursively with new data 
points and usually a forgetting scheme is used to emphasize the latest 
measurements. Based on the literature, this was an excellent method for this 
particular application and thus the fast kernel-based rPLS algorithm, presented by 
Dayal and MacGregor [14], was used to test it. 

The results obtained with this approach were very good; the rPLS approach was 
able to predict the elemental and solids content accurately. This proved that the 
method could be applied as a supplement to XRF analysis. The root mean square 
(RMS) values for 15 hours of spectral data at a sampling interval of 10 seconds are 
given in Table 6.3. As can be seen, the prediction errors are only a few percents, 
except for the 18.4% error in the estimation of the low grade copper. 

Table 6.3 Root mean square error of the rPLS analysis. Mean values and  
standard deviations for grades and SC value are shown for comparison. 

 Error (RMS) Mean Std 

Fe 0.33 9.91 1.27 

Cu 0.16 0.87 0.78 

Zn 0.56 52.39 2.17 

S 0.14 34.16 0.52 

SC 1.39 36.43 2.42 

 

Further details of the modelling and of the results are given in [P8] and [29]. Also, 
a separate model for estimating low grade values is introduced in [26]. 

As shown, the introduction of this new technique provided an answer to the need 
for fast grade measurement. An example of the possibilities of this technique in the 
context of sudden process disturbance (discussed in the beginning of this section) is 
shown in Fig. 6.7. It can clearly be seen, that the rPLS estimate is able to indicate 
the drop in the zinc content almost immediately, giving the plant operators the 
possibility to react sooner than before, which in turn decreases the negative 
influence of the disturbance. 
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Fig. 6.7 An example of the measurement capabilities of the spectrum approach;  

the process disturbance can be detected earlier from the new estimate. 

6.3. Current Status of the Research 
Based on the favourable results obtained, the slurry analysis prototype was 
extended into a multichannel version [27]. This natural continuation of the research 
was already taken into account when the spectrophotometer was purchased; the 
selected device makes it possible to replace the imaging optics with a fibre optics 
bundle that divides the imaged line into segments, corresponding to spectra 
obtained from each fibre optics cable. The amount of lines is configurable and up 
to 150 lines can be connected to a single spectrophotometer. Obviously this has 
advantages; the price of the multichannel version remains low, even if the number 
of lines increases; and the data acquisition can be done with a single image grab, 
just as before, so the complexity of the algorithms does not increase notably. 

At its current state the multichannel version is running on 7 lines in Pyhäsalmi and 
the results are being integrated to the automation system for evaluation purposes. 
This is illustrated in Fig. 6.8, in which the traditional XRF results (updated every 
18 minutes) are shown on the left and the nearly continuous spectral analysis 
results on the right. 
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Fig. 6.8 The new estimates (red circle) are integrated into the automation system where the operators  

can compare the performance with the traditional XRF measurements (yellow circle). 

The idea is to gather operator experience on the usefulness of these new 
measurements in the control of the flotation process. To help the operators detect 
sudden disturbances, an animated arrow estimating the gradient direction is shown 
next to the numerical values. In the case of sudden disturbance, like the one 
presented in Fig. 6.7, the yellow arrow next to Zn reading would quickly turn to 
point downwards and its colour would change to red. 
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7. 
Conclusions 

The mining, mineral and metal industry (MMMI) might be considered rather 
conservative in many respects. However, since the amount of ore processed on a 
yearly basis is typically expressed in millions or tens of millions of tons, even a 
slight improvement in performance – say a 1% increase in recovery – can lead to 
substantial economical benefits. For example, in the case of Pyhäsalmi mine, which 
processes “only” 1.4 million tons of ore per year, this 1% increase in copper 
recovery alone would amount to roughly 500 000 € increase in annual profit with 
the current metal prices. 

This has motivated equipment vendors, researchers and plant personnel to develop 
new technologies that will get them closer to the optimum. This thesis contributes 
to this development with an application oriented approach, in which machine 
vision technologies have been utilized in the context of a mineral concentration 
process. 

Chapter 4 of the thesis presents a new approach to particle size analysis done from 
a moving conveyor belt. Although the system is applied to a mining process, the 
results may be generalized to other types of processes also; from the image analysis 
point of view it is irrelevant what the imaged material is.  

Then, the benefits of image analysis of flotation froths are studied and the results 
presented in Chapter 5. The research was started with a single imaging station, 
installed in the rougher cell of the zinc flotation circuit, and already with that single 
installation very good results were obtained. Later on, the system was extended to 
cover more cells in the zinc and copper circuits, and the obtained data was used in 
many ways beneficial both to controlling of the plant and to scientific research. 
This thesis has increased the knowledge of flotation processes and possibilities of 
utilizing image analysis in them. One of the results shown, namely the introduction 
of image variables into one of the closed loop control algorithms of the zinc 
rougher circuit, could also be evaluated in economic terms; the estimated yearly 
benefit was 200 000-300 000 €. 

Furthermore, the investigations with respect to colour and grade led to a 
completely new way of integrating the traditional X-Ray Fluorescence (XRF) 
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analysis and spectral measurements. The resulting system is a supplement to the 
existing XRF analyzers, enabling them to provide nearly continuous grade 
measurements as opposed to the sparse values that were obtained every 10-20 
minutes before this improvement. The research and the results related to this are 
reported in Chapter 6 and, even though the work is still in progress, the results 
obtained so far (and reported in this thesis) confirm its usefulness in the context of 
mineral flotation. In fact, the excellent results obtained during this study have 
motivated Outotec Minerals Oy to consider commercialization and it is likely that 
these measurement capabilities will be available in future versions of Courier® 
XRF analyzers. 

The work presented in this thesis will continue; as mentioned, the results presented 
in Chapter 6 are likely to be commercialized, the usage of the FrothEye software 
and the supporting tools will continue in Pyhäsalmi and new application areas for 
the machine vision platform will be sought. Furthermore, modelling of the ore 
transportation chain will continue and the benefits of spectral measurements will be 
studied with the current particle size analysis system (actually, spectral 
measurements have already been integrated with other measurements). The spectral 
data obtained from the ore can be combined with the segmentation results and thus 
each identified particle can be complemented with the new data. This can then be 
used in the identification of invaluable particles and, possibly, in ore type 
detection. The first results of this approach will be reported in an upcoming 
publication by Pietilä and Haavisto [84]. 

Finally, a quote3 describing the author’s state of mind when writing this final 
chapter: “That’s pretty much all that I have to say about the subject”. 

                                                      
3 From the movie Forrest Gump. 
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